010

GEOLOGICAL REPORT
OF THE
vULCAN-CAULFIELD JOINT VENTURE
HEMLO AREA
DISTRICT OF THUNDER BAY, ONTARIO

(0) 1003

October 3, 1983
Timmins, Ontario

By: Stephen Conquer
Per: David R. Bell Geological Services In
I INTRODUCTION 1
II PROPERTY 1
Location and Access 1
Topography 2
Claims Status 2
III HISTORY OF EXPLORATION 2, 3
IV GEOLOGY 3
Regional Geology
Property Geology
Structural Geology 7
Stratigraphy 7
Mineralization 7, 8
V CONCLUSIONS 8
VI RECOMMENDATIONS 8, 9CERTIFICATE OF QUALIFICATIONSREFERENCES
APPENDIX I
FIGURES
Figure 1 - Approximate location of Caulfieldclaim group - Ontario
Figure 2 - Caulfield Claim group - Molson Lake AreaFigure 3 - Location of Caulfield claim group withrespect to other Hemlo Area properties
Map 427-83-1 - Geological Map (back pocket)

During the period from July 23, 1983 to July 26, 1983 a geological mapping program was conducted for Vulcan Resources Limited, on the Hemlo area claim group of Caulfield Resources Limited. The purpose of this program was three fold. First, to investigate several anomalous geophysical zones (EM, Mag and IP) delineated during the 1982 field season. Second, to locate and delineate any mineralized zones and last, to gain a better understanding of the local geology for aid in the interpretation of the drilling results.

II PROPERTY

This geological survey covered a total of 15 unpatented mining claims, numbered TB393034 to TB393038 inc1. and TB393043 to TB393052 incl. A11 claims are held by Caulfield Resources Ltd., \#1520-609 Granville St., Vancouver, B.C. This report is being submitted for assessment credits by Vulcan Resources Ltd., 403-595 Howe Street, Vancouver, B.C.

Location and Access (see Figures 1, 2, 3)

The Caulfield property is located in the Molson Lake Area (Hemlo Area), Thunder Bay Mining Division approximately 20 miles due east of Marathon, Ontario and 1.5 miles north of Highway 17.

Access to the property can best be acheived by helicopter from Marathon. Alternate routes include walking a drill road (in the vicinity of Botham Lake) north from Highway 17 or by boat up the Black River which passes under Highway 17 approximately 8 miles east of Marathon.

other Hemlo Area Properties

DAVID R. BELL GEOLOGICAL SERVICES INC.
VULCAN-CAULFIELD
LOCATION MAP
DISTRICT OF THUNDER BAY, ONTARIO

Figure 1: Approximate location of Caulfield Claim group

David R. Bell Geological Services Inc.
VULCAN-CAULFIELD

Location Map

District of Thunder Bay, Ontario

Topography

Two small ridges trending in a north-easterly direction, run through the south-central portion of the property. To the north this ridge system slopes gently downwards to the Black River and Cedar Creek. To the south this ridge system slopes gently towards several small creeks which eventually drain into the Black River.

Claim Status

At the present time the aforementioned 15 claims are unpatented and in good standing.

III HISTORY OF EXPLORATION

During March of 1982 , a baseline (bearing 70°) and a series of grid lines (bearing 160°) were established using a 400 foot line spacing. Line $0+00$ was placed so as to coincide with the number 4 post of claim TB393038. A tieline was cut 3,200 feet north of and paralleling the baseline, to insure total grid coverage of the property.

After completion of the cut grid, magnetometer and VLF-EM surveys were conducted over the entire property. The magnetometer survey was performed using a Geometrics G-816 proton magnetometer, while a Geonics EM-16 VLF unit was used for the VLF-EM survey. A station spacing of 100 feet was used for both surveys.

During November and December of 1982 a soil geochemistry survey was conducted over the southern half of the claim group. This survey consisted of 683 samples, collected over the existing grid lines using a 50 foot sample spacing. All samples were analyzed for gold and silver, while only 155 samples were assayed for molybdenum.

Secondary magnetometer and VLF-EM surveys were also conducted during the later portion of 1982. These surveys were run over the southern three claims (TB393038, TB393047 and TB393048) using a 50 foot station spacing. A GEM-8 Proton Precession Magnetometer was used for the magnetic survey, while a Crone Radem unit was utilized for the electromagnetic survey.

Rayan Exploration initiated an Induced Polarization survey over the central and southern portion of the claim group, during December of 1982. The survey was continued during January of 1983 but was stopped due to difficulties in obtaining electrode contact. A Phoenix I.P.T.I. 1 transmitter and a Crone I.P. 4 receiver were used to conduct the IP survey.

A diamond drilling program was carried out, from June 21 to July 20, 1983, to test several IP anomalies. The program consisted of 7 holes totaling 4,107 feet.

IV GEOLOGY

Regional Geology

The Hemlo area, in which the Caulfield property is located, was mapped by T.L. Muir during 1978. The results of Muirs' work was published in 1982 by the Ontario Geological Survey, as Report 217 and accompanying Map 2452.

In general the area is underlain by predominantly granitic rocks which separate two east-west trending meta-volcanic-metasedimentary sequences. The southern most of these units, known as the Playter Harbour Sequence is composed mainly of metamorphased mafic flows (Muir, 1982). While the northern most or Heron Bay Sequence is made up of metamorphased intermediate to felsic pyroclastic rocks, with intercalated mafic metavolcanic tuffs and flows. The rocks of both the Playter Harbour and Heron Bay sequences have strikes in a generally east-west direction, while dipping steeply to the north.

The granitic rocks which make up the greatest bulk of the Precambrian basement, have intruded the supracrustal rocks causing low to medium grade metamorphism. Four separate intrusions have been recognized by Muir. The Pukaskwa Gneissic Complex, occupying a large portion of the southern and eastern parts of the map area, is composed of mainly trondhjemitites and granodiorites. The Heron Bay Pluton lying in the west-central portion of the map area is made up of predominantly grandiorites (hornblende and biotite bearing). To the northwest, the Gowan Lake Pluton consists of hornblende-biotite-quartz nonzonites, while to the north-east there are hornblende-biotite granodiorites (similar to the Heron Bay Pluton) known as the Cedar Lake Pluton, The Heron Bay and Playter Harbour Sequences are separated by the Pukaskwa Gneissic Complex and the Heron Bay Pluton.

Property Geology

The Caulfield property is underlain by three nain supracrustal rock types, they are metasediments, intermediate to felsic metavolcanics and mafic metavolcanics. The remaining rock types consist of, later intrusive dyke rocks.

Intermediate to Felsic Metavolcanics

The intermediate to felsic metavolcanics are by far the most abundant rock type seen on the property, underlying almost the entire north half as well as the southern third of the claim group. As seen in outcrop these metavolcanics are entirely tuffaceous, ranging from ash tuffs to lithic tuffs.

The ash tuffs show an aphanitic texture, while structurally they range from massive to well foliated. The lithic tuffs are very similar to the ash tuffs, except for the presence of felsic fragments (less than 4 mm in size).

In part these lithic tuffs may be classed as crystal tuffs, owing to the fact that some of the felsic fragments are most likely feldspar crystals. These lithic tuffs are seen -o range from massive to well foliated in structural configuration.

Mafic Metavolcanics

The second most prominent rock type observed on Uhe Caulfield property are the mafic metavolcanics. They occur as isolated pods within the intermediate to felsic uffs and in two subparallel zones. The largest and by تar greatest concentration, is a zone running through he middle of the claim block. The average width of this zone is approximately 600 feet, with a maximum width of 800^{\prime}, and due to apparent interfingering with the intermediate to felsic tuffs (L12E and L24E), a minimum width of 200 feet. The second zone located in the south-central portion of the property, attains a maximum apparent width of 400 feet before disappearing between L12E and L16E.

These mafic metavolcanics were seen as variations of either tuffs or flows. Ash tuffs, with aphanitic texture, were the most predominant of the tuffs. While minor crystal uffs were differentiated due to the presence of feldspar crystals. The mafic flows were broken down into four difVerent catagories, using rock structure and the presence of non-metallic minerals. These catagories were:

1) Medium to coarse grained massive flows
2) Garnetiferous massive flows
3) Dark green foliated flows
4) Dark green amphibolitized foliated flows

During the mapping program thinly-laminated : argillites were observed, as apparent pods in the intermediate to felsic tuffs, as well as linear zones attaining a maximum width of 200 feet. These zones are located in three areas, L4E to L12E at $4+00 \mathrm{~N}$, L8E to L16E and $11+00 \mathrm{~N}$ and L44E at $10+00 \mathrm{~N}$. Graphite is present within the argillites, but in varying amounts, ranging from slightly to highly graphitic.

Intermediate to Felsic Intrusive Rocks

Feldspar Porphyry

The feldspar porphyrys occur as later intrusions (or dykes) into the intermediate to felsic tuffs. In an exposure on L28E at $32+00 \mathrm{~N}$ one of these porphyrys was seen to intruded an intermediate to felsic crystal tuff, showing a 1 cm wide chill margin at the contact. The feldspar porphyries have a dark grey to black cryptocrystalline matrix with feldspar (plagioclase) phenocrysts. The phenocrysts attain a maximum size of 0.2 '.

Mafic Intrusives

Equigranular and porphyritic diabase dykes were observed during the mapping program. The equigranular diabase dyke was fine to medium grained, with pyroxenes and amphiboles as the mafic component and plagioclase as the felsic component. The porphyritic diabase was similar to the equigranular type except for the presence of plagioclase phenocrysts. The diabase dyke located or -32E at $33+00 \mathrm{~N}$ is highly magnetic and correlates with a magnetic high (same location) delineated during the 1982 magnetometer survey. While the diabase on L20E at $7+00 \mathrm{~S}$ did not give rise to a magnetic expression during the revious survey.

Structural Geology

The main structural feature noted during the mapping program was foliation planes. These foliations gave strikes ranging from 067° to 084°, with dips of 74° to 84° to the north. Secondary structural features include minor bedding and contact Eeatures and various degrees of shearing. The shearing was for the most part parallel to the local foliation, and may represent a further development of that same foliation.

Stratigraphy

A possible top determination was observed as a धrain size fining in a crystal tuff (L28E at $32+00 N$). '.he fining was to the north, suggesting a north facing sequence. This correlates to what was seen in the drill core in holes 427-83-5 and 427-83-6.

Mineralization

Sulphides, in the form of pyrite, were the only retallic minerals found during the mapping program. This rineralization was observed in all rock types, except the feldspar porphyry and the porphyritic diabase. In the intermediate to felsic tuffs and the mafic metavolcanics the pyrite was seen as fine grained disseminations of \&enerally trace to 1% and locally $2-5 \%$ in volume. While in the argillites the pyrite was observed in thin (average (. 2 inch) discontinuous bands between the laminations (or in bedding planes), with average concentrations of $1-2 \%$. In the equigranular diabase fine to medium grained, cubic, iisseminated pyrite also averaged 1 to 2% in volume.

A total of 12 grab samples were sent for assay (see appendix 1), with the highest gold value returned being 10 ppb . This sample was taken from a sheared felsic uff with minor hematite staining, located on L32E at $36+00 \mathrm{~N}$. These grab samples were also analyzed for nickel, with the highest returned value being 124 ppm Erom an argillite located on L44E at $9+60 \mathrm{~N}$.

As well as the above 12 samples, 13 other grab samples were sent for whole rock and trace element analysis, percent $\mathrm{CO}_{2}, \mathrm{Au}, \mathrm{Ag}, \mathrm{Ba}$. These results have not been received at the present time.
\because CONCLUSIONS

From the mapping program, it can be concluded hat the local geology consists of a cyclic volcanosedimentary sequence. This sequence consists of metasediments, mafic metavolcanics, and intermediate to Eelsic metavolcanics. These rocks generally strike at 970° while dipping steeply to the north. From outcrop and drill information it is suggested that tops face north. Also it should be noted that the intermediate to felsic uffs may in part be of a sedimentary nature as opposed oo entirely volcanic. Mineralization of an economic nature has not been located to-date.

JI RECOMMENDATIONS

While the southern half of the claim group has been covered by VLF-EM, magnetometer, geochemistry and induced polarization surveys, along with diamond drilling. The northern half has undergone only minimal exploration (VLF-EM and magnetometer surveys.)

During the VLF-EM survey several conductive zones were delineated in the north portion of the property. One, a moderate strength conductor, runs from L20E to the eastern boundary of the property at approximately $30+00 N$, while a strong conductive zone runs across the entire width of the property at $25+00 \mathrm{~N}$. Also four weaker conductors were located to the north of the aforementioned zones. Due to the presence of the conductive zones a soil geochemistry survey is suggested to complete the property coverage and, especially to cover the VLF-EM conductors. This survey would consist of approximately 600 samples, collected at 50 foot spacings on the existing grid. A 50 foot sample spacing was selected due to the apparent lack of bedrock exposure in the north-western portion of the property.

As follow-up to and dependent upon the results of the geochemistry survey, detailed prospecting over anomalous zones, and an Induced Polarization Survey may be warranted. The IP survey should be tied into the 1982 survey, providing total coverage of the unsurveyed portion of the claim block, and to delineate the VLF-EM conductive zones.

Respectfully submitted,

Timmins, Ontario
October 4, 1983

By: Stephen Conquer
Per: David R. Bell Geological Services Inc.

I, Stephen W. Conquer hereby certify:

1. that I am a geologist employed by David R. Bell Geological Services Inc., Suite 4, 251 Third Ave., Timmins, Ontario.
2. that I am a graduate of the University of Waterloo, holding a Bachelor of Science degree (1979).
3. that I have been practising my profession as a geologist since 1979.
4. that I do not have nor do I expect to receive either directly or indirectly, any interest in this property or the securities of Vulcan Resources Limited or Caulfield Resources Ltd.

Timmins, Ontario
October 3, 1983

By: Stephen W. Conquer B.Sc
Per: David R. Bell Geological Services Inc
lielson, L.J. ј 983

983

Nuir, T.L.
1982

Sutherland, D.B. 1983

1982

1982

Unpublished Progress Report, Ground Geophysics (Proton Mag, Radem and IP surveys) on the Hemlo Area, District of Thunder Bay, Ontario; property of Caulfield Resources Ltd. (company report), Vancouver, B.C., 14p, 2 plans

Unpublished Progress Report, Soil Geochemistry Survey on the Hemlo Area, District of Thunder Bay, Ontario, property of Caulfield Resources Ltd., (company report), Vancouver, B.C., 5p, 3 plans

Geology of the Hemlo Area, District of Thunder Bay; Ontario Geological Report 217, 65p. Accompanied by Map 2452 (coloured), Scale 1:31,680 or 1 inch to $\frac{1}{2} \mathrm{mile}$

Report of Induced Polarization Survey on the Hemlo Area, District of Thunder Bay, Ontario; Caulfield Resources Ltd. Option for Vulcan Resources Ltd. (company report), Vancouver, B.C., 9p, 3 maps

VLF-EM survey map, Caulfield Resources Limited.

Magnetometer survey map, Caulfield Resources Ltd.

Appendix 1
Grab Samples - Locations, description, assay results

Sample Number	Location	Description	Au ppb	Ni ppm
4:27-000-305	BL/39+00E	Felsic lithic tuff, with disseminated pyrite	3	22
127-000-308	L20E/ $10+00 \mathrm{~S}$	Coarse grained equigranular diabase, with disseminated pyrite	4	32
127-000-310	L44E/9+60N	Argillite, with disseminated pyrite	4	124
4.27-000-316	L12E/17+00N	Foliated mafic crystal tuff	5	28
427-000-317	L16E/11+00N	Sheared silicified intermediate tuff	8	22
427-000-318	L20E/ $14+00 \mathrm{~N}$	Sheared silicified, felsic tuff with minor quartz veins	8	30
427-000-320	L32E/36+00N	Sheared felsic tuff, with hematite staining	10	44
<27-000-321	L32E/37+00N	Sheared felsic tuff	5	26
<27-000-322	L32E/41+00N	Recrystallized (altered) felsic tuff	7	58
127-000-323	L36E/33+00N	Sheared intermediate to mafic tuff containing pyrite, silicified	7	76
127-000-324	L36E/34+90N	```Foliated, silicified, intermediate tuff containing pyrite and carbonate```	8	56
127-000-325	L36E/34+91N	Foliated, silicified intermediate to mafic tuff, with pyrite	3	48

Sample 427-000-308 was also analyzed for

1) $\mathrm{Cu}-26 \mathrm{ppm}$
2) $\mathrm{Pb}-50 \mathrm{ppm}$
3) $\mathrm{Zn}-98 \mathrm{ppm}$

Samples 427-000-301 to 427-000-304 incl., 427-000-306, 4.27-000-307, 427-000-309, 427-000-311 to 427-000-315 incl. and 427-000-319, were sent for whole rock, trace element percent $\mathrm{CO}_{2}, \mathrm{Au}, \mathrm{Ag}, \mathrm{Ba}$ analysis. The results are pending.

Octiv (Geophysical, Geological,
Geochemicel and Expenditures) $\# L$

Geolegical
900

Caulfield Resources ltd.
Husputsitake Area
c/o lavid R. Bell Geological Services Inc.
P.O. Box 1250, 'Timmins, Ontario

 Steve Conguer

Credits Fitout ted pet Each Cham in Columans at right

[srete frosisic is	Gfophyrsical	Daysper Chim
For distsur ev:	- Eiectomingretic	
Enter 40 sizys. IThis inclusies ne cuiting	Magrictometer	
For tach aditional survey:	- Radiometric	
Enter 20 Jays (for each)	Oftier	
	Gecolcipical	40
	Grochemical	
Man Davs	Gerophysical	Days per Claim
Complate re emse side andente: ic fills) here	- Fictiomapnetic	

RECEIVED

Exp: nditures exchaes fower stripping)
\square

Cenficaton Jerifying Etport of Work

R.A. Markov, David R. Bell Geological Services
P.O. Box 1750, Tjumins, Ontario

Die Cerrifito

Mining Lands Comments

\square To: Geophysics

\square To: Geochemistry

| Comments |
| :---: | :---: | :---: | :---: | :---: |
| \square Approved |

\square

19831013

Mrs. Audrey Hayes
Mining Recorder
Ministry of Natural Resources
P.O. Box 5000

Thunder Bay, Ontario
P7C 5G6
Dear Madam:
We have received reports and maps for a Geological survey submitted under Special Provisions (credit for Performance and Coverage) on mining claims TB 393034 et al in the Area of Moison Lake.

This material will be examined and assessed and a statement of assessment work credits will be issued.

Yours very truly,
E.F. Anderson

Director
Land Management Branch
Whitney Block, Room 6610
Queen's Park
Toronto, Ontario
M7A 1 W3
Phone: (416)965-1380

R. Pichette:mc

cc: Caulfield Resources Ltd c/o David R. Rell Geological Services Inc P.O. Box 1250 Timmins, Ontario

DAVID \mathbb{R}. $B E L L$ GEOLOGICAL SERVICES $\mathbb{N C}$.

251 THIRD AVE., SUITE 6
BOX 1250
TIMMINS. ONTARIO P4N 7 J 5
(705) 264-4286

October 5, 1983

Lands Administration Branch
Mining Lands Section
Ministry of Natural Resources
Room 1617, Whitney Block
Queen's Park
Toronto, Ontario
M7A 1/W3
Attention: Mr. Fred Mathews

Dear Sir:
Re: Vulcan-Caulfield Joint Venture, Geological Report on Claims TB393034-TB393038 incl., and TB393043-TB393052 incl., (Molson Lake Area)

I have enclosed two (2) copies of the above report as per Ministry of Natural Resources requirements for assessment credits. Please acknowledge receipt of said reports.

Respectfully submitted,

Stephen Conquer
Per: David R. Bell
Geological Services Inc.
$\mathrm{SC} / \mathrm{kg}$
OCT 61.983
Encl.

Ministry of Natural Resources

File \qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) Geological
Township or Area_Molson Lake Area
Claim Holder(s) Caulfield Resources Ltd.

Survey Company David_R. Bell Geological Services In
Author of Report _-Stephen Conquer
Address of Author 251 Third Ave., Suite 4, Timmins, Covering Dates of Survey July $12 / 83$ - July $19 / 83$ Ont.
Total Miles of Line Cut $\quad 12$ miles

SPECIAL PROVISIONS	days
CREDIT \$ REQUESTED	Geophysical per claim
ENTER 40 days (includes line cutting) for first survey.	--Electromagnetic
	-Magnetometer
	-Radiometric
ENTER 20 days for each additional survey using same grid.	-Other
	Geological_ 40
	Geochemical

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Res. Geol. \qquad

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS If more than one survey, specify data for each type of survey

Number of Stations \qquad Number of Readings \qquad
Station interval Line spacing

Profile scale \qquad
Contour interval

Instrument \qquad
Accurac, ${ }^{\prime}$ - Scale constant \qquad
Diurnal correction method \qquad
Base Station check-in interval (hours)
Base Station location and value \qquad

I Instrument \qquad
Coil configuration \qquad
Coil separation \qquad
Accuracy. \qquad
Method: \square Fixed transmitter \square Shoot back \square In line \square Parallel line
Frequency (specify V.L.F. station)
Parameters measured

Instrument \qquad
Scale constant
Corrections made \qquad

Base sta:ion value and location \qquad

Elevation accuracy

Instrument

Method	\square Time Domain	
Parameter	s - On time	
	- Off time	
	- Delay time	
	- Integration tim	

Power.
Electrode array
Electrode spacing
Type of electrode \qquad

SELF POIENTIAL.
Instrument \qquad

Survey Method

\qquad

Corrections made \qquad
\qquad

RADIOMF IRIC

Instrument

\qquad
Values measured \qquad
Energy windows (levels)
Height of instrument
Background Count \qquad
Size of detector \qquad
Overburder \qquad

OTHERS (BEISMIC, DRHIL WRILI, I OGGING ETC.)

Type of survey
Instrument \qquad
Accuracy.
Parameters measured \qquad

Additional information (for understanding results)
\qquad
\qquad

AIRBORN: SURVEYS

Type of survey(s)
Instrumentis)
\qquad
(specify for each type of survey)
Accuracy

> (specify for each type of survey)

Aircraft use d \qquad
Sensor altitude
Navigation and flight path recovery method \qquad

Aircraft alttude
 Line Spacing
Miles flown over total area. \qquad Over claims only

Numbers of claims from which samples taken

Total Number of Samples________________
Type of Sample__ (Nature of Material)
Average Sámple Weight_______
Method of Collection.
ANALYTICAL METHODS
Values expressed in:
per cent
p. p. m.
p. p.b.
$\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ni}, \mathrm{Co}, \mathrm{Ag}, \mathrm{Mo}, \mathrm{As}$, -(circle) Others

Field Analysis (____tests)
Extraction Method. \qquad
Analytical Method \qquad
Reagents Used
Field Laboratory Analysis
No. tests)
Extraction Method. \qquad
Analytical Method \qquad
Reagents Used \qquad
SAMPLE PREPARATION
(Includes drying, screening, crushing, ashing)
Mesh size of fraction used for analysis
Commercial Laboratory
Name of Laboratory \qquad
Extraction Method \qquad
Analytical Method \qquad
Reagents Used \qquad

General

MOLSON LAKE

Ontario
februaby 1882

