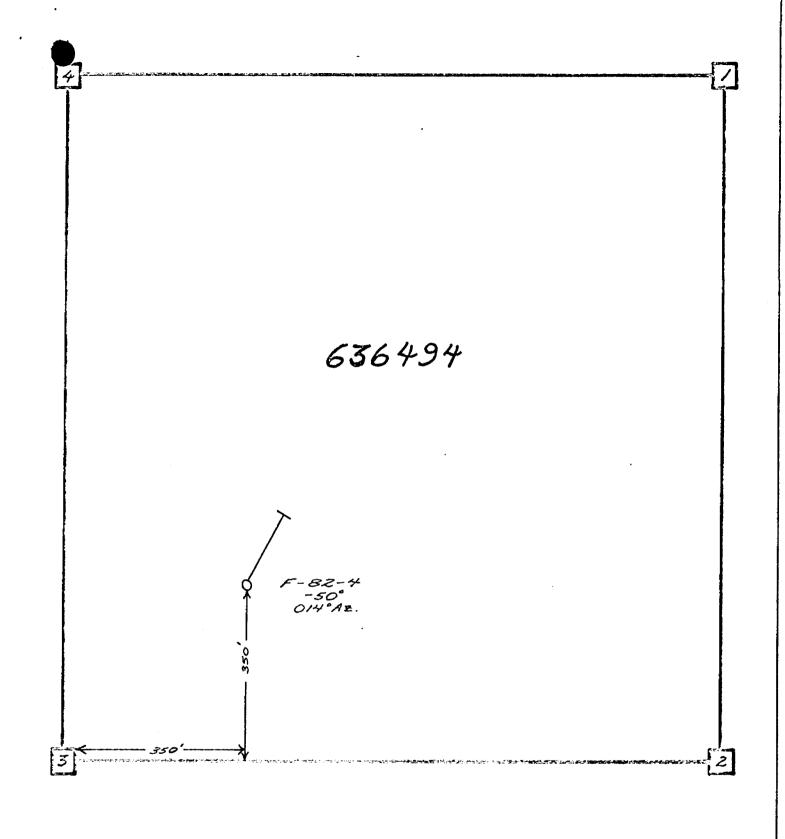
DIAMOND DRILLING

010


Township: Keith

REPORT No.: 47

WORK PERFORMED BY: Hudbay Mining Ltd.

<u>C</u>	LAIM NO.	HOLE NO.	FOOTAGE	DATE	NOTE
P	636494	F-82-4	132.8m	Nov/82	(1)
P	626290	F-82-3	158.8m	Nov/82	(2)
P	626290	F-82-7	120.7m	Nov/82	(2)
P	626294	F-82-8	224.3m	Nov/82	(2)

Notes: (1) #12-83 (2) #13-83

HUDBAY MINING LTD.

DDH LOCATION SKETCH

LENGTH: 132.8m

CARBONATE GROUP LOCATION:

-50°

PROPERTY: FOLEYET HOLE NO: F-82-4

CLAIM NO. P636494

SECTION:

LOGGED BY: M.P. Corrigan

Bradley Bros. Ltd.

DRILLED FOR: Hudbay Mining Ltd.

DATE LOGGED: 1982-11-11

ELEVATION:

DRILLED BY:

CORE SIZE: B.Q.

DIP TESTS: @132.8m - 55°

STARTED: 1982-11-08 COMPLETED: 1982-11-10

014⁰

LATITUDE: L 7+15W

INCLIN:

AZIMUTH:

PURPOSE: To test an EM Conductor

DEPARTURE: 1+00S

M.P. Carrige

METR	RES	DESCRIPTION	SAMPLE	METI	RES	LENGTH			ASSA	YS	
'rom	To		NO.	From	To	1	Au	Ag			
0	5.4	Overburden					oz/T	OZ/T			
4	29.6	Mafic Tuff									
•		- dark grey-black to dark green	787	8.0	9.5	1.5	nil	nil		}	
ľ		- fine grained ash predominates, but lapilli beds are common, light							.	}	
		grey lapilli are sub-rounded and invariably carbonatized making them	788	11.3	12.8	1.5	nil	nil	[
		distinct from the matrix ash.	789	13.9	15.1	1.2	nil	nil	}		
		- unit is high fractures @ various angles TCA; fractures are < 2mm, carbonate-filled, and often have gossany surfaces.	790 ·	19.2	20.7	1.5	nil	nil			
		- unit is very highly silicified with 10-15% carbonate (locally to 30%) - @ 13.9m, a 50cm fault zone @ 45° TCA; vuggy	791	24.0	25.5	1.5	nil	nil		-	
		- @ 14.7, a 40 cm fault zone; vuggy & gossany - localized minor rock movements marked by quartz-carbonate stringer							Ì		
1		offsets & networks; stringer frequency increases with depth.							1		
		- 50-55 fractures per meter of core, 10-15 f/m average; @40-60° TCA & 25° TCA.									
İ		- @ 23.4m, 5 cm "chill zone"; pinkish-brown in colour; fractured,							Ì		
		with interstitial chlorite developed; local "bleaching" during silicification of fractures									
		- @21.8 rounded lapilli to 3-4 cm (1-2 cm average) in a 30cm bed						·	İ		
		within a micaceous/chloritic matrix (matrix-supported); dark green to black 2-3mm glassy fiamme (?) may represent the remnants of									
		carbonatized fragments			,						
		- Tr Po + Py along fractures									
1		- lower contact undulatory & partially lost in fracturing, @ 20° TCA								1	
										Ì	

HOLE NO:

F-82-4

PROPERTY: FOLEYET

PAGE NO: 2 of 7

							 		, ŅO: 2	•	
METI		DESCRIPTION	SAMPLE	METI	RES	LENGTH			ASSA	YS	
rom	To	DESCRIPTION	NO.	From	То		Au	Aq	Zn		
9.6	31.3	GRAPHITIC PELITE - conductive - dark grey to black - fine grained to aphanitic - initial 1.0m is a chloritized pelite which has been overprinted by	792	29.6	31.3	1.7	0.001		0.18		
		silicification - several 5cm serated graphite clasts (?) occur - the graphitic bed is silicified such that it has a conchoidal fractur - Po occurs as spherical to fusilinear-shaped masses to 3cm (avg. lcm), whisps, and fine disseminations; @ 30.lm Cpy occurs with Po along a fracture plane; 10-20% Po + tr Cpy; Po lineation @ 15° TCA - 10-15% matrix carbonate & occasional 1-2mm stringers lower contact sharp @ 15° TCA									
.3	35.5	PELITE-MAFIC TUFF - mixed zone of fine grained clastic beds & ash flows; occasional lapilli as @ 33.4m - main rock types as before - 10-15% matrix carbonate + 1-3mm stringers @ 45° TCA - pelite has 10% biotite - unit is initially chloritic, but silicification increases with depth - Tr Po + Py along fractures - lower contact sharp @ 60° TCA	793	31.3	32.8	1.5	nil	nil	-		

F-82-4

PROPERTY:

FOLEYET

PAGE NO: 3 of 7

		FOLEYET	•					PAGE	E NO: 3	of 7	
	TRES		SAMPLE	MET	TRES	LENGTH			ASSAY	.s	
From	To	DESCRIPTION	NO.	From	То	_]	Au	Ag	Zn		
35.5	36.3	GRAPHITE					OZ/T	oz/T	8		
		- conductive - as before @ 29.6m except: - preceded by a 30 cm grey quartz vein - 5% carbonate in stringers - Tr - 1% Cpy in spherical Po masses & along fractures - lower contact diffuse, very highly serated; set @ 40° TCA	794	35.5	36.3	0.8	0.006	tr	0.22		
36.3	44.0	RHYODACITE (LAPILLI) TUFF - initially light grey /green, but colour becomes darker with depth due to mixing with metasediments - predominantly ash but lapilli occur as @ 38.0m; lapilli to 4cm average 0.5-lcm; 4:1 elongation ratio; fusilinear-shaped lapilli; compositionally equivalent to the matrix, but lighter in colour; @ 15° TCA - unit is very highly sericitized to 41.lm which is overprinted by silicification (silicification increases with depth); lower 0.5m is marked by a 3-5mm quartz-carbonate vein parallel to bedding which displays evidence of brecciation - @ 41.lm to 43.6m, the unit becomes very fine grained, more mafic, and possibly intercalated with metasediments - entire unit is marked by a pronounced absence of matrix carbonate; < 5% carbonate in 1-2mm stringers @ various angles TCA - @ 42.5m a 40 cm quartz-carbonate vein terminates a lapilli bed on the upper surface while paralleling a lapilli bed at the lower contact; graphite/Po xenoliths occur in the vein; evidence of brecciation with angular quartz fragments - Tr Po/Py along fractures; locally to 5% - lower contact sharp @ 20° TCA	795 796 797 798	38.4 41.5 42.5 42.9	39.9 42.5 42.9 44.0	1.0	nil nil nil	nil nil nil	0.04		

F-82-4

PROPERTY: FOLEYET

PAGE NO: 4 of

		FOLEYET						PAGE	NO: 4	of 7		
METI			SAMPLE	MET	RES	LENGTH			ASSA	YS		
From	To	DESCRIPTION	NO.	From	То		Au	Ag	Zn			
		·					OZ/T	oz/T	ક			
44.0	68.6	DACITE TUFF]							
		- greyish-green			 							
	Ì	- fine grained	799	44.0	45.5	1.5	nil	nil			1	ı
1		- \to equivalent to the preceeding unit, but slightly more mafic (as in	800	45.5	47:0	1.5	nil	nil	-	, }		
		die lower section of above limit	1376	60.8	62.3	1.5	nil	nil	-	i		ļ.
		-initial 3.0m is brecciated & marked by 15-25% quartz-carbonate	1377	67.1	68.6	1.5	2			. 1	1	l
		verniets (1-10mm) & 40-60° TCA; this portion of the unit is	1 20	10,.1	00.0	1.5	nil	nil	-			į
		chioritized & contains 5-10% matrix carbonate	′								. !	i
	1	- ash beds occur beyond this zone; prominent, white, carbonatized xenocrysts in a dark matrix		1				1				İ
	[.]	- localized breccia zones @ 50.5m & 51.4m		}	}		}	}		1		ı
		- unit becomes increasingly masic with any ()								1		l
l	{ }	- unit becomes increasingly mafic with depth (similar to the unit @ 5.4m); alternating Mafic/Dacitic beds, however mafics dominate	-	1	1		}			1		
ł	1 '	- occasional chloritic lapilli beds as @ 57.0m, 61.4m; @30-350 TCA	1		1					1		
1	[[- unit becomes very tight with depth, <5% carbonate stringers +	1		[1	-	ĺ
	1	10-20% matrix carbonate surrounding lapilli and ash	}		}							ł
		- very nighty silicified, increases with denth	1									
•	1 1	- Tr Po/Py, along fractures	1			-	1	1				
		- lower contact sharp @ 20° TCA										
68.6	70.4	GRAPHITE										
		- as before @ 35.5m except:						j]	į	
		- silicified, < 5% carbonate which is mainly in the initial stringer	1378	68.6	70.4	1.8	0.001	. tr	0.26	1	ı	1
		sulfide zone; 10-20% Po	1	1	1						1	ł
		- initial 40cm of the sulfide zone contains Tr - 1% Cpy along fracture	1							1	i	
		planes, followed by spherical masses, blebs, & disseminations of Po;	{	[1	[1.	1	i	1
		surrides are subparallel to parallel TVI	1	1			·			1 1	i	1
		- lower contact undulatory, but sharp; set @ 200 TCA					ł				l	1
		I, Joe C Lo ICA	1							1 !	i	1
		·		1			1	1			l .	1
			1	1					1		1	1
	1			1	1			İ	ĺ		Ĺ	1
	1				1		1				[1
							1	1				
			1									
	1	ł	1	1	1	i i	•	1	1	1	1	1

F-82-4

PROPERTY: FOLEYET

PAGE NO: 5 of 7

	A								SE NO: 5			
7	TRES	DESCRIPTION	SAMPLE	MET	TRES	LENGTH	Ī		ASSAY	/S		
From	To	DESCRIPTION	NO.	From	ТО		Au				<u> </u>	4
,	1	f · · · · · · · · · · · · · · · · · · ·		,			bz/T	oz/T	8		,	1
70.4	.75.4	DACITE LAPILLI TUFF	1	1			,	1				
/0.4 ,	1,73.4		1	,	1		,			,	,	
,	1	- light grey	1 2270	′	0	1	1 ., '	1 .,				
,	1	- similar to the previous Dacite @ 44.0m, however distinct, black,	1379	70.4	71,9		nil	nil	1 1		,	1
,	-	relatively circular, unflattened, lapilli are common (<1 cm)	1380	71.9	73.4		nil nil	nil nil			,	1
,	į.	- unit is very tight, with <1% matrix and stringer carbonate to 73.5m	1381	73.4	75.4	2.0	l nrr	nıı	-		,	
,	,	beyond which graphitic xenoliths? (fragments) and 1-10mm quartz- carbonate veinlets occur (\sim 5%) @ 40° TCA	1	,		1		1		(,	
,	,	- buff-coloured Rhyolitic fragments displaying internal cooling	1	,					1		,	\cdot
,	,	fractures occur @ 70.7m and 72.2m	1	,					,		·	
,	,	- 1-5% disseminated and stringer Po; Po lineation @ 30° TCA	. [,							. '	1
,		- lower contact sharp @ 45° TCA	1 .	,				-			,	
,	,	1	1						1		,	1
75.4	75.9		1						1	1		-
,	,	- as before @ 68.6 except:	1382	75.4	75.9	0.4	p.002	2 tr	0.27	1		
,	,	- no stringer sulfide zone	4		}		1		1	1		
. ,	,	- 10-20% Po as disseminations & spherical masses	1	}	ļ		}		1	1	4	ļ
-	'	- lower contact undulatory, but sharp; set @ 30° TCA]	1		
75.9	94.6	DACITE (LAPILLI) TUFF							1	1	·	
	. '	- dark grey to black	1383	75.9	77.4		nil	1	-	1	•	1
,	,	- similar to the Dacite @ 70.4m	1384	77.4	78.9	1	nil	tr	- 1	1	(
,	,	- indistinct grey lapilli in a darker matrix	1385	78.9	80.4	1.5	nil	nil	— 1	1	(
	,	- very tight, < 5%, 1-10mm, carbonate stringers				·	١.,	.,)	1	(
	'	- alternating ash & lapilli beds	j.	83.8	85.3	1	nil	1		1	ı	
	,	- unit becomes increasingly felsic & heterolithic with depth; both	1387	85.3	86.8	1.5	nil	nil	- 1	1	1	
•	,	silicic & chloritic fragments occur; approaches a Rhyodacite;	1		1		\ <u>.</u> ,	1	1.	1	1	
	'	@ 35° TCA	1388	90.2	91.7	1.5	nil	nil	- 1	1	1	
	, '	- increasingly sericitized with depth - @ 87.6 a 1.2m intersection of several 5-10cm zones of brecciated							,	1	1	
	,	- @ 87.6 a 1.2m intersection of several 5-10cm zones of brecciated fragments in a bleached carbonatized matrix		l					,	1	í	
	1							ł	,	1	í ·	
	,	- 1-3% disseminated Po + Py along fracture planes; Po lineation							,	1	1	
		@ 35° TCA				}			,	1 1	•	
		- lower contact sharp @ 15° TCA; marked by a dramatic increase in matrix carbonate							'		f	
								Ì	,	-{	1	
_	İ				l				,	1	1	
~	1	1	1	1	ı	1	ı	1	1 .	1 1	1	

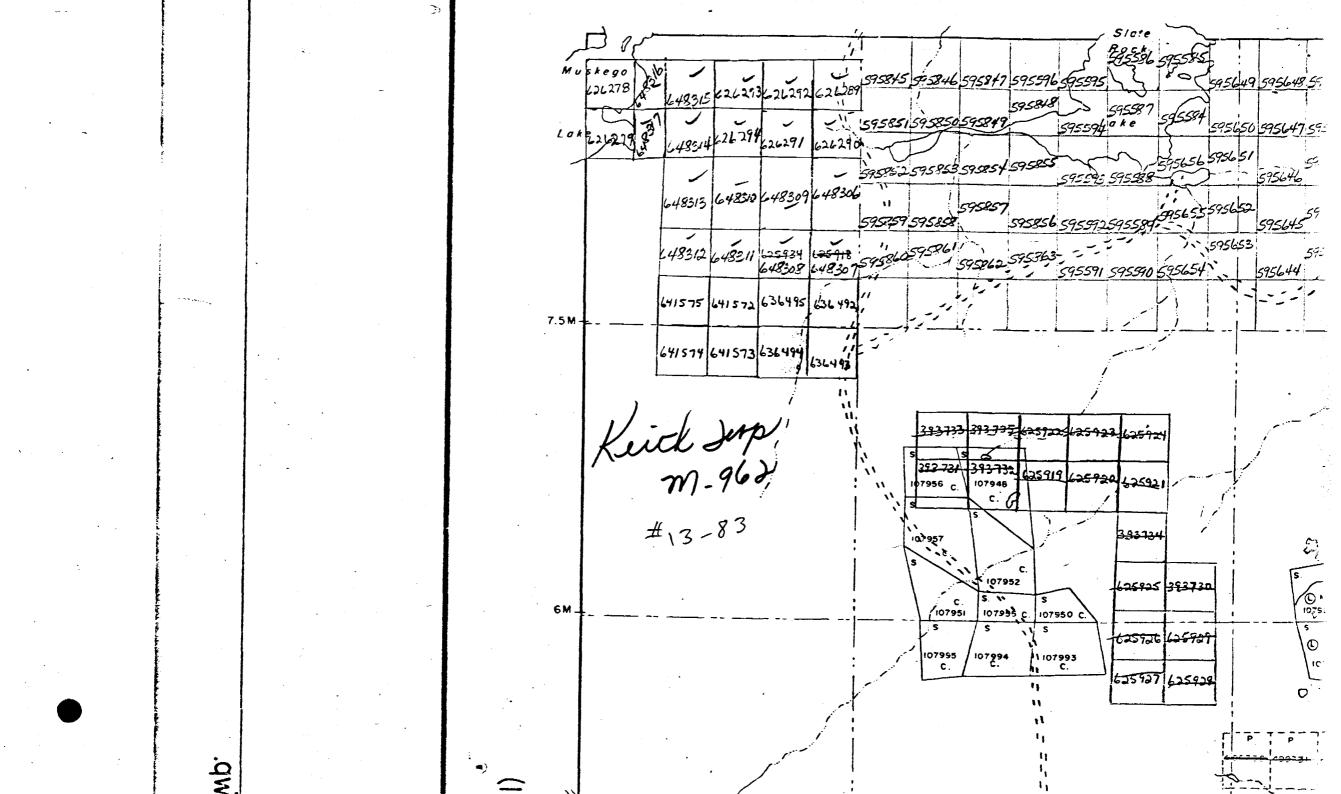
F-82-4

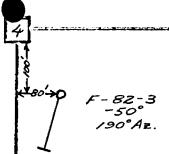
PROPERTY:

FOLEYET

PAGE NO: 6 of 7

METRES SAMPLE LENGTH ASSAYS METRES DESCRIPTION From To Au Ag From NO. TΟ OZ/T OZ/T 94.6 97.9 ANDESITIC TUFF - dark green to grey 1389 96.3 97.8 - fine grained to aphanitic; occasional lapilli as @ the start of unit 1.5 nil nil - 10-15% carbonate in 1-5mm concordant/discordant stringers @ 0-80° TCA; 5-10% matrix carbonate - chloritized, but overprinted by silicification - no significant mineralization - lower contact sharp @ 350 TCA 97.9 132.8 DACITIC TUFF - dark grey to brownish 1390 101.9 103.4 1.5 nil - fine grained níl - predominately ash, but lapilli are common 1391 - initial 1.0m of core displays carbonate stringers as in previous 105.4 106.4 1.0 nil tr 1392 106.4 unit (5-10%) but unit becomes very tight beyond with \leq 5% matrix 106.7 0.3 nil tr 1393 106.7 107.7 carbonate 1.0 nil nil 1394 113.1 - @ 100.lm a 50cm sericitized zone 114.6 1.5 nil tr - @100.6m a 2.8m matrix-supported lapilli unit; lapilli are angular 1395 119.4 to sub-rounded, to 3cm, silicic; slightly stretched (1:2 ratio), 120.1 0.7 nil nil 1396 120.1 and grey (against a tan matrix); lapilli are generally indistinct 120.9 0.8 nil nil 1397 125.2 but >> harder than the matrix; size decreases with depth; occasional 126.7 1.5 nil nil 1398. 131.3 chloritic lapilli 132.3 1.0 nil nil - @ 107.0m a 1.8m silicic ash bed, with occasional lapilli - @108.8 lapilli as before, but smaller in size (2-5mm) - beyond, predominately ash which is darker in colour & more silicified - @ 110.0 m; a 10cm breccia zone

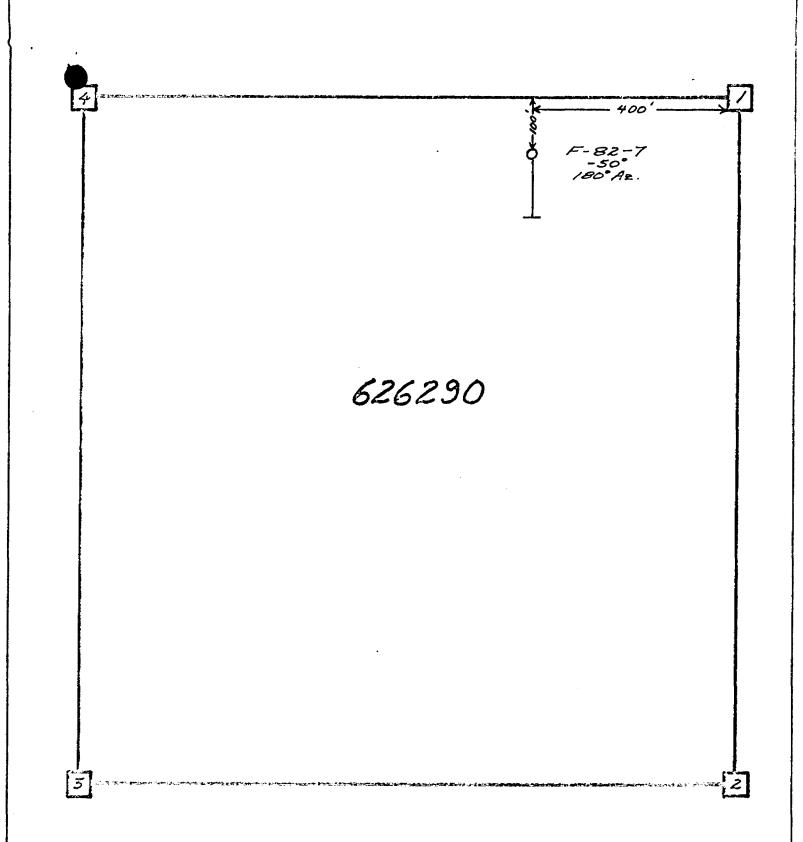

HOLE NO:


F-82-4

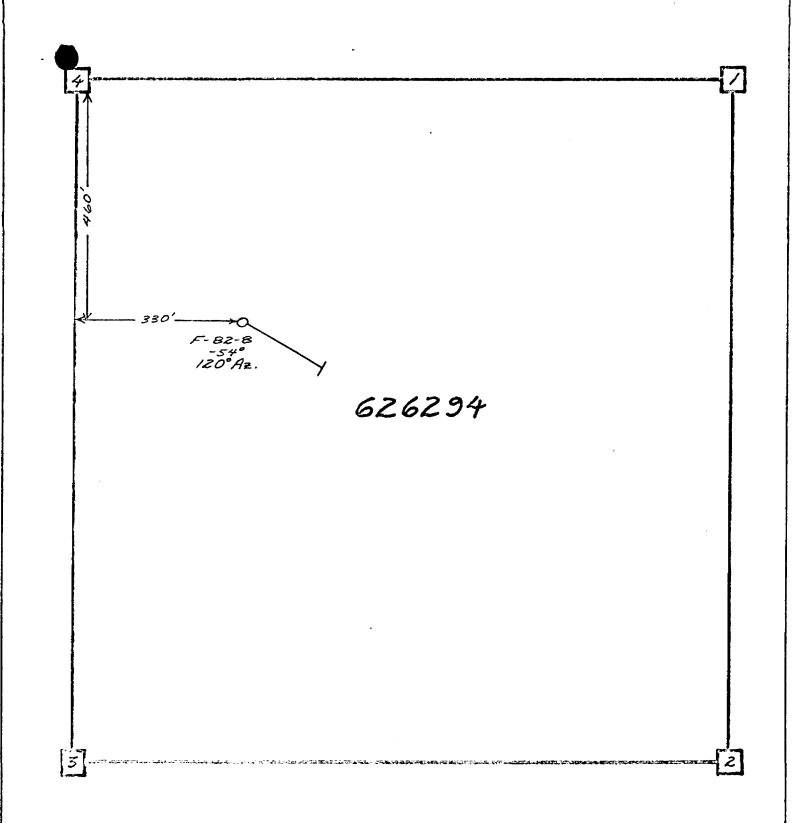
PROPERTY:

FOLEYET

	······································			····		1			NO: 7			_
MET!	TO	DESCRIPTION	SAMPLE	MET		LENGTH	Au	200	ASSA	YS		T
COM	10		NO.	From	То	 	OZ/T	Ag Oz/T				+
1	1	= numerous garbonate etuinum o		1 1			1			}		
1	·	- numerous carbonate stringers @ various angles TCA in the lower ash bed; a preferred orientation of 70-80° TCA is displayed in						1		}		
		sausseritized zones surrounding the stringers; the larger zones		}			}	}				
1		(to 8cm) appear as felsic fragments		[}						
1		- occasional 3-5mm anhedral plagioclase as 0 113 7m										
Ì		- several 3-5 cm quartz-carbonate veinlets	}					}				
Ì		- "felsic banding" (larger sausseritized zones) common between									:	
į		118.0m and 125.0m; up to 50% carbonate in these zones. - several lapilli beds occur in the lower portion of the hole, as				Ì		}				
1		e 124.4m										
- {		- silicification decreases downhole, chlorite content increases,										
	-	as ases a carbonate to the sole						İ				
		- Tr Po + Py along fractures, up to 10% locally (<1.0m) in stringers							,			
		NOTE: Core checked with spectrometer and UV lamp; no anomalous										
		results were obtained .										
					}	1	1		}		}	
				}			}		1			
					1				}	-	1	
					}	1					1	
		·					•					
		•								1		
:												
				1								
							}					
	ļ			}								
					1							
					}				}			
	1		1			1			}	1		



626290


HUDBAY MINING LTD.

DDH LOCATION SKETCH

HUDBAY MINING LTD.

DDH LOCATION SKETCH

HUDBAY MINING LTD.

DDH LOCATION SKETCH

BOUNDARY GROUP LOCATION:

PROPERTY:

FOLEYET

HOLE NO: F-82-3

CLAIM NO. P626290

SECTION:

LOGGED BY: M.P. Corrigan

DATE LOGGED: 82-11-07

ELEVATION:

INCLIN: -50° AZIMUTH: 190° STARTED: 1982-11-04

LATITUDE: L4+00W

CORE SIZE:

LENGTH: 158.8m

DIP TESTS: -48° @ 117.7m

COMPLETED: 1982-11-06

DEPARTURE: 0+20N

DRILLED BY: Bradley Bros Ltd. DRILLED FOR: Hudbay Mining Ltd.

	MET	RES	DESCRIPTION	SAMPLE	METE	ES	LENGTH			ASS	SAYS	
O 27.4 Overburden 27.4 37.0 DACITIC TUFF - light brown to grey - 1-2mm distinct ash - massive, no apparent bedding - @ 36.3m lapilli appear - @34.4m unit becomes brecciated & carbonate content increases to 10-15%; sub-rounded to sub-angular breccia fragments are highlighted by carbonate - breccia zone is intercalated with underlying unit, but it lacks graphite - 32.3m to 34.3m, 70% core recovery - 1-5% Po disseminated along fracture planes & as stringers; % sulfides increases with increasing carbonate content	rom	TO		NO.	From	То	 			1		
7.4 37.0 DACITIC TUFF - light brown to grey - l-2mm distinct ash - massive, no apparent bedding - @ 36.3m lapilli appear - @34.4m unit becomes brecciated & carbonate content increases to 10-15%; sub-rounded to sub-angular breccia fragments are highlighted by carbonate - breccia zone is intercalated with underlying unit, but it lacks graphite - 32.3m to 34.3m, 70% core recovery - 1-5% Po disseminated along fracture planes & as stringers; % sulfides increases with increasing carbonate content				1				OZ/T	OZ/T	8		
- light brown to grey - 1-2mm distinct ash - massive, no apparent bedding - @ 36.3m lapilli appear - @34.4m unit becomes brecciated & carbonate content increases to 10-15%; sub-rounded to sub-angular breccia fragments are highlighted by carbonate - breccia zone is intercalated with underlying unit, but it lacks graphite - 32.3m to 34.3m, 70% core recovery - 1-5% Po disseminated along fracture planes & as stringers; % sulfides increases with increasing carbonate content		27.4	Overburden									
- 1-2mm distinct ash - massive, no apparent bedding - @ 36.3m lapilli appear - @34.4m unit becomes brecciated & carbonate content increases to 10-15%; sub-rounded to sub-angular breccia fragments are highlighted by carbonate - breccia zone is intercalated with underlying unit, but it lacks graphite - 32.3m to 34.3m, 70% core recovery - 1-5% Po disseminated along fracture planes & as stringers; % sulfides increases with increasing carbonate content	7.4	37.0				•						
- massive, no apparent bedding - @ 36.3m lapilli appear - @34.4m unit becomes brecciated & carbonate content increases to 10-15%; sub-rounded to sub-angular breccia fragments are highlighted by carbonate - breccia zone is intercalated with underlying unit, but it lacks graphite - 32.3m to 34.3m, 70% core recovery - 1-5% Po disseminated along fracture planes & as stringers; % sulfides increases with increasing carbonate content	•		- light brown to grey	753	35.5	37.0	1.5	nil	nil	0.03		
- @ 36.3m lapilli appear - @34.4m unit becomes brecciated & carbonate content increases to 10-15%; sub-rounded to sub-angular breccia fragments are highlighted by carbonate - breccia zone is intercalated with underlying unit, but it lacks graphite - 32.3m to 34.3m, 70% core recovery - 1-5% Po disseminated along fracture planes & as stringers; % sulfides increases with increasing carbonate content	1								1			
- @34.4m unit becomes brecciated & carbonate content increases to 10-15%; sub-rounded to sub-angular breccia fragments are highlighted by carbonate - breccia zone is intercalated with underlying unit, but it lacks graphite - 32.3m to 34.3m, 70% core recovery - 1-5% Po disseminated along fracture planes & as stringers; % sulfides increases with increasing carbonate content		ļ	- Massive, no apparent bedding - 0 36.3m lanilli appar									
10-15%; sub-rounded to sub-angular breccia fragments are highlighted by carbonate - breccia zone is intercalated with underlying unit, but it lacks graphite - 32.3m to 34.3m, 70% core recovery - 1-5% Po disseminated along fracture planes & as stringers; % sulfides increases with increasing carbonate content	-		- 034.4m unit becomes brecciated & carbonate content increases to					1				
by carbonate - breccia zone is intercalated with underlying unit, but it lacks graphite - 32.3m to 34.3m, 70% core recovery - 1-5% Po disseminated along fracture planes & as stringers; % sulfides increases with increasing carbonate content	1		10-15%; sub-rounded to sub-angular breccia fragments are highlighted							1		
graphite - 32.3m to 34.3m, 70% core recovery - 1-5% Po disseminated along fracture planes & as stringers; % sulfides increases with increasing carbonate content	1		by carbonate									
- 32.3m to 34.3m, 70% core recovery - 1-5% Po disseminated along fracture planes & as stringers; % sulfides increases with increasing carbonate content			- breccia zone is intercalated with underlying unit, but it lacks									
- 1-5% Po disseminated along fracture planes & as stringers; % sulfides increases with increasing carbonate content								1				
sulfides increases with increasing carbonate content			- 32.3m to 34.3m, /0% core recovery									
- lower contact sharp @ 45° TCA	1		sulfides increases with increasing carbonate content					1				
			- lower contact sharp @ 45° TCA]			
						-			1			
	1											
	l											
						•						
	ì	1			1		1	1	1	1		

PAGE NO: 2 of 8

TO DESCRIPTION NO. From TO Au Ag Zn OZ/T OZ/T % GRAPHITIC PELITE/PSAMMITE - Conductive - unit consists of silicified graphite beds alternating with pelite/psammite beds - grey in colour - @ 37.0m, a 60cm graphite bed with 3-5% Po + Py in stringers and disseminated along bedding planes & ~1% Cpy in lower 20cm of the bed; 5% carbonate in gash veins - @ 37.6m, a 2.8m psammite bed with occasional 2-3mm quartz clasts; 2-3 beds occur in a fining downhole sequence; upper portion of the beds is sericitized while the lower 10cm is silicified; contains 3-5% finely disseminated Po + Py unit becomes heterogenous beyond the psammite beds; graphite beds of several cm's to 60cm in width, @ 50° TCA; graphite is "dirty", non-conductive, appears to be fragmentary, and contains 3-5% Py in stringers & disseminations + Tr Cpy - graded bedding @ 37.6m & 43.6m; fining downhole - @ 43.2m possible cross-bedding; grain lineation defines a curvilinear bedding surface chloritized, 5-10% carbonate (concentrated in graphite beds)	To DESCRIPTION NO. From To Au Ag Zn OZ/T OZ/T % Au Ag Zn OZ/T OZ/T % Au Ag Zn OZ/T OZ/T % Au Ag Zn OZ/T OZ/T % Au Ag Zn OZ/T OZ/T % OZ/T OZ/T OZ/T % OZ/T OZ/T OZ/T % OZ/T OZ/T OZ/T % OZ/T OZ/T OZ/T % OZ/T OZ/T OZ/T S/ OZ/T OZ/T OZ/T S/ OZ/T OZ/T OZ/T OZ/T S/ OZ/T OZ/T OZ/T OZ/T S/ OZ/T OZ/T OZ/T OZ/T OZ/T OZ/T OZ/T OZ/T	To DESCRIPTION NO. Prom To Au Ag Zn OZ/T OZ/T & OZ/T OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T OZ/T & OZ/T OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T & OZ/T OZ/T OZ/T & OZ/T OZ/T OZ/T & OZ/T OZ/T OZ/T & OZ/T OZ/T OZ/T & OZ/T OZ/T OZ/T OZ/T OZ/T OZ/T OZ/T OZ/T	Voe	7		SAMPLE	MEm	DEC	LENGTH	1	· · · · · · · · · · · · · · · · · · ·	N C C N	vc	
45.7 GRAPHITIC PELITE/PSAMMITE - Conductive - unit consists of silicified graphite beds alternating with pelite/ psammite beds - grey in colour - @ 37.0m, a 60cm graphite bed with 3-5% Po + Py in stringers and disseminated along bedding planes & ~1% Cpy in lower 20cm of the bed; 5% carbonate in gash veins - @ 37.6m, a 2.8m psammite bed with occasional 2-3mm quartz clasts; 2-3 beds occur in a fining downhole sequence; upper portion of the beds is sericitized while the lower 10cm is silicified; contains 3-5% finely disseminated Po + Py unit becomes heterogenous beyond the psammite beds; graphite beds of several cm's to 60cm in width, @ 50° TCA; graphite is "dirty", non-conductive, appears to be fragmentary, and contains 3-5% Py in stringers & disseminations + Tr Cpy - graded bedding @ 37.6m & 43.6m; fining downhole - @43.2m possible cross-bedding; grain lineation defines a curvilinear bedding surface chloritized, 5-10% carbonate (concentrated in graphite beds)	45.7 GRAPHITIC PELITE/PSAMMITE - Conductive - unit consists of silicified graphite beds alternating with pelite/ psammite beds - grey in colour - @ 37.0m, a 60cm graphite bed with 3-5% Po + Py in stringers and disseminated along bedding planes & ~1% Cpy in lower 20cm of the bed; 5% carbonate in gash veins - @ 37.6m, a 2.8m psammite bed with occasional 2-3mm quartz clasts; 2-3 beds occur in a fining downhole sequence; upper portion of the beds is sericitized while the lower locm is silicified; contains 3-5% finely disseminated Po + Py. - unit becomes heterogenous beyond the psammite beds; graphite beds of several cm's to 60cm in width, @ 50° TCA; graphite is "dirty", non-conductive, appears to be fragmentary, and contains 3-5% Py in stringers & disseminations + Tr Cpy - graded bedding @ 37.6m & 43.6m; fining downhole - @ 43.2m possible cross-bedding; grain lineation defines a curvilinear bedding surface. - chloritized, 5-10% carbonate (concentrated in graphite beds) - lower contact gradational due to mixing with underlying unit;	45.7 GRAPHITIC PELITE/PSAMMITE - Conductive - unit consists of silicified graphite beds alternating with pelite/ psammite beds - grey in colour - @ 37.0m, a 60cm graphite bed with 3-5% Po + Py in stringers and disseminated along bedding planes & ~1% Cpy in lower 20cm of the bed; 5% carbonate in gash veins - @ 37.6m, a 2.8m psammite bed with occasional 2-3mm quartz clasts; 2-3 beds occur in a fining downhole sequence; upper portion of the beds is sericitized while the lower 10cm is silicified; contains 3-5% finely disseminated Po + Py unit becomes heterogenous beyond the psammite beds; graphite beds of several cm's to 60cm in width, @ 50° 7CA; graphite is "dirty", non-conductive, appears to be fragmentary, and contains 3-5% Py in stringers & disseminations + Tr Cpy - graded bedding @ 37.6m & 43.6m; fining downhole - @43.2m possible cross-bedding; grain lineation defines a curvilinear bedding surface chloritized, 5-10% carbonate (concentrated in graphite beds) - lower contact gradational due to mixing with underlying unit; @ 50° TCA			DESCRIPTION	1			LENGIA	<u> </u>	,	· · · · · · · · · · · · · · · · · · ·	15	
- Conductive - unit consists of silicified graphite beds alternating with pelite/ psammite beds - grey in colour - @ 37.0m, a 60cm graphite bed with 3-5% Po + Py in stringers and disseminated along bedding planes & ~1% Cpy in lower 20cm of the bed; 5% carbonate in gash veins - @ 37.6m, a 2.8m psammite bed with occasional 2-3mm quartz clasts; 2-3 beds occur in a fining downhole sequence; upper portion of the beds is sericitized while the lower 10cm is silicified; contains 3-5% finely disseminated Po + Py unit becomes heterogenous beyond the psammite beds; graphite beds of several cm's to 60cm in width, @ 50° TCA; graphite is "dirty", non-conductive, appears to be fragmentary, and contains 3-5% Py in stringers & disseminations + Tr Cpy - graded bedding @ 37.6m & 43.6m; fining downhole - @43.2m possible cross-bedding; grain lineation defines a curvilinear bedding surface chloritized, 5-10% carbonate (concentrated in graphite beds)	- Conductive - unit consists of silicified graphite beds alternating with pelite/ psammite beds - grey in colour - @ 37.0m, a 60cm graphite bed with 3-5% Po + Py in stringers and disseminated along bedding planes & ~1% Cpy in lower 20cm of the bed; 5% carbonate in gash veins - @ 37.6m, a 2.8m psammite bed with occasional 2-3mm quartz clasts; 2-3 beds occur in a fining downhole sequence; upper portion of the beds is sericitized while the lower l0cm is silicified; contains 3-5% finely disseminated Po + Py unit becomes heterogenous beyond the psammite beds; graphite beds of several cm's to 60cm in width, @ 50° TCA; graphite is "dirty", non-conductive, appears to be fragmentary, and contains 3-5% Py in stringers & disseminations + Tr Cpy - graded bedding @ 37.6m & 43.6m; fining downhole - @43.2m possible cross-bedding; grain lineation defines a curvilinear bedding surface chloritized, 5-10% carbonate (concentrated in graphite beds) - lower contact gradational due to mixing with underlying unit;	- Conductive - unit consists of silicified graphite beds alternating with pelite/ psammite beds - grey in colour - @ 37.0m, a 60cm graphite bed with 3-5% Po + Py in stringers and disseminated along bedding planes & ~1% Cpy in lower 20cm of the bed; 5% carbonate in gash veins - @ 37.6m, a 2.8m psammite bed with occasional 2-3mm quartz clasts; 2-3 beds occur in a fining downhole sequence; upper portion of the beds is sericitized while the lower 10cm is silicified; contains 3-5% finely disseminated Po + Py unit becomes heterogenous beyond the psammite beds; graphite beds of several cm's to 60cm in width, € 50° TCA; graphite is "dirty", non-conductive, appears to be fragmentary, and contains 3-5% Py in stringers & disseminations + Tr Cpy - graded bedding € 37.6m & 43.6m; fining downhole - @43.2m possible cross-bedding; grain lineation defines a curvilinear bedding surface chloritized, 5-10% carbonate (concentrated in graphite beds) - lower contact gradational due to mixing with underlying unit; € 50° TCA	1011			NO.	From	TO	·			أحسيس سيسه		
- unit consists of silicified graphite beds alternating with pelite/psammite beds - grey in colour - @ 37.0m, a 60cm graphite bed with 3-5% Po + Py in stringers and disseminated along bedding planes & ~1% Cpy in lower 20cm of the bed; 5% carbonate in gash veins - @ 37.6m, a 2.8m psammite bed with occasional 2-3mm quartz clasts; 2-3 beds occur in a fining downhole sequence; upper portion of the beds is sericitized while the lower 10cm is silicified; contains 3-5% finely disseminated Po + Py unit becomes heterogenous beyond the psammite beds; graphite beds of several cm's to 60cm in width, @ 50° TCA; graphite is "dirty", non-conductive, appears to be fragmentary, and contains 3-5% Py in stringers & disseminations + Tr Cpy - graded bedding @ 37.6m & 43.6m; fining downhole - @43.2m possible cross-bedding; grain lineation defines a curvilinear bedding surface chloritized, 5-10% carbonate (concentrated in graphite beds)	- unit consists of silicified graphite beds alternating with pelite/psammite beds - grey in colour - gray in	- unit consists of silicified graphite beds alternating with pelite/psammite beds - grey in colour - @ 37.0m, a 60cm graphite bed with 3-5% Po + Py in stringers and disseminated along bedding planes \$ ~ 1% Cpy in lower 20cm of the bed; 5% carbonate in gash veins - @ 37.6m, a 2.6m psammite bed with occasional 2-3mm quartz clasts; 2-3 beds occur in a fining downhole sequence; upper portion of the beds is sericitized while the lower 10cm is silicified; contains 3-5% finely disseminated Po + Py unit becomes heterogenous beyond the psammite beds; graphite beds of several cm's to 60cm in width, € 50° TCA; graphite is "dirty", non-conductive, appears to be fragmentary, and contains 3-5% Py in stringers & disseminations + Tr Cpy - graded bedding € 37.6m & 43.6m; fining downhole - @43.2m possible cross-bedding; grain lineation defines a curvilinear bedding surface chloritized, 5-10% carbonate (concentrated in graphite beds) - lower contact gradational due to mixing with underlying unit; @ 50° TCA	7.0	45.7		754	37.0	37.6	0.6	tr	nil	0.47		
- grey in colour - @ 37.0m, a 60cm graphite bed with 3-5% Po + Py in stringers and disseminated along bedding planes & ~1% Cpy in lower 20cm of the bed; 5% carbonate in gash veins - @ 37.6m, a 2.8m psammite bed with occasional 2-3mm quartz clasts; 2-3 beds occur in a fining downhole sequence; upper portion of the beds is sericitized while the lower 10cm is silicified; contains 3-5% finely disseminated Po + Py unit becomes heterogenous beyond the psammite beds; graphite beds of several cm's to 60cm in width, @ 50° TCA; graphite is "dirty", non-conductive, appears to be fragmentary, and contains 3-5% Py in stringers & disseminations + Tr Cpy - graded bedding @ 37.6m & 43.6m; fining downhole - @43.2m possible cross-bedding; grain lineation defines a curvilinear bedding surface chloritized, 5-10% carbonate (concentrated in graphite beds)	- grey in colour - @ 37.0m, a 60cm graphite bed with 3-5% Po + Py in stringers and disseminated along bedding planes & ~1% Cpy in lower 20cm of the bed; 5% carbonate in gash veins - @ 37.6m, a 2.8m psammite bed with occasional 2-3mm quartz clasts; 2-3 beds occur in a fining downhole sequence; upper portion of the beds is sericitized while the lower 10cm is silicified; contains 3-5% finely disseminated Po + Py unit becomes heterogenous beyond the psammite beds; graphite beds of several cm's to 60cm in width, @ 50° TCA; graphite is "dirty", non-conductive, appears to be fragmentary, and contains 3-5% Py in stringers & disseminations + Tr Cpy - graded bedding @ 37.6m & 43.6m; fining downhole - @43.2m possible cross-bedding; grain lineation defines a curvilinear bedding surface chloritized, 5-10% carbonate (concentrated in graphite beds) - lower contact gradational due to mixing with underlying unit;	- grey in colour - @ 37.0m, a 60cm graphite bed with 3-5% Po + Py in stringers and disseminated along bedding planes & ~1% Cpy in lower 20cm of the bed; 5% carbonate in gash veins - @ 37.6m, a 2.8m psammite bed with occasional 2-3mm quartz clasts; 2-3 beds occur in a fining downhole sequence; upper portion of the beds is sericitized while the lower 10cm is silicified; contains 3-5% finely disseminated Po + Py unit becomes heterogenous beyond the psammite beds; graphite beds of several cm's to 60cm in width, @ 50° TCA; graphite is "dirty", non-conductive, appears to be fragmentary, and contains 3-5% Py in stringers & disseminations + Tr Cpy - graded bedding @ 37.6m & 43.6m; fining downhole - @43.2m possible cross-bedding; grain lineation defines a curvilinear bedding surface chloritized, 5-10% carbonate (concentrated in graphite beds) - lower contact gradational due to mixing with underlying unit; @ 50° TCA			- unit consists of silicified graphite beds alternating with pelite/									
		@ 50° TCA			- grey in colour - @ 37.0m, a 60cm graphite bed with 3-5% Po + Py in stringers and disseminated along bedding planes & ~1% Cpy in lower 20cm of the bed; 5% carbonate in gash veins - @ 37.6m, a 2.8m psammite bed with occasional 2-3mm quartz clasts; 2-3 beds occur in a fining downhole sequence; upper portion of the beds is sericitized while the lower 10cm is silicified; contains 3-5% finely disseminated Po + Py unit becomes heterogenous beyond the psammite beds; graphite beds of several cm's to 60cm in width, @ 50° TCA; graphite is "dirty", non-conductive, appears to be fragmentary, and contains 3-5% Py in stringers & disseminations + Tr Cpy - graded bedding @ 37.6m & 43.6m; fining downhole - @43.2m possible cross-bedding; grain lineation defines a curvilinear bedding surface chloritized, 5-10% carbonate (concentrated in graphite beds)	755	39.4	41.1	1.7	nil	nil	0.09		
						į.	ł	1	1	1	1	1	1 1	

		FOLEYET						PAGE	NO: 3	of 8	3
METF	RES	DDCODIDETO:	SAMPLE	MET	RES	LENGTH			ASSA	YS	
rom	To	DESCRIPTION	NO.	From	То		Au	Aq			
		·					oz/T	OZ/T			
5.7	54.7	DACITIC TUFF									
1		- as before @ 27.4 except;	756	50.6	52.1	1.5	nil	nil			
1		- finer grained & lighter green in colour	1								
1		- unit is initially more mafic than before, but it approaches a	1							1	
		Rhyodacitic composition @ the lower contact	ł							}	
- 1		- initial 3.0m displays brecciation @ various, localized, sections	1]			İ
		of core (i.e. 46.3m); angular fragments	Ī								
		- @ 50.lm, a 20cm zone of tuff/metasediment; biotite-bearing fragments				ì					
1		appear; unit becomes a lapilli tuff @ this point; lapilli to a few cm's; % sulfides increases to 3% Py + Po (from Tr) in stringers,									
- 1		whisps, and fine disseminations; chlorite content decreases, while	1]		
1		silicification increases									
		- lapilli are composed of whitish-grey siliceous & indistinct				-					
· (chloritic fragments; 5-10% carbonate in lapilli zone					1		<u> </u>		Ì
- 1		- welding apparent in lower 1.0m to 1.5m								Ì	
		- lower contact sharp @ 50° TCA									
1.7	61.9	ANDESITIC (DACITIC) LAPILLI TUFF									
		- dark grey									
		- medium grained		}			1		'		
1		- heterolithic, possibly intermixed with a fine grained metasediment					İ		1		
- 1		- biotite-rich and siliceous Dacitic fragments (the latter displays			ļ						1
		shrinkage cracks); to several cm's, average 1 cm.]	İ			Ì
1		- some fragments appear to have been fractured in-situ, while					1	1			
		carbonate & Al-silicates formed around them									1
- 1		- no evidence of welding		-							
1		- Dacitic fragments increase in size and number downhole						1			
- 1		- Tr Po + Py along fractures	1				1				
-		- fragments aligned @ 50° TCA						1		1	1
l		- lower contact sharp @ 55° TCA						1		1	
											Ì
											1
İ					}				1	1	İ
							1				1
ł				1			1				
- 1			•	1		[1		1		}

PAGE NO: 4 of 8

MET	RES		SAMPLE	MET	RES	LENGTH			ASSAY	S	
rom	To	DESCRIPTION	NO.	From	To		Au	Αq			
							oz/T	OZ/T			
51.9	63.7	PSAMMITE - initially dark grey to black, but colour lightens with depth due to decrease in % biotite - initially medium grained, but size decreases to fine with depth - initial 15cm bed is followed by one thick bed which displays excellent grading; matrix supported. - unit resembles a "pisolitic tuff" due to rounded 1-3mm milky quartz + bluish feldspar grains - occasional chloritic fragments (?) as @ 63.3m - no significant mineralization - lower contact undulatory; but sharp @ 60° TCA	758	61.9	63.7	1.8	nil	nil			
3.7	75.5	RHYODACITE TUFF - light grey/green	759	67.0	67.2	0.2	nil	nil			
		- fine grained with occasional lapilli to 1 cm - ash is generally indistinct and unit has a massive flow-like appearance - lapilli are slightly harder than the matrix & contain sulfides as @ 67.2m - occasional black "fiamme-like" fragments, 0.5 cm in size - unit is tight with occasional breccia zones as @ 74.5m - 15-20% matrix carbonate & occasional discordant stringers - sericite content increases with depth, while chlorite content decreases - Tr - 5% disseminated & stringer Py - banding @ 65° TCA - 3cm zone of 5-8mm amygdules @ 75.1m - lower contact diffuse; set @ 55° TCA	760	74.1	75.5	1.4	nil	nil			

PROPERTY: FOLEYET

PAGE NO: 5 of 8

								PAGE	NO: 5	of c	<i></i>	
MET			SAMPLE	MET	RES	LENGTH			ASSA	YS		
From	To	DESCRIPTION	NO.	From	То		Au	_Aq				
75.5	80.3	<pre>PSAMMITE - as before @ 61.9m, except: - colour is homogeneously grey - several beds visible, grading evident with fining downhole</pre>	761	78.7	80.2	1.5	nil	oz/T nil				
		- "pisolitic" appearance as before - silicified with 5-10% matrix carbonate & occasional stringers @ various angles TCA - plagioclase grains are partially sausseritized - biotite content is >>>> than before - Tr disseminated euhedral Py - lower contact sharp @ 60° TCA					A demonstration of the contract of the contrac					
80.3	86.2	RHYODACITE TUFF - as before @ 63.7m, except; - initially lapilli, to several cm's, are common but unit becomes more ash-like with depth, however lapilli persist - lapilli have a 3:1 elongation ratio as @ 83.5m; 50° TCA - initially sericitized, but silicification increases with depth - 10-15% matrix carbonate + stringers @ various angles TCA - again, sulfides appear to be concentrated in & about lapilli - Tr - 1% disseminated & whisps of Py; locally to 5% over 10-15cm in lapilli-rich zones - lower contact sharp @ 50° TCA										
86.2	88.2	CRYSTAL TUFF (?) - grey - fine grained matrix with 0.5-lcm subhedral randomly oriented, porphyritic plagioclase laths (whitish in colour); uniform lath size - similar in appearance to psammite beds except the laths are distinct less ordered, and well-developed - mafic to intermediate in composition - 10% matrix carbonate - no significant mineralization - lower contact sharp @ 45° TCA		86.2	88.2	2.0	nil	nil				

PROPERTY:

FOLEYET

PAGE NO: 6 of 8

		-9						PAGE	NO: 6	of 8	3
MET	RES		SAMPLE	MET	RES	LENGTH			ASSA	YS	
From	To	DESCRIPTION	NO.	From	To		Au	Ag			
							OZ/T	oz/T			
88.2	115.9	RHYODACITE (LAPILLI) TUFF			•				, 1	1	
00.2	113.5	- locally conductive	763	94.1	95.6	1.5		_:,		1	
		- similar to previous Rhyodacite except:	763	95.6	96.7	1.1	nil nil	nil		1	
		- more siliceous	765	96.7	98.2	1.5	nil	nil			
		- lapilli are more distinct & larger; @ 50° TCA	766	98.2	99.7	1.5	1	nil	, 1		
		- initially tuffaceous, lapilli appear @ 94.lm	767	1	1	•	nil	nil			
		- lapilli are buff-coloured and Rhyolitic in composition (similar to	\$	99.7	100.4	1	nil	nil		1 1	
			768	100.4	101.9	1.5	nil			1 1	
		underlying unit); 2-3 cm breccia zones often found around these lapilli	ł	101.9	103.4	1.5	nil	1			
			770	106.7	108.2	1.5	0.004	nil	, ,		
		- sulfides are located in the more felsic portions of the unit & are		1					'		
		associated with carbonate; pyrite is often euhedral to subhedral;	771	109.8	110.8	1.0	0.016	nil			
		some of the sulfides appear as fragments; Py is concentrated in the	1		1	1					
		central portion of the unit & is flanked by Po; up to 10% Py + 5% Po	1	1	İ			-		1	
		in disseminations and whisps in a zone @ 95.6m to 103.4m							1		
		- unit becomes tuffaceous beyond sulfide zone, distinct ash	i			1	1		!	1	
		- overall the unit is very siliceous and contains 20-25% matrix &						ĺ		1	
		stringer carbonate				1			1	1 !	
		- lapilli reappear @ 105.6m & again a sulfide rich zone occurs; 5-8%	}			1		1			
		Po & Py in whisps & disseminations	1			İ	1				
		- carbonate content increases to 50% with depth	i				1	1			
		- @ 109.8, a 1.5m carbonatized breccia zone, followed by a	ļ	1						1 !	
		chloritized ash unit	Į] !	
	i i	- @ 112.9, a 70 cm crystal tuff bed as @ 86.2m but the plagioclase				1				1 !	
		crystals have a preferred (weakly developed) orientation & display]	1		1					
		zoning	1								
		- the lower portion of the unit is a mixed lapilli & ash zone		1						1	
		- lower contact sharp @ 45° TCA	ł								
		10.								1	
			İ				1			!	
			1			1	1	1			
				1		ł				1	
				} .	1	1					1
					1					1	
									-	1	1
				1							İ
											l
		·									
			1	Ì			1				
			l				1				1
	1		1	1	i	i	1	j	1	1	1

PROPERTY:

FOLEYET

PAGE NO: 7 of 8

MET	RES		SAMPLE	MET	RES	LENGTH		<u> </u>	ASSA	YS	
rom	To	DESCRIPTION	NO.	From	То		Au	Ag	Zn		
15.9	130.4	RHYOLITIC TUFF - hosts a portion of the conductor - buff to light green					OZ/T	oz/T	ૠ		
		 very fine grained to aphanitic with occasional angular lapilli 10-20% matrix carbonate unit is very tight; banded @ 50° TCA @ 121.8m to 127.9m (6.1m) 70-80% Py + 1-3% Po; Rhyolite fragments in sulfide zone are common; Py is massive to subhedral/euhedral; upper sulfide contact @ 50° TCA, lower @ 60° TCA 	772 773 774 775	117.6 119.1 120.6 121.8	121.8	1.5 1.5 1.2 1.5	tr tr nil nil	nil nil nil nil	- - -		
		- beyond the sulfide zone unit is as before - lower contact sharp @ 55° TCA	776 777 778 779 780	124.8 126.3 127.9	124.8 126.3 127.9 129.9 130.4	1.5 1.5 1.6 2.0 0.5	tr nil nil nil	nil nil nil nil nil	- - -		
30.4	133.3	DACITE (ANDESITE) TUFF - initial 0.5m is brecciated with 60-70% carbonate and quartz veining & 1-3% disseminated Po - followed by distinct ash to 3-4mm - @131.4m pisolites? (very similar to psammite previously described) - light grey, generally fine grained - variably chloritic - Rhyolitic blocks in lower portion of the unit - 10-15% matrix & stringer carbonate - 1-3% disseminated Po with an occasional stringer - lower contact sharp @ 60° TCA	781	130.4	130.9	0.5	nil	nil	0.07		
						,					

PROPERTY:

FOLEYET

PAGE NO: 8 of 8

								PAGE	NO: 8	of	8	
MET	RES		SAMPLE	MET	RES	LENGTH			ASSA	YS		
From	To	DESCRIPTION	NO.	From	То		Au	Aq				
							oz/T	oz/T				
133.3	158.8	RHYOLITIC TUFF - as before @ 115.9m except:	782	133.3	134.8	1.5	nil	nil			ļ	
		- portions of the unit are Dacitic							, 1		1	
		- initial 1.5m hosts fracture -filling sulfides				1					i	
		- @ 137.0m, a 1.4m black lamprophyre dyke; 5-10% anhedral carbonate									İ	
	1 1	crystals occur locally (over 10-20cm); to 3mm - unit is mainly tuffaceous, but blocks & lapilli are common as							1		i	
	1	@ 144.0m	783	137 0	138.4	1.4	nil	nil	1			
		- @155.6m sulfide fragments (?); 8-10% Po from 154.6m to 156.8m	784	143.4	1	1.5	nil	nil		.	İ	
		- unit is variably silicified & chloritized with minor sericite	785	150.3	1	1.5	nil	nil	1		ļ	
		- 10-20% matrix carbonate; stringers occur in the Dacitic portions								i l		
	'	of the unit	786	154.6	156.8	2.2	nil	nil		,		
		NOTE: Core checked with spectrometer and U.V. lamp; no anomalous results were obtained.										
										1		
										1		
	1								j	1		
							1		<u> </u>			
										1		
	1			1							,	
											i	
											1	
									!	1 1	į !	
									,		!	
					1				1		,	i
							1		,		!	,
									1			ı
												l
											1	i
							1			'	1	i
	1		I	1	1		1	ł	1	1 '	1	ı

LENGTH: 120.7m

CORE SIZE: BQ

LOCATION: BOUNDARY GROUP

DEPARTURE: 0+15N

LATITUDE: L1+70W

STARTED: 1982-11-23

COMPLETED: 1982-11-24

PURPOSE: To test an EM Conductor

INCLIN: -50°

AZIMUTH: 180°

PROPERTY: FOLEYET

HOLE NO: F-82-7

CLAIM NO. P626290

SECTION:

LOGGED BY: M.P. Corrigan

DATE LOGGED: 1982-11-25

ELEVATION:

DIP TESTS: Test did not work

DRILLED BY: Bradley Bros. Ltd.
DRILLED FOR: Hudbay Mining Ltd.

MP Cowin

MET	RES	DESCRIPTION	SAMPLE	MET	RES	LENGTH			AS	SAYS		
From	TO		NO.	From	ТО	İ	Au	Ag				
ĺ			-				oz/T	OZ/T				
)	29.3	Overburden					}]	
9.3	. 20 0	BRINTING CLOTHE CO.									·	
.9.3	30.8	REAMING CASING - LOST CORE										İ
30.8	65.8	RHYODACITE TUFF		<u> </u>)	
		- light grey-green	1468	30.8	31.2	0.4	.001	nil			1	
		- predominately fine grained ash with rare lapilli	1469	31.2	32.2	1.0	nil	nil			1	
		- initial 30cm is a silicified/sericitized metasediment	1470	40.2	41.7	1.5					1	
- (- followed by 1.6m of a medium grained flow(?)/ tuff; lower 10cm is	1471	43.6	45.1	1.5	nil	nil			1	1
1		"bleached" to a light green colour; very fine garnets in a 3-5mm	1472	48.1	49.6	1.5	nil	nil				
1		quartz vein @ the lower contact		10.1	43.0	1.3	.004	nil				
- 1		- unit is very highly sericitized with lesser chlorite in irregular		}								-
		1-3mm whisps (fragment remnants?)	1473	56.7	58.2	1.5	nil		·		l	1
1		- breccia zones @ 36.7m (20cm) & 37.2m (10cm)	1474	62.8	64.3	1.5	nil	nil				- 1
		- lapilli appear @ 48.2m; angular to sub-rounded, 3mm to 20mm,		}	01.0	1	nıı	nil			}	- 1
		matrix-supported fragments. which are buff coloured & harder than the matrix @ 70° TCA			·							
		- @ 50.7m is the first occurence of Rhyolitic fragments to several cm's	5					Į.				
1		intermixed with fusiform chloritic lapilli; persists to the end of		-				-				
}		the unit.		j								
		-@ 47.6m & 53.7m, 2-3mm carbonate-filled vesicles									1	1
1		- 15-20% matrix carbonate & 5-10% concordant to discordant 1-2cm			İ							-
1		quartz-carbonate stringers			•						1	
		- @52.2m a 20cm section of core with 1-5mm vugs						1			1	- 1
		- Rhyolitic fragments increase in frequency from 53.7m, downhole;]			
		block-size fragments common, as @ 59.7m									1	
1	i										1	
				·								
							ĺ	1	1 1		1	

PROPERTY:

FOLEYET

PAGE NO: 2 of 4

	METRES TO							PAGE	NO: 2			
		DECORTORY	SAMPLE	MET	RES	LENGTH			ASSA	YS		
From	То	DESCRIPTION	NO.	From	То		Au	Aq				
30.8	65.8	<pre>con't - silicification increases with depth as does carbonatization (to 30%) - tr - 1% disseminated & stringer Po & Py & tr Cpy @ the start of the unit - lower contact sharp @ 55° TCA</pre>					OZ/T	oz/T			·	
65.8	75.2	CRYSTAL TUFF - light grey - fine to coarse grained, equant, subhedral, white plagioclase phenocrysts in a sericite/chlorite matrix - plagioclase has "pressure shadows" and displays a moderately strong preferred orientation @ 60° TCA, to 66.9m - initial 40cm is very highly chloritized & contains up to 40% matrix carbonate; original mineralogy has been obscured - @ 66.9m a Dacitic (lapilli) tuff bed occurs; felsic lapilli are common - crystal tuff re-appears @ 69.lm (2.2m bed); contains chloritized whisps to several centimetres within a quartz veining network; crystals are more random than before; crystal size decreases downhole and annealing of phenocrysts occurs - @ 71.3m the unit again takes on a fragmental/tuff appearance, with occasional felsic lapilli - @74.0m a 1.2m pisolitic bed; no obvious grading; 50% matrix carbonate - overall, 20-30% matrix & stringer carbonate - tr - 3% disseminated & stringer Po/Py - lower contact sharp @ 55° TCA	1475	66.9	68.4	1.5	nil	nil				
	-											

٠

PROPERTY:

FOLEYET

PAGE NO: 3 of 4

		·						PAGE	NO: 3	of 4	
MET	RES		SAMPLE	MET	RES	LENGTH			ASSA	YS	
From	То	DESCRIPTION	NO.	From	То		Au	Aσ			
75.2	87.5	RHYODACITE (DACITE) TUFF - grey-green	1477	75.2	76.7	1.5	oz/T nil				
		- @ 75.2m, 4.lm of indistinct sericitized ash beds - @ 79.3m a 30cm bed of distinct 3-5mm black ash set in a whitish-grey carbonatized matrix	1478	77.7	79.2	1.5	nil	nil			
		- @79.6 a 1.4m pisolitic tuff bed, displaying gross fining downhole; pisolites are weakly sausseritized plagioclase - lapilli to several cm's appear beyond the pisolite bed; lapilli are annealed felsic fragments that are relatively distinct from the matrix & impart a banded appearance @ 60° TCA - tr-3% disseminated & whisps of Po/Py - lower contact gradational, set @ 65°TCA	1479 1480	84.5	86.0 87.5	1.5	nil nil	1 }			:
87.5	91.6	RHYOLITE TUFF - buff to light green - aphanitic to fine grained matrix with "ghost" ash & lapilli outlined by Po - hosts the conductor which is initially Po, followed by Py; to 10% sulfides in disseminations, whisps, masses to 2cm, and fracture-fillings - very siliceous; sericitization is overprinted by silicification; < 5% carbonate as fracture fillings - lower contact sharp @ 60° TCA	1481 1482 1483	87.5 89.4 90.7	89.4 90.7 91.6	1.9 1.3 0.9	nil nil nil	nil			

PAGE NO: 4 of 4

MET	RES		DESCRIPTION			LENGTH	1		ASSA	YS		
From	To	DESCRIPTION		MET From			7	2 ~	110071	1		
			NO.	FIOR	То	 	Au Oz/T	Aq oz/T				
91.6	108.8	ANDESITIC (DACITIC) TUFF					02/1	02/1			ŀ	
		- light to medium green, changes to tan by lower contact	1484	91.6	93.2	1.6	nil	nil				
	,	- ash with occasional indistinct lapilli	1485	93.2	94.7	1.5	nil	nil			.	
ĺ		- 1-2mm chloritoid (?) clots @ 91.6m, 40cm			,				,			
1		- initially Andesitic in composition, but approaches a Rhyodacite	1486	96.1	97.6	1.5	nil	nil	, 1	,		
		@ the lower contact; very gradual compositional changes; banding @							1	1	,	
		60°TCA	1487	99.1	100.6	1.5	nil	nil	1	,		:
		- initially very chloritic, but chlorite content decreases with depth,	l							1		
		as sericitization increases	1488	105.0	106.5	1.5	nil	nil		i	i	
		- 20-30%, 2-10mm, concordant to discordant carbonate stringers; 10-15%								1	i	
	1	matrix carbonate	1	•				1	1			
		- minor, localized brecciation as @ 97.8m & 98.6m	•							1 1	1	
		- felsic fragment @ 105.0m			1					1		
		- tr-l% Po/Py in whisps, disseminations, & along fracture planes					1				1	
	1	- lower contact sharp @ 60° TCA	1]			, ,	1 1		
108.8	112.5	CRYSTAL TUFF	ł		ļ							
200.0	1	- light grey	Ì	1		1			. !	1	, 1	
		- fine to medium grained	1489	108.8	110.3	1.5	nil	trace	. !	1	. 1	
1		- crystals are initially indistinct, but visible; composed of 1-3mm	- 103	100.0	110.5	1						
	1	partially sausseritized plagioclase		1	ĺ					()	. 1	
	1 .	- distinct crystals @ 111.6m		1	}						i l	
		- no preferred alignment	1		-							
	1	- minor sericitization; < 5% matrix carbonate + rare stringers									i	
		- no significant mineralization	}			1		ļ				
į		- lower contact sharp @ 550 TCA	1		1							
112.5	120.7	DACITE LAPILLI TUFF			Ì		1					
112.5	120.7	- light grey/green	1490	117.7	110 2	1.5	nil	nil			1	
	Ì	distinct fusiform-shaped matrix-supported lapilli; buff-coloured	1490	11/./	119.2	1.5	1111	WII				
		felsic fragments to 2cm (0.5cm avg.)	1	1			1					
	1.	- unit is initially Rhyolitic, to 114.6m		Ì					'		, ,	
1		- very highly sericitized; 15-20% matrix carbonate + 5% stringers	1				1			1		1
		subparallel to fragment alignment (@ 400-550 TCA)	1						1	1 /	!	
		- no significant mineralization	}				1	1		1	1	
							1	1		'		
		NOTE: Core checked with spectrometer & U.V. lamp; no anomalous							1	1	1	
'		results were obtained				1		1		1	1	
									1	1	1	
					1	1						
							1	1		1		
1	1		1	1	1	1	İ	1	1	1	1	1

LOCATION: BOUNDARY GROUP

L1+25 S -54

120°

(WEST CONDUCTOR)

DEPARTURE: 0+75 W

PROPERTY: FOLEYET

HOLE NO: F-82-8

SECTION:

LOGGED BY:M. P. Corrigan

DATE LOGGED: 1982-12-05, 06

M. P. Caring

CLAIM NO. P626294

LENGTH: 224.3m ELEVATION: CORE SIZE: BQ

DIP TESTS: test did not work

DRILLED BY: Bradley Bros. Ltd.

DRILLED FOR: Hudbay Mining Ltd.

STARTED: 1982-11-26 COMPLETED: 1982-11-30

LATITUDE:

INCLIN:

AZIMUTH:

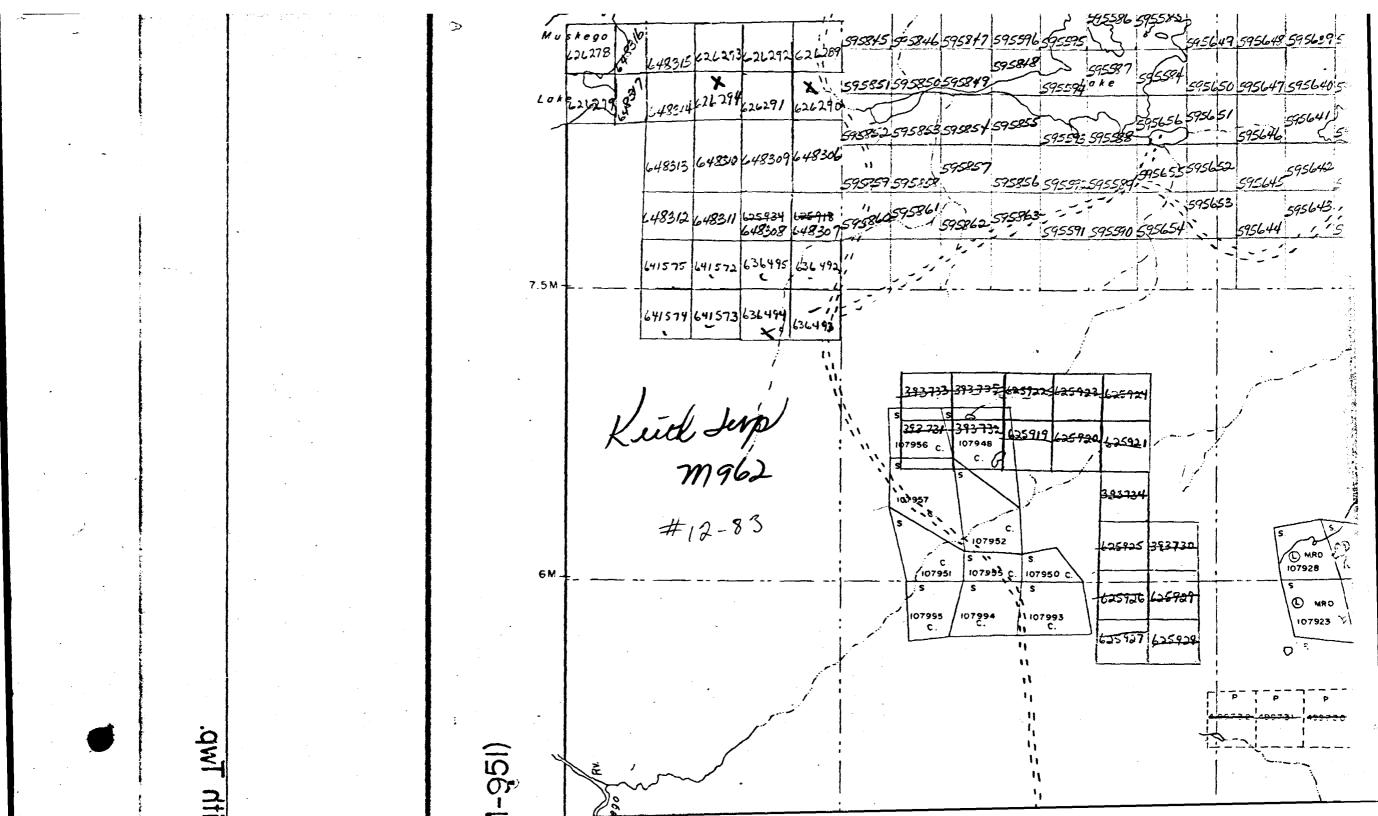
PURPOSE: to test EM conductor

MET	RES	DESCRIPTION	SAMPLE	METE	ŒS	LENGTH			AS	SAYS	
rom	ТО		NO.	From	ТО		Au	Aq.			T
0	21.3	Overburden					02/T	oz/T			
1.3	106.8	Rhyodacite Tuff									
		- light grey-green	1491	27.7	29.3	1.6	nil	nil			
İ		- predominantly ash to 5mm; felsic lapilli are common	1492	33.3	35.2	1.9	nil	nil			
		- unit is variably sericitized, averaging <10%, but in and about vuggy fractures, sericitization masks the original mineralogy;	1493	35.2	36.5	1.3	nil	nil			
}		sericite % increases with depth	1494	36.5	37.9	1.4	nil	nil			
Ì		- unit is silicified and contains 20-25% matrix carbonate + <5%	1495	41.4	42.9	1.5	nil	nil			
İ		carbonate stringers @ various angles TCA; silicification increases slightly with depth	1496	48.9	50.7	1.8	nil	nil			
		- @ 38.5 an 0.7m feldspar-phyric crystal tuff bed occurs; equant	1497	54.9	56.4	1.5	nil	nil			
İ		subhedral to euhedral plagioclase displays partial sausseritization	1498	56.4	57.7	1.3	nil	nil		1	
		and no preferred alignment	1499	57.7	59.2	1.5	trace	nil		-	
		- @ 33.3 a 4.0m section of badly broken and vuggy core (10% lost core); no evidence of fault gouge; a similar section	1500	59.2	60.8	1.6	nil	nil			
		of core re-appears @ 49.0m for 1.5m of length	1501	60.8	62.3	1.5	nil	nil			
		- prominent rhyolite bands appear @ ~56.0m; these bands may	1502	62.3	63.8	1.5	nil	nil			
	ı	represent large fragments; clear to whitish, 3-5mm, quartz "eyes" occur in several of these bands as @ 64.8m.	1503	63.8	65.3	1.5	nil	nil			
	•										
											1

PAGE NO: 2 of 4

MET	RES		SAMPLE	MET	RES	LENGTH			ASSA:	YS		
From	То	DESCRIPTION	NO.	From	ТО		Au	Aq				
21.3	106.0	Phone de principal (Cont.)					OZ/T	OZ/T				
21.3	106.8	Rhyodacite Tuff (Cont'd)	1504	69.7	71.9	2.2	nil	nil	1	İ		
con	t'd	- occasional blue quartz "eyes" as @ 58.1	1505 1506	75.0	76.5	1.5	nil	nil		Ì		
		- banded felsic unit @ 64.9-65.7	1506	76.5 77.5	77.5 79.0	1.0	nil	nil nil				
		- @ 71.9 as 0.8m crystal tuff bed occurs; as before; the tuff is	1508	85.2	86.7	1.5	nil	nil	. 1			
		followed by 2.3m of another crystal tuff bed that has a very	1509	86.7	88.2	1.5	nil	nil	[(
		highly sericitized/chloritized matrix (this bed resembles a	1510	93.3	94.8	1.5	nil	nil	ł			l
		lithified fault gauge)	1511	94.8	96.4	1.6	nil	nil]			}
			1512	99.2	100.7	1.5	nil	nil]			
		- @ 77.5 an acicular 1-2mm mineral, likely tourmaline, occurs	1513	105.3	106.8	1.5	nil	nil				}
		- @ 80.6 an 0.2m breccia zone occurs; angular fragments in a carbonate cement								!		
		- @ 97.8m an 0.5m felsic block occurs										
	,	- banding @ 30~40% TCA, fracturing @ 55°										
		- Tr-1% finely disseminated Po + Py, locally to 5%; occasional whisps of Po, often containing traces of Cpy; locally conductive										
		- lower contact sharp @ 40° TCA						ļ				
106.8	118.2	Rhyolitic Tuff										
		- light grey-green to tan	7.53.4	1.05		_						
		- fine grained ash predominates	1514 1515	106.8	108.3		nil	nil nil				
		- hosts a portion of the conductor; sulfide appears @ 107.3m	1516	109.8	ı		nil	nil	ł			
	·	- the unit resembles the previous one but it is more felsic	1517 1518	111.3	1 .	1.5	nil	nil				
		- alternative chloritization/sericitization & silicification imparts a banded appearance	1519 1520	114.3	1	1.5 2.2 0.9	nil nil nil	nil nil nil			,	
		- pronounced absence of matrix carbonate; carbonate to 5-10% occurs along fractures and concordant/discordant 1-3mm stringers	1521		118.2		nil	nil			-	
		- Po to 5% (locally to 25% Py, below the Po) occurs in whisps, stringers and disseminations; Py occurs in bands @ 40-45° TCA from 116.5 to 117.4										
		- lower contact sharp @ 35° TCA										
	İ											
							1		1			
İ										1	1	

PAGE NO: 3 of 4


L									PAGE	NO: 3	of 4		
	MET	TRES	-	SAMPLE	METI	RES	LENGTH			ASSA:	YS		
L	From	То	DESCRIPTION	NO.	From	То		Au	Aq				
	118.2	136.5	Andesite (Tuff)	1522	118.2	119.7	1.5	oz/T nil	1 ' 1				1
	,	1	- medium green in colour	1523	123 4	125.9	1.5		1 1	1	,	,	,
	,	1	~ fine grained to aphanitic	1323	123.4	123.7	1.5	nil	nil	1	, 1	,	,
	,	1	- unit is initially tuffaceous, but becomes massive with depth (still resembling a tuff)	1524		131.1		nil					,
	,	1	- initial 6.0m of unit is very highly chloritized and carbonatized	1525	131.1	132.6	1.5	nil	nil	1	,	,	
	,	1	(up to 40%-50% matrix carbonate + 10% 1-3mm stringers @ various angles TCA); chlorite content decreases slightly with depth and	1526	134.8	135.4	0.6	nil	nil				
	,	1	partial silicification occurs.	1527	135.4	136.5	1.1	nil	nil	1	1	,	,
	'	,	- @ 124.2, an 0.5m grey plagioclase porphyry dyke occurs; contacts are sharp and chilled, upper content @ 40 TCA, lower contact @ 55 TCA										1
	,	1	- unit becomes massive beyond the dyke			•			1 '	1	1	,	
			- @ 131.1, a black 1.5m lamprophyre dyke occurs; composed of hornblende pyroxene + biotite + Na-plagioclase (white, porphyritic) + 20-30% matrix carbonate; upper and lower contacts are sharp, chilled and sub-parallel to banding							-			ļ
			- @ 134.8 an 0.6m lamprophyre dyke occurs; similar to previous ore, however the country rock is highly brecciated and contains up to 40% quartz-carbonate stringers							-			l
			- Chlorite content increases near the lower content, as does matrix carbonate, relative to the central portion of the unit										l
			~ banding @ 30-40° TCA							1	1	1	
			- lower contact irregular but sharp @ 30° TCA							!	1		l
			1	1	1						1	1	ı
											1	1	i
- 1		1	. "		1				1		1 '		1
-			1				-				1 5		1
							}				1	1	1
											1 '	1	1
- 1			· • • • • • • • • • • • • • • • • • • •			İ					1 '	1	1
											'	1	1

PROPERTY: FOLEYET

PAGE NO: 4 of 4

MET	RES		SAMPLE	MET	RES	LENGTH			ASSA	YS		
From	To	DESCRIPTION	NO.	From	То		Au	Aα				
							oz/T	OZ/T				_
.36.5	224.3	Rhyolite & Rhyodacite Tuff Breccia	1528	136.5	138.0	1.5	nil	nil				
	·	- grey/green to tan/cream coloured	1529	138.0	139.5	1.5	_ : 7	nil				
		- alternating rhyolite and rhyodacite beds to several metres					nil	nii				
		- very distinct dark ash fragments in rhyodacite beds	1530	139.5	140.7	1.2	nil	nil				ı
		- distinct whitish ash lapilli in rhyolite beds; welding apparent @ ~ 178.0m	1531	140.7	142.1	1.4	nil	nil				
		- unit is silicified	1532	148.1	149.6	1.5	nil	nil				ı
		- % matrix carbonate increases downhole to 10-15% from 5% initially	1533	155.5	157.0	1.5	nil	nil				·
		- sericitization increases downhole										ł
	1.	- @ 139.5 a 1.2m rhyolite bed with 8-10% Po in whisps and blebs;	1534	161.4	162.9	1.5	nil	nil				İ
	ł	locally conductive	1535	165.4	166.8	1.4	nil	nil				
		- 3-5mm clear to whitish quartz "eyes" occur in several rhyolite beds as @ 144.0m	1536	172.5	174.0	1.5	nil	nil				
٠		- fragment misalignment in individual beds may suggest that the "beds" are in fact large ejecta, unit is also quite heterolithic	1537	180.2	181.7	1.5	nil	nil				
		- unit is very tight, very few fractures or carbonate stringers	1538	187.8	189.3	1.5	nil	nil				ĺ
		- intensely chloritized dacite bed @ 165.4-166.8m	1539 1540	191.9	193.7 199.9	1.8	nil	nil nil				
		- crystal tuff beds occur @ 180.7m, 0.4m; 191.3m, 0.5m; 193.7m, 0.4m										
		- @ 202.0 a 0.2m lamprophyre dyke, as before	1541	205.8	207.3	1.5	nil	nil				
		- @ 221.9 a 2.0m zone of 10-15% quartz carbonate stringers to a	1542	208.2	210.3	2.1	nil	nil	.			
		few/cm, avg.3-5mm @ various angles TCA; displays evidences of brecciation	1543	213.7	215.2	1.5	nil	nil				
		- banding @ 30-40°TCA	1544	221.9	223.6	1.7	nil	nil				
		- Tr disseminated Po + Py, locally to 10% Po as previously mentioned; occasional speck of Cpy										
		NOTE: Core checked with spectrometer and UV lamp; no anomalous results										

. (

