RBPORT ON A HLEM/MAGNETIC SURVBY CBNTRAL BELEORD AND

BELEORD, MONTCALM \& NOVA TOWNSHIPS PORCUPINE MINING DIVISION, ONTARIO

Submitted by: R.J. Meikie Rayan Exploration Ltd. \&qmuhis

TABI,F OF Cohrimis:

INTRODUCTIOH.	pacie I
	,
Claill status.	3
REGIONAL GFOLOOGI.	1
PROPERT'i GROLGGY.	1
PREVIOUS HORK.	5
SURVEY PARMIETERS - t.thriciotetilig.	6
- lingiletolityer survfy	6.7.8
- HI,FH SURVEY.	8,9,10
RESULTS - SOUTII RASit REIFOPD	11.1?
- CFATPAI RETAFORD.	13.11.15
CONCJUSLONS f\% RECOMIENINTIONS -CENTRAI, FRELIFORD.	16
- SOUTHI EAST REI,FORD.	17
CERTIFICATF. .	18

FtriJnest

1. focation llap 2. Regional Location lap 3. CJaim location kap n. Regional Geology liap

LIST OF HAPS

APPEHITCFS

Appondi:: A - Apory llas:-llin 11 linrizonlat tinnp Appencia: R - Enn Ommi iv Prolon linguetometor

INTRODUCTION

This report outlines the logistics, results and recommendations based on a HLEM/Magnetometer Survey performed on two properties during Jan-Feb, 1994, in the Belford Township area, Porcupine Mining Division, Timmins, Ontario, for Falconbridge Limited. The work was performed on a contract basis by Rayan Exploration Ltd., Timmins, Ontario.

The purpose of the program was to locate on the ground, several Airborne EM Conductors shown on the O.G.S. AEM Maps 81359, 81362, North Swayze- Montcalm Area, Airborne Electromagnetic Survey and Total Intensity Magnetic Survey.

The Conductors were located on the ground and the results are currently being evaluated with a possible drill program to test them.

LOCATION AND ACCESS

The Central Belford Property consists of 2 claims (32 units) located in the central part of Belford Township, Porcupine Mining Division. The property is approximately 90km north-northwest of the city of Timmins, district of Cochrane, Ontario. More precisely, the centre of the property is at NTS Co-ordinate, 42 B/NB.

The SE Belford Property consists of 2 Block Claims (31 units), straddling the intersection of Belford, Montcalm and Nova Townships, Porcupine Mining Division, Ontario.

The property is approximately 7 km south east of the Central Belford Twp. Property.

Access to both properties was by helicopter chartered from Timmins. A linecutting camp was established on each grid with the geophysical crew accessing both properties from a camp on the Ivanhoe River on the SE Belford property. Summer access can be via the Mallete logging road north west from Timmins to the Groundhog River, north on the river by boat to the mouth of the Ivanhoe River, then west on the Ivanhoe River to the property. However, Lwo waterfalls on the Ivanhoe River necessitate portaging.

CLAIM STATUS

CBNTRAL BELFORD PROPERTY

The Central Belford Property consist of 2 contiguous unpatented Block Mining Claims in Belford Twp., Porcupine Mining Division, Ontario. The claims are held by falconbridge timited. The numbers are as follows:

```
1189252 - 16 units - 256 Ha - Belford Twp.
1189253 - 16 units - 256 Ha - Belford Twp.
```


SE BELFORD PROPERTY

The SE Bel ford Property consists of 2 contiguous, unpatented Block Mining Claims in SE Belford, SW Montcalm Twp. and NE Nova Twp., Porcupine Mining Division, Ontario. The claims are held by Falconbridge limited. The numbers are as follows:

```
1189250 - 15 units - 240 Ha - Belford/Nova Twp.
1189251 - 16 units - 256 Ha - Belford/Montcalm Twp.
```


REGIONAL GBOLOGY

Both properties lie in a small belt of Archean Precambrian, Volcanics which covers parts of Watson, Belford, Nova, Poulett, Montcalm, and Strachan Townships. The belt is comprised of Mafic to Felsic metavolcanics and ultramafics. as well as felsic intrusives. The ultramafic unit in Montcalm Twp. hosts a Nickel deposit.

PROPERTY GEOLOGY

The Central Belford Property is believed to be underlain by mafic and felsic metavolcanics. The entire property is clay and muskeg covered with some drill indicated overburden depths of up to 60 meters. Previous drilling indicates minor amounts of CP, Py, Po, and graphite mineralization. The best reported intersections were 13.5 ft . of $0.1 \% \mathrm{Zn}$ and $<0.1 \% \mathrm{Cu}$. Another hole intersected 20 ft . of $0.02 \% \mathrm{Cu}$ and $0.02 \% \mathrm{zn}$, with both being on a Mafic/Felsic contact.

The SE Relford Property is believed to be underlain by mafic and felsic metavolcanics, with ultramafics in the southern part and northeast part of the property. The property is covered by clay and muskeg with overburden depth of at least 40 meters. Previous drilling intersected minor amounts of Gp, Sp, Po, Py, and Gf.

Both properties have a favourable environment for VMS Type Deposits.

PREVIOUS WORK

CENTRAL BELEORD PROPFRTY

SE BELLFORD PROPERTY

1964-66 - Area Hines -	ground EH/Mag
-	4 DDH
-	holes intersected contact between Felsic
	$\&$ Mafic volcanics
	Cpy and Zn in 3 holes

SURVEY PARAMBTERS

LINECUTHING

A total of 122 km of grid lines were cut, 61 km on the Central Belford Property and 61 km on the SE Belford Property. The Baselines and Tielines were run at 090 degrees TN with cross-lines spaced 100 m apart running at 180 degrees TN. A picket interval of 20m was used. Metal tags were attached to the pickets with the line and station co-ordinates.

The linecutting was sub contracted to Native Exploration Services, Chibougamou, P.Q. The cutting was done between Jan 15/94 - Feb. 9/94.

IINGNETOMETER SURVEY

A total of 103 km of Proton Total Field Magnetometer Survey was carried out with 52 km on the Central Belford Property and 51 km on the SE Belford Property. The following is a brief description of the theory and survey parameters used:

MAGNETOMER SURVEY

An EDA Omni Plus Proton Precession magnetometer was used to carry out the magnetometer survey. The instrument is synchronized with an EDA recording base station to help eliminate magnetic diurnal variation. This should ensure an accuracy of less than 10 Nt.

The Proton Precession method involves energizing a wire coil immersed in a hydrocarbon fluid. This causes the protons in the proton rich fluid to spin or precess simulating spinning magnetic dipoles. When the current is removed the protons precess about the direction of the earth's magnetic field, generating a signal in the same coil which is proportional to the total magnetic field intensity. In this way, the horizontal gradient of the earth's magnetic field can be measured and plotted in plan form with values of equal intensity joined to form a contour map. This presentation is useful in correlating with other data sets to aid in structural interpretation. Individual magnetic responses can be interpreted for dip, depth and width estimates after profiling the data.

The following parameters were employed for the survey:

Instrument - EDA Omni Plus Proton Precession Magnetometer
Station Interval -20 m
$\begin{aligned} & \text { Line Interval }-100 \mathrm{~m} \\ & \text { Diurnal Correction Method - EDA Recording Base Station } \\ & \text { Data Presentation }- \text { Magnetic Data Posting \& Contours } \\ &- \text { Map No.1, Central Belford Property } \\ &- \text { Map No. } 4, \text { SE Belford Property } \\ &-1: 5000 \text { scale } \\ &- \text { Contour interval }=20 \text { nano-teslas } \\ &- \text { Datum subtracted for plotting }=57000 n T\end{aligned}$

HLEM SURVEY
A total of 103 km of HLEM Survey was carried out with $\mathbf{5} \mathbf{2 k m}$ on the Central Belford Property and 51 km on the SE Belford Property. A coil separation of 200 m was used, reading 444 and 1777 Hz frequencies at a 20 m interval. The following is a brief description of the theory and survey parameters used:

HORIZONTAL LOOP EM SURVEY

The Horizontal Loop EM survey was carried out with an Apex Max-Min II instrument. These surveys are commonly called "ßaxMin" surveys in recent times.

The Max-Min II instrument can operate at five frequencies (3555HZ, $1777 \mathrm{HZ}, 888 \mathrm{HZ}, 444 \mathrm{HZ}, 222 \mathrm{HZ})$, and is capable of coil separations from 25 meters to 200 meters. Although it can be used in the vertical loop mode as well as minimum coupled, it is most often used in the Maximum coupled, Co-Planer mode which is in effect a Horizontal Loop Electromagnetic Survey.

The instrument records the "In-Phase" and "Out-of-Phase" components of the anomalous resultant field from a conductor as a percentage of the primary field strength. Both components are used in the interpretation of the results. Generally, the larger the ratio of peak negative responses between In-Phase and Out-of-Phase, the higher the conductivity of the anomaly. A ratio of $1: 1$ is considered a medium conductor.

The purpose of reading more than one frequency is to obtain more information about the conductor itself as well as the conductivity of the overburden etc. The higher frequencies will respond to weaker conductive features such as faults, conductive overburden etc. As a result the signal from these frequencies can attenuate very quickly, possibly not penetrating to the bedrock at all. The lower frequencies having a longer wavelength tend to penetrate deeper and generally only respond to anomalies with a higher order of conductance, Thus as with most geophysical techniques it is a trade off as to depth of penetration vs. conductance threshold detectable. The use of multi frequency surveys helps to alleviate this problem at a minimal extracost.

The Max-Min survey was carried out using an Apex Max-Min II instrument reading 1777 Hz , and 444 HZ with a constant coil spacing of 200 meters. The Maximum Coupled mode was employed with the coils co-planer. A reading interval of 20 meters was used. Because of the very flat surface topography, no slope or topographic corrections were necessary.

The Max-lin data was recorded manually and entered in to an XYZ format using Watfile. The XYZ files were processed using Geopac software. Plotting was done on a pen plotter. A plan scale of 1:5000 was chosen with a profile scale of $1 \mathrm{~cm}=10 \%$ for the 444 Hz maps and $1 \mathrm{~cm}=20 \%$ for the 1777 Hz . The results are presented on maps 1 and 3 in the back of this report.

RESULTS

SOUTH EAST BELLEORD PROPBRTY

The HLEM survey outlined several EM conductors labelled A B C etc. on the HLEM - 1777 Hz and HLEM - 444 Hz maps. The conductors appear to correlate well with those shown on OGS map 8136 - North Swayze - Montcalm Area AEM Survey.

The Magnetometer survey outlined a $N-S$ dike running approximately along L1200W which correlates with the Airborne Nagnetometer results. Also, the southern part of the grid and the NE corner have a higher magnetic susceptibility which correlates with an Ultramafic unit shown on government maps. A similar E-NE striking may feature is outlined running parallel to and 60 m north of conductor B which is the strongest conductor on the grid. This mag feature is interpreted to lie on or slightly north of the contact between mafic volcanics to the north and felsic volcanic to the south.

The EM conductors are individually described below:

CONDUCTOR A/A'

- weak conductor running from L12E/1680N to 19E/1940N
- parallel and 100 m south of the Ivanhoe River
- on south flank of a mag low
- coincident with AEM conductor 72S/I
- response on LITE/1860N interpreted to be approximately 30m deep and 3 mhos
- it should be noted that the erratic readings on L22E/2040N and L23B/2020N, 2040 were repeated in the field. As they occur on adjacent lines at the same northing, on Conductor A, they were not deleted.

CONDUCTOR B/B'

- runs EW from L5E/1340N - L30E/1730N
- parallel to and 60 m south of a linear mag high
- previous work indicates the conductor is at contact between felsic volcanics to the south and mafic volcanics to the north.
- coincident with an AEM conductor detected on all flight lines across the property
- the conductor is strongest between L16E/1470N - L20E/1600N
- depth to source/conductivity values are

L18E/1530N - 55m, 15 mhos L19E/1580N - 50m, 10 mhos
L24E/1710N - approx. 20m, <3 mhos
L25E/1710N - approx. 20m, <3 mhos

- appears to be coincident with a vertical loop conductor tested with 3 drill holes by AREA MINES, 1966.

CONDUCTOR C

- weak
- EW from L8E/900N - Js12E/870N
- no coincident mag
- no AEM correlation

CONDUCTOR D

- EW from L21E/990N - L24E/1030N
- possibly on north flank of mafic volcanic/ultramafic contact
- coincident with AEM conductor 235E/B and 74/2N - B
- response on L22E/1010N indicate a depth of 40 m and conductivity of <3 mhos

CONDUCTOR E/E'

- weak conductor from L29E/1010N - L32E/1200N open to the east
- similar to conductor D, probably on mafic/ultramafic contact
- coincident with AEM conductors 76N/C, 77S/E

CONDUCTOR $\mathrm{F} / \mathrm{F}^{\prime}$

- from 29E/440N - L16E/600N
- F\& F' are probably same feature, off set by a mag dike on li3E
- insufficient coverage on L9E - Li1E
- on north flank of mag low
- no AEM response
- coincident with a creek and beaver pond

CENTRAL BELFORD PROPERTY

The HLEM Survey outlined seven conductors which correlate reasonably well with the OGS Map 8136 and 81358, "North Swayze Montcalm Area" AEM/MAG Survey results. The ground EM conductors have been labelled A-G. On conductors "C", "E", and "F", there is a possibility of closely spaced, parallel conductors. With the 200 meter coil separation used, the horizontal resolution is not sufficient to verify this and accurately interpret the axis of each. Some of tho conductors have a coincident magnetic high associated with them. The following is a description of each individual conductor with reference made to the magnetic survey, previous work and AEM Survey:

CONDUCTOR "A"

- a weak conductor running NE from L6E/1520N - L8E/1660N
- open to the NE
- no mag correlation
- interpretation is approx. 70m deep and 7 mhos
- no AEM correlation

CONDUCTOR "B"

- a weak to mod. cond. striking SW from L12E/1220N - L16E/1080N
- coincident (100nT) mag high
- isolated mag high on L13E/1080 of approx. 600nT with a north dip. this is approx. 70 m south of the interpreted cond. axis.
- there is a possible NW striking dike cutting the conductor in the vicinity of L14E
- this conductor is approx. 300m north of cond. "C"
- interp on L16E/1080N is 100m deep and 15 mhos
- may be same feature as cond. "B'" on $L 19 \mathrm{E} / 1000 \mathrm{~N}$ but there is no apparent mag association.
- there is no apparent AEM correlation.

CONDUCTOR "C"

- This is a mod to strong conductor running from lile - L19E.
- The west end is interpreted to have parallel conductors on

L11E \& 650n \& 760N, and L12E © 690N\& 780N with the southern conductor on these two lines having a coincident 40nt mag high

- the remainder of the conductor has no coincident mag but is approx. 100 m north of and parallel to a linear mag high of up to 1000 nT above background.
- the conductor appears to be dipping steeply to the south
- interpretation on L14E/770N = approx. 50m deep and 12 mhos L17E/770N = approx. 90m deep and 90 mhos
- appears to be coincident with a linear AEM conductor

CONDUCTOR "D"

- is a weak to mod. cond. striking EW from L18B/580N - L26E/460N
- it is south of and parallel to the same linear mag high to the south of cond. "C".
- interpretation on L24E/500N = approx. 82m deep and 11 mhos
- the highest conductivity is on lines $18 \mathrm{E}, 19 \mathrm{E}, 24 \mathrm{E}$, and 25 E .
- a N/NW striking dike is interpreted from the mag data to cut the conductor between L25E and L26E.
- the cond. appears to be coincident with AEM conductors 48/2N-D and 49/2S-E, both 11-12 channel conductors.

CONDUCTOR "E"

- a strong conductor striking E/NE from L22E/690N - L34E/600N
- no mag correlation
- appears to be coincident with ABM conductors 48/2N-E, 49/2S-D, 50N-D, 51S-F, 52N-D, which all 11-12 channel conductors.
- the mag data suggests a N/NW striking dike cutting the conductor in the area of L24E-L25E.
- it is likely that concuctor "E" is one and the same as conductor "C" with the above mentioned dike interrupting and possibly off-setting "D" slightly to the south or vice versa.
- interpretation for $\mathrm{L} 24 \mathrm{E} / 720 \mathrm{~N}=$ approx. 70m deep and 60 mos L31E/730N $=$ approx. 60m deep and 28 mos
- interpretation on L31E may not be too accurate due to parallel conductor "F" to the north.
- cond. "E" converges with cond. "F" around L29E-L30E, and swings to the SE.

CONDUCTOR "P"

- is a strong conductor which splits from cond. "E" and swings to the NE and then SE where it runs off the grid on L37E/760N
- no apparent mag correlation
- appears to be coincident with AEM conductors 51S-F, 52N-E, 53S-I, and 54N-E, which are all 11-12 channel conductors.
- horizontal resolution is poor on Lines 26E-30E due to close proximity to cond. "E" to the south.

CONDUCTOR ${ }^{\text {"G }}$

- is a strong conductor striking EW from L29B/1400N - L37E/1480N, where it runs east off the grid.
- appears to have a south dip
- appears to be coincident with AEM conductors 51S-E, 52N-F, 53S-H and 54N-F, all 11-12 channel conductors.
- possiblly coincident with a mag high slightly south of the cond.
- interpretation on $\mathrm{L} 34 \mathrm{E} / 1460 \mathrm{~N}=$ approx. 50, deep and 80 mhos

L36E/1480N = approx. 60 m deep and 60 mhos

CONCLUSIONS AND RECOMMBNDATIONS

CENTRAI BELFORD PROPERTY

The survey results correlate well with the AEM Survey with the exception of conductor "B" which was not detected by the AEM Survey, possibly because it is too deep. Most of the conductors are quite conductive. In some cases horizontal resolution is difficult because of the large coil separation used. Using a shorter separation would most likely be ineffective because of the thick overburden. It is recommended that a thorough compilation of the current survey results and the previous drilling be done to establish which conductors have been tested.

Because of the favourable VAS type geological setting and previous intersections of $C u$ and $Z n$, it is recommended that a large loop Time Domain EM survey be conducted over most of the property. This survey would provide a better horizontal resolution of the parallel zones as well as better definition of the conductors especially the deeper ones such as "B".

The survey outlined several conductors. With the exception of conductors C and F, they all correlate well with the OGS AEM survey. Conductors A, B, C appear to be in the mafic/felsic volcanics, while Conductor D, E, F appear to be related to the Mafic Volcanic/Ultramafic contact.

Conductor B, particularly between L17E - L20E has the best conductivity. It would appear that it was tested by 3 drill holes by AREA MINBS in 1966.

They report sulphide mineralization with minor amounts of calcophyrite and sphalerite in all three holes on a Felsic/Mafic contact. This is an excellent environment for VMS type deposits and deeper drilling is recommended in this vicinity as well as along strike on conductor B. It is recommended that the drill casing be left in and a down hole TEM survey done to test for massive sulphide mineralization deeper and off hole.

The other conductors should be rated on the results of drilling conductor B. With the extensive overburden cover in the area, the HLEM survey could quite likely miss a deep, conductive, sulphide zone. Because of the favourable geological setting, a deeper penetrating TEM survey may be warranted to delineate and test the Mafic/Felsic contact, and conductors $A, C-F$.

CERTIFICATION

I, Raymond Joseph Meikle of Timmins, Ontario hereby certify that:

1. I hold a three year Technologist Diploma from the Haileybury School of Mines, Haileybury, Ontario, obtained in May 1975.
2. I have been practising my profession since 1973 in Ontario, Quebec, Nova Scotia, New Brunswick, Newfoundland, NWT, Manitoba, Germany and Chile.
3. I have been employed directly with reck Corporation, Metallgessellschaft Canada Ltd. Sabina Industries, .S. Middleton Exploration Services Ltd., self employed 1979-1985 (Ryan Exploration Ltd.) and currently with Ryan Exploration Ltd.
4. I have based conclusions and recommendations contained in this report on knowledge of the area, my previous experience and on the results of the field work conducted on the property during 1990.
5. I hold no interest, directly or indirectly in this property, nor do I expect to receive any interest or considerations from Falconbridge Limited.

Dated this 30th day of April. 1994 at Timmins, Ontario.

R.J. Meikle

APPENDIX \boldsymbol{A}

Specifications	
Opr	18.000 to 110.000 gammas. Row over atsplay feature suppresses first significant diglt upon exceeding 100,000 garnmas
Tuning method	Tuning value is calculated accuratelv utwaing a spectaily developed tuning angorithm
Automatic fime Tuning	\pm 15\% relative to amblent fieta strength of last stored
otplity Resolution	0.1 gmma
Processing Sensituvity	± 0.02 gamma
Stantsical Etror Resolution	0.01 gamma
Absolute Accuracy	± 1 gamma at 50.000 gammas at $23^{\circ} \mathrm{C}$ ± 2 gamma over total temperature ranue
standard Memory Capactly votal Fleld or cradient Tiethe Points Base station	
	1.200 data blocks or sets of readings 100 data blocks or sets of readings 5.000 daxa blocks or sets of reading
Display	Custom-designed, iuggedized llauid crystal display with an operating temperature range from $-40^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$. The display contains six mumeric algits, decimal point. battery montior and fiunction descriptors.
RS 232 Sertal 10 interface	2400 baud. 8 data bits, 2 stop bits, no parity
Gradlent tolerance	6.000 gammas per meter rfield proven)
Test mode	A. Diagnostic testing idata and programmable memory B. Seff Test thardware)
sensor	- odtimized mindature desion. Magnetic cleaniness is
Gradent Sensors	0.5 meter sensor separition istandarin, normanlized to gammas/meter. Optional 1.0 meter sensor separation avaliatie. Horkontal sensors optional.
Sensor Cable	. Remains flexible in temperature range specified, inctudes stralnrellef connector
crating IIme irase station model	. Programmable from 5 seconds up to 60 minutes in 1 second increments
operating Environmental Range	-40 ${ }^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C} ; 0-100 \%$ relative humditry. weatherproof
Power Supply	. Non-magnetic rechargeable sealed lead-acid battery cartindge or bett: rectiargeable Nicad or Dtsposithe battery cartindge or belt; or 12V DC power source option for base station operation
Baxtery Cartidge/Bek Life	2.000 to 5.000 readings. for sealed lead acid power supply. depending upon ambient temperature and rate of readings
Weights and Dimenstons	
instrument Console only	. $2.8 \mathrm{~kg} .238 \times 150 \times 250 \mathrm{~mm}$
Nicad or Alkathe Battery Cartridge	1.2 $2 \mathrm{~kg} .235 \times 105 \times 90 \mathrm{~mm}$
nicad or Alcalline Battery Bett	$1.2 \mathrm{~kg} .500 \times 100 \times 40 \mathrm{~mm}$
tead Acid Battery Cartidge	.1.8kg. $235 \times 105 \times 90 \mathrm{~mm}$
tead-Ach Battery bett	$1.8 \mathrm{~kg} .540 \times 100 \times 40 \mathrm{~mm}$
Sersor	. 1.2 kg , 56 mm dilameter $\times 200 \mathrm{~mm}$
cradient Sensor	
standard System complement	instrument console, sensor; 3 meter cable, atuminum sectional sensor staff, power supply, hamess assembly.
Base scation Option	stanctard spstem puis 30 meter cable
Gradiometer Option	Standard system phis 0.5 meter sensor

[^0]APPENDIX B

EPECIFICATIONE :

Frequancies:

Readoute:

200 STEELCASE RD. E.. MARKH.AM. ONT., CANADA, L3A 1GE

Pepeatability :

$\pm 0.5 \%$ to $\pm 1 \%$ normelly, depending on conditions, frequencies and coil separation used.

Tremamitter Dutpurt:

2е2Hz $444 \mathrm{~Hz}$	$160 \mathrm{Atm}^{2}$
Berbiz	100 Atm²
- 177>Hz	EOAtm ${ }^{2}$
	30

Receivar Batterias: 9 V trans. radio type batteries (4). Life: epprox. 35 tres. continupus chu-by (alkalne, $\mathbf{U} .54 \mathrm{~h}$), less in cold weather.

Transmitter
Batteries:

Reference Cable: Light weight $\mathbf{2}$-conductor teflon cable for minimum fruction. Unstwelded. All reference cables optional at extra cost. Plearse specify.

Built-in intercom systern for voice cormmunication between receiver and transmitter operators in MAX and MIN modes, via reference cable.

Indicator Lights:
Built-in signal and reference werning lights to indicete erroneous readings .

Temperature Ranga: $-40^{\circ} \mathrm{C}$ to $\# 80^{\circ} \mathrm{C}$ ($-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$).
Receiver Waight: Gkg (13 lbs.)
Trementiter Weight: 13kg (29 Ibs.)
Bhipping Weight: Typically EOkg (135lbs.). depending on quantities of reference cable and batteries included. Shipped in two field/etipping cases.
－A skatch，show in the claims

Recorced Moldoris）				15499 MON	Client vo 900	
Falconbridge Li－：－${ }^{\text {ced }}$					$1 \quad 130$	
Adorate 1200 ， 95 walingron Street west			West，Toronto，ON，M5J 2 V 4		Toiocho	－5700
Mining Dinsiogorcupine			Belford		$\begin{gathered} \text { Mor } \mathrm{G}^{3} \\ M \end{gathered}$	
$\begin{aligned} & \text { OPres } \\ & \text { Work } \\ & \text { Portomed } \end{aligned}$	From：	トミこ：1 29， 1994		T0：	May 6， 1994	

Work Performed（Check One W．${ }^{\circ} \mathrm{K}$ Group Only）

Work Group	Tуpe	
Geotechnical Survey	Gric ごこ＝ing and Geophysics	
Physical Work Including Drilling		RECORDED
Rehabilitation	RECEIVED	
Other Authorized Work		$J \pm[-61994$
Assays	JUL－ 2 Mg	Receipt
Assignment from Reserve	ITJNG LANDS BRANCH	－

Total Assessment Work Claime＝＝－the Attached Statement of Costs $\$$ 30，992
Note：The Minister may rejec：＇－assessment work credit all or part of the assessment work submitied if the recorded holder cannot verify expeー＝：ures clamed in the statement of costs within 30 days of a request for verification．

Persons and Survey Company Who Performed the Work（Give Name and Address of Author of Report）

（attach a schedule it necessary）
Certification of Beneflcial Interes：＊See Note No． 1 on reverse side

Certiflcation of Work Report

 Subury. Ontarte, PSE EAS, melohone 735; 670.7244.

Work Performed (Check One in a"x Group Only)

Work Group	Type	
Physical Work, Inctuding Driling		RECORDED
Rohabonmation	RECEIVED	
$\begin{aligned} & \text { Other Authorized } \\ & \text { Work } \end{aligned}$		JUt-6-1994
Aseays	JUL - 2 lies	Receint
$\begin{aligned} & \text { Aeslonmant from } \\ & \text { Resolve } \end{aligned}$	IR PJNG LANDS BRANCH	

Totel Assessment Work Claime $=-=$ the Attached Sta:ement of Costs $\$ 30,992$
Note: The Minister may rejec: ' $\because=$ assessment work credit all or part of tre assessment work submited if ire reco-cec holder cannot verity expa-=: Jres clamed in the statement of costs within 30 days of a request tor verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

(attreh a achedula if neceasary)
Centhichtion of Beneficial Interes: - See Note No. 1 on reverse side

Certification of Work Report

 its compledion and ennexed report is t.-e
Mario Exd Adomen of berson Corntag
D.J. Duff, C / O Falcorニ=:jee Lirited, P.O. Box 1140, 571 Moneta Avenue, Timins, $0 N$, P4N THE

1(705)267-1188 $=$ 14, 14, 1994

Cresits you are claiming in this report may be cut back. In order to minimize the adverse effects of such zeietrons, pease ncicate from whicn chams you wish to priorize the delotion of credits. Pleme mark (-) one of the following:

1. I- Crears are to be cut back staning with the chim lieted tad, working beckwards.
2. 2 Credits are to be cut back equally over all chaims contained in this roport of work.
3. F. Crldits are to be cut back as priocired on tie atached appendix.

 to the mining clains.

Note 2: If work has been performed on patented or laased land, please complete the folloying:
 or mased fand of the wind the worts wile pertorned.

Etat des coots aux fins du crdolle d'svaluation

Divelepperiment Nond

minlog Acthol sur les mines

Persora antormation collected on wit torm is cetelned under the euthofly of the Moning Act. Thle intormetion will be uedd to melvitin e recod ted ongong asatus of the mining ctamion. Oumions ebout tha colaction thouds be creced to the Provinctal Moncerw, Moriep Lenda, Mribtry of Northem Dovecornmen and winese sh Flow, isp Ceder Sreen. Sudeury. Onterto P3E ce: zermphone (rosi e70-724.

 (Oruato) PSE CAS, Mimphone (705) 070-724.

2. Indirect Costa/CoOts lndirects

 alowale at assestiment mort
Pour to remboursomant deo travami do rethebreation, ine
 dreveluellon.

 te prisent ctat des cepio dens ine 30 jours mivent une demande i cet
 ou une perle des breven drincharion prinouthe

Fii.ay $=$ scounts
: $\therefore=:$..ed within two years of compies.on is claimed at 100\% of :-e E=Ove Yosal Value of Assessment Credir

2 if =-s. ised three, four or five yeers ather completion is claimed al Eこ=: of the abow Tolal Value of Ascossment Credit See =a =- ations belowr.

T̄: wh de of Assegement Cient
Totid astesmatictiond

$$
x 0.50=
$$

Certis. ation Verifying Statement of Costs
I he:e:, certily.
ina: ite anounts shown are as accurale as possible and these costs were $:=:-$ red whith conducting aseasement work on the lande shown on Lne as=ompanying Roport of Work torm.
that as J.J. Duff (Senior Project Geoparictitlorted to maire this certification

Remlses pour dipot

1. Les travaux doposta dans tes doux ens suivant iour achlverrent sont

2. Les trevaux diposis trols, quatre ou cing ens apris leur achevement sont ramboursia a 50 w de ta valour totale du cretit oflvaluation

 $\times 0,50-$

Attestation de l'étal des couts

J'alteste par la pricente:
que les montarts indiquits sant io glue extet possible at que ces dipenses ond cie engegles poir eftectuer bes travaux drbvaluation our les terrains indiquis dans fa formuip de rapport de travill chfoht.

a tare cothe amatation.

mefwetiona: - Pioase type or pritit and submin in duplicite.
2.1549

- Refer to the Mining Act and Regulations for requiremenstif filing dusessment work or consult :he Nu - Aecorder.
- A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, ehowing the clalms the work is assigned to. must accompany this form.

Notrs. The Minister may reject for assessment work credit all or part of the assessment work submitec :the reanholder cannot verity expenditures claimed in the statement of cosis witho 30 days of a recuest 'cr verfica: =-

Persorat and Survey Complany Who Performed the Work (Give Name and Address of Author o! Report)

Name	Adrass
37 yren Exploration Ltd.	c/o Mr. Ray Meikle 1676. Hucray Street, Timins, ON, P4N 732
,	
:	,

(atest a schedule if necossery)
Certincation of Beneficial Interest - See Note No. 1 on reverse side

Creots you are cramung in this report may be cut back. in order to minimize the az-e se effects of such devetions. plase indieato from which claths you wish to prior.zo the devotion of credis. Ploase mark (σ) one c' in isiowing:

1. I Crechts are to be cul back staning with the claim listed last, working basixna-zs.
2. Tiodits are to be cul back equally ower all ctaims comained in unis repor: of eork
3. I crediss are to be cyt-bedreprefirizievo on the artached eppendix.

Note 2: It work has been performed on pintented or leased tand, please complete the following:

Mining Actiol sur bee mines

 of the maling act. The triornation win be reed to molnitin a recerd end

 PJE GAS. remephone (705) ©70-72es.

2. Indirect Costa/Coots Indrects

 drivalumion.

Filing Dlscounts

tecrk fled within Iwo years of completion is claimed at 100\% of :-- above Torat Value of Assessment Credi.

2 Hork thed thres, four or five years ather completion is clained at 50\% of the above Totel Vahe of Assetement Crealit. Seo calculations belowr:

Certificalion Verifying Statement of Costs

nereby certify:
inat the amounts shown ore as accurate as possibia and these costs were incurred while conducting seseasment mork on the lande shown en the eccompanying Pepont of Work form.

o make this certification

Remises pour dipes

 son semboursit a to te is vileut totel du erte: Edvatuation

Vecor mole de crien ef whation	
$\times 0.50$	

Altestation de liflet des couts

Jatreste par la prdernte:
que los montaris indiquts sond io phes exact poseso a que cess dipenses ont ith engegtes poir sflectuer ine travex $\{$ twaluetion sur les verrains indiquis dense la formude de rapport de zevell difoint.

a bire cetie arcatalion.
untario

Ministry of	Ministère du
Northern Development	Développement du Nord
and Mines	et des Mines

September 16, 1994

Geoscience Approvals office
933 Ramsey Lake Road
6th Floor
Sudbury, Ontario
P3E 6B5
Telephone: (705) 670-5853
Fax: (705) 670-5863

Our File: 2.15499
Transaction F: W9460.00157
W9460.00155

Mining Recorder
Ministry of Northern Development
and Mines
60 Wilson avenue
1st Floor
Timmins, Ontario
P4N 2S7
Dear Gary White:
RE: APPROVAL OF ASSESSMENT WORX OX MIMIEG CLAIMS 1189250-1189253 IM BELFORD AND MONTCALM TOWHBHIPS.

The assessment credits for Physical Work and Geophysical Surveys, Sections 10 and 14 of the Mining Act Regulations, as listed on the original Report of Work, have been approved as of september 16; 1994.

Please indicate this approval on the claim record sheets.
If you have any questions concerning this submission please contact Michael Charette at (705) 670-5856.

ORIGINAL SIGNED BY:

Ron C. Gashinski
Senior Manager, Mining Lands Section
Mining and Land Management Branch
Mines and Minerals Division
MC/j1
Enclođures:
cc: $\sqrt{\text { Assessment Files Office } \quad \text { Resident Geologist }}$ Sudbury, Ontario

Timmins Ontario

2300 NaRTH
2200 north
2100 Mort
2000 North
1900 NORTH
1800 north
1700 NORTH
1600 NORTH
1500 NORTH
1400 NORTH

1200 North
1100 North
1000 North
goo north
800 North
700 north
600 North
500 north
400 NORTH
300 NORTH

BELFORD TWP
MONTCALM TWP
STRACHAN WF

TJPo LEEENO
-

Reorma meval 20 n

${ }^{\text {PeAK M MaEtic Hion }}$

$28: 2$ vorth

2:82 vorth

 ation wey

2:0.- - :-e

1800 NERTH
600 North
TL 15 N
400 North
300 Nerth
:200 nort
100 NORT
IEN
900 nopt
800 north
700 north
00 NORTH
TL 5 N
00 north
300 north
200 NORTH
North
!

topo Legenv

[^0]: EDA hrifunments wh a thomrin lific Park Drive frionits Dift wio
 C.WLWL, Math IH1
 Ciljue mrirruments Toronto Cig 4757800
 m(1)
 ED A mustritmapirs me
 EDA mosfrimmpit
 S15 Whit Poad
 5151 winn Pead
 Wheat Rutige. Colorado
 Wheat Rillpe.
 150342229112
 Printed in Canada

