REPORT ON THE
 COMBINED AIRBORNE MAGNETIC AND
 VLE-ELECTROMAGNETIC SURVEY
 ON THE PROPERTY OF
 MANRIDGE EXPLORATIONS LIMITED
 HAWKINS AND IRVING TOWNSHIPS
 SAULT STE. MARIE MINING DIVISION, ONTARIO.

RECEIVED

CP291989

By
mining lands section
H. Ferderber Geophysics Ltd.

$$
2.12778
$$

August 17, 1989
Val d'or, Quebec
R.A. Campbell, B.SC., Geologist.

```
REPORT ON THE
COMBINED AIRBORNE MAGNETIC AND
VLF-ELECTROMAGNETIC SURVEY ON THE PROPERTY OF
MANRIDGE EXPLORATIONS LIMITED
HAWKINS AND IRVING TOWNSHIPS
SAULT STE. MARIE MINING DIVISION, ONTARIO.
```


INTRODUCTION

On June 28, 1989 a combined magnetic and VLF-electromagnetic survey was carried out on the property of Manridge Explorations Limited in the Townships of Hawkins and Irving, Sault Ste Marie Mining Division, Ontario. Magnetic and VLF-electromagnetic data was collected by the airborne division of H. Ferderber Geophysics Ltd. The survey was flown from a base at Wawa, Ontario. A total of 72.9 miles of data was collected.

The magnetic survey provides data which outlines the underlying geological structures and identifies any potential economic concentrations which may contain variations in accessory magnetic minerals. The VLF-electromagnetic survey helps define conductive zones which may represent shear zones and/or metallic sulphide deposits containing gold and/or base metal mineralization.

PROPERTY DESCRIPTION, LOCATION AND ACCESS

The Manridge Explorations property is comprised of 40 claims, 6 in Hawkins Township, and 34 in Irving Township, Sault Ste. Marie Mining Division, Ontario. The claims cover approximately 640 hectares, are registered with the ontario Mining Recorder's Office at Sault Ste. Marie and are listed in Appendix 1.

The property is located approximately 9 miles south of the small railway village of Oba and 53 miles south-southwest of the town of Hearst. Access can be reached by taking Highway 583, south from Hearst, for 24 miles then travelling over a gravel road for 47 miles until oba. A gravel road south from oba passes within 2.5 miles of the northern boundary. The Algoma Central Railway passes through the centre of the claim group.

The property is forested with a small lake lying in the eastern half of the claim group. The western lake of the Akron Lakes is located along the eastern boundary. Topographic relief in the area is generally low.

Supplies, services and manpower are available in the Hearst-Kapuskasing-Hornepayne area.

GEOLOGY

The Ontario Department of Mines, Geological Compilation Sheet 2220, the Manitouwadge-Wawa Area map outlines the geology underlying the claim block. The geology map indicates that approximately 80 per cent of the property is underlain by Early Precambrian (Archean) felsic igneous and metamorphic rocks. A narrow band of mafic metavolcanic rocks with minor amounts of serpentinite strikes south-southeast across the western half of the property. A parallel trending diabase dyke intrudes the felsic igneous and metamorphic rocks, west of the mafic metavolcanic unit.

A short, 0.5 mile long, lineament-fault zone strikes south from the small lake. Series of west-southwest trending lineaments-fault zones lie northeast and southwest of the claim group.

An asbestos showing has been found in igneous ultramafic rocks (serpentinite) within the mafic metavolcanic band, near the north-central boundary. Molybdenum occurrences have also been outlined in a second mafic metavolcanic unit, 0.8 to 1.0 miles north of the property. The Shenango Prospect is also located in mafic metavolcanic rocks, approximately 4 miles north of the claim block. In 1936, 1937 and $1945,67 \mathrm{oz}$. of Au and 37 oz . of

Ag were recovered from 2,400 tons of ore. Mineralization was found in auriferous quartz veins lying along the southern contact of a magnetic anomaly that strikes westward from the central part of Hawkins Township across Derry Township. The results of a recent airborne magnetic and electromagnetic survey by Aerodat for the Ministry of Northern Development and Mines, maps 20832 and 20831 show that a weak electromagnetic anomaly is located near this gold prospect.

INSTRUMENTATION AND SURVEY METHODS
The survey was completed using a 1972 Cessna 172, fixed-wing aircraft, call letters CF-EWK, owned and operated by H. Ferderber Geophysics Ltd. The pilot and navigator/operator were y. Saucier and Dan Thai, respectively, of Val d'Or.

Geophysical sensors were mounted in modified wing tips. The geophysical, navigation and data acquisition systems are described in the following pages.

Magnetometer

The magnetometer used was GEM Systems GSM-11, high sensitivity airborne proton (Overhauser) magnetometer. The instrument continuously measures the Earth's magnetic field at a 0.01 gamma sensitivity for 1 reading per second or 0.05 gamma to

10 readings per second at a 0.1 gamma absolute accuracy. For this survey four readings per second were measured at a sensitivity of 0.04 gammas. The analog output is on 3 channels, from 1 to 10,000 gammas full scale.

VLF-EM System

A Herz Totem 2A VLF-EM System was used to measure the changes in the total field and in the vertical quadrature field on two frequencies simultaneously, with an accuracy of 1%. The primary transmitting station of Annapolis, Maryland (NSS), frequency 21.4 KHz was employed in survey.

Radar Altimeter

The ground clearance was measured with a King 10/10 A radar altimeter. The survey was flown at a mean clearance of 300 feet with the altimeter producing an accuracy of 5% (15 feet) at this altitude.

Tracking Camera and Video Centre
A RCA TC-200 colour video camera and Galaxy 200 video centre was used to record the flight path on standard vHS type video tapes. Manual fiducials were indicated on the picture
frames for reference with digital printout. Flight path recovery was aided using a Panasonic Colour Video Monitor-s1300 and Video Cassette Recorder AG-2500.

Data Acquisition System

A Picodas Group Inc. PDAS 1100 data acquisition system featuring seven analog inputs with two frequency inputs and external interfacing was used. A Termiflex Corp. ST/32 Keyboard control unit and Sharp Corp. LCD display unit are connected to the data acquisition system. At present this system stores the altimeter VLF-1 inphase, VLF-1 quadrature, VLF-2 inphase, VLF-2 quadrature, magnetic field (coarse), magnetic field (fine), and the fourth difference (noise), and fiducials on 3.5 inch floppy disk drive. The data is then printed out in digital and profile form.

The survey was conducted on lines orientated at 045 and 225 degrees, at an average aircraft altitude of 300 feet. The lines were flown at spacings of 440 feet at a speed of approximately 90 miles per hour. Navigation was visual using airphoto mosaics, at a scale of one inch to 1320 feet, manual fiducials and the flight path recovery system as references.

Flight lines, fiducial points and geophysical responses were reproduced from the airphoto mosaics at a scale of one inch to 1320 feet (1:15,840). The outline of the claim block and claim map are shown on each map sheet.

The aeromagnetic data was corrected for diurnal variations by using base lines as references. The data was contoured at 25 and 100 gamma intervals and presented on Map MG-1.

The VLF-EM data was transferred from the Totem 2A memory to profiled form. Base values were determined for the VLF-EM profiled data. These values were used to correct variations in the transmitter strength and the corrected values were plotted on Map EM-1. The positive values were contoured at intervals of 2%. The conductor axes were determined and labelled A, B, C, etc. No priority was attached to the labelling system.

SURVEY RESULTS AND INTERPRETATION
Magnetic Survey
The main features delineated by the magnetic survey are four series of southeast trending magnetic highs. The strongest and broadest series of highs lies across the central part of the property. Values of up to 500 gammas above background indicate that these highs are caused by igneous ultramafic rocks
(serpentinite) within a band of mafic metavolcanics. A probable second small band of mafic metavolcanics is defined by two highs situated over the western-most claims.

The two other series of highs, the eastern-most and second most westerly highs, exhibit magnetic values and shapes indicative of diabase dykes. The eastern-most dyke appears to be covered by a thicker layer of overburden, producing a slightly broader anomalous zone.

Magnetic relief and susceptibilities are lower over the rest of the property, as expected, if these areas are underlain by felsic igneous and metamorphic rocks. A narrow, linear magnetic low strikes south-southeast, along the eastern edge of the series of highs representing the mafic metavolcanics containing igneous ultramafic rocks. This low defines the position of a possible lineament-fault zone. VLF-Electromagnetic Survey

Five conductive zones lie over the Manridge Explorations' claim block. Zone A is comprised of 3 southeast striking conductive zones along Oba River and the lake just east of the river. The south-southeast trending lineament cuts across this zone, offsetting the eastern-most conductor. The western two conductors are located along the eastern edge of the mafic
metavolcanic unit, near the asbestos showing, and the eastern conductor is thought to lie within felsic igneous and metamorphic rocks. Zone A could define a shear zone following a linear overburden trend within felsic igneous and metamorphic rocks and along a mafic metavolcanic contact.

Zone B is a short, one-line conductor, located within a magnetic high representing a diabase dyke. It could represent a weak shear within the dyke.

Zone C, comprised of two conductors, strikes northwest across the southeast property boundary. It may represent a possible southern extension of the fault zone, defined by the magnetic survey, within felsic igneous and metamorphic rocks.

Zone D is a two-line conductor, lying along the Oba River, the railroad tracks and the western edge of the metavolcanic unit. The conductor could be caused by conductive overburden or culture.

Zone E strikes northwest across the southern boundary, approximately 0.5 miles southwest of zone C. The conductor is located along a creek within the mafic metavolcanic unit. It may be caused by conductive overburden following a linear trend representing a lineament-shear zone in mafic metavolcanic rocks.

CONCLUSIONS AND RECOMMENDATIONS

The combined airborne magnetic and VLF-electromagnetic survey was successful in helping define the geology and in delineating five conductive zones on the Manridge Explorations' property in Hawkins and Irving Townships. A band of mafic metavolcanic rocks, containing serpentenite and asbestos, strikes southeast across the central part of the claim block. A possible second unit of mafic metavolcanics lies over the southwesternmost claim. Two similar trending diabase dykes are situated to the east of both metavolcanic bands. The rest of the property is probably underlain by felsic igneous and metamorphic rocks and a possible south-southeast striking fault lies in these rocks, just east of the central mafic metavolcanic band.

Of the five conductive zones outlined on the property by the VLF-EM survey, Zones A, B, C and E could define the positions of possible shear zones. The best potential targets for gold mineralization are the intersections of the conductors of zone A and the south-southeast fault, and zone E which is situated within the mafic metavolcanic unit.

Further exploration, comprised of complete geological mapping and sampling and ground magnetic and horizontal loopelectromagnetic surveys, should be completed over the claim
block. Potential targets for gold mineralization could then be tested by detailed induced polarization, prior to diamond drilling.

Respectfully submitted,
H. Ferderber Geophysics Ltd.

BACon

August 17, 1989
Val dior, Quebec
R.A. Campbell, B. Sc.,

Geologist.

APPENDIX 1 - CLAIM LIST

1049651	SSM	1049690
1049652	1049691	
1049653	1049692	
1049654	1049693	
1049655	1049694	
1049656	1049695	
1049657	1049696	
1049658	1049697	
1049659	1049698	
1049660	1049699	
1049661	1049700	
1049662	1049701	
1049663		
1049664		
1049665		
1049677		
1049678		
1049679		
1049680		
1049681		
1049682		
1049683		
1049684		
1049685		
1049686		
1049687		
1049688		
1049689		

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical

 Technical Data Statement
TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) Airborne magnetic and VLF-electomagnetic

Township or Area Hawkins \& Irving
Claim Holder (s) : Manridge Explorations it. Ste 2314 - 401 Bay St. Toronto Ont M5H 2 Ye
Survey Company H. Ferderber Geophysics Ltd.
Author of Report R.A. Campbell
Address of Author 169 Perrault Avenue, Val d'or, Que
Covering Dates of Survey
June 28, 1989
(Linecutting to office)
Total Miles of Line ${ }^{\text {Cum Flown: } \quad 72.9}$

AIRBORNE CREDITS (Special provision credits do not apply to írborne surveys) Magnetometer 35.8_Electromagnetic 35.8 Radiometric (enter days per claim)

DATE: \qquad SIGNATURE: \qquad Qualifications

2.6609

Previous Surveys

SELF POTENTIAL

Instrument Range

Survey Method \qquad

Corrections made

RADIOMETRIC

Instrument \qquad
Values measured \qquad
Energy windows (levels)
Height of instrument \qquad Background Count \qquad
Size of detector
Overburden \qquad (type, depth - include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)

Type of survey
Instrument \qquad
Accuracy
Parameters measured \qquad

Additional information (for understanding results)

AIRBORNE SURVEYS

Type of survey(s)_Magnetic__ Mand_Electromagnetic
Instrument(s) GEM Systems GSM-11 magnetometer and_Herz Totem_2A VLF-FM (specify for each type of survey)
Accuracy_0.04 gammas and 1%
(specify for each type of survey)
Aircraft used___ Cessna 172 fixed-wing
Sensor altitude 300 feet

Navigation and flight path recovery method Navigation was_visual on airphoto-mosaics
Flight path recovery was obtained with_a_RCA_م_
Aircraft altitude colour video monitor 300 feet_Line Spacing_ 440 feet
Miles flown over total area 72.9 miles Over claims only_35م 8 miles

2.12778

AIRBORNE ELECTROMAGNETIC SURVEY		
MANRIDGE EXPLORATIONS LIMITED		
2.12778	$\underset{\substack{\text { antang } \\ \text { Tow }}}{\text { Irving }}$	Hawkins hips
$\begin{gathered} \text { H. MACNDERBER } \\ \text { GEOPHYSICS LTD. } \end{gathered}$		

