DIAMOND DRILL REPORT

FOR STRATABOUND MINERALS CORP.

ON THE 1996 DIAMOND DRILL PROGRAM

AT THE

WATSON PROJECT WASTSON/BELFORD TOWNSHIP

PORCUPINE MINING DIVISION

ONTARIO CANADA

Kenneth J. Lapierre HBSc. FGAC. July 26, 1996

010

SUMMARY

Stratabound Minerals Corp.'s Watson Project is located in Belford and Watson Township within the Porcupine Mining Division, Ontario Canada. The claim block consists of 2,272 hectares(5,680 acres).

The regional geology of the Timmins-west area, which contains the Company's property, is along the west end of the Abitibi Greenstone Belt. The area is associated with a belt of greenstone volcanics "sandwiched" between granulite rich rocks to the west and felsic intrusive rocks to the north, east and south.

An important base metal host within the belt is an arcuate trending suite of mafic and ultramafic rocks composed of diorite, gabbro and serpentinized ultramafics. The Montcalm Nickel Deposit is within this volcanic belt and is associated with the base metal bearing arcuate trending mafic/ultramafic host. This deposit hosts 7.1 million tonnes @ 1.54% nickel and 0.72% copper.

The Company's property is interpreted to contain the same arcuate trending suite of mafic and ultramafic rocks that is associated with the Montcalm Nickel Deposit located 18 kilometers to the east. In 1996, a geophysical survey was completed over portions of the property identifying 7 targets with sulfide bearing potential.

Drilling commenced and was completed on 4 of the known targets. A total of 4,144 feet of BQ core was completed. Stringer, semi-massive and massive sulfides of pyrrhotite, pyrite and traces of chalcopyrite were detected. Low anomalous nickel and copper values were recorded throughout most rock types intersected in drilling.

An additional program of linecutting, geophysics and diamond drilling is warranted on the property.

. . . .

The total estimated budget for this winter program is \$440,000 CDN.

. . . .

DIAMOND DRILL REPORT FOR STRATABOUND MINERALS CORP. ON THE 1996 DIAMOND DRILL PROGRAM AT THE WATSON PROJECT WASTSON/BELFORD TOWNSHIP PORCUPINE MINING DIVISION ONTARIO CANADA

by

Kenneth J. Lapierre HBSc. FGAC. July 26, 1996

At the request of Stratabound Minerals Corp. this diamond drill report was prepared to highlight the geological setting of the surrounding area, to compile the 1996 drill program completed on the property and to recommend, if possible, additional exploration programs for property advancement.

The main objective of the diamond drill program was to explain the geophysical anomalies identified in a surface survey completed by Exsics Exploration Limited in 1996.

Sources of information contained in this report were acquired from the field offices of the Ministry of Northern Development & Mines and from the offices of Stratabound Minerals and Exsics Exploration.

The author was directly responsible for all aspects of the 1996 drill program on behalf of Stratabound Minerals Corp.

Lapierre Exploration Services Inc. has not examined title to the claims nor completely substantiated their physical boundaries and accordingly expresses no opinion as to the validity of title and property description.

The author consents to the use of this report in a statement of Material Facts of the Company, for submissions to the any regulatory authorities or for any public forum the Company deems necessary.

.

.

and the second second

TABLE OF CONTENTS

				page
Summ	nary ent			I II
CONSC	2111			
1.0	Introduc	ction		1
	1	1.1	Property location and Description	1
	1	1.2	Access	1
	1	1.3	Climate	3
	1	1.4	Topography	3
	1	1.5	Infrastructure	3
2.0	Geology	/Geop	bhysics	3
	2	2.1	Regional Geology-Timmins West	3
			Montcalm Nickel; Deposit	5
	2	2.2	Local Geology	7
3.0	History	of Wo	ork on Claim Group	7
4.0	1996 Sa	mpling	g and Diamond Drill Program	8
	4	4.1	Sampling Procedure	8
	4	4.2	Stratabound Minerals 1996 Diamond Drilling	8
5.0	Observa	tions a	and Conclusions	11
6.0	Recomm	nendat	ions	11
Biblio	graphy			13
Decla	ration			14
Figure	e 1: I	Locatio	on Map	2
Figure	e 2: A	Area C	Beology Map	4
Figure	e 3: N	Monte	alm Deposit-Surface Projection of Ore Zones	6
Table	1: 0	Claim I	Block Information	1
Table	2: I	Drill H	lole Data	8
Table	3: I	Drill H	lole Specifics	9
Apper	ndix I: I	Drill L	ogs	
Apper	ndix II: N	Multi-I	Element Assay Sheets	

Folder 1:

Claim Maps Drill Hole Cross Sections Folder 2:

and a p

42B16SW0010 W9660.00518 WATSON

.

1.0 INTRODUCTION

1.1 **Property Location and Description**

Stratabound Minerals Corp.'s Watson Project is a contiguous block of staked mining claims located in Belford and Watson Township within the Porcupine Mining Division, Ontario, Canada The property is located approximately 78 kilometers west-northwest of Timmins, Ontario(figure 1).

The property consists of a parcel of land totalling approximately 2,272 hectares(5,680 acres).

The following table lists information pertaining to the company's claim block.

Table 1:	Claim Block	Information	(folder	1)
			•	

<u>Units</u>	Township
16	Watson
16	Watson
16	Watson
14	Watson
12	Watson
12	Watson
15	Watson
16	Watson
9	Belford
<u>16</u>	Belford
142 units	
	<u>Units</u> 16 16 14 12 12 15 16 9 <u>16</u> 142 units

Stratabound Minerals Corp. has the right to earn a 100% interest in the property by completing exploration on the property subject to payments and a royalty.

1.2 Access

Access to the property is suited for fixed wing or helicopter service from Timmins or Kamiskotia. Possible winter access could be overland by bulldozing a road north from the Mallet lumber road across a permanent bridge on the Ivanhoe River.

the second term of the second s

1

1.3 Climate

Climatic conditions are typical for this part of Northern Ontario with a mean annual precipitation of approximately 35 inches. Winter months are from early October to Late March with snowfall amounts to 10 feet with a 4 to 6 foot snowpack. Severe winter temperatures of -40 to -50 degrees Celsius are common for extended periods with the average winter temperature at -18 degrees Celsius. Summer months are from late May to early September with temperatures with temperatures of +30 degrees Celsius common. The average summer temperature is at +18 degrees Celsius.

1.4 Topography

The outcrop less topography of the property is flat with wet dense tag alder swamps and spruce muskeg throughout. Water availability for drilling is from the many streams, creeks and small lakes throughout the property.

1.5 Infrastructure

The Timmins/South Porcupine area has a population base of approximately 45,000. Mining and logging makeup the largest portion of the work force in the area.

2.0 GEOLOGY/GEOPHYSICS

2.1 Regional Geology of the Timmins-West Area

The regional geology of the Timmins-west area is associated along the west end of the Abitibi Greenstone Belt. The area is associated with a belt of greenstone volcanics "sandwiched" between granulite rich rocks to the west and felsic intrusive rocks to the north, east and south (figure 2).

The greenstone belt consists of massive to foliated mafic to intermediate volcanic rocks composed of flows and porphyries of basalts and andesites. Additionally, the belt contains felsic to intermediate volcanic rocks composed of flows and fragments of rhyolite, dacite and banded and lapilli tuffs. Locally sedimentary rocks consists of greywacke, arkose, quartzite and oxide to sulfide facies iron formation. All rocks of the belt were intruded by massive to weakly foliated biotite and hornblende trondhjemite, granodiorite, and minor quartz-diorite.

An important base metal host within the belt is an arcuate trending suite of mafic and ultramafic rocks composed of diorite, gabbro and serpentinized ultramafics. The Montcalm Nickel Deposit is within this volcanic belt and is associated with the base metal bearing arcuate trending mafic/ultramafic host.

a second s

The greenstone belt is bounded along the west by the Kapuskasing Structural Complex. This complex consists of rocks primarily composed of metamorphosed mafic to intermediate intrusives, pelitic to psammitic granulites and several areas of intercalated metasedimentary and metavolcanic gneiss and arkosic sedimentary rocks.

The greenstone belt is bounded along the north, east and south by felsic intrusives and hybrid volcanic rocks.

Structurally, faulting and shearing are evident throughout the greenstone belt. Actual displacements range up to hundreds of meters.

Mineralization within the belt is associated within the gabbroic to ultramafic rich phases. Mineralization consists of disseminated to massive pyrrhotite, pentlandite, pyrite and chalcopyrite.

Montcalm Nickel Project:

The main base metal bearing environment within the belt is located at Outokumpu Metals & Resources' Montcalm Nickel Project. The following information on this deposit was tabled and distributed by Outokumpu personnel at a public open house in Timmins, 1996.

Location:

The Montcalm nickel/copper deposit is located in Montcalm Township, 60 kilometers west-northwest of Timmins, Ontario.

Deposit Geology:

The Montcalm deposit consists of three steeply dipping, irregularly shaped sulphide-rich lenses which are separated by a granitic dyke. Each lens extends approximately 250 meters in a north-south direction and have maximum widths between 30 meters and 65 meters (figure 3).

The mineralogy of the deposit comprises: pyrrhotite, pyrite, pentlandite, chalcopyrite, and minor magnetite and violarite.

Exploration & Work History:

The Montcalm deposit was discovered in 1976 by the Dighem Syndicate headed by Teck Corp. In a subsequent 54 hole diamond drilling program, the Syndicate outlined a geological in-situ reserve of 4.5 million tonnes with an average grade of 1.41% Ni and 0.66% Cu.

From the fall of 1993 to the summer of 1995, Outokumpu completed an additional 100 hole diamond drill program.

Figure 3:

6

A new Montcalm mineral resource has been calculated at 7.1 million tonnes grading 1.54% nickel and 0.72% copper.

Future Plans:

A feasibility study was completed by Outokumpu recommending underground development advancing the property towards a bankable feasibility study.

Expenditures were estimated at \$120,000,000 with an expected mine life of up to 12 years.

2.2 Local Geology

The geology of the outcrop less property is theorized to be associated with massive to foliated mafic to intermediate volcanics, iron formations and an arcuate, north-northeast trending suite of mafic and ultramafic rocks.

Of importance is the fact that the arcuate trending ultramafic suite of rocks that are located within the Company's property, are potentially the same suite of rocks that hosts the Montcalm Nickel Deposit, 18 kilometers to the east.

3.0 HISTORY OF WORK ON CLAIM GROUP

Limited exploration work has been completed on small portions of the property.

The only work found in the assessment files at the Ministry of Northern Development and Mines were recorded by a Placer Dome Inc. and by Keevil Mining Group.

In 1966, Keevil Mining Group controlled a block of 14 contiguous claims located at the common boundary between Watson and Belford Township. One diamond drill hole was completed on claim # 5135008(present Company claim 1204279). The hole, completed on August 22, 1966, totaled 551 feet and intersected micaceous sediments with, patches, stringers, seams and massive sulfides consisting of pyrrhotite, pyrite and minor chalcopyrite. Low anomalous values in copper and nickel were recorded.

In 1992, Placer Dome Inc. controlled a block of 10 contiguous claims in Watson Township(present Company claim 1190320). A geophysical program consisting of mag and max-min were completed over the property. Additional follow-up work was recommended.

In 1989, the Government of Ontario, flew an airborne survey over the North swayze region, This survey covered the Company's present claim block. Several airborne anomalies were detected on the present claim block.

. . .

In 1996, Exsics Exploration Limited completed a linecutting and ground geophysical survey over portions of the property where strong airborne targets were identified in 1989 by the Government of Ontario. The ground geophysical program consisted of a deep penetrating, moving coil, Pulse-EM survey and a total field magnetic survey. The program was successful in identifying at least 7 legitimate targets for further follow-up work. Exsics recommended drilling 3 targets with sulfide potential.

In 1996, Stratabound Minerals Corp. completed a 4 hole diamond drill "fly-in" program to determine the source of the geophysical targets outlined in the ground survey completed by Exsics Exploration.

4.0 1996 SAMPLING AND DIAMOND DRILL PROGRAM

4.1 Sampling Procedure

Sample Size: The exploratory drill holes were evenly split by locating the areas of interest then cutting half of the core with a hammer and mechanical core splitter. The other half was stored on core racks for future reference. The split sample was put in unused heavy duty plastic sample bags then collectively shipped in plastic containers or burlap bags to Swastika Laboratories for processing. After each sample, the core splitter was cleaned of unwanted rock chips.

Sample Length: In most cases the sample interval was between 1 to 5 feet. In areas where sulfide enrichment occurred, the sample reflected the geological parameters, up to 5 feet, at which point a subsequent sample was taken for analysis.

4.2 Stratabound Minerals 1996 Diamond Drilling

A total of 4 diamond drill holes were completed totalling 4,144 feet of BQ core(Appendix 1). Refer to the table listed below for drill hole specifics. All drill casings were left in each hole, except SF96-03.

Drill hole	Location	<u>Dip</u>	Azimuth	Depth (ft)
SF96-01	320W/275S	-55N	360	1070
SF96-02	200W/425S	-55N	360	982
SF96-03	100E/125S(new grid)	-55N	360	1022
SF96-04	200E/075S(new grid)	-55S	180	1070
	Total feet drilled	·····		<u>4,144</u>

. . .

Table 2: Drill Hole Data

Refer to the following table for the highest drill assay results.

			Assay		Apparent Width	Depth	
Drill Hole	Au-g/t	Ni-ppm	Cu-ppm	Co-ppm	in feet	in feet	Rock Type
SF96-01	nil	2,290	7	N/A	5	690-695	Mafic Volcanic
	0.01	2,003	26	62	15	750-765	Gabbro
SF96-02	nil	2750	444	149	2	980-982	Arggraph.
SF96-03	nil	2460	6	N/A	5	532-537	Serpentinite
	nil	2790	10	N/A	5	902-907	Ultramafic
SF96-04	nil	1200	61	N/A	5	615-620	talc-rich

Table 3: Drill Hole Specifics

Samples for multi-element analysis were completed for SF96-01 through to SF96-03. The I.C.A.P Plasma Scan recorded Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sc, Sn, Sr, Ti, V, W, Y, Zn, and Zr. No significant values were detected(Appendix II).

<u>SF96-01</u>

.....

The purpose of the hole was to intersect geophysical "Target C", identified by Exsics Exploration's 1996 surface geophysical program.

The hole intersected micaceous to magnetite rich ultramafics to 546.3 feet, followed by a magnetite bearing mafic volcanic. A peridotite rich ultramafic unit to 801.1 feet was intruded by a foliated, intermediate to mafic host(possibly a gabbro) from 738.3 to 772.5 feet. The main geophysical Target "C" was intersected from 801.1 to 1039 feet. This zone was interpreted as iron formation consisting of alternating units of highly siliceous, sulfide rich material and slightly magnetic ultramafic material. The iron formation consisted of up to 40% sulfide concentrations of pyrrhotite, pyrite and traces of chalcopyrite.

The best values in the hole occurred in the gabbro intrusive. The gabbro yielded 2,003 ppm nickel across 15 feet from 750 to 765 feet.

. . . .

a des seus de la participación de la participa

SF96-02

The purpose of the hole was to intersect geophysical Target "C" approximately 400 feet east of SF96-01.

The hole intersected alternating units of mafic, intermediate and ultramafic rocks to 783 feet. Local mineralization within these units consisted of up to 2% pyrite, pyrrhotite and traces of chalcopyrite. Target "C" was intersected from 783 to 982 feet. It consisted of a foliated, silicified, micaceous, locally graphitic, argillaceous host. Sulfide content averaged between 3 to 5% with local concentration of up to 10%. Sulfide mineralization consisted of pyrrhotite, pyrite with traces of visible chalcopyrite. Increasingly broken core down the hole eventually contributed to drill penetration failure at 982 feet. At this point the core was strongly graphitic, pyritized and locally siliceous.

The best value in the hole occurred in the last 2 feet of the hole, where drill penetration failure occurred. The graphitic host yielded 2750 ppm nickel, 444 ppm copper, 149 ppm cobalt and nil gold across 2 feet from 980 to 982 feet.

SF96-03

The purpose of the hole was to intersect geophysical target "A", identified by Exsics Exploration's 1996 surface geophysical program.

The hole intersected a non-carbonated, soft, greasy textured, slightly to moderately magnetic, serpentinite from 219.4 to 532 feet. The balance of the hole, to 1,032 feet, consisted of a fine to medium grained, black colored, fresh looking, ultramafic volcanic(possible mafic gabbro). Target "A" was not clearly defined in the hole. A possible explanation of Target "A" may be disseminated magnetite and concentrations of magnetite stringers in the serpentinite.

Consistent nickel values in the 2000 ppm range occurred throughout the hole. The highest value recorded was 2790 ppm nickel across 5 feet from 902 to 907 feet.

<u>SF96-04</u>

The purpose of the hole was to intersect geophysical Target "F", identified by Exsics Exploration's 1996 surface geophysical program.

The hole intersected micaceous intermediate volcanics to 684 feet, followed by a 2-3% sulfide rich mafic volcanic. Target "F" was intersected from 764.5 to 813.5 feet. This zone was

. . .

contained within a mafic volcanic host and had up to 25% discontinuous stringers to semi-massive sulfides of pyrrhotite, pyrite and traces of chalcopyrite. Underlying the zone was an intermediate to mafic volcanic with up to 7% sulfides of pyrite and pyrrhotite.

The best value occurred from 615 to 620 feet, yielding 1200 ppm nickel and 45 ppm copper.

5.0 OBSERVATIONS AND CONCLUSIONS

- 1. The property is strategically located within a favorable arcuate trending ultramafic suite of rocks that are interpreted to be the same suite of rocks that host the Montcalm Nickel Project located approximately 18 kilometers to the east.
- 2. Exsic's Exploration's 1996 surface geophysical program identified 7 legitimate targets along the favorable suite of ultramafic rocks. Exsics Exploration's program did not cover the property in its entirety.
- 3. Stratabound Mineral's 1996 diamond drilling program tested the 4 strongest targets within the favorable ultramafic rocks.

All targets were identified and explained. Stringer, semi-massive and massive sulfides were intersected in the drill program. Low anomalous nickel and copper values were recorded throughout most rock types intersected in drilling.

4. The present drill program was successful in identifying regions where possible base metal mineralization might accumulate.

6.0 **RECOMMENDATIONS**

The success in identifying regions of sulfide mineralization along the same favorable nickel bearing belt that hosts the Montcalm Nickel Deposit justifies continued exploration on the Company's property.

The next phase of exploration should pay particular attention to 3 areas with base metal potential. Firstly, additional geophysics should be completed over the remainder of the property for the purpose of locating, if present, other untested targets. Secondly, several known untested drill targets identified in the 1996 geophysical program should be tested for their base metal potential. Thirdly, down hole geophysics should be completed on the 4 tested targets identified in the 1996 drill program for possible base metal concentrations along strike of the known areas of mineralization.

Linecutting, ground geophysics, and a total of approximately 10 holes in 10,000 feet of BQ core would be required to complete the drill program. The success of this program will substantially enhance the potential of the property and will lead to additional diamond drilling.

It is recommended that this program be completed after freeze-up when access can be obtained by completing a winter road to the property.

The total estimated budget required is \$440,000 CDN.

pectivelkosubmitted. BSc.FGAC. enneth T Lanier geologistconsultan

July 26, 1996

BIBLIOGRAPHY

Assessment Files, Ministry of Northern Development and Mines. Timmins, Ontario, Wilson Avenue.

Derry, Michener, Booth & Wahl,

1989: Report on Development and Exploration Properties of Timmins Nickel Inc. Volume III report on the Montcalm Property Montcalm Township, Ontario.

Grant, J.C., CET, FGAC.

1996: Geophysical Report For Stratabound Minerals Corp. on the Watson Project Watson Township Porcupine Mining Division Northeastern, Ontario.

Orocon Incorporated,

. . .

1989: Timmins Nickel Inc. Montcalm Project, Technical Report.

Outokumpu Metals & Resources, Staff Personnel

1996: Montcalm Nickel Project Information Sheet presented at "Open House" in Timmins, Ontario.

DECLARATION

I, Kenneth J. Lapierre, of the city of Timmins, Province of Ontario, Canada, do state:

- 1. that I am a practicing consulting geologist with an office at Suite 15, 637 Algonquin Blvd. E., Timmins, Ontario with an additional mailing address at P.O. Box 1433, Timmins, Ontario, P4N 7N2,
- 2. that I am a graduate with a degree of Honors Bachelor of Science majoring in Geology from The University of Western Ontario, London, Ontario, Canada,
- 3. that I have practiced my profession as consulting geologist since my graduation from The University of Western Ontario in 1983,
- 4. that I am a fellow of the Geological Association of Canada and a member of the Prospectors and Developers Association of Canada,
- 5. that I am familiar with the material in this report, having supervised and logged the drill program and completed the report myself,
- 6. that I do not, nor do I intend to receive any direct or indirect financial interest or securities in the company or property described in this report, except for consultant's fees for contract work completed.

July 26, 1996

Lapierre Exploration Services Inc.

Lapierre Exploration Services Inc., PO Box 1433 15 - 637 Algonquin Blvd., East Timmins ON P4N 7N2

Phone: (705) 267-7389 Fax: (705) 267-7389

.

ана на страната и родина и страната и странат

APPENDIX I: DRILL LOGS

and the second second

LAPIERRE EXPLORATION SERVICES INC.

Kenneth J. Lapierre, HBSc. PRESIDENT	OTHER INFO: -Fly Job	TESTS: <u>atft - DIP</u> 0 -55N	HOLE NUMBER SF96-01 GRID REFERENCE 320W/275S
PPOPERTY Hile Option FOR	-Casing left in noie	400 -51N	ELEVATION -
TOWNSHIP Watson	: SIMIABOOND MINDMIDD	600 - 47N 800 - 46N 1070 - 29N	AZIMUTH 0 ° DIP ANGLE −55° №
DRILLING COMPANY Landtech	FOREMAN	1070 - 590	LENGTH1,070 feet

CORE SIZE BQ

CORE STORED AT: Hollinger BuildingLOGGED BY Ken Lapierre

Tre DATES May 2/96 ToMay 8/96

PAGE 1 OF5

FOOTAGE	DESCRIPTION OF CORE	SAMPLE	SAMPLE	Ni	Cu	Co	Au	Commonte	CODES OF ANALYSES
0-116	Drill Casing (casing left in hole)		<u> </u>	<u> -</u>		<u> </u>	<u> </u>	commence	
116-414	ULTRAMAFIC VOLCANIC - Micaceows appearance		<u> </u>						
	-contacts:top = undeterminable, bottom: 40°tca	140- 145	80501	25	100		nil		
	fine grained, massive appearance, dark green to black colour	145- 150	80502	24	112		0.01		
	-non to very slightly magnetic, non-carbonated, (host), locally	150- 155	80503	28	102		0.01		
	up to 15% (averages 10%) irregular trending carbonate	155- 160	80504	34	96		nil		
	and siliceous stringers, local micaceous appearance-	160- 165	80505	33	125		nil		
	oriented at approximately 40° to core axis (t.c.a.), moderately	165- 170	80506	26	78		hil		
	hard, certain sections = ROD of Q% (see below), sulphide	<u> 170- 175</u>	80507	30	20	18	hil		
	mineralization consists of pyrrhotite, pyrite, chalcopyrite,	175- 180	80508	53	75				
	generally associated with or proximal to carbobate	180- 185	80509	38	70	L		<u></u>	
	stringers; sulphide content up to 1/2% (locally) in the form	185- 190	80510	24	88	ļ			
	of grains and patches, sulphide mineralization from 140'-204.2'	<u> 190- 195</u>	80511	27	83	ļ	ļ		
		195- 200	80512	49	108	[ļ		
		200-204.2	80513		Ļ	· · · · ·	nil		
	204.2-206.4- feldspar porphyry- 40°tca, non-mineralized	204.2-206.4	80519	<u> </u>	<u> </u>	<u> </u>	nil		
	<u>238.1-238.9- quartz vein- barren - 30°tca</u>		l	Ļ	<u> </u>	ļ	l		
	247.7-264 - RQD (Rock Quality Determination)= 0% to no rock				<u> </u>		I		
	piece greater than 4" long, local felsic veins			ļ	L				
	288.4-290.7- strongly carbonated siliceous system; - 20°tca	284.6-288.4	80520	37	118		nil		
	gainetiferous, trace very fined grained disseminated	288.4-290.7	80514				nil		· · · · · · · · · · · · · · · · · · ·
	pyrite								
	298.6-300 - broken core								
	319.6-335 - broken core, ROD= 50%, local felsic		<u> </u>						
	340 -357 - trace pyrite associated with carb/silica stringers	<u>840 -345</u>	80515	41	103		nil		
		B45 -350	80516	45	132		0.0	1	
		850 -355	80517	37	114		0.0	1	
		855 -357	80518	40	160		nil		

LAFIENNE EXPLUNATION SERVICES INC.

HOLE NUMBER: SF-96-01 DIAMOND DRILL LOG BQ Core PROPERTY Filo Option PAGE 2 CUMMENTS SAMPLE FOOTAGE SAMPLE Ni Cu Co Au CODES OF DESCRIPTION OF CORE INTERVAL NUMBER ANALYSES feet ppm ppm ppm h/t B95 -400 80521 51 170 b.01 400 -405 80522 38 hil 100 405 -41080523 33 92 hil 0.01 410 -414 80524 62 105 414 -418 414-546.3 ULTRAFIC VOLCANIC - Magnetite 80525 375 92 nil 418 157 contacts; top= 40°tca, bottom= 33°tca (sharp)-trace pyrite -420 80526 6 b.01 medium grained, moderately hard, very dark green colour 1160 30 hi1 420 -425 80527 425 komatiitic appearance to possibly peridotite, moderately to -430 80528 721 84 D.01 strongly magnetic, local "blotchy" appearance, minor sulphide seams (see below) non-carbonated, lineated/oriented from 20 -40°tca, trace serpentine veinlets and stringers 430-432 - heavily broken core pieces/bits, local fe staining, possible fault, undeterminable contacts 442-444 - 2 narrow sulphide rich serpentine stringers at 30°tca hi1 442 -444 80529 944 52 sulphides to pyrite +/- PN nil. 444 -449 80530 030 34 467-472.5 -serpentine rich section of veinlets, stringers 467 -472.5 80531 1030 24 hil non-mineralized, greasy -544 540 80532 L040 40 0.04 050 222 hil 544 -546.3 80533 546.3-679.4 MAFIC VOLCANIC ? nil 546.3-550 80534 1930 18 -contacts:top = 33°tca bottom approximately 40% tca fine to medium grained. dark grey colour moderately hard noncarbonated, slightly to moderately magnetic, decreasing in . intensity away from top contact, lineated 25-30°tca less than 1% talc serpentine, scratches pale white, rare soft serpentine 610 -615 80535 1750 24 nil veining, trace pyrite to non-mineralized 615-616- soft micaceous/chlorite-rich section at 30°tca, 615 -616 80536 714 24 nil 616 -620 80537 1880 28 nil moth-element non mineral 655-670 abundant talc, serpentine alteration section is soft non-magnetic, greasy texture, void of mineralization,

LAFIERRE EXPLURATION SERVICES INC.

.

DIAMOND DRILL LOG BQ Core

Core PROPER

PROPERTY: Filo Option HOLE NUMBER: SF-96-01

PAGE 3

FOOTAGE feet	DESCRIPTION OF CORE	SAMPLE INTERVAL	SAMPLE NUMBER	Ni ppm	Cu	Co	Au q/t	Comments	CODES OF ANALYSES
679.4-	ULTRAMAFIC VOLCANIC -Peridotite ?								
738.3	contacts: top approximately 40°tca, bottom= 40°tca		_						
	fine grained, aphanitic appearance, green black to pale black					I			.l
	colour moderately hard, feldspar? (sillceous (hard))				[
	lenses throughout unit to increasing in intensity towards bottom		_						
	contact, slightly to moderately magnetic, local talc, serpentine								
	rich veinlets (less than 2%) non mineralized	690-695	80538	2290	7		nil	miti-clement	
738.3.	INTERMEDIATE INTRUSIVE?	750-755	80567	1900	34	60	0.0	1 "	
772.5	contacts: top 40°tca, bottom= 40°tca	755-760	80568	2120	28	65	0.0	1	
	fine to medium grained, grey colour, non-carbonated, very slightl	760-765	80569	1990	15	60	0.0	1 ''	
	magnetic, moderately soft to scratches easily with knife,								
	foliation/lineation at approximately 45-50°tca, local chlorite/								
	talc/serpentine-rich veinlets, rock unithas an "altered" appearan	çe	<u> </u>						
	to it, to possible altered feldspar rich gabbro? trace Py,Po					┨			
772.5-	ULTRAMAFIC VOLCANIC		-	1					
801.1	contacts top= 40°tca, bottom= 50°tca	780-785	80539	269	8		nil		
	fine grained, dark grey green colour, slightly magnetic towards	785-790	80540	330	14		nil		
<u> </u>	bottom contact, micaceous appearance, easily scratched,	790-795	80541	463	23		nil		
	non-carbonated, local broken core, very soft (serpentine rich)	795-799	80542	687	61		nil		
	top contact, non-mineralized	799-801.1	80543	362	74		<u></u>	ļ	
801.1-	SULPHIDE ZONE (Conductor 1)	801.1-805	80544	123	188	47	nil	siliceous	
1039.6	contacts: 50°tca, bottom= 35°tca	805-810	80545	73	297	27	nil	siliceous	
	alternating units of highly siliceous, sulphide rich material	810-815	80546	89	258	41	nil	siliceous	
	and ultramafic material; up to 40% pyrrhotit, pyrite +/-	815-820	80547	85	233	108	0.0	lsiliceous	
	chalcopyrite associated with siliceous material (see below)	820-825	80548	115	362	55	0.0	<u>siliceous</u>	
·····	sulphide zone is the source of the anomaly	825-830	80549	66	186	35	nil	siliceous	
		830-835	80550	203	708	87	00	siliceous	
. <u></u>	SILCEOUS MATERIAL	835-840	B0551	156	339	57	0.0	<u>siliceous</u>	
	hard, pale grey, lineated approximately 30°tca, non-carbonated	840-845	80552	205	446	73	10.0	2 siliceous	Pulti-element
	magnetic graphite rich contacts, siliceous host orignted at	845-848	80553	246	210	82	0.0	<u>siliceous</u>	
	approximately 30°tca top contact area associated with alternative	848-850-7	80554	114	214	37	nil	siliceous	
	bands of magnetic seams and pale green micaceous seams?							l	

LAPIENNE EXPLORATION SERVICES INC.

	DIAMOND DRILL LOG BQ Core PROPERTY; Filo Option	HOLE NU	JMBER: S	F-96	-01			F	PAGE 4
FOOTAGE feet	DESCRIPTION OF CORE	SAMPLE INTERVAL	SAMPLE NUMBER	Nì ppm	Cu ppm	Co ppm	Au g/t	Comments	CODES OF
	overall, banding of sulphides at approximately 30°tca (from 5-60°	850.7-855	80555	185	139	24	nil	ultramafic	2
	tca) sulphides as disseminations, discontinuous stringers,	855-860	80556	193	135	42	nil	ultramafic	
	stringers, veinlets, and semi-massive veins of pyrrhotite	860-865	80557	71	68	19	nil	ultramafic	:
	pyrite and local traces and "wisps" of chalcopyrite	865-870	80558	101	157	34	nil	ultramafic	
	sulphide content up to 40% over small widths (less than4')	870-875	80559	211	529	137	0.0	1 ultramafic	most-eliment
	sulphide content overall averages 7% possible zonation of	875-880	80560	73	71	32	nil	ultramafic	
	sulphides from magnetic to pyrrhotite? local folds, flextures	880885	80561	63	57	22	nil	ultramafic	
	crenvation of banding	885-889.3	80562	90	98	35	nil	ultramafic	
	ULTRAMAFIC VOLCANIC								
	contacts:15°tca, fine grained, dark green colour, non-carbonated	889.3-895	80563	74	65	24	ni l	siliceous	
	slightly magnetic, chlorite rich, moderately hard, local	895-900	80564	117	148	45	nil	siliceous	
	(less than 5%) silica host, minor amounts of graphite seams	900-905	80565	175	131	53	ni 1	siliceous_	
	(less than 1%) at approximately 25-35°tca, local sulphides up	905-910	80566	140	525	66	0.01	siliceous	
	to 5% over 1 foot sections to overall less than 2% sulphides to	910-915	80570	45	287	28	nil	siliceous	muhermal
	pyrrhotite, pyrite +/- chalcopyrite, miczeous material presnet	915-920	80571	26	103	14	nil	siliceous	
	(less than 5%)			1	1				
	801.1-850.7 sulphide rich siliceous mateial- possible iron	920-930	80572	31	25	8	nil	ultramafic	
	formation	930-935	80573	22	44	10	nil	ultramafic	
	850.7-889.3- ultramfic volcanic	935-940	80574	16	48	9	nil	ultramafic	
	889.3- 920 -sulphide rich siliceous material possibel iron	940-945	80575	15	27	8	nil	ultramafic	
	formation			1					
	920-943.6 - ultramafic magnetite rich, lost approximately 7' of			1	1				<u> </u>
	core from 920-930		<u> </u>						
	943.6-1028 - sulphide rich to magnetite, po, py, +/- cpy to	943.6-945	80576	14	41	9	nil	siliceous	<u> </u>
	contored bands to possible iron formation	945-950	80577	104	467	86	nil	siliceous	
		950-955	80578	129	500	99	nil	siliceous	mut-chinet
		955-960	80579	20	148	19	nil	siliceous	
		960-965	80580	73	497	62	0.01	siliceous	
		965-970	80581	32	200	33	nil	siliceous	
		970-975	80582	33	298	44	nil	siliceous	
		975-980	80583	19	98	20	nil	siliceous	L
		980-985	80584	14	60	9	nil	siliceous	
		985-990	80585	10	63	5	nil	siliceous	
		990-995	80586	9	52	7	nil	siliceous	I
		990-995	80586	9	52	7	nil	siliceous	-

LAPIENNE EXPLUNATION SERVICES INC.

	DIAMOND DRILL LOG BQ Core PROPERTY: Filo Optio	n HOLE NU	IMBER:	SF-9	6-1				F	PAGE 5
FOOTAGE feet	DESCRIPTION OF CORE	SAMPLE INTERVAL	SAMPLE NUMBER	Ni	Cu	Co	A	u /t	Comments	CODES OF ANALYSES
		995-1000	80587	10	54	9	n	i 1	siliceous	
		1000-1005	80588	24	101	10	n	il	siliceous	
ļ	1005-1006.5- ultramfaic dyke 30°tca, slight magnetic iron-	1005-1006.5	80589	300	135	44	n	i1	musti-ilimist	<u> </u>
	mineralized	1006.5-1010	B0590	86	241	39	n	<u>il</u>	ļ	
		1010-1015	B0591	97	569	35	n	<u>i1</u>	multi-ekenent	
		1015-1020	<u>80592</u>	42	155	23	n	i1		<u> </u>
		1020-1025	<u> 80593</u>	33	148	23	n	i1		I
		1025-1028	80594	35	197	37	n	<u>i</u> 1		·
	1028-1039.6 - sulphide poor, hard, siliceous	1028-1030	<u>80595</u>	18	37	18	n	i1.		
		1030-1035	80596	12_	49	16	n	i1		
		1035-1039.6	80597	36_	26	<u> 17 </u>	n	11		ļ
1039.6-	DACITE?	1039.6-1045	<u>80598</u>	28	42	16	n	i1		<u> </u>
1070	contacts: top = 35°tca, bottom + undeterminable, fine grained to		ļ		<u> </u>	 				Į
	aphantic, grey colour, non to very slightly magnetic , very		<u> </u>	┟		├ 				[
	hard, non-carbonated, local "garnetiferous looking" grains				ļ	┨───┤				<u> </u>
	associated within unit, local siliceous areas, non-mineralized			<u> </u>		├ ∤				<u> </u>
			<u> </u>	<u> </u>		<u> </u>				
		<u> </u>		┟		┝──┤				<u> </u>
	END OF HOLE at 1,070 feet BO Casing left in hole, May 8, 1996	<u> </u>	<u> </u>	<u> </u>		+				
		<u> </u>	<u> </u>	<u> </u>		<u> </u>				<u> </u>
				<u></u>	<u> </u>					<u> </u>
. <u> </u>										
		Δ.	h							
		MANG	a.		┼────	┼──┼				
		1.1.1.1	f-le	<u> </u>		┼──┤				}
					<u> </u>					
				<u> </u>		+				
				<u>├</u> ──						
<u> </u>		}		<u> </u>	<u>├</u>					· ·
					<u> </u>		—t-			
							F	-1		
						<u> </u>				
	······································									
			4					k	the second of the second s	

APIERRE EXPLORATION SERVICES INC.

Kenneth J Lapierre HBSc	OTHER INFO:	TESTS: at - DIP	HOLE NUMBER SF-96-2
PRESIDENT	FOR: Stratabound Minerals	0- 55° N	GRID REFERENCE 2+00W/4+25S
		400- 53° N	ELEVATION -
PROPERTY Filo Option TOWNSHIP Watson CLAIM 1204279 (16 units)		800- 48° N 982- 39° N	AZIMUTH 0 DIP ANGLE-55° N
DRILLING COMPANY Landtech	FOREMAN		LENGIH 982 feet

DRILLING COMPANY Landtech

CORE STORED AT: Hollinger Building LOGGED BY Ken Lapierre CORE SIZE BQ

DATES: May 8/96 TO May 13/96

PAGE 1 OF 5

FOOTAGE	DESCRIPTION OF CORE	SAMPLE INTERVAL	SAMPLE NUMBER	Ni ppm	Cu ppm	CO maa	A a	u t Co	mments _	CODES OF ANALYSES
- 70	Drill Casing									
0-114	MAFIC/ULTRAMAFIC VOLCANIC									
	contacts: top = undeterminable, bottom = broken core									
	fine grain, massive appearance, dark green colour, non-magnetic									
	non-carbonated hard up to 15% multiple-trending carbonate									
	stringers throughout, non-mineralized	111-114	80599					1		
14-143	INTERMEDIATE VOLCANIC									
	contacts: undeterminable to broken core	114-118	80600				ni	1		
	fine grained, grey green colour moderately hard, non-magnetic	118-121	80601				hi	1		
	non-carbonated, cilicified, 10% gtz/k-spar veininc, locally	121-126	80602				hi	1		
-	foliated/lineated at shallow (15-30°tca) angles to core axis tr-	126-131	80603				ni	1		
	up to 2% fine grained subhedral disseminated pyrite at and	131-136	80604				b.	01		
	proximal to veining	136-141	80605				hi	1		
-		141-142	80606				<u> hi</u>	1		
43-226	ULTRAMAFIC VOLCANIC	143-146	80607				hi	1		
	contacts: top= broken core, bottom: irregular to possible 40 °tca									
	fine grained, dark green colour, non-magnetic, non-carbonated,									
	massive appearance, broken core/soft group proximal to top									
-	contact to 171 feet, local isolated barren quartz, trace pyrite									
	(loca;) to generally non-mineralized,								·	
	211-215.0 -intermediate intrusive, 15°tca, trace -1% fine				L					
	grained subhedral pyrite	211-215.0	80608	[0.	03		
226-302.6	INTERMEDIATE/MAFIC VOLCANIC	226-231	80609				hi	1		
	contacts: top=possibly 40°tca, bottom 15°tca to sharp	231-236	80610	66		\$5	<u> 0.</u>	07		
										l

LAPIERRE EXPLORATION SERVICES INC.

	DIAMOND DRILL LOG BQ Core PROPERTY: Filo Optic	n HOLE N	UMBER: S	F-96-	•2			PAGE2
©OOTAGE feet	DESCRIPTION OF CORE	SAMPLE INTERVAL	SAMPLE NUMBER	Ni	Cu Co	Au g/t	comments	CODES OF ANALYSES
	fine to medium grained, pale green colour generally massive	236-241	80611	62	61	nil		
	appearance slightly carbonated, moderate hardness, tuffaceous	241-246	80612	65	49	nil		
	appearance, foliated/lineated to 15-40 °tca, K-spar rich veining	246-251	80613	47	58	nil		
	with up to 1% fine grained pyrite, non-magnetic	251-256	80614	58	50	nil		
		256-261	80615	62	68	nil		
		261-266	80616	62	72	nil		
		266-271	80617	67	65	nil		
		271-276	80618	69	64	nil		
	·	276-281	80619	62	95	nil		
		281-286	80620	76	74	nil		
		286-291	80621	75	58	nil		
		291-296	80622	63	31	nil		
		296-301	80623	61	52	nil		
		301-302.6	80624	58	10:	. nil		
02.6-	ULTRAMAFIC VOLCANIC	302.6-306	80625	52	92	nil		
06	Contacts: top=15°tca, bottom= broken core	306-311	80626	70	95	nil		
	fine grained, dark green colour, non-carbonated, non-magnetic	311-316	80627	66	38	nil		
	unaltered massive appearance, local isolated sulphide (trace)							
	mineralization-py, pn, +/- cpy local possible spinifex texture	366-371	80628	34	96	nil		
	local micaceous appearance, lineation/foliation -30 to45°tca,							
_	less than 5% serpentinite veinlets, feldspar? rich altered	<u> </u>						
	veining down to 440 feet, trace to non-mineralized, moderate hard							
	387-399.5 - K-spar rich altered section, broken core, trace py	387-391	80629	61	50	nil		
		391-396	80630	55	54	nil		
		396-399.5	80631	59	80	nil		
	477.1-479.1 -diabase dyke -45°tca, magnetic non-mineralized							
69-587.	INTERMEDIATE TUFF							
	contacts: top = undeterminable to broken core, bottom=45°tca		_					
·	fine grained, grey colour, soft, slightly carbonated, non-magnetic							
·	no siliceous veining, lineation at approximately 45°tca,		_				l	
· - <u>-</u>	non-mineralized							
	1	1						

LAFIENNE EXPLUNATION SERVICES INC.

	DIAMOND DRILL LOG BQ Core PROPERTY: Filo Option HOLE NUMBER: SF-96-02												
FOOTAGE feet	DESCRIPTION OF CORE	SAMPLE INTERVAL	SAMPLE NUMBER	Ni	Cu	Co	İ	Au a/t	Comments	CODES OF ANALYSES			
587.8-	ULTRAMAFIC VOLCANIC				T.	1							
619.3	contacts: top=45°tca, bottom=30°tca				1								
	grey green colour, non-carbonated, non-magnetic, locally												
	micaceous, moderately soft, altered appearance, local broken												
	core, void of carbonate stringers, non-mineralized												
619.3-	ULTRAMAFIC VOLCANIC - CARBONATE VEINING												
732.6	contacts:top=30°tca, bottom=15°tca - micacous, garnetiferous?												
	fine grained, micaceous, dark grey green colour, lineated at				İ					<u> </u>			
	approximately 35°tca, 10-20% carbonate stringers, to generally	631-636	80632	27	184	<u> </u>		nil		<u> </u>			
	parallel to lineation,, non-magnetic, carbonated, trace up to												
	<pre>}% (locally) pyrite, moderately hard.</pre>			ļ	<u> </u>	<u> </u>	<u> </u>						
•				ļ	<u> </u>		1						
	640.2-645.3- Feldspar porphyry, 30°tca, non-mineralized			<u> </u>	I								
				I			<u> </u>						
	<u>661-668.2- feldspar porphyry, 25°tca, ultramafic xenolitn</u>	661-663.5	80653	33	50	L		nil		<u> </u>			
	(1-2% py), pyrite stringer at 663-663.2' to 45°tca	663-668.2	80634	42	98		1	nil		L			
		681-686	80635	39	136			nil					
	······································	686-691	80636	28	107			0.0	L				
		691-696	80637	35	104			0.01					
		696-701	80638	29	97			nil					
		701-706	80639	25	94		<u> </u>	ni 1					
		706-711	80640	32	135			nil					
		711-716	80641	30	91			ni1					
		730-732.6	80642	85	139			ni1					
732.6-	MAFIC VOLCANIC						<u> </u>			<u></u>			
783	<pre>contacts: top=15°tca, bottom=30°tca (sharp), fine grained,</pre>												
	massive appearance, pale grey green colour, slightly, magnetic,						ļ			·			
	non-carbonated, moderately soft, total absence of carbonate									L			
	stringers, non-mineralized	ļ		L				<u> </u>		ļ			
										 			
	·	L											
	· · · · · · · · · · · · · · · · · · ·	ł								1			

LAFIENRE EXPLORATION SERVICES INC.

DIAMOND DRILL LOG BO Core

PROPERTY: Filo Option HOLE NUMBER: SF-96-02 PAGE 4 FOOTAGE SAMPLE SAMPLE Nì Cu Co Au CODES OF DESCRIPTION OF CORE INTERVAL feet NUMBER ANALYSES ppm ppm ppm q/t Comments GREY SILICIFIED/MICACEOUS/GRAPHITE SULPHIDE ZONE (source of 783-982 conductor) 783-786 80643 59 83 32 nilbiliceous.10% contacts: top=30°tca, bottom= undeterminable to broken core 786-791 80644 92 31 60 nilbiliceous, 10% multi-plana argillaceous host, fine grained, grey black colour, slightly 791-796 45 61 31 80645 nilbiliceous.1d% magnetic, moderately micaceous to 891 feet, lineated/foliated 796-801 80646 33 39 25 nilSiliceous,10% 30-45°tca, silicified, local mineralized (2% po,py) quartz 801-802.5 80647 14 38 13 0.045iliceous,10% veining (less than 1%) non-carbonated, increasing graphite 12 802.5-806 22 38 nilMicarich, 5-78 80648 towards bottom contact, broken core increasing towards bottom 43 52 24 806-811 80649 nilMicarich, 5-78 82 35 contact from 920 feet. overall 3-5% sulphides of pyrite, 811-816 80650 88 nilMicarich.5-78 pyrrhotite, trace chalcopyrite, pentlandite as discontinuous 816-821 80651 111 107 41 nilMicarich.5-78 stringers, blebs, disseminations 821-826 145 309 72 80652 nilMicarich. 5-78 Muh-dered 826-831 80653 107 175 46 nilMicarich.5-77 80654 53 27 831-836 nilMicarich.5-78 836-841 80655 71 54 24 nilMicarich.5-79 783-802.5-10% sulphides pyrite, pyrrhotite, parallel to lineation 841-846 80656 61 90 32 nilMicarich.5-78 162 157 63 strongly siliceous 846-851 80657 nilMicarich.5-7% 851-856 80658 114 152 59 nilMicarich.5-7 802.5-891-Mica-rich argillite, strongly lineated, magnetic, 856-861 80659 57 74 27 nilMicarich, 5-7 5-7% sulphides to po, py to parallel to lineation 67 151 48 861-866 80660 nilMicarich.5-78 83 25 866-871 80661 22 nilMicarich.5-891-982-Massive argillite to graphite rich sections, 2% blebs 8 11 12 871-876 80662 nilMicarich.5-7 of sulphides to py, po, tcpy 876-881 80663 17 4 18 nilMicarich.5= 16 5 17 881-886 80664 nilMicarich.5-18 12 886-891 80665 8 nilMicarich.5-78 71 891-896 80666 91 32 nilArgillite 2 323 148 61 896-901 80667 nilArgillite 28 901-906 613 218 68 nilArgillite 29 80668 597 283 86 906-911 80669 0.01Argillite_2 911-916 80670 800 132 84 nilArgillite 29 million 795 103 78 916-921 80671 nilArgillite 2 921-926 80672 614 168 70 nilArgillite 29 926-931 80673 355 134 65 nilArgillite 29 931-936 80674 471 168 71 nilArgillite 28 936-941 80675 649 107 82 nillArgillite 28 Multi- arman

LATIERNE EXPLUNATION SERVICES INC.

	DIAMOND DRILL LOG BQ Core PROPERTY: Filo Option	Dn HOLE NU	IMBER: S	SF-96	-02				PAGE 5
FOOTAGE feet	DESCRIPTION OF CORE	SAMPLE INTERVAL	SAMPLE NUMBER	Ni ppm	Cu ppm	Co	Au g/	Comments	CODES OF ANALYSES
		941-946	80676	473	297	105	ni	l Argillite 2	4
		946-951	80677	582	192	83	ni	1 Argillite 2	4
		951-956	80678	400	144	56	0.0	4 Argillite 2	
		956-961	80679	582	202	75	ni	1 Argillite 2	muit prosent
	964-982- RQD=20% strongly graphitic, pyritized locally siliceous	961-964	80680	400	157	49	ni	l Argillite 2	\$
		964-966	<u>80681</u>	445	93	72	ni	Graplite 2%	
		966-971	80682	326	90	37	ni	Graplite 28	ļ
		971-976	80683	768	67	60	ni	l Graplite 2%	
	· · · · · · · · · · · · · · · · · · ·	976-980	80684	1530	172	95	ni	l Graplite 2%	
		980-982	80685	2750	444	149	ni	Graplite 28	<u> </u>
			ļ	ļ	ļ	\square			
				ļ	ļ				
		ļ		 		-+			
	hole abandoned at 982 feet due to extensive caving caused by		<u> </u>	 	ļ	╞╼╼┼			
	broken graphitic material					\vdash			
									
	Casing left in hole.								
	END OF HOLE at 002 feat								
	END OF HOLE at 902 teet.			<u> </u>					
		Manu	GI						1
		- www.j.]	<u> </u>	┟───					
	A and the man		†						
	Frit			İ					
									ļ
									
									ļ
									ļ
			ļ		l		ļ		

LAPIERRE EXPLORATION SERVICES INC.

Kenneth J. Lapierre, HBSc. PRESIDENT <u>OTHER INFO:</u> For: Stratabound Minerals TESTS: <u>at</u> <u>- DIP</u> 502-55°N 1022-55°N HOLE NUMBER SF-96-03 GRID REFERENCE 100E/125S ELEVATION -AZIMUTH O° DIP ANGLE -55°N LENGTH 1,022 feet

PROPERTY Filo Option TOWNSHIP Belford CLAIM 1204230 DRILLING COMPANY Landtech

FOREMAN Dave Fullarton

CORE SIZE BQ Core CORE STORED AT: Hollinger BuildingLOGGED BY Ken Lapierre

DATES May 15/96 TOMay 22/96

PAGE 1 OF 2

FOOTAGE	DESCRIPTION OF CORE	SAMPLE INTERVAL	SAMPLE NUMBER	Ni	Cu	Co	Au	Comments	CODES OF ANALYSES
0-219.4	Drill Casing				<u></u>		<u>y</u> /_		
219.4-	SERPENTINITE								
5.32	contacts: top=undeterminable, bottom = gradational								
	fine grained, pale green colour, greasy/silky luster, slightly	322-327	80686	200	06		<u> </u>	nivih-element	
	soapy feel, slightly to moderately magnetic, magnetite grains	327-332	80687	970	7		nil		
	and stringers throughout, non-carbonated soft to very soft	332-337	80688	187) 5		nil		
	void of f liation, increasing serpentine-rich stringers increasing	3							
	in intensity (up to 5%) towards bottom contact	392-397	80689	206	7		nil		
		397-402	80690	209	5		nil	multi clement	
		402-407	80691	2170	6		0.01		
		412-417	80692	2120	5		nil		
		417-422	80693	207	7		nil		
		432-437	80694	216	6				
		437-442	80695	2110	5		nil		
		492-497	80696	2230	6		nil		
		497-502	80697	2380	6		nil	multicelement	
				<u> </u>	ļ	ļ			
		522 - 527	<u>80698</u>	2260	5		nil		
		527-532	80699	2220	5		nil		
53 <u>2-1022</u>	ULTRAMAFIC VOLCANIC-(peridotite?)	532-537	80700	246	6		nil	muly element	
	Contacts: top: gradational _ no sharp definition								
	fine to medium grained, balck grey colour, slightly magnetic	642-647	80701	1530	13		nil		
						└──┤.			Į

OOTAGE		SAMPLE	SAMPLE	Ni	Cu	Co	Au		CODES
feet		INTERVAL	NUMBER	ppm	ppm	ppm	g/t	Comments	ANALYS
	fresh unaltered appearance, "crackle" texture, non-carbonated	647-652	80702	1430	17		<u>hi1</u>		
	local isolated serpentine-rich stringers, non-mineralized,	652-697	80703	2090	7		hil		_
· · · ·	(possible mafic gabbro)								
		817-822	80704	1610	11		hil	ļ	
		822-827	80705	1730	8		<u>hi</u> 1		
		827-832	80706	2710	10		_hi1_		
				<u> </u>					
		902-907	80707	2790	7		<u>_hil</u>		
	907-915 - local areas of soft, talc-rich veins non-mineralized	907-912	80708	412_	19		<u>hil</u>	ļ	
		912-917	80709	1550	10		nil		_
	END OF HOLE at 1 022 feet								
				1					
			<u> </u>				1		
								· · · · · · · · · · · · · · · · · · ·	
		A A.							
	KII DEDIDA.F	Maris	23/4	6					
	(M M M M M M M M M M M M M M M M M M M		171	1					
		4							
	·								
							_		
								ļ	
								L	
			1	1				1	ł

LAPIENNE EXPLORATION SERVICES INC.

LAPIERRE EXPLORATION SERVICES INC.

Kenneth J. Lapierre, HBSc. PRESIDENT	<u>OTHER INFO:</u> FOR-Stratabound Minerals	TESTS: $at - DIP$	HOLE NUMBER S GRID REFERENCE Z	F−96−4 _co∂c#0+75S
PROPERTY Filo Option TOWNSHIP Watson Township		1070 -55°S	ELEVATION AZIMUTH 1 DIP ANGLE	80° -55° S
DRILLING COMPANY Landtech	FOREMAN		LENGTH	1,070 feet
CORE SIZE BQ CoreCORE STO	RED AT: Hollinger Building L(DGGED BY Ken Lapierre	DATES:May 25/96T0 May29/96	PAGE 1 OF 4

FOOTAGE	DESCRIPTION OF CORE	SAMPLE INTERVAL	SAMPLE NUMBER	Ni ppm	Cu ppm	Co ppm	Au g/t	Comments	CODES OF ANALYSES
-155	Drill Casing - overburden to 0+50: gravel/boulders								
	to 50-155: Clay								
55-684	INTERMEDIATE VOLCANIC	155-160	80710	1.11	111				
	<u>Contacts: top = undeterminable, bottom= 45-50° tca</u>	160-165	80711	365	1123	+ +	0.01		
	fine grained, very hard, green grey colour, slightly magnetic	165-170	80712	213	93	 	001		
	(caused by pyrrhotite), non-carbonated, dacitic appearance	170-175	80713	30	131		NIL		
	local isolated carbonate stringers mineralization (see below)	175-180	80714	325	153		D CI		
	of pyrrhotite, pyrite, local micaceous, areas to becoming	180-185	80715	257	121		NK.		
	pronounced down the hole 155-225 up to 5% wisps/discontinuous	185-190	80716	3:4	194		UU		
	stringers of pyrrhotite, pyrite, average 2-3%	190-195	80717	274	154		00		
		195-200	80718	3:4	231.		NL		
		200-205	80719	230	113		DU		
		205-210	80720	188	130		NL		
		210-215	80721	175	171		NIL		
		215-220	80722	ICL	13		0.01		
		220-225	80723	140	35		0.01		
		225-230	80724	11:55	- 55		0.01		
	245-263 - ROD= 50% local cataclastic bieccia			1					
		270-275	80725	240	32		NIL		
		420-425	80726	70	201		DU		
		425-430	80727	4	204		NIL		
		535-540	80728	54	123		00		
	611-629.6 - talcose-rich volcanic, soft, grev colour, 50°tca	611-615	80729	451-	53		Nii		1
	non-mineralized	615-620	80730	1700	44	1	11		
		620-625	80731	1090			11		
			00731	1010				<u>+</u> -	

LAFIERNE EXPLUNATION SERVICES INC.

	DIAMOND DRILL LOG BQ Core PROPERTY: Filo Option HOLE NUMBER: SF-96-04												
FOOTAGE feet	DESCRIPTION OF CORE	SAMPLE INTERVAL	SAMPLE NUMBER	Ni ppm	Cu ppm	Co ppm	Au g/	Comments	CODES OF ANALYSES				
		625-629.6	80732	1010	5		NI						
		629.6-635	80733	107	9		i.						
					j								
	686-687 -5% pyrrhotite pyrite, chalcopyrite, tpentlandite as												
	discontinuous stringers in a siliceous												
		680~685	80734	103	164		4						
<u>685-764.</u>	MAFIC VOLCANIC: 2-3% sulphides	685-687	80735	88	496		Di						
	Contacts: top=45-50° tca, bottom=undeterminable	687-690	80736	39	150		L'IL						
	fine grained very hard, local feldspar throughout, 2-4% feldspar	690-695	80737	63	91		Ú·C						
	silica veinlets/stringers, slightly magnetic, 2-3%	695-700	80738	49	57								
	pyrrhotite, pyrite, tr chalcopyrite as disseminations and	700-705	80739	63	127		- NI						
	discontinuous stringers	705-710	80740	105	139		Nu Nu						
		710-715	80741	125	93		D.O						
	686-687 - 5% pyrrhotite, pyrite, chalcopyrite	715-720	80742	112	129		iı						
	as discontinuous stringers in a siliceous matrix	720-725	80743	74	77								
		725-730	80744	35	15		() ()						
		730-735	80745	115	1.74		11						
		735-740	80746	14	142		<u> </u>						
		740-745	80747	64	125		Kill						
		745-750	80748	75	16		4						
		750-755	80749	44	125		i.						
		755-760	80750	63	53		1						
		760-764.5	80751	70	144		0.0	L I					
764.5-	MAFIC VOLCANIC -semi-massive_sulphides (25% average)												
813.5	contacts: undeterminable												
	fine grained, locally garnetiferous?, very hard, magnetic (from							· · ·					
	sulphides, green colour, slightly carbonated, up to semi-massive												
	sulphides (see below)												
	764.4-790 - 25% dissemination, discontinuous stringers to semi-	764.5-768	80752	191	76		00	ᆀ					
	massive sulphides of pyrrhotite, pyrite, trace chalcopyrite	768-770	80753	91	123		NIL						
		770-775	80754	126	83		<u> ''</u>						
		775-780	80755	143	130								
		780-785	80756	137	79		D'O	·					
		785-790	80757	142	31		NI						
				1	. 1		· 1	1	,				

LAPIENHE EXPLUNATION SERVICES INC.

	DIAMOND DRILL LOG BQ Core PROPERTY Filo Option	HOLE NU	JMBER: SF-96-04	PAGE 3
FOOTAGE feet	DESCRIPTION OF CORE	SAMPLE INTERVAL	SAMPLE Ni Cu Co NUMBER ppm ppm ppm	Au CODES OF g/t comments ANALYSES
	790-813.5-up to 5% sulphides (average 1-2%) pyrrhotite, pyrite	790-795	80758 124 31	NIL
		795-800	80759 153 67	0.02
		800-805	80760 47 17	0.01
	·	805-810	80761 158 36	0.01
		810-813.5	80762 159 31	NIL
813.5-	MAFIC VOLCANIC/INTERMEDIATE VOLCANIC 2-4% sulphides	813.5-815	80763 72 40	0.02
1070	possibly dacite	815-820	80764 17 48	0.01
	contacts: undeterminable	820-825	80765 200 47	NIL
	fine/medium grained, massive, grey green, colour, speckled	825-830	80766 190 36	
	texture, feldspar to gtey in a green aphanitic matrix,	830-835	80767 201 43	NL
	very hard, non-magnetic (except sulphides (po)), non-carbonated	835-840	80768 243 191	N
	wisps_discontinuous and disseminations of pyrite and pyrrhotite	840-845	80769 105 32	
	locally up to 5-7% over narrow widths (less than 1.0 foot)	845-850	80770 211 41	
		850-855	80771 713 33	
		855-860	80772 502 90	
	813.5-1005 - 2-4% sulphides to up to 7% sulphides over narrow	860-865	80773 179 41	
	(less than 5 feet) widths	865-870	80774 216 60	11
		870-875	80775 223 47	
		875-880	80776 268 56	
		880-885	80777 257 7	h
		885-890	80778 179 29	
		890-895	80779 141 45	1
		895-900	80780 123 24	
		900-905	80781 101 34	
		905-910	80782 25 5	
		910-915	80783 124 41	
		915-920	80784 182 51	
		920-925	80785 762 43	
		925-930	80786 221 42	
		930-935	80787 155 44	
		935-940	80788 231 44	
		940-945	80789 191 36	<u>+"</u>
		945-950	80790 173 61	
		950-955	80791 105 52	NIL
1		ţ		t I

LAPIENNE EXPLURATION SERVICES INC.

	DIAMOND DRILL LOG BQ Core PROPERTY	: Filo Option	HOLE NU	MBER: SF	-96-	04				PAGE 4
FOOTAGE feet	DESCRIPTION OF CORE		SAMPLE INTERVAL	SAMPLE NUMBER	Ni ppm	Cu ppm	Co	Au g/t	Comments	CODES OF ANALYSES
		9	55-960	80792	194	66		NIL		
		9	60-965	80793	1151	54		μ		
		9	65-970	80794	234	152		U U		
		. 9	70-975	80795	143	33		. 11		
		وا	75-980	80796	250	60		H.		
		9	80-985	80797	218	61		ti.		
		9	85-990	80798	421	50		- 1,		
		9	90-995	80799	23	45		11		
		9	95-1000	80800	251	44		202		
		1	000-1005	80801	249	56		NiL		
	1005-1070 - trace 1% sulphides	1	005-1010	80802	TicH	49		u		
		1	010-1015	80803	155	53		N		
		1	015-1020	80804	132	38		h		
		1	020-1025	80805	202	51		۲.		
		1	025-1030	80806	1215	52		u		
_		1	030-1035	80807	200	37		H		
		1	035-1040	80808	201	33		N		
		1	040-1045	80809	145	27	1	ų.		
		1	045-1050	80810	124	58		1		
		1	050-1055	80811	121	44		- 11		
		1	055-1060	80812	240	123		K		
		1	060-1065	80813	324	55		11		
		1	065-1070	80814	297	39		н		
	END OF HOLE (casing left in hole) 1070 feet (326 meters)								
	25	SIATIC			<u> </u>				•	
	/ / //			1						
			Mar	30	41					
	-(NQV	NAMENT	1.000							•
		· [1]								
	F-	1. 0.5								
	·									

Lapierre Exploration Services Inc.,

.

Lapierre Exploration Services Inc., PO Box 1433 15 - 637 Algonquin Blvd., East Timmins ON P4N 7N2

Phone: (705) 267-7389 Fax: (705) 267-7389

APPENDIX II: MULTI-ELEMENT DATA

STRATAB. D MINERALS	1270 FEWSTER DRIVE, \ 3 MISSISSAUGR, ONTARIO LAW-124	REPORT NO. : 1 31
ATTN: X. LAPIERRE	PHONE #: (905)602-8235 PAX #: (905)206-0513	Page No. : 1 vx 1
		File No. : MY28NA
	I.C.A.P. PLASMA SCAN	Date : MAY-29-1996
61-1837-PG1	Aqua-Regia Digestion	

6W-1832-PG1

SAMPLE #	: :	٨g	A)	A s	1		Ba	Be	16	Ca	Cđ	Co	Cr	Cu	fe	Ng	Ħn	flo	ile .	NÍ	₽	Pb	Sab.	\$c	Sn	\$r	Tİ	v	¥	¥	En	Er -
		PP		ÞP	•	ppa	PPn	ppe	n ppq	4	P Pa	₽P™	P P®	Ppa		*	PP	ppa	*	P Pa	. ppa	թթո	ppm	PPe	P P¤	ppm	₽₽ ¤	PPa	<u>ppa</u>	pp	Ppa	Ppa
															•							•	•									
80537		< 1	0.63	2	5 <	10	31	< 1	• • •	i 1.4	< 1	58	450	49	1.7	2.6	250	< 2	(0.01	999	18	€ 2	< 5	2	< 10	140	130	3	< 10	< 1	23	< 1
80538	:	< 1	0.06	< <	5 <	10	- 5	< 1	•	0.17	< 1	68	140	5	3.1	3.2	520	< 2	<0.01	999	16	€ 1.	30	2	< 10	15	22	< 1	< 10	< 1	14	< 1
80552	:	< 1	0.67	5	5 <	10	10	< 1	:	0.13	i < 1	73	410	410	16	1.1	180	6	0.02	280	270	6	< 5	3	< 10	4	680	26	< 10	- 4	130	<1 ····
80553		∢ 1	0.77	' « '	5 <	10	7	< 1		0.16	< 1	79	270	210	19	0.82	140	8	0.02	260	310	5	< 5	5	< 10	4	880	40	< 10	4	210	12
80559		< 1	0.87	7	5 <	10	8	< 1	5	0.53	< 1	120	180	500	12	1.0	230	< 2	0.03	240	190	2	¢ 5	3	< 10	4	980	34	< 10	3	45	4
80567		< 1	0.34	2	5 <	10	< 1	< 1	5	1.7	< 1	55	140	45	2.2	2.7	330	< 2	ro.01	999	24	c 1	5	1	< 10	120	67	< 1	< 10	1	45	< 1
80568		< 1	0.05	3	s <	10	1	< 1	< 5	0.75	< 1	62	130	28	3.2	2.9	390	< 2	(0.01)	999		2	30	1	< 10	38	. 9	< 1	< 10	< 1	30	< 1
80569		< 1	0.02	•	5 c	10	< 1	< 1	< 5	0.24	< 1	58	66	14	2.4	э.о	400	< 2	(0.01)	999	14	< 1	30	1	< 10	6	6	< 1	< 10	c 1	27	<1
80570		< 1	0.18	< :	5 <	10	5	< 1	< 5	0.37	< 1	31	390	270	17	0.48	110	6	رم.01	110	340	•	c 5	< 1	< 10	4	130	8	< 10	2	19	c 1 3
80578 SF-96-1		< 1	0.09	• !	5 c	10	2	< 1	< 5	0.36	< 1	100	250	470	25	0.13	94	4	(0.01	140	540	21	c 5	< 1	< 10	3	76	< 1	c 10	4	15	6
	÷					, li							•		;																	
BOSB9 4		< 1	1.4	30) (10	78	< 1	< 5	7.2	< 1	37	130	110	6.8	2.1	810	< 2	0.10	250	2000	6	<'5	7	< 10	580	450	85	< 10	17	120	3
80591		< 1	0.50	< :	5 <	10	13	< 1	د 5	1.1	< 1	42	290	520	20	0.85	220	4	0.02	100	550	5	< 5	2	< 10	130	840	21	< 10	6	-48	13
80644		< 1	0.68	90) (10	15	< 1	< 5	0.30	¢ 1	30	380	95	7.7	0.50	230	< 2·	(0.01	68	270	6	< 5	z	< 10	8	310	25	< 10	4	240	6
60652		< 1	1.9	< :	5 C	10	21	< 1	< 5	0.49	< 1	64	610	300	9.6	1.7	150	2	0.06	150	320	7	c 5	9	< 10	7	850	82	< 10	5	490	8
60657 (-A) T		c 1	2.3	< :	5 <	10	32	< 1	< 5	0.16	< 1	58	550	150	5.9	2.1	140	4	0.De	160	280	i	c 5	34	< 10	3	1000	120	c 10	5	810	10
2440-																																
80670		< 1	0,90	< 5	> <	10	28	< 1	< 5	0.20	< 1	61	670	130	5.8	1.5	140	4	0.01	820	130	10	c 5	2	< 10	3	450	29	< 10	< 1	290	4
80675		< 1	1.0	< 5	5 «	10 .	47	< 1	< 5	0.65	< 1	75	1100	100	4.6	1.6	170	< 2	0.01	680	170	2	c 5	Z	< 10	5	710	52	< 10	1	180	5
0679		< 1	1.2	< 5	, «	10	22	< 1	< 5	0.18	< 1	75	470	190	5.2	1.9	150	4	0.02	600	250	3	c 5	6	< 10	4	530	49	< 10	3	710	6
						-																	•									
						1	• •							-	4				• •													
						2																÷										
							•								•									÷	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		÷					
	•											•		-	-			:,				2										
	:														- -			- ;		•••									:			
	•										•	-	-																÷			
	,										•									• • • ,			•••		ر در ورون							
						् - 		1				•	12	· · ·	÷								.:			•			•••			
																			÷ •:							·	· -					

1. .5 ym sample is digested with 2 ml of 311 HCL/HW03 . 95 C.for 90 min and diluted to 10 ml with DI M20 this method is partial for many oxide materials

STRAT. U	ND	MINER	ALS					127 PNO	0 FERSTER Re 4: (90	96 IV 53602	1 -8	12 3 8	13513 781	54299_0WI 8: {905}2	NLLO 06-051	144-1 3	<i>ب</i> هر.			RE Paj	poks I pe No	ko. :). :	t) 	50 1		
PROJ: 3296									-			-		n 603	N					•1	le No.	±	38034	A		
									I.	C.A	• F •	. E's Decis	al ara	na sua tion						Pe	te	:	Jup -0	3-122	•	
৫৮-1839-৫৪1 ত										•		Leyua	•													
SAMPLE &	•	Ag Al	An 77 ^m	8 8 99- 9	e Br	n - AL m - gymt	Ca X	69 220	Co Cr	Cu 999	r• 3	99g _ 14	Sin equi	No Sa yya S	art yen	774	₽b - 9Pm	Sb PPT	Sc / So 214 / 274	Sr SP ^a	T1 Pyra	27m - 8 W	9 9 9 9	ند : ۲۹ (۲۹ ۱	i fr m pp	°.≥ •
0068 5	•	4 1 0.05	< 5 c	10	3.	1 4 5	40 . 01		82 660	•	4.1	3.5	540	¢ 2(0.01	***	22	7	30	2 x 10	1.	36	< x <	10 e	1		1
80690 80697		< 1 0.03	10 c	10	2 e 1 e	1 < 5	«0. <i>0</i> 1 0.07	c 1 < 1	84 610 87 510	5.	4-0 4-0	3.6 3.6	440 730	< 2<0.01	999	14 28	< 1 < 1	25 25	2 < 10	9.	16	<14	30 4	1 1		1
80700	•	< 1 0.09	< 5 <	10	4 <	1 < 5	0.20	< 1	93 560	5	4-1	3.5	680	+ 240.0X	999	28	< 1	25	2 4 19	620	22	< 1 <	10 4	1 1	12 1 (L
					SF	76-	03	>					•					•		•				•	•	
																						•				•
					,																	•				
• .			•										-					4	*							
. '					-								-	•										* •		
								٠	• •																	07-
μ σ σ																										24-96
1994 - 19													-	.'			-			•						11:34A
<u>ू</u> न				-											•											. 3
वि: 5:											•			•	•							•			17	
ው ፓ ጉ							•							•	-							÷				`9 #
						•	•						•									\sim			1	ω
5 gm sample is . Dt. 95 C.for 90 min This method is par	diges and tial	ited with dilated t for many	Z ml e to 10 m oxide (f 3:1) 1 with materia	NCL/NN DI N2 La	03 0									÷				Ra	1	Ċ) se	d	:.	· · ·	:

731/96

Friday, July 26, 1996

Mr. Stan Stricker Stratabound Minerals Corp. Suite 518, 222-58th Avenue S.W. Calgary, Alberta, T2H 2S3

Dear Mr. Stricker,

Invoice #001-Watson Project, Timmins, Ontario--Diamond Drill Program

1.	All-inclusive-	-Supervision	/geology/core	logging/report	writing	\$16,000.00
						· · · · · · · · · · · · · · · · · · ·

2	Expenses:	chopper pad construction		\$16,000.00
	-	snow removal		319.44
		assays		5,257.90
		mileage		<u>1,089.00</u>
		-	sub total	\$38,666.34
			GST	1,196.23
			Total	\$39,862.57

Total Amount Due\$39,862.57

Regards,

repierie MI

Kenneth J. Lapierre HBSc. FGAC. -consultant geologistOn account with: Mr. Ken Lapierre 637 Algonquin Blvd. East Hollinger Building Timmins, Ontario

Re: Cutting of Drill pads and helicopter pads, Watson and Belford Townships.

At a rate of: \$4,000.00/pad inclusive of helicopter costs, crew and gear

2 pads, grid C, Belford, Watson..... \$8,000.00

Dated: May 06,1996

Signed: Yvon L. Collin

P.O.Box 1880 Timmins, Ontario P4N-7X1

On account with: Mr. Ken Lapierre 637 Algonquin Blvd. East Hollinger Building Timmins, Ontario

Re: Cutting of Drill pads and helicopter pads, Watson and Belford Townships.

At a rate of: \$4,000.00/pad inclusive of helicopter costs, crew and gear

2 pads, Grids A and F, Watson. Belford Twp.

Total of this invoice..... \$8,000.00

Dated: May 06,1996

Signed:

J.C.Grant P.O.Box 1880 Timmins, Ontario P4N-7X1

6. d'enrg. Vendeur TAX REG. No. VENDU À SOLD TO LIVRÉ À SHIP TO ADRESSE ADDRESS 26	CE504 C/O Mr. F R.R. #2, Timm Res. 263-2037 $O \times 143$ $O \times$	D Ont. Ltd. Renó Lapointe lins, Ont. P4N 7C3 $E \times Pager 268-2391$ herefore a construction of the second seco	Selvices INC	DATE DATE COMMAND CUSTOMEI VENDEUR SALESMAN CONDITION TERMS F.A.B. F.O.B.	MERO SER 2 . L E DU CLII R'S ORDE	3404	26 26) E 0000 05/
BUANTITE			Strate Constraint	and a state of the second second second second second second second second second second second second second s	Line danie in	MON MOL	ANY INTERNET	1
N. R. L38 - 2	ic SNO.	" Remount				300	00	
	657	R106523095				19	44	
	•							
		~ 11 Cr 9	u.e.tt	-02	74			24
		APCIN						11
		BALLER				7.0	411	
Davene DCB 38		MHLANCE 1	JUE			1.4/9	174)	1

.OMMENTS: Net 30 Days		705771. N	650.3
	Timmins, Ontario P4N-7X1		•
		•	

•

•

Swastika Laboratories P.O. Box 10 Swastika, Ontario POK 1T0

NO: 0003678 DATE: 06/06/9

1

PAGE:

SOLD TO: STRATABOUND MINERALS PO BOX 1433 TIMMINS ONTARIO P4N 7N2

,

GST Number: R132862640

SHIP TO:

Same

2640

Proj #/P.O. # SF96

TEM NO.	UNIT DESCRIPTION		MOUNT
52	Au Au	7.50 3	90.00
52	Cu	2.50 1:	30.00
52	Ni	1.50	78.00
52	Sample Prep	3.50 18	32.00
	Cert #6W-1963-RA1		
53	Au	7.50 33	97.50
53	Cu	2.50 1	32.50
53	Ni	1.50	79.50
53	Sample Prep	3.50 1	85.50
	Cert #6W-1964-RA1	e ^r	
	GST @ 7%	1	10.27
			3.20
COMMENTS			85 27
Net of Days			00.41

ð- • Swastika Laboratories P.O. Box 10 **INVOICE** Swastika, Ontario Ç, POK 1T0 NO. المعنقين الم المعنقين 00036742 DATE: 06/04/94 • SOLD TO: SHIP TO: PAGE: 1 STRATABOUND MINERALS PO BOX 1433 TIMMINS ONTARIO Same P4N 7N2 , T Number: R132862640 Proj #/P.O. # SF96

,

TEM NO.	UNIT	G P UNIT PRICE	AMOUNT
15	Au	7.50	112.50
4	Multi Element	8.40	33.60
•	Cert #6W-1839-RA1		
9	Au	7.50	67.50
9	Cu	2.50	22.50
9	Ni	1.25	11.25
9	Sample Prep	3.50	31.50
	Cert #6W-1911-RA1		
	GST @ 7%		19.54

COMMENTS:	and the second second second second second second second second second second second second second second second
Net 30 Days	298.39
L	

GST Number: R132862640

Proj #/P.O. # SF96

r	EM NOTING AN QUANTITY AND	UNIT	DESCRIPTION,	en an the state of the state of the state of the state of the state of the state of the state of the state of t	G. States	P. UNIT PRICE	AMOUNT
	15 🤊	Cu	i.	t*-	1	2.50	37.50
	1.5	Ni				1.25	18.75
	15	Sample Pr Cert #6W-	ep 1839-RA1			3.50	52.50
		GST @ 7%					7.62

COMMENTS:

Net 30 Days

116.37

	• • • •	
ar		e la la la la la la la la la la la la la
Swastika Laboratorie P.O. Box 10 Swastika, Ontario) S	INVOICE
POK 1T0		NO: 0003670 DATE: 05/29/9(
SOLD TO: STRATABOUND MINERALS PO BOX 1433	SHIP TO:	PAGE:
TIMMINS ONTARIO P4N 7N2 ,	Same	
GST Number: R132862640	Proj #/P.O. # N/A	
18	Multi Element Cert #6W-1832-PC1 GST @ 7%	8.40 [°] 151.20 10.58
		₹.
COMMENTS Net 30 Days	2	

•

Swastika Laboratories P.O. Box 10 Swastika, Ontario POK 1T0

. SOLD TO: STRATABOUND MINERALS PO BOX 1433 TIMMINS ONTARIO P4N 7N2

GST Number: R132862640

1

Proj #/P.O. # SF96

Same

	TEM NOT UNIT	DESCRIPTION	G F		NBAMOUNT
	5	Au		7.50	37.50
	5	Co		2.50	12.50
	5	Cu		1.25	6.25
	5	Ni		1.25	6.25
	5	Sample Prep Cert #6W-1840-RA1		3.50	17.50
		GST @ 7%			5.62
				•	
$\frac{1}{2}$	COMMENTS:			ter betidens view, ben ditte bit versiteitigener	
	Net 30 Days			101614.	85.62

INVOICE ^{NŐ:} 000/3668: DATE: 05/28/9

PAGE: 1

SHIP TO:

Ń

• • • •

Swastika Laboratories P.O. Box 10 Swastika, Ontario POK 1TO

INVOICE

NO: 00036632

DATE: 05/22/94

PAGE: 1

SOLD TO: STRATABOUND MINERALS PO BOX 1433 TIMMINS ONTARIO P4N 7N2

GST Number: R132862640

.

,

Proj #/P.O. # SF

Same

:

SHIP TO:

TTEM NO	DESCRIPTI		MOUNT
38	Au	7.50	285.00
38	Co	2.50	95.00
38	Cu	1.25	47.50
38	Ni	1.25	47.50
38	Sample Prep	3.50	133.00
	Cert #6W-1769-RA1	L	
	GST @ 7%		42.57

• .

ر.

COMMENTS: Net 30 Days		10/ALL 650.57
	· •••	and the second second second second second second second second second second second second second second second

Swastika Laboratories P.O. Box 10 Swastika, Ontario POK 1T0

INVOICE NO: 0003662; DATE: 05/21/90

1

PAGE:

SOLD TO: STRATABOUND MINERALS PO BOX 1433 TIMMINS ONTARIO P4N 7N2

GST Number: R132862640

,

EM NORTH GUANTITA	UNIT		AMOUNT
33	Ău	7.50	247.50
22	Cu	2.50	55.00
22	Ni	1.25	27.50
33	Sample Prep	3.50	115.50
	Cert #6W-1751-RA	1	
11	Au	7.50	82.50
1.1	Cu	2.50	27.50
11	Ni	1.25	13.75
11	Sample Prep	3.50	38.50
	Cert #6W-1768-RA	1	
	GST @ 7%		42.57
		<u>\</u> .	
		\mathcal{C}^{\prime}	
COMMENTS:		Ja water skillere nedelaret sederate skilleret sederater.	
Net 30 Days			650.32

Proj #/P.O. # SF

SHIP TO:

٠.

No-

Same

Lapierre Exploration Services Inc.,

Lapierre Exploration Services Inc., PO Box 1433 15 - 637 Algonquin Blvd., East Timmins ON P4N 7N2

Phone: (705) 267-7389 Fax: (705) 267-7389

FOLDER 1: CLAIM MAPS

Lapierre Exploration Services Inc.,

Lapierre Exploration Services Inc., PO Box 1433 15 - 637 Algonquin Blvd., East Timmins ON P4N 7N2

Phone: (705) 267-7389 Fax: (705) 267-7389

FOLDER 2: CROSS SECTIONS

Ministry of Northern Development and Mines

Report of Work Conducted After Recording Claim

Transaction Number				
W9660.	00 518			

Mining Act

ersonal Information collected on this form is obtained under the authority of the Mining Act. This information will be used for correspondence. Questions about is collection should be directed to the Provincial Manager, Mining Lands, Ministry of Northern Development and Mines, Fourth Floor, 159 Cedar Street, udbury, Ontario, P3E 6A5, telephone (705) 670-7264.

nst⊮uctions:	 Please Refer t Record A sepa Techni A sketo 	t o le ira ca 42B16SW0010 W9660.00 ch,	518 WATSON	ses ک. 900 مرب	sment work or consult the Mining this form.
Recorded Holder(s)			11 . 1.	Client No.
STATION (Picho	M. VERALS (E	A/1 deves	R. F.L.	Telephone No.
1367	- 15	SC. Jimon	ling, Cat.	puld-1	4 767-11151
Mining Division		1	Township/Area	El a Da	M'or G Plan No. $a_1 = 1/7F$ $f = 1/25/7$
Dates	elp/x		WATSEN /132	- PURO	11/10/ 9-1092
Work Performed	From	May 1/1	<u> </u>	10: Only	26/96.
Vork Perform	ed (Chec	k One Work Group O	nly)		, ,
Work Gro	pup			Туре	
Geotechnic	al Survey	Gener	Corr lecard	· Core	The Ascar Local
Physical We	ork,	Prout of	1 CHALL PLACE ING	<u>j Naren</u>	
	ming	V DRILL (14)	٤		
Rehabilitatio	on	/			
Other Autho Work	prized		·		
Assays					
Assignment Reserve	from			*2	61.479-B
ersons and S	Survey Co Nam	ompany Who Perform e	n ed the Work (Give Nar	ne and Address of A Address	Author of Report)
		- 21 - 2	lo P.	E Fina ti	
L. 10	2 - 17	This sea low 173	1. Dex	<u> 1880 Dr.</u>	nmins, Khi
STAPICK,	KE L	17.) EKUKES / NO	C 23 - VLGEM	and C	D. F-CC6, LICANTENS
<u></u>	the Ar	V/I).	<u></u>	10 SIVA	SJIKO KOR
MR. VEN.	E LAS	21.15.	R.R. # 2. 7	morner - F	RECORDED
ttach a schedu	ile if nece	ssary)			
ertification of	Benefici	al Interest * See N	ote No. 1 on reverse si	de	SEP 5 1996
certify that at the report were record by the current rec	time the wo ed in the cur corded holde	ork was performed, the clair rent holder's name or held ur er.	ns covered in this work ider a beneficial interest	Record	ded Holder or Agent (Signature)
ertification of	Work Re	eport		-4/0/161	- process
certify that I hav ts completion and ame and Address of	e a persona annexed r of Person Ce	al knowledge of the facts se eport is true. rtifylag	et forth in this Work report, ha	ving performed the work	or witnessed same during and/or after
5	1. 1.	C. Cont	RO	1653)	
lepone No.	151	Date	Certifie	ed By (Signature)	the st
	<u> </u>	· ~ · · · · · · · · · · · · · · ·			- <u>14,007</u>
Total Value Cr. Re		ate Recorded	Mining Desertion		
			winning Hecolder		E CELVE
358	0-19 De	erned Approval Date	Date Approved		
	4''	DEC 4/96	NAN. 2	7,1997	ULF 0 1770
\$26		ate Notice'for Amendments S	ent	,	B 1:30
• -				PO	RCUPINE MINING DIVISION

10241 (D201)			-													Work Report Number for Applying Reserve
of Claims	X 3					as CH041-1	52 EXDE 1-1	P-1204252	× 64021-6	2564061-1	1-1201531	1-119332	6 hersel	12.1193333	y-1190320	Claim Number (see Note 2)
						6	20	15		E)	/2	14	16	16	16	Number of Claim Units
i otali value Work Done	32,562 a	961,479				A PAL TO			184,401 8				22675	2	2	Value of Assessment Work Done on this Claim
Total Value Work Applind	Q					4:	Ť.	1	Ļ	1	-	1 60 €	tea to	Arr C	Hac E	Value Applied to this Claim
Total Assigned From																Value Assigned from this Claim
Total Reserve	. The State on	261,479				64,488	<u>2</u>		184,481				67, SIONIN			Reserve: Work to be Claimed at a Future Date

Credits you are claiming in \Im 's report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to poorize the deletion of credits. Please mark (ν) one of the following:

1. Credits are to be cut back starting with the claim listed last, working backwards.

2. It Credits are to be cut back equally over all claims contained in this report of work.

3. \Box Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

Note 2: If work has been performed on patented or leased land, please complete the following:

I certify that the recorded holder had a beneficial interest in the patented or leased land at the time the work was performed.

Ministry of Northern Development and Mines

Ministère du Développement du Nord et des mines

Statement of Costs for Assessment Credit

État des coûts aux fins du crédit d'évaluation

Mining Act/Loi sur les mines

conal information collected on this form is obtained under the authority the **Mining Act**. This information will be used to maintain a record and bing status of the mining claim(s). Questions about this collection should irected to the Provincial Manager, Minings Lands, Ministry of Northern elopment and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario 6A5, telephone (705) 670-7264.

Direct Costs/Coûts directs

Туре	Description	Amount Montant	Totals Total global
ges aires	Labour /Salen KEMOLAL Main-d'oeuvre	3/9.44	{
	Field Supervision Supervision sur le terrain		319.44
ntractor's I Consultant's	TYPE GEOLGICAL SUPER	Visial	
s its de itrepreneur	Cure logging, Respers	16 000	
ie l'expert- seil	ASSay COSTS	5,7.57.40	16,000
philes Used Influres	(HO PER P.08		5,257.9
ARACT	4 PRILL SIVE		
575 .	PEPAPATION.		
	Hads @ Hooo. Pro	16000 00	16000-00
ipment tal	Туре 75,64	57.	
ation de érief			
			1,196.2
	Total Dir Total des coû	ect Costs ts directs	38,733.53

The recorded holder will be required to verify expenditures claimed in this statement of costs within 30 days of a request for verification. If verification is not made, the Minister may reject for assessment work all or part of the assessment work submitted.

| Discounts

lork filed within two years of completion is claimed at 100% of re above Total Value of Assessment Credit.

'ork filed three, four or five years after completion is claimed at)% of the above Total Value of Assessment Credit. See alculations below:

/alue of Assessment Credit	Total Assessment Claimed
× 0.50 =	

ication Verifying Statement of Costs

by certify:

i)

amounts shown are as accurate as possible and these costs icurred while conducting assessment work on the lands shown accompanying Report of Work form.

I am authorized

(Recorded Holder, Agent, Position in Company)

B this certification

Les renseignements personnels contenus dans la présente formule sont recueillis en vertu de la **Loi sur les mines** et serviront à tenir à jour un registre des concessions minières. Adresser toute quesiton sur la collece de ces renseignements au chef provincial des terrains miniers, ministère du Développement du Nord et des Mines, 159, rue Cedar, 4^e étage, Sudbury (Ontario) P3E 6A5, téléphone (705) 670-7264.

2. Indirect Costs/Coûts indirects

** Note: When claiming Rehabilitation work indirect costs are not allowable as assessment work.

Pour le remboursement des travaux de réhabilitation, les coûts indirects ne sont pas admissibles en tant que travaux d'évaluation.

	Туре	Description	Amount Montant	Totals Total global		
	Transportation Transport	Type TRUCK VO				
		HELICOPTER SIDE	4,089.00			

	Food and Lodging Nourriture et hébergement	+ 1.00.11 <u> </u>				
	Mobilization and Demobilization Mobilisation et démobilisation					
-		Sub Total of India Total partiel des coûts	rect Costs Indirects	1,089.00		
Amount Allowable (not greater than 20% of Direct Costs) Montant admissible (n'excédant pas 20 % des coûts directs)						
ר (וו	otal Value of Asses Total of Direct and A ndirect costs)	sment Credit Valeur tota llowable d'évaluatio (Total des co et indirects a	le du crédit n pûts directs demissibles	39,862,	90.	

Note : Le titulaire enregistré sera tenu de vérifier les dépenses demandées dans le présent état des coûts dans les 30 jours suivant une demande à cet effet. Si la vérification n'est pas effectuée, le ministre peut rejeter tout ou une partie des travaux d'évaluation présentés.

Remises pour dépôt

- 1. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à 100 % de la valeur totale susmentionnée du crédit d'évaluation.
- Les travaux déposés trois, quatre ou cinq ans après leur achèvement sont remboursés à 50 % de la valeur totale du crédit d'évaluation susmentionné. Voir les calculs ci-dessous.

Valeur totale du crédit d'évaluation × C	PECEIVEM
Attestation de l'état des co	Qts SEP 5 1996
J'atteste par la présente : que les montants indiqués sont	1:30
dépenses ont été engagées pour sur les terrains indiqués dans la fe	dissuer les travaux d'évaluation prmule de rapport de travail ci-joint.
Et qu'à titre de	je suis autorisé

à faire cette attestation.

Signature Date

Nota : Dans cette formule, lorsqu'il désigne des personnes, la prescutin est utilier au sere formule

l	Transaction No./N	I° de transaction
	W9660.	00 518

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

P.O. Bag 3060 Hwy 101 East South Porcupine, ON PON 1H0

(705) 235-1600 Fax: 235-1610

Via

September 5, 1997

Fax

Stratabound Minerals Corporation Box 1880 Timmins, ON P4N 7X1

Attention: John C. Grant

Dear Mr. Grant:

Subject: APPROVAL OF ASSESSMENT WORK CREDIT ON MINING LAND, CLAIM(S) P-1190320 ET AL IN WATSON/BELFORD TOWNSHIPS

Assessment work credit has been revised for this submission, following additional information provided by Kevin Filo on January 27, 1997.

.

From the costs claimed, the following expenses have been disallowed:

Snow removal\$3194 chopper pads\$16,000Geological supervision, core logging,
reports (Costs should be included as
part of overall drilling program costs)\$16,000

...2

John C. Grant

Assessment work credit has been approved as outlined on the attached Distribution of Assessment Credit form. The credit has been approved under Section 16 (Exploratory Drilling) of the Assessment Work Regulation.

The approval date is January 27, 1997.

If you have any questions regarding this correspondence, please contact Terry Binkley at (705) 670-5801.

Sincerely,

Gary White Mining Recorder Porcupine Mining Division

/tb

Encl.

The following credit distribution reflects the value of assessment work performed on the mining lands.

Date: September 5, 1997

•

Transaction Number: W9660,.00518

<u>Claim_Number</u>	<u>Work Performed</u>	Work Reserved
P-1204249	\$67,510	\$67,510
P-1204280	64,488	64,488
P-1204279	129,481	129,481
Total	\$261,479	\$261,479

NOTES

400 surface rights reservation along the shores of all lakes and rivers

2 8 W -25 W+ 24 W + 6 on 23 ₩ [⊥]

Σ **D** ┢ 2 ٩ Ċ 22 W S -

20 ¥ -19M-

200

•

