



## Diamond Drilling

Township of PENHORWOOD

Report NO 22

Work performed by: Geophysical Engineering Limited

| Claim Nº | Hole No       | Footage | Date   | Note |  |  |
|----------|---------------|---------|--------|------|--|--|
| P 504953 | QQQ- <b>4</b> | 220.01  | Apr/78 | (1)  |  |  |
| P 504938 | QQQ-3         | 200.01  | Apr/78 | (2)  |  |  |

Notes:

- (1) #132-78
- (2) #131-78



11e - FROM GEOLOGY-TWPMAPS LOCAL GEOLOGY GIVES STRIKE E-W, DIP 42-480N 00 DIGHEM SYNDICATE -ANOMALY 6e AREA LOCATION DATE JOB 984

## GEOPHYSICAL ENGINEERING LIMITED

## DIAMOND DRILL LOG

|                                                                                                                  |                                                                   | · •                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |             |             |                 | كالمراب المراجع |   |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------|-------------|-----------------|-----------------------------------------------------------------------------------------------------------------|---|
| operty Group 0002  mship Penhorwood Drilling Co. Gradley cation: Lat. 1+75N Timmins Dep. 0+00 Commenced April 18 |                                                                   | 0+00                                              | Drilling Co. Bradley Brothers   Distance to water   800'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tests  Dip Azimuth  At Collar 50° 135° 220' 50° |             | nuth<br>15° | Location Sketch |                                                                                                                 |   |
| mark                                                                                                             | marks Pyrrhotite and chalcopyrite in a quartz vein at 109.8-110.1 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |             |             |                 |                                                                                                                 |   |
|                                                                                                                  | - Footage                                                         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                               | ,           | 1           |                 | _                                                                                                               |   |
| -OM                                                                                                              | To                                                                | Rock Type                                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample<br>No.                                   | From        | То          | Length<br>Feet  | Assays                                                                                                          |   |
|                                                                                                                  | 14.0                                                              | OVERBURDEN                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |             |             |                 | Cu Zn Ag Au                                                                                                     |   |
|                                                                                                                  | 114.1                                                             | METASEDIMENTS                                     | Fine grained, dark green silt with interbedded sandstone and minor arkose. The core is conformably banded by 1mm quartz veinlets. Chlorite occurs in foliation planes at 80° to core axis. Sericite is similarily developed.  26.2-26.4 Garnet clusters 1-2mm in the foliation, occurring in a silty rock with minor sericite.  46.9-48.0 Sandstone lying between beds of silt, sharp contact at 80°. Lower bed of silt showing a grainy textural contact.  52.0-84.0 Silt banded by 0.5mm carbonate bands 75°-80° to core axis.  84.0-92.0 Very fine grained medium green mudstone with foliation and carbonate banding 80° to core axis.  89.0-92.0 Minor silt and sericitic arkose.  92.0-94.0 Strong foliation, sericite, contorted, minor garnet, minor pyrrhotite, traces of chalcopyrite, drag folds? slump structures.  94.0-109.0 Silt developing maffic (chlorite or amphibole?) knots. Knots increase from 1mm to 3mm from 99.4-109.0.  109.1-109.6 Swirls of pyrrhotite, traces of chalcopyrite.  109.8-110.0 Quartz vein with 3% stringers of pyrrhotite and equal chalcopyrite.  11.0-114.1 Highly contorted sericite schist highly chloritic, siliceous. Iron formation. | A1355<br>A1358                                  | 109.0       | !<br>!      |                 | 3300 440 2.1 10 34 310 <0.2 N11                                                                                 | ! |
| 14.1<br>24.8                                                                                                     | 130.2                                                             | QUARTZ FELDSPAR<br>PORPHYRY DYKE<br>METASEDIMENTS | Medium to coarse grained, grey mottled with pinkish zones. Quartz and feldspar phenocrysts to 2mm -fining up sequence.  124.8-126.0 Silt with pyrrhotite and pyrite in shear planes at 80° to core axis.  126.0-126.1 Minor garnets.  130.0-130.2 Minor pyrrotite, garnet, chlorite, traces of chalcopyrite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |             |             |                 |                                                                                                                 |   |
| 30.2                                                                                                             | 135.4                                                             | QUARTZ FELDSPAR<br>PORPHYRY DYKE                  | Similar to 114.1-124.8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |             |             |                 |                                                                                                                 |   |
| 35.4                                                                                                             | 159.0                                                             | METASEOIMENTS                                     | 135.4-139.0 Arkose interbedded with sandstone and silt. Silt is chloritic with garnets and sericite, foliation at 80° to core axis. 139.0-151.0 Silt and interbedded sandstone minor sericite. Foliation 80° to core axis. 145.0-148.0arnet clusters. 151.0-159.0 Coarse grained chlorite knots in silty rock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |             | i           |                 |                                                                                                                 |   |
| 59.0                                                                                                             | 167.0                                                             | DIORITE                                           | Contact indistinct, fine to medium grained diorite texture. 159.8-160.2 - Leucoxene patches to 1mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |             |             |                 |                                                                                                                 |   |
| 57.0                                                                                                             | 168.0                                                             | METASEDIMENTS                                     | Fine to medium grained pink quartzite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |             |             |                 |                                                                                                                 |   |
| 58.0                                                                                                             | 181.0                                                             | DIORITE                                           | Similar to 159.0-167.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |             | Je59        | IOA             | <b>L</b>                                                                                                        |   |
| 81.0<br>20.0                                                                                                     | 220.0                                                             | METASEDIMENTS  END OF HOLE.                       | Sandstone, interbedded silt at 80° to core axis. Chlorite sericite and carbonate alteration. 190.8-193.0 Sandy silt, chlorite? knots. 210.0-211.0 Arkosic sandstone, interbedded with sandstone and silt at 75° to core axis. 216.1-216.4 Garnets, sandstone and silt. Sericitic, foliation 80° to core axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (                                               | COISTERED & | MINIT D.    | ON A COLE       | of Conf                                                                                                         |   |
|                                                                                                                  | ,                                                                 | CHE OF HOLE                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                               | X           | PROVIN      | 0¥ 0\$          | W. F.                                                                                                           |   |



6d 6e DIGHEM SYNDICATE -ANOMALY 6d AREA LOCATION

26 × 12 ×

DATE DEC/77 JOB 984 QQQ

## GEOPHYSICAL ENGINEERING LIMITED

DIAMOND DRILL LOG

Hole 000 3 Sheet 1 of 1

| Propert<br>Townshi<br>Locatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ty_Grou<br>lpPer<br>on: Lat.<br>Dep.<br>Ele' | ip_0002<br>horwood<br>                                 | Objective To test conductor 6D Drilling Co. Bradley Brothers Timmins. Ontario Commenced April 15, 1978 Completed April 17, 1978 Length 200.0                                                                                                                                                                                                     | Core Location North Bay Ontario Distance to water 1600' Casing Lost None Core Size AQ                                                                            | Tests Dip Azimuth At Collar50°180° |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location Sketch |            | 39           | 7          |           |  |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|--------------|------------|-----------|--|----|
| Remarks Conductor explained as graphite and associated pyrrhotite and pyrite 133.0-142.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                  |                                    | _              | P504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 943             | 1          | 1" •         | 1000'      |           |  |    |
| Foot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | age<br>To                                    | Rock Type                                              | Desc                                                                                                                                                                                                                                                                                                                                             | Description                                                                                                                                                      |                                    | From           | То                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Length<br>Feet  |            |              | Assays     |           |  | וֹ |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38.0                                         | OVERBURDEN                                             | Boulders and till.                                                                                                                                                                                                                                                                                                                               | Boulders and till.                                                                                                                                               |                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Cu<br>ppm  | Zn<br>ppm    | Ag<br>ppm  | Au<br>ppb |  | 1  |
| 38.0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.0                                        | INTERMEDIATE TUFF                                      | 43.0-45.0 Medium grained, tuff, chlorite "mottl 45.0-62.0 Lapilli tuff 2cm medium grained tuff m 62.0-64.0 More mafic, dark 64.0-100.0 Interbedded ash is darker, more mafic carbonate rich. 96.7-97.1 Pyrrhotite with                                                                                                                           | -30cm fragments dark grey,<br>atrix.<br>grey,<br>and lapilli tuff matrix<br>? down hole. Upper zone more<br>traces chalcopyrite.                                 |                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |              | PP''       |           |  |    |
| 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 133.0                                        | METASEDIMENTS ? METASEDIMENT                           | silty sediments.  103.0-111.0 Fine grained, Carbonate developed. 105.0-109.0 Moderate carbon 112.0-113.0 Fine grained, core axis. Silt? 113.0-115.0 Dark grey, gra 115.0-120.4 Light grey wit core axis. Fine lmm "dendritic" spots ove have less compact str Chert? 120.4-131.0 Highly contort 131.0-133.6 Graphitic, car minor pyrrhotite, a f | greenish, foliation 80° to  phitic argillite/slate.  h chlorite streaks 80° to  clusters of dark grey  r 5% of surface. Appears to  ucture down hole. Quartzite? |                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |              |            |           |  |    |
| 133.0<br>142.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 142.0                                        | GRAPHITE ZONE WITH SULPHIDES (CONDUCTOR) METASEDIMENTS | shale.  Highly graphitic, pyrrhotistringers. Highly contortstringers 80°-85° to core                                                                                                                                                                                                                                                             | te-pyrite, nodules and<br>ed structures. Carbonate<br>axis.                                                                                                      |                                    | 134.0<br>138.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 840<br>510 | 2010<br>1650 | 0.6<br>0.5 | 10<br>10  |  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200.0                                        | PENSEUTHENIS                                           | carbonate rich, conta<br>160.0-161.0 Crenulated, si<br>181.0-181.4 Same as 115.0-<br>181.4-185.4 Highly carbona<br>grained, matrix graphi<br>185.4-187.0 Very graphitic<br>187.0-194.0 Possible greyw<br>193.0-194.0 2-4mm fragment                                                                                                              | ining fragments 2 x 3mm. ump structures. 120.4. ted, black, dense,very fine tic acke. s. one, banded with some 2-3mm                                             |                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |              |            |           |  |    |
| 200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | END OF HOLE                                            |                                                                                                                                                                                                                                                                                                                                                  | A GISTERRO                                                                                                                                                       | OFESS<br>MAROVIN<br>AROVIN         |                | Control of the second of the s |                 |            |              |            |           |  |    |
| Market To The Trade and the Control of the Control |                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                  |                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |              |            |           |  |    |