

PURCHEM LIMITED, WARREN TOWNSHIP PROJECT

ANORTHOSITE MAPPING AND SAMPLING

CLAIMS P 1197441 and P 1197442

DATED: November 29th, 1994
PREPARED FOR: Purchem Ltd.
Suite 405
517 Wellington St. E. Toronto Ont., M5V 1G1

PREPARED BY: Hendrix Veldhuyzen
H. V. Geological Services
P. O. Box 6105, St. A Toronto, Ont.. M5W 1P5 phone (416) 4238937 fax (416) 4667999

SUMMARY

Anorthosite is an alternative feedstock for the production of aluminium chemicals. A possible source area in Warren township, Timmins Mining District, is investigated by geological mapping a grid covering 70\% of two sixteen claim blocks ($P 1197441$ and P 1197442).

Four areas with mining potential are identified. The two most favourable areas are investigated by trenching and percussion drilling. Rock samples and drill cuttings were chemically analyzed.

Area A.
Located $6+00 \mathrm{E}, 8+00 \mathrm{~N}$ northeast to $8+10 \mathrm{E}, 10+00 \mathrm{~N}$ (290 m long, 65 m wide), this zone is on the southeast flank of a northeast trending bedrock ridge. Area A anorthosite contains minor amounts of: mafic minerals, clinozoisite alteration and localized carbonate alteration. Internal dilution results from two dyke sets. One very cohesive set trends 055°. The second dyke set is more recessive, having a lamprophyre like appearance, trends 085° to 095° The anorthosite and dykes are offset by northeast (earlier) and northwest (later) trending faults.

As determined from the analysis of drill cuttings, the average anorthosite compositions is:

Fe. O and MgO contents are higher and more variable with depth, reflecting sample bias away from mafic components near the surface. Anorthosite within 1 m of a dyke has slightly lower $\mathrm{Al}_{i} \mathrm{O}_{\text {, }}$ and higher $\mathrm{Fe}_{2} \mathrm{O}_{3}$. MgO and LOI, possibly attributable to metasomatism from the dyke.

A 15 tonne bulk sample was blasted, crushed and screened to yield 9.123 tonnes of $+1 \mathrm{~mm}-4 \mathrm{~mm}$ which was bagged and loaded in a container for shipping by Purchem Ltd.

Area B.
This area comprises structural blocks separated by a major northsouth fault zone. Each exposure was mapped, trenched and sampled by percussion drilling.

The northeast area centred at $9+05 \mathrm{E}, 0+60 \mathrm{~N}$, the site of previous bulk sampling by the Ontario Ministry of Northern Development and Mines (MNDM). Good quality anorthosite occurs over a relatively
short strike length, disrupted by a northwest fault. Mapping and drill results suggest the exposure is a synform with excellent quality anorthosite limited to a shallow (mostly less than 6 m) depth.

The southwest B blodk extends 220 from 6+60E, $1+i 2 S$ to approximately $3+80 \mathrm{E}, 3+00 \mathrm{~S}$. There is a recognized potential ore zone of 120 m long, 30 to 50 m wide. The massive anorthosite contains variable amounts of mafic minerals occurring as disseminated hornblende and 2 cm veinlets of augite. The latter is unrelated to primary layering. Primary layering attitudes are unrecognized but believed steeper than 50° to the northwest. The boundary of good quality anorthosite is determined by the presence of alteration developed along regionally significant northeast trending faults. The southwest B block is offset by small displacement northwest trending faults. Dykes are absent.

The average composition of the B area drill cuttings, excluding two samples clearly gabbroic material is:

A 10 tonne bulk sample was taken from the massive anorthosite at the northeast end of the ridge comprising the southwest B block. Following crushing and screening to +1 mm to $-4 \mathrm{~mm}, 6.293 .0$ tonnes of product were shipped.

Area C.
A smaller structurally bounded area centred on $7+80 \mathrm{E}, 3+75 \mathrm{~S}$. This area has massive anorthosite exposed over 135 m in length and 35 m wide. Six samples collected and analyzed yielded chemical results similar to area B samples.

Area D,
Within area D there are at least three geologically distinct zones. The zones are at least 30 m wide and 60 to 80 m long with boundaries developed by a complex coincidence of primary layering and faults. The larger of the three areas rises 1 to 3 m above the surrounding swamp. Chemical results have higher $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and Mgo than area A, B and C samples.

Additional areas

Two other areas of good anorthosite at least 30 m wide are known but without appreciable lengths exposed. One area is on $\mathbf{L} 8+40 \mathrm{E}$, $9+37 \mathrm{~N}$. The other is on $\mathrm{L} 0+00$ extending southwest off the grid and claim group, then truncated by a major trending fault.

page

Summary i
Table of contents ii
List of figures v
List of tables vi
1.0 Terms of reference 1
2.0 Introduction 3
2.1 Claims investigated 3
2.2 Location and access 4
2.3 Previous work 4
3.0 Methodology 9
3.1 Mapping 9
3.2 Trenching 10
3.3 Drilling and sampling 11
3.4 Geochemical methods 12
3.4.1 ICP reproducibility 13
3.4.1.1 Major elements 13
3.4.1.2 Minor elements 14
3.4.2 ICP compared to $X R F$ results 15
4.0 Airphoto interpretation 16
5.0 Location of grid 18
5.1 Orientation of the grid 19
6.0 Grid mapping 19
6.1 Rock type 19
6.1.1 Banded boundary zone rocks 20
6.1.2 Massive anorthosite 20
6.1.3 Gabbroic anorthosite 21
6.1.4 Anorthositic gabbro 21
6.1.5 Gabbro 22
6.1.6 Olivine diabase dyke 22
6.1.7 Lamprophyre dykes 22
6.1.8 Silicified material 23
6.2 Structural geology 23
6.3 Mapping results 24
6.4 Surficial geology 25
6.5 Identification of potential mineable areas 26
7.: Area A 26
7.1 Mapping 28
7.1.1 Northeast block 28
7.1.2 Southwest block, main potential ore zone 29
7.1.3 Southeast structural block 32
7.2 Extent of possible ore zone 32
7.3 Geological character of the potential ore zone 34
7.3.1 Topography of trench profiles 35
7.3.2 Sample analyses 36
7.4 Drilling program 37
7.4.1 Drill cuttings analyses 37
7.5 Bulk sample 40
8.0 Area B 41
8.1 Mapping 42
8.1.1 Northeast B block 42
8.1.2 Southwest B block 43
8.2 Geological extent of the possible ore zone 44
8.2.1 Northeast B block, potential ore zone 44
8.2.2 Southwest B block, potential ore zone 45
8.2.3 Sample analyses 45
8.3 Drilling program 46
8.3.1 Drill cuttings analyses 47
8.4 Bulk sample 50
9.0 Area C 51
9.1 Mapping 51
9.2 Sample analysis 52
10.0 Area D 52
10.1 Mapping 53
10.2 Sample analysis 54
11.0 Other areas 54
11.1 Location $8+40 \mathrm{E}, 9+75 \mathrm{~N}$ 54
11.2 Location $0+00 \mathrm{E}, 1+30 \mathrm{~S}$ 55
12.0 Recommendations 55
12.1 Continued exploration on the claim group 55
12.2 Additional areas 56
13.0 References cited 57
14.0 Certificate 59
15.0 Appendix I - raw ICP geochemical data Appendix II - raw XRF geochemical results Appendix III - normalized geochemical data with sample locations
Appendix IV - $\quad \begin{aligned} & \text { Statistical treatment of ICP, } \\ & \text { duplicate, IC average and XRF results. }\end{aligned}$ letter summary of crushing and weights Lakefield Research

LIST OF FIGURES

2.1 General location map 7
2.2 Map of road crossing claims (1:20.000) 8
4.1 Airphoto interpretation of grid mapped area in pocket
6.1 Geological mapping of the cut grid (scale 1:2,000) in pocket
6.2 Schematic of outcrop pattern determined by structure and ice transport and erosion direction 27
7.1 Geological mapping of Area A, Scale 1:500in pocket
7.2 Stereonet plot showing fold axis as central to the main ore zone. 30
7.3 Geological mapping of Trenches A, C. D, area A scale 1:100
7.4 Cross-sections and chemical results for drilling on trenches area A, scale 1:100 in pocket
7.5 Longitudinal section of Area A drilling parallel to road in pocket7.6 Plot of $\mathrm{Fe}_{2} \mathrm{O}$, with drill interval depth showinghigher $\mathrm{Fe}_{2} \mathrm{O}$, and more irregular values withincreasing depth
in pocket39
8.1 Geological mapping of area B, (scale 1:500) in pocket
8.2 Geological mapping of trenches E and F. (scale 1:100) in pocket
8.3 Cross-section and chemical results from trenches E and F. (scale 1:100) in pocket
8.4 Al O. and Fe. 0 , for samples collected from outcrops not mapped in detail
LIST OF TABLES
2.1 Layering within the Shawmere Anorthosite as determined by 1:20.000 mapping (after Riccio, 1981)2.2 Structural deformation events as identified to thesouth of the Shawmere Anorthosite Complex (afterBursnall, 1991)
3.1 Statistical treatment of duplicate chemical analyses using ICP and XRF analytical method. 14
7.1 Statistical treatment of the grab samples collected from the area A trenches 36
7.2 Statistical treatment of the drill cutting chemical analyses from area A drill holes 38
7.3 Mass balance for the crushing and screening from the bulk sample collected from area A, with weights of bags shipped 41

7.3 Mass balance for the crushing and screening from the
bags shipped
8.1 Statistical treatment of the hand samples collected from the area B trenches and the apparent along strike extension. 46

8.1 Statistical treatment of the hand samples collected
strike extension.
8.2 Statistical treatment of the drill cuttings chemical analyses from area B drill holes 47 7
8.3 Statistical treatment of the drill cuttings and hand sample chemical analyses from Trench F, Area B 49
8.4 Mass balance for the crushing and screening from the bulk sample collected from area B, with weights of bags shipped 51

1.0 TERMS OF REFERENCE

Two 16 claim blocks in Warren Township. Ontario were investigated for high calcium/aluminium plagioclase feldspar suitable as feed for the production of aluminum chemicals. Guidelines were provide by Mr. Don Hains, secretary of Purchem Ltd., holder of the claims in a memorandum of August 25th, 1994 as follows to H. V. Geological Services:

1) Organization, supervision and management of line cutting program in the amount of 33 km , and at a spacing sufficient to develop detailed geological maps at a $1: 5.000$ scale or better. Surface grab samples are to be obtained. The number of grab samples is to be left to the discretion of the field geologist, but should be consistent with identification of variations in whole rock chemistry of the mapped areas. The areas most suitable for initial development of a quarry should be identified, consistent with defining an area having proven geological reserves of suitable quality anorthosite of at least 400,000 tonnes.
2) Organization, supervision and management of a program of air track drilling (30 holes @ 16 m each) in 5 fences of 6 holes (or 6 fences of 5 holes). Approximately 160 dust samples are to be recovered for analysis from drill holes at 3 m intervals. Tungsten carbide bits are to be used in drilling.
3) Organization, supervision and management of a trenching program consisting of two trenches over each of two areas totalling at least 200 m in length. Whole rock samples and analyses of the trenched areas are to be undertaken. with approximately 30 samples required.
4) Organization, supervision and management of a bulk sampling program. Bulk samples are to be recovered from at least two areas. The main sample should consist of approximately 15 tonnes of raw rock to yield a finished sample of approximately 8 to 9 tonnes from the area considered the most promising for initial development of the quarry. The second sample should consist of approximately 8 tonnes of raw rock to yield a finished sample of approximately 4 to 5 tonnes and be taken from the next best area.
5) Organisation of transport of the bulk samples to suitable crushing facilities and preparation of finished bulk samples as 1 to 4 mm material. processing of the material may include low and high intensity magnetic separation in addition to the
required crushing to size. Purchem would advise H. V. Geological services as to the requirement for magnetic separation upon receipt of the chemical analysis of the percussion drill samples and the whole rock analysis from the trenching program. The laboratory providing the crushing services, including yield, work index, $\%$ over size material. equipment used, power requirements etc.
6) organization, management and supervision of packaging of the bulk samples in a form suitable for overseas container shipment. The preferred mode of packaging is in intermediate bulk bags. Each bag is to be suitably identified as to the origin of the material in the deposit.
7) Preparation of detailed geological maps and reports on the deposit providing information on the following

* location, surface topography and surface areas of the deposit
* geological reserves of suitable quality
* plan and cross-section maps of the deposits showing all significant geological features affecting deposit quality, size, accessibility, quarry development and other factors bearing on the requirements for the development of the deposit and extraction of up to 10,000 tonnes per year of anorthosite
* whole rock and individual sample chemical analysis of deposit indicating variations in geochemistry across the surface of the deposit and with deposit depth
* notation on any topographic and or biologic features, plants, animals streams, etc. potentially affecting the licensing and development of the quarry.

The terms of reference were amended by Mr. Hains to not require work index for the crushing and grinding. In consultation with Mr. Peter Bevin drill hole depths would be 15.15 m (50 feet) or until drilling passes out of favourable anorthosite or encountered water (no recovery). Excavation of 5 trenches and drill holes along the trenches were deemed acceptable.

Due to time constraints the bulk samples were taken from areas with visibly pure feldspar, largest dimensions and most reasonable
access. This was to allow the timely processing of the bulk samples and shipping for overseas test processing.

2.0 INTRODUCTION

Purchem Limited of Toronto has a proprietary process for the extraction of the aluminium chemical, polyaluminium chloride (PAC) from high calcium/aluminium feldspars. This mineral (calcic plagioclase) may occur as massive feldspar (anorthosite) bands containing minimal accessory minerals in the oldest Precambrian anorthosite complexes.

Mapping, sampling and preliminary aluminium extraction tests by the Mineral Development Section of the Ontario Ministry of Northern Development and Mines (MNDM) on material from the Shawmere Anorthosite Complex has identified possibly acceptable rock for the Purchem process (Veldhuyzen 1992, 1993, 1994). This lead to acquisition by Purchem Limited of two 16 claim blocks (P 1197441 and P 1197442) in Warren Township, Timmins Mining District.

2.1 CLAIMS INVESTIGATED

The investigation is of two contiguous 16 claim blocks, $P 1197441$ and P 1197442, located in the southwest portion of Warren Township. Surface rights are retained by the Crown (Crown land) with the timber management rights held by McChesney Lumber of Timmins.

The claims were staked in October 1993 under the supervision of F. Racciot. The claims were transferred upon recording to A/S Polymer and subsequently transferred to Purchem Limited on August 3rd, 1994. No assessment work has been filed to date. The claims will remain in good standing until October of 1995 without assessment work having to be filed.

2.2 LOCATION AND ACCESS

The two claim blocks are located in the southwest portion of the unsurveyed township of Warren, Timmins Mining District. The centre of the two claim blocks lies at approximately 48' $8^{\prime \prime} 0^{\prime \prime} N, 82^{\prime \prime} 47^{\prime}$ 20" W (figure 2.1)

Access to the property is by a private lumber road (established by McChesney Lumber of Timmins) with public access. The road is used year-round to haul logs except during periods of frost heaving. At those times access is restricted to prevent damage to the road base.

The road crosses the southern claim (P 1197441) and swings northward through the middle of the northern claim (P 1197442) (Figure 2.2). From the centre of the claim block, the McChesney Lumber road extends 14 km to the east southeast where it joins highway 101, a major year-round paved highway. From this intersection, 24 km to the east on highway 101 is the village of Foleyet and the CN main railway line with a siding. The City of Timmins is 100 km east of the McChesney Lumber road and highway 101 junction. 67 km west of the McChesney Lumber road and highway 101 junction is the town of Chapleau (Figure 2.1).

2.3 PREVIOUS WORR

No previous claim staking is reported in Warren township, hence no assessment work filed. Geological investigations of the claims and the immediate area are limited to government studies focusing on:

1) geological mapping of the Shawmere Anorthosite Complex.
2) geological mapping and geophysical investigations of the Kapuskasing structure by leg 3 of the Lithoprobe project,
3) an industrial mineral evaluation of the high calcium/aluminium plagioclase feldspar.

f:eire 2.1 Eeneral location tap of the Purcher claifs in lafren Township, Timmins ianinc Eistrict.

Figure 2.2 f pcetion of the Chtario Lase Map shewinc the local topography, position of the Michesney Lumelf rcad relative to tile arppocxifate Furcherí clains boundaries

The geology of Warren and adjacent townships has been mapped regionally and then at $1: 100,000$ scale focusing on the setting of the Shawmere Anorthosite Complex in the Kapuskasing Structure (Thurston et al., 1977; Percival 1981a, 1981b). The Shawmere Anorthosite Complex is a 2.765 billion year old layered anorthosite to gabbro complex which underlies all of Warren township and 10 adjacent townships (Percival 1981a).

Four compositional zones recognized within the intrusion (Table 2.1) developed during primary magmatic fractionation of a basaltic magma (Simmons et al., 1980). Regional mapping is insufficient to identify specific areas of anorthosite suitable for use in the Purchem process. Mapping at 1:20,000 is limited to the northeastern third of the intrusion (Riccio, 1981), northeast of the Purchem claims. However, the geological observations from the area to the northeast are relevant to the Purchem claims.

Overlying gneisses

Megacrystic Gabbro

Massive Anorthosite

Banded Zone

Border Zone

Basal gneisses
probable structural contact
large megacrysts of feldspar (1 to 30 cm) floating in a gabbro matrix.
massive feldspar zone with thin layers of mafic minerals and interspersed mafic minerals
interlayering of gabbro with 1 cm to 18 m of massive anorthosite layers
possible structural contact
foliated zone of garnetiferous amphibolites contact interfingering of anorthosite intrusion with gneisses

Table 2.1 Sequence or aones with the layered the Shawmere Anorthosite Complex

The layering within the Shawnere Complex is disrupted by eight recognized structural events (Table 2.2). These events are recognizable throughout the Kapuskasing Structural Zone, including the Shawmere Anorthosite Complex.
(Dl) gneissic layering
(D2) small scale folds, now tight isoclinal
(D3) early tight inclined folds moderately north-dipping axial surfaces
(D4) Early decoupling of the Kapuskasing Zone and imitation of Ivanhoe Lake Cataclastic Zone, presumed relative age of development and mylonitic and reconstituted mafic gneiss sequence within the Ivanhoe Lake Fault
(D5) North-west trending gentle to open large scale upright to moderately inclined horizontal folds in part related to east-directed high angle reverse faults
(D6) Northeast trending upright to moderately inclined, gently plunging folds adjacent to Ivanhoe Lake Cataclastic zone.
(D7) Normal faulting (relative downthrown to north-west) unknown extent along Kapuskasing Structural NE boundary possibly related.
(D8)
Post lamprophyre faulting

Table 2.2 Structural events recognised as occurring within the Kapuskasing Structural Zone (after Bursnall, 1990)

The Shawmere Anorthosite Complex has been studied as to its setting within the continental Kapuskasing thrust zone, along which deep crustal rocks were brought to the surface. The mechanics and geometry of this structure has been investigated by the Lithoprobe project using deep EM, refraction and reflection seismic surveys (summary in clowes et al.. 1992) in combination with local geological mapping (Percival et al. 1991; Bursnall 1990). Lithoprobe Leg 3 traversed the McChesney Lumber road crossing the
claims. No specific data on the claims are published, save one geochemical analysis of a massive anorthosite exposure (Fountain et al. 1990).

An MNDM investigation examined the suitability of using feldspar as a source for extracting aluminium chemicals. Six areas sufficiently large for possible mining were recognised, two of which lie within the Purchem claim group (Veldhuyzen, 1992, 1993). The chemical characteristics and test-leaching experiments have also been completed (Veldhuyzen, 1993, 1994).

3.0 METHODOLOGY

The evaluation of a particular anorthosite exposure or zone must consider errors in the field and/or analytical methodology which may obscured significant details. Similarly, artificially created trends must not be interpreted from geological or analytical noise.

3.1 MAPPING

Mapping was carried out in two manners. Firstly the lines were walked with exposures within 10 to 20 m of the line mapped. If sufficient widths of potentially favourable anorthosite (plagioclase feldspar) were encountered, then pace and compass traverses were carried out perpendicular to the cut lines. Detailed mapping was carried out using flagged lines that were hip chained with stations every 10 to 20 m . Hip chaining may wander 2 to 3 m from the perpendicular of the cut line over 50 to 70 m . This does not represent a significant error in determining a zone's length or width.

Mapping focused on the following factors (in order of importance):

1) the lowest percentage of dark minerals, averaging less than 1
to 2\%, locally up to 5\%, providing dilution by better quality rock to average 1 to 2% mafics.
2) presence of plagioclase alteration, termed clinozoisite scapolite alteration, this material dilutes the feldspar making it less suitable for aluminium chemical extraction,
3) mafic mineral alteration to garnet indicates a geochemical process consuming mafic minerals and some feldspar, releasing $\mathrm{H}_{2} \mathrm{O}$ from the mafic minerals and $\mathrm{Na}_{2} \mathrm{O}$ from the feldspar, both negatively affecting aluminium extraction.
4) presence of carbonate minerals, usually limited to fractures in the bedrock although significant carbonate is present in the fine mud component of the till (as opposed to soil).
5) colour and grain size of the feldspar minerals, structural deformation alters euhedral feldspars to a sugary texture and grains of a lighter colour. This process may add Na, O. thereby lowering $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Collection of a representative bedrock sample followed a field examination of the outcrop or trench exposure. Brief descriptions were made noting; percentages and types of mafic minerals. alteration minerals, feldspar colour and crystallinity.

3.2 TRENCHING

Five trenches were completed using a 690 Caterpillar excavator. The trenches were made to a width of 3 to 4 m wide and up to 6 m wide in order to maintain a safe height to width ratio. After excavation, a strip of continuous outcrop was cleaned for the length of trench if possible. Surface mud was removed by hand and the bedrock surface swept.

Rock types, banding, prominent fractures or exposure faces along with the presence of alteration were described and plotted on a 1:100 scale map of the trenches. At the same time profiles of the trench topography was surveyed to within .2 m . The trenches were also the cleared sites for most of the percussion drill holes. After completing the mapping, sampling and drilling, trench
intervals with a depth of more than 1.5 m were backfilled.

Samples were collected from the exposed and cleaned outcrop surface where they could be acquired using a 3.5 kg sledge hammer. These locations were inevitably in areas of fracturing and jointing, the sites of greater alteration.

3.3 DRILL HOLE SITING AND SAMPLING

The drilling program establishes a depth extent and to provide continuous sampling for a visually high quality anorthosite with a potentially mineable width. The drill tested unit also has a significant strike length.

Drilling was completed using an air percussion Hydratrack drill. The unit was self contained being both mobile and capable of drilling rapidly to 15.15 m . Deeper drilling could have been accomplished with increased risk of the drill string jamming.

The drill was not designed as sampling equipment, such that a real possibility existed for cross-sample contamination with increased depth of drilling. This is despite using compressed air to clean out the dust by-pass box where most samples were collected. At the same time, the discharge tube from the drill collar to the bypass box could not be completely cleaned between samples

For drill holes DH 1 through DH 5 (all trench E drill holes), samples were collected from a cloth bag attached to the dust collector. To get a sample and prevent cross contamination, the air filter had to be disassembled and blown out, a time consuming process which exposed the drill operator to too much dust. This method collected relatively small volumes of sample and may have introduced a sorting bias due to a much longer air transport in the air suction tube before reaching the dust collector. The one sample interval for which both a dust bypass sample and an air
filter bag sample was collected had dissimilar chemical results. The air filter material (15971) had markedly lower Al O_{L}, and higher Fe, O, compared to the by-pass sample (15972) (DH 6. 0-3.03 m).

The remaining drill hole samples were collected from the dust bypass box where all material, from dust to coarse sand was blown at a screen. Fines passed through the screen to the dust collector while most material coarser than fine sand fell through the bottom of an open collection box. This latter material was collected for analysis from the remaining drill holes.

All drill cuttings sampled were laid out on a plastic sheet or within a large plastic bag (a clean garbage bag) and rolled three times in each direction, up and down, side to side before the sample size was reduced by successive scoops yielding approximately 500 grams for analysis.

3.4 GEOCHEMICAL ANALYSES

The identification of a mineable ore body requires sampling appropriate material and obtaining chemical results reflecting compositional variations in the field. To this end, both rock and drill cutting samples were collected and compared relative to one another using basic statistics (averages and standard deviations) for each potential ore zone.

Induced coupled plasma emission spectroscopy (ICP) is the chosen method for analysis. Previous work for MNDM used x-ray fluorescence (XRF). For completeness and as means of comparing the ICP results to previous study results comparing ten duplicate samples analyzed by both ICP and XRF. Splits of the same ICP duplicate analyzed a second time by ICP. Duplicate samples were taken later after the initial samples after being transported and further homogenized. The duplicate samples submitted for analysis to both laboratories as two additional drill holes.

Analytical reproducibility is determined using standard statistical functions provided in a computer spreadsheet program (LOTUS 123) (Appendix IV). As no absolute standards were included, nor repetitive analysis of one sample, error is assumed to equally distributed between duplicate samples. Error is assessed by comparing the following:
a) original ICP samples
b) duplicate ICP samples
c) XRF samples

The results are considered by principle components (SiO., Al.O., $\left.\mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{Fe} \mathrm{O}_{2}, \mathrm{MgO}\right)$. minor components ($\mathrm{K}_{2}, \mathrm{TiO}_{2}, \mathrm{MnO}, \mathrm{P}_{2} \mathrm{O}^{\prime}$, LOI loss of ignition). Trace components (Ba, Sr, Be, Sc, Ni, Cr, Cu, v, Zn) analyzed only by ICP.

Loss of ignition (LOI) is in close agreement for all of the duplicate samples with no bias between the original or duplicate samples, irrespective of laboratory. This consistency strongly supports the samples are all the same, with minimal differences as to carbonate or water contents.

3.4.1 ICP REPRODUCIBILITY

An in-depth statistical treatment can not be undertaken on 10 samples. The results present are only to identify the range of error between samples. By not having more than one duplicate value for each sample, the only method of treating the amount of possible error is to statistically evaluate the amount of anticipated error of the basis of the 10 duplicate samples.

3.4.1.1 Major components

The population of possible average error (difference between the original and duplicate analyses) (table 3.1) (Appendix IV) and standard deviation from the possible error differs for each
element. Not surprisingly, the larger the percentage of the whole rock that an oxide forms, the larger average error. The largest absolute discrepancy duplicate results is for SiO_{2}, the major oxide present at 0.79 wt $\%$ error with a 0.49 standard deviation. The spread of error is less for $A l, 0$. with 0.68 wt of error, the larger standard deviation 0.55 wt $\%$ suggest the ICP method yields less accurate $A l_{2} O_{\text {, }}$ results compared to the other components measured.

Components		ICP vs ICP	$\mathrm{ICP}_{\underset{\mathrm{XRF}}{\mathrm{Vs}}}^{\substack{\mathrm{Na}}}$	$\begin{aligned} \text { ICP } & \operatorname{dup} \\ \text { Vs } & \text { XRF }\end{aligned}$	ICP av vs XRF
SiO2	mean	0.79	0.54	0.46	0.29
	st. dev	0.48	0.31	0.32	0.21
$\mathrm{Al}_{2} \mathrm{O}$,	mean	0.68	0.55	0.47	0.41
	st. dev	0.55	0.48	0.22	0.21
CaO	mean	0.22	0.24	0.12	0.15
	st. dev	0.15	0.16	0.05	0.09
$\mathrm{Na}_{2} \mathrm{O}$	mean	0.11	0.19	0.14	0.17
	st. dev	0.05	0.08	0.18	0.13
$\mathrm{Fe} \mathrm{O}^{\text {O }}$	mean	0.08	0.24	0.19	0.22
	st. dev	0.08	0.06	0.07	0.05
MgO	mean	0.07	0.09	0.14	0.11
	st. dev	0.05	0.04	0.04	0.05
$\mathrm{K}_{2} \mathrm{O}$	mean	0.04	0.03	0.04	0.03
	st dev.	0.09	0.01	0.07	0.03
LOI	mean	0.12	0.16	0.20	0.15
	st. dev	0.14	0.14	0.10	0.13

Table 3.1 Statistical treatment of duplicate ICP and XRF results

3.4.1.2 Minor elements

A series of trace elements were also analyzed by ICP. There is no apparent pattern to variation between samples. The erratic results
reflect the very low values of the elements present, near the detection limits. This also includes the components $\mathrm{P}_{2} \mathrm{O}_{3}$, $\mathrm{TiO} \mathrm{O}_{2}$. MnO and $K_{2} O$ which are normally considered major elements.

3.4.2 COMPARISON OF ICP ANALYSES TO XRF ANALYSES

XRF, as a standard method is compared with; first the ICP original sample, second the ICP duplicate sample and thirdly the average of the two ICP analyses for the same sample.

There is a consistent pattern (Appendix IV) for $\mathrm{SiO}_{2}, \mathrm{Al}, \mathrm{O}$, and to a lesser extent $C a O$ when comparing results of the ICP analyses to the XRF results. The error or discrepancy is greatest between the two ICP samples; consistently lower between either the two ICP analyses when compared to the XRF result. The error or discrepancy between the average $I C P$ result and the $X R F$ value is least. This pattern suggest for these elements, the XRF method produces a reliable result (accurate) than ICP. Repeated ICP analyses appear to approach the XRF value. Alternatively, this implies the ICP values for SiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ have greater error than results obtained using XRF.

Taking into account ICP reproducibility and the narrow range of values in this study almost all values fall with the range of error.

A second pattern (Appendix IV) occurs when comparing results of $\mathrm{Na}_{2} \mathrm{O}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and MgO analyses. The amount of error or divergence (lack of agreement between sample duplicates) is least between the ICP duplicate samples, larger between either of the ICP analyses and the XRF value. The greatest error is between the average ICP value and the XRF result. This pattern is expected for Na, O, as it is a light element, poorly measured by XRF. However this is unexpected for both $F e, O$, and MgO. For this to be the case there may be a systematic error in either or both analytical methods
measuring these components.

When comparing results for F, O, there is a divergence between sample results of 0.22 wt $\%$ with a 0.05 standard deviation. Variations in the results of this size or smaller should be treated as analytical noise and cannot be used to distinguish variations in geology.

4.0 AIRPHOTO INTERPRETATION

As an aid to resolving the structural fabric and outcrop exposure pattern, an airphoto interpretation was undertaken of the claim block using three sets of airphotos

1971: scale 1:15,840
1978: scale 1:15.840
1992: scale 1:20,000
1992: scale 1: 3,900 from an enlargement

Of the available airphotos, only the 1992 set were taken followirg logging of the area.

The following features are recognised:
a) lineations consistent with the structural fabrics of the area (Bursnall 1991)
b) glacial erosional fabric development of rock drumlins.
c) till cover of bedrock
d) extent of present day swamps

Only the first two types of features are directly applicable to defining the possible extent of high purity anorthosite exposures. Interpretations of these two types of features are presented relative to the grid (figure 4.1). The interpretation used the
approximate $1: 3,900$ scale of the enlarged photo and includes photographic distortion.

The interrelationships of the various fabrics is consistent with the age and offsets of the known structural events (table 2.2). The most significant fabric is a northeast to southwest swamps and bedrock ridges. This is coincident with the (D4) and/or (D7) structural fabrics and the last and most significant glacial erosion and transport direction. The northeast to southwest trends are offset by later north-south and northwest to southeast lineations (D8). There also east west lineations of an unknown origin, possibly related to carbonatite intrusion to the west.

The northeast southwest trending topographic highs are more cohesive bedrock ridges as verified by subsequent mapping. Swampy areas appear to be underlain by less cohesive, more easily eroded (glacial scoured) rocks along structural breaks. Zones of more intense faulting have more alteration and are overlain by swamps. Such rocks are considered less suitable for use in the Purchem process.

The area in the southeast of the grid area, approximately from the BL, $13+00 \mathrm{E}$ extending southwestward to $1+120 \mathrm{E}, 12+00 \mathrm{~S}$ has a more uniform surface cover (thicker till) reflecting different bedrock (banded boundary zone, section 5.1.7). This area is considered to have a much lower potential for significant anorthosite exposures. The transition from the thicker, more continuous till cover to an area with higher topographic relief and prominent bedrock exposures occurs at a poorly expressed structural break.

Trending north-south through the centre of the grid (L $7+20 \mathrm{E}$ to L 9+80E) is an interpreted north-south structural zone. Similar zones are identified to the northeast (Riccio, 1981). The series of north-south lineations offset the prominent northeast southwest trending lineations. There may be a left lateral offset across
this zone as suggested by the apparent displacement of the rolling flat till interpreted as overlying the banded boundary zone.

The styles of airphoto lineations differ across the north-south break. To the east the lineations are less frequent with indications of more till cover than to the west. The major fabrics trend 060° east of the north-south zone and 040° to 050°. west of the north-south break. This suggests a discontinuity in bedrock layering and/or structural fabrics across the interpreted structural zone.

Northwest en echelon structural breaks cross all primary layering and previously described structural fabrics. Being at right angles to the ice transport direction, these offset are less noticeable. At times they are only suspected by virtue offsets of earlier (NESW, N-S) fabrics.

An approximate east west set of lineations border linear depressions. At least some alteration is expected associated with these zones of preferential erosion. The relationship with the other structural patterns or glacial erosion patterns is poorly defined.

5.0 LOCATION OF GRID

A grid was established to cover the area between the regional mapping of the boundary zone in the south and east and the megacrystic gabbro mapped to the north (Percival 1981a. 1981b). This area includes MNDM sample locations described as massive anorthosite (Veldhuyzen, 1992, 1993). The grid is centred on the line separating the two claim blocks and where the claim staking team identified the previous MNDM sampling (Racciot pers. comm.).

5.1 ORIENTATION OF THE GRID

The grid lines were oriented north-south with 120 m separation. The lines obliquely cross the structural (040") and regional strike of the primary layering (055° to 065°). The longer oblique crossing allows a greater opportunity to recognise favourable horizons (minimum 30 m in width). The 120 m line spacing was chosen based on a combination of cost and the ability to reliably locate outcrops by pace and compass. The choice of line spacing did not consider the thick new alder growth established following clear cut logging.

The grid origin is 80 m south of the western common claim post between the two claims. Line $13+20 \mathrm{E}$ was not extended to the south of the base line as this area was anticipated to be outside the area of favourable massive anorthosite.

6.0 GRID MAPPING

A summary of field mapping is presented on one 1:2,000 scale map sheet noting rock types, primary layering and structural overprints (figure 6.1). The data is compiled from 1:500 field mapping sheets and field notes. More favourable areas (Areas A figure 7.1; Area B figure 8.1) have data plotted at 1:500.

Large areas of the map (figure 6.1) are blank, being either swamp (most common) or till covered. In the case of the latter the areas have been logged over and replanted as part of the Ontario Ministry of Natural Resources reforestation program.

6.1 ROCK TYPES

Mapping identified the following rock types at the outcrop scale.

6.1.1 BANDED BOUNDARY ZONE ROCKS

This unit is attributed as being at the base of the Shawmere Anorthosite Complex (table 2.1). The banded boundary zone is a sequence of thin (2 mm to 3 m) interlayered bands of anorthosite to gabbro. The mineral grains comprising this unit are characteristically poorly crystalline and more altered than other rock of the anorthosite complex except those in fault zones. Primary pyroxenes are virtually absent, being replaced by hornblende which are frequently altered to biotites,(?), chlorites (?) and garnet.

A similar rock unit is identified northwest of the claims (Riccio, 1981) folded on northeast southwest axis, commonly plunging northeast. Similar structural and stratigraphic interpretations were not made on the Purchem claims due to thicker and more continuous till cover limiting exposures.

The thin anorthosite horizons have low potential as a feedstock for aluminium chemical production due to too-thin plagioclase horizons and increased alteration.

6.1.2 MASSIVE ANORTHOSITE

Massive anorthosite is an arbitrary division in the spectrum of anorthosite to gabbro. Anorthosite is defined as having less than 10% mafic minerals in massive plagioclase feldspar. The mafic minerals most frequently present are hornblendes with rare pyroxene or garnet. Pyroxenes which are present are frequently rimmed by hornblende and rarely an outer rim of garnet called coronic texture.

Mafic minerals can appear as either uniformly distributed 1 to 4 mm grains or 5 to 25 mm clots or discreet bands defining primary layering. Smaller than 1 mm mafic minerals occur as inclusions
within the plagioclase crystals. Mafic banding may separate massive 25 cm to 3 m anorthosite layers.

Clinozoisite - scapolite alteration is present as straight to anastomosing 1 to 4 mm veinlets. Alteration is least on massive topographically high outcrops, most frequently adjacent to topographic depressions, interpreted as fault zones (ie. Area B. $5+49 E, 1+43 S)$. In the latter settings, alteration may comprise up to 15 to 20 of of the rock. Carbonate alteration is limited to fractures in the rock adjacent to topographic depressions (interpreted faults).

Most exposures in the northern two thirds of the grid are massive anorthosite. However only exposures containing less than 2 to 3 \% (usually tr to l\%) mafic minerals were considered suitable sources for the extraction of aluminium chemicals.

6.1.3 GABBROIC ANORTHOSITE

This unit contains 10 to 20 of mafic minerals. The presence of this unit is neither a positive or negative factor on the quality of adjacent anorthosite exposures.

Mafic minerals occur mostly as hornblende, either uniformly disseminated or as distinct bands reflecting primary igneous layering. Rare coronic pyroxene may occur scattered or in concentrations reflecting primary banding. Augite containing gabbroic anorthosite crystallized from very late stage mafic fluids which moved vertically. In such cases the layering is unrelated to primary igneous layering and boundaries to mineable anorthosite bodies.

6.1.4 ANORTHOSITIC GABBRO

This unit contains 20 to 40% mafic minerals with the balance
plagioclase. It may appear as banded, with primary layering (most common) or coarse grained massive (rarer black granite texture).

6.1.5 GABBRO

This unit has more than 60% mafic minerals. It may appear as massive or primary banded and can be in close proximity to massive anorthosite, gabbroic anorthosite and anorthosite gabbro. Banding in this unit may show early (D2) or (D3) folding, distorting the direction of primary layering on the outcrop scale.

6.1.6 OLIVINE DIABASE DYKES

Most didaase dykes trend east northeasterly (065) and are considered part of the 2.05 billion year Kapuskasing dyke swarm (West and Ernst, 1990). Mineralogically the dykes contain olivine and are moderately to strongly magnetic with little associated alteration. There are also rare north northwesterly trending dykes interpreted to be part of the 2.454 billion year old Matachewan dyke swarm (West and Ernst, 1990). The two dyke sets are similar in the field except the northwesterly trending dykes have noticeable clinozoisite - scapolite alteration adjacent to the dyke.

Dyke material incorporated within a mineable anorthosite zone is a source of internal ore dilution.
6.1.7 LAMPROPHYRE (?) DYKES.

These dykes are black, often crumbly and weather recessively, and therefore poorly exposed and under represented by mapping. Compositionally these dykes appear more altered than the olivine dykes, but contain much less carbonate than expected in true lamprophyre. The anorthosite surrounding these dykes appears more altered than anorthosite adjacent to the olivine dykes. The
lamprophyre (?) dykes strike approximately east west toward the Nemogesenda Carbonatite Complex (west).

6.1.8 SILICIFIED MATERIAL

Three locations had a white aphanitic silicified material grading into massive anorthosite. This unit is found adjacent to northeasterly depressions, interpreted as fault zones where silica was apparently introduced. Comparable silicified gabbroic anorthosite to gabbro has not been recognised.

6.2 STRUCTURAL GEOLOGY

Structural fabrics (table 2.2) identified southwest of the Shawmere Anorthosite Complex are recognised on the Purchem claim group.

The gneissic layering (D1) (Bursnall, 1990) (table 2.2) is primary magmatic layering enhanced by the regional gneissic fabric. This layering defines the local trend of the suitable massive anorthosite units. Their direction however must be identified from layering in adjacent banded anorthosite to gabbro. All subsequent structural events disrupt this layering.
(D2) (Bursnall, 1990) events are tight upright isoclinal folds possibly recognized in banded boundary zone outcrops. These structures are not definitively mapped because of limited exposures.
(D3) (Bursnall, 1990) structures are small scale, tight isoclinal folds with north facing axial planes. An excellent example is in the banded gabbro exposure in Area $A(7+20 E, 10+00 N)$ where massive anorthosite appears plastically deformed or intruded into the layered gabbro. This fabric distorts the strike of the primary layering.
(D4) (Bursnall, 1990), or early cataclastic decoupling of the Kapuskasing Fault system (thrusting) forms some or all the northeast trending topographic depressions crossing the Purchem claims. These faults may have focused fluids causing alteration and the development of the white siliceous material. Carbonate alteration may also be related to these structures.

The (D5) (Bursnall, 1990) structural is not definitely recognized on Purchem claims.
(D6) (Bursnall. 1990) deformation forms large scale open folds with northeast to southwest fold axes, commonly plunging northeast (Riccio, 1981). Folding may increase the surface widths of high quality anorthosite layers by forming them into antiforms or synforms.
(D7) events (Bursnall, 1990) are near vertical northeast trending reverse faults. Having developed at shallower depths, these structures may be the focus of greater carbonate alteration than the pervious, deeper and earlier structural events.

The last recognised structural event, (D8), is post-lamprophyre faulting. The faults are near vertical trending northwest with right lateral displacements.

6.3 GRID MAPPING

Mapping is limited by areas of poor bedrock exposure due to swamp, till and dense alder growth. Initial mapping identified the low potential areas for massive high purity anorthosite. They are:

1) areas underlain by the banded boundary zone, southeast of a line extending from BL, $13+00 \mathrm{E}$ southwest to $10+00 \mathrm{~S}, 2+40 \mathrm{E}$, an area with mostly continuous till cover identified by airphoto interpretation and field mapping.
2) a swampy area west of $3+60 \mathrm{E}$ south of the $7+00 \mathrm{~N}$, a major northsouth and northeast southwest structural zone.
3) a swampy and hummocky area northwest of a line from $3+60 \mathrm{E}$, $7+00 \mathrm{~N}$ trending 040° to $8+40 \mathrm{E}, 14+00 \mathrm{~N}$, a topographic depression and interpreted fault zone.

The area from BL, $0+00 \mathrm{E}$ to $2+50 \mathrm{~S}$ extending northeast and southwest is covered by glacial till infilling behind a large bedrock knob. This is the tail of crag and tail feature. There is one limited area of interest on and to the west of $1+205,0+00 E$.

The remaining areas of the grid have sufficient outcrop, and the bedrock sufficiently massive to suggest less alteration. These areas are mapped in more detail with the most favourable zones chosen based on:
a) good quality anorthosite, trace to 1 \% mafic minerals with locally up to 3 to 5% over less than .5 m , total width at least 30 m .
b) minimal structural disruptions or offsets or at a low angle to subparallel to the primary layering, .
c) minimal carbonate or clinozoisite alteration, away from topographic depressions (interpreted fault zones).

6.4 SURFICIAL GEOLOGY

The patterns of both overburden and bedrock exposures are products of the surficial geological process superimposed on the underlying structural patterns.

The last glacial transport and erosion direction was from the northeast to southwest, nearly parallel to the major (D4) and/or (D7) structural fabrics. This allowed preferential erosion along the northeast to southwest zones of structural weakness, resulting in the large linear northeast to southwest depressions. Relatively unfaulted cohesive bedrock forms largely resistant bedrock ridges.

Behind (southwest) these ridges there are very few outcrops in the tail of the crag and tail (figure 6.2). when outcrops do appear they do so along bedrock ridges formed by northwest southeast (D8) faults.

Structural fabrics at high angles to the ice transport direction (D8) and the north-south structural zone have become largely till infilled. This makes these fabrics displacements more difficult to recognize in the field and under represented.

During ice retreat, meltwater discharge via eskers (one is 100 m west of the claim boundaries) into standing water. As the lake water levels lowered, thin till was removed from topographically higher areas and areas with steeper slopes by wave action. Eroded sand, silt and clay were deposited in the adjacent topographic lows

Areas at elevations lower (frequently fault zones)than the zone of wave washing, received the clays and silts mantling the infrequent outcrops. The impervious silts and clay prevented water drainage through the soil and lead to swamp development.

6.5 IDENTIFICATION OF POTENTIAL MINEABLE AREAS

Potential mineable areas are considered in light of the terms of reference. The limitations are in width (minimum 30 m), and suitable strike length (250 m). Shorter strike lengths have potential and noted but do not meet volume requirements as defined by the terms of reference.

7.0 AREA A

The most promising area with regards to strike length and width is subparallel and beneath the McChesney Lumber road. The area (Area A) was previously sampled by the MNDM program (blast sites,

FIGURE 6.2: Schematic of outcrop pattern determined by structure, and ice transport, and erosion direction.
flagging) (Veldhuyzen, 1992. 1993). The area is on claim 1197442 (figure 6.1) and is crossed by the McChesney Lumber road and four grid lines.

7.1 MAPPING

A good quality anorthosite band with a length of 290 m and a width of 65 m is mapped at $1: 500$ scale (figure 7.1). The mapping extended beyond the obvious high quality anorthosite to identify possible extensions. The detailed mapping identified locations for trenching and drilling.

Mapping (figure 7.1) identifies three lithological blocks as forming area A :
a) northeastern block, north and east of the swamp at 10+00N, 7+40E,
b) the southwest block containing the main potential ore zone, extends southwest from the swamp at $10+00 \mathrm{~N}, 7+40 \mathrm{E}$,
c) southeast block, south and east of $9+50 \mathrm{~N}, 8+40 \mathrm{E}$, is separated from the southwest and northeast blocks by a prominent northeast trending fault zone.

The extent of the possible ore zone is limited by the structural boundaries of the southwest lithological block.

7.1.1 NORTHEAST BLOCK

Northwest and southeast boundaries are interpreted as northeast southwest trending fault zones, (D4) and/or (D7). The southwest side is a northwest trending (D8) fault zone separating this block from the southwest block. The boundary is marked by a swamp and change in the strike directions of primary layering across the boundary (figure 7.1). The northern boundary is an approximate east west depression with very distinct bedrock faces trending 078°. There is a possibility, these planes may be related to the
(D5) deformation event or carbonatite intrusion to the west.

Increased alteration along the bounding structures is not as prominent in this area as elsewhere on the grid, possibly due to lack of appropriate exposures.

The predominant lithology is massive anorthosite to banded anorthosite. Intervals of anorthosite with less than $1-2 \%$ mafic minerals are narrower than 10 m . These bands are separated from similar quality anorthosite by thicker intervals of anorthosite with mafic bands or disseminated mafic minerals averaging 3 to 5\%. There are subordinate amounts of banded gabbroic anorthosite to rare intervals of gabbro. There is insufficient good quality anorthosite over a mining width to the dilute high mafic anorthosite to yield a product with an average 1 - 2 \% mafic content.

Multiple structural fabrics (D1), (D4). (D6), (D7?) and (D8) are recognized from bedrock exposures and airphoto interpretation. Only primary layering (D1), folding (D6) and northwest trending right lateral faults (D8) are mappable (figure 7.1). Primary layering defines a broad synform (D6) striking northeast, plunging northeast (figure 7.2). The (D8) fault is recognised by an apparent fault offset.

7.1.2 SOUTHWEST AREA, MAIN POTENTIAL ORE ZONE

Boundaries to the northwest and southeast of the southwest block are northeast southwest trending fault zones. (D4) and/or (D7). The northeast boundary is the northwest trending, (D8) fault zone (section 7.1.1) separating this block from the northeast block (figure 7.1). Till cover determines the southwest boundary or limit of bedrock exposure where the bedrock ridge grades into the tail portion of the crag and tail feature. The termination of outcrop to the southwest coincides with two airphoto lineations

Axial Plaite lie Elock feg ${ }^{0}$ 8^{C} NE

$$
\begin{aligned}
& 1
\end{aligned}
$$

 Scutrhent illock

Figue 7.6 Letertination of axial planes for the folds in area à two related eut differeint fclds (egualaremiiet)
interpreted as northwest trending faults, (D8), parallel to the northeast boundary.

Mapping and trenching of the area identified five rock types:
a) banded gabbro along the northwestern side and crest of the outcrop ridge with strike directions changing due to (D2) and (D3).
b) granitic textured gabbro to gabbroic anorthosite occurs in a wedge between the banded gabbro to the northwest and the anorthositic gabbro and the potential anorthosite ore zone in the southeast. The unit is absent in the northeast on line $7+20 \mathrm{E}, 9+95 \mathrm{~N}$, increasing to 10 to 12 m wide to the southwest. near $6+00 E, 8+50$. The boundaries of this unit approximately conform to the banding observed in the adjacent banded gabbro.
c) the potential massive anorthosite ore zone and marginally higher mafic anorthosite occur southeast of the gabbro following the observed banded gabbro strike. The marginal higher mafic anorthosite is recognized only in the south near L6+00E. Observation from trenching indicates the anorthosite zone may be an antiform,
d) both types of dykes are mapped within the massive anorthosite zone.
e) a white silicified zone is in trench C. adjacent to a possible northeast fault. Limited geographical exposure has prevented the determination of its orientation.

Alteration is minor clinozoisite - scapolite and carbonate on fractures. The only significant additional alteration is the white silicified material in trench C.

All structural fabrics except (DS) are possibly present in this block. (D1), (D2) and (D3) are recognized only from the banded gabbro exposures. (D6) is interpreted from trench exposures.
(D4) and/or (D7) faults form the northwest and southeast boundaries of the southwest block. This fabric may have structurally repeated the potential anorthosite ore layer increasing its apparent width. Within the lithological block both dyke sets are interpreted as
having been offset along a northeasterly trending plane. There appears to be minor alteration associated with this fabric.
(D6) folding forms am antiform along the ore zone increased the zone's apparent width if the one significant primary layering attitude is correct. The last structural event (D8) has systematically offset the anorthosite zone in a right lateral manner. The apparent left lateral offsets of the banded gabbro occur due to different vertical displacements of the northwest dipping gabbro contact.

7.1.3 SOUTH EAST BLOCK

This block is separated from the northeast and southwest blocks by a northeast fault zone. The massive anorthosite observed in this area is more variable than the possible ore zone anorthosite and similar to exposures in the northeast structural block. This area is sampled and described separately (section 11.1)

A 15 m wide dyke is similar in width. strike, and composition to the wide dyke in the southwest block. They cannot be one and the same dyke unless they have been displaced by the northeast trending faults separating the two lithological blocks. If so this supports the interpreted (D4) displacement of the dyke in the possible ore zone.

7.2 EXTENT OF POSSIBLE ORE ZONE

The potential ore zone is on the southwest side of the bedrock ridge forming the southwest lithological block. The length of the potential ore zone is interpreted from the 1:500 scale map (figure $7.1)$ as 290 m long in a northeast southwesterly direction. There is potential for a strike extension to the southwest beneath till cover and possibly displaced by (D8) fault offsets (figure 7.1). Width is determined from mapping (figure 7.1) and the measured
lengths of the three trenches excavated across the complete zone except for the intervals beneath the McChesney Lumber road (figure 7.3).

Four trenches were planned, but in consultation with Mr. Peter Bevin, it was agreed only three trenches were required and trench B was cancelled.

The strike of the zone follows the primary layering (D1) in the hanging wall banded gabbro. The nature of the hanging wall or northwest boundary changes laterally. At trench A (figure 7.1), the transition from gabbro to massive anorthosite occurs abruptly across 20 to 30 cm .10 m to the southwest, the contact of the high purity anorthosite is with speckled gabbro which in turn is conformable with banded gabbro. In trenches C and D, the potential ore anorthosite is bounded on the northwest by an impure anorthosite, which in turn is conformable with the banded gabbro.

Successively displacing the anorthosite ore zone along strike are a series of northwest trending faults (D8). One fault is observed displacing a small dyke. A second is interpreted from a very prominent topographic break in trench C and the banded gabbro contact displacement to the northwest. A third fault is interpreted from the 3 m dyke being abruptly terminated and displaced to the southeast (figure 7.1)

The lack of specific locations and amounts of each fault offsets makes the exact geometry of the west side of the potential ore zone questionable. However, the presence or absence of more or fewer northwest trending (D8) faults will not significantly affect volumes of anorthosite present, only the location of the western boundary of the zone.

The northeast boundary is in the swamp centred on $7+80 \mathrm{E}, 10+00 \mathrm{~N}$, where an interpreted northwest fault terminates both the zone and
the southwest structural block. There is no extension to the northeast.

The southeast side of the possible ore zone is more conjectural. It appears to be in part on the south limb of a fold with an axial plane paralleling the good quality anorthosite. For the most part however, a major shear zones (D4) appears to obliquely cross cut the fold, forming the southeast boundary to the zone. However, extensive overburden makes the location of the boundary difficult.

7.3 GEOLOGICAL CHARACTER OF THE POTENTIAL ORE ZONE

The lateral continuity of the possible ore zone is interrupted by two sets of dykes $\left(060^{\circ}\right.$ and 085° to $\left.095^{\circ}\right)$ and at least two fault sets. Examination of trench exposures (figure 7.3) identified the following aspects of the potential ore zone, undocumented by the 1:500 scale mapping:
a) dykes are more important than surface mapping suggests, each trench has at least one dyke and some two. More unmapped dykes are not unexpected.
b) the northeast trending shear fabric is very pervasive, forming irregular ridges subparallel to the primary bedrock layering, This may or may not have lead to structural thickening of the favourable anorthosite horizon or added alteration to the anorthosite.
C) a possible northeast southwest antiform
d) greater anorthosite alteration is greater near the faulted southeastern boundary and the large dyke than elsewhere.

The topography of the trenches (figure 7.4) is very abrupt and irregular, perpendicular to the very pervasive northeast trending (D4) and/or (D7) structural fabrics. Displacement could not be determined as they are subparallel to primary layering. Only in the case of the large dyke in the southwest of the potential ore zone, can displacements be estimated.

Two covered intervals (bedrock depressions) in trenches C and D are interpreted as easily eroded brittle fault zones. Carbonate and more clinozoisite - scapolite alteration are recognized southeast of the McChesney Lumber road in trenches C and D near the (sheared?) large dyke contact.

Anorthosite descriptions and the assay results along the trenches (figure 7.3) indicates textural, and to a lesser extent the chemical variability of the anorthosite zone. The absence or presence of megacrysts in the sample material does not appear to be a positive or negative factor. Hornblendes size may negatively affect the results when they are in effect, nuggets of iron-bearing minerals (Trench A, sample 15947) and then only in the case of hand samples.

7.3.1 TOPOGRAPHY OF TRENCH PROFILES

The elevations are presented in cross section with the drill results (figure 7.4) for each trench relative to a common daturi established along the lumber road by Mr. Peter Bevin. The relative elevations may be in error by . 5 m over the 290 m strike length of the zone. The largest error is suspected from tying in the trench levels to the road level.

In all trenches, the irregular topographic relief supports the interpretation of (D4) and/or (D7) and (D8) fabrics. The extreme topography may have prevented the sampling of narrow zones of alteration in the depressions. Northwest trending structures (D8) are only exposed in trench C where the southwest side of the interpreted fault is 2 m higher than the northeast side. The extent to which similar relief is present on other northwest faults is unknown.

The topographic elevations of drilling along the road (figure 7.5) lacks appropriate exposures to identify bedrock relief associated
with northwest trending (D8) faults.

7.3.2 SURFACE SAMPLE NNALYSES

Bedrock samples were collected from 24 locations in the three trenches and analyzed. One sample knowingly contained an anomalously large 12 mm hornblende crystal (sample 15947).

Despite the small data base and limits of ICP reproducibility (section 3.4.1), the results are very consistent with regards to mean average and standard deviation (table 7.1). The higher variability of $A 1, O$, is due to methodology and not necessarily the original sample material.

COMPONENTS	WEIGHT PER CENT	STANDARD DEVIATION
SiO_{2}	49.06	0.50
$\mathrm{Al}_{2} \mathrm{O}_{3}$	30.55	0.64
CaO	15.15	0.34
$\mathrm{Na}_{2} \mathrm{O}$	2.46	0.13
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	1.37	0.43
MgO^{2}	0.43	0.11
$\mathrm{~K}_{2} \mathrm{O}$	0.09	0.04
LOI	0.70	0.28

Table 7.1 Statistical treatment of the grab samples collected from the area A trenches

All rock samples contain similar high $\mathrm{Al}_{2} \mathrm{O}_{3}$, low $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and MgO, west and east of the McChesney Lumber road, including east of the major dyke in trench C (figure 7.3). The near constant ratio of $\mathrm{Fe}_{i} \mathbf{O}$, to MgO suggests their occurrence in a common mineral phase (hornblende).

7.4 DRILLING PROGRAM

Percussion holes were drilled on the three excavated trenches and two additional holes located between the trenches to define ore. Blocks with significant dyke material. highly sheared material or higher hornblende in the anorthosite were avoided. Results are presented as $\mathrm{Al}_{2} \mathrm{O}_{3}$ over Fe, O. (figures 7.4 and 7.5), usually for 3.03 m intervals (10 feet). If visual changes in the cuttings were noted, then smaller intervals were sampled. Smaller dykes or mafic bands are not discounted because they are volumetrically very small and pinch out laterally as observed near the bulk sample location.

7.4.1 DRILL CUTTINGS ANALYSES

The drill sample results are interpreted as averages for the recorded drill hole interval. Deeper intervals have the potential for being contaminated by material from higher in the drill hole.

A statistical treatment of the analytical results (table 7.2) identifies sample intervals with statistically significant negative results, (higher $\mathrm{Fe}_{2} \mathrm{O}_{1}, \mathrm{MgO}$, LOI, Na O and SiO_{i} and/or lower $\mathrm{Al}_{2} \mathrm{O}_{2}$ and CaO).

Trench A drill hole results have erratic values, higher in $\mathrm{Fe}_{\mathrm{i}} \mathrm{O}_{\mathrm{i}}$, MgO and SiO_{2} with lower $\mathrm{Al}_{2} \mathrm{O}$.. These cases may represent minor zones of mafic minerals (increased Fe, O. MgO) or clinozoisitescapolite (higher SiO, and lower Al.O, with no other significant major element changes). DH 28 has decreased Al, O, for the interval 6.06 to 15.15 m , suggestive of alteration along a shear zone. Similar elevated MgO occurs in DH 30, DH 31 and DH 32 samples. In DH 32. MgO is associated with increased Na O LOI and decreased Al.O.. These chemical trends may have been superimposed on the anorthosite by the adjacent dyke, 1.2 m to the northwest.

COMPONENTS	WEIGHT PER CENT	STANDARD DEVIATION
SiO_{2}	48.11	0.70
$\mathrm{Al}_{2} \mathrm{O}_{1}$	30.97	0.55
CaO	15.52	0.37
$\mathrm{Na}_{2} \mathrm{O}$	2.45	0.09
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	1.32	0.14
MgO^{2}	0.42	0.07
$\mathrm{~K}_{2} \mathrm{O}$	not available	not available
LOI^{2}	0.95	0.66

Table 7.2 Statistical treatment of the drill cutting chemical analyses from 120 samples from area A

DH 25 and the holes along trench C (DH 19, DH 20, DH 21, DH 22, DH 23. DH 24) collectively contain 3 samples which have higher than the mean $\mathrm{Fe}_{2} \mathrm{O}_{3}$ plus one standard deviation. Higher SiO_{2} values may reflect lesser amounts of SiO_{2} undersaturated mafic minerals.

Of the trench D drill cutting results, the bottom DH 12 sample has higher $\mathrm{Na}_{2} \mathrm{O}$, LOI and lower $\mathrm{Al}_{2} \mathrm{O}_{3}$, a chemical signature expected from alteration, possibly associated with the sheared material mapped 5 m to the southeast. Most results from drill holes northwest of the lumber road (DH 13, $\mathrm{DH} 14, \mathrm{DH} 15, \mathrm{DH} 17$) have more deleterious values of $\mathrm{Fe}_{2} \mathrm{O}_{3}$, MgO and lower $\mathrm{Al}_{2} \mathrm{O}_{3}$. In DH 16 , the 6.06 to 15.15 m interval has lower $\mathrm{Al}_{2} \mathrm{O}_{3}$, higher MgO and in part higher LOI. This anomalous zone is in close proximity to the interpreted northwest structural offset (D8) occupying the major topographic break obliquely crossing trench C (figure 7.3)

There is a pattern of $\mathrm{Fe}_{2} \mathrm{O}_{\text {, }}$ with drill hole depth (figure 7.6). $\mathrm{Fe}_{i} \mathrm{O}$. increases and becomes more erratic with depth. This possibly reflects drill holes being started on homogeneou, massive surfaces,

surfaces, easily cleaned and usually devoid of smaller dykes and fractures containing alteration (recessive). With depth these rock types and settings are intersected more frequently, with the resultant chemical analyses being more variable.

7.5 BULK SAMPLE

A bulk sample was obtained from a smooth bedrock exposure adjacent to the road and a MNDM blasted sample site. One drill hole. DH 18 was collected from the site (figure 7.5) with consistently good results ($\mathrm{Al}_{2} \mathrm{O}$. of 30.92 wt $\%$ and $\mathrm{Fe}_{2} \mathrm{O}_{2}$ of 1.38 wt \%).

The blast was made by drilling 16 holes in a 4 by 4 yard pattern with 6 additional tightly spaced holes to make an initial cut and direct the blast away from the road. The $21 / 2$ inch drill holes were loaded with 75 of forcite leaving a 4 foot collar at the top of the hole to contain the blast.

A sample of 15 to 18 tonnes containing minimal oversize was removed and shipped to Lakefield Research for crushing and screening (Appendix V). The sample was fine crushed and screened at -4 mm with the oversize recirculated for further crushing. A second screening removed the +1 mm which was bagged as product. The -1 mm fraction was rejected. The mass balance for material produced (table 7.3) does not take into account the 10 to $15 \%-1 \mathrm{~mm}$ fines incorporated into the product due to moisture.

Feed material kg	product processed (kg)		fines rejected
	bag \# shipped	weight of bag	
9.698 .0	1	795.5	575.0
	2	925.0	(5.9 \%)
	3	704.5	
	4	1090.9	
	5	840.9	
	6	1090.9	
	7	977.3	
	8	863.6	
	9	897.7	
	10	977.3	
	Total	gross 9148.0	net 9,123.0

Table 7.3 Mass balance for the bulk sample processed and shipped by Lakefield Research

8.0 AREA B

Located south of the Mchesney Lumber road, at from $0+60 \mathrm{~N}, 8+80 \mathrm{E}$ extending southwest to $2+50 \mathrm{~S}, 4+80 \mathrm{~S}$, Area B has limited outcrop exposed discontinuously along a northeast southwest trend. There are two principle areas or blocks, one at $0+60 \mathrm{~N}, 8+80 \mathrm{E}$ (northeast B block), the other beginning at $1+12,6+60 E$ (southwest B block). The two areas are separated along strike by a 240 m interval of low till covered ground.

To correlate low isolated outcrops, shorter lines were cut perpendicular to the main north-south lines and a second line cut along the projected strike from $0+81 \mathrm{~N}, 8+93 \mathrm{E}$ where MNDM blasted a 2 tonne bulk sample (Veldhuyzen, 1993) to $1+25 \mathrm{~S} 6+00 \mathrm{E}$.

8.1 MAPPING

Outcrops are mostly along the northeast southwest ridge, site of the previous MNDM sampling (Veldhuyzen 1992, 1993). Other relatively isolated outcrops not part of the main northeast southwest bedrock ridge are separated from the bedrock ridge by significant covered intervals interpreted as either (D4) and/or (D7) faults.

8.1.1 NORTHEAST B BLOCK

Boundaries of the northeast B block are poorly defined. The northwest to north boundary is a low swampy area interpreted to be a northeast trending fault, (D4) and/or (D7). The western boundary is a north-south low swampy to till covered interval interpreted to result from a north-south structural zone, one of the airphoto lineations identified as trending north-south through the centre of the grid (figures 4.1 and 6.1). The eastern boundary is formed by several en echelon northwest (D8) faults. They form the northeast termination of the outcrop ridge. The southern limit is an east west depression paralleling the grid base line.

Most of the northeast B block exposures are high purity anorthosite. The north side of the exposures are banded hornblende rich anorthosite to gabbroic anorthosite striking 070°, dipping 30° south, beneath the good quality anorthosite. The south side of the good quality anorthosite has exposures of sheared high hornblende anorthosite to gabbroic anorthosite. Some material has 10 to 20 mm crystals of hornblendes. Primary layering is not observed.

A trench along the crest of the bedrock ridge was excavated but remained unmapped before being blasted and bulldozed by contractors for McChesney Lumber as part of their road improvement efforts. The uncollected data is of limited importance due to prior negative drilling and mapping results.

Elsewhere on the grid, a southeast dip is observed only in (D6) folds which can limit the volume of high quality anorthosite present. A northwest (D8) fault forms the southeast boundary of the ridge and the good quality anorthosite zone. No other structural fabrics are recognized in the northeast B block.

8.1.2 SOUTHWEST B BLOCK

The main southwest B zone appears to strike 040 , although no primary banding is recognized. Exposures are massive anorthosite apparently bounded on the northwest and southeast sides by northeasterly (D4) and/or (D7) faults. The outcrop ridge is terminated at $3+80 \mathrm{E}, 3+30 \mathrm{~S}$ by a (D8) fault evidenced by a northwest rock face and depression. The northeastern boundary occurs where a north-south structural break obliquely truncates the 040° trending bedrock ridge. Southeast of the potential ore zone and across an interpreted northeast southwest fault zone is an area of thin till with sporadic shallow low lying outcrops.

The main bedrock ridge is massive anorthosite containing very: little (< l-2 $\%$) disseminated hornblende and irregularly distributed clots or veinlets $(4 \mathrm{~cm}$ width of 40% augite up to 4 m long) of mostly augite or altered augite. Augite is not crystallised as part of the primary layering, but developed as remnant dense gabbro fluid which sank in fractures cross cutting the feldspar and crystallised (veinlet in trench F).

The up ice direction (northeast) of the southwest b block is relatively smooth, with a uniform slope (figure 6.2). Northeast southwest faulting is limited to the southeast boundary (mapped as a shear) and the topographically lower area at the northwest end of trench F (figure 8.2 and 8.3). The outcrop is sufficiently rounded and without abrupt changes in relief that very few surface samples could be obtained, unlike the trenches in area A.

The extension southwest of Line $6+00 E$ is poorly mapped outcrops due to thin till cover deposited behind the bedrock knob, but are still in evidence at $4+00$ S. $3+60$ E. Whether suitable mineable anorthosite horizon extends continuously over this interval has not been determined.

Northwest faults (D8) appear to offset the bedrock ridge and the northeast southwest (D4) and/or (D7) (figure 8.1).

8.2 GEOLOGICAL EXTENT OF POTENTIAL ORE ZONE

The northeast B block and southwest B block are considered separately as potential ore zones.

8.2.1 NORTHEAST B BLOCK, POTENTIAL ORE ZONE

Approximately 50 to 60 m width of high purity anorthosite is of interest. The south dipping banded anorthosite to gabbroic anorthosite suggest a distinct depth cut off. Field observations to the southeast of the zone and the drill results confirm the southeast dip. Due to the collection of samples from the dust collector and not from the bypass box, holes were terminated above the 15.15 m depth when abundant black minerals first appeared in the cuttings. In doing so a significant amount of mafic minerals did not reach the dust collector and hence not measured by the chemical analyses.

The block is interpreted to be part of a synform and if drill results are correct, the centre of the synform passes through the drill and trench fence in an anticipated northeast southwest (D6) direction. Following the blasting and bulldozing by McChesney Lumber contractors for road relocation, very little good quality anorthosite remains.

8.2.2 SOUTHEAST B BLOCK, POTENTIAL ORE ZONE

The massive anorthosite outcrop containing potential ore is bounded by the two parallel northeast southwest structures and possible north-south fault on the northeastern side. The lack of good primary layering does not allow specific depths, dips or thicknesses to be ascribed to the zone.

Along structural strike, southwest of trench F, the overburden thickens. In this area there is evidence for interpreting a northwest (D8) fault with an unknown offset. The number and frequency of parallel faults may make the strike of the favourable zone difficult to locate. However, the continuity of the bedrock ridge and similar exposures to the southwest with favourable chemical results (figure 8.4) (between $3+60 \mathrm{E}$ and $4+80 \mathrm{E}$) strongly suggest a continuation of the same or a similar anorthosite unit.

8.2.3 SAMPLE ANALYSES

Sample results from trenches E and F (figure 8.3) were combined with rocks collected from the projected extension of area B (figure 8.4) in a statistical analysis. The results (table 8.1) compare favourably with the results from area A trench and drill samples with regards to their mean averages and lower standard deviations of sought after parameters (high $\mathrm{Al}_{2} \mathrm{O}_{1}, \mathrm{CaO}$; low $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{SiO}_{2}$, Na.O).

The results are very favourable with low standard deviations for all components despite the small number (19) of samples. Al:O; is higher and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ lower than the area A samples. The same holds true for the other sought after trends (high CaO, low SiO:. MgO and Na.O).

COMPONENTS	WEIGHT PER CENT	STANDARD DEVIATION
SiO_{2}	48.92	0.48
$\mathrm{Al}_{2} \mathrm{O}_{1}$	31.19	0.46
CaO^{2}	15.23	0.36
$\mathrm{Na}_{2} \mathrm{O}$	2.42	0.15
$\mathrm{Fe}_{2} \mathrm{O}_{4}$	1.11	0.29
MgO^{2}	0.36	0.07
$\mathrm{~K}_{2} \mathrm{O}$	0.07	0.02
LOI	0.53	016

Table 8.1 Statistical treatment of the grab samples collected from the area B trenches and the apparent along strike extension using 19 samples.

The trench F samples and the southwest along strike extension samples have more variable results than the trench E results. A general observation is the trench E samples have much lower $\mathrm{Na}_{\mathrm{i}} \mathrm{O}$ (less albite) than the trench F samples.

8.3 DRILLING PROGRAM

The visual observations of the trench E drill results are supported in part by the chemical analyses. The high quality anorthosite occurs on surface with poorer quality anorthosite intersected at shallow depths as expected from observed 30° south dipping banded anorthosite north of DH l. However the mafic minerals encountered in DH 2 and DH 3 at the 6.06 to 9.09 m intervals and visually observable mafic minerals in the lower cuttings from DH 3 and DH 4 indicate very little depth extent to the higher quality anorthosite. The very high $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at the lower two samples from DH 5 confirms these visual observations.

Drilling on the southwest B block has no similar mafic

8.3.1 DRILL CUTTINGS ANALYSES

The drill cutting results are evaluated statistically by considering all drill results from area B to define mean average and standard deviation for the major components (table 8.2). These values are used to identify drill intervals with negative results: higher $\mathrm{Fe}_{2} \mathrm{O}_{1}$, MgO, LOI, $\mathrm{Na}_{2} \mathrm{O}$ and SiO_{2} and/or lower $\mathrm{Al}_{2} \mathrm{O}$, and CaO .

COMPONENTS	WEIGHT PER CENT	STANDARD DEVIATION
SiO_{2}	48.81	0.72
$\mathrm{Al}_{2} \mathrm{O}_{3}$	30.86	0.78
CaO_{2}	15.28	0.38
$\mathrm{Na}_{2} \mathrm{O}$	2.43	0.10
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	1.10	0.35
MgO_{3}	0.47	0.45
$\mathrm{~K}_{2} \mathrm{O}$	0.07	0.04
LOI	0.82	0.76

Table 8.2 Statistical treatment of the drill cutting chemical analyses from area B drill holes using 50 samples. Two samples with over 10 \% Fe.O, were excluded

Some trench E drill hole results have high and low $A l_{2} O$, with commensurate low and high $\mathrm{Fe}_{3} \mathrm{O}$, and MgO. Results with significantly more $\mathrm{Fe} \mathrm{O}_{3}$ and Mgo more than one standard deviation above the mean average, contain significantly more mafic minerals. The mafic minerals are interpreted as occurring in banded anorthosite to gabbroic anorthosite intersected within these sample intervals.

DH 1 was stopped at 9.09 m when mafic minerals, part of the southeasterly dipping banded anorthosite exposed 12 to 15 m to the north, was encountered. DH 2 through 5 erratically encountered mafic minerals in the drilling such that all drill holes except $D H$

2 were terminated above 15.15 m . DH 2 and DH 3 have intervals with very high Fe.O, (greater than 2 \%) suggesting mafic bands may be continuous between the two drill holes. The very high (>10\%) $\mathrm{Fe}_{2} \mathrm{O}$, in the lower DH 5 intervals are anorthositic gabbro to gabbro. The interpreted geometry is a synform with all drill holes except DH 4 passed through the good quality anorthosite on surface into the underlying banded, mafic anorthosite.

The lack of consistent intersections of higher $\mathrm{Fe}_{2} \mathrm{O}_{3}$ along the trench E drill holes in a well defined fold pattern may be due to the discontinuous nature of the mafic banding as seen in the shallow dipping anorthosite west of area $C(7+00 E, 3+30 S)$ and the northeast block of area A.

Subsequent to drilling and before trench E could be mapped in detail. contractors from McChesney Lumber removed 3 m of the ridge crest along the trench to relocate the lumber road. Only 6 to possibly 9 m of high quality anorthosite remains above the banded anorthosite to gabbro.

Trench F drill results are much more consistent. The higher mafic minerals encountered in trench E have a minimal influence on the average values of trench E and F (table 8.2) as opposed to considering only trench F data (table 8.3). Except for $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and MgO which are significantly lower, and SiO_{2} which is higher, the other major elements have little difference in both their averages and standard deviation.

The $A l_{2} O$, for trench F drilling is very consistent with marginally lower $\mathrm{Fe}_{i} \mathrm{O}$, (0.97 verses $1.10 \mathrm{wt} \%$) than for the combined trench E and F results. There are several trends which may relate to the geology and grade and not statistical anomalies.

COMPONENTS	WEIGHT PER CENT	STANDARD DEVIATION
SiO_{2}	49.15	0.50
$\mathrm{Al}_{2} \mathrm{O}_{1}$	30.69	0.52
CaO	15.38	0.31
$\mathrm{Na}_{2} \mathrm{O}$	2.45	0.10
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	0.97	0.13
MgO^{2}	0.32	0.07
$\mathrm{~K}_{2} \mathrm{O}$	0.06	0.04
LOI^{2}	0.83	0.74

Table 8.3 Statistical treatment of the drill cutting and rock chemical analyses from trench F using 37 samples.

The lower $\mathrm{Al}_{2} \mathrm{O}$, and much higher LOI from DH 712.12 to 15.15 m interval suggests more alteration, probably related to the nearby (7.4 m) fault zone forming the southeast boundary of the ore zone. Lower Al.O, in the bottom of DH 7 may correlate with similar chemical results obtained from DH 6 (figure 8.3). Data from the other drill holes does not supports this speculation. The only systematic negative (too much SiO: Fe, O., MgO, too little CaO, Al. O.) variance from the mean by one standard deviation is for high Na O in the lower 6.06 to 15.15 m interval of DH 11 . This may be a reflection of added alteration associated with the northeast trending shear zone forming the topographic low area northwest and the boundary of the potential ore zone.

The Fe. O: values are lower than in area A, but the magnesium values are nearly comparable. This suggests the accessory minerals are magnetite and hornblende for area A and less magnetite with hornblende in area B samples.

Alteration may be under represented in the drilling because the shears and fractures are near vertical and less likely to have been intersected at their wide spacing.

8.4 BULK SAMPLE

A 10 to 12 tonne bulk sample was obtained the crest of the ridge of the southwest B block away from the altered, topographically lower areas (figures 8.1 and 8.3). One drill hole (DH 6) was completed in the bulk sample location. The chemical results are slightly lower than the area A values (average $\mathrm{Al}_{2} \mathrm{O}_{3} \mathbf{3 0} .05 \mathrm{wt} \%$, $\mathrm{Fe}_{2} \mathrm{O}_{3} 3$ wt ${ }^{\text {® }}$) decreasing in quality with depth (figure 8.3)

The upper sample interval of DH 6 had both air cleaner bag and dust by-pass box sample material (figure 8.3). The air cleaner sample has higher mafic mineral components suggesting a bias to heavier iron-bearing minerals. Samples collected from the dust by-pass box are very similar for all samples above the 12.12 m depth. This suggests the sample taken was very homogeneous for the depth of sample extracted.

The bulk sample was taken by blasting a 3 by 4 m drill pattern. The holes were loaded with 75 \% forcite for the lower 3 m of the holes. The upper parts were left as a collar to contain the blast. The drill holes were packed with drill cuttings to minimize contamination. The blast was completed in two steps to produce well in excess of the required 10 tonne sample.

The 10 to 12 tonne sample contained minimal oversize was shipped to Lakefield Research for crushing and screening (Appendix V). Sample crushing was by to - 4 mm with the oversize recirculated for crushing. A second screening removed the +1 mm bagging as product. Fines (-1 mm) were rejected. The mass balance for material produced (table 8.4) does not take into account the 10 to 15% fines incorporated in the product due to moisture in the sample.

Feed material (kg)	product processed (kg)		fines rejected
	bag \# shipped	weight of bag	
6643.0	1	954.5	350.0
	2	1022.7	$(5.3 \mathrm{q})$
	3	1159.0	
	4	1090.0	
	5	1063.6	
	6	1050.0	
	Total	gross 6308.0	net
	6.293 .0		

Table 8.4 Mass balance for the bulk sample obtained from the southwest B block of area as processed and shipped by Lakefield Research
9.0 AREA C

A ridge of consistent high purity anorthosite with little if any primary banding is centred on $7+70 E, 3+75 S$ (figure 6.1). There is extensive outcrop with thin overburden and tree cover, increasing to the southwest.

9.1 MAPPING

The area was mapped from flagged lines established as 25 m intervals perpendicular to $L+20 E$. The area is bounded by a bifurcation and joining of two northeast trending faults, (D4) and/or (D7), observable in part as prominent airphoto lineations (figure 4.l). The northeast termination of the area may also be the north-south structural zone identified in the middle of the grid (figures 4.1 and 6.1).

The area between the two faults is approximately 35 m wide and 120 m long with at least 15 m of relief. The anorthosite is massive,
primary layering is not been observed. Very rare quartz is observed adjacent to the interpreted fault boundaries. The mechanisms responsible for the fault boundaries also formed very prominent cliffs parallel to the recognized (D4) and/or (D7) fabrics. The northwest outcrop boundary clearly dips southeasterly indicating normal faulting relative to regional compression in the Kapuskasing structure and tentatively correlated with (D7).

The convergence of the two bounding structures northeast and southwest boundaries indicates very little additional strike potential (figure 6.1).

9.2 SAMPLE ANALYSIS

The six samples analyzed from area C have higher than average $A l_{2} O_{3}$, comparable to results from areas A and B. 4 of the 6 samples had below average $\mathrm{Fe}_{2} \mathrm{O}_{3}$ contents while the remaining 2 had higher than average (figure 8.4). The results are very favourable and would warrant further exploration provided the limited size of the area is acceptable.

10.0 AREA D

The area identified as Area D is located at $10+60 \mathrm{E}, 9+18 \mathrm{~N}$ to $9+55 \mathrm{~N}$ and $12+20 \mathrm{E}, 10+40 \mathrm{~N}$ to $11+20 \mathrm{~N}$. Unlike all other areas considered as favourable, anorthosite horizons, area D is not a continuous uninterrupted bedrock unit. It is also the only area considered which lies east of the major north-south structural zone extending through the middle of the grid. In this area, the primary layering $\left(070^{\circ}\right)$ is at a sufficiently high angle to faulting (040°) such that suitable widths of high purity anorthosite are segmented with relatively short strike lengths.

10.1 MAPPING

Three areas, 25 to 40 m wide, 110 to 70 m long exposures of massive low hornblende anorthosite are preliminarily mapped (figure 6.1, and sampled (figure 8.4).

One exposure is centred on $10+80,9+25 N$, is an isolated dome or low ridge (1.5 m high) of anorthosite rising from the surrounding swampy ground. The good quality anorthosite is variable in composition without clear boundaries defined by primary layering. The western boundary is a topographic north-south break, part of the major north-south structural break in the centre of the grid. The quality of anorthosite is variable being massive with zones of higher (2 to 3%) hornblende as either disseminated wispy bands or as lines of coarse 12 to 24 mm clots or crystals.

Two other localities are crossed by line $12+00 E$. They are within an area of undulating bedrock surface covered by thin till. Separating the two areas of bedrock exposures is a northeast trending shear located at $10+35 \mathrm{~N} 12+00 \mathrm{E}$.

For both of the possibly acceptable anorthosite areas on $12+00 E$, have north and south boundaries, poorly defined by primary banding. The eastern boundaries are interpreted as northeast trending fault zones (D4) and/or (D7). The western boundaries are part of the north-south structural zone trending through the centre of the grid.

The two $L 12+00 E$ anorthosite exposures are part of dipping anorthosite bands. Sampling was of the more massive anorthosite with an average 1 to 2 \% hornblende, both disseminated and as distinct clots of up to 20 mm , locally up to 5%. These exposures are more variable than areas A. B or C. The two areas may be the same unit only folded. in a large antiform (figure 6.1).

A (D6) fold can be interpreted from primary (D1) layering with each of the two areas of interest on $L 12+00 \mathrm{E}$ found on each of the fold limbs. This assumes the northeast trending (D4) and/or (D7) fault (figure 6.1), forming the 20 m depression between the two areas has minimal displacement. Other northeast trending structures (D4) and/or(D7) form the north and south boundaries of the combined areas containing the possibly good anorthosite. Northwest trending faults are indicated by planes in outcrops but significant offsets have not been recognized. As noted above, the north-south structure is present, forming the western boundaries of the two zones.

10.2 SAMPLE ANALYSES

Ten samples were collected from area D, eight yielded results similar to results from areas A, B and C. These may be under representing the amount of mafic minerals present. Two results yielded higher $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and considered too poor relative to other larger and extensive exposures mapped. The number of samples is too few for statistical evaluation.

11.0 OTHER AREAS

An unaltered sample from any massive or near massive anorthosite exposure on the grid, can, in all likelihood yield good results. Some areas were preliminarily mapped and sampled. They received less attention due to their limited extents.

11.1 LOCATION 8+40 E, 9+75 N

This area is the southeast block of area A (figure 7.1). Outcrop exposure is limited by swampy cover and low relief. The character of the lithologies are similar to the northwest block of area A, while the structural patterns are similar to the southwest block of Area A.

The chemical results are consistent with the Area (figure 8.4) where six samples having lower Fe, O, and two samples having significantly higher $\mathrm{Fe}_{i} \mathrm{O}_{1}$. This confirms the variable amounts of disseminated and 10 mm clots of hornblende visually noted.
11.2 LOCATION $0+00,1+30 \mathrm{~S}$

No sampling and minimal mapping was completed in this area. A large exposure of white sugary anorthosite trends west southwest from $0+00 \mathrm{E}, 1+30 \mathrm{~S}$ for 32 m . The southwest extension of the outcrop is terminated by northeast (D4) and/or (D7) fault. A similar or continuation of this exposure, possibly offset by the northeast trending fault, is immediately west of the claim group.

12.0 RECOMMENDATIONS

Results of this mapping and sampling program must be assessed relative to the products produced by the Purchem process. If the bulk sample material shipped is suitable, then continued work may focus on production preparations and/or expanding a search for better quality material than identified in this study.

The coincidence of suitable structural and stratigraphic areas within the claim group may contain large areas of possibly suitable anorthosite. The limits of areas A and B may be extended by additional trenching, and in the case of area B, geological mapping. Trenching of the known areas should focus on the role of right lateral offsets in displacing the favourable horizons.

12.1 CONTINUED EXPLORATION OF THE CLAIM GROUP

Focus on proving reserves or defining more appropriate areas to mine may be accomplished by:
a) test the lateral continuation of both area A and B (trenching south of the known exposures accounting for right lateral fault offsets). Additional trenching south and west of area B may reveal two parallel zones of interest covered by minimal overburden (tree covered) 250 m from the established logging road.
b) extend the depth of suitable anorthosite in areas A and B by deeper percussion drilling or diamond drilling. Diamond drilling is the chosen option because the added depth may preclude good sampling; ground water, cross-sample contamination. Diamond drilling would allow recognition of alteration types and primary layering, observations unavailable from percussion drilling.
c) complete additional mapping and sampling with possible trenching and percussion drilling on areas C and possibly D.

12.2 ADDITIONAL AREAS

Additional areas outside of the claim group are:
a) southwest of the cut grid $0+00 \mathrm{E}, 1+20 \mathrm{~s}$ is a massive anorthosite ridge trending 070°, truncated by a major 040° structural zone.
b) west of the fault zone cited in a) similar lithologies may be present although continuations across the possibly regional fault is unlikely.
c) setting aud lithologies described as area D may continue to the north and east of area D, off the claim group. In exploring this area, faults at a higher angle to primary layering results in smaller lenses of suitable anorthosite, rather than more laterally continuous zones (ie. areas A, B).
d) apparently similar lithologies with similar chemical composition (Simmons et al. 1980) are reported northeast of the claim block near Lemoine Lake (Riccio 1981)

13.0 REFERENCES CITED

Bursnall J. T., 1990; Deformation sequences in the south-eastern Kapuskasing structural zone, Ivanhoe Lake, Ontario, Canada; in Exposed cross-sections of the continental crust, Salisbury and Fountain ed., Kluwer Academic Publishers, p. 469-484. Card K. D., Percival J. A.. Coe K., 1980; Progress report on the Geological synthesis, Central Superior Province: Current Research Part A. Geol. Surv. Can. Pap. 80-1A, p. 61 -68.

Clowes R. M. Cook F. A.. Green A. G., Keen C. E., Ludden J. N., Percival J. A., Quinlan G. M.. West G. F., 1992; Lithoprobe: new perspectives on crustal evolution, Can J. Earth Sc.. v. 29, P. 1813-1864.

Fountain D. M., Salisbury M. H.. Percival J. A., 1990; Seismic structure of the continental crust based on rock velocity measurements from the Kapuskasing Uplift: J. Geophy. Res., v. 95, p. 1167-1186.

Percival J. A., 1981; Geological evolution of part of the Central Superior Province based on Relationships among the Abitibi and Wawa subprovinces and the Kapuskasing Structural Zone: as unpubl. PhD.. Queen's U., 300p.

Percival J. A., 1981b; Geology of the Kapuskasing Structural Zone in the Chapleau-Foleyet area: Geol. Surv. Can. Open File Report 763. (map), scale $100,000$.

Percival J. A.. Bursnall J. T.. Moser D. E., Shaw D. M.. 1991b; Site survey for the Canadian continental drilling program's pilot project in the Kapuskasing Uplift: Ont. Geol. Surv. Open File Report 5790.

Riccio L.. 1981; Geology of the north-eastern portion of the Shawmere Anorthosite Complex, District of Sudbury: Ont. Geol. Surv. Open File Report 5338, 101 p. (including maps P 2383 and 2384).

Simmons E. C., Hanson G. N., and Lumbers S. B. 1980; Geochemistry of the Shawmere Anorthosite Complex, Kapuskasing Structural Zone, Ontario: Precambrian Research, v. 11, p, 43-71.

Thurston P. C., Siragusa G. M., Sage R., 1977. Geology of the Chapleau Area, District of Algoma, Sudbury, and Cochrane; Ont. Div. Mines, G. R. 157. 293p.

Veldhuyzen H., 1993a, Site evaluation and market testing of Ontario anorthosite deposits, Anorthosite sampling and mapping, Northeastern Ontario: in Summary Report, 1992-1993, Northern Ontario Development Minerals (Wood, Shannon, Owsiacki and Walters ed.), publ. Energy Mines and Resources Canada and Ontario Ministry of Northern Development and Mines, p. 150-154.

Veldhuyzen H., 1993b, Calcic anorthosite: Multiple market potential, chemicals, coatings, fillers, and cement: in Industrial Minerals 1993, October 19-20, 1993 Toronto, Canada, by Blendon Information Services, 35p.

Veldhuyzen H., 1994, Anorthosite testing for leach extraction of aluminium chemicals and by-product residue; (abstract), Annual meeting of CIMM, Toronto Canada,

West G. F. and Ernst R. E., 1991. Evidence from areomagnetics on the configuration of Matachewan dykes and the tectonic evolution of the Kapuskasing structural zone, Ontario, Canada; Can. J. Earth Sc.. v. 28, p. 1797-1811.

CERTIFICATE

I, Hendrix Veldhuyzen do nearby certify that:

1) I am a consulting geologist and reside in the Borough of East York.
2) I am a graduate of Queen's University, B.Sc.. Geological Sciences, subject of specialization, and McGill University, M.Sc. Geological Sciences:
3) I have practised my profession full-time since 1979;
4) I am, and have been a registered Professional geologist with the Association of Professional Engineers and Geoscientists of Newfoundland beginning 1991.
5) This report is based only on fieldwork carried out or supervised by myself during the period September th to October 8th, 1994
6) I have not, nor do I expect any financial interest from Purchem Limited or associated companies beyond professional and contract service fees

Respectfully submitted

dated

ICAL	SER	RVICES				1270 FEWSTER DRIVE, UNIT 3 MISSISSAUCA.ONTARIO L4W-IA4 PHONE : (905)602-8236 FAX : (905)206-0513 I.C.A.P. TOTAL OXIDE ANALYSIS blthlue metaborate Fusion										1			1 REPORT NO. Paye No. File No. Dete			```M4083 1 ot 2 M4083 OCT-28-1994```	
8102	${ }^{\text {A1 } 203}$	Pe $203 \quad \mathrm{CsO}$	${ }_{x}^{\mathrm{mgo}}$	Hazo	$x 20$	${ }_{8}^{202}$	MnO $\$$	P205	$\begin{aligned} & \text { Be } \\ & \text { ppo } \end{aligned}$	$\begin{aligned} & \mathbf{s r} \\ & \text { pp: } \end{aligned}$		$\begin{aligned} & \text { ppr } \end{aligned}$	$\begin{aligned} & y \\ & \text { ppa } \end{aligned}$	$\begin{aligned} & \text { sc } c \\ & \text { ppm } \end{aligned}$	$\begin{aligned} & \text { Mb } \\ & \text { ppa } \end{aligned}$	$\begin{aligned} & \text { Bo } \\ & \text { ppa } \end{aligned}$	$\begin{aligned} & \text { N1 } \\ & \text { ppm } \end{aligned}$	$\begin{aligned} & \mathbf{c r}_{\mathrm{pp}} \end{aligned}$	$\begin{aligned} & \text { cu } \\ & \text { ppab } \end{aligned}$	pp®	$\begin{aligned} & \text { co } \\ & \text { PpB } \end{aligned}$	${\underset{p p n}{2 n}}^{2 n}$	loi total
48.54	31.35	1.2615 .54	0.38	2.46	0.08	0.06	0.01	0.12	30	190		10	,		(30	'1	10	490	' 5	20		,	0.79100 .59
47.63	30.64	1.1915 .67	0.34	2.43	0.04	0.06	0.01	0.10	20	190		20	- 2		- 30	$\cdot 1$	15	400	- 5	25			1.0398 .93
67.29	30.63	1.1515 .74	0.48	2.28	0.06	0.06	0.02	0.10	20	190		10	-2	2	- 30	-1	15	205	15	25	'5	- 5	0.7298 .51
47.22	31.20	1.1015 .43	0.32	2.37	0.04	0.04	0.01	0.10	40	180		10	' 2	2	-30	-1	10	335	5	15	'5	- 5	0.4998 .40
47.65	30.91	1.0915 .27	0.32	2.36	0.04	0.04	0.01	0.10	30	180		10	2	2	، 30	${ }^{1}$	15	575	5	25	${ }^{5}$	10	0.57 98.38
47.35	30.31	1.2615 .65	0.34	2.32	0.06	0.05	0.01	0.10	30	180		10	- 2	2	-30	'1	10	390	[5	20	' 5	¢ 5	1.1698 .61
47.38	31.31	1.2715 .17	0.36	2.56	0.04	0.06	0.02	0.12	30	210		10	- 2		- 30	1		630	10	20			0.8599 .13
47.37	${ }^{31.38}$	1.3415 .30	0.45	2.43	0.10	0.08	0.02	0.10	30	190		10	< 2	3	- 30	-1	20	180	' 5	20	, 5	10	0.5199 .08
47.41	30.87	1.3515 .50	0.44	2.39	0.06	0.08	0.02	0.12	30	190		10	- 2	2	' 30	- 1	20	250	- 5	20	15	-5	0.4698 .70
47.59	31.60	1.2625 .99	0.47	2.58	0.12	0.08	0.02	0.10	40	230		10	< 2	2	- 30	-1	[5	235	' 5	20	' 5	5	0.58100 .39
. 30	31.58	1.3515 .47	0.43	2.40	0.04	0.07	0.02	0.10	30	200		10	<2	3	- 30	<2	' 5	39	5	30	' 5	- 5	1.2299 .97
47.29	31.60	1.2715 .82	0.42	2.46	0.06	0.09	0.02	0.10	30	210		10	-2	3	-30	1	5	280	5	20	5	15	1.15100.29
47.20	32.10	1.2216 .49	0.49	2.50	0.08	0.06	0.02	0.10	30	210		10	-2	2	-30	- 1	15	120	's	25	'5	5	0.49100 .73
47.20	31.18	2.2715 .64	0.45	2.49	0.08	0.08	0.02	0.10	30	200		10	-2	2	- 30	< 1	5	150	5	15	15	[5	0.8799 .35
47.58	31.73	1.3216 .22	0.43	2.46	0.06	0.08	0.02	0.10	30	210			-2	2		,	10	335	, 3	20	${ }^{5}$	15	0.83100 .83
47.34	31.18	1.3515 .99	0.50	2.47	0.04	0.08	0.01	0.10	20	210		10	- 2	2	- 30	12	10	345	5	30	- 5	15	0.8399 .87
47.17	32.14	1.4015 .94	0.50	2.57	0.06	0.08	0.02	0.10	20	220		10	- 2		-30	- 1	10	365	5	20	'5	's	0.70100 .69
47.44	31.70	1.2816 .24	0.46	2.53	0.06	0.08	0.02	0.10	30	220		10	- 2	2	(30	12	[5	215	- 5	15	[5	- 5	0.39100 .32
47.56	31.95	1.2416 .21	0.47	2.47	0.08	0.09	0.01	0.10	30	210		10	- 2	3	-30	- 1	15	140	5	20	< 5	15	0.50100 .67
47.	31.65	1.5315 .72	0.51	2.45	0.08	0.09	0.02	0.12	40	190		10	-2	2	- 30	1	10	305	5	25	- 5	15	0.45100 .10
47.32	32.36	1.4216 .11	0.52	2.51	0.08	0.08	0.02	0.10	30	200		10	-2	2	, 30	[1	5	295	5	20	5	5	0.4499 .94
46.45	31.74	1.4115 .87	0.52	2.55	0.06	0.07	0.02	0.10	30	220		10	- 2	3	- 30	- 1	20	270	5	25	- 5	10	0.7499 .52
46.20	31.45	1.2215 .71	0.44	2.48	0.06	0.08	0.02	0.10	30	200		10	-2	2	- 30	-1	15	265	5	15	-5	15	1.1798 .93
46.20	29.25	1.7015 .41	0.58	2.58	0.30	0.15	0.03	0.12	∞	220.		10	${ }^{2}$	2	- 30	1	25	230	5	20	- 5	5	1.7797 .96
70	29.53	1.4415 .43	0.60	2.54	0.36	0.10	0.03	0.10	30	220		10	-2	2	30	1	20	230	0	25	- 5	10	3.22100.06
46.68	29.50	1.3415 .02	0.66	2.98	0.32	0.25	0.02	0.14	20	230		10	-2	2	- 30	1	c 5	170	15	25	-5	5	3.94100 .86
46.35	29.89	2.3615 .18	0.50	2.64	0.18	0.11	0.02	0.12	30	240		10	-2	2	- 30	1	10	220	15	25	- 5	5	2.30 98.65
47.25	31.95	1.1516 .14	0.45	2.51	0.06	0.04	0.01	0.12	30	220		10	- 2	2	- 30	-1	15	290	10	20	- 5	5	0.55100. 22
46.76	32.41	3.0615 .91	0.45	2.53	0.06	0.06	0.01	0.10	40	210		10	${ }^{2}$	2	- 30	-1	- 5	145	10	15	-5	5	1.35100.69
49.54	31.04	1.0115 .10	0.43	2.54	0.06	0.04	0.02	0.10	50	220		10	, 2	1	- 30	-1	20	195	10	35	5	15	0.83100 .72
47.79	30.42	1.3615 .20	0.43	2.44	0.06	0.07	0.02	0.10	20	200	,	10	- 2	2	- 30	[1	20	180	< 5	25	, 5	cs	1.3899 .25
47.50	31.41	1.3215 .47	0.36	2.57	0.12	0.08	0.01	0.10	20	200		10	${ }^{1} 2$	2	-30	- 1	20	290	- 5	15	- 5	¢ 5	1.76100.70
47.16	30.96	1.1915 .20	0.37	2.40	10.02	0.06	0.01	0.10	60	200		10	- 2	2	- 30	-1	[5	230	5	15	, 5	5	0.5398 .00
47.50	33.87	1.2715 .95	0.42	2.42	0.06	0.08	0.01	0.12	20	220		10	- 2	1	-30	- 1	- 5	145	5	25	'5	15	0.95200 .74
\%7.6	30.57	1-288 25.59	0.37	2.37	¢0.02	0.08	0.01	0.10	20	200	1	10	12	2	30	-1	, 5	220	5	20	5	10	1.1399 .4

smaple "

: gandis

SMPLE

LakEfield research
P O. Box 4300, 185 Concession SI., Lukelield. Ontario. KOL 2HO
Phune: $705.652 .2000 \quad$ FAX: 705.652 .6365
H. V. Geological Services
P.O. Box 6105, Stat. A
Toronto, Ontario, M5W IPS

Attn : H. Veldhuyzen
Fax : (416)466-7999
CERTIFICATE OF ANALYSIS

No. Sample 10	$\begin{array}{r} \text { sio2 } \\ \% \end{array}$	$\begin{array}{r} \text { A1203 } \\ \% \end{array}$	$\begin{array}{r} \mathrm{fe} 203 \\ \% \end{array}$	$\begin{array}{r} \mathrm{HgO}^{2} \\ \mathbf{x} \end{array}$	$\begin{array}{r} \text { CaO } \\ \mathbf{x} \end{array}$	$\begin{array}{r} \text { Na2O } \\ \mathbf{x} \end{array}$	$\begin{array}{r} \mathrm{K} 20 \\ \mathbf{x} \end{array}$	102 $\%$	P205	MnO \times	Cr203	LO1	SUM
H. 340.10	47.7	32.0	1.05	0.55	15.6	2.31	0.04	0.08	- 0.01	0.01	< 0.01	0.83	100.2
$2 \begin{array}{llll} \\ & \text { H. } 3410.20\end{array}$	48.3	32.2	1.19	0.51	15.9	2.21	0.03	0.08	- 0.01	0.02	< 0.01	0.77	101.2
$3 \begin{array}{llll} & \mathrm{H} \cdot 34 & 20.30\end{array}$	47.5	32.0	1.10	0.55	15.6	2.26	0.03	0.08	0.02	0.02	< 0.01	1.02	100.2
4 H. 3430.40	46.1	30.7	1.14	0.47	15.0	2.96	0.31	0.10	0.01	0.02	< 0.01	3.26	100.1
$5 \quad \mathrm{H} .3440 .50$	48.3	32.3	1.05	0.44	15.8	2.35	0.03	0.08	< 0.01	0.02	< 0.01	0.85	101.2
6 H. 35000	47.3	31.5	1.22	0.58	15.4	2.42	0.07	0.08	< 0.01	0.02	< 0.01	1.26	99.9
7 H-35 10-20	47.9	31.6	1.10	0.45	15.4	2.40	0.08	0.08	< 0.01	0.01	< 0.01	1.93	100.2
8 H. 35 20-30	47.8	31.2	1.21	0.55	15.3	2.28	0.05	0.07	- 0.01	0.02	< 0.01	0.94	99.4
9 H. 35 30-40	47.6	32.0	1.00	0.47	15.6	2.34	0.05	0.07	< 0.01	0.02	< 0.01	1.22	100.4
$10 \quad \mathrm{H}$-35 40.50	47.2	32.0	1.15	0.56	15.8	2.22	0.02	0.08	0.01	0.02	< 0.01	0.79	99.9
- duplicates ..													
$11 \begin{array}{ll}11 & 3640.50\end{array}$	47.8	32.0	1.04	0.48	15.6	2.34	0.03	0.08	< 0.01	0.01	< 0.01	0.81	100.2

A MEMBER OF IAETL CANADA
Accredited by CAEAL for specific tests registered with the Association

NORMAL	ED WHOLE	Romek				R		$\begin{aligned} & \text { DH } \\ & \text { TR } \end{aligned}$	drall h tiench	${ }^{\text {c.t. }}$	$\begin{aligned} & \text { andy } \\ & \text { ple } \end{aligned}$		$\begin{aligned} & \text { x } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { dul } \\ & \text { dut } \end{aligned}$	$\begin{gathered} \text { catu } \\ \text { cuate } \end{gathered}$
Sumple	lanctan	dupth frum	$\begin{aligned} & \text { Wuthth } \\ & \text { to } \end{aligned}$	らılde	Alcis	Fedu3	Cou	MuO	$\mathrm{Naje}(1)$	NiO	TıUE	Mnu	P205	LO.	TOIAL
15936	пH-	9.09	13.12	48.83	30.92	1.32	15.04	0.44	2.44	0.10	0.07	0.02	0.10	0.75	00
15	UH 2 O (:	18.1،	215 15	16. 30	31.2 m	1.41	15.10	0.4%	2.4!3	0.10	0.0%	0.02	0.12	0.65	00
15?		0.00	1.0 .3	43.30	11.10	1.16	14.96	0.35	2. 21	0.08	0.07	0.01	0.12	0.33	00
15	OH ${ }^{\text {d }}$	3.03	6.015	914.14	30.45	1.17	15. 15	0.35	2.sie?	0.04	0.07	0.0 ?	0.10	0.365	100
15800	DK- 21 ¢	6.06	9.09	48.59	30.97	1.16	15.19	0.34	2.38	0.10	0.07	0.01	0.10	1.OA	100
15801	DH- 21 C	9.09	12.12	48.67	30.54	1.23	15.02	0.42	2.35	0.08	0.09	0.	0.1	1.414	100
15802	OH- 21 C	12.12	15.15	48.97	30.52	1.49	15.30	0.42	2.38	0.06	0.09	0.02	0.08	0.58	100
15803	DH- 22 C	0.00	3.03	49.40	30.68	1.36	15.09	0.36	2.47	0.10	0.07	0.02	0.08	0.36	100
15804	DH- 22 C	3.03	6.06	49.03	31.23	1.26	14.97	0.39	2.49	0.04	0.07	0.02	0.10	0.42	100
15805	DH- 22 C	6.06	9.09	49.30	30.32	1.49	15.40	0.42	2.49	0.06	0.07	0.02	0.10	0.32	100
15806	DH- 22 C	9.09	12.12	48.41	30.92	1.30	15.30	0.42	2.41	0.06	0.00	0.02	0.10	0.9	00
15807	DH- 22 C	12.12	15.15	48.66	30.94	1.34	15.40	0.41	2.38	0.06	0.08	0.01	0.10	0.62	100
15808	DK- 23 C	0.00	3.03	48.18	31.79	1.10	15.62	0.36	2.42	0.06	0.	0.02	0.08	0.34	100
15809	$\mathrm{OH}-23 \mathrm{C}$	3.03	6.06	49.22	30.94	1.15	15.21	0.36	2.44	0.08	0.06	0.01	0.08	0.45	100
15810	DH- 23 C	6.06	9.09	49.11	31.04	1.20	15.05	0.35	2.53	0.08	0.06	0.01	0.08	0.47	100
15	DK- 23 C	9.09	12.12	48.25	31.16	1.25	15.45	0.38	2.45	0.08	0.05	0.0	0.	0.79	100
15812	DH- 23 C	12.12	15.15	47.95	30.97	1.20	15.84	0.34	2.46	0.0	0.	0.	0.10	1.03	100
15813	DH- 24 C	0.00	3.03	48.01	31.10	1.17	15.98	0.49	2.31	0.05	0.	0.	0.	0.72	100
15814	DH- 24 C	3.03	6.06	47.99	31.71	1.20	15.68	0.33	2.41	0.04	0.	0.01	0.10	0.49	100
15815	DH- 24 C	6.06	9.09	48.44	31.42	1.11	15.52	0.33	2.40	0.04	0.04	0.01	0.10	0.57	100
15816	DH- 24	9.09	12.12	48.03	30.74	1.28	15.87	0.34	2.35	0.06	0.05	0.	0.10	1.16	00
15817	DH- 24.	22.12	25.15	47.80	31.59	1.28	15.30	0.36	2.58	0.04	0.06	0.	0.12	0.65	100
15918	DH- 25	0.00	3.03	47.81	31.67	1.35	15.44	0.45	2.45	0.10	0.08	0.	0.10	0.51	100
15819	DK- 25	3.03	6.06	48.04	31.29	1.37	15.71	0.45	2.42	0.06	0.08	0.02	0.12	0.46	100
15820	DH- 25	6.06	9.09	47.40	31.48	1.26	15.93	0.47	2.57	0.12	0.08	0.02	0.10	0.58	100
15821	DH- 25	9.09	12.12	47.31	31.59	1.35	15.47	0.43	2.40	0.04	0.07	0.02	0.10	1.22	100
15822	DH- 25	12.12	15.15	47.15	31.51	1.27	15.77	0.42	2.45	0.06	0.09	0.02	0.10	1.15	100
15823	DH- 30 A	0.00	3.03	46.86	31.87	1.21	16.37	0.49	2.48	0.08	0.06	0.02	0.10	0.49	100
15834	DH- 30 A	3.03	6.06	47.51	31.39	1.28	15.74	0.45	2.51	0.08	0.08	0.02	0.10	0.87	100
15825	DH- 30 A	6.06	9.09	47.19	31.47	1.31	16.09	0.43	2.44	0.06	0.08	0.02	0.10	0.83	100
15826	DK- 30 A	9.09	12.12	47.40	31.22	1.35	16.01	0.50	2.47	0.04	0.08	0.01	0.10	0.83	100
15827	$\mathrm{DH}-30 \mathrm{~A}$	12.12	15.15	46.84	31.92	1.35	15.83	0.50	2.55	0.06	0.08	0.02	0.10	0.7	100
15828	Dr- 31 A	0.00	3.03	47.29	31.60	1.28	16.19	0.46	2.52	0.06	0.08	0.02	0.10	0.39	100
15829	$\mathrm{DH}-31 \mathrm{~A}$	3.03	6.06	47.24	31.74	1.23	16.10	0.47	2.45	0.08	0.09	0.01	0.10	0.5	100
15830	DK- 31 A	6.06	9.09	47.43	31.62	1.53	15.70	0.51	2.45	0.08	0.09	0.02	0.12	0.45	100
15831	OH- 31 A	9.09	12.12	47.35	31.39	1.42	16.12	0.52	2.51	0.00	0.08	0.02	0.10	0.44	100
15832	DH- 31 A	12.12	15.15	46.68	31.89	1.42	15.95	0.52	2.55	0.06	0.07	0.02	0.10	0.74	100
15833	DH- 32 A	0.00	3.03	46.71	31.79	1.23	15.88	0.44	2.51	0.06	0.08	0.02	0.10	1.17	100
15834	DH- 32 A	3.03	6.06	47.18	29.67	1.74	15.74	0.59	2.63	0.20	0.15	0.03	0.12	1.77	100
15835	DH- 32 A	6.06	9.09	46.67	29.51	1.44	15.42	0.60	2.54	0.36	0.10	0.03	0.10	3.22	100
15835	DK- 32 A	9.09	12.12	46.27	29.24	1.33	14.89	0.65	2.95	0.32	0.25	0.02	0.14	3.94	100
15837	DH- 32 A	12.12	15.15	47.00	30.31	1.38	15.39	0.51	2.68	0.18	0.11	0.02	0.12	2.3	100
15838	DH- 33 A	0.00	3.03	47.15	31.88	1.15	16.10	0.45	2.50	0.06	0.04	0.01	0.12	0.55	100
15839	OH- 33 A	3.03	6.06	46.44	32.18	1.05	15.80	0.45	2.51	0.06	0.06	0.01	0.10	1.35	100
15840	DH- 33 A	6.05	9.09	49.18	30.82	1.00	14.99	0.43	2.52	0.06	0.04	0.02	0.10	0.83	100

I
X－XRF duplicate
$d-1 C P$ duplicate

TOTAL
M
品

行可可
00000
 DH－drill hole cuttings
TR－tranch rock sample

00°

MgO

옹ㅇㅇㅇ

M M M M M

씄

으얘붕
禺品品

9

$\rightarrow \rightarrow$

OOOOO

모으옹
000°
104090
0000°
min
0000
0000
古莫古号品
－0000
承苛思 Munin

Nmum囟 $00^{\circ 00}$

00000
Monmm
ヘルルルヘ
 $00^{\circ} 0^{\circ}$

＂品呙品

ロ～ヘロロロ
のヘvime

 onnom

く氏く๔氏
呙思思思
妾各吉咅咅
15956
 $\rightarrow-1$
－ 88988 88888

우움뭄
888 0
0
0
0
0
0
90900
00000

FNN N N
0
0
붕믐
－0000 000

今0080
人̂ộō

$00^{\circ} 0^{\circ}$

0000°

동응

MロN品

以
MMM
MM』

0000000000

$n \rightarrow 0$
0
0

10

$$
\underset{\boldsymbol{0}}{\mathbf{0}}
$$

15881
5882
15893
x－XRF duplicate

$0 \dot{0} 000$

눙ㅁㅁㅁ웅웅

©
00000°
－0000

～unininini

－0000
00000
ヘ̣

NDRMALIZED WHOI．E ROCK CHEMCIAL DATA
Sample location distance

$$
\begin{aligned}
& 5 \\
& 0 \\
& 0
\end{aligned}
$$

9
n
n
n
ロロロロロ
 5891
5892
5893
5894
5895
15896
5897
15898
15899
15900

15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
8

음

o

品析

ตñ M M

O
4.4

电电吅电
1
0
10
0
0
10
－0．0
0 －
？

$\stackrel{n}{7}$

$$
\begin{aligned}
& \text { 4.4.64 }
\end{aligned}
$$

O
움
88888
으음뭄

$00^{\circ} 00^{\circ}$

： 0 웅

\checkmark

óo
0
ロロロロロロ

우ㅇㅜㅔ쑤웅
気等男品
00 oio ocióo
0000

un
$+\quad+$
$+\quad+$
0 un

いいいいい
 $\operatorname{ngn} \pi$

 $\boldsymbol{\operatorname { c o n }} \boldsymbol{\operatorname { c o n }}$

NORMALIZED WH		ROCK CHEMCIAL			- MAJOR ELEMENTS			DK - drill hole cuttinge TR - trench rock sample					$\begin{aligned} & X-X R F \\ & d-I C P \end{aligned}$		
		fro		S102	Al 203	Fe203	CaO	MgO	Na2O	K20	T102	MnO	P205	LOI	TOTAL
15926	rock	$53+50 \mathrm{E}$	E 7+82	48.30	31.02	1.54	15.70	0.58	2.36	0.06		0.02	0.08		
15927	rock	S 3+52 E	E $8+00$	47.73	31.58	1.51	15.59	0.56	2.37	0.04	0.10	0.02	0	0.25 0.38	100 100
15928	rock	$53+79 \mathrm{E}$	E 7+82	48.21	31.73	0.93	15.89	0.29	2.29	0.06	0.04	0.01	0.10	0.46	100
15929	rack	$53+16$ E	E $4+05$	49.79	30.70	1.14	15.00	0.34	2.30	0.06	0.06	0.02	0.10	0.52	100
15930	rock	$53+75 \mathrm{E}$	E 7+50	48.66	31.75	0.82	15.68	0.34	2.16	0.04	0.04	$\leqslant .01$	0.10	0.43	100
15931	5	N 9+37 E	E 10+7	49.36	30.92	0.96	15.51	0.32	2.41	0.06	0.04	0.01	0.08	0.34	100
15932	cock	N 10+23E	E 11+8	49.2日	30.83	1.07	15.60	0.39	2.24	0.10	0.06	0.01	0.10	0.33	100
15933	rock	N $11+33 \mathrm{E}$	E 12+0	49.07	30.74	1.46	15.06	0.59	2.39	0.08	0.08	0.01	0.10	0.42	100
15934	rock	N 10+42E	E $11+4$	48.07	29.91	1.04	14.52	0.43	2.44	0.08	0.06	0.01	0.10	3.36	100
15935	rock	N 9+29 E	E 10+8	48.43	29.93	2.38	14.83	0.50	2.33	0.08	0.07	0.06	0.10	0.62	100
15936	rock	N 9+4日	E 10+8	49.64	30.51	1.03	15.17	0.30	2.40	0.04	0.06	0.02	0.12	0.7	100
15937	rock	N 11+25E	E 11+7	48.93	29.76	1.53	15.39	0.23	2.25	0.10	0.07	0.03	0.10	1.63	100
15938	rock	N 10+00E	E $12+0$	48.77	31.33	2.30	15.44	0.32	2.30	0.04	0.05	0.02	0.10	0.33	100
15939	rock	N 9+40 E	E 9+80	49.14	31.27	1.18	15.22	0.33	2.21	0.04	0.06	0.01	0.08	0.48	100
15940	rock	N 10+87E	E 21+0	48.74	30.77	1.86	14.23	0.60	2.35	0.06	0.05	0.04	0.10	1.2	100
15941	rock	N E+83 E	7+19	48.89	31.37	1.03	15.05	0.24	2.35	0.06	0.05	0.01	0.08	0.85	100
159	rock	N $\mathrm{N}+40 \mathrm{E}$	E 7+35	49.62	30.65	1.26	14.67	0.28	2.42	0.04	0.13	0.01	0.10	0.65	100
15943	rock	N $\mathrm{N}+20 \mathrm{E}$	E 7+20	49.01	30.63	1.55	15.19	0.47	2.33	0.06	0.09	0.02	0.10	0.56	100
15944	rock	N 11+17E	E B+72	49.59	30.44	1.09	15.68	0.25	2.37	0.04	0.12	0.01	0.10	0.29	100
15945	rock	$\text { N } 9+32$	E 7+27	43.74	31.50	0.36	14.89	0.03	2.67	0.14	0.05	< . 01	0.10	0.53	100
15946	$I R-A$	0.00		48.57	31.46	1.25	15.30	0.35	2.26	0.06	0.07	0.01	0.10	0.6	100
15947	$T R=A$	4.00		48.67	28.67	3.25	15.67	0.71	2.03	0.10	0.10	0.03	0.10	0.86	100
15948	IR - A	11.80		49.34	31.07	0.99	15.14	0.25	2.50	0.04	0.05	0.01	0.09	0.52	100
15949	TR - A	20.60		48.65	31.72	1.43	14.89	0.10	2.40	0.04	0.07	0.02	0.10	0.59	100
15950	IR - A	27.10 from		48.25	31.74	1.33	15.39	0.32	2.40	0.02	0.07	0.01	0.10	0.34	100
15951	DH- 1 E	0.00	3.03	49.01	31.46	1.13	14.69	0.48	2.55	0.10	0.05	0.02	0.12	0.4	100
15958	DH- 1 E	3.03	6.06	48.23	31.93	1.17	15.20	0.43	2.32	0.14	0.06	0.01	0.10	0.42	100
15953	OH- 1 E	6.06	7.88	47.98	29.77	2.27	14.26	2.40	2.51	0.08	0.06	0.03	0.10	0.53	100
15954	DK- 2 E	0.00	3.03	48.33	31.75	1.27	15.10	0.50	2.39	0.06	0.07	0.01	0.10	0.44	100
15955	DH- 2 E	3.03	6.06	47.35	32.84	1.28	15.29	0.41	2.27	0.06	0.06	0.03	0.12	0.3	100
15956	DK- $\mathrm{OH}^{\text {E }}$	6.06	9.09	48.15	29.56	2.30	14.44	2.08	2.43	0.10	0.11	0.03	0.10	0.71	100
15957	OH- 2 E	9.091	12.12	49.31	30.62	1.36	14.89	0.61	2.59	0.04	0.07	0.02	0.10	0.41	100
15958	DHO 2 E	12.121	15.15	49.67	30.35	1.08	14.46	0.43	2.64	0.08	0.07	0.01	0.10	0.92	100
15959	OH- 3 E	0.00	3.03	48.07	31.90	1.12	15.56	0.40	2.27	0.08	0.06	0.01	0.12	0.43	100
15980	DK- 3 E	3.03	6.06	47.93	32.05	1.04	15.37	0.35	2.42	0.04	0.05	0.01	0.10	0.63	100
15961	DH- 3 E	6.06	9.09	48.10	29.47	2.45	14.38	2.08	2.41	0.10	0.11	0.03	0.10	0.8	100
15962	DH- 3 E	9.091	10.61	48.70	30.53	1.40	14.75	1.01	2.56	0.06	0.07	0.02	0.10	0.01	100
15963	DH- 4 E	0.00	3.03	47.76	32.09	1.14	15.34	0.40	2.40	0.10	0.06	0.01	0.12	0.6	100
15964	DH- ${ }^{4} \mathrm{E}$	3.03	6.06	47.66	31.91	1.01	15.46	0.34	2.24	0.06	0.05	0.01	0.08	1.17	100
15965	DH- 4 E	6.06	9.09	47.68	31.84	1.16	15.45	0.46	2.45	0.10	0.07	0.02	0.10	0.67	100
15966	DK- 5 E	0.00	3.03	47.99	31.57	0.91	14.83	0.37	2.43	0.10	0.05	0.01	0.10	1.62	100
15967	DH- $5 E$	3.03	6.06	47.54	32.07	0.85	15.44	0.30	2.35	0.12	0.04	< . 01	0.10	2.17	100
15968	DH- 5 E	6.06	9.09	48.24	31.43	0.99	15.06	0.39	2.21	0.16	0.07	0.02	0.08	1.35	100
15969	DH- 5 E	9.051	10.30	39.55	18.31	10.54	13.59	5.15	2.95	1.11	2.72	0.18	0.52	5.36	100
15970	DH- 5 E	10.301	11.21	39.99	18.59	10.31	13.72	4.75	3.15	0.98	2.51	0.15	0.52	5.32	100

duplicate results - statistical analysis

家	

DUPI．ICATE RESUITS GIATISTICAI ANALYSIS

Bu ardup averorad dur
$\begin{array}{ll}\text { \％} & \text { はル } \\ 1 & 1 \\ 2 & 2 \\ 1 & 2 \\ 2 & 2 \\ 1 & 2 \\ 1 & 2 \\ 2 & 3 \\ 5 & 2 \\ 2 & 2 \\ 2 & 2\end{array}$
$\begin{array}{ll}\text { \％} & \text { はル } \\ 1 & 1 \\ 2 & 2 \\ 1 & 2 \\ 2 & 2 \\ 1 & 2 \\ 1 & 2 \\ 2 & 3 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2\end{array}$

$$
\begin{array}{r}
\overrightarrow{3} \\
\vdots \\
\vdots \\
3 \\
3
\end{array}
$$

[^0]OOOQngonnun

 0000000000
 $00^{\circ 0} 00^{\circ} 00000^{\circ}$
 0000000000 몯 os dJ

 2 | E |
| :---: |
| $=$ |
| $=$ |

（3） 1
\square

 900
090

D：IPIICAIE REGULTS－STATISTICAL ANAI．YSIS

号	
\％	○000000～～～
$\frac{2}{3}$	$\bigcirc 00^{\circ}$
С	
$=\square$	
	这

$\underset{\mathrm{m}}{\mathrm{~m}} \mathrm{~m}_{\mathrm{m}}^{\mathrm{m}}$	$\begin{array}{r} \mathrm{N}_{1} \\ \operatorname{cr}^{20} \end{array}$			$\mathrm{Cr}^{\mathrm{Cr}}$	dup	aver	$\begin{array}{r} \text { Cu } \\ \text { or } 20 \end{array}$			avar	$\begin{array}{r} u \\ \operatorname{artin} \end{array}$			$\begin{array}{r} 211 \\ 004 \\ \hline 10 \end{array}$	
DH 26 3．03－6．06	<5		ERR	145	205	175	5	＜	5	ERR	25	15	20	＜ 5	
DH $2612.12-15.15$	5		ERR	240	340	290	10	c	5	ERR	15	35	25	5	5
OK 27 6．06－9．09	＜ 5	10	ERR	290	240	265	10	＜	5	ERR	25	20	23	5	5
ок 29 12．12－15．15	＜ 5	5	ERR	300	330	315	<5	＜	5	ERR	20	25	23	5	5
дн 30 3．03－6．06	5	10	日	150	225	188	5	－	5	ERR	15	35	25	＜ 5	
DH 30 12．12－15．15	10	－ 5	ERR	365	395	300	5		5	5	20	20	20	10	10
DH 31 12．12－15．15	20	15	18	270	250	260	＜ 5	く	5	ERR	25	25	25	5	5
叫 32 0．00－3．03	15	10	13	265	240	253	5	＜	5	ERR	15	20	18	5	5
OH 32 6．06－9．09	20	5	13	230	260	245	10	＜	5	ERR	25	20	23	5	5
DM $3312.12-15.15$	20	10	15	290	250	270	＜ 5		5	ERR	15	25	20	5	5
	N_{1}			Cr			Cu				u			$2 n$	
Error	$\begin{aligned} & \text { ICP } \\ & 1 \subset P \end{aligned}$			$\begin{aligned} & \text { ICP to } \\ & \text { ICP } \end{aligned}$			$\begin{aligned} & \text { ICP } t \\ & \text { ICP } \end{aligned}$				$\begin{aligned} & \text { ICP } \\ & \text { ICP } \end{aligned}$			$\begin{aligned} & \operatorname{ICP} \mathrm{t} \\ & \text { ICP } \end{aligned}$	
OH 26 3．03－6．06	ERR			30			ERR				5			ERR	
DH $2612.12-15.15$	ERR			50			ERR				10			0	
DH 27 6．06－9．09	ERR			25			ERR				3			0	
DH $2912.12-15.15$	ERR			15			ERR				3			0	
口K 30 3．03－6．06	3			38			ERR				10			ERR	
DK 30 12．12－15．15	ERR			15			0				0			0	
OH $3112.12-15.15$	3			10			ERR				0			0	
DH 32 0．00－3．03	3			13			ERR				3			0	
DH 32 6．06－9．09	8			15			ERR				3			0	
DH $3312.12-15.15$	5			20			ERR				5			0	
	N_{1}			Cr			${ }_{\square}$				u			2 n	
	$\begin{aligned} & \text { ICP } \\ & \text { ICP } \end{aligned}$			$\begin{aligned} & \text { ICP to } \\ & \text { ICP } \end{aligned}$			$\begin{aligned} & \operatorname{ICP} \\ & \text { ICP } \end{aligned}$				$\begin{aligned} & \text { ICP } \\ & \text { ICP } \end{aligned}$			$\begin{aligned} & \text { ICP } \\ & \text { ICP } \end{aligned}$	
population statıstıcs															
mean arror	ERR			23.0			ERR				4.0			ERR	
vartance	ERR			147.3			ERR				11.5			ERR	
Standard deviation	ERR			12.1			ERR				3.4			ERR	

Appendix V - Letter summary of crushing and screening of bulk sample material
 - completed by Lakefield Research

November 25. 1994

Mr. Hendrix Veldhuyzen
P.O. Box 6105

Station A
Toronto. Ontario
MSW IP

Dear Mr. Veldhuyzen:

Re: LR 4651

This summary letter includes the results of the crushing and screening program conducted at your request. Two bulk samples were crushed, screened. bagged and then shipped on October 12, 1994, to Poland.

The two anorthosite samples "A" (16 tonnes) and "B" (10 tonnes) were received on September 27. 1994. The crushing plant was thoroughly cleaned and set-up to accommodate the crushing and screening of the two separate samples. Figure 1 shows the crushing and screening circuit used. The two samples were crushed on October 3rd and 4th, with shipment on October 12th, via CAN-AM Trucking. The loaded bulk shipping bags were stored under cover of a tarp until they were loaded in the container.

Mr. Don Hains of Hains Technology Associates attended the the crushing of Sample "B" on October 4th, and took with him a 10 kg grab sample recovered from each of the anorthosite samples.

The bulk bags of $-4 \mathrm{~mm}+48$ mesh anorthosite were weighed and moved to storage. The -48 mesh fines were weighed and disposed. Table 1 summarizes the weights of each crushed sample including the fines.

If you have any questions with regard to this project or require additional testwork, please do not hesitate to call.

Yours truly

Dean Rollwagen
Project Leader
DWR:bjs
Enclosures - 2
pc: T. Beg, LR

Inventory of Gross Bag Weight of Crushed Anorthosite ($-4 \mathrm{~mm}+48$ mesh) BAG TARE $=5.5 \mathrm{lb}$.

FIGURE 1 : ANORTHOSITE CRUSHING, SCREENING AND BAGGING FLOWSHEET

Reserve Calculation

 andQuarry Plan Report

Purechem Limted

Anorthosite Claims
Warren Township, Ont.

Anorthosite Reserves.

Initially it was considered that production would start from Area A. However mineralogical testwork has revealed that Area B will be a more suitable place to begin. Apparently the composition of the anorthosite in Area B is considered to be more favorable than that of Area A, and there are no dykes present unlike Area A. Area B requires a minimum amount of work on an access road (probably just putting down some gravel over a length of approximately 150m.) Whereas Area A straddles the main haulage road for lumber trucks and a bypass route for these vehicles will have to be constructed before production from Area A can be considered. This is of course several years "down the road" so to speak. Mapping and shallow rotary air track drilling have revealed the approximate dimensions of the two areas A and B. The drilling was carried out to 15 m . depths but for the purposes of this report, reserves have been extended to 20 m .

Reserves for Area B.

1st bench: average length 133 m . average width 24 m . height 10m. specific gravity 2.765* tonnes $=$ length x width x height x sp.gr. $=139,743$

2nd bench: average length 119 m . average width 24 m . height 10m.
specific gravity 2.765
tonnes $=78,968$

[^1]Total immediate tonnage for Area $B=218,711$
Assume 10\% losses for overburden removal and shear zones, then the net reserves are 196,840 tonnes or approximately 20 years mine life with a production rate of 10,000 tonnes per year.

Potential for Area B could lie at depth as well as to the southwest. Further trenching, mapping and drilling would reveal just how much.

Reserves for Area A
1st bench: average length 273m.
average width 63m.
height 10 m .
specific gravity 2.765
tonnes $=273 \times 63 \times 10 \times 2.765=475,552$
If a second bench is required:

average length	259 m.
average width	49 m.
height $\quad 10 \mathrm{~m}$.	
specific gravity	2.765
tonnes $=$	350,906

for a combined total of 826,458 tonnes or over 80 years of reserves. However, 20% should be deducted for overburden plus leveling of bedrock contact, shear zones and dykes. This would leave a net tonnage of 661,000 or enough for well over 60 years. Again, potential for this zone lies in depth, and for strike extension to the southwest beneath till cover possibly displaced by faults.

By-Pass Road for Area A
Two possible routes are shown on Fig.1, either of which would entail approximately two kilometres of preparation and road building. Alternative route 1 is probably better than route 2 that passes close to but to the east of a swampy area. This road would not be required for about 20 years by which time conditions and requirements could change. Under today's regulations we could expect to receive sone government assistance, perhaps as much as 50% of the costs, for putting in a new road. The McChesney Lumber Company might also be amenable to pay for part of the cost. They have been considering taking out the bend in the road which would result in the selection of one of the two alternatives shown on Fig. 1

Mining

Introduction

The excavation of anorthosite from the designated area will be accomplished in a series of benches of approximately 10 m . in vertical height. The operation will be scheduled or phased according to bench intervals and based on a reduced rate in the initial production year (5000 tonnes) and increasing to a maximum rate of 10,000 tonnes per year in the third year of production.

Reserves for Area B
Production rate:

197,000 tonnes
1st year 5,000 tonnes
2nd year 7,500 tonnes
3rd and
succeeding years 10,000 tonnes
Duration: 20 years mine life.
The preparation of Area B as planned will require the use of tractors and/or backhoes to remove the overburden material and assist in laying down the gravel capping for the access road. The production schedule will utilize a loader-truck operation and a portable crusher.

Before production commences in earnest, a 500 ton bulk sample is required to be mined in 1995 from Area B. After this has been taken, it is recommended to put a decline from the access road to about the middle of the anorthosite body. If the decline starts about 100m. away, by the time the decline reaches the anorthosite the depth will be 10 m . or the bottom of the first bench. From here a crosscut can be driven across the anorthosite for approximately 55 m which will give access to "ore" material in two directions - northeast and southwest (see figures 2 and 3). The initial crosscut, if driven at a width of 8 m , will give sufficient tonnage for the first 2 years of production, i.e.about 12,000 tonnes.

Operational Plan

The proposed operational plan for Area B will involve the mining of two 10 metre benches which gives sufficient tonnage for a 20 year life. Once the decline has been put in and the initial crosscut is driven, production can continue at a uniform rate to the ends of the anorthosite body. Mining will consist of drilling 4 inch diameter holes with a burden of 3 metres. The initial 55 metre width tapers down to 45 m . to the northeast and 25 m . to the southeast.

After blasting, the anorthosite will be crushed on site to 12 inches, then loaded onto trucks for delivery to Foleyet rail station for storage on a concrete pad. This crushed material will be loaded into hopper cars or gondolas for shipment by rail to Cornwall, S.Ontario. It is anticipated that mining at top production (10,000 tonnes) will not require longer than 4 weeks annually.

Mining at Area A, though slated for 20 years in the future, is foreseen to be carried out in a series of terraces at perhaps different heights, advancing south to north, the benches being self-draining, at least initially (see fig.4). Area A will be more difficult to mine than Area B due to the undulating bedrock surface and the presence of included dykes. This latter will have to be removed during the mining process even if it means losing a fair amount of good anorthosite in the process. If the dykes have a vertical attitude, provision could be made to blast the dykes first and remove them as waste.

Fig. 4.
Sketch along trench showing overburden ($1-3 \mathrm{~m}$), undulating bedreck surface and

Scale 1:500 (opprox)

Contract Mining

Details of the project were sent to 9 contract mining companies which were requested for a quotation on a price and delivery basis for the 500 tonne bulk sample and for the annual production of 10,000 tonnes. The contractors were informed that they should recognize the long-term nature of the project (at least 10 years) and that their prices should reflect this. Four of the 9 companies sent representatives to visit the site in early November. Of the four who made the visit only three submitted quotations and only one of these should be taken seriously. This quotation is the one submitted by Leo Alarie and Sons Limited. The 500 tonne bulk sample was priced at $\$ 37,176.00$ or $\$ 74.35 /$ tonne and annual production of 7,500 tonnes (average?) was costed at $\$ 148,235.00$ or $\$ 19.76 /$ tonne. It is recommended that this contractor be used at least for the 500 tonne bulk sample after which perhaps more accurate costs might be ascertained for mining and handling. Presumably, too, his costs for 10,000 tonnes annually could be expected to be a little lower than those quoted for $\mathbf{7 , 5 0 0}$ tonnes.

One further company was contacted for a quotation but would only supply crushing costs ($\$ 5.00 /$ tonne). They would be interested in quoting on the project after a property visit in May of next year.

Equipment Required

1 Front End Loader
4×35 tonne trucks
1 two inch portable crusher
Air-track drilling equipment for 4 inch holes
Explosives
Pump
Back-hoe and/or tractor for overburden removal.

CERTIFICATE OF QUALIFICATIONS

Peter A.Bevan, residing at 6033 Dunford Drive, Mississauga, Ontario, do certify that:
(1) I am a mining geologist and have been in consulting work serving the mining industry for more than Twelve years.
(2) I am graduate of the Royal School of Mines in London, England, with a B.Sc.degree in Mining Geology in 1960, and have been practising my profession since graduation.
(3) I am registered Professional Engineer in the Province of Ontario.
(4) I have no interest in, nor do I expect to receive any interest, direct or indirect in Purechem Ltd.
(5) The statements contained in this report and the conclusions and recommendations made are based on my review of the data available. I visited the property during the period September 20th-21st, 1994.

Peter A.Bevan, P.Eng

AMORTHOSITE PRO			Intermational himing co inssoc．Lid．					DATE：MOYEMBER 10th 1994		
Folryet			500 TOMME	LuLK SAI	MPL IMG（ 1995）					
M1［HERN OWTARI			bid evaluation							
：－－：：z：：			：：：：：＝	－2：	：：		：ュ：：	：：こ：：	：	
SUB COMTRACTOR	HEAD OFFICE	PHOME	DATE	WOBE	O／BURDEM	ROCK	MINIMG	CRUSHING	BA66ING	total
$\mathrm{M}_{1}{ }^{-}$：	ADDRESS	fax ：	BIO	and	STRIPPIMG	SURFACE	TRAMSPORT	BuLk Sample	LOADING	BASE
		COMtact	RECEIYED	DEmPE		Cleanimg	CRUSHING SITE	－4＊	transport	BID

leg alarie	P． 0 80X 912	PH． $705-268-2106$	HOV	5，651	2，000	1，300	17，500	1，800	8，925
1 JH＇S LTD	Timenins ontario	FAX．268－3511	9т		UNIT PRICE	UWIT PRICE	UWIIT PRICE	UWIT PRICE	UNIT PRICE
	P4M IMO	PAUL KONULAIMY	fax		（54．00．13）	（\＄13．00．	35.00	（\＄3．60．10	\＄17．85．TOMME）

0	1633 rue laylis	PH．819－824－5681	NOV	32，000	0	0	0	00	0	87，500
BOURGEOIS	VAL D＇OR	FAX． 924 －5588	14TH		UNIT PRICE	UHIT PRICE	UHIT PRICE	UNIT PRICE	UHIT PRICE	
	QUEBEC	DON BOURGEOIS	fax		（ 50.00 .183 ）	（50．00． $\mathrm{M2}$ ）	（ 80.00. TOMME）	（50．00．TOMME）	（50．00．TOHME）	
	JgP－5YF									

GEQRF	P． 0 80X 852	PH．105－235－3278	HOT	－	－	－	－	－	－	－
c tractors	Schunacher	FAX．268－3571	8idoing	－	－	－	－	－	－	－
	owtario	STEVE MAKUCH	－	－	－	－	－	－	－	－
	POH 160									
1 CHEX IMC	P． 0 B0X 1394	PH．705－235－3278	Mor	－	－	－	－	－	－	－
	Timains	FAX．268－3571	BIDDIMG	－	－	－	－	－	－	
	ontario	Dave larch	－	－	－	－	－	－	－	－
	P4H 7 C2									
ALEX h InTYRE	P． 0 B0X 517	PH．705－567－6663	mor	11，600	5，800	2，500	11，500	1，300	14，365	53，065
	35 STAIIOM RD	FAX．567－4925	14TH		UnIT PRICE	UnIT PRICE	UMIT PRICE	UHIT PRICE	UHIT PRICE	
	kikland lake	GLEM MHYTE	fax		（\＄11．60．M3	（55．00．M2）	（ 523.00 ．TONHE）	（\＄14．60．TOMME	\＄28．73．TOKME）	

SAMGIVLIAMO DEYELOPHENT	222 HUOT SOUTH PORCUPIME OWT P4M IC2	PH．105－235－5171 FAX．268－3571 JoE SAMGIVLIAMO	$\begin{gathered} 401 \\ \text { B100Ing } \end{gathered}$	－	－	－	－	－	－	－
$日^{-9}$ Egird	P． 0 80X 284	PH． $705-235-3363$	not	－	－	－	－	－	－	－
C STRUCTIOM	PORCUPIME	fax．	BIDOIMG	－	－	－	－	－	－	－
	ontario		－	－	－	－	－	－	－	－
－	POH ICO			－	－	－	－	－	－	－
Rum rasing	2090 RIVERSIOE	PH．105－268－7103	not	－	－	－	－	－	－	－
deyelopuent	timuins owt	fax．	BIDOIUG	－	－	－	－	－	－	－
	P4H 1 C2	ROW RASIMG	－	－	－	－	－	－	－	－
				－	－	－	－	－	－	－
Tangle	106 FIELDIMG RD	PH． $705-682-0649$	MOT	－	－	－	－	－	－	－
［ HIMG	LIVELY OHT	Fax．	BIDDIMG	－	－	－	－	－	－	－
	P3Y 115	DON DUPUIS	－	－	－	－	－	－	－	－
					－	－	－		－	－

$N^{\mu 2 e} E:$ MOT INCL IN BASE BIDS

FED AND PROV TAXES

PERHITS AND APPROYALS

ROYALTIES

ACCESS ROAD MAINTEMAMCE

MATER WASHING OF BEDROCK SURFACE
BONDING

OF THE PROPOSED WINE BIDDERS SIX DECLIMED AMO THREE SUBMITTED FIRH QUOTES

- have exanined the three base bios and reconewd leo alarie isons

E ED OH THE COMPLETEMESS OF THE QYOTATION AMD THE COMPETITIYE PRICE.

Report of Work Conducted After Recording Claim

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used for correspondence. Questions about this collection should be directed to the Provincial Manager, Mining Lands, Ministry of Northern Development and Mines, Fourth Floor, 159 Cedar Sleek. Sudbury. Ontario, P3E 6A5, telephone (705) 670-7264.

Instructions: - Please type or print and submit in duplicate.

- Refer to the Mining Act and Regulations for Recorder.
- A separate copy of this form must be compl
- Technical reports and maps must accompany this fur IIVooor 2.16041 WARREN
- A sketch, showing the claims the work is assigned to, must accompany this form.

Work Performed (Check One Work Group Only)

Total Assessment Work Claimed on the Attached Statement of Costs
Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within $\mathbf{3 0}$ days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

Name	Address
Service Exploration	765 Blvd. Quebec, C.P. 428, Rouyn-Noranda, Quebec J9X 5C4
Alex MacIntyre \& Assoc. Ltd.	35 Station Rd., P.O. Box 517, Kirkland lake, Ont. P2N 3J5

(attach a schedule if necessary)
Certification of Beneficial Interest * See Note No. 1 on reverse side

Certification of Work Report
I certify that I have a personal knowledge of the facts self forth in this Work report, having performed the work or witnessed same during andfor after its completion and annexed report is true.
Name and Address of Person Certifying
Donald H. Mains 517 Wellington St. West, Suite 405, Toronto, Ont. M5V 1 GI
Telephone No.

(416) 971-9783 | Dawn |
| :--- |
| March 22, 1995 |

For Office Use Only

Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from
which claims you wish to priorize the deletion of credits. Please mark (\sim) one of the following:

1. \square Credits are to be cut back starting with the claim listed last, working backwards.
2. \square Credits are to be cut back equally over all claims contained in this report of work.
3. \square Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficiel interest are unrecorded transfors, option agreements, memorandum of agreements, etc., with reapect to the mining claime.

Note 2: If work has been performed on patented or leased land, please complete the following:

I certify that the recorded holder had a beneficial interest in the patented or leased tand al the time the work was performed.	Signature	Date

Ministry of Noathern Development and Mines
Ontario .

Ministere du

Développement du Nord
et des mines

Statement of Costs for Assessment Credit État des coûts aux fins du crédit d'évaluation

Mining Act/Loi sur les mines

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claim(s). Questions about this collection should be directed to the Provincial Manager, Minings Lands, Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, telephone (705) 670-7264.

Les renseignements personnels contenus dans la presente formule sont recueillis en vertu de la Loi sur les mines et serviront a tenir a jour un registre des concessions minieres. Adresser toute quesition sur la collece de ces renseignements au chef provincial des terrains miniers, ministere du Développement du Nord of des Mines, 159, rue Cedar, 4° elage, Sudbury (Ontario) P3E 6A5, tetlephone (705) 670-7264.

2. Indirect Costs/Coats indirects

* * Note: When claiming Rehabilitation work Indirect costs are not allowable as assessment work. Pour le remboursement des travaux de rethabilitation, les coûts indirects ne sont pas admissibles en tant que travaux d'évaluation.

Type	Description	Amount Montant	Totals Total global
Transportation Transport	Type		
Food and Lodging Mourriture ef hébergement	Field crew room \& board	1078.56	1078.56
Mobllikation and Domobillzation Mobilisation et domobilitation	Equip. mob \& dem demob.	3274.20	3274.20
			4352.76
			4352.76
Total Value of Acsosement Credit Velour toteice du erketh (Total of Driect and Allowitle d'traturation indrect costa) (Totel dree colles drocte			26972.01

Hote : Le titulaire enregistré sera tenu de vérifier les dépenses demandées dans le présent état des coutts dans les 30 jours suivant une demande à cot effer. Si la vérification n'est pas effectube, le ministre peut rejeter tout ou une partie des travaux d'évaluation présentés.

Remises pour dêpot

1. Les travaux déposes dans les deux ans suivant lour achèvement sont remboursés à 100% de la valeur totale susmentionnée du crécit d'évaluation.
2. Les travaux déposés trois, quatre ou cinq ans après leur achèvement sont rembourses a 50% de la valeur totale du credit d'évaluation susmentionne. Voir les calculs ci-dessous.

Et qu'à titre de (itudaive enregistre. représentant, poste occupédans he compegnie)
a faire cette attestation.

Minimery of Nerthem Devilapment and Minee

Report of Work Conducted After Recording Clatum

mining Adt

ons：－Pleas type or pirint and submin in dupluatie．
 Pecorder．
－A sepparita copy of int form muat be completed for cech Work Grouph
－Tectmion reports end mape mued aceompenty thla form in duplicien．

Wenington st Nent，Euite 405 Tononto，Onto M6V 1 G1			$\text { (416) } 072-9708$
$\begin{aligned} & \text { 洞 } \\ & \text { supint } \end{aligned}$		Nasten Twpo	$\begin{aligned} & \text { Wramin } \\ & \text { G1219 } \\ & \hline \end{aligned}$

refinnuld（Cheot One Work Group Onty）

Tork eoup	－Typo
anchuteal 8uruoy	
nobumben	
her Aultartied湖	
mop	
nemuent han	1

me sua turvey Compriny Who Perlormed the Work（Clive Name and Addroes of Author of Peport）

Natu	7remem
viee Explomition	
Ex Maghtyre \＆Asooc．Ltd	35 Btation Ra，P．O．Bex S27，Firiland Iake，Ont．P2N 3J5

Mruation of Work Meport

r Onlou Uno Onty

Ministry of Northern Development and Mines

Report of Work Conducted After Recording Claim

Personal information collected on this form is obtalned under the authority of the Mining Act. This information wim be ueed for correapondence. Oueations about this colmection should be directed to the Provinclal Manager, Mining Lends, Milistry of Northem Development and Mines, Fourth Floor, 150 Ceder Street. Sudtury, Omtario, P3E 6A5, telephone (705) 670-7284.

Instructions: - Please type or print and submit in duplicate.

- Refer to the Mining Act and Regulations for requirements of filing assessment work or consult the Mining Recorder.
- A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, showing the claims the work is assigned to, must accompany this form.

| Pecorded Holder(s)
 Purechem Limited | Ciom No. |
| :--- | :--- | :--- |
| 300653 | |

Work Performed (Check One Work Group Only)

Total Assessment Work Claimed on the Attached Statement of Costs $\$ 28,85$ ¹:2 $\quad 3,420$
Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Perfonmed the Work (Give Name and Address of Author of Report)

Name	Addrees
Hendrik Veldhuyzen, P. Geol.	P.O. Box 6105, Station A, Toronto, Ont. M5W 1P5
Peter A. Bevan, P. Eng.	6033 Duford Dr., Mississauga, Ont. L5V 1A8

(attach a schedule II neceseary)
Cortification of Beneficial Interest *See Note No. 1 on reverse side

I certify that at the time the work was performed, the cleims covered in this work report were recorded in the current holder's neme or held under a beneliciel intereat by the current recorded holder.	Deie	

Certification of Work Report

I certity that I have a personal knowledge of the facts set forth in this Work report, having performed the work or witnessed same during andlor after its completion and annexed report is true.
Name and Address of Person Certitying
: Donald H. Hains 517 Wellington St. West, Suite 405, Toronto, Ont. M5V 1G1

[^2]1.Credits are to be cut back starting with the claim listed last, working backwards.
2.Credits are to be cut back equally over all claims contained in this report of work.
3.Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficid Intereat are unrecorded transfers, option agreements, memorandum of agreements, etc., with reapect to the mining clainis.

Note 2: If work has been perfonmed on patented or leased tand, please complete the following:
iAnnisiry of Northern Development and Mines
Ontario
Ministère du
Développement du Nord
of des mines

Statement of Costs for Assessment Credit

État des coûts aux fins du crédit d'évaluation

Mining Act/Loi sur les mines

Personal information collected on this form is obtained under the authority of the Minine: Act. This information will be used to maimain a record and ongoing status of the mining ctaim(s). Questions about this coliection should be directed to the Provincial Manager, Minings Lands. Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, telephone (705) 670-7264.

1. Direct Costs/Couts directs

Type	Description	Amount Montant	Totals Total global
Wages Salaires	Labour Main-d'oeuvre		
	Fiedd Supervision Supervision sur lo terrain		
Contractor's and Consultant's Fees liroits de i'Entreprenener ef de lroxpertconsell	Type Geologist fees	\$13321.5	
	Engineer's fees	\$8,480.00	
			20801.50
Suppolies Used Fournitures untilisdes	Type Air photos, maps \&-drafting	267.50	
			267.50
Equipment Rental Location de matdriel	Typeruck \& field trailer	3456.10	
			3456.10
Total Direct Costs Total des coints directs			25525.10

Mote: The recorded holder will be required to verity expenditures claimed in this statement of costs within 30 days of a request tor verification. It verification is not made, the Minister may reject for assessment work all or pant of the assessment work submited.

Les renseignements personnels contenus dans la presente formule sont recueillis en vertu de la Lol sur tos mines et serviront à tenir a jour un registre des concessions minieres. Adresser toute quesiton sur la colmece de ces renseignements au chel provincial des terrains miniers. ministere du Développement du Nord of des Mines, 159, rue Cedar, 4 étage. Sudtury (Ontario) P3E 6A5, telléphone (705) 670-7264.

2. Indirect Costs/Couts indirects

* Note: When claiming Rehabilitation work Indirect costs are not
allowable as assessment work.
Pour le remboursement des travaux de rehabilitation, les
couts indirects ne sont pas admissibles en tant que travaux d'évaluation.

Type	Description	Amount Montant	Totals Total global
Tranaportation Transport	Trpe		
Food and Lodging Nournture et hebergemem	Field camp exp.	13329.72	3329.72
Mobllization and Demobilization Mobilisation et demobillisation			
Sub Total of Indirect Costs Total partiel des coûts indirects			3329.7 :
Amount Allowable (not greeter then 20\% of Direct Costs) Montant admissible (n 'excedant pes 20% des coûts directs)			3329.72
Total Value of Aseesament Credit (Toten of Driect and Allomable indroct conta)			28854.82

Note : Le tifubaire enregistré sera tenu de vérifier les dépenses demandées dans le présent ótat des coüts dans les 30 jours suivant une demande à cet effel. Si la verification n'est pas effectuée, le ministre peut rejeter lout ou une partie des travaux d'évaluation présentés.

Filing Discounte

1. Work filed within two years of completion is claimed at 100\% of the above Total Value of Assessment Credit.
2. Work filed three, four or five years after completion is claimed at 50\% of the above Totel Value of Assessment Credit. See calculations below:

Totel Value of Assessment Credt	
	$\times 0.50=$

Certification Verifying Statement of Costs

I hereby certify:
that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.
hat as Secretary-Treasurer
I am authorized
o make this certification

Remises pour dépot

1. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à 100% de la valeur totale susmentionnée du crédì d'évaluation.
2. Les travaux déposés trois, quatre ou cinq ans aprés leur achèvement sont remboursés à 50% de la valeur totale du crédit d'évaluation susmentionné. Voir les calculs ci-dessous.

Et qu'à titre de je suis autorisé (titulaire enregistre. representant, poste occupe dans la compagnie)
a faire cette attestation.

Sketch of claims listed on Part A.
or plan of the mining claims) must show the corner posts, witness posts, and $1: 200$ is and the distances between the posts in metres.
topographic features such as lakes. rivers. creeks, ponds, etc. and moments such as hydro lines, highways, railways, pipelines, buildings. etc.
o sample sketch on Part C.

Ministry of
Northern Development and Mines

Personal information colvected on this form is obtained under the authoriky of the Mining Act. This information will be used for correepondence. Questions about this collection should be directed to the Provincial Manager, Mining Lends, Ministry of Northern Developropant and Minee. Fpurth Floor, 150 Gedar Streen. Sudbury. Ontario, P3E 6A5, telephone (705) 670-7284.

Instructions: - Please type or print and submit in duplicate.

- Refer to the Mining Act and Regulations for requirements of filing assessment work or consult the Mining Recorder.
- A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, showing the claims the work is assigned to, must accompany this form.

Recorded Holder(s) Purechem Limited		$\begin{array}{\|c} \text { Cilomint No. } \\ 300653 \end{array}$
517 Wellington St. West, Suite 40	nto, Ont. M5V	\|(416)971-9783
Mining Divaton Porcupine	$\begin{aligned} & \text { Townehip/aree } \\ & \text { Warren Twp. } \end{aligned}$	$\begin{aligned} & \hline \text { Wor G Pimo No. } \\ & \text { G1228 } \end{aligned}$
From: Sept. 26, 1984	To: Oct. 10, 1994	

Work Performud (Check One Work Group Onty)

Work Group		Type
	Geotechnical Survey	RECEIVED
	Physical Work. Including Drilling	- لin 7 -
	Rehabilitation	
	Other Authorized Wors ECTIO	18 ONLY
X	Assays	Crushing \& screening of bulk sample, ICP and XRF analyses of samples
	Assignment from Reserve	

Total Assessment Work Claimed on the Attached Statement of Costs \$18926n59
Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

Name	Address
Lakefield Research	P.O. Box 4300, Lakefield, Ont. K0L 2H0
Xral Labs.	1885 Leslie St., Scarborough, ont.

(attach a schedule If necessery)
Certification of Beneficial Interest * See Note No. 1 on reverse side

I certify that at the time the work was performed, the claims covered in this work		
report were reconded in the current holder's neme or held under a beneficlel intereet		Recorded Holder or Ageont (Signemure)
by the current recorded holder.		

Sertification of Work Report

I certify that I have a personal knowledge of the facts set forth in this Work report, having performed the work or witnessed same during and/or ahter its completion and annexed report is true.
Name and Address of Person Certifying
Donald H. Hains 517 Wellington St. West, Suite 405, Toronto, Ont. M5V 1G1

[^3]

Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to priorize the deletion of credits. Please mark (r) one of the following:

1. \square Credits are to be cut back starting with the claim listed last, working backwards.
2. \square Credits are to be cut back equally over all claims contained in this report of work.
3. \square Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficia interest are unrecorded iransfers, option egreements, memorandum of agreemente, etc., with respect to the mining claims.

Note 2: - If work has been performed on patented or leased land, please complete the following:

Nonthern
Northern Develoument
Ontario and Mints

Ministére du
Développement du Nord
et des mines

Statement of Costs for Assessment Credit
État des coûts aux fins du crédit d'évaluation

Mining Act/Loi sur les mines

Personal information collected on this form is obtained under the authority of the mining Act. This intormation will be used to maintain a record and ongoing status of the mining cisim(s). Ouestions about this collection should be directed to the Provincial Manager, Minings Lands, Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, telephone (705) 670-7264.

Les renseignements personnets contenus dans la presente formule sont recueilis en vertu de la Lol sur les mines et serviront à lentir a jour un registre des concessions minieres. Adresser toute quesiton sur la collece de ces renseignements au chet provincial des terrains miniers, ministere du Développernent du Nord et des Mines, 159, rue Cedar, 4^{6} étage. Sudtury (Ontario) P3E 6A5, teléphone (705) 670-7264.

2. Indirect Costs/Coûts indirects

* Note: When claiming Rehabilitation work Indirect costs are not allowable as assessment work.
Pour le remboursement des travaux de rehabilitation, les coüts indirects ne sonk pas admissibles en tant que travaux d'évaluation.

Note: Le títulaire enregistré sera tenu de vérifier les dépenses demandées dans le présent etat des coits dans les 30 jours suivant une demande à cet effet. Si la veritication n'est pas effectude, le ministre peut rejoter tout ou une partie des travaux d'ëvaluation présentés.

Rombes pour dépot

1. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à $\mathbf{1 0 0 \%}$ de la valeur totale susmentionnée du crédit d'évahuation.
2. Les travaux deposés trois, quatre ou cing ans apres feur achevement som remboursés à 50% de la valeur totale du crécit d'évaluation susmentionnd. Voir los calculs ci-dessous.
Valour lotalo du credit d'veluation
$\times 0,50=$

Attestation de l'état des coots

J'atteste par la présente :
que les montants indiqués sont te plus exact possible of que ces dépenses ont tété engagees pouir effectuer les travaux d'évaluation sur les terrains indiqués dans la formule de rapport de travail cijoint.

Et qu'à titre de
(utulaire enregistré, represemant, poste occupe dans ta compagnie)
a faire cette attestation.
：p Sketch of claims listed on Part A． 1：200 it or plan of the mining claim（s）must show the comer posts．witness posts，and costs and the distances between the posts in metres．
de topographic features such as lakes，rivers．creeks，ponds．etc．and lopments such as hydro lines，highways，railways，pipelines，buildings．etc．
r to sample sketch on Part C．

Ministry of Northern Development and Mines

Ministère du
Développement du Nord et des Mines

Geoscience Approvals Section 933 Ramsey Lake Road
6th Floor
Sudbury, Ontario
P3E 6B5
Telephone: (705) 670-5853
Fax: (705) 670-5863
Our File: 2.16041
Transaction F: W9560.00228
W9560.00229

Mining Recorder
Ministry of Northern Development \& Mines
60 Wilson Avenue
1st floor
Timmins, Ontario
P4N 2S7
Dear Mr. White:
subject: APPROVAL OF ABsEsBMENT WORE CREDITS OM MIMIMG CLATMS 1197441 \& 1197442 IM WARREM TOWABHIP

Assessment credits have been approved as outlined on the attached report of work form. Please note that the associated costs of line-cutting has been removed from the physical work submission and credited to the geological work report W9560.00228. The credits have been approved under Section 12 (Geology) and Section 17
(Assays) of the Mining Act Regulations.
The approval date is June 20, 1995.
If you have any questions regarding this correspondence, please contact Steven Beneteau at (705) 670-5858.

Yours sincerely,
Ron CGolent.

Ron C. Gashinski
Senior Manager, Mining Lands Section
Mining and Land Management Branch
Mines and Minerals Division
SBB/jn
cc: Resident Geologist Timmins, Ontario
\checkmark Assessment Files Library Sudbury, Ontario

June 20, 1995
File: 2.16041
Transaction Ho.: W9560.00228

Claim Value of Assessment Work Done on this Claim

1197441
\$19,710.00
1197442
\$19,710.00
TOTAS
\$39,420.00

June 20, 1995
File: 2.16041
Transaction Ho.: W9560.00229

Claim

1197441
Value of Assessment Work Done on this Claim

1197442
\$ 9,463.00
$\$ 9,463.00$
TOTAL
\$18,926.00

LEGEND					
A_{n-m}	Massive donormor ite	sug	Sugory texture	02	
GibAn	Gabbroic an arshosite	${ }^{\text {carb }}$	earbonote mineral	17	Primary layering，bonding （obliaue vertical）
AnGb	Anortositic atabior	f，m，c．g			Structura，，lithologicall element
Gb	${ }^{9} 9660 \% \%$ Feldspar	t5，md，dk－gy		78	（oblique，vertical）
Gb－b	Banded gabbro	H	hornblende		Feult：$\left\{\begin{array}{l}\text {（observea，oblique）} \\ \text {（inferred vertüli）}\end{array}\right\}$
0．06	Olivine diabase	p＊	Pyroxene		
Db	Diabase	b_{1}	biotite	－	Grid line（system of suts ancy／ines）
Lph	Lamprophyre	mf	mafic minerals	ニニミ	Road
Aph	$\underset{\substack{\text { Aphonitic sitice eus } \\ \text { Copopause white）}}}{\text { Dhase }}$	g	garret		Swamp
dy	Dyke	cz	clinozois site－sca polite	\sim	SWamp
BBZ	Banded Boundory Zone			¢T1	Scarp（hatctaures on dounslope seide）

-

[^0]:
 ：

[^1]: * Specific Gravity of Anorthosite (An.90) is 2.765 Reference:(Rutley's Mineralogy).

[^2]: Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to priorize the deletion of credits. Please mark (r) one of the following:

[^3]: 241 10391)

