REPORT ON<br>COMBINED HELICOPTER-BORNE MAGNETIC, ELECTROMAGNETIC, AND VLF-EM SURVEY OF THE MAPLE LAKE CLAIMS ONTARIO

## RECEIVED

- 28 190:
MNING LANDS SECTION
$010 C$


## TABLE OF CONTENTS



## LIST OF MAPS

(Scale: 1/15,840)

| Map 2 | Interpreted Conductive Units |
| :---: | :---: |
| Map 2 | Airborne Electromagnetic Survey Profile Map |
|  | 955 Hz coaxial) |
| Map 3 Total Field Magnetic Map |  |
| Map 4 | VLF-EM Total Field Contours |

Data provided but not included is. report:

1 - master map ( 2 colour) of coaxial and coplanar profiles with flight path

2 - anomaly list providing estimates of depth and conductivity thickness

3 - analogue records of data obtained in flight

## 1. INTRODUCTION

This report describes an airborne geophysical survey carried out on behalf of Brass Ring Resources Limited by Aerodat Limited. Equipment operated included a 3 frequency electromagnetic system, a VLF-EM system, and a magnetometer.

The survey was flown in February 10 to February 22, 1983 from an operations base at Wawa Ontario. A total of 317 line miles were flown, at a nominal line spacing of 660 feet. Of the total flown, this report describes 63 line miies.

$$
2-1
$$

2. SURVEY AREA/CLAIM NUMBERS AND LOCATIONS

The mining claim numbers and locations covered by this survey are indicated on the map in the following pocket.

$$
3-1
$$

## 3. AIRCRAFT EQUIPMENT

### 3.1 Aircraft

The helicopter used for the survey was an Aerospatial Astar 350 D owned and operated by North Star Helicopters. Installation of the geophysical and ancillary equipment was carried out by Aerodat. The survey aircraft was flown at a nominal altitude at 60 meters.

### 3.2 Equipment

### 3.2.1 Electromagnetic System

The electromagnetic system was an Aerodat/ Geonics 3 irequency system. Two vertical coaxial coil pairs were operated at 955 and 4130 Hz and a horizontal coplanar coil pair at 4500 Hz . The transmitter-receiver separation was 7 meters. In-phase and quadrature signals were measured simultaneously for the 3 frequencies with a time-constant of 0.1 seconds. The electromagnetic bird was towed 30 meters below the helicopter.
3.2.2 VLF-EM System

The VLF-EM System was a Herz 2A. This instrument measures the total field and vertical
quadrature component of two selected frequencies. The sensor was towed in a bird 15 meters below the helicopter.

The sensor aligned with the flight direction is designated as "LINE", and the sensor perpendicular to the line direction as "ORTHO". The "LINE" station used was NAA, Cutler Maine, 17.8 KHz or NLK, Jim Creek Washington, 24.8 KHz . The "ORTHO" station was NSS, Annapolis Maryland, 21.4 KHz . The NSS transmitter was operating on a very limited schedule and was not available during a large part of the survey.
3.2.3 Magnetometer

The magnetometer was a Geometrics G-803 proton precession type. The sensitivity of the instrument was 1 gamma at a 1.0 second sample rate. The sensor was towed in a bird 15 meters below the helicopter.
3.2.4 Magnetic Base Station

An IFG proton precession type magnetometer was operated at the base of operations to record diurnal variations of the earths magnetic field. The clock of the base station was synchronized with that of the airborne system
to facilitate later correlation.
3.2.5 Radar Altimetar

A Hoffman HRA-100 radar altimeter was used to record terrain clearance. The output from the instrument is a linear function of altitude for maximum accuracy.

### 3.2.6 Tracking Camera

A Geocam tracking camera was used to record flight path on 35 mm film. The camera was operated in strip mode and the fiducial numbers for cross reference to the analog and digital data were imprinted on the margin of the film.
3.2.7 Analog Recorder

A RNS dot-matrix recorder was used to display the data during the survey. A sample record with channel identification and scales is presented on the following page.


COAXIAL QUAD.
(LOW FREQ.)

$\cdots$ $\qquad$ A
$\square$

COAXIAL, IN-PHASE
(LOW FREQ.) 20 ppm .

$$
3-4
$$

### 3.2.8 Digital Recorder

A Perle DAC/NAV data system recorded the survey data on cassette magnetic tape. Information recorded was as follows:

| Equipment | Interval |
| :--- | :--- |
| EM | 0.1 second |
| VLF-EM | 0.5 second |
| magnetometer | 0.5 second |
| altimeter | 1.0 second |
| fiducial (time) | 1.0 second |
| fiducial (manual) | 0.2 second |

$$
4-1
$$

## 4. DATA PRESENTATION

### 4.1 Base Map and Flight Path Recovery

The base map photomosaic at a scale of $1 / 15,840$ was constructed from available aerial photography. The flight path was plotted manually on this base and digitized for use in the computer compilation of the maps. The flight path is presented with fiducials for cross reference to both the analog and digital data.

### 4.2 Electromagnetic Profile Maps

The electromagnetic data was recorded digitally at a high sample rate of $10 /$ second with a small time constant of 0.1 second. $\lambda$ two stage digital filtering process was carried out to reject major sferic events, and reduce rystem noise.

Local atmospheric activity can produce sharp, large amplitude events that cannot be removed by conventional filtering procedures. Smoothing or stacking will reduce their amplitude but leave a broader residu: $l$ response that can be confused with a geological phenomenon. To avoid this possibility, a computer algorithm searches out and rejects the major "sferic" events.

The signal to noise was further enhanced by the application of a low pass filter. The filter was applied digitally. It has zero phase shift which prevents any lag or peak displacement from occurring and it suppresses only variation with a wavelength less than ahout 0.25 seconds. This low effective time constant permits maximum profile shape resolution.

Following the filtering processes, a base level correction was made. The correction applied is a linear function of time that ensures that the corrected amplitude of tine various inphase and quadrature components

## 4-3

is zero when no conductive or permeable source is. present. This filtered and levelled data was then presented in profile map form.

The in-phase and quadrature responses of the coaxial 955 Hz configuration are plotted with the flight path and presented on the photomosaic base.

The in-phase and quadrature responses of the coaxial 4500 Hz and the coplanar 4130 Hz configuration are plotted with flight path and are available as a two colour overlay.

## 4-4 <br> 4.3 Magnetic Contour Maps

The aeromagnetic data was corrected for diurnal variations by subtraction of the digitally recorded base station magnetic profile. No correction for regional variation is applied.

The corrected profile data was interpolated onto a regular grid at a 2.5 mm interval using a cubic spline technique. The grid provided the basis for threading the presented contours at a 10 gamma interval.

$$
4-5
$$

### 4.4 VLF-EM Contour and Profile Maps

The VLF-EM "LINE" signal, was compiled in map form. The mean response level of the total field signal was removed and the data was gridded and contoured at an interval of $2 \%$. When the "ORTHO" signal was available it was compiled in a similar fashion.

### 4.5 Electromagnetic Conductor Symbolization

The electromagnetic profile maps wers used to identify those anomalies with characteristics typical of bedrock conductors. The in-phase and quadrature response amplitudes at 4130 Hz were dizitally applied to a phasor diagram for the vertical half-plane model and estimates of conductance (conductivity thickness) were made. The conductance levels were divided into categories as indicated in the map legend; the higher the number, the higher the estimated conductivity thickness product.

As discussed in Appendix I the conductance should be used as a relative rather than absolute guide to conductor quality. A conductance value of less than 2 mhos is typical for conductive overburden material and electrolytic conductors in faults and shears. Values greater than 4 mhos generally indicate some electronic conduction by certain metallic sulphides and/or graphite. Gold, although highly conductive, is not expected to occur in sufficient concentration to directly produce an electromagnetic anomaly; however, accessory mineralization such as pyrite or
graphite can produce a measurable response.

With the aid of the profile maps, responses of similar characteristics may be followed from line to line and conductor axes identified.

The distinction between conductive bedrock and overburden anomalies is not always clear and some of the symbolized anomalie: may not be of bedrock origin. It is also possible that a response may have been mistakenly attributed to overburden and therefore not included in the symbolization process. For this reason, as geological and other geophysical information becomes available, reassessment of the significance of the various conductors is recommended.

### 4.6 INTERPRETATION MAPS

The conductive trends are shown and discriminated for descriptive purposes.

These conductors are described be...w:

1 Moderate, one juarter mile, slightly magaetic conductor adjacent to cross-cutting magnetic low.

2 Weak conductor, three-quarter miles long, along north flank of magnetic high.

3 One-quarter mile conductor along crest of formational magnetic feature.

4 Weak conductor along north flank of magnetic feature.

5 Cross-cutting trend demonstrated by VLF response. Left-lateral faulting ssown by displacement of iron formation.

Respectfully submitted,


Fenton Scott, P. Eng.

## APPENDIX I

GENERAL INTERPRETIVE CONSIDERATION:-

## Electromagnetic

The Aerodat 3 frequency system utilizes 2 different transmitter-receivercoil geometries. The traditional coaxial coil configuration is operated at 2 widely separated frequencies and the horizontal coplanar coil pair is operated at a frequency approyimately aligned with one of the coaxial frequencies.

The electromagnetic response measured by the helicopter system is a fuaction of the "elf こtrical" and "geometrical" properties of the conductor. The "electrical" property of a conductor is determined largely by its conductivity and its size and shape; the "geometrical" property of the response is largely a function of the conductors shape and orientation vith respect to the measuring transmitter and receiver.

## Electrical Considerations

For a given conductive body the measure of its conductivity or conductance is closely related to the measured phase shift between the received and transmitted electromagnetic field. A small phase shift indicates a relatively high conductance, a large phase shift lower conductance. A small phase shift results in a large in-phase to quadrature
ratio and a large phase shift a low ratio. This relationsnip is shown quantitatively for a vertical half-plane model on the accompanying phasor diagram. Other physical models will show the same trend but different quantitative relationships.

The phasor diagram for the vertical half-plane model, as presented, is for the coaxial coil configuration with the amplitudes in ppm as measured at the response peak over the conductor. To assist the interpretation of the survey results the computer is used to identify the apparent conductance and depth at selected anomalies. The results of this calculation are presented in table form in Appendix I and the conductance and in-phase amplitude are presented in symbolized for: on the map presentation.

The conductance and depth values as presented are correct only as far as the model approximates the real geological situation. The actual geological source may be of limited length, have significant dip, its conductivity and thickness may vary with depth and/or strike and adjacent bodies and overburden may have modified the response. In general the conductance estimate is less affected by these limitations than the depth estimate but both should be considered a relative rather than absolute guide to the anomalies properties.

Conductance in mhos is the reciprocal of resistance in ohms and in the case of narrow slab like bodies is the product of electrical conductivity and thickness.

Most overburden will have an indicated conductance of iess than 2 mios; however, more conductive clays may have an apparent conductance of say 2 to 4 mhos. Also in the low conductance range will be electrolytic conductors in faults and shears.

The higher ranges of conductance, greater than 4 mros, indicate that a significant fraction of the electrical conduction is electronic rather than electrolytic in nature. Materials that conduct electronically are limited to certain metallic sulphides and to graphite. High conductance anomalies, roughly 10 mhos or greater are generally limited to sulphide or graphite bearing rocks.

Sulphide minerals with the exception of sphalerite, cinnabar and stionite are good conductors; however, they may occur in a disseminated manner that inhibits electrical conduction through the rock mass. In this case the apparent conductance can seriously under rate the quality of the conductor in geological terms. In a similar sense the relatively nom conducting sulphide minerals noted above may be present in significant concentration in association with minor conductive
sulphides, and the electromagnetic response only relate to the minor associate mineralization. Indicated conductance is also of little direct significance for the identification of gold mineralization. Although gold is highly conductive it would not be expected to exist in sufficient quantity to create a recognizable anomaly but minor accessory sulphide mineralization could provide a useful indirect indication.

In summary the estimated conductance of a conductor can provide a relatively positive identification of significant sulphide or graphite mineralization; however, a moderate to low conductance value does not rule out the possibility of significant economic mineralization.

## Geometrical Considerations

Geometrical information about the geologic conductor can often be interpreted from the profile shape of the anomaly. The change in shape is primarily related to the change in inductive coupling among the transmitter, the target, and the receiver.

In the case of a thin, steeply dipping, sheet-like conductor, the coaxial coil pair will yield a near symmetric peak over the conductor. On the other hand the coplanar coil pair will pass through a null couple relationship and yield a minimum over the conductor, flanked by positive side lobes. As the dip of the conductor decreases from vertical, the coaxial
anomaly shape changes only slightly, but in the: case of the coplanar coil pair the side lobe on the down dip side strengthens relative to that on the up dip side.

As the thickness of the conductor increases, induced current flow across the thickness of the conductor becomes relatively significant and complete null coupling with the coplanar coils is no longer possible. As a result, the apparent minimum of the coplanar response over the conductor diminishes with increasing thickness, and in the limiting case of a fully 3 dimensional body or a horizontal layer or half-space, the minimum disappears completely.

I horizontal conducting layer such as overburden will produce a response in the coaxial and coplanar coils that is a function of altitude (and conductivity if not uniform). The profile shape will be similar in both coil configurations with an amplitude ratio (coplanar/coaxial) of about 4/1.*

In the case of a spherical conductor, the induced currents are confined to the volume of the sphere, but not relatively restricted to any arbitrary plane as in the case of a sheetlike form. The response of the coplanar coil pair directly over the sphere may be up to $8^{*}$ times greater than that of the coaxial coil pair.

In summary a steeply dipping, sheet-like conductor will display a decrease in the coplanar response coincident with the peak of the coaxial resfonse. The relative strength of this coplanar null is related inversely to the thickness of the conductor: a pronounced null indicates a relatively thin conductor. The dip of such a conductor can be infered from the relative amplitudes of the side-lobes.

Massive conductors that could be approximated by a conducting sphere will display a simple single peak profile form on both coaxial and coplanar coils, with a ratio between the coplanar to coaxial response amplitudes as high as 8.*

Overburden anomalies often produce broad poorly defined anomaly profiles. In most cases the response of the coplanar coils closely follow that of the coaxial coils with a relative amplitude ratio of 4.*

Occasionally if the edge of an overburden zone is sharply defined with some significant depth extent, an edge effect will occur in the coaxial coils. In the case of a horizontal conductive ring or ribbon, the coaxial response will consist of two peaks, one over each edge; whereas the coplanar coil will yield a single peak.

* It should be noted at this point that Aerodat's definition of the measured ppm unit is related to the primary field sensed in the receiving coil without normalization to the maximum coupled (coaxial configuration). If such normalization were applied to the Aerodat units, the amplitude of the coplanar coil pair would io halved.


## Magnetics

The Total Field Magnetic Map shows contours of the total ragnetic field, uncorrected for regional variation. Whether an EM anomaly with a magnetic correlation is more likely to be caused by a sulphide deposit than one without depends on the type of mineralization. An apparent coincidence between an EM and a magnetic anomaly may be caused by a conductor which is also magnetic, or by a conductor which lies in close proximity to a magnetic body. The majority of conductors which are also magnetic are sulphides containing pyrrhotite and/or magnetite. Conductive and magnetic bodies in close association can be, and often are, graphite and magnetite. It is often very difficult to distinguish between these cases. If the conductor is also magnetic, it will usually produce an EM anomaly whose general pattern resembles that of the magnetics. Depending on the magnetic permeability of the conducting body, the amplitude of the inphase EM anomaly will be weakened, and if the conductivity is also weak, the inphase EM anomaly may even be reversed in sion.

## VLF Electromagnetics

The VLF-EM method employs the radiation from powerful military radio transmitters as the primary signals. The magnetic field associated with the primary field is elliptically polarized in the vicinity of electrical conductors. The Herz Totem uses three coils in the $x$. Y. Z. configuration to measure the total field and vertical quadrature component of the polarization ellipse.

The relatively high frequency of VLF $15-25 \mathrm{KHz}$ provides high response factors for bodies of low conductance. Relatively "disconnected" sulphide ores have been found to produce measurable VLF signals. For the same reason, poor conductors such as sheared contacts, breccia zones, narrow faults, alteration zones and porous flow tops normally produce VLF anomalies. The method can therefore be used effectively for geological mapping. The only relative disadvantige of the method lies in its sensitivity to conductive overburden. In conductive ground the depth of exploration is severely limited.

The effect of strike dircction is important in the sense of the relation of the conductor axis relative to the energizing electromagnetic field. A conductor aligned along a radius drawn from a transmitting station will be
in a maximum coupled orientation and thereby produce a stronger response than a similar conductor at a different strike angle. Theoretically it would be possible for a conductor, oriented tangentially to the transmitter to produce no signal. The most obvious effect of the strike angle consideration is that conductors favourably oriented with respect to the transmitter location and also near perpendicular to the flight direction are most clearly rendered and usually dominate the map presentation.

The total field response is an indicator of the existence and position of a conductivity anomaly. The response will be a maximum over the conductor, without any special filtering, and strongly favour the upper edge of the conductor even in the case of a relatively shallow dip.

The vertical quadrature component over steeply dipping sheet like conductor will be a cross-over type response with the cross-over closely associated with the upper edge of the conductor.

The response is a cross-over type due to the fact that it is the vertical rather than total field quadrature component that is measured. The response shape is due largely to geometrical rather than conductivity considerations and the distance between the maximum and minimum on either side of the cross-over is related to target depth. For a given target geometry, the larger this distance the greater the
depth.

The amplitude of the quadrature resporse, as opposed to shape is function of target conductance and depth as well as the conductivity of the overburden and host rock. As the primary field travels down to the conductor through conductive material it is both attenuated and phase shifted in a negative sense. The secondary field produced by this altered field at the target also has an associated phase shift. This phase shift is positive and is larger for relatively poor conductors. This secondary field is attenuated and phase shifted in a negative sense during return travel to the surface. The net effect of these 3 phase shifts determine the phase of the secondary field sensed at the receiver.

A relatively poor conductor in resistive ground will yield a net positive phase shift. A relatively good conductor in more conductive ground will yield a net negative phase shift. A combination is possible whereby the net phase shift is zero and the response is purely in-phase with no quadrature component.

A net positive phase shift combined with the geometrical cross-over shape will lead to a positive quadrature response on the side of approach and a negative on the side of departure. A net negative phase shift would produce the reverse. A further sign reversal occurs with a 180 degree
change in instrument orientation as occurs on reciprocal line headings. During digit.. 1 processing of the quadrature data for map presentation this is corrected for by normalizing the sign to one of the flight line headings.






Report of Work
(Geophysical, Geological, Geochemical and Expenditures)


The Mining Aet

## Instructions: - Piease type or print.

- Il number ol mining claims traversed exceeds space on this form, attach sist.
Noto: - Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Davs Cr." columns.
- Do nol use shaded areas below.

$$
\begin{aligned}
& \begin{array}{c}
\text { Fioo survorn } \\
\text { Airborne Electromagnetic, Nagnetic, VLF-EM }
\end{array}
\end{aligned}
$$

Township or Ares Mis.hikithu Lo Ke

Pt. Isacor, Pilot Harbor
David Krutz Prospecior's Liconce No. K19796

| Addresi |
| :--- |
| surver Compeny |

639 2nd Avenue Val d'Or Que. J9P $1 W 5$

Name and Addrabs of Autrur (ot Geo. Technical raport1
Fenton Scott 17 Malaba
Fenton Scott 17 Malabar Place, Don MIlls, Ontario mbb 1 A4
Credits Requested per Each Claim in Columns at right

| Spacial Provitiont | Geophysical | Deys per Cialm |
| :---: | :---: | :---: |
| For first surver: | - Elactrormagnatic |  |
| includes line cutting) | - Magnetiomater |  |
| For sach anditional surver: using the same grid: | - Radiomerric |  |
| Enter 20 days (for each) | - Dithet |  |
|  | Geological <br> Goochomical |  |
|  |  |  |
| Man Davs <br> Complete reverse side and enter total(s) here | Geophysicel <br> - Elactiomagnetic <br> - Mapnetometer <br> Radiometric <br> - Other <br> Geological <br> Geochemical | Davs per Claim |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  | - |
| Airborne Credits <br> Note: Special provisions credits do nat apolyg to Airborne SUrvers. | Electromagnetic <br> Magnstormeter 3 <br> Rediometric | Deviper Clism |
|  |  | 25.2 |
|  |  | 25.2 |
|  |  | 25.2 |

Imetructont
Total Days Crediss may be epportioned er the ctalm holder's cholce. Enter number of devs credits per claini solected
in columns at right.

## 

Certification Verifying Report of Work
Mining Claim; Traversed (List in numerical sequence)

Totel number of mining
cleims coverod by this
leport of work.


I hereby certify thas i have a personal and intimate knowtenge of the facti se' lorth in the Report of Work annexed hereto, having perlormed the work or witnessed some during andlor alter its completion and the annexed report is true.

## Name and Postal Addresi of Parson Ceritirying

Fenton Scott 17 lialabar Place, Don líle, Ontario M3B 1 A4

## File: 2.563



Instructions: - Please type or print.

- If number of mining claims reaversed exceeds space on this form, attach a list
Note: - Only days credits colculated in the "Expendilures" section may be ontered in the "Expend. Days Cr ." columns.
- Do not use shoded areas below.



| Expenditures (excludes Type of Work Performed | ing | ETY |
| :---: | :---: | :---: |
| Performed on Clisim(s) | N09 | 3593 |
|  | 151 | 10: Sid |
| Colculation of Expencítura Totel Exponditures \$ | $15$ |  |

Imsiructioni
Totel Days Ciedits mey be epportioned et the clam holdor's Choice. Enter number of davi credits per cla. $\boldsymbol{n}$ selected in columns a: pight.


October $28 / 80^{\text {Decorded Holder or Agsal (Siqnatural }}$
Certification Verifying Report of Work
Mining Claims Traversed (List in numerical sequence)


I hereby canify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having pertormed the work or witnessad same during andor alter its completion and the annexed repont is true.
Name and Postal Address of Person Certilying
Fenton Scott 17 Malabar Place Don Mills ontario OCt $288 / 83$




Fill
2. 5659

Nor:9/83
Mining Lands Comments
$\qquad$
(Troceophyis Roger Barlow.

$\square$ To: Geology - Expenditures

$\square$ To: Geochemistry comments
(Comments
$\square$ (Tel: 5.1380)

## Ministry of Natural Resources

$\qquad$

## GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

## TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Surveys) Aircurno E.M., Mannotic, V.L.F.
Township or area Pilot Haksuuk, PT IsAsok, $2 C$. Claim Holder (s) Secco A Seminal in Trust.

Survey Company AEKODAT LIMUTER
Author of Report - FENTON Sect 1 Address of Author 17 MALABAR PeACE, DeN) Mils Covering Dates of Survey (ineculting to office)
Total Miles of Line Cut $\qquad$


AIRBORNE CREDITS (Special provision credits do not apply 0 L aidorne survey) Magnetometer 25 Electromagnetic $\frac{25}{\text { (enter days per dim) }}$ Radiometric 25

DATE:


Res. Geol. $\qquad$ Qualifications $\qquad$
Previous Surveys


## SELF POTENTIAL:

Instrument $\qquad$
Survey Method $\qquad$

Corrections made

## KADOMFTRIC

Instrument $\qquad$
$\qquad$
Values measured $\qquad$
Energy windows (levels) $\qquad$
Height of instrument $\qquad$ Background Count $\qquad$
Size of detector $\qquad$
$\qquad$
Overburden $\qquad$ (type, depth - include outcrop map)

Type of survey $\qquad$
Instrument $\qquad$
Accuracy
Parameters measured $\qquad$

Additional information (for understanding results) $\qquad$
$\qquad$

## MRBOKNESTRUNS



Navigation and flight path recovery method VISUAL NANIGATION, MANUAL ANO
AuToMATIC FIDUCIAKS - ON BOARO CAMEKA
Aircraft altitude_ $200^{1}$
Miles flown over total area_ $\quad 317$

REPORT ON THE MAPLE LAKE PROPERTY, BRASS RING RESOURCESS INC.

TABLE I - CLAIM LIST

| SSM. | 637647 | to | 637673 | 27 |
| :---: | :---: | :---: | :---: | :---: |
|  | 637675 | to | 637679 | 5 |
|  | 637681 | to | 637685 | 5 |
|  | 637687 | to | 637691 | 5 |
|  | 637693 | to | 637731 | 35 |
|  | 637736 | to | 637744 | 9 |
|  | 661124 | to | 661125 | 2 |
|  | 661165 | to | 661166 | 2 |
|  | 661197 |  | $\frac{1}{7}$ | 1 |
|  | C93623 | to | 093627 | 5 |

Total: $\quad 100$ claims

Total of 100 contiguous claims for approximately 1619 hectares (4000 acres). All the claims are located in Sault ste. Marie mining division, Ontario.

Mrs. M.V. St. Jules
Mining Recorder
875 Queen Street East
P.O. Box 669

Sault Ste. Marie, Ontario P6A 5N2

Dear Madam:
We have received reports and maps for an Alrborne Geophysical (Electromagnetic and Magnetometer) survey submitted on Mining Claims SSN 637647 et al in the Area of P1lot Harbour.

This material will be examined and assessed and a statement of assessment work credits will be issued.

He do not have a copy of the report of work which is normally filed with you prior to the submission of this technical data. please forward a copy as soon as possible.

Yours very truly,
E.F. Anderson

Dirdctor
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A IU3
Phone: (416) 965-1380
A. Barr:mc
cc: Rocco A. Schiralli (In Todst)
Suite 420
181 University Avenue
Toronto, Ontario
M5H 3M7
cc: Fenton Scott
17 Malabar Place
Don Millis, Ontario M3B IA4

See Accompanying
Map (S) IDENTIFIED AS

$$
\frac{4 I N / 13 N E-\frac{0012 * 1}{2}}{\frac{2}{3}}
$$

Located in The map Channel in The following Sequence ( $x$ )





