REPORT ON THE
AIRBORNE GEOPHYSICAI SURVEY
ON THE PROPERTY OF
RISE RESOURCES LTD.
ABBIE IAAKE AREA, PUKASKWA RIVER AREA, KEATING ADDITIONAL AND LEGARDE ADDITIONAL TOWNSHIPS, ONTARIO

RECEIVED
JUN 131988
MIIIING LANDS SECTION
H. FERDERBER GEOPHYSICS LTD.

REPORT ON THE
 COMBINED AIRBORNE GEOPHYSICAL SURVEY ON THE PROPERTY OF
 RISE RESOURCES LTD. ABBIE LAKE AREA, PUKASKWA RIVER AREA, KEATING ADDITIONAL AND LEGARDE ADDITIONAL TOWNSHIPS, ONTARIO

 INTRODUCTIONIn March 1988, a combined airborne geophysical survey was carried out on the Rise Resources property in the areas of Abbie Lake and Pukaskwa River and the Townships of Keating Additional and Legarde Additional, Sault Ste. Marie Mining Division, Ontario. Magnetic and VLF-electromagnetic data were collected by the airborne division of H. Ferderber Geophysics Ltd. The survey was flown in a north-south direction for a total of 449.71 miles from a base out of Wawa, Ontario.

The magnetic survey provides information which help define underlying geological structures and identifies potential economic mineralized concentrations which may contain variations in accessory magnetic minerals. The VLFelectromagnetic survey outlines conductive zones which may represent metallic sulphide deposits and/or shear zones containing economic mineralization.

PROPERTY DESCRIPTION, LOCATION AND ACCESS

The Rise Resources property is comprised of 416 claims in the Abbie Lake and Pukaskwa River Area and the Townships of Keating Additional and Legarde Additional, Sault Ste. Marie Mining Division, Ontario. The claims cover approximately 6,656 hectares with 4 claims in Legarde Additional Township, 15claims in Keating Additional Township, 52 claims in the Pukaskwa River Area and 345 claims in the Abbie Lake Area. The claims are registered with the Ontario Mining Recorder's Office in Sault Ste. Marie and listed in Appendix I.

The property is located about 30 miles west-northwest of the town of Wawa, 28 miles south-southwest of the town of White River and 46 miles southeast of Marathon. Access is best obtained by helicopter based in one of the above mentioned towns. There is also a dry weather road off Highway 17 through Kabenung Lake leading to the property.

University River Area Map 2333 from the Ontario Division of Mines indicates outcrop density to be approximately 30% on the claim group. The property sports several small lakes and swamps which cover about 7% of the area, the remainder being forested. Topographic relief is moderate to high with the presence of some hilly terrains in the south and southwestern portions of the claim group. The East Pukaskwa River trends southwest and channels through most areas of the claim group.

A northwest trending electric power transmission line passes through the northeastern section of the property. Highway 17 westward is about 33 km east of the transmission lines.

Supplies, services and qualified manpower are available in the Wawa-White River-Marathon area.

GEOLOGY

The property is situated in the western end of the Kabenung Lake Greenstone Belt of the Superior Province of the Canadian Shield. The Kabenung Lake Greenstone Belt extends from Kabenung Lake in a west-southwest direction for a distance of about 30 miles (Goodwin 1962).

The Ontario Department of Mines Geological Compilation Map 2220, the Manitouwadge-Wawa sheet, the Department of Mines Geoscience Report 253 and accompanying maps 2332 and 2333, and a report, Mineralization of the Mishibishu Lake Greenstone Belt, by K.B. Heather of the Ontario Geological Survey describe the geology of the area. These maps and reports indicate that the claim block is underlain about 65% by mafic to intermediate metavolcanic, 10% by granitic and about 25% by metasedimentary rocks.

The sedimentary rocks which are composed mainly of greywacke, arkose, polymictic conglomerate, slate and argillite, extend from the southeastern corner to the southwestern corner of the claim group as a wide distinctive band. The band enlarges eastward and exhibits synclinal symmetry about its axis. The underlying rocks are foliated and dip about 80° symmetrically across the synclinal axis. Separation between the conglomerate and other types of metasediments are clearly identified by surface geology. Another bánd of sedimentary rocks of similar composition is present in the far southwestern corner.

Several discontinuous narrow bands of iron formation are embodied in the metasediments with one exception where the iron formation is present in the metavolcanics along the boundary.

Mafic metavolcanics lie to the north, south and adjacent to the metasedimentary rocks throughout the property. These are comprised of massive, pillowed to foliated andesites and basalts. Some of these units have probably undergone metamorphism to amphibolitic facies. Several small foliated lenses of felsic metavolcanics are also mapped in the northeastern part of the claim group dipping northerly about 85°.

Batholithic intrusion is abundant in the region. Areas north and south of the property are underlain by the Kabenung Lake stock which are comprised of unsubdivided batholic granitic rocks to small units quartz monzonite, hybrid granite, porphyritic granite to migmatite. Further south of the property is the Mishibishu Lake stock which is of similar composition as the Kabenung Lake stock. Gabbroic intrusion is present to the southwestern corner just off the property. Also several northeast and northwest trending diabase dykes crosscut the metavolcanic and batholithic granitic rocks in the northern and southern portions of the claim group. These dykes are relatively short and discontinuous.

The rugged terrain and swift treacherous rivers made the area one of the most inaccessible in Ontario; yet before the turn of the century the iron deposits at Iron Lake were being assessed. The early prospectors were seeking high grade hematite-geothite ores of the Wawa type, but their search was largely unsuccessful.

There is little record of exploration in the area from the early l900's to the middle 1930's when prospectors obtained high gold assays from quartz veins north of Mishibishu Lake. After two summers of systematic prospecting for gold with discouraging results, the project was abandoned.

In the last decade base metals have become the prime target for exploration. Several base-metal showings were encountered in the southwestern corner of the claim group.

The International Bibis prospect is located just south of the southwest corner of the claim block. Seven holes totalling 2,238 feet were drilled. Six holes intersected a mineral zone. The best result was 1.47% copper over 17 feet. The mineralized zone is 10 to 15 feet wide, at least 400 feet long, and strikes about N60W with a steep dip to the north. The mineralization consists of seams and disseminated grains of pyrite, chalcopyrite, and possibly bornite and sphalerite distributed irregularly in highly sheared, silicified, and carbonatized mafic metavolcanics. Felsic metavolcanics lie a few feet to the north of the mineralized zone and may in part be a fault contact with the mafic metavolcanics. Dykes, sills and veins of granitic rocks have intruded the adjacent rocks.'.

Six grab samples were taken from the showing and were analysed by the Mineral Research Branch, Ontario Division of Mines. The results range from trace to 0.59 percent copper with one selected specimen yielding 5.58 percent copper and 0.66 ounces of silver per ton. Lead, zinc, and gold were detected in trace amounts only.

The Burrex pyrrhotite and chalcopyrite occurrence is situated about 1.25 km east of the southeastern corner of the claim group. Overburden stripping and trenching of one of seven previously defined geophysical anomalies disclosed the presence of pyrite and graphite. Analyses of grab samples of the pyrite mineralization gave only minor amounts of precious metals and no copper. The only other Burrex anomaly shown is due to the presence of sulphide mineralization. Trenching exposed what is described in Burr's report as "heavy to massive pyrrhotite up to 23 feet in width". The best analysis of a grab sample is reported to be 0.18% copper and 0.03 ounce of silver.

Gold occurences were reported mainly in the Mishibishu Lake area. In 1949 Amichi Gold Mines Limited discovered goldbearing quartz veins about 300 m (1,000 feet) north of the north shore of Mishibishu Lake, approximately 10 km south of the property. Considerable trenching, stripping and assaying were carried out in 1950. There is no report of diamond drilling. The gold occurs in a pyrite and ankerite-quartz vein 25 to 91 cm (10 to 36 inches) wide and in 0.3 to 1.5 m (l to 5 feet) wide shear zones on either side of the vein. The mineralized zone strikes about N50W for a distance of as much as 300 m (1,000 feet) in metamorphosed greywacke, slate, and arkose. A company report (Resident Geologist's Files, Ontario Ministry of Natural Resources, Sault Ste. Marie) gives the following assay results:

Pukaskawa River-University River Area

Width
Gold

cm	inches	ounces/ton	cm	inches	ounces/ton
45	18	0.23	97	38	1.48
86	34	1.92	76	30	0.26
114	45	1.07	107	42	0.19
76	30	1.39	107	42	0.27

Width
Gold

Average width 86 cm (34 inches)
Average grade 0.87 ounces per ton

The above assay results are reported to have been obtained from 75 m (240 feet) long section of the vein bounded by eaststriking faults. Although extensions of the vein system were located, the only assays of commercial grade are those quoted above.

The Hollinger (Mishibishu Lake) gold occurrence, 1937, lies approximately 11 km south of the property. The gold occurs in 10 to 12 east-striking quartz veins and lenses 0.6 to 1.2 m (2 to 4 feet) wide and 18 to 24 m (60 to 80 feet) long, which lie within a zone of highly sheared mafic to intermediate metavolcanics and quartz porphyry about 90 m (300 feet) wide
and 600 m (2,000 feet) long. This zone also strikes east, and dips steeply to the north. 'Disseminated pyrite is common within the shear zone and veins, and minor chalcopyrite, galena, and sphalerite are reported. Five selected samples were collected from old trenches on the deposit in 1968, and were assayed by the Mineral Research Branch, Ontario Division of Mines. Two samples were found to contain 0.82 and 0.40 ounce of gold per ton and trace silver. The remaining samples contained only trace amounts of precious metals.

The Erie Canadian gold occurrence, 1937, is situated about 1 km east of and adjacent to the Hollinger occurrence. The goldbearing quartz veins and shear zone of Hollinger occurrence were found to continue for about 240 m (800 feet) eastward on to the Erie Canadian Mines Limited ground. Extensive stripping, trenching, and blasting were done on the extension by Erie Canadian Mines Limited, but the only significant assay obtained was 0.8 ounce of gold per ton over 1 m (3 feet) (Resident Geologist's Files, Ontario Ministy of Natural Resources, Sault Ste. Marie).

The Amichi Gold Mines Limited gold discovery, Hollinger gold occurrence, and the Erie Canadian gold occurrence all lie in the Mishibishu Lake Greenstone belt about 2 kilometers south of the Kabenung Lake Greenstone belt.

The No Name Lake gold showing was discovered in 1984 on the Central Crude-Noranda property also in the Mishibishu lake Greenstone Belt approximately 10 km southeast of the property. Grab samples containing gold values of up to $0.744 \mathrm{oz} /$ ton, were collected in quartz veins within a shear zone between mafic volcanic rocks and an intermediate volcanic flow and pyroclastic rocks. Recent sampling during the summer of 1987 identified a structure 200 to 700 meters wide and 4 km long, containing seven anomalous gold zones, ranging in widths from 0.5 m to 11 m . Grab and chip samples assayed from $0.01 \mathrm{oz} /$ ton to $28 \mathrm{oz} /$ ton. The gold was found in intermediate to felsic metavolcanic rocks located on the Central Crude-Noranda Property.

The Mishibishu Lake Deformátion Zone, associated with several of the gold occurrences in the Mishibishu Greenstone Belt, is comprised of several shear zones totaling up to 500 meters and also is host to the Magacon (Muscocho Exploration Ltd.), the Granges-MacMillan (Granges Exploration Ltd.), the Scuzzy little lake (Dominion Explorers Ltd.) and the Discovery (Westfield Minerals Ltd.) gold showings. They are situated near volcanicsediment contacts along the deformation zone. The geology of the Rise Resources Ltd. property in the Kabenung Lake Greenstone Belt is similar to that of the Mishibishu Greenstone Belt and has similar potential discovery of gold mineralization.

INSTRUMENTATION AND SURVEY METHODS

The survey was completed using a 1972 Cessna 172, fixed-wing aircraft, Registration CF-EWK, owned and operated by H. Ferderber Geophysics Ltd. The pilot and navigator/operator were Y. Saucier and D. Thai, respectively, of Val d'Or. Geophysical senors were mounted in modified wing tips. The geophysical, navigation and data aquisition systems are described below.

Magnetometer

The magnetometer used was a GEM Systems GSM-11, high. sensitivity airborne proton (Overhauser) magnetometer. The instrument continuously measures the Earth's magnetic field at a 0.01 gamma sensitivity for 1 reading per second to 10 readings per second. For the survey 4 readings per second at an accuracy of 0.04 gammas were read. The analog output is on 2 channels for coarse and fine displays.

VLF-EM System

A Herz Totem 2A VLF-EM system was used to measure the changes in the total field and in the vertical quadrature field on two frequencies simultaneously, with an accuracy of l\%. The primary transmitting stations were Cutler Maine, (NAA) frequency 24.0 KHz and Seattle Washington, (NLK) frequency 24.8 KHz.

Radar Altimeter

The ground clearance was measured with a King 10/10 A radar altimeter. The survey was flown at a mean clearance of 300 feet with the altimeter producing an accuracy of 5% (15 feet) at this altitude.

Tracking Camera and Video Centre

A RCA TC-200 colour video camera and Galaxy 200 video centre was used to record the flight path on standard VHS type video tapes. Manual fiducials were indicated on the picture frames for reference with the digital printout. Flight path recovery was aided using a Panasonic Colour Video Monitor-Sl300 and Video Cassette Recorder AG-2500.

Data Aquisition System

A Picodas Group Inc. PDAS 1100 data aquisition system featuring seven analog inputs with two frequency inputs and external interfacing was used. A Termiflex Corp. ST/32 Keyboard control unit and Sharp Corp. LCD display unit are connected to the data aquisition system. At present this system stores the altimeter readings, VLF-1 inphase, VLF-1 quadrature, VLF-2 inphase, VLF-2 quadrature, magnetic field (coarse), magnetic field (fine), and the fourth difference (noise), and fiducials on 3.5 inch floppy diskette. The data is then printed out in digital and profile forms.

The survey was conducted on north-south lines at an aircraft altitude of 300 feet. The lines were flown at spacings of 400 feet at a speed of approximately 90 miles per hour. Navigation was visual using airphoto mosaics, at a scale of one inch to 1320 feet, manual fiducials and the flight path recovery system as references.

Flight lines, fiducial points and geophysical responses were reproduced from the airphoto mosaics and video tapes on maps at a scale of one inch to 1320 feet (1:15,840). Outline of the claim group and claim map are shown on each map sheet.

The aeromagnetic data was corrected for diurnal variations by using a base lines as references. The data was then reduced to a base level of 59,000 gammas and contoured at 25, 100 and 1000 gamma intervals and presented on maps MG-1 and MG-2.

A base value was determined for the VLF-EM data and the change in the total field strength as a percentage of the base value was calculated. The values were plotted on maps EM-1 and EM-2. The positive values were contoured at intervals of 2%. The conductor axes were determined and numbered $1,2,3$, etc. No priority was attached to the numbering system.

SURVEY RESULTS AND INTERPRETATION

Magnetic Survey

Maps MG-1 and MG-2 present magnetic data collected on the western half and eastern half of the property respectively.

The airborne magnetic survey outlines two extremely high distinctive magnetic series against background of about 59,000 gammas; one located to the southwestern corner and the other to the eastern central of the claim group. The extremely high magnetic readings (up to 63,000 gammas) are commonly encountered in areas of iron formation containing magnetic ferric minerals. The first series is about 3 miles long, narrow in width and east-west trending. It enlarges westerly and appears to continue further off the property. The second series is about 4 miles long, northeast-southwest trending and also narrow in width. The series appears continuing off the property on both ends.

The contoured lines are distorted and broken up at several locations indicating possible faulting or fracturing of the underlying rocks. Several finger-like features on both sides of the series indicate possible impingements of the iron formation into the neighbouring rocks.

Areas of generally low to moderate magnetic relief take up the rest of the claim group. Northern portions are probably underlain by felsic to mafic metavolcanics corresponding well to surface geology. South of the iron formations are probably underlain by intermediate to mafic metavolcanics and/or felsic intrusive rocks. The boundaries among these units are not clearly defined by the magnetic contrast indicating the relative equality in magnetic susceptability among the three main underlying rock types. A few isolated magnetic highs within the relative magnetic low probably represent localized units of ultramafics within the metavolcanics and/or isolated lenses of gabbroic sills or amphibolite within the intrusive rocks.

Several narrow and longated bodies of magnetic highs crosscut the claim group. These are interpreted as discontinous late diabase dykes and being labelled on maps MG-1 and MG-2 along with possible faults and iron formations.

Zone of extremely magnetic lows within magnetic highs are probably caused by diplor effect of magnetism due to abrupt changes of poles.

VLF Electromagnetic

Map EM-1 and EM-2 present VLF-electromagnetic data collected on the claim group. The survey outlines 10 conductive zones on the property and they are discribed below in numerical order from west to east.

Conductive zone 1 , located to the central far west of Map EM-1, is a long, continous conductor with moderate amplitude response. The zone axis overlies along the presumed band of iron formation and is probably caused by conductive minerals associated with the iron formation.

Conductive zone 2, located to the southwest of Map EM-1, is a short zone with weak amplitude response and partly overlies a creek. It could represent surface conductive overburden.

Conductive zone 3, located to the northwestern corner of Map EM1 , is a short, distinctive zone with moderately high amplitude response. It appears to overlie a geological contact between intrusive and mafic metavolcanic rocks representing possible alteration/shear zone along a geological contact.

Conductive zone 4, located just south of zone 3 on Map EM-1, is a localized zone exhibiting moderately high amplitude in an area of low magnetics. The zone probably represents thick conductive overburden.

Conductive zone 5, located in the southeast corner of Map EM-1, is a discontinuous and distinctive zone exhibiting high amplitude reponse. Part of the zone overlies the shoulder of a moderately magnetic high and possesses no definite trend. The zone may represent a shear zone along geological contacts among units of metavolcanic and intrusive rocks.

Conductive zone 6, located just left of zone 3, is a short dicontinuous zone overlying an area of extremely low magnetics. It may be just an easterly continuation of zone 3 representing possible alteration/shear zone along the geological contact between intrusive and mafic metavolcanic rocks.

Conductive 7, located to the northwestern corner of Map EM-2, is a short, localized zone with moderately high amplitude response. The zone overlies an area of very low magnetic and also along a creek. The zone could be caused by surface conductivity.

Conductive zone 8, located to the south central of Map EM-2, is a long, wide, continuous and north-northeast trending zone. Althought the zone has relative weak amplitude response, its shape and direction are very distinctive. The zone also overlies a series of magnetic highs of the presumed underlying iron formation and a small lake, and may represent conductive minerals associated with the iron formation within the metasediments.

Conductive zone 9, cutting across north central portion of Map EM-2, is a long continuous and distinctive zone with extremely high amplitude response. The zone lies along a road with power lines which cause the distinctive high amplitude response.

Conductive zone 10 , located to the south central part of Map EM2 , is a long, continuous and north-northeast trending zone with moderately high amplitude response. The zone overlies an area of magnetics low just off the shoulder of the iron formation and also along a creek. This zone could represent shear/fracture along possible geological contact between the metasediments and mafic metavolcanics or surface conductivity along the creek.

There exist several isolated zones of high conductivity throughout the claim group.' These are often associated with topographic features such as lakes, creeks etc. which are believed to have caused the anomalies.

CONCLUSION AND RECOMMENTATION

The combined airborne magnetic and VLF-electromagnetic survey were successful in helping outline the underlying geology and delineating conductive zones represeting possible shear/fault zones on the Rise Resources Property, Sault Ste Marie Mining Division, Ontario.

The results of the magnetic survey in combination with surface geology where applicable indicate that the claim group is underlain by Archean metasediments, mafic metavolcanics and felsic intrusive rocks. The northern portions of the claim group exhibit low to moderate magnetic susceptability which are typical of felsic metamorphic and intermediate-mafic metavolcanic rocks. These units are overlain by thin units of metasediments cutting south-southwest across claim group and being characterized by the embedment of bands of iron formation.

The southwestern portion of the claim group is underlain by the interbedement of mafic metavolcanic and metasedimentary rocks. Magnetic depressions along the southern boundary may represent major geological contacts among these units.

The southeastern portions are probably underlain by metasediments/metavolcanics along the magnetic depression and isolated units of intrusive rocks which have been metamorphosed to amphibolitic facies.

Faulting, folding, batholithic intrusion, late diabase intrusion etc. have caused some major structural and lithological changes among these units resulting in the complexity of magnetic patterns. In some cases the distinction among the units are not apparent from the magnetic maps. Several geological and structural features are interpreted and marked on maps.

The VLF-electromagnetic survey delineated conductive zones of various physical properties and underlying geology. Conductive zones $2,4,7$ and 9 are believed to be caused by surface effects such as conductive overburden, lakes, swamps, topographic relief, etc. Others are thought to represent bedrocks conductivity which may be associated with sulphide and/or gold bearing structures and formations.

Structural and lithological diversity and complexity of the property, as indicated by the magnetic, VLF-electromagnetic and geological maps, suggest that the claims are located in favourable geologic environments for economic gold and/or base metals mineralization. Areas of similar geologic environments in the Kabenung Lake and Mishibishu Lake Greenstone Belts host several past $A u$, and base. metals occurrences. Several newly developed $A u$ mines are on the way along with valuable information coming out of the region everyday due to intense exploration efforts.

Further work is warranted on the property. Line cutting along with group geophysics and detailed geological mapping should be carried out. A preliminary diamond drilling program is to be drawn upon results the previous phases may warrant.

Respectfully submitted,
H. FERDERBER GEOPHYSICS LTD.

D.M. Thai, B.Sc.

Geophysicist

957803
957804
957805
957806
957807
957808
957809
957810
957813
957814
957815
957816
957817
957818
957819
957820
957821
957822
957823
957824
957825
957826
957827
957828
957829
957830
957831
957832
957833
957834
957835
957836
957837
957838
957839
957840
957843
957844
957845
957846
957847
957848
957849
957850
957858
957859
957860
957861
957862
957863

SSM
957914
957915
957916
957917
957918
957919
957920
957921
957922
957923
957924
957925
957926
957927
957928
957929
957930
957931
957932
957933
957934
957935
957936
957937
957938
957939
957940
957941
957942
957943
957944
957945
957946
957947
957948
957949
957950
957951
957952
957955
957956
957957
957958
957959
957960
957961
957962
957963
957964
957965
957966
957967

SSM 957968 957969 957970 957971 957972 957973 957974 957975 957976
957977
957978
957979
957980
969522
969523
969524
969525
969526
969527
969528
979141
979142
979143
979144
979145
979146
979147
979148
979149
979150
979151
979152
979153
979154
979155
979156
979157
979158
979159
979160
979161
979162
979163
979164
979165
979166
979167
979168
979169
979170

SSM
979221
979172
979173
979174
979175
979176
979177
979178
979179
979180
979181
979182
979183
979184
979185
979186
979187
979188
979189
979190
979191
979192
979193
979194
979195
979196
979197
979198
979199
979200
979201
979202
979203
979204
979205
979206
979207
979208
979209
979210
979211
979212
979213
979214
979215
979216
979217
979218
979219
979220
979222
979223
979224
979225
979226
979227
979228
979229
979230
979231
979232
979233
979234
979235
979236
979237
979238
979239
979240
979241
979242
979243
979244
979245
979246
979247
979248
979249
979250
979251
979252
979253
979254
979255
979256
979257
979258
979259
979260
979261
979262
979263
979264
979265
979266
979267
979268
979269
979270
SSM
979271
979272
979273
979274
979275
979276
979277
979278
979279
979280
979281
979282
979283
979284
979285
979286
979287
979288
979289
979290
979291
979292
979293
979294
979295
979296
979297
979298
979299
979300
979301
979302
979303
979304
979305
979306
979307
979308
979309
979310
979311
979312
979313
979314
979315
979316
979317
979318
979319
979320
SSM 983583 983584 983585 983586 983587
983588
983589
983590
983591
983592
986133
986134
991706
991707
991708
991709
991710
991711
991712
991713
991714 991715 991728 991729 991730 991731 991732 991733 991734 991735 991736 991737 991738 991739 991740 991741 991742 991743 991744 991745 991746 991747 991748
991749
991750
991751
991752
991753
991754
991755

SSM		
	991756	
991757		
991758		
991759		
991760		
991761		
991762		
991763		
991764		
991765		
991766		
991767		
957953		
957954		

Report of Work

Northern Development
(Geophysical, Geological,
Ontario and Mines

Typeofsurvers
Airborne Magnetic and VIF-Electromagnetic

see attached list W 18 os.5\}

Ād̄āess

c/o Durham Geological Services Inc. Surver Company \quad Box 734 Timmins, Ontario. P4N 7G2

R.A. Campbell - G. N. Henriksen, 169 Perreault Ave., Val d'Or, Que. J9p

Credits Requested per Each Claim in Columns at right

Expenditures (excludes power stripping)

Type of Work Performed
Performed on Claim(s)
Calculation of Expendi*ure Davs Credits
\begin{tabular}{\|l
\hline
\end{tabular} |

Instructions

Total Days Credits mav te apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

man mity

Certification Verifying Report of Wort

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the faport of Work annexed hereto, having performed the work or witnessed same during andior after its completion and the annexed report is true.
Name and Postal Address of Person Certifying
Harry Ferderber, 169 Perreault Ave, Val d'or, Quebec J9P $2 H 1$

Ministry of Northern Affairs and Mines

Report of Work

Geochemical and Expenditures)

DOCUMENT NO.

Instructions: - Please type or print.

- If number of mining claims traversed exceeds space on this form, attach e list.
Note: - Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Days Cr." columns. - Do not use shaded areas below. TS

Type of Survey (s)

MAGNETOMETER VLF-EM

C dress 0 BOX 1130 TIMMINS, ONTARIO PAN 7H6
Survey Company
H. FERDERBER GEOPHYSICS

Name and Address of Author (of Geo-Technical report)
R, A CAMPBELL, 169 PERREAULT AVENUE, VAL D'OR QUEBEC

Expenditures (excludes power stripping)

Instructions

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected
in columns at right.

Mining Claims Traversed (List in numerical sequence)

[^0] or witnessed same during and/or after its completion and the annexed report is true.
Name and Postal Address of Person Certifying
DON MCKINNON, BOX 1130 TIMMINS, ONTARIO P4N 7H6

Ministry of
Northern Development and Mines

Geophysical-Geological-Geochemical
Technical Data Statement

File

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) _Airborne Magnetic and VLF-Electomagnetic
Township or Area Legarde Additional, Reating Additi nal, Ande Lake, Pukaskwa RIver MING CLAIMS TRAVERSED

Claim Holder(s)_G. Carnovale, P. Atkinson, L. Robe
ts and H and L Mineral Holdings
Survey Company_H. Ferderber Geophysics L,td.
Author of Report _D. Thai
Address of Author 169 Perreault Ave, Val d'or, Quebe
Covering Dates of Survey March 19 to 22,1988
Total Miles of Line Cut flown 449.71

SPECIAL PROVISIONS CREDITS REQUESTED	Geophysical $\quad \begin{gathered}\text { Days } \\ \text { per claim }\end{gathered}$
ENTER 40 days (includes	-Electromagnetic
line cutting) for first	-Magnetometer
survey.	-Radiometric
ENTER 20 days for each	-Other
additional survey using	Geological
same grid.	Geochemical

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer_31_Electromagnetic 31_ Radiometric \qquad
DATE: June $10 / 88$ signature:
Autign-of-Report or Agent

Res. Geol. Qualifications \qquad
Previous Surveys

[^1]
SELF POTENTIAL

\qquad
Survey Method \qquad

Corrections made

RADIOMETRIC

Instrument
Values measured
Energy windows (levels)
Height of instrument \qquad Background Count
Size of detector \qquad
(type, depth - include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)

Type of survey
lnstrument \qquad
Accuracy
Parameters measured \qquad

Additional information (for understanding results)

AIRBORNE SURYEYS
Type of survey(s)__ Airborne-Magnetic and vif-miectomagnetic
Instrument(s) _CEM_GSM-11 Herz Toteme 2λ,
Accuracy_ 0.04 gammas and 1%
Aircraft used_Cessna 172
Sensor altitude_300_foet
Navigation and flight path recovery method_ Navigation was visual on airphoto mosaics. Fli path recovery was obtained with a RCA colour video camera Panasonic
Afrerapluatituideo Monitor $\quad 300$ feet Line Spacing_ 400 feet

Miles flown over total area_449.71_O_O_O_ 332.46

APPENDIX 1 CLAIM LIST

SSM	957803	SSM 957864	SSM 957914	SSM 957968
	957804	957865	957915	957969
	957805	957866	957916	957970
	957806	957867	957917	957971
	957807	957868	957918	957972
	957808	957869	957919	957973
	957809	957870	957920	957974
	957810	957871	957921	957975
	957813	957872	957922	957976
	957814	957873	957923	957977
	957815	957874	957924	957978
	957816	957875	957925	957979
	957817	957876	957926	957980
	957818	957877	957927	969522
	957819	957878	957928	969523
	957820	957879	957929	969524
	957821	957880	957930	969525
	957822	957881	957931	969526
	957823	957882	957932	969527
	957824	957883	957933	969528
	957825	957884	957934	979141
	957826	957885	957935	979142
	957827	957886	957936	979143
	957828	957887	957937	979144
	957829	957888	957938	979145
	957830	957889	957939	979146
	957831	957890	957940	979147
	957832	957891	957941	979148
	957833	957892	957942	979149
	957834	957893	957943	979150
	957835	957894	957944	979151
	957836	957895	957945	979152
	957837	957896	957946	979153
	957838	957897	957947	979154
	957839	957898	957948	979155
	957840	957899	957949	979156
	957843	957900	957950	979157
	957844	957901	957951	979158
	957845	957902	957952	979159
	957846	957903	957955	979160
	957847	957904	957956	979161
	957848	957905	957957	979162
	957849	957906	957958	979163
	957850	957907	957959	979164
	957858	957908	957960	979165
	957859	957909	957961	979166
	957860	957910	957962	979167
	957861	957911	957963	979168
	957862	957912	957964	979169
	957863	957913	957965	979170

$$
-3-
$$

SSM | 991756 |
| ---: |
| 991757 |
| 991758 |
| 991759 |
| 991760 |
| 991761 |
| 991762 |
| 991763 |
| 991764 |
| 991765 |
| 991766 |
| 991767 |
| 957953 |
| 957954 |

CLAIM HOLDERS AND LICENCE NUMBERS

Gary Carnovale M 21859
Paul Atkinson M 21397
Lloyd Roberts M 20892
H- L Mineral Holdings T - 4645

APPENDIX 1 CLAIM LIST

979271 979272 979273 979274 979275
979276 979277 979278 979279 979280
979281
979282
979283
979284
979285
979286
979287
979288
979289
979290
979291
979292
979293
979294
979295
979296
979297
979298
979299.

979300
979301
979302
979303
979304
979305
979306
979307
979308
979309
979310
979311
979312.

979313
979314
979315
979316
979317
979318
979319
979320

SSM
983583
983584
983585
983586
983587
983588
983589
983590
983591
983592 2
986133
9861342
991706
991707
991708
991709
991710
991711
991712
991713
991714 991715
991728
991729
991730
991731
991732
991733
991734
991735
991736
991737
991738
991739
991740
991741
991742
991743
991744
991745
991746
991747
991748
991749
991750
991751
991752
991753.

991754
991755

991756
991757
991758
991759
991760
991761
991762
991763
991764
991765
991766
991767 /

[^0]: I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work

[^1]: TOTAL CLAIMS
 416

