

42E10400113 63.0072 ASH400

010

PRELIMINARY REPORT

SAMPLING AND METALLURGICAL REPORT

BEALROX NINES LIMITED

ROXMARK MINES LIMITED

GERALDTON-BEARDHURE AREA ONTARIO

TASHOTA-NIPIGON DEPOSIT

• •

TOMBILL-BANKFIELD DEPOSIT

LITTLE LONG LAC DEPOSIT

By

DAVID MALQUF General Manager

February 14, 1991

PRELIMINARY SUMMARY REPORT

As mutlined in the President's letter of the 1989 Roxmark Mines Limital. Annual Report, Koumark has secured the right to evaluate several gold tailings deposits in the Geraldton Beardmore Camp. Of the 3,000,000 Tens onder ogreement, preliminary testing has shown that a thorough evaluation is warranted and that the deposits could contain up to 135,000 ounces of gold for an average grade of plus or minus .045 sunces per ton. Assuming a 65% recovery and reprocessing costs in the order of \$8.00 per ton on a scale of plus 1000 tons per day this project could generate the much needed exploration and development funds needed to develop the recent discovaries in the camp specifically Roxmark's Panedici Zone, the Hartrock Discovery Zone, etc. - It is also believed that capital costs required would be a fraction of the cost required to implement a conventional mine, mill scenario 25-30% - and that this equipment could later be cessible. supplemented to handle mineforum one.

2. There are three properties of prime interest:

A). Rankfield - Tombill with a common tailings pond

- B). Little Long Lac propulty of Algoma Steel.
- C). Tachota Nipigon.
- All properties are in the Deardmore Secaldton Mining Division in the District of Thunder Bay.

A) <u>Bankfield-Tombill</u> Located on the North side of Trans Canada Highway #11-8.25Km wast of the turn off to Geraldton in the Western half of Errington Twp.

- B) Little Long Lec Located on either side of Hwy 584 approximately 3 Km. north of Hwy 11 south of the bridge that enters the town of Gereldton in Errington and Ashmore Twps.
- C) <u>Tashota</u> The Mine is located North west of Onamen Lake and south of Obashkegan Township, between Onamen Lake and Onamen River. It is accessible via the Camp 40 Road north to the Con Lake Road. Preceed north-east from the Con Lake intersection on the Mine Road for approximately 8 miles to the mine site.

1. ...2

 <u>Ra kfield-Tembill Cloims</u> C Patented Mining Claims TB 10212 TB 110201 TC 10545
 <u>Little Long Lac</u> **B Patented Mining Claims**

4.

- 8 Patented Mining Claims T3 10887 TB 10421 T3 10560 TB 10561 TB 10562 TB 10562 TB 10886 TB 10566
- C) <u>Tashota Nipigon</u> 2 Fatented Mining Claims 198573 & KMC24
- 5. A) The Bankfield Tombill project is subject to a 25% NPI in favor of Bankfield and Tombill Mines.

- 2 -

E) The Little Long Lac project is subject to a 5% N.S.R. to Lac Mineral= and annual phyments of approximately \$40,000 to Algoma subject to a presilive production decision.

C) The Tashota Nipigon' project is subject to a 4% NSR and an additional payment of \$5,000,00

3. <u>Essional Geology</u>

9.5. Malouf Consulting Geologists Limited entered into agreements on the above properties for Roxmark Mines Limited. Roxmark did the initial work involving research sampling and preliminary metallurgical work involving \$15,000 in 1989 and early 1990 - Roxmark has agreed to give their subsidiary company Beauron: Mines Limited (at present a private corporation) a change to many a further 25% interest in the tailings project for doing a proper evaluation, metallurgical testing, feasibility study, and a further 25% interest for funding through to production.

7. <u>Current Status</u>

 A). Bankfield Tombill - Initial sampling with a Sonic Soil Sample
 a 60 holes drilled indicated appreciable tonnage a .051 Dz. per Ton. with isolated tonnage of high grade.

B) Little Long Lac - Investigation of production history indicates excessives losses in the mill with two periods of tailings retreatment. Initial sampling favorable - 1,780,000 Ton potential.

C). Tashota Nipigon - Report on sampling and metallurgy from Lakefield Research done by Lynx - Canada in 1978 indicates reserves of 50,000 tons of .088 Oz Gold per ton with indicated recoveries of 70.4%

1...3

8. <u>Recommended Work Project</u>

A program involving the expenditure of \$200,000.00 is warranted. Grids will be established on all properties. The Tashota will be drilled and sampled on 25 foot centre because of the relatively small size of the deposit and high grade nature. The Bankfield Tombill will be drilled and sampled on 50 foot centers - Little Long Lac will be drilled and sampled on 100 foot centers with later definition at 50 feet. This should involve 10,000 to 11,000 feet of drilling and approximately 2400 assays - Sample results and locations will be plotted and grade contour lines established to locate economic reserves. The grid, drilling and sampling will cost \$100,000.00 - Sample composites of reject will assembled and sent to Lakefield Research for samoles metallurgical studies on the three representative bulk sample.

The metallurgical work should cost \$40,000 - If this stage gives favourable results, it will be followed with a \$50,000 environmental study and then a feasibility study.

- 9. The project began in August of 1990
- 10. The project will take nine months to complete or 200 days.
- 11. Work Completed

The proposed program was carried out at a cost of \$165,911.54 -Grids were establish on each property and the drilling was done with a Sonic Soil Sampling machine - "BQ" Rods were used to drill down through the tailings and into organic material. Samples were taken at each five foot section.

A total of 11,000 feet were drilled and 2,621 samples taken. The assay results were plotted on assay plans. These results were then contoured to show areas averaging .03 ounces of gold per ton and better. Once these areas were known the sample rejects representing these areas were made into composites for each deposit and prepared for bulk metallurgical work at Lakefield. Supplementary bulk samples were taken with the use of a back hoe which cut five trenches on each of the Bankfield and the Little Long Lac deposits. The trenches were 50 feet long, the depth of the tailings and a two ion sample representative sample compiled from each deposit. There was sufficient material for testing on. the Tashota property as each hole was double drilled.

All composites properly identified were shipped to Lakefield research and arrived December 27th, 1990.

Metallurgical work began in early January with preliminary investigations on gravity, flotation, bottle cyanide tests, 30 elements scans etc. After a review of initial results a decision was made to do heap leach column tests on all three ores and to do a combination of gravity (Falcon concentrator) and column flotation in a continues circuit on the Bankfield and Little Long Lac material. These tests have been paid for but are still in progress. When the results have been compiled a complete report will be presented to the Ministry. This will be accomplished by March 25, or earlier. We have included a copy of the preliminary metallurgical work done and underway, as well as assay plans of the respective properties.

11. Completion date is February 15, 1991.

12. <u>Reports Available</u>:

- Al "Entario Geological Survey" Span file Report 5630 - 1986 Volume I - Pg. 87 thru 96 Pg. 329 Thru 338
 - Volume II Pg. 582 thru 584 Pg. 571 item 8 Economic Features
- B) "As Investigation of the Recovery of Gold" From Tailings sample submitted by Tashota-Nipigon Wines Ltd. Progress Report No. 1

Project No. L.R. 2190 - Lakefield Research.

13. Preliminary Metallurgical Reports.

14. Assay Maps with preliminary reserves.

Respectful David Malouf

General Manager and Director Roxmark Mines Limited Beaurox Mines Limited

13 63.6072 ASHMORE

020

February 6, 1991

Mr. D. Malouf Beaurox Mines Limited Suite 801 80 Richmond Street West Toronto, Ontario M5H 2A4

Dear Mr.Malouf:

Re: LR4095 - Summary Letter No. 1 <u>The Recovery of Gold from Low Grade Tailing Samples</u>

Please find enclosed a summary of all testwork completed to date on the Bankfield, Bankfield-2, Tashota and Little Long Lac samples.

The testwork performed thus far includes head assay analyses, gravity concentration, flotation and direct cyanidation.

(i) Head Assay Analyses

Representative head samples were cut from each individual tailing sample and assayed for Au, Fe and S(total). The results are summarized as follows:

Table No. 1: Head Assays

	Bankfield	Bankfield-2	Tashota	Little Long Lac
Au, g/t	2.90	1.29	3.03	1.60
Fe, %	6.33	6.40	10.1	3.80
S(total), %	2.28	2.26	2.51	0.19

Size fraction analyses for Au and S(total) were also performed on the same head samples. Table 2 summarizes these results.

OMP 90-169 185 CONCESSION STREET, POSTAL BAG 4300, LAKEFIELD, ONTARIO, GANADA KOL CHAR

Table 2: Size Fraction Analyses

(i) Banklaid

Mesh	Weigh	t	Assays, g/t or %			on, %
Tyler	g	%	Au	8	Au	S
65	131.5	12.3	1.75	1.53	5.7	8.3
200	306.5	28.7	2.69	0.83	20.4	10.5
400	211.1	19.8	3.23	3.04	16.9	26.4
-400 Feed(calc)	417.3	39.1	5.52	3.19	57.0	54.8
	1066.4	100.0	3.79	2.25	100.0	100.0

(ii) Tashota

Meeh	Weigh	t	Assays, g/t or %			оп, %
Tyler	9	*	Au	\$	Au	S
65	54.4	5.0	6.04	2.84	10.8	6.3
200	388.5	. 35.4	4.52	1.65	56.6	26.1
400	248.2	22.6	1.85	2.45	13.2	24.8
-400	405.2	37.0	1.50	2.59	19.6	42.8
Feed(caic)	1096.3	100.0	2.83	2.24	100.0	100.0

(III) Little Long Lac

Mesh	Weigh	t	Assays, g/	tor%	Distributi	stribution, %		
Tyler	9	%	Au	8	Au	8		
65	27.6	2.6	3.45	0.19	6.5	3.1		
200	374.4	35.8	1.13	0.07	28.8	15.4		
400	245.0	23.4	1.26	0.21	21.0	30.2		
-400	397.8	38.1	1.62	0.22	43.8	51,4		
Feed(calc)	1044.8	100.0	1.41	0.16	100.0	100.0		

(iv) Banklaid-2

Mesh	Weigh	t	Assays, g/	tor%	Distribution, %	
Tyler	g	*	Au	S	Au	S
65	3.9	0.7	1.73	1.54	1.0	0.5
200	130.4	24.4	1.02	0.39	19.3	4.5
400	142.2	26.6	1.46	2.19	30.1	27.8
-400	257.7	48.2	1.33	2.02	49.7	67.1
Feed(calc)	534.2	100.0	1.29	2.10	100.0	100.0

Table 3: Size Fraction Analyses

	Backfield	Tashota.	Little Long Lac	Backfield-2
As, %	1.39	0.004	0.12	0.85
Ba, %	0.04	0.02	0.05	0.04
Be, %	<0.0001	<0.0001	0.0001	0.0001
Ca, %	3.25	2.73	2.84	2.97
Cd, %	<0.003	<0.001	<0.0005	0.0007
Co, %	0.003	0.007	0.003	0.003
Cr, %	0.01	0.009	0.004	0.01
Cu, %	0.008	0.03	0.008	0.008
Fe, %	6.39	9.57	4.04	3.27
Mg, %	1.34	- 2.12	1.57	1.46
Mn, %	0.05	0.08	0.06	0.06
Mo, %	<0.01	<0.006	<0.01	<0.01
Na, %	3.24	1.21	1.71	3.34
Ni, %	0.006	0.005	0.006	0.006
P, %	0.04	0.03	0.05	0.04
Pb, %	<0.02	<0.01	<0.02	<0.01
8,%	2.28	2.15	0.22	2.01
Sb, %	0.001	<0.001	0.008	0.001
Se, %	<0.005	<0.005	<0.005	<0.0005
8n, %	<0.002	<0.002	<0.002	<0.002
Te, %	<0.001	<0.001	<0.001	<0.001
Th, %	0.001	0.003	<0.001	<0.001
U, %	<0.001	<0.001	<0.001	<0.001
Zn, %	0.005	0.01	0.009	0.007

(ii) Gravity Concentration

A series of tests were conducted to investigate the recovery of gold by gravity concentration. 2 kg charges were passed over an 1/8 Wilfley shaking table with the table concentrate being upgraded on a Moziey separator. The results are summarized in Table 4.

Test	Sample	Product	Weight	Assay	gt, %	Distribu	tion, %
			%	Au	8	Au	8
4	Tashota	Mazley Conc	0.1	141		2.9	
1		Mozley Tall	2.7	5.44		4.6	
		+ 28 meeh Table Conc	1.1	1.61		0.5	
1		Table Conc(calc)	3.9	6.70	20.5	8.0	31.A
		Table Tall	96.2	_3.08	1.79	92.0	68.6
		Feed(calc)	100.0	3.22	2.51	100.0	100.0
5	Bankfield	Mozley Conc	0.1	297		8.1	
1		Moziey Tall	3.8			10.3	
		+ 28 mesh Table Conc	1.7			0.6	
1		Table Cono(celc)	5. 5				
i 1		Table Tall	94.5				
		Feed(calc)	100.0	2.80	2.28	100.0	100.0
6	Little Long Lac	Mozley Conc	0.1	116		5.5	
	-	Mozley Tail	5.2	3.45		14.8	
		+ 28 mesh Table Conc	0.1	1.12		0.1	
		Table Conc(csic)	5.4		1.24	20.4	35.3
		Table Tall	94.6	1.03	0.13	79.6	
	L	Feed(calc)	100.0			100.0	100.0

Table No. 4: Summary of Gravity Concentration Testwork

This type of gravity concentration was not successful since only an average of 16% of the gold and 31% of the sulphur was recovered by the Wilfley table.

Further gravity concentration tests were performed using a Falcon concentrator. Table 5 summarizes these results.

Table 5: Summary of Falcon Concentrator Results

Test	Sample	Product	Weight	Assay	p1, %	Dietribu	tion, %
#			%	Au	8	Au	S
7	Tashota	+ 28 meeh	3.9	1.53	4.34	1.9	8.2
		Falcon Conc	7.9	9.69	2.55	23.5	9.6
		Falcon Tall	86.2	2.75	1.96	74.7	82.3
		Feed(calc)	100.0	3.25	2,10	100.0	100.0
8	Little Long Lac		1.0	4.57	0.38	3.3	2.2
	•	Falcon Conc	5.0	6.57	0.59	23.6	
		Falcon Tall	94.0	1.08	0.15	73.1	
		Feed(calc)	100.0	1.39	0.17	100.0	

As seen in Table 5, an average of 24% of the gold and 13% of the sulphur was recovered in the Falcon concentrate. The higher recovery of gold over sulphur indicates that free gold displaced sulphide bearing minerals during the operation of the Falcon concentrator until the centrifugal bowl became full (~750 g).

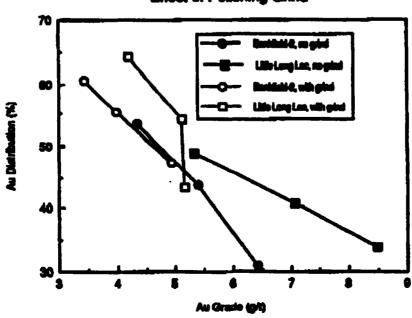
(iii) Direct Cyanidation

Representative 1 kg charges were prepared from the gold tailing samples for cyanidation testing. All samples were leached for 120 hours at 50% solids using 1.0 g/L NaCN and pH 10.5 - 11.0. Aliquots were removed every 24 hours in order to determine the rate of extraction of the gold. The results are summarized as follows.

Test	Sample	Respont Co		Au Extraction, %				Residue, g/t	Feed(calc), g/t	
#		i ka	N I	24h	48h	72h	96h	120h		Au
		NaCN	CaÓ							
1	Tashota	3.28	10.4	68	78	78	78	78.3	0.69	3.30
2	Bankfield	0.91	4.10	79	79	79	79	79.0	0.62	3.24
3	Little Long Lac	0.51	0.79	66	55	55	55	55.1	0.67	1.53

Table 6: Summary of Direct Cvanidation Results

Maximum extraction of gold was reached after 48 hours of leaching.


(iv) Flotation

A series of bench scale flotation tests was conducted to investigate the recovery of gold into a sulphide concentrate. Flotation tests were performed on either "as is" material or lightly reground material. The purpose of the light regrind was to polish the surfaces and remove any oxidized layers which may have formed. Aero 412 and PAX were used as collectors, Dowfroth 250 as the frother, CuSO4 and Na₂S as activators. Table 7 summarizes the flotation conditions and metallurgical results.

Test	Sample	Conditions	Product	Weight	Assev.	at or %	Distribu	tion. %
*				%	Au	8	Au	5
F1	Little Long Lac	no grind	Ro Conc 1	0.5				18.0
		200 of A350	Ro Conc 1+2	1.0	36.2	7.85	27.5	36.6
		120 gt AF25	Ro Conc 1-3	5.3	10.9	2.27	43.4	55.4
		1000 g/t Na28	Ro Conc 1-4	11.4	6.27	1.45	53.2	75.7
		400 g/t CuSO4		88.6				24.3
			Head(calc)	•	1.34			•
F2	Bankfield-2		Ro Conc 1	6.4				-
			Ro Conc 1+2					
		_	Ro Conc 1-3	16.3				90.7
		500 g/t Cu8O4		<u>83.7</u>				9.3
			Head(calc)	•	1.33			-
F 3	Little Long Lac	-	Ro Conc 1	5.5				
			Ro Conc 1+2					
			Ro Conc 1-3	12.6				
		500 g/t CuSO4		87.4				19.8
			Head(caic)	113.3				-
F4	Bankfield-2	grind	Ro Conc 1	12.7				
			Ro Canc 1+2					87.5
ł			Ro Conc 1-3	23.2				91.8
		500 g/t CuSO4		76.8				<u>8.2</u>
			Heed(calc)		1.32			-
F5	Little Long Lac	grind	Ro Conc 1	11.2				
1			Ro Conc 1+2					-
		90 g/t R412	Ro Conc 1-3	20,4				
	1	600 gt Cu8O4		79.6				31.5
L	L	20 g/t DF250	Head(caic)	-	1.33	0.20	-	-

Table 7: Summ	er of	Flotation	Conditions	and Metallu	rgical Results
---------------	-------	-----------	------------	-------------	----------------

As seen in Figure 1, the polishing grind helped improve the overall recovery of the gold, but with a lower grade of concentrate.

Effect of Polishing Grind

-Figure 1-

Appended to this summary are the test details. Column leaches on the Tashota, Little Long Lac and Bankfield-2 are underway.

If you have any questions, please do not hesitate to contact us.

Yours truly, LAKEFIELD RESEARCH

K.w.Shott.

K.W. Sarbutt Manager - Mineral Processing

D. Evans Project Metallurgist

KWS/DE:bjs Enclosures - 9

DETAILS OF TESTWORK

Test No.	Sample	Test Description		
1	Tashota	Cyanidation		
2	Bankfield	Cyanidation		
3	Little Long Lac	Cyanidation		
F 1	Little Long Lac	Flotation		
F2	Bankfield-2	Flotation with no grind		
F3	Linle Long Lac	Flotation with grind		
F4	Bankfield-2	Flotation with grind		
F5	Little Long Lac	Flotation with grind		

R	To available Ass and		· ·				
Purpose:		raction by direct cyanida					
Procedure;	The ore was pulped in a 2L bottle and agitated on mechanical rolls. NaCN and time were added and maintained at described levels and cyanidation was carried out in 1 x 120 hour stage. Pregnant sub-samples were removed at 24,48,72, and 96h, with bottles being weighed before and after sampling. At end of test, pulp was filtered and weshed, with all products submitted for assay.						
Feed:	1000 g minus 28	mesh Tashota					
Solution Vol	ume: 1000 :	mL Pulp Density:	50 % Solide				
Soi'n Cempo	sition: 1.0	g/L NeCN					
pH Range:	10. 5 -11.0	Ca(OH)2					
Reagent Co	neumption (kg/t of cy	anide feed) NaCN:	3.28 CeO; 10.4				

Date: Jan/8/91

Operator: KoS

Project: 4095

24h NaCN Consumption:	1.56
48h NaCN Consumption:	2.09
72h NaCN Consumption:	2.53
96h NaCN Consumption:	2.84
120h NaCN Consumption:	3.25

Time		Added, Grame Residual Consumed							
		tual	Equiv	sient	Gra	me	Gra	118	pH
Hours	NaCN	Ca(OH)2	NeCN	CaO	NaCN	CaO	NaCN	CaO	
0-1	1.05	8.29	1.00	6.30	0.51	-	0.49	•	10.5-9.5
1-3	0.52	1.22	0.49	0.93	0.68	•	0.32	•	10.6-10.0
3-5	0.34	0.90	0.32	0.68	0,96	-	0.04	-	11.0-10.3
5-8	0.04	0.81	0.04	0.62	0.77	•	0.23	•	11.3-10.5
8 - 24	0.24	0.66	0.23	0,50	0.59	-	0.41	•	11.3-10.5
24 - 32	0.49	0.37	0.41	0.26	0.78	•	0.22	•	11.1-10.8
32 • 48	0.23	0	0.22	0	0.71	•	0.29	•	10.6-10.4
48 - 72	0.31	0.34	0.29	0.28	0.58	•	0,42	•	11.0-10.4
72 - 96	0.44	0.17	0.42	0.13	0.70	•	0.30	•	10.8-10.3
98 - 120	0.32	0.31	0.30	0.24	0.58	0.08	0.42	9.87	10.9-10.7
Total	3.92	13.07	3.72	9.93	0,58	0.08	3.12	9.87	

Metallurgical Balance

. جر

Test 1

Product	Weight mL, g	Acceys Au, mg/L, g/t	Distribution, % Au	Estimated Extraction, % Au
+ 28 meeh	29.5	1.49	1.4	
24h Preg	25.0	1.31	1.0	68
48h Preg	25.0	1.54	1.2	78
72h Preg	25.0	1,55	1.2	78
96h Preg	25.0	1.57	1.2	78
120h Preg	1271	1.51	59.6	•
120h Waah	747	0.61	14.1	78.3
Residue	948.5	0.69	20.3	
Feed(calc)	978.0	3.30	100.0	

Test 2	Project: 4095	Date: Ja	n /8/91	Operator: KcS				
Purpose:	To evaluate Au extraction by direct cyanidation.							
Procedure:	The ore was pulped in a 2L bottle and agitated on mechanical rolls. NaCN and time were added and maintained at described levels and cyanidation was sarried out in 1 x 120 hour stage. Pregnant sub-samples were removed at 24,48,72, and 95h, with bottles being weighed before and after sampling. At end of test, pulp was filtered and washed, with all products submitted for assay.							
Feed:	1000 g minus 28 mash	Banklieid						
Solution Vol	ume: 1000 mL	Pulp Density:	50 % E	lalide				
Soin Compo	seition: 1.0 g/L Na	icn						
pH Range:	10.5-11.0	Ca(OH)2						
Reagent Co.	neumption (kg/t of cyanide (ieed) NaCN:	0.91 C	ao: 4.10				

24h NaCN Consumption:	0.60
48h NeCN Consumption:	0.71
72h NaCN Consumption:	0.78
96h NaCN Consumption:	0.78
120h NeCN Consumption:	0.91

Time	Added, Grama Residual Consumed		umed						
	A	tual	Equiv	pient	Gra	me	Gra	ne	pH
Hours	NaCN	Ca(OH)2	NaCN	CaO	NaCN	CaO	NaCN	CeO	
0 - 1	1.05	2.09	1.00	1,59	0.52	-	0.48	•	10.5-9.4
1-3	0.51	0.72	0.48	0.55	0.91	•	0.09		10.6-9.9
3-5	0.34	0.90	0.32	0.68	1.00	•	0	-	11.3-10.5
5-8	0	0,19	0	0.14	1.00	•	0	•	10.8-10.5
8 - 24	Ō	0.35	0	0.27	1.00	•	0	•	11.1-10.5
24 - 32	0	0,18	0	0.14	1.00	•	0	•	10.9-10.5
32 - 48	0	0	0	0	0.89	-	0.11	•	10.5-10.3
48 - 72	0.12	0.24	0.11	0,18	0.94		0,06	•	11.0-10.3
72 - 96	0.06	0,18	0.06	0.14	1.00	•	0	-	10.8-10.3
96 - 120	0	0.23	0	0.17	0.87	0.06	0.13	3.80	10.9-10.5
Total	2.08	5.08	1.96	3.86	0.87	0.06	0.85	3.80	

.

Metallurgical Balance

Product	Weight mL, g	Acceys Au, mg/L, g/t	Distribution, % Au	Estimated Extraction, % Au
+ 28 meeh	53.1	1.73	2.9	
24h Preg	25.0	1.80	1.4	79
48h Preg	25.0	1.79	1.4	79
72h Preg	25.0	1.77	1.4	79
96h Preg	25.0	1.72	1.4	79
120h Preg	1085	1.65	56.3	-
120h Wash	750	0.73	17.2	79,0
Flesiclue	928.1	0.62	18.1	
Feed(calc)	981.2	3.24	100.0	

Test 3	Project: 4095	Date: Jar	n /8/91	Operator: KcS					
Purpose:	Ta eveluate Au extract	To evaluate Au extraction by direct cyanidation.							
Procedure:	The ore was pulped in a 2L bottle and agitated on mechanical rolls. NaCN and lime were added and maintained at described levels and cyanidation was carried out in 1 x 120 hour stage. Pregnant sub-samples were removed at 24,48,72, and 98h, with bottles being weighed before and after sampling. At end of test, pulp was filtered and washed, with all products submitted for assay.								
Feed;	1000 g minus 28 ma	sh Little Long Lac							
Solution Vol	ume: 1000 mL	Pulp Density:	50 % Solid	•					
Soi'n Compo	veition: 1.0 g/L	NeCN							
pH Range:	10.5-11.0	Ca(OH)2							
Reagent Co.	nsumption (kgA of cyanid	e feed) NaCN;	0.51 CaO;	0.79					

24h NaCN Consumption:	0.21
48h NaCN Consumption:	0.24
72h NaCN Consumption:	0.33
96h NeCN Consumption:	0.45
120h NaCN Consumption:	0.51

Time		Added, (Grame		Resi	lesidual Consumed				
	T A	tuel	Equiv	alent	Gra	me	Gra	ne	pH	
Hours	NaCN	Ca(OH)2	NaCN	CaO	NaCN	CaO	NaCN	CaO		
0-1	1.05	0.77	1.00	0.59	0.93	•	0.07	•	11.0-10.7	
1-3	0.07	0.00	0.07	0	1.00	-	0	•	10.7-10.8	
3 - 5	0	0.00	0	0	1.00	•	0	-	10.8-10.7	
5-8	0	0.00	0	0	1.00	•	0	•	10.7-10.5	
8 - 24	0	0.17	0	0.13	0.85		0.15	•	11.2-10.9	
24 - 32	0.18	0	0.15	0	1.00	-	0	-	10.9-10.9	
32 - 48	0	0	0	0	0.97	•	0.03	•	10.9-10.7	
48 - 72	0.03	0	0.03	0	0.91	-	0.09	•	10.7-10.5	
72 • 96	0.09	0	0.09	0	0.88		0.12	•	10.5-10.4	
96 - 120	0.13	0.15	0.12	0.11	0.94	0.06	0.06	0.77	11.0-10.8	
Total	1.53	1.09	1.45	0.83	0.94	0.06	0,50	0.77		

Metallurgical Balance

. م

Preduct	Weight mL, g	Assays Au, mg/L, g/t	Distribution, % Au	Estimated Extraction, % Au
+ 28 mesh	5.2	4.29	1.5	
24h Preg	25.0	0.64	1.1	55
46h Preg	25.0	0.67	1.1	55
72h Preg	25.0	0.63	1,1	55
96h Preg	25.0	0.63	1.1	55
120h Preg	973	0.61	39.7	-
120h Wash	1104	0.15	11.1	55.1
Residue	969.0	0.67	43.4	
Feed(calc)	974.2	1,53	190.0	

Test No. F1

Project No. 4095

1/29/91

Purpose: To perform preliminary roughor flotation test.

.

Procedure: As stated below.

N/A

Feed: --2kg of -28 mesh Little Long Lac

Grind:

0 AF25	Na2S	CuSO4	DF-250	Grind	Cond.	Froth 1	Hq 8.8
					1	1	
	1	400					
			<u> </u>		5		
50 4	0				1	2	7.
	500				5		
50 4	0				1	5	9.
	500				5		
50	<u>+</u>				1	10	8.5
		50 40 500	50 40 500	50 40 500 500 500 500 500 500 500 500 50			

Stage	Ro					
Flotation Cell	D-1					
Speed: r.p.m.	1800	1			1	
% Solids	35					

Metallurgical Balance

Product	Wei	ght	Assays,	g/t, %	Dietribut	ion, %
	g	%	Au	8	Au	S
1. Ro Conc 1	10.2	0.5	34.0	7.52	13.2	18.0
2. Ro Conc 2	9.7	0.5	38.5	8.19	14.3	18.6
3. Ro Conc 3	84.2	4.9	4.95	0.95	15.9	18.8
4. Ro Conc 4	118.3	6.1	2.18	0.73	9.8	20.3
5. Ro Tailing	1727.5	88.6	0.71	0.06	46.8	24.3
Feed(caic)	1 949.9	100.0	1.34	0.22	100.0	100.0
Combined Products						
Ro Conc 1+2	19.9	1.0	36.2	7.85	27.5	36.6
Ro Conc 1-3	104.1	5.3	10.9	2.27	43.4	55.4
Ro Conc 1-4	222.4	11.4	6.27	1.45	53.2	75.7

Test No. F2

Project No. 4095

1/31/91

Operator: JMD

Purpose: Te perform preliminary rougher flotation test.

Procedure: As stated below.

NA

Feed: ~2kg of -28 mesh Bankfield # 2

Grind:

		Rea	cents ad	ded, grau	Time, minutes					
Stage	A350	R412	Ne28	CuSO4	DF-250		Grind	Cond.	Froth	рН
Codx 1			500					2		8.0
Condx 2				400				5		7.5
Rougher 1	50	30			10			1	6	7.6
Rougher 2	60	30						1	10	
Rougher 3	50	30			7.8			1	10	
Stage	Ro									
Flotation Cell Speed: r.p.m. % Solids	D-1 1800 35									

Metallurgical Balance

Product	We	light	Assays	. g/t, %	Distribution, %	
	g	%	Au	S	Au	8
1. Ro Co	nc 1 124.8	6.4	6.43	19.9	30.9	61.4
2. Ro Co	nc 2 86.1	4.4	3.89	10.2	12,9	21.7
S. Ro Co	nc 3 107.8	5.5	2.29	2.85	9.5	7.6
4. Ro Ta	iling 1833.9	83.7	0.74	0.23	48.6	9.3
F ee d(cal	ic) 1 952 .6	100.0	1.33	2.07	100.0	100.0
Combined Products						
Ro Conc	; 1+2 210.9	10.8	5.39	15.9	43.9	83 .1
Ro Conc	1-3 318.7	16.3	4.34	11.5	53.4	90.7

Test No. FS

Project No. 4095

2/4/91

Purpose: To perform preliminary rougher flotation test.

Procedure: As stated below.

N/A

Feed: ~2kg of -28 meeh Little Long Lac

Grind:

	ļ ,	Ree	pents ac	ded, gra	me per to	en	Time, minutee			
Stage	A350	R412	Ne2S	CuSO4	DF-250		Grind	Cond.	Froth	pH
Codx 1			500					2		9.6
Condx 2				400				5		9.9
Rougher 1	60	30			10			1	5	
Rougher 2	50	30			2.5			1	10	
Rougher 3	50	30			7.5			1	15	
Stage	Ro									
Flotation Call Speed: r.p.m. % Solids	D-1 1800 35									

Metallurgical Balance

Product	Wei	ght	Assays.	ወ ሊ %	Distribu	tion, %
	9	%	Au	້ຽ	Au	S
1. Ro Conc 1	107.6	5.5	8.47	1.94	33.9	60.1
2. Ro Conc 2	46.2	2.4	3.77	0.71	6.5	9.4
3. Ro Conc 3	93. 0	4.7	2.44	0.40	8.4	10.7
4. Ro Talling	1715.8	87.4	0.80	0.04	51.1	19.8
Feed(calc)	1963.6	100.0	1.37	0.18	100.0	100.0
Combined Products						
Ro Conc 1+2	153.8	7.8	7.08	1.57	40.4	69. 5
Ro Conc 1-3	246.8	12.6	5.32	1.13	48.9	80.2

- Test No. F4

2/4/91

Purpose: To perform preliminary rougher flotation test.

Procedure: As stated below.

Feed: ~2kg of -28 meeh Bankfield-2

Grind: Sminutes/2kg @ 65% solids in laboratory rod mili

		Rea	jents ac	ded, gra	ms per to	nne	Time, minutes			
Stage	A350	R412	Ne2S	CuSO4	DF-250		Grind	Cond.	Froth	pH
Codx 1			500					2		9.2
Condx 2				400				5		7.8
Rougher 1	60	30			10			1	5	
Rougher 2	50	30			2.5			1	10	
Rougher 3	50	30			7.5			1	15	
Stage	Ro									
Flotation Call Spand: r.p.m. % Solids	D-1 1800 35									

Metallurgical Balance

Product	Wei	ght	Assaya,	g/t, %	Distribut	tion, %
	ģ	%	Au	8	Au	8
1. Ro Conc	1 249.8	12.7	4.93	13.0	47.A	79.8
2. Ro Conc	2 110.0	5.6	1.83	2.86	7.8	7.7
S. Ro Conc	3 95.4	4.9	1.43	1.85	5.3	4.3
4. Ro Tallin	g 1 609 .0	76.8	0.5B	0.22	39.5	8.2
Feed(calc)	1964.0	100.0	1.32	2.07	100.0	100.0
Combined Products						
Ro Conc 14	2 359.6	18,3	3.99	9.90	55.2	87.5
Ro Conc 1-	3 455.0	23.2	3.45	8.21	60.4	91.8

6

- Test No. F5

Project No. 4095

2/4/91

.

Purpose: To perform preliminary rougher flotation test.

As stated below. Procedure:

~2kg of -28 mesh Little Long Lac Feed:

5 minutes/2kg (2) 65% solids in laboratory rod mill Grind:

		Field	pents ac	ided, gra	ms per to	nne	Time, minutes			
Stage	A350	R412	N=25	CuSO4	DE-250		Grind	Cond.	Froth	pH
Codx 1			500					2		9.7
Condx 2				400				5		9.0
Rougher 1	50	30			10			1	5	
Rougher 2	50	30			2.5			1	10	
Rougher 3	50	30			7.5			1	15	
Stage	Ro									
Flotation Cell Speed: r.p.m. % Solids	D-1 1800 35									

Metallurgical Balance

f	voduct	Wei	ght	Assays,	g/, %	Distribut	ion, %
		g	%	Au	8	Au	8
1	. Ro Conc 1	220.0	11.2	5.17	0.90	43.5	49.8
2	. Ro Conc 2	57.7	2.9	4.89	0.62	10.8	7.8
3	. Ro Conc 3	122.6	82	2.12	0.36	9.9	11.1
4	. Ro Tailing	1 563 .5	79.6	0.60	0.06	35.8	\$1.5
F	eed(calc)	1963.8	100.0	1.33	0.20	100.0	100.0
Combined Produc	ta.						
F	lo Cono 1+2	277.7	14.1	8.11	0.62	54.2	57.4
	lo Conc 1-3	400.3	20.4	4.20	0.68	64.2	66.5

E10N#0113 63.6072 ASHMORE

030

March 5, 1991

Mr. D. Malouf Beaurox Mines Limited Suite 801 80 Richmond Street West Toronto, Ontario M5H 2A4

by FAX and Courier

Dear Mr.Malouf:

Re: LR4095 - Summary Letter No. 2 <u>The Recovery of Gold from Low Grade Tailing Samples</u>

Please find enclosed a summary of all testwork completed since the publication of Summary Letter No. 1.

The testwork performed during this segment includes direct cyanidation with lead nitrate addition, heap leach simulation, and column flotation and gravity separation pilot plant testing.

(i) Direct Cyanidation with Lead Nitrate

A series of tests was performed to investigate the effect of lead nitrate addition on the cyanidation response of the tailing samples. All tests involved the used of 1 kg charges diluted to 50% solids. A dosage of 500 g/t lead nitrate was added in each test. Cyanidation conditions and metallurgical results are summarized in Table 1.

(ii) Heap Leach Simulation

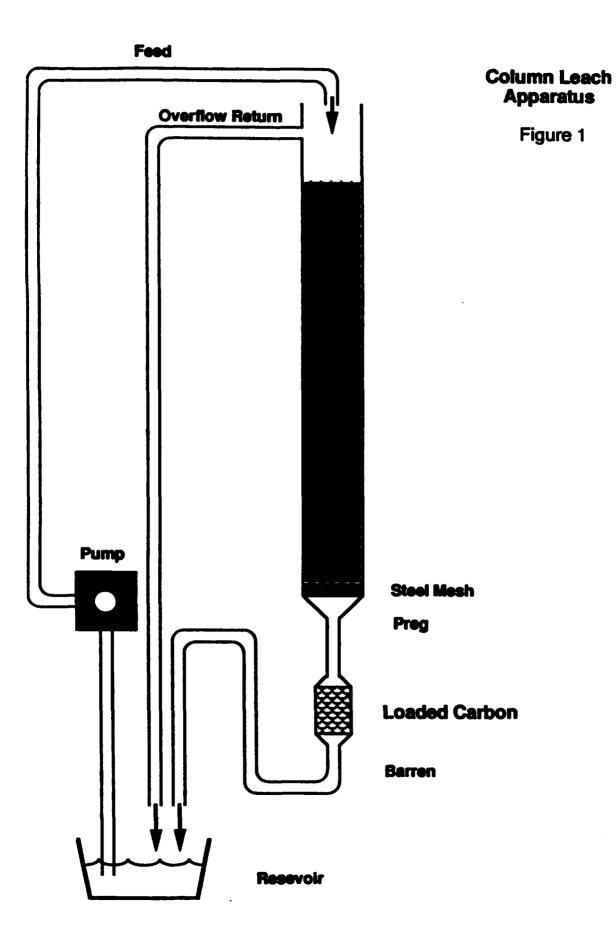
The feed for the column leach testwork was agglomerated with 5 kg/t of Portland No. 2 cement, the amount on lime consumed in bench scale cyanidation tests and approximately one half of the amount of sodium cyanide consumed in the preliminary bottle roll tests.

The column leach apparatus was set up using 15 cm diameter plexiglass conduit of about 1.5 metres in height. The bottoms of the columns were fitted with a steel mesh to retain the solids. The columns were leached with flowrates of about 5 mL per minute ($15 L/h/m^2$). The pregnant solution discharge from the column was passed through a cartridge containing 15 grams of Calgon GRC-22 pre-attritioned carbon. Flowrates were monitored daily and adjusted as required to maintain an uniform flow. The loaded carbons were changed periodically to monitor gold extraction. Barren solutions were regularly sample to determine NaCN and CaO concentrations. At time of issuing this report, the Bankfield-2 and Little Long Lac column tests were complete while Tashota column was entering Day 26. Table 3 summarizes the results of the column leach tests. The results for the Tashota sample are based on the direct head assay.

۰.

Table 3: Summary of Column Leach Results

Standard Conditions: 0.5 g/L NaCN pH 10.0 - 11.0 carbon changes on days 1, 2, 4, 7, 14 and 21 ~5 mL/min flowrate 5 kg/t Portland No. 2 cement


Test	Sample	Reagent Consumption kg/t		Au Extraction, %	Residue, g/t Au	Feed(calc), g/t Au
		NeCN	CaO			
10	Tashota	3.34	N/A	73.4*	NA	N/A
11	Little Long Lac	1.00	0.97	50.0	0.68	1.40
12	Banklield-2	1.75	4.75	56.0	0.57	1.30

* after 21 days of leaching

3

Figure 1 shows the column leach apparatus while Figure 2 depicts the recovery of gold with respect to time.

The metallurgical results, available to date, for Little Long Lac and Tashota column leaches confirms the results obtained from the preliminary bottle roll cyanidations (without the addition of lead nitrate). Again, it is not possible to compare the Bankfield and Bankfield-2 results since these samples are not representative of each other.

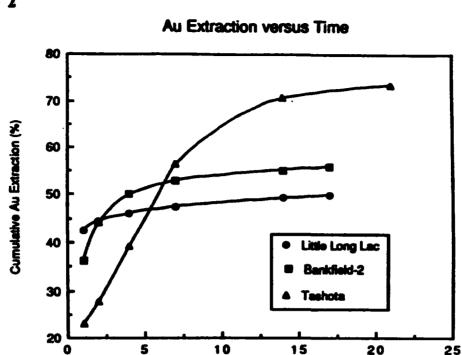
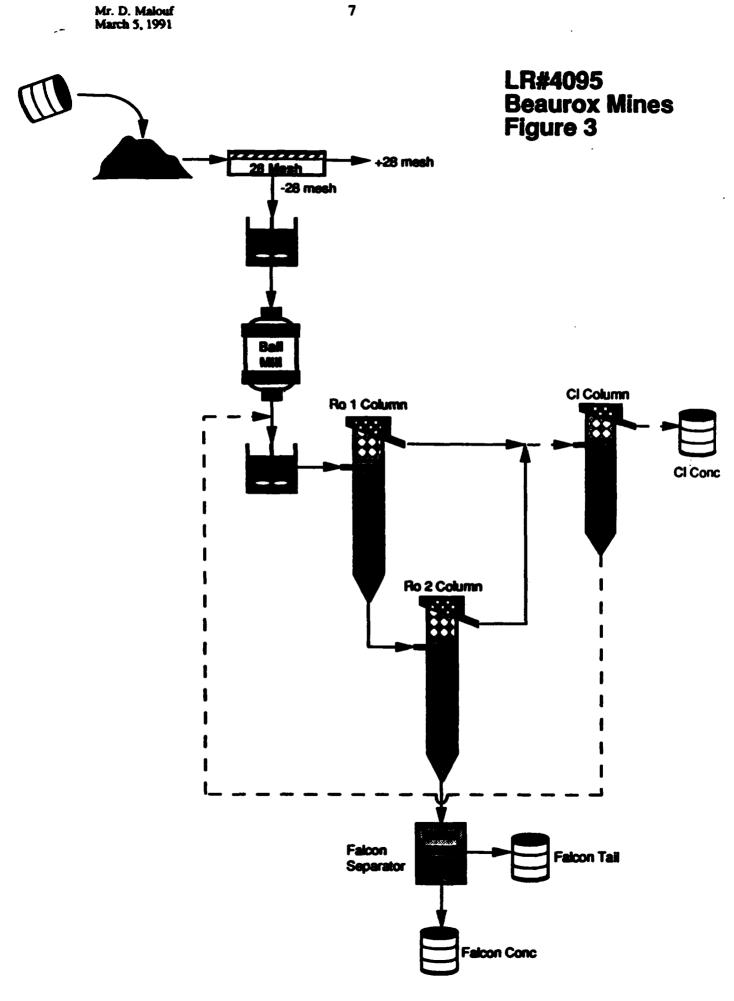


Figure 2



The pilot plant testing of the Beaurox Mine samples utilized two 6 inch column, except for Test No. PP-1, which had a 4 inch cleaner column added.

Time (days)

The column were controlled by a process control computer using pressure transducers installed near the bottom of the columns. The pressure transducer senses the pulp level by transmitting a 0 to 100 mV signal to a μ MAC6000 controller. These signals are digitized and used in a multi-PID alogrithm, along with manually selected setpoints, to prepare 4-20 mA signals to control the speed of the tailing paristaltic pumps. Air was injected into each column through a sintered stainless steel sparger. Feed to the column cells was controlled with manually set variable speed paristaltic pumps. A general arrangement of the flowsheet used is shown in Figure 3.

The purpose of the pilot plant testing was to determine if column flotation could produce a recovery the same as or greater than that achieved int the bench scale mechanical flotation tests.

All tests used two 6 inch diameter, 2.5 cu. ft. columns as roughers. The tailing from the first 6 inch column fed the second 6 inch column. The two rougher columns combined gave an average retention time of approximately 50 minutes. Concentrates from the rougher columns were collected together as a combined rougher concentrate. The tailing from the second rougher column was fed to a Falcon separator. This was done in an attempt to recover any free gold which was not floated. Test No. PP-1 also made use of a 4 inch cleaner column. The combined rougher concentrate was fed to this column. The cleaner concentrate was collected and the cleaner tailing was recirculated back to the first rougher column. Tables 4, 5, and 6 provide summaries of flotation conditions, column key variables and metallurgical results, respectively.

Table 4:	Summary	of	Pilot	Plant	Flotation	Conditions	

Test	Sample	Feed Rate	BMF Grind	BMD Grind		R	agents,	g/t	
#		kg/h	%-400 mesh	%-400 mesh	Na2S	A350	R412	CuSO4	DF250
PP-1	Banklieid	79	42.2	49.4	661	159	115	684	17
PP-2	Banklield	68	42.1	49.4	644	247	156	618	26
PP-3	Little Long Lac	81	40.8	49.0	600	182	113	593	33
PP-4	Little Long Lac	64	40.0	49.5	778	246	150	609	49

Analysis of the data shows that the columns were operated within normal ranges for wash rate, gas rate and gas holdup. The limited scope of the test program did not provide an opportunity to optimize conditions or to evaluate conditions outside the normal ranges.

Additional testing would be required to examine ways to improve gold recovery. Specifically, reduced wash water flow and shallower froth bed might improve recovery, but the present test results suggest that improvements in recovery might well be at the expense of grade. Additional bench scale tests may also be required to evaluate alternative collectors.

:

Table 5: Summary of Column Key Variables

Test	Sample			Rough	er#1					Rougi	her#2		
*		Gas Velocity cm/sec	Wash Velocity cm/sec	Feed Velocity	NRT	Flow Blas %	Ges Hold Up %	Gae Velocity cm/sec	Wash Velocity cm/sec	Feed Velocity cm/sec	NRT minutes	Flow Bias %	Gas Hold Up %
PP-1	Bankfield	0.92	0.20	0.28	27	27	16	0.63	0.10	0.28	25	26	17
PP-2	Bankfield	1.13	0.20	0.34	22	32	22	0.66	0.10	0.33	20	30	16
PP-3	Little Long Lac	0.74	0.20	0.33	23	31	13	0.74	0.10	0.32	21	31	13
PP-4	Little long Lac	0.74	0.20	0.25	30	23	17	0.74	0.10	0.25	28	23	17

Table 6: Summary of Pilot Plant Metallurgical Results

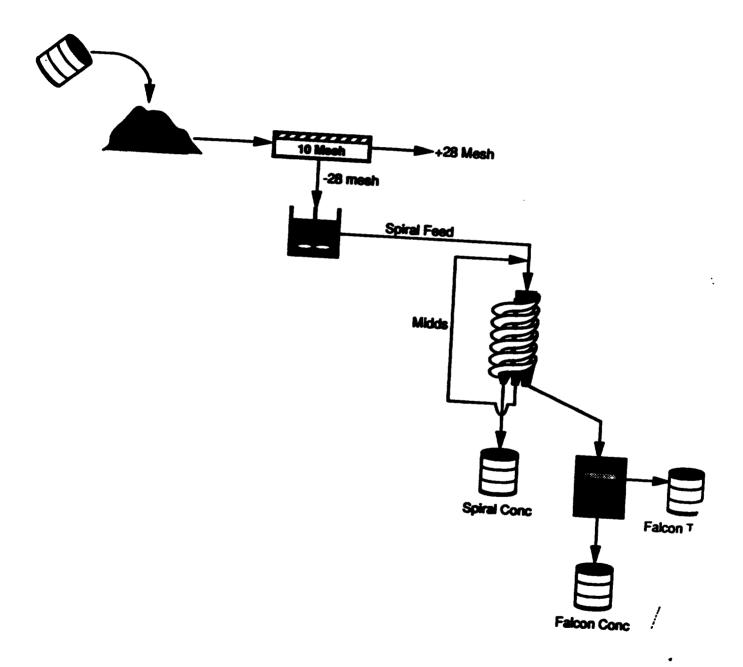
Teet	Sample	Product	Weight	Assay.	gt or %	Distribu	tion, %
			%	Au	S	Au	S
PP-1	Bankfield	Combined CI Conc	4.0	11.7		30.0	
		Falcon Conc	0.2	24.0		3.1	
		Falcon Tailing	96.0	1.08		67 .0	
		Feed(calc)	100.0	1.53		100.0	
		Feed(assay)		1.53			
PP-2	Bankfield	Combined Ro Conc	8.6	8.48	27.1	47.2	69.6
1		Faicon Conc	0.4	12.5	17.2	3.2	2.1
		Falcon Tailing	<u>91.0</u>			49.6	28.4
		Feed(calc)	100.0				100.0
		Feed(assay)		1.54	3.23		
PP-3	Little Long Lac	Combined Ro Conc	23	11.8	6.16	21.3	40.6
	1	Falcon Conc	0.2	30.3	9.43	4.7	7.2
		Falcon Tailing	97.5	0.96	0.14	74.0	52.2
	4	Feed(calc)	100.0	1.29	0.30	100.0	100.0
		Feed(assay)		1.29	0.24		
PP-4	Little Long Lac	Combined Ro Conc	1.7	13.5	7.06	20.7	44.5
ł	_	Falcon Conc	0.4	20.4	1.04	7.2	1.6
l		Falcon Talling	97.9	0.84	0.15	72.1	53.9
	1	Feed(calc)	100.0	1.14	0.27	100.0	
		Feed(assay)		1.14	0.25		

:

(iv) Gravity Concentration

Two concentration tests were conducted using a Reichert Mark VII spiral and a Falcon separator. Figure 4 depicts the flowhseet layout and Table 7 summarizes the metallurgical results.

Table 7: Summary of Spiral Metallurgical Results


Test #	Sample	Product	Weight %	Assay, g/t Au	Distribution, %
PP-5	Banklield	Spiral Conc	6.9	4.81	23.0
		Falcon Conc	0.2	70.5	9.7
	[Falcon Tailing	92.9	1.05	67.3
		Feed(calc)	100.0	1.45	100.0
		Feed(assay)		1.45	
PP-6	Little Long Lac		3.2	6.57	17.9
		Falcon Conc	0.4	40.2	13.5
	1	Falcon Tailing	96.4	0.85	68.6
]	Feed(calc)	100.0	1.19	100.0
		Feed(assay)		1.19	

The metallurgical results from the spiral tests are comparable with earlier gravity concentration testwork. An average of 31% of the gold was recovered using a spiral/Falcon combination in comparison to 24% gold recovery when only the Falcon separator was used.

There appears to be no advantage to using gravity concentration as a means of recovering free gold or gold bearing sulphides.

Mr. D. Malouf March 5, 1991

LR#4095 Beaurox Mines Figure 4

- -

(v) Conclusions

- 1. The addition of lead nitrate helped reduce the cyanide consumption by roughly half.
- 2. The extraction of gold from the column leaches was comparable to that obtained in the preliminary bottle roll tests.
- Column flotation of the Bankfield and Little Long Lac bulk samples produced higher grade concentrates at lower recoveries in comparison to the earlier mechanical bench scale tests.
- 4. The recovery of gold using a spiral and Falcon separator was not successful. The metallurgical results obtained confirmed earlier gravity concentration testwork where only 24% of the gold was recovered.

(vi) Recommendations

- 1. To perform diagnostic leaching tests, in order to determine the location and association of the gold.
- To conduct a mineralogical examination on feed and tailing sample. This will help identify gangue components, liberation, association and potential recovery of the gold. Centrifuge and heavy liquid tests would be conducted to concentrate the free gold and gold bearing sulphides.
- 3. To conduct further bench scale flotation tests to investigate new reagent schemes and optimize flotation conditions.
- 4. To conduct C.I.L. tests to determine if preg robbing or re-precipitation of the gold during leaching is affecting the final extraction of gold.

Appended to this summary are the test details. The Tashota 4 inch column leach will be completed on March 7th. The large scale Tashota column leach is underway and has been leaching for approximately one week.

Mr. D. Malouf March 5, 1991

If you have any questions, please do to hesitate to contact us.

Yours truly, LAKEFIELD RESEARCH

Litt. 1

K.W. Sarbutt Manager - Mineral Processing

ロハン

D. Evans Project Metallurgist

KWS/DE:bjs Enclosures - 41

Test No.	Sample	Test Description				
7	Tashota	cyanidation with lead nitrate				
8	Bankfield-2	cyanidation with lead nitrate				
9	Little Long Lac	cyanidation with lead nitrate				
10	Tashota	column leach				
11	Little Long Lac	column leach				
12	Bankfield-2	column leach				
PP-1	Bankfield	column flotation + gravity separation				
PP-2	Bankfield	column flotation + gravity separation				
PP-3	Little Long Lac	column flotation + gravity separation				
PP-4	Little Long Lac	column flotation + gravity separation				
PP-5	Bankfield	gravity concentration				
PP-6	Little Long Lac	gravity concentration				

DETAILS OF TESTWORK

Test 7	Project: 4095	Date: Fel	5/4/9 1	Operator: JH				
Purpose:	To evaluate Au extrac	tion by direct cyanidation	on.					
Procedure:	The ore was pulped in a 2L bottle and agitated on mechanical rolls. NaCN and time were added and maintained at described levels and cyanidation was carried out in 1 x 72 hour stage. Lead nitrate was add at the being of the leach. At the end of the test, pulp was filtered and way with all products being submitted for assay.							
Feed:	1000 g minus 28 m	ech Tashota						
Solution Vol	ume: 1000 mL	Pulp Density:	50 % S	olide				
Sol'n Compo	osition: 0.5 g/L	NaCN						
pH Range:	10.5-11.0	Ca(OH)2						
Pb(NO3)2:	500 gA							
Reagent Co	neumption (kg/t of cyani	de feed) NaCN:	1.47 C	eO: 9.67				
	48h NeCN an	d CaO Consumption: d CaO Consumption: d CaO Consumption:	0.96 1.25 1.47	9.09 9.41 9.67				

Time		Added, Grame			Reci	Recidual		Consumed	
	A	Actual		Equivalent		Grame		Grams	
Hours	NeCN	Ca(OH)2	NaCN	CaO	NaCN	CaO	NaCN	CaO	
0-1	0.53	8.13	0.50	6.18	0.10	-	0.40	-	10.9-9.0
1-2	0.42	1.30	0.40	0.99	0.50	•	0	-	10.9-9.8
2 - 20	T Ó	0.76	0	0.58	0.20	-	0.30	•	10.9-9.5
20-24	0.32	0.56	0.30	0.43	0.35	0.02	0.15	8.15	10.8-10.0
24 - 48	0.16	0.40	0.15	0.30	0.25	0.02	0.25	0.28	10.9-9.9
48 - 72	0.26	0.36	0.25	0.27	0.30	0.04	0.20	0.23	10.8-10.0
Total	1.69	11.5	1.61	8.75	0.30	0.04	1.32	8.67	

Metallurgical Balance

Product	Weight mi., g	Acceys Au, mg/L, g/t	Distribution, % Au
+ 28 meeh	87.5	2.14	6.5
Preg+Wash	2090	0.96	69.4
Residue	896.2	0.78	24.2
Feed(calc)	983.7	2.94	100.0

Test 8	Project: 4095	Date: Fe	b/4/91	Operator: JH					
Purpose:	To evaluate Au extracti	on by direct cyanidati	on.						
Procedure:	The ore was pulped in a 2L bottle and agitated on mechanical rolls. NaCN and time were added and maintained at described levels and cyanidation was carried out in 1 x 72 hour stage. Lead nitrate was added at the being of the leach. At the end of the test, pulp was filtered and was with all products being submitted for assay.								
Feed:	1000 g minus 28 me	1000 g minus 28 mesh Bankfield-2							
Solution Vol	ume: 1000 mL	Puip Density:	50 % S	olide					
Sol'n Compo	seition: 0.5 g/L l	NeCN							
pH Range:	10.5-11.0	Ca(OH)2							
Pb(NO3)2:	500 g/t								
Reagent Co	nsumption (kg/t of cyanid	e feed) NaCN:	0.37 C	eO: 2.03					
	48h NaCN and	CaO Consumption: CaO Consumption: CaO Consumption:	0.36 0.37 0.37	1.73 1.89 2.03					

Time		Added, Grams			Reei	Residual		umed	
	Actual		Equivalent		Grame		Grams		pН
Hours	NaCN	Ca(OH)2	NeCN	CaO	NaCN	CaO	NaCN	CaO	•
0 - 1	0.53	1.38	0.50	1.05	0.40	•	0.10	-	11.2-9.8
1-2	0.11	0.36	0.10	0.27	0.50	•	0	-	10.9-10.1
2 - 20	0	0.24	0	0.18	0.30	•	0.20	-	10.8-9.7
20 - 24	0.21	0.26	0.20	0.20	0.45	0	0.05	1.70	10.7-10.1
24 - 48	0.05	0.21	0.05	0.16	0.50	0	0	0.16	11.0-10.0
48 - 72	0	0.21	0.00	0.16	0.50	0.02	0	0.14	10.9-10.1
Total	0.90	2.66	0.86	2.02	0.50	0.02	0.36	2.00	

.

Metallurgical Balance

,-

Product	Weight mL, g	Aesaya Au, mg/L, g/t	Distribution, % Au
+ 28 mesh	2.3	0.43	0.1
Preg+Wash	2090	0.36	56.4
Residue	963.7	0.59	43.5
Feed(calc)	986.0	1.35	100.0

Test 9	Proje	ct: 4095	Date: Fe	6/4/91	o	perator: JH
Purpose:	To evaluate /	Au extraction	by direct cyanidati	ion.		
Procedure:	NaCN and lin cyanidation w at the being o	ne were add ras carried o of the leach.	21. bottle and agitat led and maintained put in 1 x 72 hour st At the end of the te bmitted for assay.	at describ age. Less	ed leve I nitrate	is and was added
Feed:	1000 g min	us 28 mesh	Little Long Lac			
Solution Vol	ume:	1000 mL	Puip Density:	50 %	Solids	
Sol'n Compo	neition: 0.	5 g/L Na	CN			
pH Range:	10.5-	11.0	Ca(OH) 2			
Pb(NO3)2:	500 g	pA .				-
Reagent Co	nsumption (kg/t	of cyanide (ieed) NaCN:	0.12	CaO:	0.89
	48h N	IaCN and C	eO Consumption: eO Consumption: eO Consumption:	0.12 0.12 0.12		0.67 0.73 0.89

Time		Added, Grams				Residual		umed	1
	A	tuel	Equiva	lient	Gra	me	Gra	118	pН
Hours	NeCN	Ca(OH)2	NeCN	CaO	NaCN	CaO	NaCN	CaO	
0-1	0.53	0.65	0.50	0.49	0.40	•	0.10	•	11.2-10.5
1-2	0.11	0.11	0.10	0.08	0.50	-	0	•	10.9-10.6
2 - 20	0	0.05	0	0.04	0.50	•	0	•	10.8-10.3
20 - 24	0	0.06	0	0.05	0.50	0.01	0	0.65	10.7-10.4
24 - 48	0	0.06	0	0.06	0.50	0	Ō	0.06	11.0-10.3
48 - 72	0	0.25	0	0.19	0.50	0.04	0	0.15	11.5-10.9
Total	0.64	1.20	0.61	0.91	0.50	0.04	0.12	0.86	

Metallurgical Balance

Product	Weight mL, g	Assays Au, mg/L, g/t	Distribution, % Au
+ 28 mesh	11.9	1.16	1.0
Preg+Wash	2090	0.33	49.1
Residue	973.3	0.72	49.9
Feed(calc)	985.2	1.43	100.0

Test 10

Project: 4095

Date: Mar/04/91

Operator: JH

Purpose: To evaluate Au extraction by direct cyanidation.

Procedure: Approximately 10 kg of agglomerated sample was loaded into a plastic column 102 mm in diameter, to a height of 106 cm. A piece of steel mesh was placed at the bottom of the column and a piece of burlap on top to help disperse the solution. Approximately 5 L of 0.5 g/L NaCN solution was percolated through the column at a rate of 5 mL per minute. The pregnant solution was passed through carbon column where the Au in solution was removed. The reagents were replenished as required during the test. The loaded carbon was changed after 1, 2, 4, 7, 14, and 21 days and replaced with fresh carbon.

Feed: 10000 g minus 28 mesh Tashota

Solution Volume: 5000 ml. Pulp Density: 33 % Solids

Sol'n Composition: 0.5 g/L NaCN

pH Range: 10.0-11.0 Ca(OH)2

Reagent Consumption (kg/t of cyanide feed) NaCN: 3.34 CaO: N/A

Time		Added, Grams				dual	Cons	umed	
	Â	tual	Equiv	alent	Gra	MS .	Gra	ims	pН
Days	NaCN	Ca(OH)2	NaCN	CaQ	NaCN	CaO	NaCN	CaO	
Aggmolerate	17.0	139	16.2	106	-	•			
0-1	2.00	0	1.90	0	1.91	•	16.1	•	8.9-9.2
1-2	0.60	0	0.57	0	1.25	•	1.25	-	9.2-9.4
2-3	1.32	0.16	1.25	0.122	1.50	•	1.00	•	10.3-9.5
3-4	1.05	1.00	1.00	0.76	1.50	•	1.00	-	11.5-9.8
4-5	1.05	1.00	1.00	0.76	1.58	•	0.92	-	11.6-10.1
5-6	1.05	0	1.00	0	1.75	•	0.75	-	10.1-9.8
6-7	0.79	0.50	0.75	0.38	1.50	•	1.00	•	11.2-9.7
7-8	1.05	0.50	1.00	0.38	1.50	•	1.00	•	11.2-9.6
8-9	1.05	0.50	1.00	0.38	1.25	•	1.25	+	11.0-9.6
9 - 10	1.32	0.50	1.25	0.38	1.25	•	1.25	-	11.4-9.6
10 - 13	1.32	1.00	1.25	0.76	1.25	•	1.25	-	11.5-9.3
13 - 14	1.32	1.00	1.25	0.76	1.78	•	0.72	•	11.9-9.5
14 - 16	0.76	0.70	0.72	0.53	1.10	•	1.40	-	11.1-9.2
16 - 17	1.46	0.70	1.39	0.53	1.30	•	1.20	-	11.4-9.4
17 - 21	1.26	1.00	1.20	0.76	0.75	-	1.75	•	11.7-8.2
21 - 23	1.84	2.00	1.75	1.52	1.00	•	1.50	•	11.9-9.3
Total	36.2	150	34.4	114	1.00	•	33.4	•	

Metallurgical Balance

Product	Weight mL, g	Assays Au, mg/L, g/t	Distribution, % Au	Cum. to Date, % Au
+ 28 mesh	821	2.17	5.9	
Day 1 Loaded Carbon	15.0	463	22.9	22.9
Day 2 Loaded Carbon	13.9	105	4.8	27.7
Day 4 Loaded Carbon	14.0	246	11.4	39.1
Day 7 Loaded Carbon	15.6	338	17.4	56.5
Day 14 Loaded Carbon	16.9	254	14.2	70.6
Day 21 Loaded Carbon	17.9	46.3	2.7	73.4
Feed(assay) * * BASED ON DIRECT HEAD A	10000 SSAY ONL	3.03	•	

Test 11 Project: 4095 Date: Feb/22/91

Purpose: To evaluate Au extraction by direct cyanidation.

Procedure: Approximately 10 kg of agglomerated sample was loaded into a plastic column 102 mm in diameter, to a height of 100 cm. A piece of steel mesh was placed at the bottom of the column and a piece of burlap on top to help disperse the solution. Approximately 5 L of 0.5 g/L NaCN solution was percolated through the column at a rate of 5 mL per minute. The pregnant solution was passed through carbon column where the Au in solution was removed. The reagents were replenished as required during the test. The loaded carbon was changed after 1, 2, 4, 7, 14, and 17 days and replaced with fresh carbon.

Feed: 10000 g minus 28 mesh Little Long Lac

Solution Volume:	5000 mL	Pulp Density:	33 % Solids

Sol'n Composition: 0.5 g/L NaCN

pH Range: 10.0-11.0 Ca(OH)2

Reagent Consumption (kg/t of cyanide feed) NaCN: 1.00 CaO: 0.97

Time		Added, Grams				dual	Cons	umed	
	Â	tual	Equiv	alerit	Gra	me	Gra	ms	рН
Days	NaCN	Ca(OH)2	NaCN	CaO	NaCN	CaO	NaCN	CaO	
Aggmolerate	3.00	10.5	2.85	7.98	•	•	•	-	
0-1	2.00	0	1.90	0	1.00	•	3.75	•	8.9-9.6
1-2	1.60	0	1.50	0	1.75	-	0.75	-	9.6-9.8
2-3	1.84	0	1.75	0	2.50	-	0	•	9.8-9.9
3-4	0	0	0	0	1.75	•	0.75	-	9.9-9.9
4-5	0.79	0.60	0.75	0.46	2.00	•	0.50	•	11.6-10.1
5-6	0.53	0	0.50	0	2.25	•	0.25	-	10.1-10.0
6-7	0.26	0	0.25	0	2.00	-	0.50	-	10.0-10.1
7-8	0.53	0	0.50	0	2.50	-	0	-	10.1-10.1
8-9	0	0.50	0	0.38	2.50	•	0	•	11.5-10.3
9 - 10	0	0	0	0	2.25	٠	0.25	•	10.3-10.2
10 - 13	0.26	0	0.25	0	1.75	•	0.75	•	10.2-10.2
13 - 14	0.79	0	0.75	0	1.70	-	0.80	-	<u>10.2-10.1</u>
14 - 16	0.84	0.50	0.80	0.38	1.80	-	0.70	•	11.0-10.2
16 - 17	0.74	0.60	0.70	0.46	1.73	0.11	0.77	9.54	11.5-11.1
Total	13.2	12.7	12.5	9.65	1.73	0.11	9.77	<u>9.54</u>	

Metallurgical Balance

Product	Weight mL, g	Assays Au, mg/L, g/t	Distribution, % Au
+ 28 mesh	133	2.33	2.2
Day 1 Loaded Carbon	14.4	405	42.4
Day 2 Loaded Carbon	14.8	19.5	2.1
Day 4 Loaded Carbon	14.5	14.5	1.5
Day 7 Loaded Carbon	15.7	13.4	1.5
Day 14 Loaded Carbon	16.0	14.3	1.7
Day 17 Loaded Carbon	15.4	5.20	0.6
Barren Solution	3750	<0.002	0.1
Barren Wash	3760	<0.002	0.1
Residue	9676	0.68	47.8
Feed(calc)	9809	1.40	100.0

Operator: JH

Test 12 Project: 4095 Date: Feb/22/91

Operator: JH

Purpose: To evaluate Au extraction by direct cyanidation.

Procedure: Approximately 10 kg of agglomerated sample was loaded into a plastic column 102 mm in diameter, to a height of 116 cm. A piece of steel mesh was placed at the bottom of the column and a piece of burlap on top to help disperse the solution. Approximately 5 L of 0.5 g/L NaCN solution was percolated through the column at a rate of 5 mL per minute. The pregnant solution was passed through carbon column where the Au in solution was removed. The reagents were replenished as required during the test. The loaded carbon was changed after 1, 2, 4, 7, 14, and 17 days and replaced with fresh carbon.

Feed: 10000 g Bankfield-2

Solution Volume: 5000 mL Pulp Density: 33 % Solids

Sol'n Composition: 0.5 g/L NaCN

pH Range: 10.0-11.0 Ca(OH)2

Reagent Consumption (kg/t of cyanide feed) NaCN: 1.75 CaO: 4.76

Time		Added, Grams			Res	idual	Cont	sumed	
•	Ac	tual	Equiv	alent	Gra	ms	Gra	ms	pН
Days	NaCN	Ca(OH)2	NaCN	CaO	NaCN	CaO	NaCN	CaO	-
Aggmolerate	5.00	55	4.75	41.8	•	•	-	-	
0-1	2.00	0	1.90	0	0.75	•	5.90	•	8.6-9.4
1-2	1.84	0	1.75	0	1.25	•	1.25	-	9.4-9.6
2-3	1.32	1.00	1.25	0.76	2.00	•	0.50	•	11.5-10.0
3-4	0.53	0	0.50	0	2.00		0.50	•	10.0-9.7
4-5	0.53	0.50	0.50	0.38	2.25	•	0.25	-	11. 9-9 .8
5-6	0.26	0.50	0.25	0.38	1.50	•	1.00	•	11.1-10.0
6-7	1.05	0	1.00	0	1.75	•	0.75	-	10.0-9.8
7-8	0.79	0.50	0.75	0.38	2.00		0.50	•	10.7-9.9
8-9	0.53	0.50	0.50	0.38	1.50	•	1.00		11.5-9.8
9 - 10	1.05	0.80	1.00	0.61	1.75	•	0.75	•	10.8-10.0
10 - 13	0.79	0.50	0.75	0.38	1.00	•	1.50	•	10.8-9.6
13 - 14	1.58	0.50	1.50	0.38	1.20	•	1.30	•	11.1-9.8
14 - 16	1.37	0.50	1.30	0.38	1.50	•	1.00	-	11.2-9.6
16 - 17	0.89	0.85	0.85	0.65	1.63	0	0.87	46.5	11.1-10.3
Total	19.5	61.2	18.6	46.5	1.63	0	17.1	46.5	

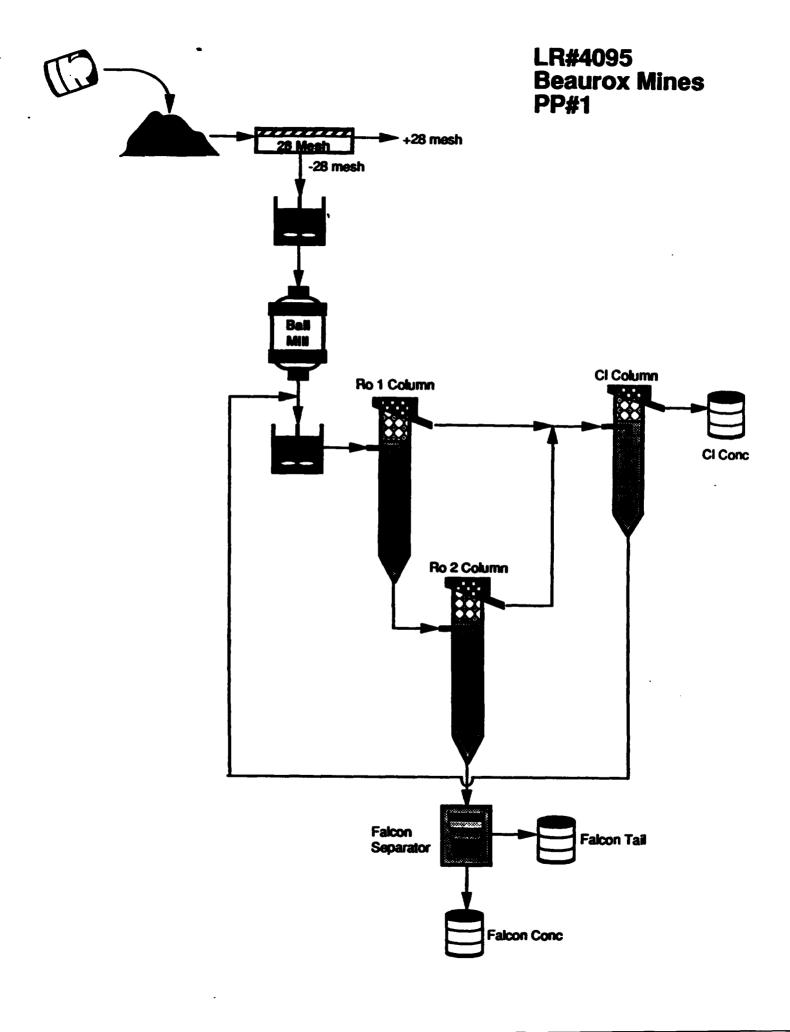
Metallurgical Balance

Product	Weight mL, g	Assays Au, mg/L, g/t	Distribution, % Au
Day 1 Loaded Carbon	14.6	313	36.1
Day 2 Loaded Carbon	14.5	69.0	7.9
Day 4 Loaded Carbon	15.6	49.8	6.1
Day 7 Loaded Carbon	15.6	23.0	2.8
Day 14 Loaded Carbon	16.7	17.2	2.3
Day 17 Loaded Carbon	16.7	5.20	0.7
Barren Solution	3540	<0.002	0.1
Barren Wash	3840	<0.002	0.1
Residue	9762	0.57	44.0
Feed(calc)	9762	1.30	100.0

LR#4095-Beaurox Mines Limited

Test#PP-1

<u>Purpose:</u> To recovery a gold bearing sulphide concentrate using column flotation and gravity concentration.


Procedure:A bulk sample was prepared by pulping it to approximately 65% solids
and removing the +28 mesh material prior to storage in a 1500 L conditioner.
The -28 mesh fraction was than lightly reground in a Denver ball mill before
being further diluted to approximately 35% solids in a small 10 L conditioner.
This comprised the feed to the first of two 6 inch column flotation cells.
The first column was fed at a rate of 3.7 L/minute slury. The rougher tail
from the first column was used to feed the second column. Rougher
concentrates from both 6 inch columns were combined to feed a 4 inch
cleaner column cell. Tailing from the cleaner column was collected.
Tailing from the second 6 inch column was passed through a Falcon
separator. A Falcon concentrate and tailing were collected and assayed.

Sample: Bankfield Bulk Sample (-28 mesh)

Flowsheet: See next page.

Equipment List: 2 X 150 mm flotation columns, 57 and 72 litres in capacity 100 mm flotation column, 28 litres in capacity Deriver ball mill, 305 mm X 610 mm, 1.5 kW Deriver conditioner, 1200 mm X 1520 mm, 1500 L 760 mm diameter Sweco Vibro Energy Separator, 28 mesh deck Falcon Separator, Model B-5

Results:

Reagents

Point of Addition	Reagent Name	Solution	Rate	•	Feed Rate
		Strength %	mL/min or drops/min	g/t	t/h
Ball Mill Feed	Na2S	10	8.7	661	0.079
Flotation Conditioner	A350	2	10.5	159	
	R412	100	20.0	115	
	CuSO4	10	9.0	684	
	DF250	2	1.1	17	

Column Flotation Conditions

(i) Bougher 1 Column

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	272 cm
Total Volume	80 L

(ii) Operating Parameters

9.8 L/min
2.12 L/min
3.01 L/min
75 cm
41 mV
72 L

(iii) Key Variables

Gas Velocity	0.92 cm/sec
Wash Velocity	0.20 сп/зес
Feed Velocity	0.28 cm/sec
NRT	27 minutes
Flow Blas	27 %
Gas Hold Up	16 %

Column Flotation Conditions (continued)

(ii) Rougher 2 Column

~

•

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	396 cm
Total Volume	72 L

(ii) Operating Parameters

Gas	6.7 L/min
Wash	1.06 L/min
Feed Rate	2.94 L/min
Level	30 cm
PXD	53 mV
Operating Volume	57 L
<u>(iii) Key Variables</u>	

Gas Velocity	0.63 cm/sec
Wash Velocity	0.10 cm/sec
Feed Velocity	0.28 cm/sec
NRT	25 minutes
Flow Blas	26 %
Gas Hold Up	17 %

.

~

•

Stream	Product	Au, g/t	S, %
Ball Mill Discharge	BMD	1.55	
Rougher 1 Feed	R1F	1.63	3.55
Rougher 1 Conc	RIC	11.3	
Rougher 2 Conc	R2C	10.4	
Combined Rougher Conc	CRC	10.2	33.2
Cleaner Conc	CLC	11.7	
Rougher 1 Tailing	R1T	1.39	
Rougher 2 Tailing	R2T	1. 13	1.69
Cleaner Tailing	CLT	7.30	
Faicon Conc	FLC	24.0	16.2
Falcon Tailing	FLT	1.08	1.66

Metallurgical Balance (2 product formula)

Product	Weight	Assay,	g/t or %	Distrib	ution, %
	%	Au	S	Au	S
CLC	4.0	11.7		30.0	
R2T	96.0	1.13		70.0	
BMD(calc)	100.0	1.55		100.0	
BMD(assay)	100.0	1.55		100.0	
CmD(coody)		1.55			
BMD	100.0	1.55		100.0	
CLT	1.4	7.30		6.6	
R1F(calc)	101.4	1.63		106.6	
R1F(assay)		1.63			
R1C	2.5	11.3		17.9	
R1T	99.0	1.39		88.7	
R1F(calc)	101.4	1.63		106.6	
R1F(assay)		1.63			
R2C	2.8	10.4		18.6	
R2T	96.2	1.13		70.1	
R1T(calc)	99.0	1.39		88.7	
RIT(assay)		1.39			
RIC	2.5	11.3		17.9	
R2C	2.8	10.4		18.6	
CRC(calc)	5.2	10.8		36.5	
CRC(assay)		10.2			
CLC	4.0	11.7		30.0	
CLT	1.4	7.30		6.6	
CRC(calc)	5.4	10.5		36.6	
CRC(assay)		10.2		00.0	
FLC	0.2	24.0	16.2	3.1	
FLT	96.0	1.08	1.66	67.0	
R2T(calc)	96.2	1.13	1.69	70.1	
R2T(assay)		1.13	1.69		

Overall Metallurgical Balance

,

Product	Product	Weight	Assay, git or %		Distrib	ution, %
	%	Au	S	Au	S	
CLC	4.0	11.7		30.0		
FLC	0.2	24.0		3.1		
FLT	96.0	1.08		67.0		
R1F(calc)	100.2	1.55		100.0		
R1F(assay)		1.55				

.

.

Screen Analyses

~

•

(i) Ball Mill Feed

Mesh	Weight		% Weight	
	9	Individual	Cumulative	Passing
65	0.2	0.1	0.1	99.9 [°]
100	1.9	1.0	1.1	96.9
150	18.4	9.6	10.7	89.3
200	36.9	19.3	30.1	69.9
270	32.8	17.2	47.2	52.8
400	20.1	10.5	57.8	42.2
-400	80.6	42.2	100.0	-
Total	190.9	100.0	-	-

(ii) Ball Mill Discharge

Mesh	Weight		% Weight	
	g	Individual	Cumulative	Passing
65	0.0	0.0	0.0	100.0
100	0.6	0.4	0.4	99.6
150	7.8	4.6	5.0	95.0
200	25.0	14.8	19.8	80.2
270	30.3	17.9	37.7	62.3
400	21.8	12.9	50.6	49.4
-400	83.4	49.4	100.0	•
Total	168.9	100.0	-	-

(iii) Cleaner Conc

Mesh	Weight		% Weight	
	g	Individual	Cumulative	Passing
65	0.0	0.0	0.0	100.0
100	0.1	0.1	0.1	99.9
150	0.7	0.3	0.4	99.6
200	5.3	2.2	2.6	97.4
270	34.5	14.4	17.0	83.0
400	77.2	32.2	49.1	50.9
-400	122.2	50.9	100.1	-
Total	240.0	100.1	-	-

Screen Analyses (continued)

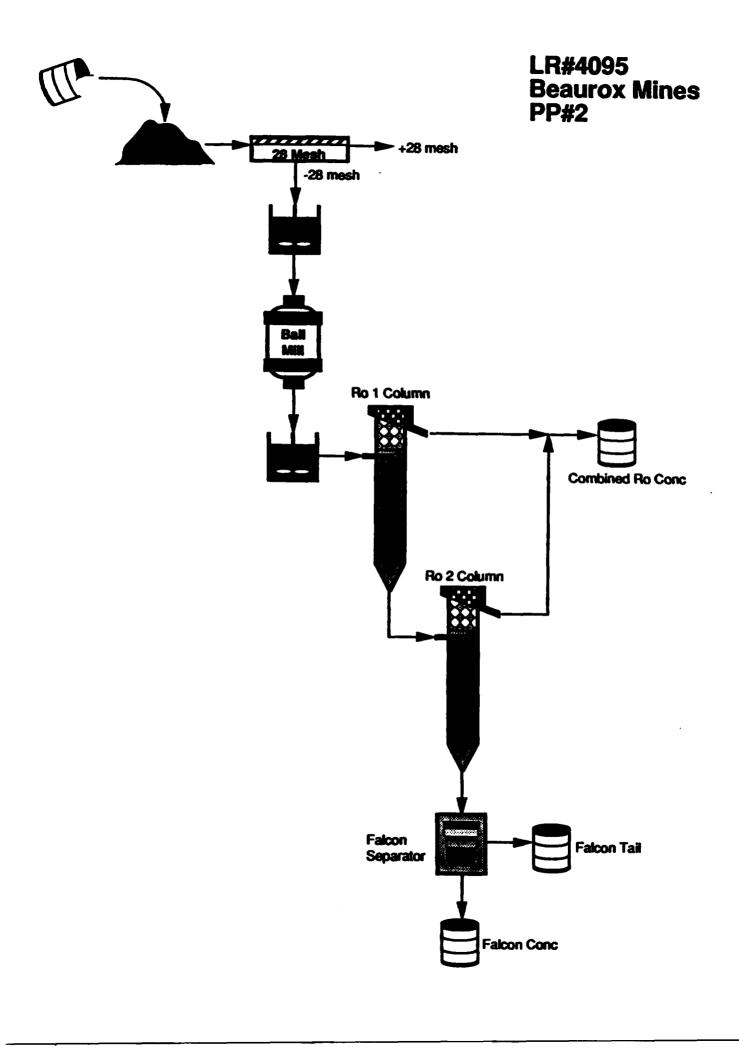
(iv) Rougher 1 Conc

Mesh	Weight		% Weight	
	g	Individual	Cumulative	Passing
65	0.0	0.0	0.0	100.0
100	0.1	0.1	0.1	99.9
150	0.2	0.3	0.4	99.6
200	1.4	1.8	2.2	97.8
270	7.5	9.6	11.7	88.3
400	19.4	24.7	36.5	63.5
-400	49.8	63.5	100.0	
Total	78.4	100.0	•	-

(v) Rougher 2 Conc

Mesh	Weight	% Weight			
	9	Individual	Cumulative	Passing	
65	0.0	0.0	0.0	100.0	
100	0.1	0.3	0.3	99.7	
150	0.4	1.1	1.4	96.6	
200	1.6	4.5	5.9	94.1	
270	5.2	14.6	20.5	79.5	
400	8.3	23.3	43.8	56.2	
-400	20.0	56.2	100.0	•	
Total	35.6	100.0	-	•	

LR#4095-Beaurox Mines Limited


Test#PP-2

<u>Purpose:</u> To recovery a gold bearing sulphide concentrate using column flotation and gravity concentration.

Procedure;A bulk sample was prepared by pulping it to approximately 65% solids
and removing the +28 mesh material prior to storage in a 1500 L conditioner.
The -28 mesh fraction was than lightly reground in a Deriver ball mill before
being further diluted to approximately 35% solids in a small 10 L conditioner.
This comprised the feed to the first of two 6 inch column flotation cells.
The first column was fed at a rate of 3.7 L/minute slurry. The rougher tail
from the first column was used to feed the second column. Rougher
concentrates from both 6 inch columns were combined and collected for assay.
Tailing from the second 6 inch column was passed through a Falcon
separator. A Falcon concentrate and tailing were collected and assayed.

- Sample: Bankfield Bulk Sample (-28 mesh)
- Flowsheet: See next page.
- Equipment List: 2 X 150 mm flotation columns, 57 and 72 litres in capacity Deriver ball mill, 305 mm X 610 mm, 1.5 kW Deriver conditioner, 1200 mm X 1520 mm, 1500 L 760 mm diameter Sweco Vibro Energy Separator, 28 mesh deck Falcon Separator, Model B-5

Results:

Test#PP-2 (continued)

Reagents

Point of Addition	Reagent Name	Solution	Rate		Feed Rate
		Strength %	mL/min or drops/min	9/t	t/h
Ball Mill Feed	Na2S	10	7.3	644	0.068
Flotation Conditioner	A350	2	14.0	247	
	R412	100	23.3	156	
	CuSO4	10	7.0	618	
	DF250	2	1.5	26	

Column Flotation Conditions

(i) Rougher 1 Column

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	272 cm
Total Volume	80 L

(ii) Operating Parameters

Gas	12.0 L/min
Wash	2.12 L/min
Feed Rate	3.62 L/min
Level	53 cm
PXD	41 mV
Operating Volume	72 L

(iii) Key Variables

Gas Velocity	1.13 cm/sec
Wash Velocity	0.20 cm/sec
Feed Velocity	0.34 cm/sec
NRT	22 minutes
Flow Bias	32 %
Gas Hold Up	22 %

Column Flotation Conditions (continued)

(ii) Rougher 2 Column

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	396 cm
Total Volume	72 L

(ii) Operating Parameters

Gas	7.0 L/min
Wash	1.06 L/min
Feed Rate	3.52 L/min
Level	35 cm
PXD	53 mV
Operating Volume	57 L

(iii) Key Variables

Gas Velocity	0.66 cm/sec
Wash Velocity	0.10 cm/sec
Feed Velocity	0.33 cm/sec
NRT	20 minutes
Flow Bias	30 %
Gas Hold Up	16 %

<u>Assays</u>

Stream	Product	Au, g/t	S, %
Ball Mill Discharge	BMD	1.54	3.23
Rougher 1 Conc	R1C	9.49	
Rougher 2 Conc	R2C	7.95	
Combined Rougher Conc	CRC	8.97	27.1
Rougher 1 Tail	R1T	1.30	
Rougher 2 Tail	R2T	0.89	1.11
Falcon Conc	FLC	12.5	17.2
Falcon Tail	FLT	0.84	1.04

Metallurgical Balance (2 product formula)

Product	Weight	Assay, g/t or %		Distribution, %	
	%	Au	S	Au	S
R1C	2.9	9.49		18.1	
RIT	97.1	1.30		81.9	
BMD(calc)	100.0	1.54		100.0	
BMD(assay)		1.54			
R2C	5.6	7.95		29.1	-
R2T	91.4	0.89		52.8	
R1T(calc)	97.1	1.30		81.9	
R1T(assay)		1.30			
R1C	2.9	9.49		18.1	
R2C	5.6	7.95		29.1	
CRC(calc)	8.6	8.48		47.2	
CRC(assay)		8.97			
CRC	8.6	8.48	27.1	47.2	69.6
R2T	91.4	0.89	1.11	52.8	30.4
BMD(calc)	100.0	1.54	3.34	100.0	100.0
BMD(assay)		1.54	3.23		
FLC	0.4	12.5	17.2	3.2	2.1
FLT	91.0	0.84	1.04	49.6	28.4
R2T(calc)	91.4	0.89	1.11	52.8	30.4
R2T(assay)		0.89	1.11		
Overall Metallurg	ical Balance				
CRC	8.6	8.48	27.1	47.2	69.6
FLC	0.4	12.5	17.2	3.2	2.1
FLT	91.0	0.84	1.04	49.6	28.4
BMD(calc)	100.0	1.54	3.34	100.0	100.0
BMD(assay)		1.54	3.23		

Screen Analyses

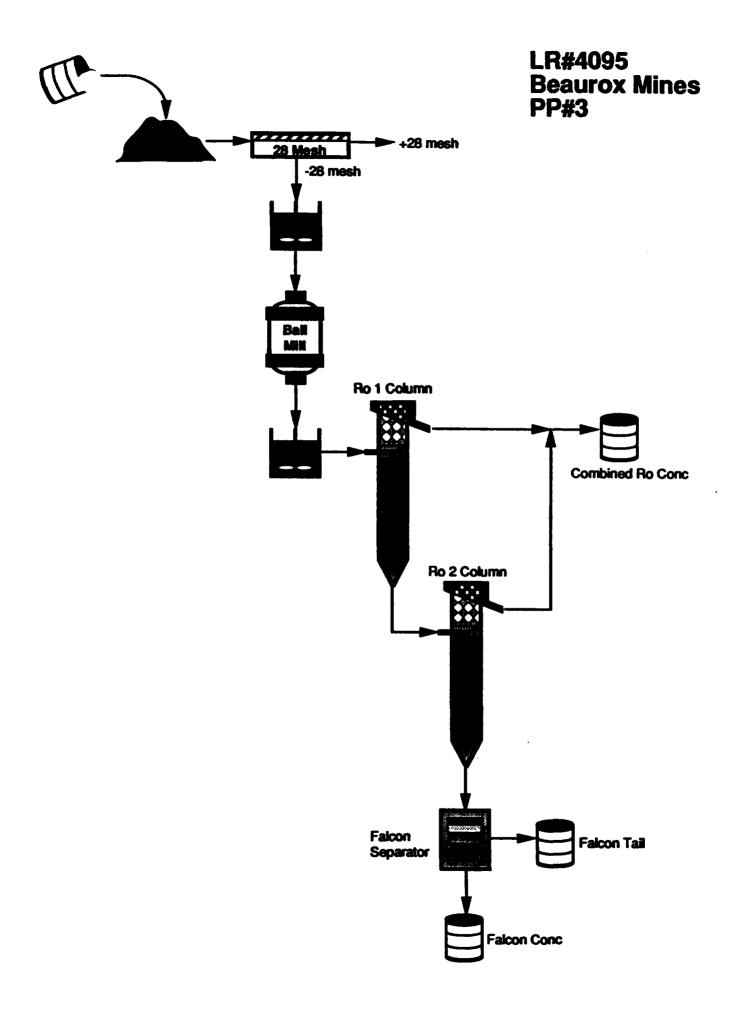
(i) Ball Mill Feed

Mesh	Weight			
	g	Individual	Cumulative	Passing
65	0.2	0.1	0.1	99.9
100	1.5	0.9	1.0	99.0
150	13.8	7.9	8.8	91.2
200	33.0	18.8	27.6	72.4
270	31.7	18.1	45.7	54.3
400	21.4	12.2	57.9	42.1
-400	74.0	42.1	100.0	-
Total	175.6	100.0	-	•

(ii) Rougher 1 Conc

Mesh	Weight	% Weight			
	9	Individual	Cumulative	Passing	
65	0.0	0.0	0.0	100.0	
100	0.0	0.0	0.0	100.0	
150	0.3	0.7	0.7	99.3	
200	1.2	2.9	3.6	96.4	
270	4.4	10.5	14.1	85.9	
400	8.9	21.3	35.4	64.6	
-400	27.0	64.6	100.0	-	
Total	41.8	100.0	-	-	

(iii) Combined Rougher Conc.


Mesh	Weight	% Weight				
	g	Individual	Cumulative	Passing		
65	0.0	0.0	0.0	100.0		
100	0.1	0.3	0.3	99.7		
150	0.4	1.1	1.4	98.6		
200	1.6	4.5	5.9	94.1		
270	5.2	14.6	20.5	79.5		
400	8.3	23.3	43.8	56.2		
-400	20.0	56.2	100.0	-		
Total	35.6	100.0	•	-		

LR#4095-Beaurox Mines Limited

Test#PP-3

- <u>Purpose:</u> To recovery a gold bearing sulphide concentrate using column flotation and gravity concentration.
- Procedure:A bulk sample was prepared by pulping it to approximately 65% solids
and removing the +28 mesh material prior to storage in a 1500 L conditioner.
The -28 mesh fraction was than lightly reground in a Denver ball mill before
being further diluted to approximately 35% solids in a small 10 L conditioner.
This comprised the feed to the first of two 6 inch column flotation cells.
The first column was fed at a rate of 3.7 L/minute slury. The rougher tail
from the first column was used to feed the second column. Rougher
concentrates from both 6 inch columns were combined and collected for assay.
Tailing from the second 6 inch column was passed through a Falcon
separator. A Falcon concentrate and tailing were collected and assayed.
- Sample: Little Long Lac Bulk Sample (-28 mesh)
- Flowsheet: See next page.
- Equipment List: 2 X 150 mm flotation columns, 57 and 72 litres in capacity Deriver ball mill, 305 mm X 610 mm, 1.5 kW Deriver conditioner, 1200 mm X 1520 mm, 1500 L 760 mm diameter Sweco Vibro Energy Separator, 28 mesh deck Falcon Separator, Model B-5

Results:

Reagents

Point of Addition	Reagent Name	Solution	Rate		Feed Rate
		Strength	mL/min or drops/min	g/t	t/h
Ball Mill Feed	Na2S	10	8.1	600	0.081
Flotation Conditioner	A350	2	12.3	182	
	R412	100	20.0	113	
	CuSO4	10	8.0	593	
	DF250	2	2.2	33	

٠

Column Flotation Conditions

(i) Rougher 1 Column

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	272 cm
Total Volume	80 L

(ii) Operating Parameters

Gas	7.9 L/min
Wash	2.12 L/min
Feed Rate	3.47 L/min
Level	45 cm
PXD	44 mV
Operating Volume	72 L
<u>(iii) Key Variables</u>	

Gas Velocity	0.74 cm/sec
Wash Velocity	0.20 cm/sec
Feed Velocity	0.33 cm/sec
NRT	23 minutes
Flow Bias	31 %
Gas Hold Up	13 %

Column Flotation Conditions (continued)

(ii) Rougher 2 Column

-.

.

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	396 cm
Total Volume	72 L

(ii) Operating Parameters

Gas	7.9 L/min
Wash	1.06 L/min
Feed Rate	3.40 L/min
Level	18 cm
PXD	56 mV
Operating Volume	57 L

(iii) Key Variables

Gas Velocity	0.74 cm/sec
Wash Velocity	0.10 cm/sec
Feed Velocity	0.32 cm/sec
NRT	21 minutes
Flow Blas	31 %
Gas Hold Up	13 %

Assavs

سر.

.--

-

Stream	Product	Au, g/t	S, %
Ball Mill Discharge	BMD	1.29	0.24
Rougher 1 Conc	R1C	12.1	6.64
Rougher 2 Conc	R2C	10.2	4.03
Combined Rougher Conc	CRC	12.9	5.93
Rougher 1 Tail	R1T	1.08	0.25
Rougher 2 Tail	R2T	1.04	0.16
Falcon Conc	FLC	30.3	9.43
Falcon Tail	FLT	0.98	0.14

Metallurgical Balance (2 product formula)

Product	Weight	Assay, g/t or %		Distribution, %	
	%	Au	S	Au	S
R1C	1.9	12.1	6.64	17.9	34.0
R1T	96 .1	1.08	0.25	82.1	66.0
BMD(calc)	100.0	1.29	0.37	100.0	100.0
BMD(assay)		1.29	0.24		
R2C	0.4	10.2	4.03	3.4	6.6
R2T	97.7	1.04	0.16	78.7	59.4
R1T(calc)	98.1	1.08	0.18	82.1	66.0
R1T(assay)		1.08	0.25		
R1C	1.9	12.1	6.64	17.9	34.0
R2C	0.4	10.2	4.03	3.4	6.6
CRC(calc)	2.3	11.8	6.16	21.3	40.6
CRC(assay)		12.9	5.93		
CRC	2.3	11.8	6.16	21.3	40.6
<u>R2T</u>	<u>97.7</u>	1.04	0.16	<u>78.7</u>	59.4
BMD(calc)	100.0	1.29	0.30	100.0	100.0
BMD(assay)		1.29	0.24		
FLC	0.2	30.3	9.43	4.7	7.2
FLT	97.5	0.98	0.14	74.0	52.2
R2T(calc)	97.7	1.04	0.16	78.7	59.4
R2T(assay)		1.04	0.16		
Overall Metallurg	ical Balance				
CRC	2.3	11.8	6.16	21.3	40.6
FLC	0.2	30.3	9.43	4.7	7.2
FLT	97.5	0.98	0.14	74.0	52.2
BMD(calc)	100.0	1.29	0.30	100.0	100.0
BMD(assay)		1.29	0.24		

ł

Screen Analyses

(i) Ball Mill Feed

.

Mesh	Weight	% Weight			
	g	Individual	Cumulative	Passing	
65	3.4	2.2	2.2	97.8	
100	13.3	8.6	10.8	89.2	
150	23.1	14.9	25.6	74.4	
200	22.8	14.7	40.3	59.7	
270	17.8	11.5	51.8	48.2	
400	11.5	7.4	59.2	40.8	
-400	63.3	40.8	100.0	-	
Total	155.2	100.0	•	-	

(iii) Ball Mill Discharge

Mesh	Weight	% Weight			
-	g	Individual	Cumulative	Passing	
65	0.8	0.7	0.7	99.3	
100	4.9	4.1	4.8	95.2	
150	11.5	9.6	14.4	85.6	
200	15.5	13.0	27.4	72.6	
270	16.0	13.4	40.8	59.2	
400	12.2	10.2	51.0	49.0	
-400	58.6	49.0	100.0	-	
Total	119.5	100.0	-	-	

.

Screen Analyses (continued)

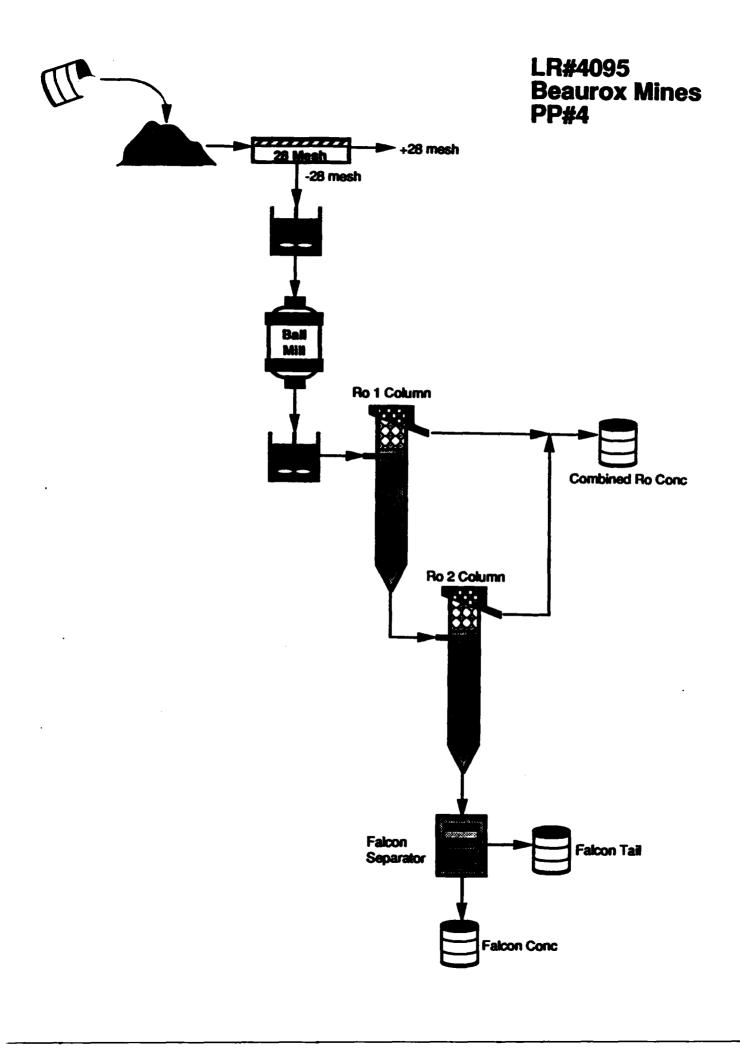
(iii) Rougher 1 Conc

Mesh	Weight	% Weight			
	g	Individual	Cumulative	Passing	
65	0.0	0.0	0.0	100.0	
100	0.0	0.0	0.0	100.0	
150	0.6	0.6	0.6	99.4	
200	1.6	1.5	2.1	97.9	
270	3.6	3.4	5.5	94.5	
400	5.6	5.3	10.8	89.2	
-400	94.3	89.2	100.0	-	
Total	105.7	100.0	-	-	

(iv) Rougher 2 Conc

Mesh	Weight	% Weight			
	g	Individual	Cumulative	Passing	
65	0.0	0.0	0.0	100.0	
100	0.0	0.0	0.0	100.0	
150	1.2	1.1	1.1	98.9	
200	2.7	2.6	3.7	96.3	
270	5.1	4.8	8.5	91.5	
400	6.7	6.3	14.9	85.1	
-400	90.0	85.1	100.0	-	
Total	105.7	100.0	-	•	

LR#4095-Beaurox Mines Limited


Test#PP-4

<u>Purpose:</u> To recovery a gold bearing sulphide concentrate using column flotation and gravity concentration.

Procedure:A bulk sample was prepared by pulping it to approximately 65% solids
and removing the +28 mesh material prior to storage in a 1500 L conditioner.
The -28 mesh fraction was than lightly reground in a Denver ball mill before
being further diluted to approximately 35% solids in a small 10 L conditioner.
This comprised the feed to the first of two 6 inch column flotation cells.
The first column was fed at a rate of 3.7 L/minute slury. The rougher tail
from the first column was used to feed the second column. Rougher
concentrates from both 6 inch columns were combined and collected for assay.
Tailing from the second 6 inch column was passed through a Falcon
separator. A Falcon concentrate and tailing were collected and assayed.

- Sample: Little Long Lac Bulk Sample (-28 mesh)
- Flowsheet: See next page.
- Equipment List: 2 X 150 mm flotation columns, 57 and 72 litres in capacity Deriver ball mill, 305 mm X 610 mm, 1.5 kW Deriver conditioner, 1200 mm X 1520 mm, 1500 L 760 mm diameter Sweco Vibro Energy Separator, 28 mesh deck Falcon Separator, Model B-5

Results:

Reagents

~

Point of Addition	Reagent Name	Solution	Rate		Feed Rate
	S	Strength	mL/min or drops/min	g/t	t/h
Ball Mill Feed	Na2S	10	8.3	778	0.064
Flotation Conditioner	A350	2	13.1	246	
	R412	100	21.0	150	
	CuSO4	10	6.5	609	
	DF250	2	2.6	49	

Column Flotation Conditions

(i) Rougher 1 Column

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	272 cm
Total Volume	80 L

(ii) Operating Parameters

Gas	7.9 L/min
Wash Feed Rate	2.12 L/min 2.64 L/min
Level	45 cm
PXD	44 mV
Operating Volume	72 L
<u>(iii) Key Variables</u>	
Gas Velocity	0.74 cm/sec

0.74 CITVSEC
0.20 cm/sec
0.25 cm/sec
30 minutes
23 %
17 %

Column Flotation Conditions (continued)

(ii) Rougher 2 Column

~.

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	396 cm
Total Volume	72 L

(ii) Operating Parameters

Gas	7.9 L/min
Wash	1.06 L/min
Feed Rate	2.62 L/min
Level	18 cm
PXD	56 mV
Operating Volume	57 L

(iii) Key Variables

Gas Velocity	0.74 cm/sec
Wash Velocity	0.10 cm/sec
Feed Velocity	0.25 cm/sec
NRT	28 minutes
Flow Bias	23 %
Gas Hold Up	17 %

Assays

Stream	Product	Au, g/t	S, %
Ball Mill Discharge	BMD	1.14	0.25
Rougher 1 Conc	R1C	17.5	10.0
Rougher 2 Conc	R2C	9.73	4.29
Combined Rougher Conc	CRC	10.1	4.58
Rougher 1 Tail	R1T	1.00	0.20
Rougher 2 Tail	R2T	0.92	0.15
Falcon Conc	FLC	20.4	1.04
Falcon Tail	FLT	0.84	0.15

Metallurgical Balance (2 product formula)

Product	Weight	ight Assay, g/t or %		Distribution, %	
	%	Au	S	Au	S
R1C	0.8	17.5	10.0	13.0	30.0
RIT	99.2	1.00	0.20	87.0	70.0
BMD(calc)	100.0	1.14	0.28	100.0	100.0
BMD(assay)	100.0	1.14	0.24	100.0	100.0
R2C	0.9	9.73	4.29	7.7	14.5
R2T	98.3	0.92	0.15	79.3	55.5
R1T(calc)	99.2	1.00	0.19	87.0	70.0
R1T(assay)		1.00	0.20		
R1C	0.8	17.5	10.0	13.0	30.0
R2C	0.9	9.73	4.29	7.7	14.5
CRC(calc)	1.7	13.5	7.06	20.7	44.5
CRC(assay)		10.1	4.58		
CRC	1.7	13.5	7.06	20.7	44.5
R2T	98.3	0.92	0.15	<u>79.3</u>	55.5
BMD(calc)	100.0	1.14	0.27	100.0	100.0
BMD(assay)		1.14	0.25		
FLC	0.4	20.4	1.04	7.2	1.6
FLT	97.9	0.84	0.15	72.1	53.9
R2T(calc)	98.3	0.92	0.15	79.3	55.5
R2T(assay)		0.92	0.15		
Overall Metallurg	pical Balance				
CRC	1.7	13.5	7.06	20.7	44.5
FLC	0.4	20.4	1.04	7.2	1.6
FLT	97.9	0.84	0.15	72.1	53.9
BMD(calc)	100.0	1.14	0.27	100.0	100.0
BMD(assay)		1.14	0.25		
			 .		

•

.

Screen Analyses

(i) Ball Mill Feed

Mesh	Weight	% Weight			
	9	Individual	Cumulative	Passing	
65	4.2	2.5	2.5	97.5	
100	13.6	8.1	10.6	89.4	
150	24.4	14.5	25.1	74.9	
200	23.4	13.9	39.0	61.0	
270	20.3	12.1	51.1	48.9	
400	15.0	8.9	60.0	40.0	
-400	67.3	40.0	100.0	-	
Total	168.2	100.0	-	-	

(ii) Ball Mill Discharge

Mesh	Weight	% Weight			
	g	Individual	Cumulative	Passing	
65	0.8	0.5	0.5	99.5	
100	6.1	4.0	4.5	95.5	
150	17.2	11.3	15.8	84.2	
200	19.9	13.1	28.9	71.1	
270	19.9	13.1	42.0	58.0	
400	13.0	8.5	50.5	49.5	
-400	75.3	49.5	100.0	-	
Total	152.2	100.0	-	•	

.

.

Screen Analyses (continued)

(iii) Rougher 1 Conc

Mesh	Weight	% Weight		
	g	Individual	Cumulative	Passing
65	0.0	0.0	0.0	100.0
100	0.0	0.0	0.0	100.0
150	0.7	1.9	1.9	98.1
200	1.6	4.3	6.2	93.8
270	3.6	9.7	15.9	84.1
400	4.5	12.1	28.0	72.0
-400	26.7	72.0	100.0	•
Total	37.1	100.0	•	•

(iv) Rougher 2 Conc

Mesh	Weight	% Weight		
	g	Individual	Cumulative	Passing
65	0.0	0.0	0.0	100.0
100	0.0	0.0	0.0	100.0
150	1.1	1.2	1.2	98.8
200	25	2.8	4.1	95.9
270	5.3	6.0	10.0	90.0
400	6.4	7.2	17.3	82.7
-400	73.3	82.7	100.0	-
Total	88.6	100.0	-	-

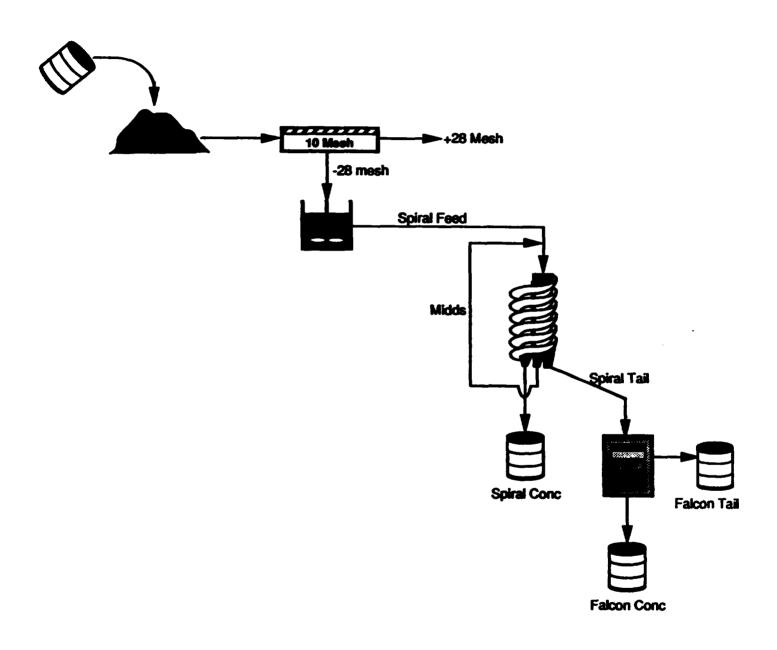
.

LR#4095-Beaurox Mines Limited

Test#PP-5

<u>Purpose:</u> To recovery a gold bearing sulphide concentrate using gravity concentration.

<u>Procedure:</u> A bulk sample was prepared by pulping it to approximately 65% solids and removing the +28 mesh material prior to storage in a 1500 L conditioner. The -28 mesh fraction was diluted to 35% solids and simultaneously pumped to the head of the spiral. The spiral concentrate was collected for assay purposes while the spiral midds were combined with fresh feed and pumped back to the head of the spiral. The spiral tail was passed through a Falcon separator where a Falcon concentrate and tail were collected and assayed.


Sample: Bankfield Bulk Sample (-28 mesh)

- Flowsheet: See next page.
- Equipment List: Denver conditioner, 1200 mm X 1520 mm, 1500 L Falcon Separator, Model B-5 Reichert Mark VII Spiral

Results:

LR#4095 Beaurox Mines PP-5

•

 \sim

.

-

.

Aassya

Stream	Product	Au, g/t	
Spiral Feed	SPF	1.45	
Spiral Conc	SPC	4.81	
Spiral Tailing	SPT	1.20	
Falcon Conc	FLC	70.5	
Falcon Tailing	FLT	1.05	

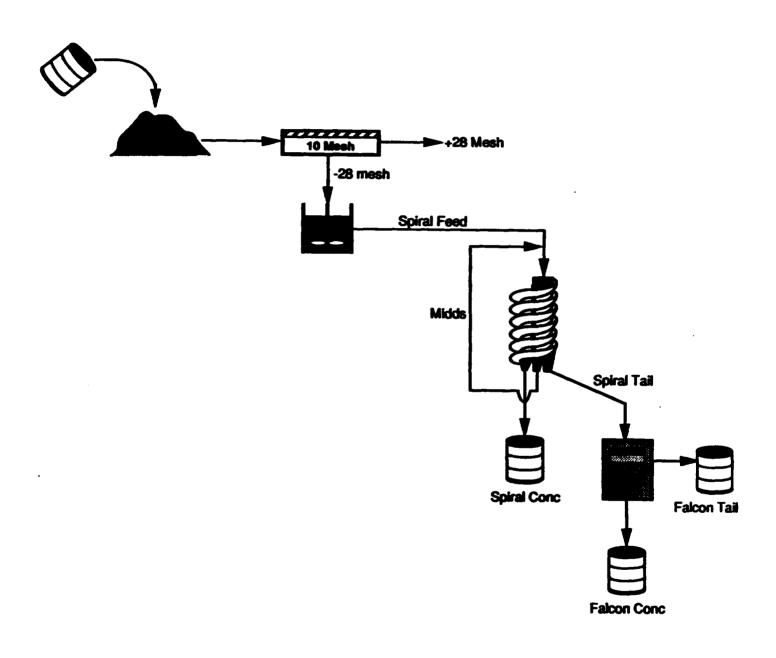
Metallurgical Balance (two product formula)

Product	Weight %	Assay, g/t Au	Distribution Au
SPC	6.9	4.81	23.0
SPT	93.1	1.20	77.0
SPF(calc)	100.0	1.45	100.0
SPC(assay)		1.45	
FLC	0.2	70.5	9.7
RT	92.9	1.05	67.3
SPT(calc)	93.1	1.20	77.0
SPT(assay)		1.20	

Overall Metallumical Balance

SPC	6.9	4.81	23.0
FLC	0.2	70.5	9.7
<u>FLT</u>	92.9	1.05	67.3
SFD(calc)	100.0	1.45	100.0
SFD(assay)		1.45	

LR#4095-Beaurox Mines Limited


Test#PP-6

- <u>Purpose:</u> To recovery a gold bearing sulphide concentrate using gravity concentration.
- <u>Procedure:</u> A bulk sample was prepared by pulping it to approximately 65% solids and removing the +28 mesh material prior to storage in a 1500 L conditioner. The -28 mesh fraction was diluted to 35% solids and simultaneously pumped to the head of the spiral. The spiral concentrate was collected for assay purposes while the spiral midds were combined with fresh feed and pumped back to the head of the spiral. The spiral tail was passed through a Falcon separator where a Falcon concentrate and tail were collected and assayed.
- Sample: Little Long Lac Bulk Sample (-28 mesh)
- Elowsheet: See next page.
- Equipment List: Deriver conditioner, 1200 mm X 1520 mm, 1500 L Falcon Separator, Model B-5 Reichert Mark VII Spiral

Results:

LR#4095 Beaurox Mines PP-6

Aassys

Stream	Product	Au, g/t
Spiral Feed	SPF	1.19
Spiral Conc	SPC	6.57
Spiral Tailing	SPT	1.01
Falcon Conc	FLC	40.2
Falcon Tailing	FLT	0.85

Metallurgical Balance (two product formula)

Product	Weight %	Assay, g/t Au	Distribution Au
SPC	3.2	6.57	17.9
SPT	96.8	1.01	82.1
SPF(calc)	100.0	1.19	100.0
SPC(assay)		1.19	
FLC	0.4	40.2	13.5
<u>FLT</u>	96.4	0.85	68.6
SPT(calc)	96.8	1.01	82.1
SPT(assay)		1.01	

Overall Metallumical Balance

SPC	3.2	6.57	17.9
FLC	0.4	40.2	13.5
FLT	96.4	0.85	68.6
SFD(calc)	100.0	1.19	100.0
SFD(assay)		1.19	

~ • • • • • • • • • • • • • • • • • • •		
185 C Po	ELD RESEAR Concession Street atal Bag 4300 teficid. Ontario KOL 2H0	
Telephone Facsimile	No. (705) 652- No. (705) 652-	3341 5365
To: Anice Maling Prom: Dave Evanc Dass: March 5/9, This transmission consists of <u>55</u>	Reference:	-
	· • • •	

TRANSMISSION REPORT

THIS DOCUMENT (REDUCED SAMPLE ABOVE) WAS SENT

****** COUNT ****** # 55

*** SEND ***

-	NO	REMOTE STATION I.D.	START	TIME	DURATION	#PAGES	COMMENT
-	1	MALOUF CONSULTING	3- 5-91	14:31	29'18"	55	
				TOTAL	0:29.18-	55	

XEROX TELECOPIER 7020

42E10NN0113 63.6072 ASHNORE

040

LAKEFIELD RESEARCH

185 Concession Street Postal Bag 4300 Lakefield, Ontario KOL 2H0

Telephone No. (705) 652-3341 Facsimile No. (705) 652-6365

To: Lawer Dyclary Company: Beaur 04. Fax. No.: 416 360 - 7355 From: Lan Evans Date: Mjarch 5/91 Reference: 4095 This transmission consists of 55 page(s), including this one.

THE RECOVERY OF GOLD

from low grade tailing samples

submitted by

BEAUROX MINES LIMITED

Progress Report No. 3

Project No. L.R. 4095

NOTE:

This report refers to the samples as received.

The practice of this Company in issuing reports of this nature is to require the recipient not to publish the report or any part thereof without the written consent of Lakefield Research.

LAKEFIELD RESEARCH A DIVISION OF FALCONBRIDGE LIMITED March 15, 1991

0113 63.6072 ASHMORE

TABLE OF (

~

.

INTRODU	CTION	3
SUMMARY	۲	6
1.	Head Analyses	7
2.	Bench Scale Testwork	7
	2.1 Gravity Concentration	7
	2.2 Direct Cyanidation	8
	2.3 Direct Cyanidation with Lead Nitrate	8
	2.4 Heap Leach Simulation	10
	2.5 Flotation	12
3.	Pilot Plant Testwork	14
	3.1 Column Flotation	14
	3.2 Gravity Concentration with Spiral	18
CONCLUS	SIONS	20
RECOMM	ENDATIONS	21
SAMPLE	PREPARATION AND DISPOSITION	22
DETAILS	OF TESTS	23

•

040C

INTRODUCTION

This report contains the results of testwork conducted on four different Beaurox Mines tailing samples as required by Mr. D. Malouf of Malouf Consulting. The purpose of the testwork was to investigate the recovery of gold by means of cyanidation, flotation and gravity concentration techniques.

The results were forwarded to Mr. Malouf as the testwork proceeded.

LAKEFIELD RESEARCH

KUSLH

K.W. Sarbutt Manager - Mineral Processing

Sr. Project Metallurgist

Pilinno-

D. Evans, P. Eng., Project Metallurgist

Experimental work by:

J. Hughes J. MacDonald

SUMMARY

1. Head Analyses

Representative head samples were cut from each individual tailing sample and assayed for Au, Fe and S(total). The results are summarized as follows:

Table No. 1: Head Assays

	Bankfield	Bankfield-2	Tashota	Little Long Lac
Au, g/t	2.90	1.29	3.03	1.60
Fe, %	6.33	6.40	10.1	3.80
S(total), %	2.28	2.26	2.51	0.19

Size fraction analyses for Au and S(total) were also performed on the same head samples. Table 2 summarizes these results.

Table 2: Size Fraction Analyses

(i) Bankfield

Mesh	Weight		Assays, g/	t or %	Distribution, %	
Tyler	9	%	Au	S	Au	S
65	131.5	12.3	1.75	1.53	5.7	8.3
200	306.5	28.7	2.69	0.83	20.4	10.5
400	211.1	19.8	3.23	3.04	16.9	26.4
-400	417.3	39.1	5.52	3.19	57.0	54.8
Feed(calc)	1066.4	100.0	3.79	2.28	100.0	100.0

(iii) Tashota

Mesh	Weight		Assays, g/	t or %	Distribution, %	
Tyler	9	%	Au	S	Au	S
65	54.4	5.0	6.04	2.84	10.6	6.3
200	388.5	35.4	4.52	1.65	56.6	26.1
400	248.2	22.6	1.65	2.45	13.2	24.8
-400	405.2	37.0	1.50	2.59	19.6	42.8
Feed(calc)	1096.3	100.0	2.83	2.24	100.0	100.0

(iii) Little Long Lac

Mesh	Mesh Weight		Assays, g/	tor%	Distribution, %	
Tyler	9	%	Au	S	Au	S
65	27.6	2.6	3.45	0.19	6.5	3.1
200	374.4	35.8	1.13	0.07	28.8	15.4
400	245.0	23.4	1.26	0.21	21.0	30.2
-400	397.8	38.1	1.62	0.22	43.8	51.4
Feed(calc)	1044.8	100.0	1.41	0.16	100.0	100.0

(iv) Banklieki-2

Mesh	Weight		Assays, g/	t or %	Distribution, %	
Tyler	9	%	Au	S	Au	S
65	3.9	0.7	1.73	1.54	1.0	0.5
200	130.4	24.4	1.02	0.39	19.3	4.5
400	142.2	26.6	1.46	2.19	30.1	27.8
-400	257.7	48.2	1.33	2.92	49.7	67.1
Feed(calc)	534.2	100.0	1.29	2.10	100.0	100.0

A 24 element ICP scan was also conducted and these results are summarized in Table 3.

Table 3: Semi-Quantitative Analyses

_---

	Bankfield Tashota Little Long L		Little Long Lac	Bankfield-2
As, %	1.39	0.004	0.12	0.85
Ba, %	0.04	0.02	0.05	0.04
Be, %	<0.0001	<0.0001	0.0001	0.0001
Ca, %	3.25	2.73	2.84	2.97
Cd, %	<0.003	<0.001	<0.0005	0.0007
Co, %	0.003	0.007	0.003	0.003
Cr, %	0.01	0.009	0.004	0.01
Cu, %	0.008	0.03	0.008	0.008
Fe, %	6.39	9.57	4.04	3.27
Mg, %	1.34	2.12	1.57	1.46
Mn, %	0.05	0.08	0.06	0.06
Mo, %	<0.01	<0.008	<0.01	<0.01
Na, %	3.24	1.21	1.71	3.34
Ni, %	0.006	0.006	0.006	0.006
P, %	0.04	0.03	0.05	0.04
Pb, %	<0.02	<0.01	<0.02	<0.01
S, %	2.28	2.15	0.22	2.01
Sb, %	0.001	<0.001	0.008	0.001
Se, %	<0.005	<0.005	<0.005	<0.0005
Sn, %	<0.002	<0.002	<0.002	<0.002
Te, %	<0.001	<0.001	<0.001	<0.001
Th, %	0.001	0.003	<0.001	<0.001
U, %	<0.001	<0.001	<0.001	<0.001
Zn, %	0.005	0.01	0.009	0.007

2. Bench Scale Testwork

2.1 Gravity Concentration

A series of tests were conducted to investigate the recovery of gold by gravity concentration. 2 kg charges were passed over an 1/8 Wilfley shaking table with the table concentrate being upgraded on a Mozley separator. The results are summarized in Table 4.

Test	Sample	Product	Weight	Assay	9/1, %	Distribu	tion, %
#	<u> </u> '		%	Au	S	Au	S
4	Tashota	Mozley Conc	0.1	141		2.9	
1	1	Moziey Tail	2.7	5.44		4.6	
1	1 '	+ 28 mesh Table Conc	1.1	1.61		0.5	
ļ	1 '	Table Conc(calc)	3.9	6.70	20.5	8.0	31.4
	1 '	Table Tail	96.2	3.08	1.79	92.0	68.6
	! 	Feed(calc)	100.0	3.22	2.51	100.0	
5	Bankfield	Mozley Conc	0.1	297		8.1	
	1	Mozley Tail	3.8	7.67		10.3	
1	/	+ 28 mesh Table Conc	1.7	1.00		0.6	
	1	Table Conc(caic)	5.5	9.66	10.7	19.0	25.8
i	1	Table Tail	94.5	2.40	1.79	81.0	74.2
·		Feed(calc)	100.0	2.80	2.28	100.0	
6	Little Long Lac	Mozley Conc	0.1	116		5.5	
,	-	Mozley Tail	5.2	3.45	4	14.8	
i		+ 28 mesh Table Conc	0.1	1.12		0.1	
i		Table Conc(calc)	5.4	4.59	1.24	20.4	35.3
i		Table Tail	94.6		0.13	79.6	
1	1	Feed(calc)	100.0	1.22	0.19	100.0	100.0

Table No.	4:_	Summary	of	Gravity	Concent	ration	Testwork

This type of gravity concentration was not successful since only an average of 16% of the gold and 31% of the sulphur was recovered by the Wilfley table.

Further gravity concentration tests were performed using a Falcon concentrator. Table 5 summarizes these results.

Test Sample		Product	Weight	Assay,	91,%	Distribu	tion, %
#			%	Au	S	Au	S
13	Tashota	+ 28 mesh	3.9	1.53	4.34	1.9	8.2
		Falcon Conc	7.9	9.69	2.55	23.5	9.6
		Falcon Tali	86.2	2.75	1.96	74.7	82.3
		Feed(calc)	100.0	3.25	2.10	100.0	100.0
14	Little Long Lac	+ 28 mesh	1.0	4.57	0.38	3.3	2.2
		Falcon Conc	5.0	6.57	0.59	23.6	16.9
-		Falcon Tail	94.0	1.08	0.15	73.1	80.9
	[Feed(calc)	100.0	1.39	0.17	100.0	100.0

Table 5	: Summary	of Falcon	Concentrator	Results

As seen in Table 5, an average of 24% of the gold and 13% of the sulphur was recovered in the Falcon concentrate. The higher recovery of gold over sulphur indicates that free gold displaced sulphide bearing minerals during the operation of the Falcon concentrator until the centrifugal bowl became full (~750 g).

2.2 Direct Cyanidation

Representative 1 kg charges were prepared from the gold tailing samples for cyanidation testing. All samples were leached for 120 hours at 50% solids using 1.0 g/L NaCN and pH 10.5 - 11.0. Aliquots were removed every 24 hours in order to determine the rate of extraction of the gold. The results are summarized as follows.

Test	Sample	Reagent Co		Au Extraction, %				Residue, g/t	Feed(calc), g/t	
#		kç	yn i	24h	48h	72h	96h	120h	Au	Au
		NaCN	CaO							
1	Tashota	3.28	10.4	68	78	78	78	78.3	0.6 9	3.30
2	Bankfield	0.91	4.10	79	79	79	79	79.0	0.62	3.24
3	Little Long Lac	0.51	0.79	55	55	55	55	55.1	0.67	1.53

Table 6: Summary of Direct Cyanidation Results

Maximum extraction of gold was reached after 48 hours of leaching.

2.3 Direct Cyanidation with Lead Nitrate

A series of tests was performed to investigate the effect of lead nitrate addition on the cyanidation response of the tailing samples. All tests involved the use of 1 kg charges diluted to 50% solids. A dosage of 500 g/t lead nitrate was added in each test. Cyanidation conditions and metallurgical results are summarized in Table 7.

Table 7: Sur	nmary of Cya	anidation Co	onditions at	nd Results

Standard Conditions:	1 kg charge
	72 hour retention time
	pH 10.5 - 11.0
	0.5 g/L NaCN
	500 g/t Pb(NO3)2

Test #	Sample	Reagent Consumption kg/t		Au Extraction, % 72h	Residue, g/t Au	Feed(calc), g/t Au
		NaCN	CaO			
7	Tashota	1.47	9.67	69.4	0.78	2.94
8	Banklield-2	0.37	2.03	58.4	0.5 9	1.35
9	Little Long Lac	0.12	0.89	49.1	0.72	1.43

In comparison to earlier cyanidation testwork, the addition of the lead nitrate did help the cyanide consumption. Table 8 provides a comparison of the different sets of testwork. The Bankfield and Bankfield-2 test results are not included since they are not representative of each other.

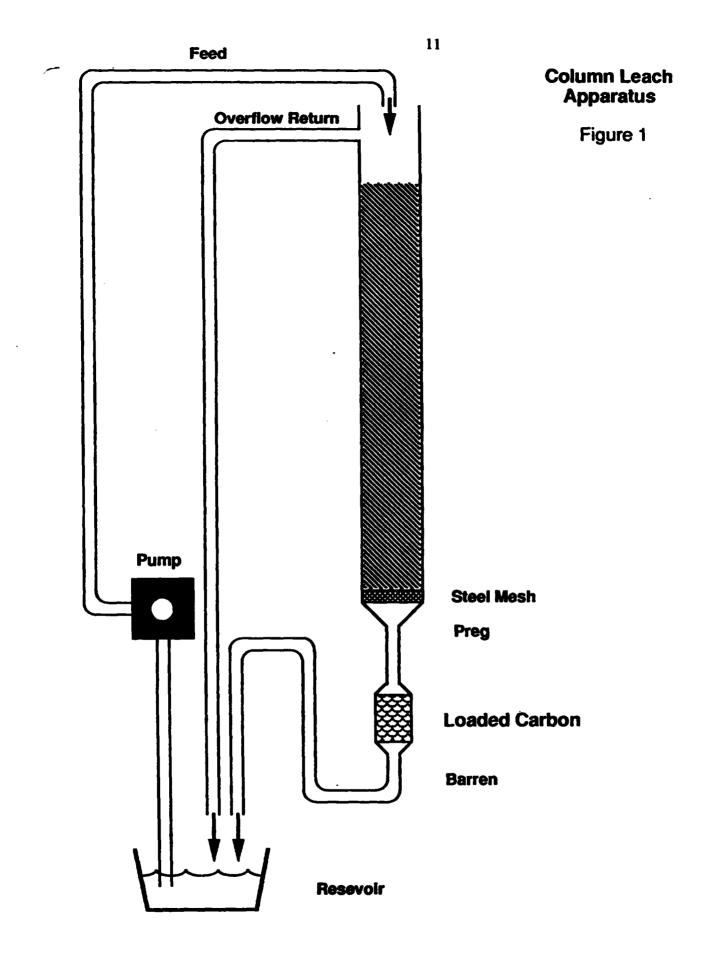
Table 8:	Comparison	of Cvanidation To	estwork

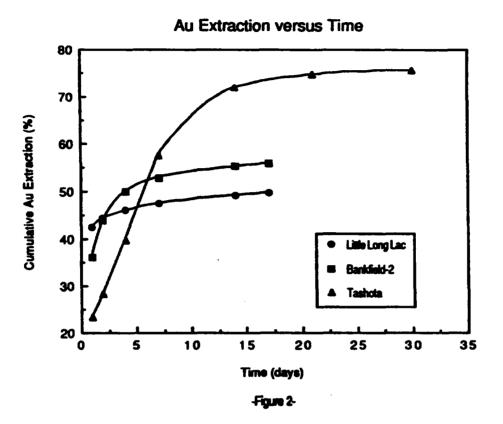
Test #	Sample	Sample Reagent Consumption Au Extraction, kg/t		Au Extraction, %	Residue, g/t Au	Feed(calc), g/t Au
		NaCN	CaO			
1	Tashota	3.28	10.4	78.3	0.69	3.30
2		1.47	9.67	69.4	0.78	2.94
3	Little Long Lac	0.51	0.79	55.1	0.67	1.53
9		0.12	0.89	49 .1	0.72	1.43

As seen in Table 8, there was an average decrease of approximately 7% in the overall extraction of gold. This decrease may be accounted for by the lower calculated feed assays.

2.4 Heap Leach Simulation

The feed for the column leach testwork was agglomerated with 5 kg/t of Portland No. 2 cement, the amount of lime consumed in bench scale cyanidation tests and approximately one half of the amount of sodium cyanide consumed in the preliminary bottle roll tests.

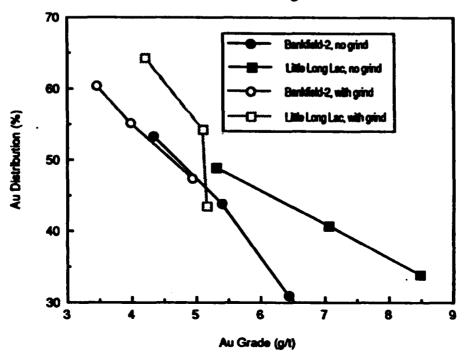

The column leach apparatus was set up using 15 cm diameter plexiglass conduit of about 1.5 metres in height. The bottoms of the columns were fitted with a steel mesh to retain the solids. The columns were leached with flowrates of about 5 mL per minute (15 L/h/m^2). The pregnant solution discharge from the column was passed through a cartridge containing 15 grams of Calgon GRC-22 pre-attritioned carbon. Flowrates were monitored daily and adjusted as required to maintain a uniform flow. The loaded carbons were changed periodically to monitor gold extraction. Barren solutions were regularly sampled to determine NaCN and CaO concentrations. Table 9 summarizes the results of the column leach tests.


		v of Column Leac 0.5 g/L NaCN pH 10.0 - 11.0 carbon changes on d ~5 mL/min flowrate 5 kg/t Portland No. 2	ays 1, 2, 4, 7, 14	and 21
Test #	Sample	Reagent Consumption kg/t	Au Extraction, %	Residu A
-				

Test #	Sample	Reagent Consumption kg/t		Au Extraction, %	Residue, g/t Au	Feed(calc), g/t Au
ļ		NaCN	CaO			
10	Tashota	3.67	11.8	75.7	0.60	3.00
11	Little Long Lac	1.00	0.97	50.0	0.68	1.40
12	Bankfield-2	1.75	4.75	56.0	0.57	1.30

Figure 1 shows the column leach apparatus while Figure 2 depicts the recovery of gold with respect to time.

The metallurgical results for Little Long Lac and Tashota column leaches confirms the results obtained from the preliminary bottle roll cyanidations (without the addition of lead nitrate). Again, it is not possible to compare the Bankfield and Bankfield-2 results since these samples are not representative of each other.


2.5 Flotation

A series of bench scale flotation tests was conducted to investigate the recovery of gold into a sulphide concentrate. Flotation tests were performed on either "as is" material or lightly reground material. The purpose of the light regrind was to polish the surfaces and remove any oxidized layers which may have formed. Aero 412 and PAX were used as collectors, Dowfroth 250 as the frother, CuSO₄ and Na₂S as activators. Table 10 summarizes the flotation conditions and metallurgical results.

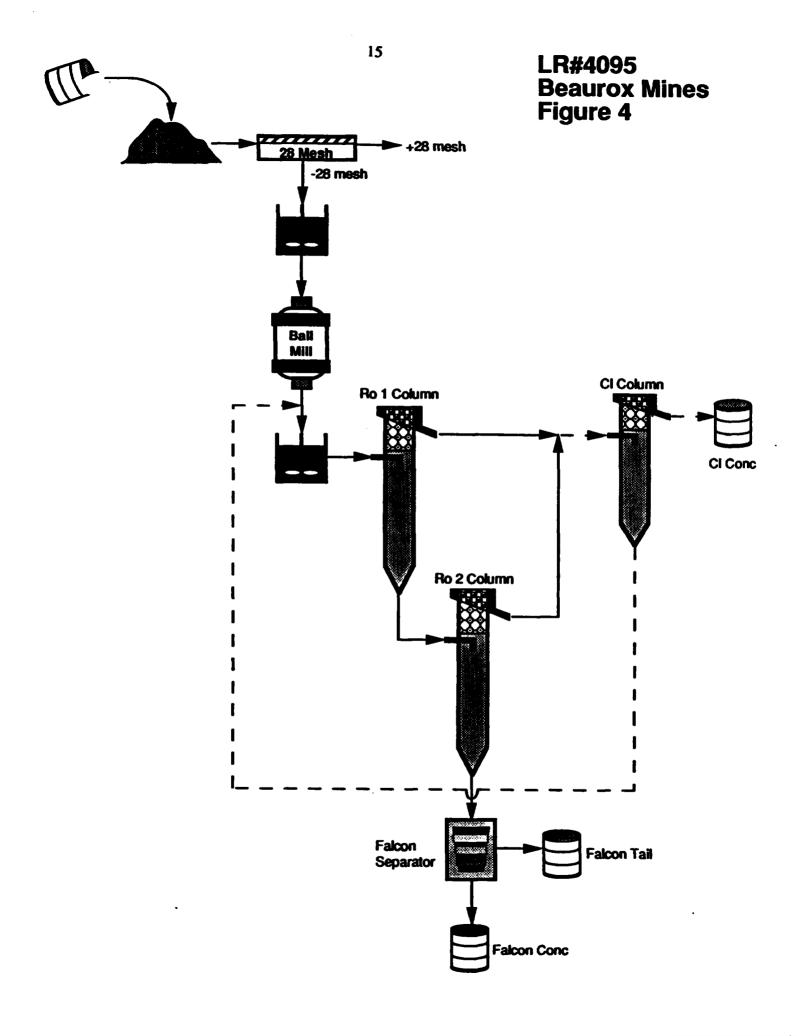
Test	Sample	Conditions	Product	Weight	Assay.	g/t or %	Distribu	tion, %
#				%	Au	S	Au	S
F1	Little Long Lac	no grind	Ro Conc 1	0.5	34.0	7.52	13.2	18.0
		200 g/t A350	Ro Conc 1+2	1.0	36.2	7.85	27.5	36.6
		120 g/t AF25	Ro Conc 1-3	5.3	10.9	2.27	43.4	55.4
		1000 g/t Na2S	Ro Conc 1-4	11.4	6.27	1.45	53.2	75.7
		400 g/t CuSO4	Ro Tail	88.6	0.71	0.22	46.8	24.3
			Head(calc)	-	1.34	0.22	-	-
F2	Bankfield-2	no grind	Ro Conc 1	6.4	6.43			61.4
		150 g/t A350	Ro Conc 1+2	10.8		15.9	43.9	83.1
		90 g/t R412	Ro Conc 1-3	16.3	4.34	11.5	53.4	90.7
[500 g/t CuSO4	Ro Tail	83.7	0.74	0.23	46.6	9.3
			Head(calc)	•	1.33	2.07	-	•
F3	Little Long Lac	no grind	Ro Conc 1	5.5	8.47	1.94	33.9	60.1
	_	150 g/t A350	Ro Conc 1+2	7.8	7.06	1.57	40.8	69.5
		90 g/t R412	Ro Conc 1-3	12.6	5.32	1.13	48.9	80.2
}		500 g/t CuSO4	Ro Tail	87.4	0.80	0.04	51.1	19.8
			Head(calc)	113.3	1.37	0.18		-
F4	Bankfield-2	grind	Ro Conc 1	12.7	4.93	13.0	47.4	79.8
1		150 g/t A350	Ro Conc 1+2	18.3	3.98			87.5
		90 g/t R412	Ro Conc 1-3	23.2				91.8
		500 g/t CuSO4	Ro Tail	76.8	0.68			8.2
		20 g/t DF250	Head(calc)	-	1.32			•
F5	Little Long Lac	grind	Ro Conc 1	11.2				
			Ro Conc 1+2	14.1	-			
I	1	90 g/t R412	Ro Conc 1-3	20.4				
1	1	500 g/t CuSO4		79.6			the second s	31.5
		20 g/t DF250	Head(calc)	· ·	1.33	0.20	-	-

Table 10: Summary of Flotation Conditions and Metallurgical Results

As seen in Figure 3, the polishing grind helped improve the overall recovery of the gold, but with a lower grade of concentrate.

Effect of Polishing Grind

⁻Finure 3-


3. Pilot Plant Testwork

3.1 Column Flotation

The pilot plant testing of the Beaurox Mine samples utilized two 6 inch columns, except for Test No. PP-1, which had a 4 inch cleaner column added.

The columns were controlled by a process control computer using pressure transducers installed near the bottom of the columns. The pressure transducer senses the pulp level by transmitting a 0 to 100 mV signal to a μ MAC6000 controller. These signals are digitized and used in a multi-PID alogrithm, along with manually selected setpoints, to prepare 4-20 mA signals to control the speed of the tailing peristaltic pumps. Air was injected into each column through a sintered stainless steel sparger. Feed to the column cells was controlled with manually set variable speed peristaltic pumps. A general arrangement of the flowsheet used is shown in Figure 4.

The purpose of the pilot plant testing was to determine if column flotation could produce a recovery the same as or greater than that achieved in the bench scale mechanical flotation tests.

All tests used two 6 inch diameter, 2.5 cu. ft. columns as roughers. The tailing from the first 6 inch column fed the second 6 inch column. The two rougher columns combined gave an average retention time of approximately 50 minutes. Concentrates from the rougher columns were collected together as a combined rougher concentrate. The tailing from the second rougher column was fed to a Falcon separator. This was done in an attempt to recover any free gold which was not floated. Test No. PP-1 also made use of a 4 inch cleaner column. The combined rougher concentrate was fed to this column. The cleaner concentrate was collected and the cleaner tailing was recirculated back to the first rougher column. Tables 11, 12 and 13 provide summaries of flotation conditions, column key variables and metallurgical results, respectively.

Test	Sample	Feed Rate	BMF Grind	BMD Grind		Re	agents,	g/t	
#		kg/h	%-400 mesh	%-400 mesh	Na2S	A350	R412	CuSO4	DF250
PP-1	Bankfield	79	42.2	49.4	6 61	159	115	684	17
PP-2	Banklield	68	42.1	49.4	644	247	156	618	26
PP-3	Little Long Lac	81	40.8	49.0	600	182	113	593	33
PP-4	Little Long Lac	64	40.0	49.5	778	246	150	609	49

Table 11: Summary of Pilot Plant Flotation Conditions

Analysis of the data shows that the columns were operated within normal ranges for wash rate, gas rate and gas holdup. The limited scope of the test program did not provide an opportunity to optimize conditions or to evaluate conditions outside the normal ranges.

Additional testing would be required to examine ways to improve gold recovery. Specifically, reduced wash water flow and shallower froth bed might improve recovery, but the present test results suggest that improvements in recovery might well be at the expense of grade. Additional bench scale tests may also be required to evaluate alternative collectors.

Test	Sample			Rough	er#1			Rougher#2					
#		Gas Velocity cm/sec	Wash Velocity cm/sec	Feed Velocity cm/sec	NRT minutes	Flow Bias %	Gas Hold Up %	Gas Velocity cm/sec	Wash Velocity cm/sec	Feed Velocity cm/sec	NRT minutes	Flow Bias %	Gas Hold Up %
PP-1	Bankfield	0.92	0.20	0.28	27	27	16	0.63	0.10	0.28	25	26	17
PP-2	Bankfield	1.13	0.20	0.34	22	32	22	0.66	0.10	0.33	20	30	16
PP-3	Little Long Lac	0.74	0.20	0.33	න	31	13	0.74	0.10	0.32	21	31	13
PP-4	Little long Lac	0.74	0.20	0.25	30	23	. 17	0.74	0.10	0.25	28	23	17

Table 12: Summary of Column Key Variables

~

Table 13:	Summary	of Pilot	Plant	Metallurgical	Results
-----------	---------	----------	-------	---------------	---------

Test	Sample	Product	Weight	Assay,	g/t or %	Distribu	tion, %
#			%	Au	S	Au	S
PP-1	Bankfield	Combined CI Conc	4.0	11.7		30.0	
		Falcon Conc	0.2	24.0		3.1	
		Falcon Tailing	96.0	1.08		67.0	
	1	Feed(calc)	100.0	1.53		100.0	
		Feed(assay)		1.53			
PP-2	Bankfield	Combined Ro Conc	8.6	8.48		47.2	69.6
	1	Falcon Conc	0.4	12.5	17.2	3.2	2.1
		Falcon Tailing	91.0	0.84	1.04	49.6	28.4
•		Feed(calc)	100.0	1.54	3.34	100.0	100.0
		Feed(assay)		1.54	3.23		
PP-3	Little Long Lac	Combined Ro Conc	2.3	11.8	6.16	21.3	40.6
		Falcon Conc	0.2	30.3	9.43	4.7	7.2
	1	Falcon Tailing	97.5	0.98	0.14	74.0	52.2
-		Feed(calc)	100.0			100.0	100.0
		Feed(assay)		1.29	0.24		
PP-4	Little Long Lac	Combined Ro Conc	1.7	13.5	7.06	20.7	44.5
1		Falcon Conc	0.4	20.4	1.04	7.2	1.6
		Falcon Tailing	97.9	0.84	0.15	72.1	53.9
	1	Feed(calc)	100.0	1.14	0.27	100.0	100.0
L		Feed(assay)		1.14	0.25		

3.2 Gravity Concentration

Two concentration tests were conducted using a Reichert Mark VII spiral and a Falcon separator. Figure 5 depicts the flowsheet layout and Table 14 summarizes the metallurgical results.

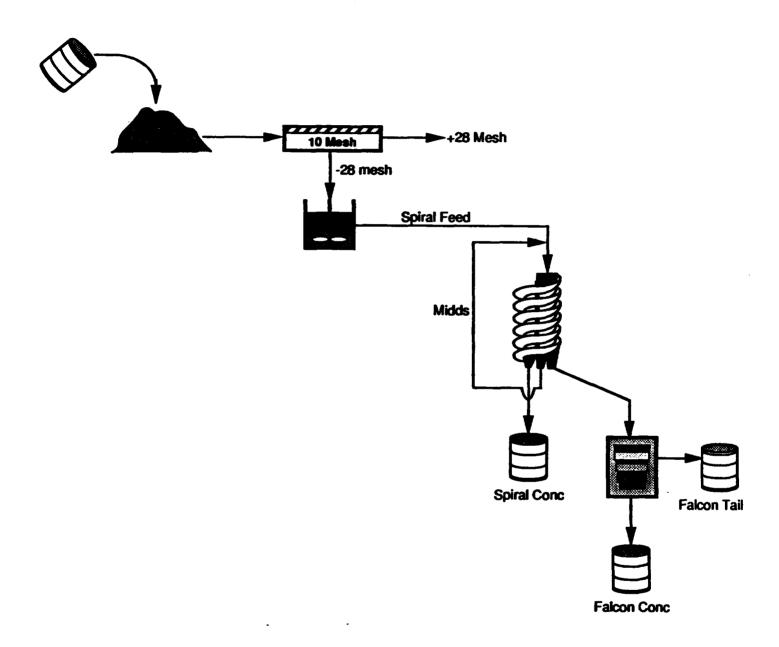

Test #	Sample	Product	Weight %	Assay, g/t Au	Distribution, % Au
PP-5	Bankfield	Spiral Conc	6.9	4.81	23.0
		Falcon Conc	0.2	70.5	9.7
		Falcon Tailing	92.9	1.05	67.3
		Feed(calc)	100.0	1.45	100.0
		Feed(assay)		1.45	
PP-6	Little Long Lac		3.2	6.57	17.9
		Falcon Conc	0.4	40.2	13.5
		Falcon Tailing	96.4	0.85	68.6
		Feed(calc)	100.0	1.19	
		Feed(assay)		1.19	

Table 14: Summary of Spiral Metallurgical Results

The metallurgical results from the spiral tests are comparable with earlier gravity concentration testwork. An average of 31% of the gold was recovered using a spiral/Falcon combination in comparison to 24% gold recovery when only the Falcon separator was used.

There appears to be no advantage to using gravity concentration as a means of recovering free gold or gold bearing sulphides.

~

CONCLUSIONS

- 1. The addition of lead nitrate helped reduce the cyanide consumption by roughly half.
- 2. The extraction of gold from the column leaches was comparable to that obtained in the preliminary bottle roll tests.
- 3. Column flotation of the Bankfield and Little Long Lac bulk samples produced higher grade concentrates at lower recoveries in comparison to the earlier mechanical bench scale tests.
- 4. The recovery of gold using a spiral and Falcon separator was not successful. The metallurgical results obtained confirmed earlier gravity concentration testwork where only 24% of the gold was recovered.

RECOMMENDATIONS

- 1. To perform diagnostic leaching tests, in order to determine the location and association of the gold.
- 2. To conduct a mineralogical examination on feed and tailing sample. This will help identify gangue components, liberation, association and potential recovery of the gold. Centrifuge and heavy liquid tests would be conducted to concentrate the free gold and gold bearing sulphides.
- 3. To conduct further bench scale flotation tests to investigate new reagent schemes and optimize flotation conditions.
- 4. To conduct C.I.L. tests to determine if preg robbing or re-precipitation of the gold during leaching is affecting the final extraction of gold.

SAMPLE PREPARATION AND DISPOSITION

On December 8, 1990, January 8 and January 28, 1991, three individual shipments of ore were received at Lakefield Research and given the designation numbers LR9035861, LR9135893 and LR91306035, respectively.

The first shipment contained samples which were used for bench scale testwork. These samples were riffled with 3/4 of the original being stored for subsequent testwork. The 1/4 riffled samples had a series of 1 kg and 10 kg charges prepared from it.

The second shipment received was a series of bulk samples representative of the first shipment, which were used for large column leaches and pilot plant testwork.

The third shipment was a replacement shipment for the original Bankfield since it was decided that this sample was not representative of the overall tailing sample. The new sample was designated as Bankfield-2.

DETAILS OF TESTWORK

Test No.	Sample	Test Description
1	Tashota	Cyanidation
2	Bankfield	Cyanidation
3	Little Long Lac	Cyanidation
4	Tashota	Gravity concentration
5	Bankfield	Gravity concentration
6	Little Long Lac	Gravity concentration
7	Tashota	Cyanidation with lead nitrate
8	Bankfield-2	Cyanidation with lead nitrate
9	Little Long Lac	Cyanidation with lead nitrate
10	Tashota	Column leach
11	Little Long Lac	Column leach
12	Bankfield-2	Column leach
13	Tashota	Gravity concentration
14	Little Long Lac	Gravity concentration
Fl	Little Long Lac	Flotation
F2	Bankfield-2	Flotation
F3	Little Long Lac	Flotation
F4	Bankfield-2	Flotation with grind
F5	Little Long Lac	Flotation with grind
PP-1	Bankfield-2	Column flotation pilot plant
PP-2	Bankfield-2	Column flotation pilot plant
PP-3	Little Long Lac	Column flotation pilot plant
PP-4	Little Long Lac	Column flotation pilot plant
PP-5	Bankfield-2	Gravity concentration pilot plant
PP-6	Little Long Lac	Gravity concentration pilot plant

Test 1	Project: 4095	Date: Jan/8/91	Operator: KcS
Purpose:	To evaluate Au extraction by	direct cyanidation.	
Procedure:	The ore was pulped in a 2L I NaCN and time were added cyanidation was carried out i were removed at 24,48,72, and after sampling. At end of all products submitted for as	and maintained at describe in 1 x 120 hour stage. Pre- and 96h, with bottles being of test, pulp was filtered an	ed levels and gnant sub-samples ; weighed before
Feed:	1000 g minus 28 mesh Ta	shota	

Solution Volume:	1000 mL	Pulp Density:	50 %	6 Solids	
Sol'n Composition:	1.0 g/L N	aCN			
pH Range:	10. 5-11.0	Ca(OH)2			
Reagent Consumption	on (kg/t of cyanide	feed) NaCN:	3.28	CaO:	10.4

24h NaCN Consumption:	1.56
48h NeCN Consumption:	2.09
72h NaCN Consumption:	2.53
96h NaCN Consumption:	2.84
120h NaCN Consumption:	3.28

Time	1	Added,	Grame		Ree	dual	Cons	bemu	рН 10.5-9.5 10.6-10.0 11.0-10.3 11.3-10.5 11.3-10.5 11.1-10.6 10.6-10.4 11.0-10.4 10.8-10.3 10.9-10.7
		tuel	Equiv	alent	Gra	ms	Gra	ns	pН
Hours	NaCN	Ca(OH)2	NaCN	CaO	NaCN	CaO	NeCN	CaO	
0 - 1	1.05	8.29	1.00	6.30	0.51	•	0.49	-	10.5-9.5
1-3	0.52	1.22	0.49	0.93	0.68	•	0.32	•	10.6-10.0
3 - 5	0.34	0.90	0.32	0.68	0.96	•	0.04	•	11.0-10.3
5-8	0.04	0.81	0.04	0.62	0.77	•	0.23	•	11.3-10.5
8 - 24	0.24	0.66	0.23	0.50	0.59	•	0.41	-	11.3-10.5
24 - 32	0.43	0.37	0.41	0.28	0.78	-	0.22	•	11.1-10.6
32 - 48	0.23	0	0.22	0	0.71	-	0.29	•	10.6-10.4
48 - 72	0.31	0.34	0.29	0.26	0.58	-	0.42	-	11.0-10.4
72 - 96	0.44	0.17	0.42	0.13	0.70	-	0.30	-	10.8-10.3
96 - 120	0.32	0.31	0.30	0.24	0.58	0.06	0.42	9.87	10.9-10.7
Totai	3.92	13.07	3.72	9.93	0.58	0.06	3.12	9.87	

Metallurgical Balance

Product	Weight mL, g	Assays Au, mg/L, g/t	Distribution, % Au	Estimated Extraction, % Au
+ 28 m esh	29.5	1.49	1.4	
24h Preg	25.0	1.31	1.0	68
48h Preg	25.0	1.54	1.2	78
72h Preg	25.0	1.55	1.2	78
96h Preg	25.0	1.57	1.2	78
120h Preg	1271	1.51	59.6	•
120h Wash	747	0.61	14.1	78.3
Residue	948.5	0.69	20.3	
Feed(calc)	978.0	3.30	100.0	

Test 2	Project: 4095	Date: Jan/8/91	Operator: KcS
--------	---------------	----------------	---------------

Purpose: To evaluate Au extraction by direct cyanidation.

Procedure: The ore was pulped in a 2L bottle and agitated on mechanical rolls. NaCN and time were added and maintained at described levels and cyanidation was carried out in 1 x 120 hour stage. Pregnant sub-samples were removed at 24,48,72, and 96h, with bottles being weighed before and after sampling. At end of test, pulp was filtered and washed, with all products submitted for assay.

Feed: 1000 g minus 28 mesh Banktield

Solution Volume: 1000 mL Pulp Density: 50 % Solids Sol"n Composition: 1.0 g/L NeCN pH Range: 10.5-11.0 Ce(OH)2

Reagent Consumption (kg/t of cyanide feed) NaCN: 0.91 CaO: 4.10

24h NeCN Consumption:	0.60
48h NaCN Consumption:	0.71
72h NaCN Consumption:	0.78
96h NaCN Consumption:	0.78
120h NaCN Consumption:	0.91

Time	ime Added, Grame				Residual		Consumed			
	A	tual	Equiv	Equivalent		Grams		ns	рН	
Hours	NaCN	Ca(OH)2	NeCN	CaO	NeCN	CaO	NeCN	CaO		
0 - 1	1.05	2.09	1.00	1.50	0.52	•	0.48	•	10.5-9.4	
1 - 3	0.51	0.72	0.48	0.55	0.91	•	0.09	•	10.6-9.9	
3 - 5	0.34	0.90	0.32	0.68	1.00	-	0	-	11.3-10.5	
5-8	0	0.19	0	0.14	1.00	-	0	•	10.8-10.5	
8 - 24	0	0.35	0	0.27	1.00	•	0	•	11.1-10.3	
24 - 32	0	0.18	0	0.14	1.00	-	0	-	10.9-10.5	
32 - 48	0	0	0	0	0.89	-	0.11	-	10.5-10.3	
48 - 72	0.12	0.24	0.11	0.18	0.94	•	0.06	•	11.0-10.3	
72 - 96	0.06	0.18	0.06	0.14	1.00	•	0	•	10.8-10.3	
96 - 120	0	0.23	0	0.17	0.87	0.06	0.13	3.80	10.9-10.5	
Total	2.08	5.08	1.96	3.86	0.67	0.06	0.85	3.80		

Metallurgical Balance

Product	Weight mL, g	Assays Au, mg/L, g/t	Distribution, % Au	Estimated Extraction, % Au
+ 28 m esh	53.1	1.73	2.9	
24h Preg	25.0	1.80	1.4	79
48h Preg	25.0	1.79	1.4	79
72h Preg	25.0	1.77	1.4	79
96h Preg	25.0	1.72	1.4	79
120h Preg	1085	1.65	56.3	-
120h Wash	750	0.73	17.2	79.0
Residue	928 .1	0.62	18.1	
Feed(calc)	961.2	3.24	100.0	

Test 3	Project: 4095	Date: Ja	n /8/9 1	Operator: KcS		
Purpose:	To evaluate Au extraction	n by direct cyanidat	ion.			
Procedure:	ture: The ore was pulped in a 2L bottle and agitated on mechanical rolls. NaCN and lime were added and maintained at described levels and cyanidation was carried out in 1 x 120 hour stage. Pregnant sub-samples were removed at 24,48,72, and 96h, with bottles being weighed before and after sampling. At end of test, pulp was filtered and washed, with all products submitted for assay.					
Feed:	1000 g minus 28 meet	Little Long Lac				
Solution Vok	ume: 1000 mL	Pulp Density:	50 % S	Solide		
Sol'n Compo	eition: 1.0 g/L Ne	ICN				
pH Range:	10.5-11.0	Ca(OH)2				
Reagent Co	nsumption (kg/t of cyanide)	leed) NaCN:	0.51 C	aO: 0.79		
	24h Ne	CN Consumption:	0.21			

24h NeCN Consumption:	0.21
48h NeCN Consumption:	0.24
72h NaCN Consumption:	0.33
96h NaCN Consumption:	0.45
120h NeCN Consumption:	0.51

Time	Added, Grams				Residual		Consumed		
		tuei	Equiv	alent	Gra	me	Gra	118	pН
Hours	NaCN	Ca(OH)2	NaCN	CaO	NaCN	CaO	NaCN	CaO	
0-1	1.05	0.77	1.00	0.59	0.93	•	0.07	•	11.0-10.7
1-3	0.07	0.00	0.07	0	1.00	•	0	•	10.7-10.8
3-5	0	0.00	0	0	1.00	•	0	•	10.8-10.7
5-8	0	0.00	0	0	1 00	-	0	•	10.7-10.5
8 - 24	0	0.17	0	0.13	0 85	•	0.15	•	11.2-10.9
24 - 32	0.16	0	0.15	0	1 00	-	0	•	10.9-10.9
32 - 48	0	0	0	0	0.97	-	0.03	•	10.9-10.7
48 - 72	0.03	0	0.03	0	0 91	-	0.09	•	10.7-10.5
72 - 96	0.09	0	0.09	0	0.88	•	0.12	•	10.5-10.4
96 - 120	0.13	0.15	0.12	0.11	0.94	0.06	0.06	0.77	11.0-10.8
Total	1.53	1.09	1.45	0.83	0.94	0.06	0.50	0.77	

Metallurgical Balance

مر .

Product	Weight mL, g	Assays Au, mg/L, g/t	Distribution, % Au	Estimated Extraction, % Au
+ 28 meeh	52	4.29	1.5	
24h Preg	25.0	0.64	1.1	55
48h Preg	25.0	0.67	1.1	55
72h Preg	25.0	0.63	1.1	55
96h Preg	25.0	0.63	1.1	55
120h Preg	973	0.61	39.7	-
120h Wash	1104	0.15	11.1	55.1
Residue	969.0	0.67	43.4	
Feed(calc)	974.2	1. 53	100.0	

Test No. 4

--

LR#4095

Gravity Concentration

- <u>Purpose:</u> To investigate the recovery of a gold bearing sulphide concentrate by gravity concentration using a Wilfley 1/8 table and further upgrading of the gravity concentrate with the Mozley separator.
- <u>Procedure:</u> The sample was passed over a Wilfley table through an open circuit where the concentrate and tailing were collected. The concentrate was then transferred to the Mozley separator for further cleaning. The Mozley concentrate and tailing were decanted and submitted for assay.
- Feed: 2 kg of Tashota composite.
- Grind: As is.

Metallurgical Results

Product	Weight	Assay	∕.g⁄t,%	Distribution, %	
	%	Au	S	Au	S
Mozley Conc	0.1	141		2.9	
Moziry Tail	2.7	5.44		4.6	
+ 28 mesh Table Conc	1.1	1.61		0.5	
Table Conc(calc)	3.9	6.70	20.5	8.0	31.4
Table Tail	96.2	3.08	1.79	92.0	68.8
Feed(calc)	100.0	3.22	2.51	100.0	100.0

Test No. 5

LR#4095

Gravity Concentration

- <u>Purpose:</u> To investigate the recovery of a gold bearing sulphide concentrate by gravity concentration using a Wilfley 1/8 table and further upgrading of the gravity concentrate with the Mozley separator.
- <u>Procedure:</u> The sample was passed over a Wilfley table through an open circuit where the concentrate and tailing were collected. The concentrate was then transferred to the Mozley separator for further cleaning. The Mozley concentrate and tailing were decanted and submitted for assay.
- Feed: 2 kg of Bankfield comopsite.
- Grind: As is.
- Metallurgical Results

Product		Weight	Assay, g/t, %		Distribution, %	
		%	Au	S	Au	S
	Moziey Conc	0.1	297		8.1	
	Moziry Tail	3.8	7.67		10.3	
+	28 mesh Table Conc	1.7	1.00		0.6	
	Table Conc(calc)	5.5	9.66	10.7	19.0	25.8
	Table Tail	94.5	2.40	1.79	81.0	74.2
	Feed(calc)	100.0	2.80	2.28	100.0	100.0

Test No. 6

LR#4095

Gravity Concentration

- <u>Purpose</u>: To investigate the recovery of a gold bearing sulphide concentrate by gravity concentration using a Wilfley 1/8 table and further upgrading of the gravity concentrate with the Mozley separator.
- <u>Procedure:</u> The sample was passed over a Wilfley table through an open circuit where the concentrate and tailing were collected. The concentrate was then transferred to the Mozley separator for further cleaning. The Mozley concentrate and tailing were decanted and submitted for assay.
- <u>Feed:</u> 2 kg of Little long Lac composite.
- Grind: As is.

Metallurgical Results

Product		Weight	Assay, g/t, %		Distribution, %	
		%	Au	S	Au	S
	Mozley Conc	0.1	116		5.5	
	Moziry Tail	5.2	3.45		14.8	
+	28 mesh Table Conc	0.1	1.12		0.1	
	Table Conc(calc)	5.4	4.59	1.24	20.4	35.3
	Table Tail	94.6	1.03	0.13	79.6	64.7
	Feed(calc)	100.0	1.22	0.19	100.0	100.0

Test 7	Project: 4095	Date: Feb/4/91	Operator: JH		
Purpose:	To evaluate Au extraction by	direct cyanidation.			
Pracedure:	The ore was pulped in a 2L bottle and agitated on mechanical rolls. NaCN and time were added and maintained at described levels and cyanidation was carried out in 1 x 72 hour stage. Lead nitrate was added at the being of the leach. At the end of the test, pulp was filtered and washed, with all products being submitted for assay.				
Feed:	1000 g minus 28 meeh Ta	ehota			
Solution Vol	ume: 1000 mL	Pulp Density: 50	% Solide		
Sol'n Compo	peition: 0.5 g/L NaCM	•			
pH Range:	10.5-11.0 (Ca(OH)2			
Pb(NO3)2:	500 g/t				
Reagent Co	neumption (kg/t of cyanide fee	d) NeCN: 1.47	' CaO: 9.67		
	24h NaCN and CaO	Consumption 0.94	9.00		

24h NaCN and CaO Consumption:	0.96	9.09
48h NeCN and CeO Consumption:	1.25	9.41
72h NeCN and CeO Consumption:	1.47	9.67

Time		Added,	Added, Grame		Residual		Consumed		
	A A	leut	Equiv	alent	Gra	me -	Grai	the l	рH
Hours	NeCN	Ce(OH)2	NeCN	CaO	NeCN	CaO	NaCN	CaO	-
0 - 1	0.53	8.13	0.50	6.18	0.10	•	0.40	•	10.9-9.0
1.2	0.42	1.30	0.40	0.99	0.50	•	0	•	10.9-9.8
2 • 20	0	0.76	0	0.58	0.20	•	0.30	•	10.9-9.5
20 - 24	0.32	0.56	0.30	0.43	0.35	0.02	0.15	8.15	10.8-10.0
24 - 48	0.16	0.40	0.15	0.30	0.25	0.02	0.25	0.28	10.9-9.9
48 - 72	0.26	0.36	0.25	0.27	0.30	0.04	0.20	0.23	10.8-10.0
Total	1.69	· 11.5	1.61	8.75	0.30	0.04	1.32	8.67	

.

•

Metallurgical Balance

~

Product	Weight mL, g	Assays Au, mgA., gR	Distribution, % Au
+ 28 meeh	87.5	2.14	6.5
Preg+Weeh	2090	0.96	69.4
Residue	896.2	0.78	24.2
Feed(calc)	963.7	2.94	100.0

Test 8	Proje	ct: 4095	Date: F	Feb/4/91	Operator: JH			
Purpose:	To evaluate Au extraction by direct cyanidation.							
Procedure:	The ore was pulped in a 2L bottle and agitated on mechanical rolls. NaCN and lime were added and maintained at described levels and cyanidation was carried out in 1 x 72 hour stage. Lead nitrate was added at the being of the leach. At the end of the test, pulp was filtered and washe with all products being submitted for assay.							
Feed:	1000 g mi	nus 28 meeh	Benkfield-2					
Solution Vol	ume:	1000 mL	Puip Density:	50 % 5	Solide			
Soi'n Compo	eition: (.5 g/L Na	CN					
pH Range:	1 0.5	-11.0	Ce(OH)2					
Pb(NO3)2:	500	9 1						
Reagent Co	neumption (kg/	t of cyanide (ieed) NaCN:	: 0.37 (CaO: 2.03			
	24h	NeCN and C	O Consumption:	. 0.36	1. 73			

24h NeCN and CaO Consumption:	0.36	1.73
48h NeCN and CeO Consumption:	0.37	1.89
72h NaCN and CaO Consumption:	0.37	2.03

.

Time	e Added, Grams Residual		Added, Grame			Residual Consumed		Residual Consumed		
	A A	tual	Equiv	slant	Gra	me	Gra	ms	рН	
Hours	NeCN	Ca(OH)2	NeCN	CeO	NeCN	CaO	NeCN	CaO		
0-1	0.53	1.38	0.50	1.05	0.40	•	0.10	•	11.2-9.8	
1-2	0.11	0.36	0.10	0.27	0.50	•	0	•	10.9-10.1	
2 - 20	0	0.24	0	0.18	0.30	•	0.20	•	10.8-9.7	
20 - 24	0.21	0.26	0.20	0.20	0.45	0	0.05	1.70	10.7-10.1	
24 - 48	0.05	0.21	0.05	0.16	0.50	0	0	0.16	11.0-10.0	
48 - 72	0	0.21	0.00	0.16	0.50	0.02	0	0.14	10.9-10.1	
Total	0.90	2.66	0.86	2.02	0.50	0.02	0.36	2.00		

Metallurgical Balance

Product	Weight mL, g	Assays Au, mg/L, g/t	Distribution, % Au
+ 28 mesh	2.3	0.43	0.1
Preg+Wash	2090	0.36	56.4
Residue	963.7	0.59	43.5
Feed(calc)	966.0	1. 35	100.0

Test 9		Project: 4095		Date: Fet	×4/9 1	C	perator: JH		
Purpese:	To eve	To evaluate Au extraction by direct cyanidation.							
Procedure:	The ore was pulped in a 2L bottle and agitated on mechanical rolls. NaCN and time were added and maintained at described levels and cyanidation was carried out in 1 x 72 hour stage. Lead nitrate was added at the being of the leach. At the end of the test, pulp was filtered and washe with all products being submitted for assay.								
Feed:	1000) g minus 28 m	seh Little L	ong Lac					
Solution Vol	ume:	1000 mL	Pulp	Density:	50 %	6 Solide			
Sol'n Compo	eition:	0.5 g/L	NeCN						
pH Range:		10.5-11.0	Ca(O	H)2					
Pb(NO3)2:		500 gA							
Reagent Co	neumptic	in (kg/t of cyani	de feed)	NeCN:	0.12	CaO:	0.89		
		24h NeCN and	I CaO Con	sumption:	0.12		0.67		

24h NECH and CEO Consumption:	0.12	0.67
48h NeCN and CeO Consumption:	0.12	0.73
72h NaCN and CaO Consumption:	0.12	0.89

Time	Time		Added, Grams		Residual		Consumed		
		tual	Equiv	alent	Gra	716	Gra	ins	рН
Hours	NeCN	Ce(OH)2	NeCN	CaO	NeCN	CaO	NeCN	CaO	·
0-1	0.53	0.65	0.50	0.49	0.40	•	0.10	-	11.2-10.5
1 - 2	0.11	0.11	0.10	0.06	0.50	•	0	•	10.9-10.6
2 - 20	0	0.05		0.04	0.50	•	0	-	10.8-10.3
20 - 24	0	0.06	0	0.05	0.50	0.01	0	0.65	10.7-10.4
24 - 48	0	0.08	0	0.06	0.50	0	Ō	0.06	11.0-10.3
48 - 72	0	0.25	0	0.19	0.50	0.04	0	0.15	11.5-10.9
Total	0.64	1.20	0.61	0.91	0.50	0.04	0.12	0.86	

Metallurgical Balance

Product	Weight mL, g	Accaye Au, mg/L, gR	Distribution, % Au
+ 28 mesh	11 .9	1.16	1.0
Preg+Wash	2090	0.33	49.1
Residue	973.3	0.72	49.9
Feed(asic)	985.2	1.43	100.0

Test 10 Project: 4095 Date: Mar/04/91

Operator: JH

Purpose: To evaluate Au extraction by direct cyanidation.

Procedure: Approximately 10 kg of agglomerated sample was loaded into a plastic column 102 mm in diameter, to a height of 106 cm. A piece of steel mesh was placed at the bottom of the column and a piece of burlap on top to help disperse the solution. Approximately 5 L of 0.5 g/L NaCN solution was percolated through the column at a rate of 5 mL per minute. The pregnant solution was passed through carbon column where the Au in solution was removed. The reagents were replenished as required during the test. The loaded carbon was changed after 1, 2, 4, 7, 14, 21, and 30 days and replaced with fresh carbon.

Feed: 10000 g minus 28 mesh Tashota

Solution Volume:	5000 mL	Pulp Density:	33 % Solids
Sol'n Composition:	0.5 g/L N	aCN Cei	ment: 5 kg/t
pH Range:	10.0-11.0	Ca(OH)2	

Reagent Consumption (kg/t of cyanide feed) NaCN: 3.67 CaO: 11.8

Time	Added, Grams			Residual		Consumed			
	Ac	tual	Equiv	alent	Gra	ms	Gra	ms	ρH
Days	NaCN	Ca(OH)2	NaCN	CaO	NaCN	CaO	NaCN	CaO	
Aggmolerate	17.0	139	16.2	106	-	-	-	•	
0 - 1	2.00	0	1.90	0	1.91	•	16.1	•	<u>8.9-9.</u> 2
1-2	0.60	0	0.57	0	1.25		1.25	•	9.2-9.4
2-3	1.32	0.16	1.25	0.122	1.50	-	1.00	-	10.3-9.5
3-4	1.05	1.00	1.00	0.76	1.50	•	1.00	-	11.5-9.8
4 - 5	1.05	1.00	1.00	0.76	1.58	•	0.92	_	11.6-10.1
5-6	1.05	0	1.00	0	1.75	•	0.75	-	10.1-9.8
6-7	0.79	0.50	0.75	0.38	1.50	•	1.00	-	11.2-9.7
7-8	1.05	0.50	1.00	0.38	1.50	•	1.00	-	11.2-9.6
8-9	1.05	0.50	1.00	0.38	1.25	•	1.25	-	11.0-9.6
9 - 10	1.32	0.50	1.25	0.38	1.25	-	1.25	-	11.4-9.6
10 - 13	1.32	1.00	1.25	0.76	1.25	•	1.25	•	11.5-9.3
13 - 14	1.32	1.00	1.25	0.76	1.78	•	0.72	•	11.9-9.5
14 - 16	0.76	0.70	0.72	0.53	1.10	-	1.40	•	11.1-9.2
16 - 17	1.46	0.70	1.39	0.53	1.30		1.20	•	11.4-9.4
17 - 21	1.26	1.00	1.20	0.76	0.75	•	1.75	-	11.7-8.2
21 - 23	1.84	2.00	1.75	1.52	1.00	-	1.50	-	11.9-9.3
23 - 27	1.58	2.00	1.50	1.52	1.00	-	1.50		10.6-9.1
27 - 30	1.58	3.00	1.50	2.28	1.00	0	1.50	117	10.5-9.9
Total	39.4	155	37.4	117	1.00	0	36.4	117	

lest 10 Project: 4095	Test 10	Project: 4095
-----------------------	---------	---------------

.

Metallurgical Balance

, **-**-

Product	Weight	Assays	Distribution, %	Cum. Extraction, %
	mL, g	Au, mg/L, g/t	Au	Au
+ 28 mesh	821	2.17	6.0	
Day 1 Loaded Carbon	15.0	463	23.3	23.3
Day 2 Loaded Carbon	13.9	105	4.9	28.2
Day 4 Loaded Carbon	14.0	246	11.6	39.8
Day 7 Loaded Carbon	15.6	338	17.7	57.5
Day 14 Loaded Carbon	16.9	254	14.4	71.9
Day 21 Loaded Carbon	17.9	46.3	2.8	74.7
Day 30 Loaded Carbon	16.3	17.1	0.9	75.6
Barren Solution	4100	<0.002	0	75.6
Bareen Wash	8880	<0.002	0.1	75.7
Residue	9098	0.60	18.3	
Feed(assay) *	9919	3.00	100.0	

Test 11	Project: 4095	Date: Feb/22/91
---------	---------------	-----------------

Operator: JH

Purpose: To evaluate Au extraction by direct cyanidation.

_-

Procedure: Approximately 10 kg of agglomerated sample was loaded into a plastic column 102 mm in diameter, to a height of 100 cm. A piece of steel mesh was placed at the bottom of the column and a piece of burlap on top to help disperse the solution. Approximately 5 L of 0.5 g/L NaCN solution was percolated through the column at a rate of 5 mL per minute. The pregnant solution was passed through carbon column where the Au in solution was removed. The reagents were replenished as required during the test. The loaded carbon was changed after 1, 2, 4, 7, 14, and 17 days and replaced with fresh carbon.

Feed: 10000 g minus 28 mesh Little Long Lac

Solution Volume:	5000	mL	Pulp Densit	y: 33 % Solids
Sol'n Composition:	0.5	g/L NaCM	J	Cement: 5 kg/t
pH Range:	10.0-11.0) (Ca(OH)2	

Reagent Consumption (kg/t of cyanide feed) NaCN: 1.00 CaO: 0.97

Time	Added, Grams			Residual		Consumed			
	Ac	tual	Equiv	alent	Gra	ms	Gra	ms	pН
Days	NaCN	Ca(OH)2	NaCN	CaO	NaCN	CaO	NaCN	CaO	
Aggmolerate	3.00	10.5	2.85	7.98	-	-	-	-	
0 - 1	2.00	0	1.90	0	1.00	•	3.75	•	8.9-9.6
1-2	1.60	0	1.50	0	1.75	•	0.75		9.6-9.8
2-3	1.84	0	1.75	0	2.50	-	0	•	9.8-9.9
3-4	0	0	0	0	1.75	•	0.75	-	9.9-9.9
4 - 5	0.79	0.60	0.75	0.46	2.00	-	0.50	-	11.6-10.1
5-6	0.53	0	0.50	0	2.25	•	0.25	-	10.1-10.0
6-7	0.26	0	0.25	0	2.00	•	0.50	-	10.0-10.1
7-8	0.53	0	0.50	0	2.50	•	0	•	10.1-10.1
8-9	0	0.50	0	0.38	2.50	•	0	•	11.5-10.3
9 - 10	0	0	0	0	2.25	-	0.25	•	10.3-10.2
10 - 13	0.26	0	0.25	0	1.75	•	0.75	-	10.2-10.2
13 - 14	0.79	0	0.75	0	1.70	-	0.80	-	10.2-10.1
14 - 16	0.84	0.50	0.80	0.38	1.80	-	0.70	-	11.0-10.2
16 - 17	0.74	0.60	0.70	0.46	1.73	0.11	0.77	9.54	11.5-11.1
Total	13.2	12.7	12.5	9.65	1.73	0.11	9.77	9.54	

. **-**.

.

Product	Weight	Assays	Distribution, %	Curn. Extraction, %
	mL, g	Au, mg/L, g/t	Au	Au
+ 28 mesh	133	2.33	2.2	
Day 1 Loaded Carbon	14.4	405	42.4	42.4
Day 2 Loaded Carbon	14.8	19.5	2.1	44.5
Day 4 Loaded Carbon	14.5	14.5	1.5	46.0
Day 7 Loaded Carbon	15.7	13.4	1.5	47.6
Day 14 Loaded Carbon	16.0	14.3	1.7	49.2
Day 17 Loaded Carbon	15.4	5.20	0.6	49.8
Barren Solution	3750	<0.002	0.1	49.9
Barren Wash	3760	<0.002	0.1	50.0
Residue	9676	0.68	47.8	
Feed(calc)	9809	1.40	100.0	

Test 12

Date: Feb/22/91

Operator: JH

Purpose: To evaluate Au extraction by direct cyanidation.

Project: 4095

Procedure: Approximately 10 kg of agglomerated sample was loaded into a plastic column 102 mm in diameter, to a height of 116 cm. A piece of steel mesh was placed at the bottom of the column and a piece of burlap on top to help disperse the solution. Approximately 5 L of 0.5 g/L NaCN solution was percolated through the column at a rate of 5 mL per minute. The pregnant solution was passed through carbon column where the Au in solution was removed. The reagents were replenished as required during the test. The loaded carbon was changed after 1, 2, 4, 7, 14, and 17 days and replaced with fresh carbon.

Feed: 10000 g Bankfield-2

Solution Volume:5000 mLPulp Density:33 % SolidsSol'n Composition:0.5 g/L NaCNCement: 5 kg/tpH Range:10.0-11.0Ca(OH)2

Reagent Consumption (kg/t of cyanide feed) NaCN: 1.75 CaO: 4.76

Time	Added, Grams			Residual		Consumed			
	A	tual	Equiv	alent	Gra		Gra		pН
Days	NaCN	Ca(OH)2	NaCN	CaO	NaCN	CaO	NaCN	CaO	
Aggmolerate	5.00	55	4.75	41.8	•	-	-	-	
0 - 1	2.00	0	1.90	0	0.75	-	5.90	•	8.6-9.4
1-2_	1.84	0	1.75	0	1.25	•	1.25	•	9.4-9.6
2-3	1.32	1.00	1.25	0.76	2.00	+	0.50	•	11.5-10.0
3-4	0.53	0	0.50	0	2.00	4	0.50	•	10.0-9.7
4 - 5	0.53	0.50	0.50	0.38	2.25	•	0.25	•	11.9-9.8
5-6	0.26	0.50	0.25	0.38	1.50	-	1.00	•	11.1-10.0
6-7	1.05	0	1.00	0	1.75	•	0.75	-	10.0-9.8
7-8	0.79	0.50	0.75	0.38	2.00	-	0.50		10.7-9.9
8-9	0.53	0.50	0.50	0.38	1.50	-	1.00		11.5-9.8
9 - 10	1.05	0.80	1.00	0.61	1.75	-	0.75	•	10.8-10.0
10 - 13	0.79	0.50	0.75	0.38	1.00	•	1.50	-	10.8-9.6
13 - 14	1.58	0.50	1.50	0.38	1.20	•	1.30	•	_11.1-9.8
14 - 16	1.37	0.50	1.30	0.38	1.50	-	1.00	-	11.2-9.6
16 - 17	0.89	0.85	0.85	0.65	1.63	0	0.87	46.5	11.1-10.3
Total	19.5	61.2	18.6	46.5	1.63	0	17.1	46.5	

Product	Weight mL, g	Assays Au, mg/L, g/t	Distribution, % Au	Cum. Extraction, % Au
Day 1 Loaded Carbon	14.6	313	36.1	36.1
Day 2 Loaded Carbon	14.5	69.0	7.9	44.0
Day 4 Loaded Carbon	15.6	49.8	6.1	50.1
Day 7 Loaded Carbon	15.6	23.0	2.8	52.9
Day 14 Loaded Carbon	16.7	17.2	2.3	55.2
Day 17 Loaded Carbon	16.7	5.20	0.7	55.9
Barren Solution	3540	<0.002	0.1	56.0
Barren Wash	3840	<0.002	0.1	56.0
Residue	9762	0.57	44.0	
Feed(calc)	9762	1.30	100.0	

Test No. 13

Gravity Concentration

- <u>Purpose:</u> To investigate the recovery of a gold bearing sulphide concentrate by gravity concentration using a Falcon Concentrator.
- <u>Procedure:</u> The sample was passed through a Falcon concnetrator where the concentrate and tailing were collected. The feed was screened at 28 mesh prior to treatment. Water was added to the feed to dilute it to approximately 10% solids by weight. Final products were assayed for gold and sulphur.
- Feed: ~10 kg of -28 mesh Tashota composite.
- Grind: As is.

Metallurgical Results

Product	Weight	Assay,	g/t, %	Distribution, %	
	%	Au	S	Au	S
+ 28 mesh	3.9	1.53	4.34	1.9	8.2
Falcon Conc	7.9	9.69	2.55	23.5	9.6
Falcon Tail	88.2	2.75	1.96	74.7	82.3
Feed(caic)	100.0	3.25	2.10	100.0	100.0

Test No. 14

LR#4095

Gravity Concentration

Purpose:	To investigate the recovery of a gold bearing sulphide concentrate by
	gravity concentration using a Falcon Concentrator.

Procedure:The sample was passed through a Falcon concnetrator where
the concentrate and tailing were collected.
The feed was screened at 28 mesh prior to treatment.
Water was added to the feed to dilute it to approximately 10%
solids by weight.
Final products were assayed for gold and sulphur.

Feed: ~10 kg of -28 mesh Little Long Lac composite.

Grind: As is.

Metallurgical Results

Product	Weight	Assay, g	9/1, %	Distribution, %		
	%	Au	S	Au	S	
+ 28 mesh	3.9	1.53	4.34	1.9	8.2	
Falcon Conc	7. 9	9.69	2.55	23.5	9.6	
Falcon Tail	88.2	2.75	1.96	74.7	82.3	
Feed(calc)	100.0	3.25	2.10	100.0	100.0	

Project No. 4095

1/29/91

Operator: DE

Purpose: To perform preliminary rougher flotation test.

Procedure: As stated below.

N/A

Feed: ~2kg of -28 meeh Little Long Lac

Grind:

		Rea	pents ad	lded, gra	ms per tonne	<u> </u>	Time, minutes			
Stage	A350	AF25	Na2S	CuSO4	DF-250		Grind	Cond.	Froth	pН
Rougher 1	50	40						1	1	8.2
Condx				400				5		
Rougher 2	50	40					_	1	2	7.6
Condx			500					5		
Rougher 3	50	40						1	5	9.2
Condx			500					5		
Rougher 4	50							1	10	9.5
Stage	Ro			<u> </u>						

Stage	Ro					
Flotation Cell	D-1					
Speed: r.p.m.	1800					
% Solids	35					

Product	Wei	ght	Assays,	g/t, %	Distribut	ion, %
	9	%	Au	้ร	Au	S
1. Ro Conc 1	10.2	0.5	34.0	7.52	13.2	18.0 [.]
2. Ro Conc 2	9.7	0.5	38.5	8.19	14.3	18.6
· 3. Ro Conc 3	84.2	4.3	4.95	0.95	15.9	18.8
4. Ro Conc 4	118.3	6.1	2.18	0.73	9.8	20.3
5. Po Tailing	1727.5	88.6	0.71	0.06	46.8	24.3
Feed(calc)	1949.9	100.0	1.34	0.22	100.0	100.0
Combined Products						
Ro Conc 1+2	1 9.9	1.0	36.2	7.85	27.5	36.6
Ro Conc 1-3	104.1	5.3	10. 9	2.27	43.4	55.4
Ro Conc 1-4	222.4	11.4	6.27	1.45	53.2	75.7

Operator: JMD

1/31/91

Purpose: To perform preliminary rougher flotation test.

Procedure: As stated below.

N/A

Feed: ~2kg of -28 meeh Bankfield # 2

Grind:

		Rea	pents ad	ded, gra	ms per to	nne	Time	, minutes		
Stage	A350	R412	Na2S	CuSO4	DF-250		Grind	Cond.	Froth	pН
Codx 1			500					2		8.0
Condx 2				400				5		7.5
Rougher 1	50	30			10		 	1	5	7.6
Rougher 2	50	30					 	1	10	
Rougher 3	50	30			7.5		 	1	10	
Stage	Ro			<u> </u>						
Flotation Cell Speed: r.p.m. % Solids	D-1 1800 35									

Produc	t	Wei	ght	Assays,	91, %	Distribut	tion, %
		g	%	Au	ัร	Au	S
1. Ro (Conc 1	124.8	6.4	6.43	19.9	30.9	61.4
2. Ro (Conc 2	86.1	4.4	3.89	10.2	12.9	21.7
3. Ro (Conc 3	107.8	5.5	2.29	2.85	9.5	7.6
4. Ro 1	Tailing	1633.9	83.7	0:74	0.23	46.6	9.3
Feed(c	aic)	1952.6	100.0	1.33	2.07	100.0	100.0
Combined Products	•						
Ro Co	nc 1+2	210.9	10.8	5.39	15.9	43.9	83.1
Ro Co	nc 1-3	318.7	16.3	4.34	11.5	53.4	90.7

Project No. 4095

2/4/91

Operator: JMD

Purpose: To perform preliminary rougher flotation test.

Procedure: As stated below.

N/A

Feed: ~2kg of -28 mesh Little Long Lac

Grind:

	, I I I I I I I I I I I I I I I I I I I	Rea	pents ad	ded, gra	ms per to	nne	Time	, minutes		
Stage	A350	R412	Na2S	CuSO4	DF-250		Grind	Cond.	Froth	pН
Codx 1			500					2		9.8
Condx 2				400				5		9.3
Rougher 1	50	30			10			1	5	
Rougher 2	50	30			2.5			1	10	
Rougher 3	50	30			7.5			1	15	
Stage	Ro								-	
Flotation Cell Speed: r.p.m. % Solids	D-1 1800 35									

Product	We	light	Assays	. g/t, %	Distribu	tion, %
	9	%	Au	้ ร	Au	S
1. Ro Co	nc 1 107.6	5.5	8.47	1.94	33.9	60 .1
2. Ro Co	nc 2 46.2	2.4	3.77	0.71	6.5	9.4
3. Ro Co	nc 3 93.0	4.7	2.44	0.40	8.4	10.7
4. Ro Tai	iling 1716.8	87.4	0.80	0.04	51.1	19.8
Feed (cal	c) 1963.6	100.0	1.37	0.18	100.0	100.0
Combined Products						
Ro Conc	: 1+2 153.8	7.8	7.06	1.57	40.4	69.5
Ro Conc		12.6	5.32	1.13	48.9	80.2

Project No. 4095

2/4/91

To perform preliminary rougher flotation test. Purpose:

Procedure: As stated below.

Feed: ~2kg of -28 meeh Bankfield-2

5minutes/2kg @ 65% solids in laboratory rod mill Grind:

		Rea	pents ad	ded, gra	ms per to	enne	Time	, minutes		
Stage	A350	R412	Na2S	CuSO4	DF-250		Grind	Cond.	Froth	pН
Codx 1			500					2		9.
Condx 2				400				5		7.
Rougher 1	50	30			10			1	5	
Rougher 2	50	30			2.5			1	10	
Rougher 3	50	30			7.5		·	1	15	
Stage Flotation Cell Speed: r.p.m.	Ro D-1 1800									

33	

Metallurgical Balance

Product	Wei	ght	Assays,	g/t, %	Distribu	ion, %
	g	%	Au	S	Au	S
1. Ro Conc 1	249.6	12.7	4.93	13.0	47.4	79.8
2. Ro Conc 2	110.0	5.6	1.83	2.86	7.8	7.7
3. Ro Conc 3	95.4	4.9	1.43	1.85	5.3	4.3
4. Ro Tailing	1509.0	76.8	0.66	0.22	39.6	8.2
Feed(calc)	1964.0	100.0	1.32	2.07	100.0	100.0
Combined Products						
Ro Conc 1+2	359.6	18.3	3.98	9.90	55.2	87.5
Ro Conc 1-3	455.0	23.2	3.45	8.21	60.4	91.8

∽.

Project No. 4095

2/4/91

Purpose: To perform preliminary rougher flotation test.

Procedure: As stated below.

Feed: ~2kg of -28 meeh Little Long Lac

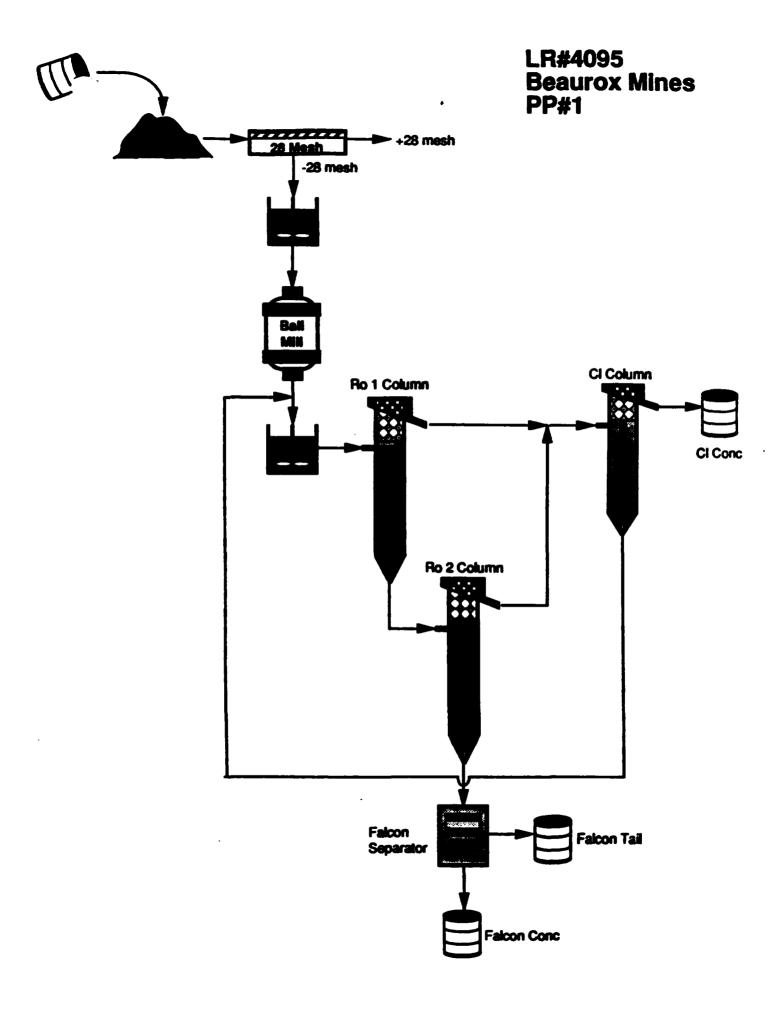
Grind: 5 minutes/2kg @ 65% solids in laboratory rod mill

-		Rea	pents ad	ided, gra	ms per to	nne I	Time, minutes			
Stage	A350	R412	Na2S	CuSO4	DF-250		Grind	Cond.	Froth	ρH
Codx 1			500					2		9.7
Condx 2				400				5		9.(
Rougher 1	50	30			10		·····	1	5	
Rougher 2	50	30			2.5			1	10	
Rougher 3	- 50	- 30			7.5			1	15	
	+-1									
Stage	Ro									

Stage	Ro						1
Flotation Cell	D-1						
Speed: r.p.m.	1800						
% Solids	35			_			

Product	W	eight	Assays	i, g∕t, %	Distribu	tion, %
	g	%	Au	S	Au	S
1. Ro Co	nc 1 220.0	11.2	5.17	0.90	43.5	49.8
2. Ro Co	nc 2 57.7	2.9	4.89	0.52	10.8	7.6
3. Ro Co	nc 3 122.6	6.2	2.12	0.36	9.9	11.1
4. Ro Ta	iling 1563.5	79.6	0.60	0.08	35.8	31.5
Feed(ca	ic) 1963.8	100.0	1.33	0.20	100.0	100.0
Combined Products		•				
Ro Conc	: 1+2 277.7	14.1	5.11	0.82	54.2	57.4
Ro Conc	: 1-3 400.3	20.4	4.20	0.68	64.2	68.5

LB#4095-Beautox Mines Limited


Test#PP-1

<u>Purpose:</u> To recovery a gold bearing sulphide concentrate using column flotation and gravity concentration.

 Procedure:
 A bulk sample was prepared by pulping it to approximately 65% solids and removing the +28 mesh material prior to storage in a 1500 L conditioner. The -28 mesh fraction was than lightly reground in a Deriver ball mill before being further diluted to approximately 35% solids in a small 10 L conditioner. This comprised the feed to the first of two 6 inch column flotation cells. The first column was fed at a rate of 3.7 L/minute slurry. The rougher tail from the first column was used to feed the second column. Rougher concentrates from both 6 inch columns were combined to feed a 4 inch cleaner column cell. Tailing from the cleaner concentrate was collected. Tailing from the second 6 inch column was passed through a Falcon separator. A Falcon concentrate and tailing were collected and assayed.

- Sample: Bankfield Bulk Sample (-28 mesh)
- Elowsheet: See next page.
- Equipment List: 2 X 150 mm flotation columns, 57 and 72 litres in capacity 100 mm flotation column, 28 litres in capacity Deriver ball mill, 305 mm X 610 mm, 1.5 kW Deriver conditioner, 1200 mm X 1520 mm, 1500 L 760 mm diameter Sweco Vibro Energy Separator, 28 mesh deck Falcon Separator, Model B-5

Results:

Reapents

Point of Addition	Reagent Name	Solution	Rate	Feed Rate	
<u></u>		Strength	mL/min or drops/min	g⁄t	t⁄h
Ball Mill Feed	Na2S	10	8.7	661	0.079
Flotation Conditioner	A350	2	10.5	159	
	R412	100	20.0	115	
	CuSO4	10	9.0	684	
	DF250	2	1.1	17	

Column Flotation Conditions

(i) Bougher 1 Column

.

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	272 cm
Total Volume	80 L

(ii) Operating Parameters

Gas	9.8 L/min
Wash	2.12 L/min
Feed Rate	3.01 L/min
Level	75 cm
PXD	41 mV
Operating Volume	72 L

(iii) Key Variables

Gas Velocity	0.92 cm/sec
Wash Velocity	0.20 cm/sec
Feed Velocity	0.28 cm/sec
NRT	27 minutes
Flow Bias	27 %
Gas Hold Up	16 %

Column Flotation Conditions (continued)

(ii) Rougher 2 Column

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	396 cm
Total Volume	72 L

(ii) Operating Parameters

Gas	6.7 L/min
Wash	1.06 L/min
Feed Rate	2.94 L/min
Level	30 cm
PXD	53 mV
Operating Volume	57 L

(iii) Key Variables

Gas Velocity	0.63 cm/sec
Wash Velocity	0.10 cm/sec
Feed Velocity	0.28 cm/sec
NRT	25 minutes
Flow Blas	26 %
Gas Hold Up	17 %

Assava

......

Stream	Product	Au, g/t	S, %
Ball Mill Discharge	BMD	1.55	
Rougher 1 Feed	RIF	1.63	3.55
Rougher 1 Conc	R1C	11.3	
Rougher 2 Conc	R2C	10.4	
Combined Rougher Conc	CRC	10.2	33.2
Cleaner Conc	CLC	11.7	
Rougher 1 Tailing	R1T	1.39	
Rougher 2 Tailing	R2T	1.13	1.69
Cleaner Tailing	CLT	7.30	
Falcon Conc	FLC	24.0	16.2
Falcon Tailing	FLT	1.06	1.66

Metallurgical Balance (2 product formula)

Product	Weight	Assay,	gA or %	Distribution, %		
	%	Au	S	Au	S	
CLC	4.0	11.7		30.0		
R2T	96.0	1.13		70.0		
BMD(calc)	100.0	1.55		100.0		
BMD(assay)		1.55				
BMD	100.0	1. 55		100.0		
CLT	1.4	7.30		6.6		
R1F(calc)	101.4	1.63		106.6		
R1F(assay)		1.63				
R1C	2.5	11.3		17.9		
A1T	99.0	1.39		88.7		
R1F(calc)	101.4	1.63		106.6		
R1F(assay)		1.63				
R2C	2.8	10.4		18.6		
R2T	96.2	1.13		70.1		
R1T(calc)	99.0	1.39		88.7		
R1T(assay)		1.39				
R1C	2.5	11.3		17.9		
R2C	2.8	10.4		18.6		
CRC(calc)	5.2	10.8		36.5		
CRC(assay)		10.2				
CLC	4.0	11.7		30.0		
CLT	1.4	7.30		6.6		
CRC(calc)	5.4	10.5		36.6		
CRC(assay)		10.2				
FLC	0.2	24.0	16.2	3.1		
FLT	96.0	1.08	1.66	67.0		
R2T(calc)	96.2	1.13	1.69	70.1		
R2T(assay)		1.13	1.69			

•

Overall Metallurgical Belance

Product	Weight	Assay, g/t or %-		Distribution, %	
	%	Au	S	Au	S
CLC	4.0	11.7		30.0	
FLC ·	0.2	24.0		3.1	
<u>FLT</u>	96.0	1.08		67.0	
R1F(calc)	100.2	1.55		100.0	······
R1F(assay)		1.55			

.

.

.

Screen Analyses

(i) Ball Mill Feed

Mesh	Weight	% Weight			
	9	Individual	Cumulative	Passing	
65	0.2	0.1	0.1	99.9	
100	1.9	1.0	1.1	98.9	
150	18.4	9.6	10.7	89.3	
200	36.9	19.3	30.1	69.9	
270	32.8	17.2	47.2	52.8	
400	20.1	10.5	57.8	42.2	
-400	80.6	42.2	100.0	-	
Total	190.9	100.0	-	•	

(ii) Ball Mill Discharge

Meeh	Weight		% Weight	
	g	Individual	Cumulative	Passing
65	0.0	0.0	0.0	100.0
100	0.6	0.4	0.4	99.6
150	7.8	4.6	5.0	95.0
200	25.0	14.8	19.8	80.2
270	30.3	17.9	37.7	62.3
400	21.8	12.9	50.6	49.4
-400	83.4	49.4	100.0	•
Total	168.9	100.0	•	-

(iii) Cleaner Conc

Mesh	Weight		% Weight	
	0	Individual	Cumulative	Passing
65	0.0	0.0	0.0	100.0
100	0.1	0.1	0.1	99.9
150	0.7	0.3	0.4	99.6
200	5.3	2.2	2.6	97.4
270	34.5	14.4	17.0	83.0
400	77.2	32.2	49 .1	50.9
-400	122.2	50.9	100.1	•
Total	240.0	100.1	-	•

Screen Analyses (continued)

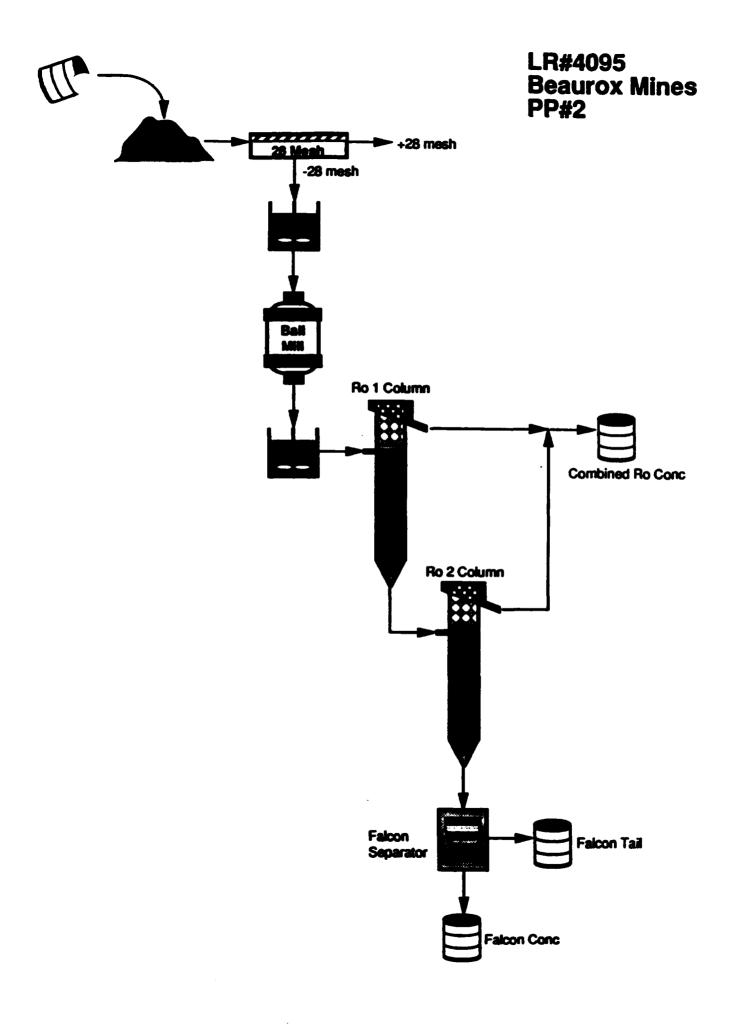
(iv) Rougher 1 Conc

Mesh	Weight	% Weight			
	g	Individual	Cumulative	Passing	
65	0.0	0.0	0.0	100.0	
100	0.1	0.1	0.1	99.9	
150	0.2	0.3	0.4	99.6	
200	1.4	1.8	2.2	97.8	
270	7.5	9.6	11.7	88.3	
400	19.4	24.7	36.5	63.5	
-400	49.8	63.5	100.0	-	
Totai	78.4	100.0	•	•	

(v) Rougher 2 Conc

Mesh	Weight	% Weight			
	9	Individual	Cumulative	Passing	
65	0.0	0.0	0.0	100.0	
100	0.1	0.3	0.3	99.7	
150	0.4	1.1	1.4	98.6	
200	1.6	4.5	5.9	94.1	
270	5.2	14.6	20.5	79.5	
400	8.3	23.3	43.8	56.2	
-400	20.0	56.2	100.0	•	
Total	35.6	100.0	-	-	

LR#4095-Beautox Mines Limited


.

.

Test#PP-2	
<u>Purpose:</u>	To recovery a gold bearing sulphide concentrate using column flotation and gravity concentration.
Procedure:	A bulk sample was prepared by pulping it to approximately 65% solids and removing the +28 mesh material prior to storage in a 1500 L conditioner. The -28 mesh fraction was than lightly reground in a Denver ball mill before being further diluted to approximately 35% solids in a small 10 L conditioner. This comprised the feed to the first of two 6 inch column flotation cells. The first column was fed at a rate of 3.7 L/minute slurry. The rougher tail from the first column was used to feed the second column. Rougher concentrates from both 6 inch columns were combined and collected for assay. Tailing from the second 6 inch column was passed through a Falcon separator. A Falcon concentrate and tailing were collected and assayed.
Sample:	Banklield Bulk Sample (-28 mesh)
Elowsheet:	See next page.
Equipment List:	2 X 150 mm flotation columns, 57 and 72 litres in capacity Deriver ball mill, 305 mm X 610 mm, 1.5 kW Deriver conditioner, 1200 mm X 1520 mm, 1500 L 760 mm diameter Sweco Vibro Energy Separator, 28 mesh deck Falcon Separator, Model B-5

Results:

-

.

Reagents

Point of Addition	Reagent Name Solution Strength %	Solution	Rate		Feed Rate t/h
		mL/min or drops/min	g/t		
Ball Mill Feed	Na2S	10	7.3	644	0.068
Flotation Conditioner	A350	2	14.0	247	
	R412	100	23.3	156	
	CuSO4	10	7.0	618	
	DF250	2	1.5	26	

Column Flotation Conditions

(i) Rougher 1 Column

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	272 cm
Total Volume	80 L

(ii) Operating Parameters

Gas	12.0 L/min
Wash	2.12 L/min
Feed Rate	3.62 L/min
Level	53 cm
PXD	41 mV
Operating Volume	72 L

(iii) Key Variables

Gas Velocity	1.13 cm/sec
Wash Velocity	0.20 cm/sec
Feed Velocity	0.34 cm/sec
NRT	22 minutes
Flow Blas	32 %
Gas Hold Up	22 %

•

Column Flotation Conditions (continued)

(ii) Rougher 2 Column

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	396 cm
Total Volume	72 L

(ii) Operating Parameters

Gas	7.0 L/min
Wash	1.06 L/min
Feed Rate	3.52 L/min
Level	35 cm
PXD	53 mV
Operating Volume	57 L

(iii) Key Variables

Gas Velocity	0.66 cm/sec
Wash Velocity	0.10 cm/sec
Feed Velocity	0.33 cm/sec
NRT	20 minutes
Flow Blas	30 %
Gas Hold Up	16 %

.

Test#PP-2 (continued)

Assava

Stream	Product	Au, g/t	S, %
Ball Mill Discharge	BMD	1.54	3.23
Rougher 1 Conc	R1C	9.49	
Rougher 2 Conc	R2C	7.95	
Combined Rougher Conc	CRC	8.97	27.1
Rougher 1 Tail	R1T	1.30	
Rougher 2 Tail	R2T	0.89	1.11
Falcon Conc	FLC	12.5	17.2
Falcon Tail	FLT	0.84	1.04

Metallurgical Balance (2 product formula)

Product	Weight	Assay,	g/t or %	Distrib	ution, %
	%	Au	S	Au	S
R1C	2.9	9.49		18.1	
R1T	97.1	1.30		81.9	
BMD(calc)	100.0	1.54		100.0	
BMD(assay)		1.54			
R2C	5.6	7.95		29 .1	
R2T	91.4	0.89		52.8	
R1T(calc)	97.1	1.30		81.9	
R1T(assay)		1.30			
R1C	2.9	9.49		18.1	
R2C	5.6	7.95		29.1	
CRC(calc)	8.6	8.48		47.2	
CRC(assay)		8.97			
CRC	8.6	8.48	27.1	47.2	69 .6
R2T	91.4	0.89	1.11	52.8	30.4
BMD(caic)	100.0	1.54	3.34	100.0	100.0
BMD(assay)		1.54	3.23		
FLC	0.4	12.5	17.2	3.2	2.1
FLT	91.0	0.84	1.04	49.6	28.4
R2T(calc)	91.4	0.89	1.11	52.8	30.4
R2T(assay)		0,89	1.11		
Overall Metailur	nical Balance				
CRC	8.6	8.48	27 .1	47.2	69 .6
FLC.	0.4	12.5	17.2	3.2	2.1
FLT	91.0	0.84	1.04	49.6	28.4
BMD(calc)	100.0	1.54	3.34	100.0	100.0
BMD(assay)		1.54	3.23		

Screen Analyses

(i) Ball Mill Feed

Mesh	Weight		% Weight	
	9	Individual	Cumulative	Passing
65	0.2	0.1	0.1	99.9
100	1.5	0.9	1.0	99.0
150	13.8	7.9	8.8	91.2
200	33.0	18.8	27.6	72.4
270	31.7	18.1	45.7	54.3
400	21.4	12.2	57.9	42.1
-400	74.0	42.1	100.0	-
Total	175.6	100.0	•	-

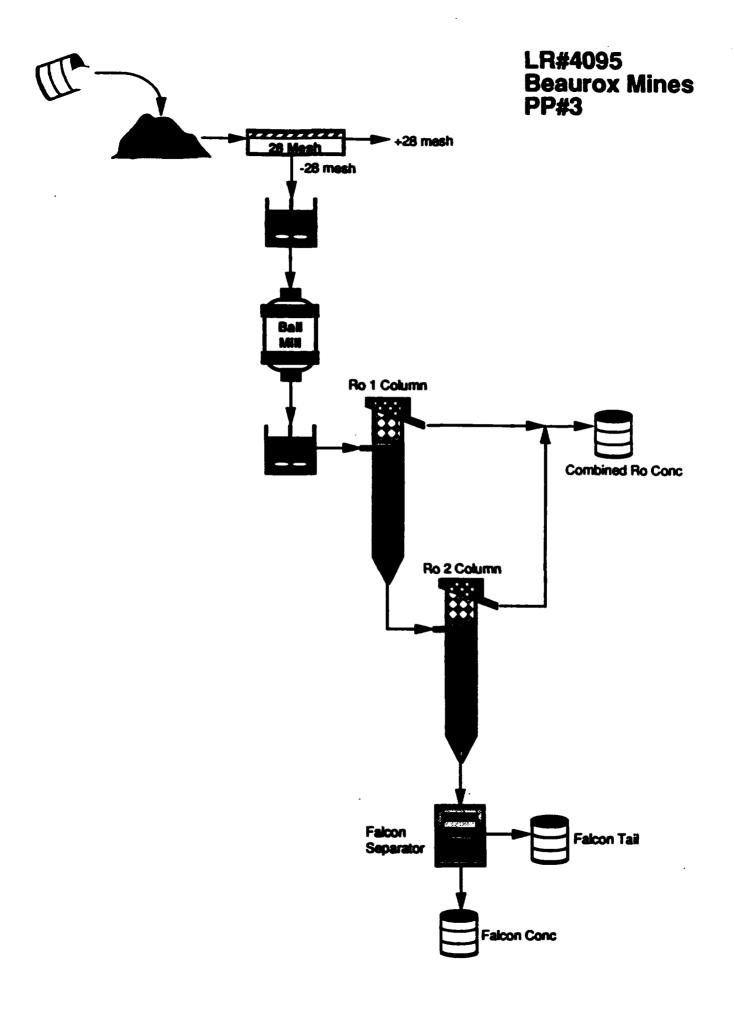
(iii) Rougher 1 Conc

Mech	Weight		% Weight	
	9	Individual	Cumulative	Passing
65	0.0	0.0	0.0	100.0
100	0.0	0.0	0.0	100.0
150	0.3	0.7	0.7	99.3
200	1.2	2.9	3.6	96.4
270	4.4	10.5	14.1	85.9
400	8.9	21.3	35.4	64.6
-400	27.0	64.6	100.0	-
Total	41.8	100.0	•	-

(iii) Combined Rougher Conc

Mesh	Weight		% Weight	
	g	Individual	Cumulative	Passing
65	0.0	0.0	0.0	100.0
100	0.1	0.3	0.3	99 .7
150	0.4	1.1	1.4	98 .6
200	1.6	4.5	5.9	94.1
270	5.2	14.6	20.5	79.5
400	8.3	23.3	43.8	56.2
-400	20.0	56.2	100.0	•
Total	35.6	100.0	-	•

LR#4095-Beaurox Mines Limited


Test#PP-3

<u>Purposa:</u> To recovery a gold bearing sulphide concentrate using column flotation and gravity concentration.

Procedure;A bulk sample was prepared by pulping it to approximately 65% solids
and removing the +28 mesh material prior to storage in a 1500 L conditioner.
The -28 mesh fraction was than lightly reground in a Deriver ball mill before
being further diluted to approximately 35% solids in a small 10 L conditioner.
This comprised the feed to the first of two 6 inch column flotation cells.
The first column was fed at a rate of 3.7 L/minute slumy. The rougher tail
from the first column was used to feed the second column. Rougher
concentrates from both 6 inch columns were combined and collected for assay.
Tailing from the second 6 inch column was passed through a Falcon
separator. A Falcon concentrate and tailing were collected and assayed.

- Sample: Little Long Lac Bulk Sample (-28 mesh)
- Elowsheet: See next page.
- Equipment List: 2 X 150 mm flotation columns, 57 and 72 litres in capacity Deriver ball mill, 305 mm X 610 mm, 1.5 kW Deriver conditioner, 1200 mm X 1520 mm, 1500 L 760 mm diameter Sweco Vibro Energy Separator, 28 mesh deck Falcon Separator, Model B-5

Results:

Reagents

Point of Addition	Reagent Name	Name Solution Strength %	Rate		Feed Rate
<u></u>			mL/min <u>or drops/min</u>	g/t	1/h
Ball Mill Feed	Na2S	10	8.1	600	0.081
Flotation Conditioner	A350	2	12.3	182	
	R412	100	20.0	113	
	CuSO4	10	8.0	593	
	DF250	2	2.2	33	

Column Flotation Conditions

(i) Rougher 1 Column

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	272 cm
Total Volume	80 L

(ii) Operating Parameters

Gas	7.9 L/min
Wash	2.12 L/min
Feed Rate	3.47 L/min
Level	45 cm
PXD	44 mV
Operating Volume	72 L
(iii) Key Variables	

Gas Velocity	0.74 cm/sec
Wash Velocity	0.20 cm/sec
Feed Velocity	0.33 сп/зес
NRT	23 minutes
Flow Bias	31 %
Gas Hold Up	13 %

Column Flotation Conditions (continued)

(ii) Rougher 2 Column

~

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	396 cm
Total Volume	72 L

(ii) Operating Parameters

Gas	7.9 L/min
Wash	1.06 L/min
Feed Rate	3.40 L/min
Level	18 cm
PXD	56 m V
Operating Volume	57 L

(iii) Key Variables

Gas Velocity	0.74 cm/sec
Wash Velocity	0.10 cm/sec
Feed Velocity	0.32 cm/sec
NRT	21 minutes
Flow Blas	31 %
Gas Hold Up	13 %

Test#PP-3 (continued)

Assays

-~

Stream	Product	Au, g/t	S, %
Ball Mill Discharge	BMD	1.29	0.24
Rougher 1 Conc	R1C	12.1	6.64
Rougher 2 Conc	R2C	10.2	4.03
Combined Rougher Conc	CRC	12.9	5.93
Rougher 1 Tail	RIT	1.08	0.25
Rougher 2 Tail	R2T	1.04	0.16
Falcon Conc	FLC	30.3	9.43
Falcon Tail	FLT	0.98	0.14

Metallurgical Balance (2 product formula)

Product	Weight	Assay,	g/t or %	Distrib	ution. %
	%	Au	S	Au	S
R1C	1.9	12.1	6.64	17.9	34.0
R1T	98.1	1.08	0.25	82.1	66.0
BMD(calc)	100.0	1.29	0.37	100.0	100.0
BMD(assay)		1.29	0.24		
R2C	0.4	10.2	4.03	3.4	6.6
R2T	<u>97.7</u>	1.04	0.16	78.7	59.4
R1T(calc)	98.1	1.08	0.18	82.1	66.0
R1T(assay)		1.08	0.25		
R1C	1.9	12.1	6.64	17.9	34.0
R2C	0.4	10.2	4.03	3.4	6.6
CRC(caic)	2.3	11.8	6.16	21.3	40.6
CRC(assay)		12.9	5.93		
CRC	2.3	11.8	6.16	21.3	40.6
R2T	97.7	1.04	0.16	78.7	59.4
BMD(calc)	100.0	1.29	0.30	100.0	100.0
BMD(assay)		1.29	0.24		
FLC	0.2	30.3	9.43	4.7	7.2
FLT	97.5	0.98	0.14	74.0	52.2
R2T(calc)	97.7	1.04	0.16	78.7	59.4
R2T(2662y)		1.04	0.16		
Overall Metailur	sical Balance				
CRC	2.3	11.8	6.16	21.3	40.6
FLC	0.2	30.3	9.43	4.7	7.2
FLT	97.5	0.98	0.14	74.0	52.2
BMD(calc)	100.0	1.29	0.30	100.0	100.0
BMD(assay)		1.29	0.24		

Screen Analyses

(i) Ball Mill Feed

Mesh	Weight		% Weight	
	g	Individual	Cumulative	Passing
65	3.4	2.2	2.2	97.8
100	13.3	8.6	10.8	-
150	23.1	14.9	25.6	89.2
200	22.8	14.7		74.4
270	17.8	11.5	40.3	59.7
400	11.5	-	51.8	48.2
		7.4	59.2	40.8
-400	63.3	40.8	100.0	•
Total	155.2	100.0	•	-

(ii) Ball Mill Discharge

Mesh	Weight		% Weight	
	9	Individual	Cumulative	Passing
65	0.8	0.7	0.7	99.3
100	4.9	4.1	4.8	95.2
150	11.5	9.6	14.4	85.6
200	15.5	13.0	27.4	72.6
270	16.0	13.4	40.8	59.2
400	12.2	10.2	51.0	49.0
-400	58.6	49.0	100.0	-9.0
Total	119.5	100.0	-	•

Screen Analyses (continued)

(iii) Rougher 1 Conc

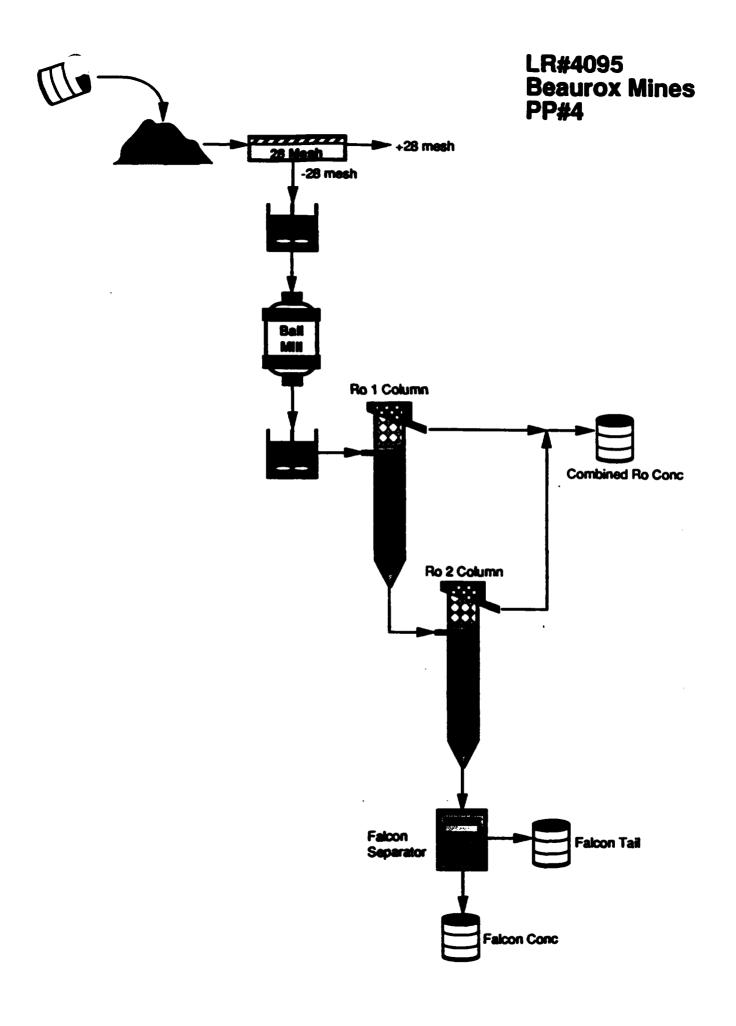
Mesh	Weight		% Weight	
	Q	Individual	Cumulative	Passing
65	0.0	0.0	0.0	100.0
100	0.0	0.0	0.0	100.0
150	0.6	0.6	0.6	99.4
200	1.6	1.5	2.1	97.9
270	3.6	3.4	5.5	94.5
400	5.6	5.3	10.8	89.2
-400	94.3	89.2	100.0	-
Total	105.7	100.0	•	•

(iv) Rougher 2 Conc

Mesh	Weight		% Weight	
	9	Individual	Cumulative	Passing
65	0.0	0.0	0.0	100.0
100	0.0	0.0	0.0	100.0
150	1.2	1.1	1.1	98.9
200	2.7	2.6	3.7	96.3
270	5.1	4.8	8.5	91.5
400	6.7	6.3	14.9	85.1
-400	90.0	85.1	100.0	-
Total	105.7	100.0	-	-

LR#4095-Beaurox Mines Limited

Test#PP-4


<u>Purpose:</u> To recovery a gold bearing sulphide concentrate using column flotation and gravity concentration.

Procedure:A bulk sample was prepared by pulping it to approximately 65% solids
and removing the +28 mesh material prior to storage in a 1500 L conditioner.
The -28 mesh fraction was than lightly reground in a Denver ball mill before
being further diluted to approximately 35% solids in a small 10 L conditioner.
This comprised the feed to the first of two 6 inch column flotation cells.
The first column was fed at a rate of 3.7 L/minute slumy. The rougher tail
from the first column was used to feed the second column. Rougher
concentrates from both 6 inch columns were combined and collected for assay.
Tailing from the second 6 inch column was passed through a Falcon
separator. A Falcon concentrate and tailing were collected and assayed.

Sample: Little Long Lac Bulk Sample (-28 mesh)

- Elowsheet: See next page.
- Equipment List: 2 X 150 mm flotation columns, 57 and 72 litres in capacity Deriver ball mill, 305 mm X 610 mm, 1.5 kW Deriver conditioner, 1200 mm X 1520 mm, 1500 L 760 mm diameter Sweco Vibro Energy Separator, 28 mesh deck Falcon Separator, Model B-5

Results:

Reagents

Point of Addition	Reagent Name	Solution	Rate		Feed Rate
		Strength	mL/min or drops/min	g/t	t/h
Ball Mill Feed	Na2S	10	8.3	778	0.064
Flotation Conditioner	A350	2	13.1	246	
	R412	100	21.0	150	
	CuSO4	10	6.5	609	
	DF250	2	2.6	49	

Column Flotation Conditions

(i) Rougher 1 Column

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	272 ст
Total Volume	80 L

(ii) Operating Parameters

Gas	7.9 L/min
Wash	2.12 L/min
Feed Rate	2.64 L/min
Level	45 cm
PXD	44 mV
Operating Volume	72 L

(iii) Key Variables

Gas Velocity	0.74 cm/sec
Wash Velocity	0.20 cm/sec
Feed Velocity	0.25 cm/sec
NRT	30 minutes
Flow Bias	23 %
Gas Hold Up	17 %

Column Flotation Conditions (continued)

(ii) Rougher 2 Column

(i) Column Cell Data

Diameter	150 mm
X-sectional Area	177 cm2
Total Height	396 cm
Total Volume	72 L

(ii) Operating Parameters

Gas	7.9 L/min
Wash	1. 06 L/min
Feed Rate	2.62 L/min
Level	18 cm
PXD	56 mV
Operating Volume	57 L

<u>(iii) Key Variables</u>

.

Gas Velocity	0.74 cm/sec
Wash Velocity	0.10 cm/sec
Feed Velocity	0.25 cm/sec
NRT	28 minutes
Flow Bias	23 %
Gas Hold Up	17 %

Test#PP-4 (continued)

Assava

Stream	Product	Au, g/t	S, %
Ball Mill Discharge	BMD	1.14	0.25
Rougher 1 Conc	R1C	17.5	10.0
Rougher 2 Conc	R2C	9.73	4.29
Combined Rougher Conc	CRC	10.1	4.58
Rougher 1 Tail	RIT	1.00	0.20
Rougher 2 Tail	R2T	0.92	0.15
Falcon Conc	FLC	20.4	1.04
Falcon Tail	FLT	0.84	0.15

Metallurgical Balance (2 product formula)

Product	Weight	Neight Assay, g/t or %		Distribution, %	
	%	Au	S	Au	S
R1C	0.8	17.5	10.0	13.0	30.0
R1T	99.2	1.00	0.20	87.0	70.0
BMD(calc)	100.0	1.14	0.28	100.0	100.0
BMD(assay)		1.14	0.24		
R2C	0.9	9.73	4.29	7.7	14.5
R2T	98.3	0.92	0.15	79.3	55.5
R1T(calc)	99.2	1.00	0.19	87.0	70.0
R1T(assay)		1.00	0.20		
R1C	0.8	17.5	10.0	13.0	30.0
R2C	0.9	9.73	4.29	7.7	14.5
CRC(calc)	1.7	13.5	7.06	20.7	44.5
CRC(assay)		10.1	4.58		
CRC	1.7	13.5	7.06	20.7	44.5
R2T	98.3	0.92	0.15	79.3	55.5
BMD(calc)	100.0	1.14	0.27	100.0	100.0
BMD(assay)		1.14	0.25		
FLC	0.4	20.4	1.04	7.2	1.6
FLT	97.9	0.84	0.15	72.1	53.9
R2T(calc)	96.3	0.92	0.15	79.3	55.5
R2T(assay)		0.92	0.15		
Overall Metallur	pical Balance				
CRC	1.7	13.5	7.06	20.7	44.5
FLC	0.4	20.4	1.04	7.2	1.6
FLT	97.9	0.84	0.15 ·	72.1	53.9
BMD(calc)	100.0	1.14	0.27	100.0	100.0
BMD(assay)		1.14	0.25		

Screen Analyses

(i) Ball Mill Feed

Mesh Weight		Mesh Weight % We		
	g	Individual	Cumulative	Passing
65	4.2	2.5	2.5	97.5
100	13.6	8.1	10.6	89.4
150	24.4	14.5	25.1	74.9
200	23.4	13.9	39.0	61.0
270	20.3	12.1	51.1	48.9
400	15.0	8.9	60.0	40.0
-400	67.3	40.0	100.0	•
Total	1 68.2	100.0	•	•

(ii) Ball Mill Discharge

Mesh Weight		% Weight		
	g	Individual	Cumulative	Passing
65	0.8	0.5	0.5	99.5
100	6.1	4.0	4.5	95.5
150	17.2	11.3	15.8	84.2
200	19.9	13.1	28.9	71.1
270	19.9	13.1	42.0	58.0
400	13.0	8.5	50.5	49.5
-400	75.3	49.5	100.0	•
Total	152.2	100.0	•	-

Screen Analyses (continued)

(iii) Rougher 1 Conc

Mesh Weight			% Weight	
	9	Individual	Cumulative	Passing
65	0.0	0.0	0.0	100.0
100	0.0	0.0	0.0	100.0
150	0.7	1.9	1.9	98.1
200	1.6	4.3	6.2	93.8
270	3.6	9.7	15.9	84.1
400	4.5	12.1	28.0	72.0
-400	26.7	72.0	100.0	-
Total	37.1	100.0	-	-

(iv) Rougher 2 Conc

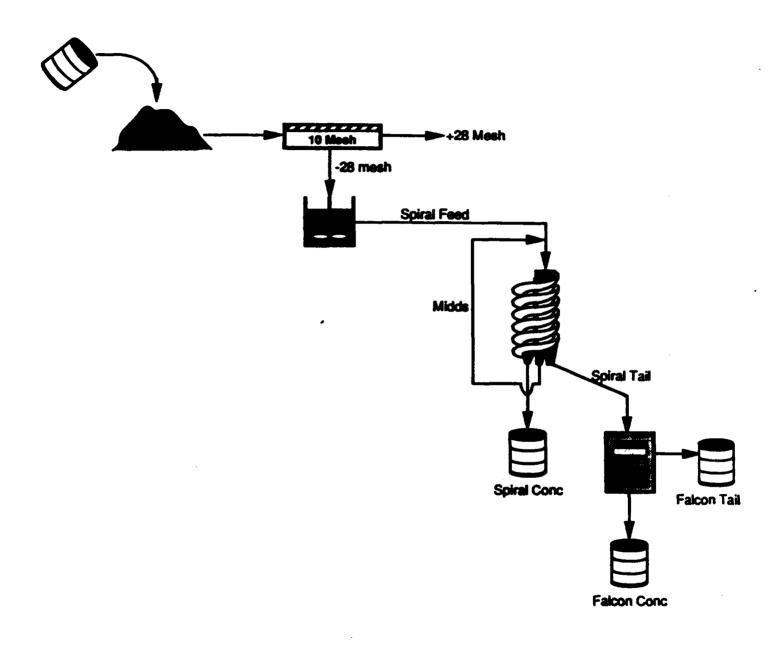
.

Mesh	Weight	% Weight		
	g	Individual	Cumulative	Passing
65	0.0	0.0	0.0	100.0
100	0.0	0.0	0.0	100.0
150	1.1	1.2	1.2	96.8
200	2.5	2.8	4.1	95.9
270	5.3	6.0	10.0	90.0
400	6.4	7.2	17.3	82.7
-400	73.3	82.7	100.0	-
Total	86.6	100.0	-	-

.

LR#4095-Beaurox Mines Limited

Test#PP-5


Purpose: To recovery a gold bearing sulphide concentrate using gravity concentration.

Procedure: A bulk sample was prepared by pulping it to approximately 65% solids and removing the +28 mesh material prior to storage in a 1500 L conditioner. The -28 mesh fraction was diluted to 35% solids and simultaneously pumped to the head of the spiral. The spiral concentrate was collected for assay purposes while the spiral midds were combined with fresh feed and pumped back to the head of the spiral. The spiral tail was passed through a Falcon separator where a Falcon concentrate and tall were collected and assayed.

- Sample: Bankfield Bulk Sample (-28 mesh)
- Elowsheet: See next page.
- Equipment List: Deriver conditioner, 1200 mm X 1520 mm, 1500 L. Falcon Separator, Model B-5 Reichert Mark VII Spiral

Results:

LR#4095 Beaurox Mines PP-5

Aasava

Stream	Product	Au, g⁄t
Spiral Feed	SPF	1.45
Spiral Conc	SPC	4.81
Spiral Tailing	SPT	. 1.20
Falcon Conc	FLC	70.5
Falcon Tailing	FLT	1.05

Metallurgical Balance (two product formula)

Product	Weight %	Assay, g/t Au	Distribution Au
SPC	6.9	4.81	23.0
SPT	93.1	1.20	77.0
SPF(calc)	100.0	1.45	100.0
SPC(assay)		1.45	
FLC	0.2	70.5	9.7
FLT	92.9	1.05	67.3
SPT(calc)	93.1	1.20	77.0
SPT(calc) SPT(assay)		1.20	

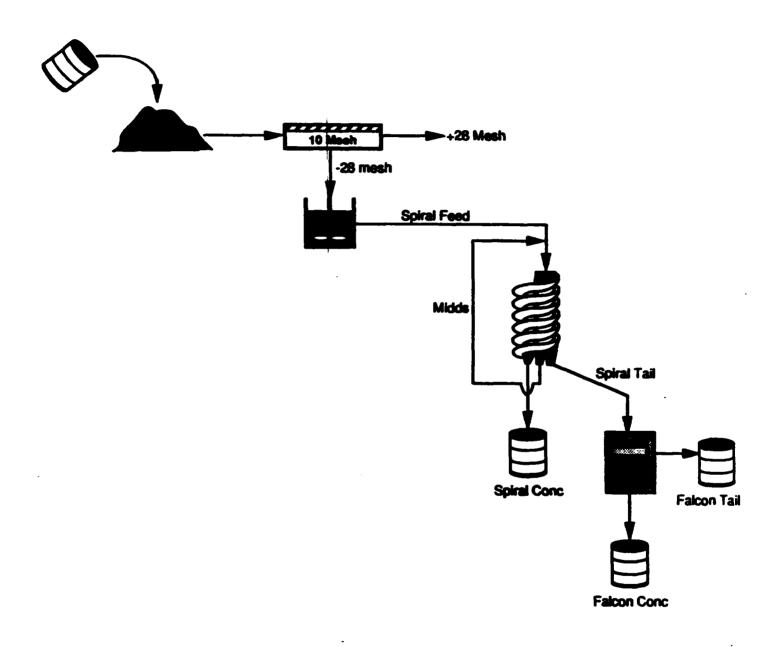
Overali Metallumical Balance

SPC	6.9	4.81	23.0
FLC	0.2	70.5	9.7
<u>FLT</u>	92.9	1.05	67.3
SFD(calc)	100.0	1.45	100.0
SFD(assay)		1.45	

LR#4095-Beautox Mines Limited

Test#PP-6

Purpose: To recovery a gold bearing sulphide concentrate using gravity concentration.


<u>Procedure:</u> A bulk sample was prepared by pulping it to approximately 65% solids and removing the +28 mesh material prior to storage in a 1500 L conditioner. The -28 mesh fraction was diluted to 35% solids and simultaneously pumped to the head of the spiral. The spiral concentrate was collected for assay purposes while the spiral midds were combined with fresh feed and pumped back to the head of the spiral. The spiral tail was passed through a Falcon separator where a Falcon concentrate and tail were collected and assayed.

•

- Sample: Little Long Lac Bulk Sample (-28 mesh)
- Flowsheet: See next page.
- Equipment List: Deriver conditioner, 1200 mm X 1520 mm, 1500 L Falcon Separator, Model 8-5 Reichert Mark VII Spiral

Results:

LR#4095 Beaurox Mines PP-6

Aassys

Stream	Product	Au, g/t
Spiral Feed	SPF	1.19
Spiral Conc	SPC	6.57
Spiral Talling	SPT	1.01
Falcon Conc	FLC	40.2
Falcon Tailing	FLT	0.85

Metallumical Balance (two product formula)

Product	Weight %	Assay, g/t Au	Distribution Au
SPC	3.2	6.57	17.9
SPT	96.8	1.01	82.1
SPF(calc)	100.0	1.19	100.0
SPC(assay)		1.19	
FLC	0.4	40.2	13.5
FLT	96.4	0.85	68.6
SPT(calc)	96.8	1.01	82.1
SPT(assay)		1.01	

Overall Metallurgical Balance

SPC	3.2	6.57	17.9
FLC	0.4	40.2	13.5
FLT	96.4	0.85	68.6
FLT SFD(calc)	100.0	1.19	100.0
SFD(assay)		1.19	

PROPOSAL

GOLD RECOVERY by COLUMN FLOTATION and GRAVITY SEPARATION for Beaurox Mines Limited

This proposal was prepared at the request of Mr. Dave Malouf of Beaurox Mines Limited.

Lakefield Research will undertake to perform the work described for the stated cost, given that the cost estimate is deemed accurate to within 20 percent, and provided that the program can be completed within the 1991 calendar year.

This proposal and cost estimate is submitted in confidence to Beaurox Mines Limited.

James T. Furey Senior Engineer

Keith W. Sarbutt Manager - Mineral Processing

Lakefield Research A Division of Falconbridge Limited February 6th, 1991

•

TECHNICAL PROPOSAL

Introduction

It is proposed to conduct a preliminary evaluation of column flotation in order to determine its potential to improve precious metal grade and recovery. The proposal includes a cost estimate for a continuous pilot scale evaluation that is intended to supplement the on-going bench scale test program currently underway.

Current bench scale testing indicates that gravity separation by tabling recovered about 20% of the gold in 5% of the weight, at a grade of 5 to 10 g/t Au. Sulphide recovery was 25% to 35%. Falcon separator tests showed slightly higher gold recoveries of about 25%, at similar grades, but sulphide recovery was significantly lower at 10% to 15%. Flotation testing showed that up to 53% of the gold was recovered into 15% of the weight, at grades of about 5 g/t Au. Sulphide recoveries were significantly higher at 90%.

In discussions with Lakefield Research staff, it was concluded that the collection bowl in the Falcon Separator will fill efficiently with gold and sulphides, but that once the bowl is full, trading of gold for sulphides will be somewhat reduced, and gold losses may occur. The Falcon Separator might, therefore, perform more efficiently if sulphides were removed first. In flotation, gold recovery was more efficient that sulphide recovery, and it is therefore recommended that the sample should be treated first by flotation, to recover gold and sulphides, and that the flotation tailings then be treated in a Falcon Separator to recover incremental gold lost to flotation.

Bench scale flotation tests to compare performance with and without a polishing regrind indicated that recovery was improved to +60% with the regrind, and it is recommended that a light polishing regrind be included in any further testing.

Equipment and Facilities

Lakefield Research has available a variety of column flotation cells ranging in size from 50 mm diameter (9 liters) to 300 mm diameter (350 liters). All column cells operate with computer level control using a μ MAC-6000 process control computer. In addition, the full range of conventional mineral processing can be provided, including gravity concentration by jig, spiral, shaking table and centrifugal jig (Falcon, Knelson and Kelsey).

In column flotation it is generally recommended that, for generation of adequate scale-up parameters, tests should be conducted in cells of at least 100 mm diameter.

. . .

Professional and Technical Staff

The core of column flotation expertise at Lakefield Research includes Dr. Bert J. Huls, P.Eng, Manager - Technology, James T. Furey, P.Eng, Senior Engineer, Steve R. Williams, Senior Project Engineer and Maria Falutsu, Metallurgist. The knowledge, skills and experience of this team covers virtually all aspects of column flotation, from pure research at the university level, through applied and industrial research to design, commissioning and operation of commercial column flotation installations.

Continuous Test Program

It is recommended to treat 2×2 ton samples at 150 kg/h in a continuous circuit consisting of a polishing regrind followed by sulphide flotation in a 150 mm diameter column cell of 60 liters capacity, with column cell tailings being treated in a Falcon Separator. A Reichart No. 7 Spiral will be included in the plant set up. This will provide for a short run evaluation of the Reichart spiral as a replacement for the column flotation stage. All products will be assayed for Au only, with multiple determinations on concentrates. In addition, the final concentrates will be submitted for multi-element scan by ICP (Inductively Coupled Plasma) spectrometer.

Project Schedule

It is anticipated that the continuous treatment program will require about two weeks to complete, followed by an additional one to two weeks for preparation of the final technical report.

Project Control

The project team will be managed by a Project Engineer, who will retain overall responsibility for the technical aspects of the program, will supervise individual tests and will ensure diligent and astute analysis of all test results. Ore preparation, sampling of the column cell and sample preparation will be the responsibility of a technician trained in all aspects of pilot scale column cell operation and sampling. Analytical results will be scrutinized by senior analytical staff as well as the metallurgical staff to ensure quality control.

Project Security

It is the policy of Lakefield Research that all analyses, data and reports paid for by the client are the property of the client, and will be maintained in strictest confidence.

Technical Proposal

The cost estimate detailed in the following pages is based on the following analytical and labour rates;

Professionals	\$75.00 / hour
Technologists	\$65.00 / hour
Technicians	\$55.00 / hour

τ

- -

This proposal is based on our best estimate of the amount of work that should be required to complete the project, and the cost estimate is deemed accurate to within 20%. Invoices will reflect actual analytical service and labour usage required by the program, and any savings resulting from early success in the test program will be passed along to the client. Any changes in scope dictated by prior testing results will be made only after consultation with the client and subject to his approval. Under no circumstances will the client be invoiced for problems or delays which are beyond his ability to control. Lakefield Research will retain the right to schedule testing so as to maximize the efficiency of the Lakefield Research facilities, and will undertake to ensure that the needs of the project will be diligently served.

Cost Estimate - Continuous Testing

Based on 150 kg/h throughput using 150 mm column cell and Falcon separator.

Sample preparation	\$ 1,040
Circuit Preparation	2,080
Circuit Operation	
Metallurgist	\$ 600
Column Cell Operator	520
Product Handler / Sampler	440
Sample Assay Preparation	260
Assays (10 x Au only)	120
Screen Analyses (1 each)	<u>50</u>
Cost per Test	\$ 1,990
Total of Four Tests (2 samples, 2 tests each)	7,960
Circuit Dismantling	1,040
Multi-element ICP Scan on circuit concentrates	100
Reporting and Supervision	1,800
Total Estimated Cost (+/- 20%)	\$ 14,020
	Lakefield Research
	A Division of Falconbridge Ltd
_	Lakefield, Ontario

February 6th, 1991 / jtf

Postal Bag 4300, 185 Concession St., Lakefield, Ontario KOL, 2HO Phone: (705) 652-3341 Telex No. 06 962842 Fax No. (705) 652-6365

No.: 32110

19₉₁ DATE February 6

G.S.T. NUMBER R101733426

TO: Beaurox Mines Limited 801, 80 Richmond Street, West TORONTO, Ontario M5H 1A4

Mr. Dave Malouf

<u>نمر .</u>

0

Our Project L.R. 4095 - Ongoing Testwork

Re: Column Flotation and Gravity Separation	
Sample Preparation	\$ 1,040.00
Circuit Preparation	2,080.00
Circuit Operation	7,960.00
Circuit Dismantling	1,040.00
Multi-element ICP Scan on circuit concentrates	100.00
Reporting and Supervision	1,800.00
	\$ 14,020.00
G.S.T.	981.40
Total	\$ 15,001.40

BEAUROX MIN

Fax (416) 360-7355

FINAL REPORT

.

PHASE I

SAMPLING AND METALLURGICAL REPORT

BEAUROX MINES LIMITED

GERALDTON-BEARDMORE AREA ONTARIO

TASHOTA-NIPIGON DEPOSIT

TOMBILL-BANKFIELD DEPOSIT

LITTLE LONG LAC DEPOSIT

By

DAVID MALDUF General Manager

March 19, 1991

050

INDEX

Г

Report Beaurox Mines Limited

Ьу

David Malouf

March 1991

Proposal Metallurgical Work by Lakefield Research

Location Maps

Assay Maps with Preliminary Reserve (in back packet)

LAKEFIELD RESEARCH

THE RECOVERY OF GOLD

from low grade tailings samples

submitted by

BEAUROX MINES LIMITED

Progress Report No. 3

Bound and submitted separately.

BEAUROX MINES LIMITED

suite 801, 80 Richmond St. West, Toronto, Ontario M5H 2A4 Telephone: (416) 860-1636 or 860-1701 Fax (416) 360-7355

SUMMARY REPORT

Introduction

C)

- 1. As outlined in the President's letter of the 1989 Roxmark Mines Limited. Annual Report, Roxmark has secured the right to evaluate several gold tailings deposits in the Geraldton Beardmore Camp. Of the 3,000,000 Tons under agreement, preliminary testing has shown that a thorough evaluation is warranted and that the deposits could contain up to 135,000 ounces of gold for an average grade of plus or minus .045 ounces per ton. Assuming a 65% recovery and reprocessing costs in the order of \$8.00 per ton on a scale of plus 1000 tons per day this project could generate the much needed exploration and development funds needed to develop the recent discoveries in the camp specifically Roxmark's Benedict Zone, the Hardrock Discovery Zone, etc. - It is also believed that capital costs required would be a fraction of the cost required to implement a conventional mine, mill scenario 25-30% - and that this equipment could later be possible supplemented to handle mine-run ore.
- 2. There are three properties of prime interest: .
 - A). Bankfield Tombill with a common tailings pond
 - B). Little Long Lac property of Algoma Steel.
 - C). Tashota Nipigon.
- 3. All properties are in the Beardmore Geraldton Mining Division in the District of Thunder Bay.
 - A) <u>Bankfield-Tombill</u> Located on the North side of Trans Canada Highway #11-8.25Km west of the turn off to Geraldton in the Western half of Errington Twp.
 - B) <u>Little Long Lac</u> Located on either side of Hwy 584 approximately 3 Km. north of Hwy 11 south of the bridge that enters the town of Geraldton in Errington and Ashmore Twps.
 - Tashota The Mine is located North west of Onamen Lake and south of Obashkegan Township, between Onamen Lake and Onamen River. It is accessible via the Camp 40 Road north to the Con Lake Road. Proceed north-east from the Con Lake intersection on the Mine Road for approximately 8 miles to the mine site.

/...2

FIELD OFFICE: P.O. Box 730, Geraldson, Ontario, POT 1M0 Telephone: (807) 854-0441 Fax (807) 854-0997

- 4
- A) <u>Bankfield-Tombill Claims</u> 3 Patented Mining Claims TB 10213
 - TB 110201
 - TB 10645
- B) <u>Little Long Lac</u> 8 Patented Mining Claims TB 10887 TB 10621 TB 10560 TB 10561 TB 10562 TB 10563 TB 10886

 - TB 10566
- C) <u>Tashota Nipiqon</u> 2 Patented Mining Claims KK523 & KK524
- 5. A) The Bankfield Tombill project is subject to a 25% NPI in favor of Bankfield and Tombill Mines.

B) The Little Long Lac project is subject to a 5% N.S.R. to Lac Minerals and annual payments of approximately \$40,000 to Algoma subject to a possitive production decision.

C) The Tashota Nipigon project is subject to a 4% NSR and an additional payment of \$5,000.00

6. <u>Regional Geology</u>

S.E. Malouf Consulting Geologists Limited entered into agreements on the above properties for Roxmark Mines Limited. Roxmark did the initial work involving research sampling and preliminary metallurgical work involving \$15,000 in 1989 and early 1990 - Roxmark has agreed to give their subsidiary company Beaurox Mines Limited (at present a private corporation) a chance to earn a 25% interest in the tailings project for doing a proper evaluation, metallurgical testing, feasibility study, and a further 25% interest for funding through to production.

7. Current Status

 A). Bankfield Tombill - Initial sampling with a Sonic Soil Sample
 60 holes drilled indicated appreciable tonnage 2.051 Oz. per Ton. with isolated tonnage of high grade.

B) Little Long Lac - Investigation of production history indicates excessives losses in the mill with two periods of tailings retreatment. Initial sampling favorable - 1,780,000 Ton potential.

C). Tashota Nipigon - Report on sampling and metallurgy from Lakefield Research done by Lynx - Canada in 1978 indicates reserves of 50,000 tons of .088 Oz Gold per ton with indicated recoveries of 70.4%

B. Recommended Work and Scope of Project

A program involving the expenditure of \$200,000.00 is warranted. Grids will be established on all properties. The Tashota will be drilled and sampled on 25 foot centre because of the relatively small size of the deposit and high grade nature. The Bankfield Tombill will be drilled and sampled on 50 foot centers - Little Long Lac will be drilled and sampled on 100 foot centers with later definition at 50 feet. This should involve 10,000 to 11,000 feet of drilling and approximately 2400 assays - Sample results and locations will be plotted and grade contour lines established to locate economic reserves. The grid, drilling and sampling will cost \$100,000.00 - Sample composites of reject samples will assembled and sent to Lakefield Research for metallurgical studies on the three representative bulk sample.

The metallurgical work should cost \$40,000 - If this stage gives favourable results, it will be followed with a \$50,000 environmental study and then a feasibility study.

- 9. The project began in August of 1990
- 10. The project will take nine months to complete or 200 days.
- 11. Work Completed

The proposed program was carried out at a cost of \$165,911.54 -Grids were establish on each property and the drilling was done with a Sonic Soil Sampling machine - "BQ" Rods were used to drill down through the tailings and into organic material. Samples were taken at each five foot section.

A total of 11,000 feet were drilled and 2,621 samples taken. The assay results were plotted on assay plans. These results were then contoured to show areas averaging .03 ounces of gold per ton and better. Once these areas were known the sample rejects representing these areas were made into composites for each deposit and prepared for bulk metallurgical work at Lakefield. Supplementary bulk samples were taken with the use of a back hoe which cut five trenches on each of the Bankfield and the Little Long Lac deposits. The trenches were 50 feet long, the depth of the tailings and a two ton sample representative sample compiled from each deposit. There was sufficient material for testing on the Tashota property as each hole was double drilled.

All composites properly identified were shipped to Lakefield research and arrived December 27th, 1990.

Metallurgical work began in early January with preliminary investigations on gravity, flotation, bottle cyanide tests, 30 elements scans etc. After a review of initial results a decision was made to do heap leach column tests on all three ores and to do a combination of gravity (Falcon concentrator) and column flotation in a continues circuit on the Bankfield and Little Long Lac material.

../4

2. Reserves

Reserve calculations on accompanying maps are preliminary and cannot be properly addressed until the metallurgical results of future work demonstrate what the economical cut off grade will be. An attempt was made to evaluate each occurrence completely. However the tonnages sampled relate to historical production in the following manner:

	Historical	Sampled
Little Longlac	1,782,516	1,360,000 Tons or 76.3%
Bankfield-Tombill	419,631	265,190 Tons or 63.3%
Tashota	51,250	32,423 Tons or 63.25%

We would expect the sampled tailings to be 10 to 15% lower because the shallower fringe areas were not sampled or because of normal migration into water courses. In our tonnage calculations we used an overall tonnage factor of 19 cubic feet per ton. This may have been light especially on the Tashota-Nipigon and the combined Bankfield-Tombill where iron content was 10.1% and 6.4% respectively. Years of compaction and settling could also explain the difference.

Specific gravity tests will be done in an attempt to explain these differences and increase tonnages.

13. Preliminary Reserves

Preliminary reserves from known information:

1. Little Longlac

· · · · · · · · · · · · · · · · · · ·			
	Tons	Grade	<u>Ounces</u>
A) at no cut off	1,360,000	.031	42,160 Oz.
B) at .025 cut off	728,000	.037	34,336 Oz.
C) at .03 cut off	532,000	.0425	22,610 Gz.
2. <u>Bankfield-Tombill</u>			
D) at no cut off	265,190	.0384	10,183.30 Oz
E) at .03 cut off	206,190	.044	9,072.40 Oz
3. <u>Tashota-Nipigon</u>			
F) at no cut off	32,423	.078	2,529 Oz
SUMMARY			
A+D+F	1,657,613	.033	54,872.3
B+E+F	1,164,613	.0394	45,937.
C+E+F	770,613	.0444	34,211.4
e:	-		-

Note:

(

Beaurox Mines Ltd. plans to computarize all known assay data to be able to print out assay plans readily with varying grade contours.

14. <u>Results and Conclusions</u>

See Lakefield Research, Metallurgical Progress Report No. 3 and Proposal dated February 20th, 1991.

Tashota-Nipiqon

The Heap Leach approach to reprocessing the Tashota-Nipigon tailings appears to be viable with preconditioning and agglomeration. Work will continue on the feasibility study and will include the variables of project costs, permits, environmental concerns etc. An intermediate step of a field pilot test will be examined to eliminate possible variances that could occur between test work and production experience, and to train personnel.

Bankfield and Little Long Lac

Results to date on the Bankfield and Little Long Lac deposits have been encouraging and informative but point out that further laboratory work is required to optimize recoveries. See Technical Proposal Lakefield, February 20, 1991; Bench scale testing indicates that gravity separation by tabling recovered about 20% of the gold in 5% of the weight at a grade of 5 to 10 g/t Au - Sulphide recovery was 25% to 35% Falcon separator tests showed slightly higher gold recoveries of about 25% at similar grades, but sulphide recovery was significantly lower at 10% to 15% - Flotation testing showed that up to 53% of the gold was recovered into 15% of the weight at grades of above 5 g/t Au sulfides recoveries were significantly higher at 90% - Flotation tests to compare performance with and without a polishing regrind indicate that recovery was improved to + 60% with a regrind.

It was therefore reasonable to assume that a combination of flotation followed by the Falcon concentrator or viceversa could attain the targeted recoveries of + 70%

A continuous test was designed involving column flotation and the Column flotation was chosen over falcon concentrator. flotation because of lower capital conventional cost requirements, lower maintenance and overhead costs and the possibility of producing a higher grade concentrate. The test failed to achieve the results obtained in conventional flotation; possibly because of the characteristics of the ore, the limited scope of the test work, the fineness of the gold or because of the incompatibility of the ore with column flotation.

We propose to return to conventional flotation coupled with gravity concentration as this appears to be the logical next step. However as a prerequisite further bench scale flotation tests will be conducted to investigate new reagents schemes and optimize floatation conditions.

----/6

Results and Conclusions (cont.)

Heap leach tests on the Bankfield and Little Lac material gave 56% and 50.0% respectfully. Investigative work will be carried out on the rejects of this material to see if target recoveries can be attained through a combination heap leach followed by concentration of sulfides and heavy elements.

Specific gravity tests will be conducted on all three ores in an attempt to relate sampled tonnates with historical production records.

The proposal includes a mineralogical examination on feed and tailings samples. This will help identify gaugue components, liberation, association and potential recovery of the gold.

15. Future Program PHASE II

Once additional Metallurgical work is complete, we hope to demonstrate a viable project.

Expected Cost PHASE II-A

-Metallurgical Work - Lakefield proposal	\$ 34,964.40
-Additional sample material required (representative) incl. extraction, freight and assays	20,000.00
-Environmental impact study	50,000.00
-Engineering and plant design SUB TOTAL:	<u>50,000.00</u> \$154,964.40

PHASE II-B

Trial production - Three tests with lots of 20,000 tons each mined and processed at an estimated cost of \$10.00 per ton

\$600,000.00

TOTAL: \$754,964.40

16. <u>Reports Available</u>:

A) "Ontario Geological Survey" Open file Report 5630 - 1986 Volume I - Pg. 87 thru 96 Pg. 329 Thru 338

> Volume II - Pg. 582 thru 584 Pg. 571 item 8 Economic Features

Reports Available (cont.)

B) "An Investigation of the Recovery of Gold" from Tailings sample submitted by Tashota-Nipigon Mines Ltd. Progress Report No. 1

Project No. L.R. 2190 - Lakefield Research.

17. Metallurgical Report

"The Recovery of Gold from Low Grade Tailings Samples", submitted by Beaurox Mines Limited - Progress Report No. 3

18. Assay Maps with preliminary reserves (in back packet):

1 copy Tombill scale 1"- 50' 1 " Bankfield scale 1" - 100' 3 "s Little Long Lac scale 1" - 100' with varying cut off grades

19. Proposal by Lakefield Research February 20, 1991

20. Location Maps.

Respectfully David Malouf

General Manager and Director Roxmark Mines Limited Beaurox Mines Limited SENI BYFLK

42E10NW0113 63.6072 ASHDORE

060

PROPOSAL

GOLD RECOVERY by GRAVITYSEPARATION and FLOTATION for BEAUROX MINES LIMITED

This proposal was prepared at the request of Mr. Dave Malouf of Beaurox Mines Limited.

Lakefield Research will undertake to perform the work described for the stated cost, given that the cost estimate is deemed accurate to within 20 percent, and provided that the program can be completed within the 1991 calendar year.

This proposal and cost estimate is submitted in confidence to Beaurox Mines Limited.

K.W.SL

Keith Sarbutt Manager - Mineral Processing

ne aleman Rene Jackman

Senior Project Metallurgist

Lakefield Research A Division of Falconbridge Limited February 20th, 1991

TECHNICAL PROPOSAL

Introduction

This proposal covers testwork to recover gold from the Bankfield and Little Long Lac tailing samples.

Based on the results of preliminary testwork reported in Progress Report No. 3, it is proposed to conduct further laboratory gravity separation and flotation testwork. The gravity separation tests would investigate the application of the Kelsey Jig to recover gold from the Bankfield and Little Long Lac samples directly as well as from the heap leach tailings from the same samples. Additional bench scale flotation tests would be conducted to try to improve the gold recovery achieved in the initial testwork.

Subject to the results of this laboratory testwork, a continuous pilot plant scale evaluation has been proposed incorporating gravity separation and conventional flotation.

Gravity Separation Testwork

Gold recovery using the Kelsey Jig will be investigated. Testwork on the Bankfield tailing has been proposed as part of an on-going Lakefield Research program. Costs for this work will be borne by Lakefield Research. If the results show promise, similar testwork will be conducted on the Little Long Lac tailing sample. In addition, Kelsey Jig tests will be conducted on the heap leach tailings after a slight regrind to break down the agglomerates.

Samples presently in storage will be used for this testwork.

Flotation Testwork

Bench scale flotation tests will be performed to investigate the effect of alternative collectors, modifiers, and pH on the recovery of gold in a bulk sulphide concentrate.

Samples presently in storage will be used for this testwork.

Continuous Pilot Plant Testwork

It is proposed to treat 2 tonne samples of the Bankfield and Little Long Lac tailings in a continuous circuit at a feedrate of 100 - 150 kg/h. The circuit will include a polishing regrind and conventional flotation. Gravity separation will be incorporated either on the flotation feed or flotation tailing using a Falcon Separator. Products will be assayed for gold and sulphur. Additional analyses may be conducted on the final concentrates. Also, multi-element ICP scans may be conducted on the final tailing water and solids for environmental considerations.

A minimum of a 2 tonne sample of each of the Bankfield and Little Long Lac samples will be required. It is proposed that a bench scale flotation test first be conducted on the piot plant feed samples to compare the response to the samples used in the laboratory testwork.

Project Schedule

The laboratory test program will take approximately 3 weeks to complete. It is anticipated that the continuous pilot scale program will require 2 weeks to complete. The final report will follow two weeks after the testwork is complete.

COST ESTIMATE

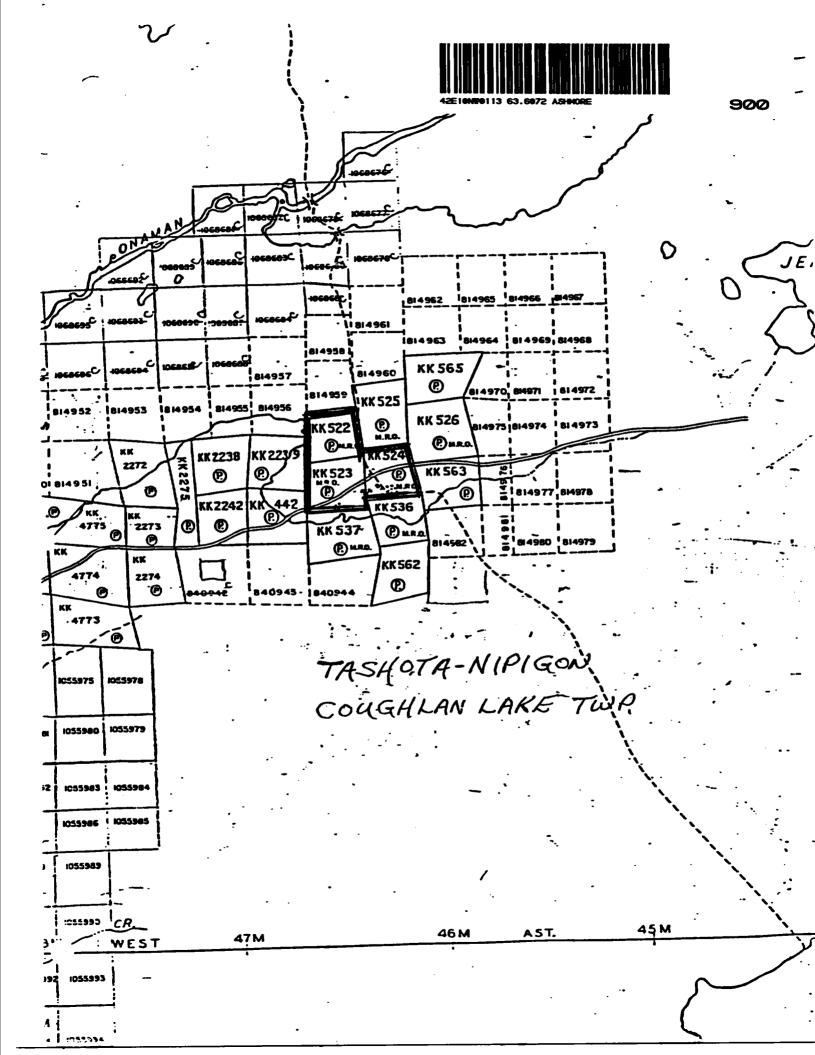
The cost estimate detailed in the following pages is based on our Analytical Fee Schedule for Metallurgical Testwork, and on the following labour rates;

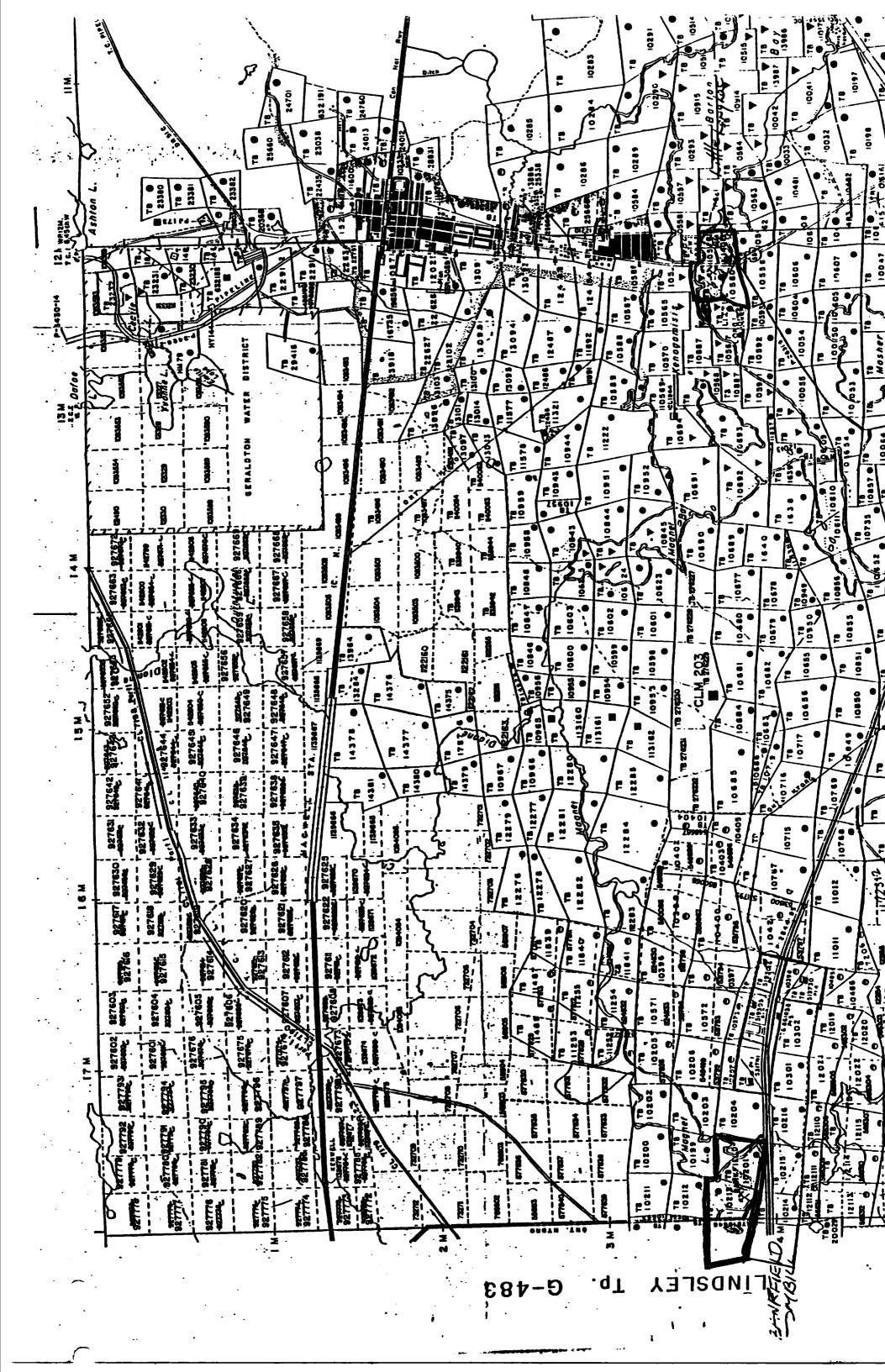
Professionals	\$100.00 / hour
Technologists	\$70.00 / hour
Technicians	\$55.00 / hour
a makes and firms for 1001 Last	and multiple in annihiland in 1000

These rates are firm for 1991, but are subject to revision in 1992. The proposal is based on our best estimate of the amount of work that should be required to complete the project. Invoices will reflect actual analytical service and labour usage required by the program. Any changes in scope dictated by prior testing results will be made only after consultation with the client and subject to his approval.

COST ESTIMATE

LABORATORY TESTWORK


Sample Preparation	\$615
Specific Gravity Determinations - 3	\$26
XRD on Head Samples to determine gangue minerals	\$150
Flotation Testwork estimated 8 tests at \$560 each	\$4480
Kelsey Jig Testwork examine variables using Little Long Lac samp 2 tests on heap leach residues	pie \$948 \$1314
Supervision	\$700
Project Management	\$400
Report Preparation	\$560
Miscellaneous, contingency	\$700
TOTAL (GST not included)	\$10053

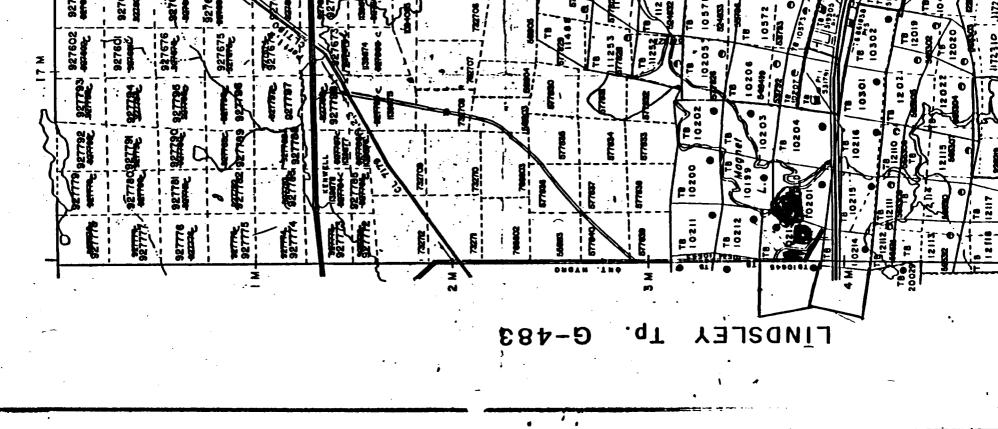

5

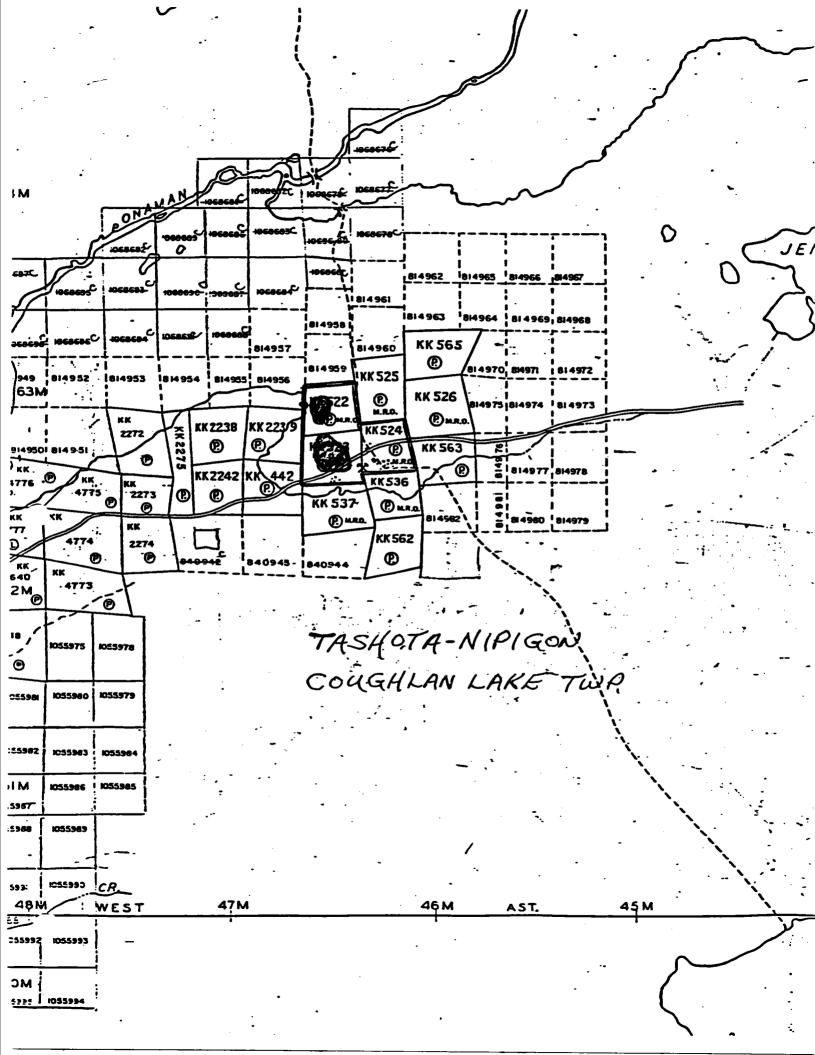
-

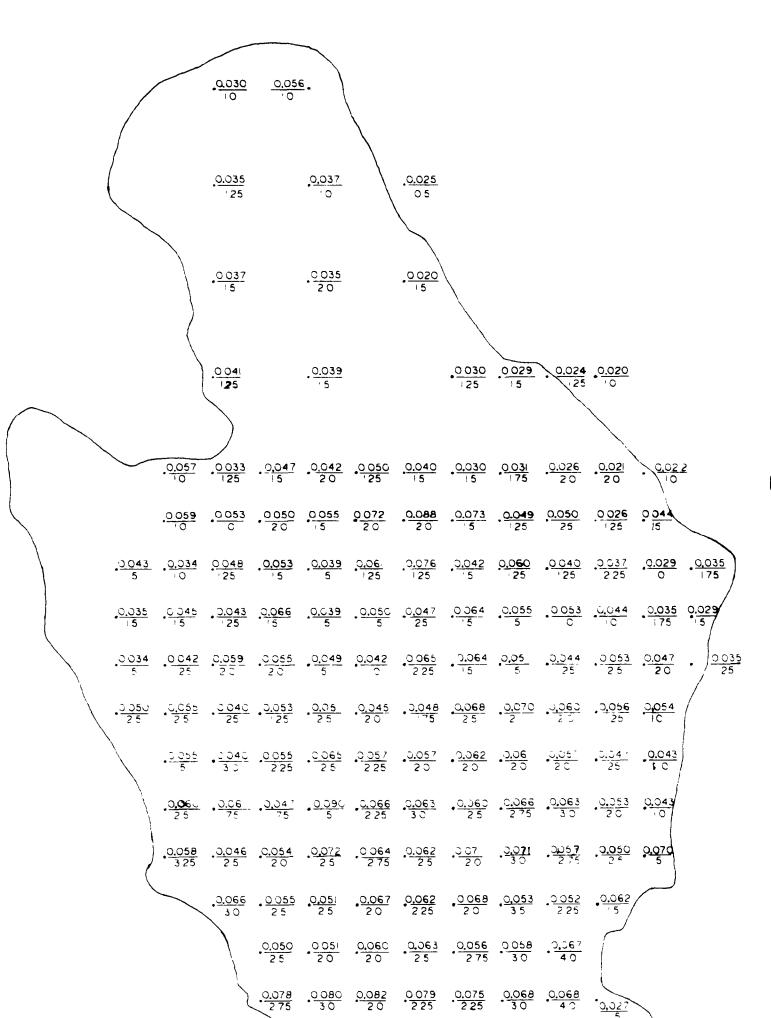
CONTINUOUS PILOT PLANT TESTWORK

Sample Preparation 2 tonnes per sample	\$2240
Laboratory Tests to confirm flotation results on pilot plant feed	\$800
Tailings Disposal \$150/t x 4	\$600
Circuit Preparation	\$2240
Circuit Clean-up	\$2000
Circuit OperationKetallurgist\$800Metallurgist\$560Foreman\$560Operator\$440Sample preparation\$260Assays - 7 x Au, S\$196Screen analyses\$50Cost per test\$23064 tests	\$9224
Additional Concentrate Analyses	\$200
Equipment Depreciation	\$1200
Environmental tailing and tailing water analyses	\$500
Project Management	\$1000
Report Preparation	\$1120
Miscellancous, contingency	\$1500
TOTAL (GST not included)	\$22624
OVERALL ESTIMATE	
Laboratory Testwork	\$10053
Pilot Plant Testwork	\$22624
TOTAL (GST not included)	\$32677

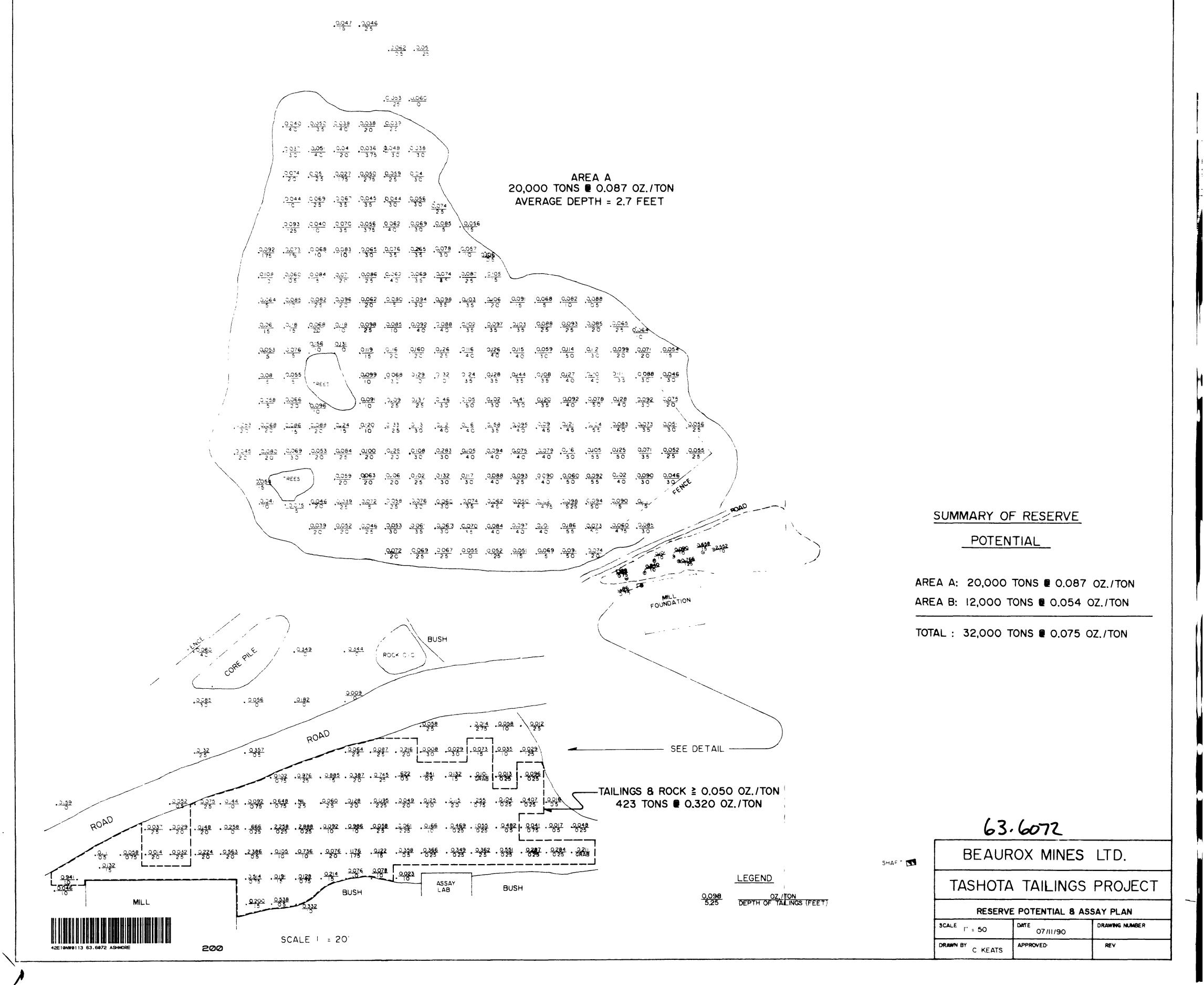
Liffle Lowy Lac Tai (ings






LITTLE LONG LAC PROJECT

T8 • LAKE G-3430-14 ž DISTRICT 29416 00/00 151 12 M 100 E ALFRED 05.01 WATER GERALDTON P 10952 927667 92766 X ► F2 in 27 22 P ö CLM 203 15 M **FORU** TB |0717 F P 927639-1572.0 F Ē P L C P 77221⁶⁾ F 1 G M DURL E 9276I7 ð læ 52761S 527 Els ē .



AREA B AVERAGE DEPTH = 1.9 FEET

Broad+.

12,000 TONS @ 0.054 0Z./TON

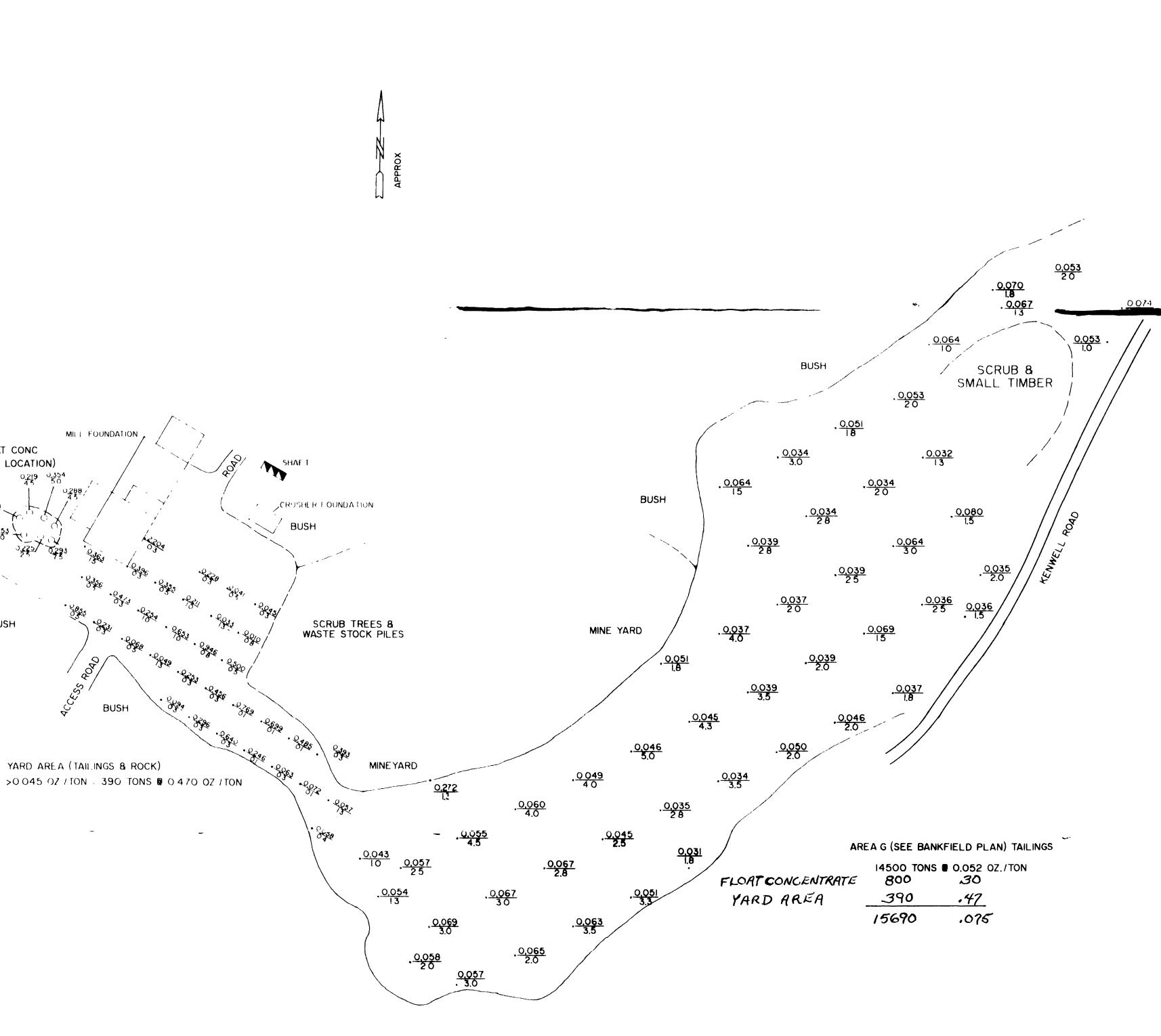
 $\begin{array}{c} 0.077\\ \hline 0.086\\ \hline 30\\ \hline 275\\ \hline 20\\ \hline 275\\ \hline 0.095\\ \hline 0.081\\ \hline 275\\ \hline 0.081\\ \hline 0.053\\ \hline 15\\ \hline 0.080\\ \hline 0.080\\ \hline 0.084\\ \hline 0.053\\ \hline 15\\ \hline 0.080\\ \hline 0.080\\ \hline 0.080\\ \hline 0.080\\ \hline 0.081\\ \hline 0.053\\ \hline 15\\ \hline 0.080\\ \hline$ 6000 680.0 20 20 <u>0.065</u> <u>0.100</u> <u>0.058</u> <u>25</u> <u>20</u> <u>5</u> 0.075 0.082 2 0 0.076 0.076 0.056 10 25 10 25. (<u>0062</u> 05

-- -1

FLOAT CONC (APPROX LOCATION) 0.219 0.354 45 50 0.250 0,25

FLOAT CONCENTRATE APPROX. 800 TONS & 0.30 OZ / TON

YARD AREA (TAILINGS & ROCK)

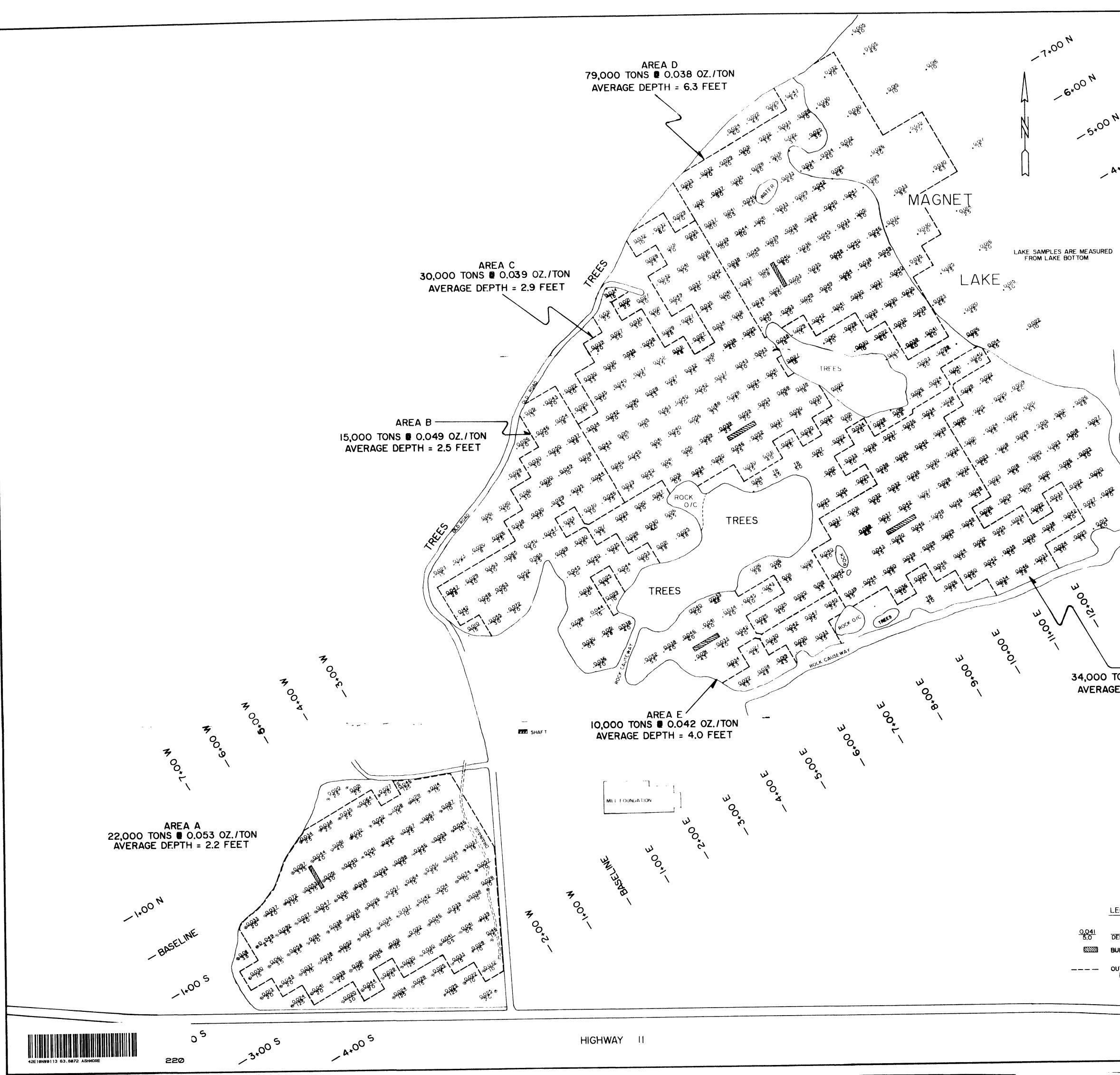

- -

Ł

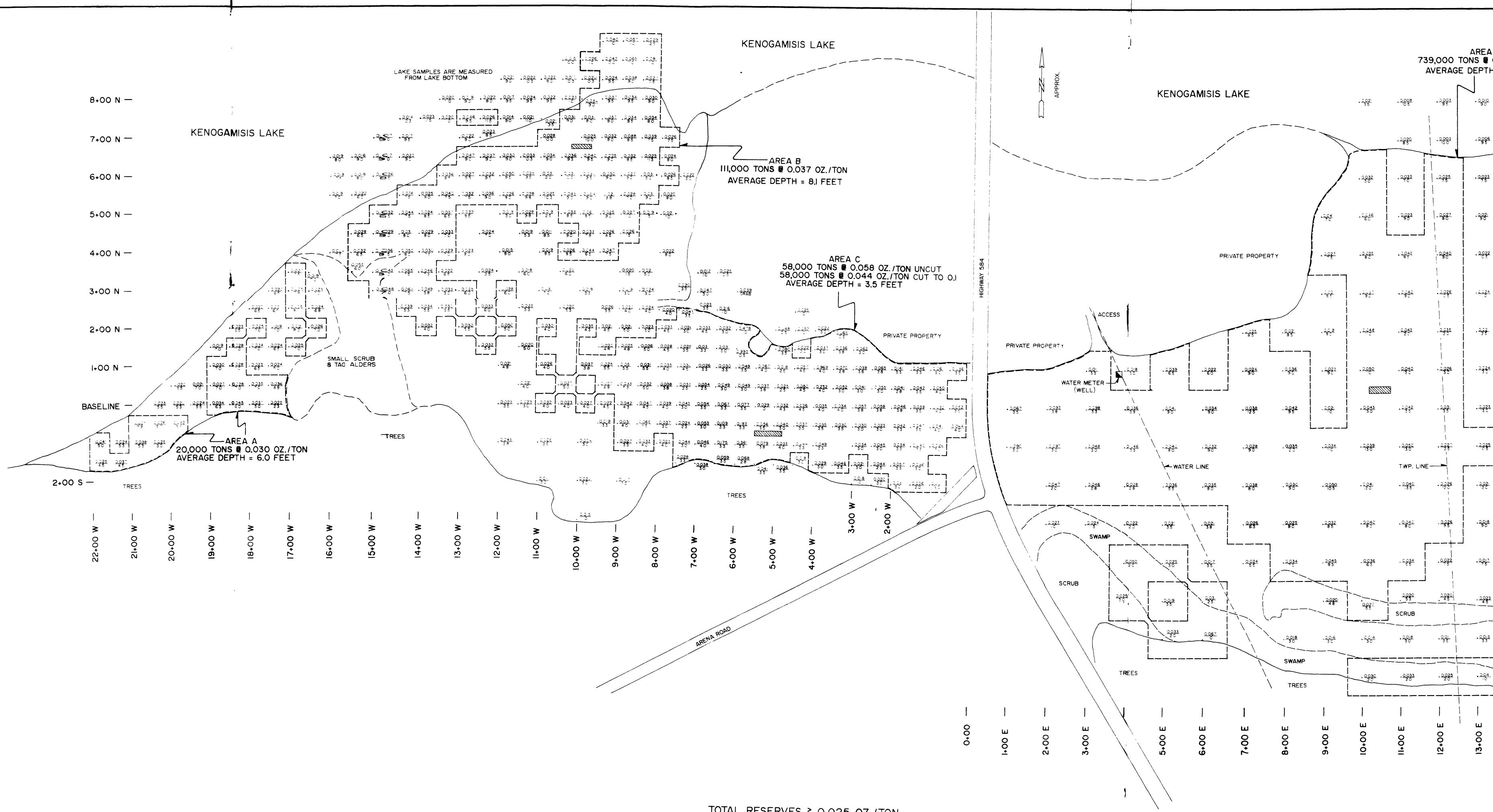
اړ

	.30
)	•47
2	.075

LEGEND


OZ./TON DEPTH OF TAILINGS (FEET) <u>0,034</u> 2.0

63.6072 BEAUROX MINES LTD. TOMBILL TAILINGS PROJECT ASSAY PLAN DATE 13/11/90 DRAWING NUMBER ^{SCALE} 1" = 50 DRAWN BY C KEATS APPROVED REV


ŕ

~

ŕ

~

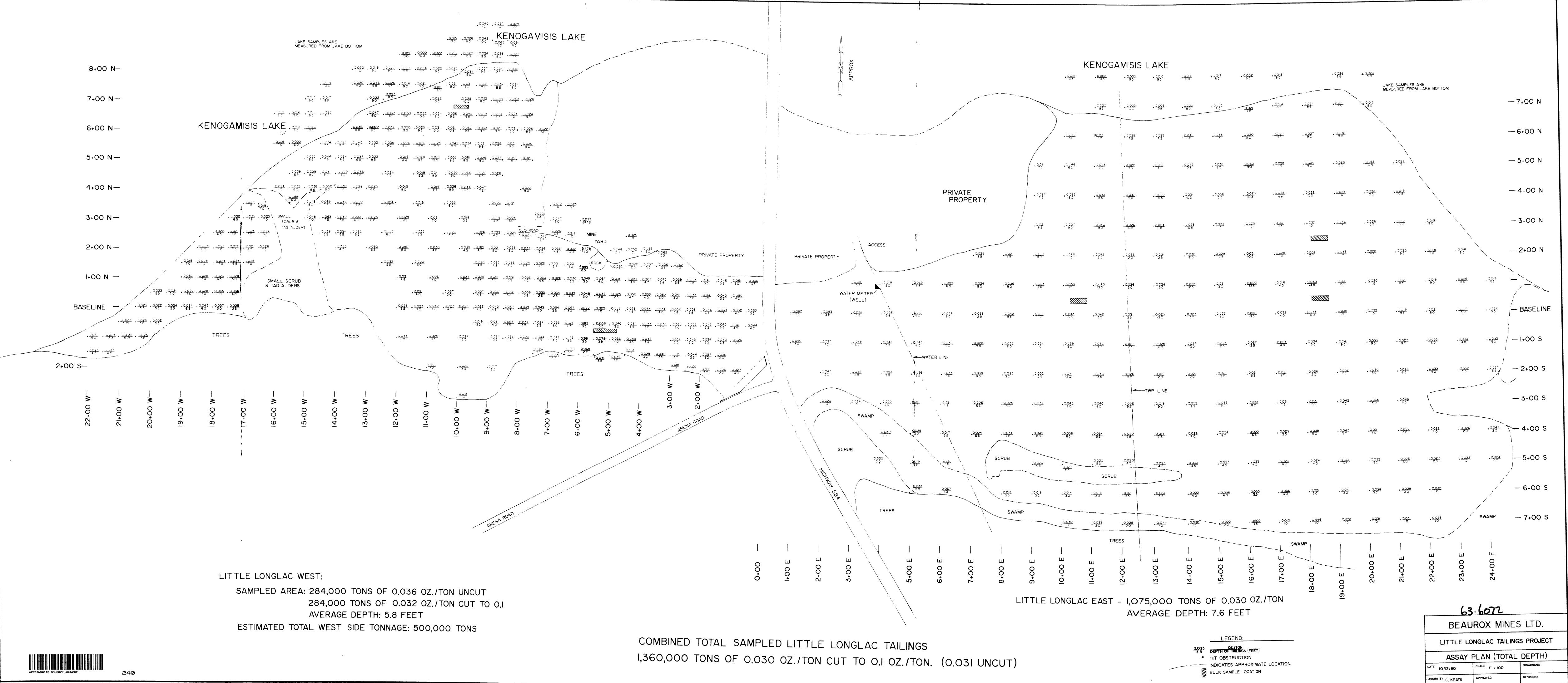
-1+00 N							
BASELINE							
-1+0							
289 Xilling 1998 1998	_2*00 ⁵ _3*00 ⁵						
MAGNET							
N		SUI	MMARY OF	RESERVE			
		POTENTIAL					
AREA F DO TONS O.039 OZ./TON		TOTAL SAMPLED TAILINGS :					
RAGE DEPTH = 4.6 FEET		2	64,000 TON	s e 0.037 oz. <i>0.384</i>	/TON		
		RESERVES ≧ 0.030 OZ./TON					
		AREA: A 22,000 TONS @ 0.053 0Z./ B 15,000 @ 0.049					
			C 30,00	0 🛛 0.039			
			D 79,00	0 🛛 0.038			
				0.042			
		(TOMBILL)		0 ∎ 0.039) ∎ 0.052) <i>° 356 [*] H</i>	IGH GRADE		
DEPTH OF TAILINGS (FEET)		TOTAL 205,000 TONS 0.042 0Z./TON OR 206190 0.044					
DEPTH OF TAILINGS (FEET) BULK SAMPLE LOCATION		ن 					
- OUTLINE OF RESERVE POTENTIAL ≧ 0.030 OZ./TON		BEAUROX MINES LT					
5 0,030 02.7 ION	63.6072	BANKFIELD TAILINGS PROJECT					
			RESERV	E POTENTIAL & A			
			CAI [;] I'' = 100 '	DATE 08/11/1990			
		D	RAWN BY C KEATS	APPROVED	REVISED		

ŧ

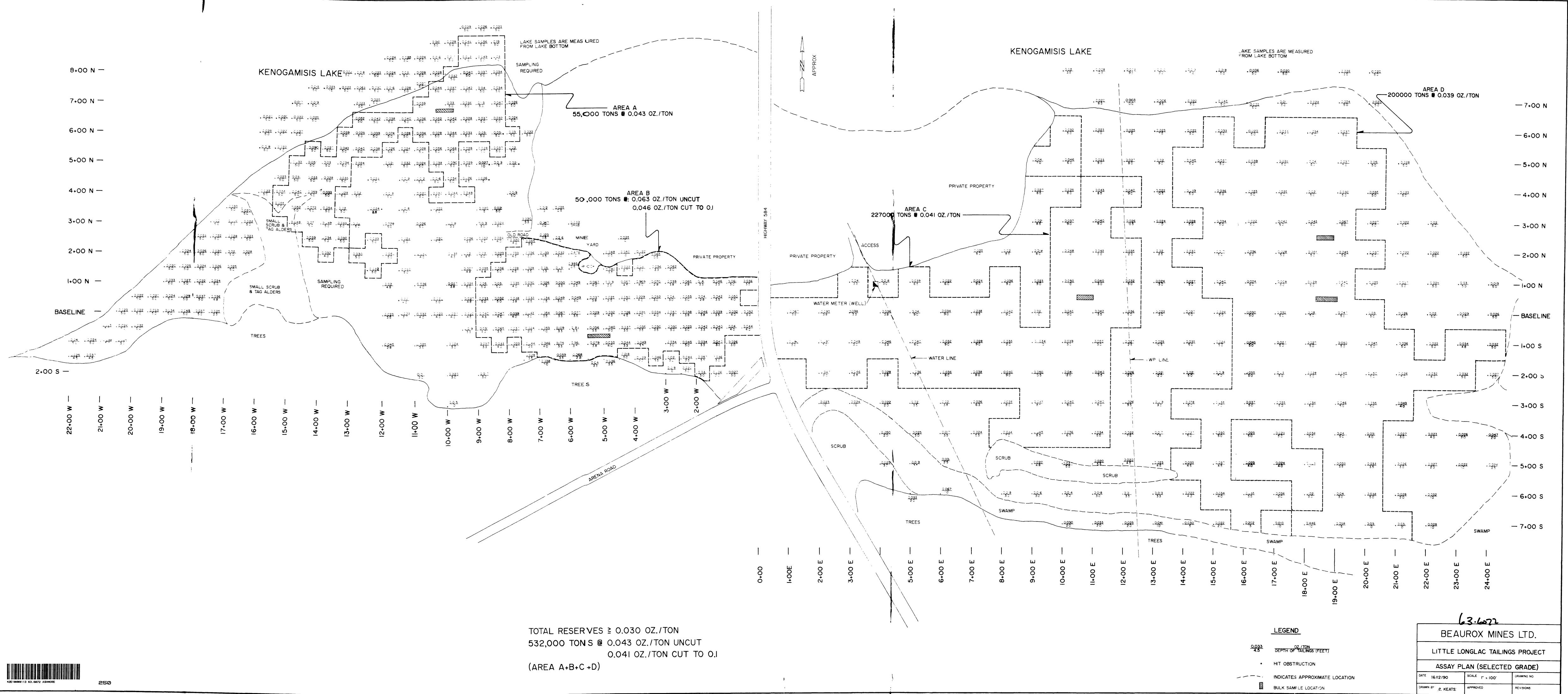
42E10NW0113 63.6072 ASHMORE

230

TOTAL RESERVES ≧ 0.025 OZ./TON 928,000 TONS @ 0.037 OZ./TON UNCUT 0.036 OZ./TON CUT TO 0.1


(AREA A+B+C+D)

EA D												
	035 OZ./T 7.8 FEET			LAKE SAMP FROM LA	LES ARE MEA AKE BOTTOM	SURED						
010	. <u>2013</u> 80	• <u>00,7</u> 80	• <u>0.032</u> 8 5	• <u>309</u>		• <u>0026</u> 35	. <u>0020</u> 50					
<u>006</u> 95	. <u>0.023</u> 8 0	• <u>0033</u> 90	0 <u>021</u> 75	. <u>C.0.4</u> . <u>85</u>	. <u>0024</u> 85	. <u>002</u>	• <u>•</u> ••					— 7+00 N
<u>)23</u> 15	. <u>3,040</u> 90	• <u>0.035</u>	. <u>0.020</u> 8 0	• <u>- 5</u> -	• <u>0.027</u> 90	• <u>2.036</u> 9C		KE	NOGAMIS	SIS LAK	ΚE	— 6+00 N
<u>02:</u> 0	. <u>0.042</u> 93	• <u>0.036</u> 90	• <u>0.030</u> 90	. <u>5,028</u> 1,3	• <u>0034</u> 90	• <u>029</u>	• <u>0 033</u> 10 5	. <u></u>	\			— 5+00 N
0 <u>22</u>	• <u>-2,23</u>	. <u>0.036</u> 105	. <u>0.023</u> 103	. <u>0029</u> 95	• <u>3 3 2 2</u>	• <u>0.028</u> 11 5	• <u>; 528</u> 'C 3	• <u>) C - 9</u> 10 5				— 4+00 N
024	, <u>0.028</u> 05	• <u>2 033</u> . 5	. <u>0.925</u>	. <u>. 03</u> 05	. 2.232 . 5	. <u> </u>	• <u>= = = =</u>	• <u>35,7</u>	• <u>- 95</u> 3			— 3+00 N
<u>22</u> 25	. <u>9.030</u> 120	- <u>2,023</u> 2,5	• <u>••</u>	. <u> </u>	• <u>2034</u> 20	. <u>२.०३३</u>	. <u>0028</u>	• <u>2020</u> 35	. <u>२,०।७</u> ७ ७ १	• <u>358</u>	· · · · · · · · · · · · · · · · · · ·	— 2+00 N
<u>224</u> 3 C	• <u>0 025</u> 12 5	. <u></u>	•• <u>••</u> •••	. <u>0016</u> 14 C	. <u>0.030</u> 4 5	• <u>• • • • • • • • • • • • • • • • • • </u>	. <u></u>	• <u>9,021</u> 8 5	. <u>90</u> 0 90	. <u>9.026</u> 8.0	• <u>20 9</u>	
<u>923</u> 3 0	• <u></u>	• <u>0.022</u> 3.5	• <u>0 026</u> '3 5	• <u>032</u> •140	• <u>0 043</u> 14 0	. <u>0035</u> 20	• <u>0 032</u> 5	. <u>0019</u> 95	. <u>3.32</u> 60	• <u>3027</u> 50	. <u>3026</u> 55	/ BASELI NE
<u>025</u> 05	• <u>0.027</u> 13 0	. <u>2.023</u> 12 §	• <u>0.027</u> 12 5	• <u>0.024</u> 14 0	• <u>0.024</u> !30	• <u>004</u> 90	. <u>2033</u> 95	• <u>95</u>	. <u>3022</u> 50	. <u>0.034</u> 4 8	. <u>3.032</u> 50	— I+00S
0 <u>2</u> 2 C	. <u>0.02i</u> 120	• <u>;;;</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• <u>203i</u> 153	• <u>0021</u> • <u>125</u>	• <u>0,026</u> '20	. <u>0252</u>	. <u>2050</u> 50	. <u>0026</u>	• <u>0 032</u> 4 0	• <u>0:032</u> 5 3	· · · · · · · · · · · · · · · · · · ·	— 2+00 s
0	. <u>0.052</u> 93	. <u>0035</u> 90	. <u>0033</u> 80	. <u>203</u> 1 75	<u>- 0,031</u> 70	• <u>0 042</u> 7 C	. <u>2035</u> 50	• <u>0049</u> 40				— 3+00 S
017	. <u>0029</u> 70	. <u>0.054</u> 8 0	• <u>0022</u> 65	. <u>0.023</u> 55	. <u>2.038</u> 50	• <u>0047</u> 50	- <u>0.031</u> 40	. <u>0027</u> 30	. <u>0023</u> 40	. <u>0026</u> 20	. <u>00-</u>	← 4+00 S
023	. <u>203</u> 3	. <u>2037</u> 45	• <u>0023</u> 40	. <u>0024</u> 40	• <u>0.024</u> 40	. <u>0.033</u> 3 5	. <u>0.033</u> 35	. <u>0.026</u> 30	. <u>9.927</u> 20	- <u>2055</u>	. <u>3.324</u> 05	5+00 s
<u>0:3</u> 3 3	. <u>0.022</u> 4 0	- <u>0.034</u> 40	. <u>0.035</u> 35	. <u>2036</u> 30	. <u>0.02 </u> 30	• <u>0,041</u> 3 0	• <u>0.038</u> 50	. <u>3.028</u> 3.0	. <u>0.032</u>			— 6+00 S
04	. <u>003C</u> 15	50022 20 50 SWAM	. <u>0.202</u> L5	. <u>2010</u>	. <u>0.446</u>	. <u>0.058</u> !5	<u>.0.03i</u> i0	. <u>0.03</u> 10	eso.o.		SWAMP	— 7+00 S
	I4+00 E	15+00 E /	16+00 E	17+00 E	18+00 E /	19+00 E	20+00 E	21+00 E	22+00 E -	23+00 E	24+00 E	
											CY MINIE	
	LEGEND										OX MINE	NGS PROJECT
	• •	OZ./T DEPTH OF TAIL	ION									ED GRADE)
		NDICATES APP BULK SAMPLE	ROXIMATE LOC	ATION					19/01/91	sc		


C KEATS

APPROVED

REVISIONS

---- -1