

42E10NW0145 16 ASHMORE

010

)

Diamond Drilling

- キョンキア ヤー

いたい

particular in the state of the

- あいまうれる、たいで、一般的いで

一次百姓人

the states

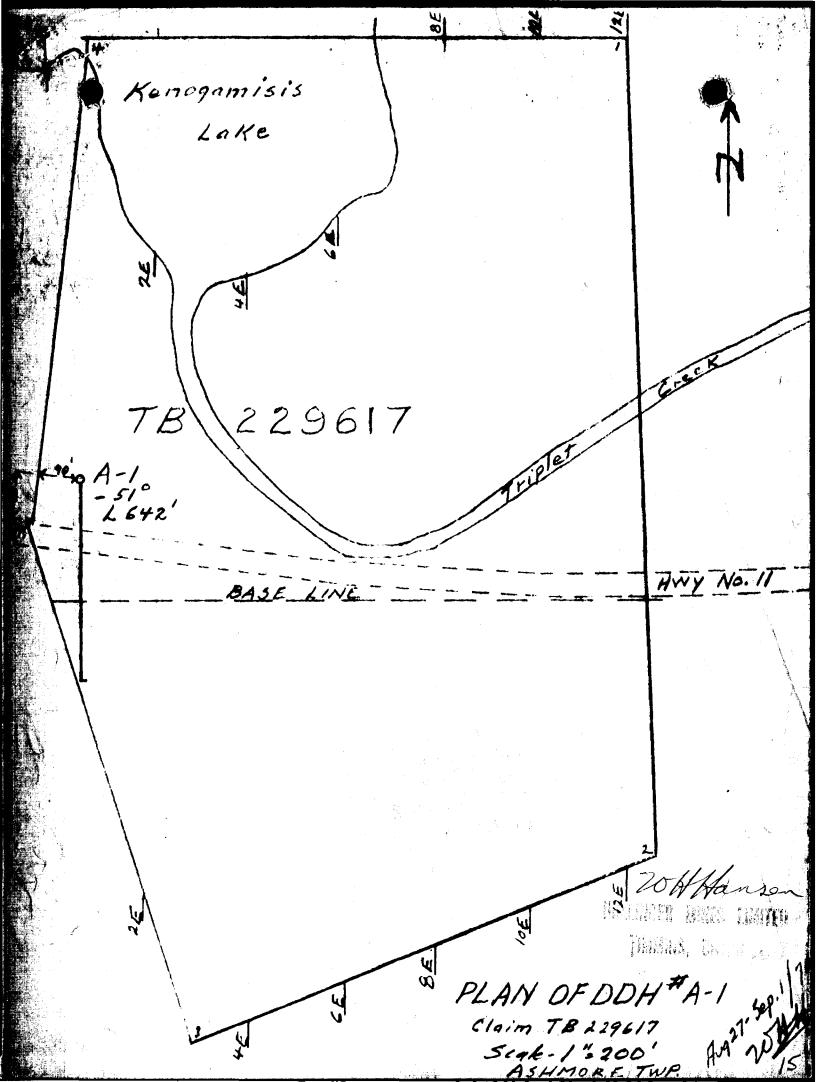
-

Township OF ASHMORE

Report NO: 16

Work performed by: HOLLINGER MINES LTD. (WILSON & KALSON OPTIONS)

Claim Nº	Hole NQ	Footage	Date	Note
TB 229617	A-1-70 *	642'	Aug/70	(1) (2)
	A-2-70	323.3'	Nov/70	(1) (3)
	A-3-72 ·	443'	Jan/72	(1) (4)
	A-4-72 ·	494'	Jan/72	(1) (4)
	A-5-72 ·	4481	Jan/72	(1) (5)
	A-8-72:	301'	Feb/72	(1) (5)
	A-10-73 ·	4021	1973	(1) (6)
	A-12-73 '	491'	1973	(1) (6)
TB 229616	A-6-72	492'	Jan/72	(1) (5)
	A-7-72 ↔	302'	J a n/72	(1) (5)
TB 10971	A-9-73	302'	1973	(1) (6)
	A-11-73	301'	1973	(1) (6)
TB 139353	A-14-73.	790'	June/73	(1) (6) (7)


Notes:

(...) date placed on file
(1) (May/74)
(2) 145/70
(3) 228/70

(4) 6/72

(5) 22/72

- (6) MEAP GB #33 (cross-sections only)
- (7) 102/73

· · ·		-	L.6421						1
.0	FROM	то	DESCRIPTION	FROM	то	RECOV.	LES WIDTH	ASSAY	DESCRIPTION OF SAMPLE
γ	0	4,8	Casing					50'	Dk f gr'd Angesite
· .									non regactic
	48	115	Grey green massive non magnetic					981	Foutled fine fr'd indesite
	·	·	Andesite uniform app. to core				· ·	 	non mighetic
				, .				1571	Dacite It. col. breccipted
	114	137	Feldspar For. Crey to green					2151	Cottled and or dacite?
			with incr. in chlorite numerous phenocryst	3				315	1. cherty Section Fyrr.
· · ·			of feldspar 2/10 of an inch in dia.						
			throughout section.					•	
			Contacts ground 23' Col of Forphry.						
	137	331	Banded chloritic Suff or Sed. brownish						· · · · · · · · · · · · · · · · · · ·
			bands mica? and green chloritic bands						
DERBAY	\		focally min with Pyrr Py + chalco	170	170.5	.5			Chl band Fyrr + chalco.
FRUCE CONTRACTOR			banding @ 80° to 60° to C.A.						Very magnetic
THUNDER BAY DECISION (C) DECISION (C) DEC	15161		21 Dacitic band at 157.	192	193	1.0	1.0		4" mass Fyrr + Py minor Cha
Ja Ser 1121121121-2			1621 sm. blebs Pyr. obs.						
1218191			170 sm blebs of pyrr. obs.						
•			190 - 261 nottled	242	24.5	2.5	2.5		Stz. strs. 30° to SA
			Lt. col. Dacitic Tuif?						bleached section yellow
									Cericitic
			at 264° cherty section minor pyrr. and						
			chalco	261	264	3.	3.		Ghl, band Fyrr + chalco

FORM 522 NORTH

EAST. ... ELEV. AZIM.

. .

HOLE NO. COMMENCED. FINISHED_ PURPOSE OF_

		DIP	·	PROPERTY	LE JE OFTI	<u> 01 - A</u>	stmore 1	<u>2wp</u> •		
-						co	DRE SAMPL	ES		
	FROM	·	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
•					264.5	269.5	5.0	5.0		Cherty chl. ection
										inor pyrr. V.L. chalco
					269.5	274.5	5.0	5.0		Vinor pyrr. V chalco
					274.5	279.5	5.0	5.0		Minor pyrr. C.L. chales
					279.5	284.5	5.0	5.0		Very little mineral
					284.5	287.5	3.0	3.0		band of Pyrr minor chalco
	.'									
					247.5	289	1.5	1.5		1" nearly mass Fyrr, + i'y
								<u></u>		minor chalco
					289	293.5	4.5	4.5		very little min.
										chl. section
THUNDER DAN					315	318	3.0	3.0		foir amount of Fyrr chalco
DECENVIC	m									in section Cherty
REGEIVE SFP 1 0 1970			 		323	328	5.0	5.0		Jocal streaks of fyrr minor
718191101111211121314		<u> </u>								chalco.
1		31_	367	Passive speckled Andesite fine grid						
			ļ	contact at 70° to CA	4.64	465	1.0	1.0		liss. Tyrr + Chalco
1.	3	367	404.5	Dk. fragmental Andesite non magnetic					 	· · · · · · · · · · · · · · · · · · ·
		·		no min.	·					
	4	.04	442	Mass. dk. gr. Andesite speckled app.						
				to core non magnatic.						·
				· · · · · · · · · · · · · · · · · · ·						
				· ·						
				· · ·						
		·							<u> </u>	
						\			\	

DIAMOND DRILL REPORT

FORM \$22 NORTH______ EAST._____ ELEV._____ AZIM._____ DIP

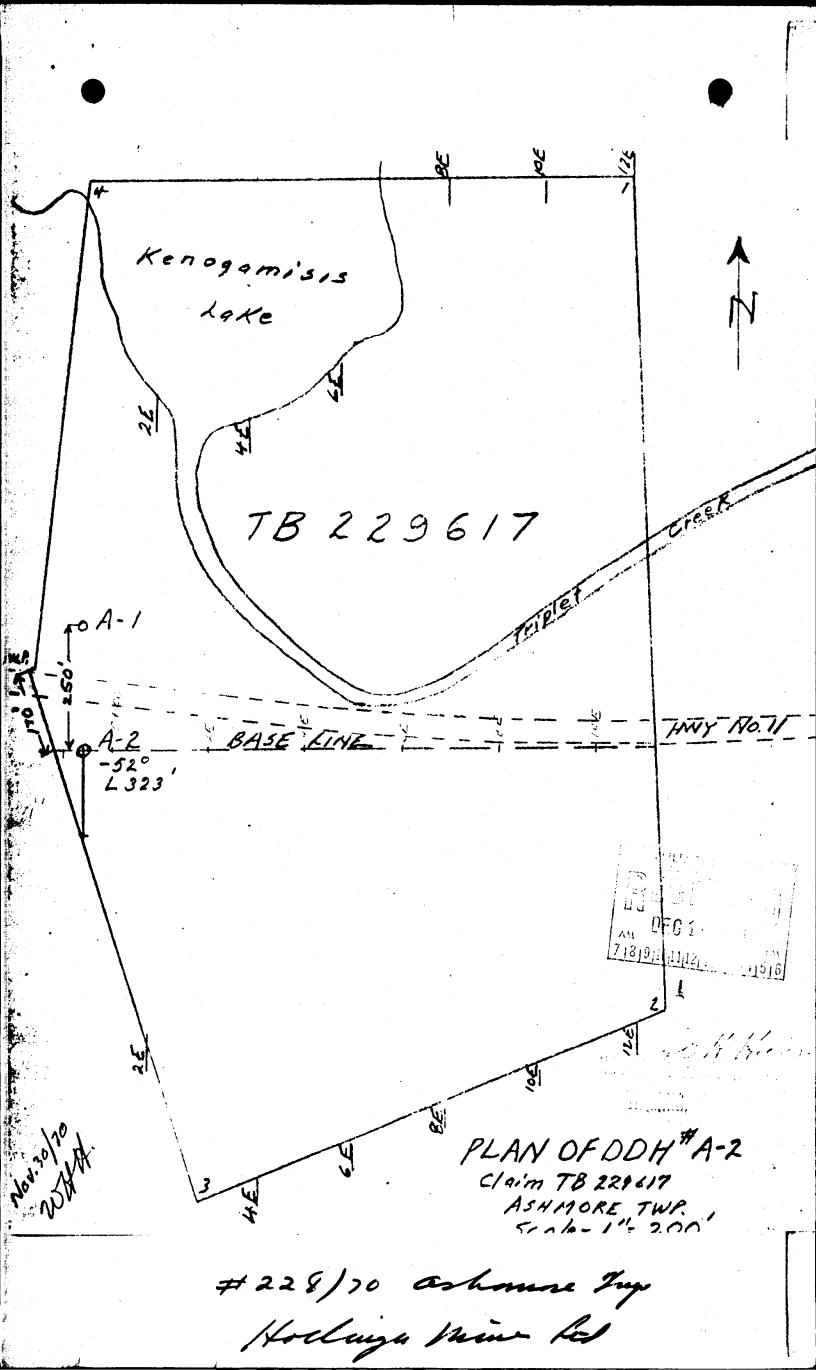
DIAMOND DRILL REPORT

PROPERTY MISSION UPTION - Ashrone Twp.

HOLE NO.	
COMMENCED	·
FINISHED	
HOLE	

		Ţ		T	C	ORE SAMPI	LES		
···.	FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
	442	.48.5	6.5* Cherty Tuff	497	502	5	5		V.L. Fin.
	— ·			502	507	5	5		Highly Alt. diss Dyrr.
·	448.5	5 487.5	Dk. sp. Andesito						
	•			517	522	5	5.0		Diss. Pyrr. Alt. Section
· •	487.5	5 501.5	Fine gr'd Veta-Tuff-Sed						
			banding 3 60° to C.A.	522	527	5.0	5.0		2 sm qtz. strs. fyrr in
							.		section
	501.5	607	Mats highly Alt. Andesite	527	532	5.0	5.(3 sm qtz. strs. m.n
-			Ein with pyrr minor		 				sections
			chalco	532	537	5.0	5.0		Min. Ject. cherty V.L. min
•				537	542	5.0	5.0		fair amount of Tyrr. in Alt.
									Section minor chalco
-			5721 cherty bands @ 50° to G.A.	572	575	3.0	3.0		21 chort banas
-				575	577	2.0	2.(Diss. Fyrr. sm. chart bands
	607	620.5	Bluish chert: fractured	577	579	2.0	2.0)	Min. with Myrr + chalco
			and breccisted minor min.	579	582	3.0	3.()	Diss. Pyrr minor chalco
RECEIVE	0)		· · ·						
SEP 1 0 1970	PM		619.5 - 619.9 Breccia	587	592	5.0	5.0		Fyrr. min. with chalco
7 18 19 10 1 1 12 1 1 2 3 4	516		Pradation to anygdaloidal	592	597	5.0	5.0		Diss. Fyrr. minor chalco
<u>لا</u>			Bit. Andesite well min	597	602	5.0	5.0	>	" qtz. str. min sect.
			highly magnetic pyrr.	602	607	5.0	5.0)	Piss. Fyrr in Sect.
			and chalco from	607	612	5.0	5.0)	Cherty bands V.L. min.
-				612	617	5.0	5.0)	n phác tự
• ·				617	619	2.0	2.0)	Very little min.
· · · ·				619	622	3.0	3.	C	Sell min Section Fyrr +chalco
-			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	622	624	2.0	2.	υ	Min. diss Fyrr some chalco
-				<u> </u>			**************************************		. 7

FORM 522 NORTH_ EAST. ___ ELEV. _____ AZIM. DIP _



DIAMOND DRILL REPORT

PROPERTY_	BILLOII	OPTION	-	A.SU. MI	1 1 2 D.
-UALEVIT					

HOLE NO.
COMMENCED
FINISHED
PURPOSE OF
HOLE

				с	ORE SAMP	LES		
FROM		DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
620.5	642	Dk green silicified amygdaloidal	621	627	3.0	3.0		ell min. best section
		andesite well min with						spots pyrr + chalco
		Fyrr. and chalco pyrite						very magnetic
		634-642 micaceous section non magnetic	627	629	2.0	2.0		kell min not so much chulco
<u> </u>			629	632	3.0	3.0		Mán. with pyrr + chaico
			632	632	2.0	2.0		Very little min.
			534					
		· · · · · · · · · · · · · · · · · · ·						
		642 END OF HOLE						
			_					
		es markengie HOLLINGER-MINES-LIMITED		-				THUNDER BAY
								REGEIVED
		TIMMINS, ONTARIO						SEP 1 0 1970
								7 18 19 10 11 12 11 21 31 4 15 15
								1
		-		<u> </u>				· · · · · · · · · · · · · · · · · · ·
				·				
 	,				· · · · · · · ·			14

Y ų 14 Kenogamisis Lake Y. AN AN TB 229617 94-1 Huy 101_ BASE -LINE & Huy 10 \$13-72. - 45 - 1 - 45 - 1 QA4-72 -45 1484 , C $\gamma \gamma$ HOOH ASPAYIE Wolf Hanson Konner 1923 19310 100m 16 2.28617 11. MORE YWA SUNA- 1"= 200 JIMANUS, ISTARIO

Z 31 4 Kenogamisis Lake NOTE DDH # A1, A2, A3 & A4 were previously filed DDH # A5 commended Jan. 22/72 Finished 24/72 1 T.B.229617DH # A6 Commenced Jan. Finished 72 18/72 DDH # A7 Commence Jan. 29/72 Finished " 31/72 DDH # A8 Commenced Feb. 2/72 **Pini**shed - 11 3/72 Contrator - Bradley Bros. Ltd. Timmihs, Ontario. Dia. of Core - AXT (1 3/16* BASE LINA 20 A: 8-72 -45° AA-72 A 5-72 A3-72 1301' 450 L443 L 448' 444 30 1 PLAN OF DOH A3, 4, 5+8-72 41 Con 9400 S 12 M CLAIM TB 229617, ASHMORE TWR ONTARIO 20 A Hansen ONTARIO MONTARIO LENTED Scale -11"= 200. MAME, STANA

Loca	TICH CAN NOT EASE ELE AZU	M 522 RTH ST V UOIIII	$\frac{1}{10} + \frac{250' 3001h of DH^{TI} A-1}{500 + 00N} = \frac{500' M}{500' M} = \frac{500' M}{100} = \frac{500' M}{100} = \frac{100' - 53'}{100' - 53'} = \frac{100' - 53'}{6100' - 53'}$	ASH	CORE T	UNSHII	PL	DLE NO. A=2=70 1. DMMENCED DOVERDER 16/70 NISHED OVERDER 20/70 JRPOSE OF DLE. (est. Mag.)
• =			Claim	TB-				Drilled by Bracley Bros.
	FROM	то	DESCRIPTION	FROM	то	ORE SAMP	LES WIDTH ASSAN	DESCRIPTION OF SAMPLE
	0	20	Casing	·				
	20	30.5	Silicified andesite fragmental . The					· · · · · · · · · · · · · · · · · · ·
			fragments are very suall-less than }"					
			and conorally obscure the fragments are			 	·····•	
			siliceous. The andesite is dark green			 	· · ·	
			to grey, siliceous, chloritic cut by quart	z				
<u> </u>			carbonate stringers. No mineralization.					
	30.5	49.7	Amygdaloidal andosite - amygdalos are			ļ	· · · · · · · · · · · · · · · · · · ·	
	······		locally well defined - rounded to elliptic	al		·	· ·	
			in shape and either siliceous or filled		·			
			with chalcopyrite and pyrrhotite.					
			There are also stringers of pyrrhotite					•
			and chalcopyrite in this section.					
			The andesite is greenish to grey with	45	50	ļ	5	Amygdaloidal andesite Cp.Po
			chlorite and silica and cut by					for Gu, Hi, Au,Ag
			quartz-CO3 stringers.					
-	49.7	71.6	Andesite fragmental-probably a tuff					
			since the fragmonts are very small 1"					
			in size. It is separated from the					
			anygdaloidal andesite mainly on the					THUMPER DAY
			basis that the fragments are very		. <u>.</u>			
			angular and siliceous in nature, Also					AM DEC 1 4 1970
			there does not appear to be any replacement	t				7131911311211213141516
			or filling of the fragment structure by					·
<u> </u>	·		cyrrhotite and	70	72		2	Lower part of fragmental W.
			chalcopyrite. Instead the mineral	·				Po-Cp section

FORM 522
NORTH______
EAST. ______
ELEV. ______
AZIM. _____
DIP _____

ġ,

DIAMOND DRILL REPORT

HOLE NO. 1.=2=70 2 COMMENCED______ FINISHED______ PURPOSE OF______ HOLE_____

PROPERTY ASHMORE TOUNSHIP

				C	ORE SAMP	LES		
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
		is simply disseminated and localized						
		to stringers. From 49.7 to 55						
		radational contact with the fragmental.						
		71-71.5 near massive section of						
		pyrrhotite and chalcopyrite-mostly				•		
		pyrrhotite.						
71.6	79.4	ione of mixed chert and amygdaloidal	75	77		2		Some chert and amygdaloida
		"aterial. The amygdaloidal sections	[material Cp Fo in amygdaldd
		show abundant po and some op completely						· · · · · · · · · · · · · · · · · · ·
		filling; the amygdales.						
		Juch are: 75-76.3 77.3-79.2						
		The chert is very dark and hard						-
		it is brownish in colour, no mineral or						
		very minor py along shears. Often						
		fractured and filled with chlorite.						
79.4	90.7	Andesite fragmental - the fragments			i 			
		ure larger here in size and only						
		locally were defined. They may be either		<u> </u>				
		cherty or chloritic. The andesite is		••••••••••••••••••••••••••••••••••••••				
		green in colour, fine grained with						
		abundant chlorite - cut by small quartz						
		carbonate stringers.						IN DE DE DAY
9 0.7	105.4	Another zone of brownish chert-			. 			MERENED)
		fractured with chlorite, epidote and		•				718191111121 900 PM
		quartz-carbonate.						71819119121211213141516

FORM 522 NORTH ______ EAST. ______ ELEV. _____ AZIM. _____ DIP _____

DIAMOND DRILL REPORT

HOLE NO. 4-2-70

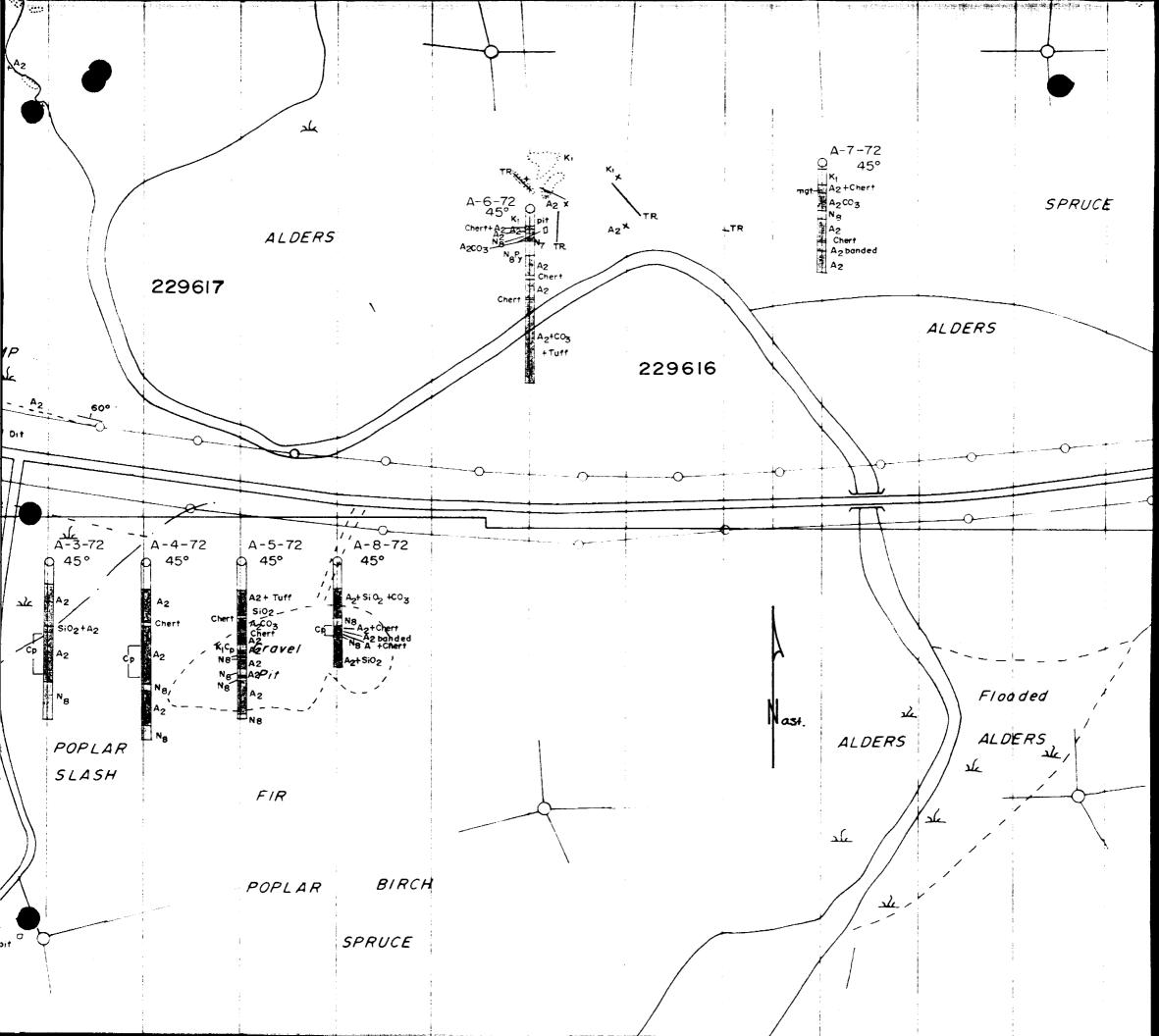
COMMENCED	
PURPOSE OF	

PROPERTY_ASHMORE TOWNSHIP

				co	ORE SAMPI	LES		
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
105.4	149.4_	Andesite fragmontal - fragments are						
		around 1" size and very numerous.						
		There are cherty, chloritic, epidote and			•			· · · · · · · · · · · · · · · · · · ·
		siliceous types. The charty and siliceous						
		types_of_fragments_may_be_separated						· ·
		since the certy types are gwyich to brown						
		and nearly clear while the siliceous						
		fragments are a bleached white colour						
		and noticeably different. There are						
		numerous small chert bands cutting the						
		core as well (3" across) 113-125 a						
		silicified zone where there are not as						
		many fragments as surrounding. The	·					
:		andesite is greenish (dark) in colour.						
		No min.						
149.4	238.4	Zone of weakly anygdaloidal andesite						
		149.4 152.3 gradational contact with						
		above. Generally the andesite looks						
	I	assive to a medium grained variety with	•					
		occasional anygdales filled with po and						
		py. The andesite is green, contains chlor	ite.					YEUDDER DAY
	•	cut by quartz-CO3 stringers.						而這些影响意思
		197.6 - 200 - snall chart braccia						0FC 1 4 1970
238.4	248.7	Zone of chert as before - brownish in						7181011011112111213141510
		colour.						· ·

3.

FORM 522 NORTH______ EAST._____ ELEV._____ AZIM._____ DIP_____


DIAMOND DRILL REPORT

HOLE NO. A-2-70

FINISHED______

AZ		PROPERTYA31	MORE T	OMISHI	p		HOL	E
		· · · · · · · · · · · · · · · · · · ·						
FROM	то	DESCRIPTION		1	ORE SAMP	LES	·	DESCRIPTION OF SAMPLE
			FROM	то	RECOV.	WIDTH	ASSAY	
248.7	280	Zone of coarse grained andesite						
		horneblende -carbonate-chlorite Schist.			·			·
		Schistosity at 55° to Core Axis						
•	ļ	green in colour, cut by quartz carbonate						
		chlorite stringers.						
280	282.9	Zone of brownish chert again.					·	
282	9 300.1	Andesite fragmental-fragments are	285	290		5		Andesite fragmental Cp. Po
		1" in size and often obscure, occurring						
		as siliceous or chloritic patches						
<u></u>		rimmed by chalcopyrite and pyrrhotite.	-					
		There is some Op and Po disseminated						
		throughout and some mineralization in						
		the quartz-carbonate stringers. There is						
		abundant chlorite and some epidote.					· ·	·
300.4	304.1	Zone of chert - cream coloured and locally						
		precciated-grades into lower zone- no						
		mineralization.						· · · · · · · · · · · · · · · · · · ·
304.1	323.3	Anygdaloidal andesite-very	315	320 .		5		Amygdaloidal andes. Cp, Po
· · · · · · · · · · · · · · · · · · ·		similar to the pevious horizon with						
		Op and Po in the amygdales and also in						
		lenses and disseminated throughout.						
· · · · · · · · · · · · · · · · · · ·	ļ	Arygdales locally woll defined-small 1/8"		ļ	·			
		size some pyrite may be found in stringers			ļ			
	<u> </u>	as well.			ļ			
		Day R alixandu			ļ			7.18/0/19/19/19/19/19/19/19/19/19/19/19/19/19/
		HOLLINGER ISINES LIMITED					}	1-1-1-2-1-213141516

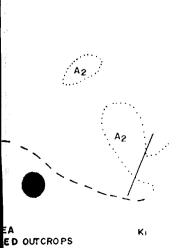
TIMMINS, ONTARIO

ALGOMAN

- Ng Feldspar (Albite) Porphyry
- Kı 🔶 Gabbro (Hornblende)

KEEWATIN

A₂ 📾 Andesite


bx - breccia

Shearing

----- Topographic Feature

- TR. Trench
- JTS. Jointa

ŝ:

FORM 822 NORTH_ x1 EAST. _ Surface ELEV. AZIM. @ 45° DIP . Collar <u>a</u>300 -

DIAMOND DRILL REPORT

A-3-72 HOLE NO. COMMENCED_ FINISHED_____ PURPOSE OF__ January 1 January 2 Test extension of copper zone and mag. HOLE -----

PROPERTY	-WILSON-	OPTION	#1	· · · · ·
			Ashmore	Twp.

				cc	DRE SAMPI			
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
0	60	Casing)
60	342.2	Andesite - dark green - fairly hard	1					
		chloritic and siliceous - locally carbo	onatiz	ed				
		sections which are slightly more browni	sh				•	
		in colour. Locally there are small						· · · · · ·
		quartz-carbonate stringers. @ 62 and						
		@ 67.5 there are a few chlorite blebs						
		in the core, which is somewhat leached						
•		in these two sections. Mineralization						
		at the first is practically negligible	•	•				
		only rare splashes of py.						
		186.1-204 Much more siliceous band						
		It is not a chert band though - fairly						
		hard, black. Sulphides are very minor						
		but there is some cp.						
		190-200 apparently there is some						
		lost core - it is broken up here but						
		no evidence of a fault is indicated.						
		At 204 the rock is less siliceous						
		and more andesitic in appearance. Afte	r					
		a short zone of carbonatization, the	208	210		2		A2CO3 - 10% sulph. Tr.c
		mineral content increases, around	210	213		3		" - 7% sulph. Tr.cp
		208.2. The reck here is identical to						
•		the rock @ 250 in DDH A-4-72, except						
		that the mineralization here is mainly						
	•	disseminated. Chalcopyrite content is		}	\	1		

FORM 822 NORTH_____ EAST.____

ELEV. _

DIP _

DIAMOND DRILL REPORT

PROPERTY____WILSON_OPTION_#1____

	1			<u> </u>								
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	-	ESCRIP	TION OF SA	MPLE	
	1	very minor - The main mineral is				· ·			Cu	,Zn,Ag		
		pyrrohotite and some pyrite. Total	215	220		5	· · ·	A2C03		Sulph.	minor	cp
		mineral - 7-10% Even with 5-7% po	220	225		5		11	- 5%	11	11	cp
	1	the rock is only slightly magnetic.	225	230		5		11	- 5%	11	11	cp
		This above rock gradually grades	234	235		•1		n	- 79	, n	11	cp
<u></u>		back to a carbonatized andesite. The	240	245		5		11	- 5%	; 11	11	cp
		pyrrohotite also becomes more magneti	° 249	250		1		n	- 59	<u>,</u> 11	some	cp
		around 230. The mineralization gradua	lly									
· · · · · · · · · · · · · · · · · · ·		tends to change to a more throughgoir	g 255	260		5		n	- mi	nor Sul	lph. vi	S C
	,	stringer type of mineralization, Then	e									
		is also a gradual increase in copper										
		content, although pyrrohotite and										
		pyrite are the major minerals present	•								•	
		Where there is a larger amount of										
		sulphides, the pyrrohotite is general	ly							- <u>((1999) - 1999</u> - 1997 - 19		
		much more strongly magnetic.	285	290		5		n	- 10	0% Sulp	h 1% (cp
		The rock changes gradually from	. 290	295		5		n	- 39	6 Sulph	. smell	l cł
]	silicified to carbonatized zones	295	300		5		11	- 5	% n	minor	r cj
		throughout this entire section.	300	305		5		H	- 5	6 11	Ħ	cl
		Around 283 the mineralization	305	310		5		n	- m	inor Su	lph. n	0
		is in the form of both stringers and						vi	sible	ср		
		disseminations, and increases to	310	315		5		n	- 7	-10% po	py ve	ry
		approximately 7% sulphides overall.						mi	nor c	-		
		The sulphide content remains high	315	320		5		11	- 7	-10% po	py ne	g. (
·		until around 321, where the mineral										
	1	content decreases rapidly. As previo	48,		1			· ·				

•

DIAMOND DRILL REPORT

HOLE NO. A-3-72 ...3 COMMENCED_______ FINISHED_______ PURPOSE OF_______ HOLE_____

.

PROPERTY WIESON OPTION # 1

	T			MOTE TI			
TROM TO	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
	most of the mineralization is pyrite						
	and pyrrohotite, with only local spla	shes					
	of chalcopyrite. This zone is the mos	t					
	strongly magnetic. There is also some						
	biotization developed.						
	Around 321, the rock grades to a						
	dark green, unmineralized andesite -						
	it is chloritized and carbonatized.						
3.42.2 44	Diorite - grey in colour, with						
	numerous feldspar phenocrysts (or						
	metacrysts) developed - often feldspa	r					
	shows minor epidote alteration. Silic	ified					
	Weakly magnetic in the presence of sp	arse s	ulphid	es			
	- being po and py After 360, there						
	does not appear to be any pyrrohotite						
	- only very minor pyrite. Here the						
	rock gradually becomes more massive a	₿-					
	well.						
	387-394 strongly carbonatized zon	8 -					
	only vestiges of feldspar crystals						
	remain.	•					
	394-405 massive as 360-387						
	@ 405 the diorite becomes more hi	ghly					
•	altered with a much higher epidote co	ntent.					
	Some of the feldspar crystals are sta	ined					
	reddish by iron, while others are						

FORM \$22 NORTH_____

ELEV. _____ AZIM. _____ DIP _____

DIAMOND	DRILL	REPORT
---------	-------	--------

.

HOLE NO. A-3-72 ...4 COMMENCED________ FINISHED_______ PURPOSE OF_______ HOLE______

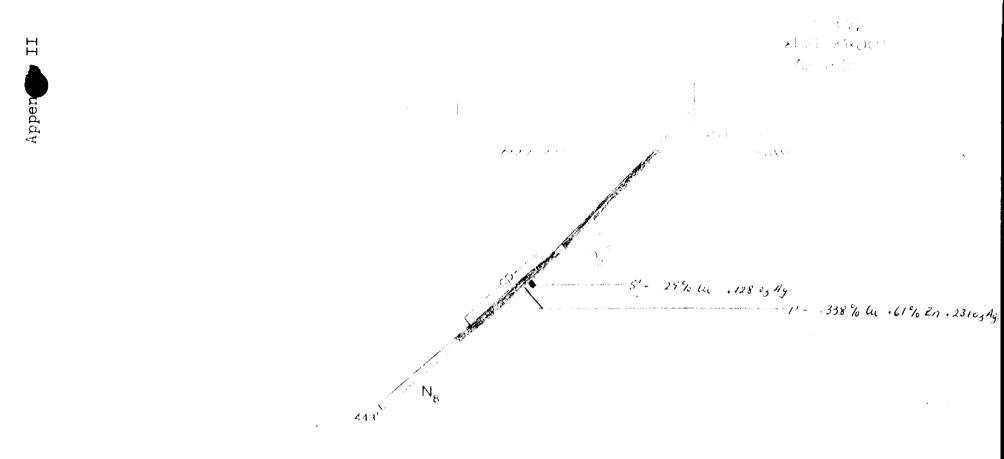
PROPERTYWILSON_OPTION #1_	
---------------------------	--

					more T			
FROM	то	DESCRIPTION	FROM	TO	RECOV.		ASSAY	DESCRIPTION OF SAMPLE
		completely altered to epidote. The						
······		rock now is a limey grey-green as					•	
	11	opposed to the original grey colour						
		of the earlier intersection. As befor	e					
		some sparse pyrite.						
· · · · · · · · · · · · · · · · · · ·	443	End of Hole						
·····						· · · ·		
		HOLLINER MEES LIMITED	[
	.	JIMMINS, ONTARIO						
· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·
······			 					
··		L						
			l					
								
		•						
					ļ			
	······································							
·····		•						
······································								
				·				
		· · · · · · · · · · · · · · · · · · ·	<u>∦</u>					<u> </u>
			1	l	1	L	I	

FORM 822 NORTH

EAST. ELEV. _

DIP _


DIAMOND DRILL REPORT

HOLE	NO.	A-3-72

HOLE NO.	A-3-72	5
COMMENCED		
FINISHED		
PURPOSE OF		
HOLE		

WILSON OPTION #1 PROPERTY.

FROM	то	DESCRIPTION		C	ORE SAMP	DESCRIPTION OF SAMPLE		
FROM		DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
		SAMPLES FOR THIN SECTION			[
	62	Andesite - a few chlorite blebs in a						
		zone which is cut by a short quartz-						
		carbonate stringer with wall rock lea	ching					
	100	Andesite - dark, chloritic, siliceous						
	150	Silicified and carbonatized andesite						
	200	zone of dark silicified andesite						
•	250	Carbonatized andesite with po and py						
	300	Carbonatized andesite, po, magnetic						·
	350	Grey silicified diorite						
	393	Carbonatized diorite						
	438	Altered diorite - some epidote						
					<u> </u>			
		· · · · · · · · · · · · · · · · · · ·						·····
	,							
			•					
								Dave R. Awxand
		· · · · ·						HOLLINGER LINES LINETED
,								IIMMINS, ONTARIO
•								Emmund Amma
	· ·	,			1			

scole fact

·

Richent Geograf Ihunder Bay P) Antario

NC EA EL	.EV (IM P(<u>1.5</u> DIAMOND DIAMOND DIAMOND DIAMOND PROPERTY	DRII	TION /	1		COM	E NO. 4-4-77 (1)-47 IMENCED 1-47 SHED 1-47 POSE OF 1-47 F. 10051 001 001 001
	γ	۳۰٬۵۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲ ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲٬۰۰٬۰۰۰ - ۲	<u></u>		nship			
FROM	то	DESCRIPTION	FROM	то	RECOV.	.ES WIDTH	ASSAY	DESCRIPTION OF SAMPLE
0	£1.	Casing						
81	337	The rock is best described as an					-	
		andesitic flow, although there are a						
		wide variety of charges in the rock						
		itself. For the nost part the andesite						•
	-	is dark green and fairley massive. It						· · · · · · · · · · · · · · · · · · ·
	1	is chloritic and generally highly						
		Carbonatized. There are a few small						
	1	Quartz-carbonate stringers which						· · ·
······	1	locally show leaching and silicifest	ion					· · · · · · · · · · · · · · · · · · ·
	-	into the surrounding rock. Locally		·				
		the andesite grades into a member						· · · · · · · · · · · · · · · · · · ·
		which is composed of numerous blebs				····		······································
	-	of chlorite. As these blobs become						
		larger they appear to be altered fre						
		There is a shall arount of epidote						
		associated with this unit as well.					+ 4 	
		This member is prominent from 1(0-1?						· · ·
		Small clet of pyrite > 137				·····		
		A zone of strong carbonitization sta	nt c	 				
	+							
		and grades to a much lighter green						
		with increased carbonate content.						
		Around 158 start to get a minor amou	<u> </u>					
		of disseminated pyrite with about 3% disseminated pyrite of 164-167. Here		 			<u> </u>	

FORM \$22 NORTH_

ELEV. ____

DIP

DIAMOND DRILL REPORT

HOLE NO.	A-4-79
COMMENCED	
MILLION	

COMMENCED______ FINISHED______ PURPOSE OF_____ HOLE_____

.

.....

 PROPERTY

LSON OPTION ") chione Th

			Asheore Twp.					
FROM	то	DESCRIPTION	FROM	то	RECOV.	1	ASSAY	DESCRIPTION OF SAMPLE
		there are occasional splashes of cp				† 		<u> </u>
		with the py, but only a very minor an	hunt				· ·	
		164-178 Short chert band - con	1					
	-	are diffuse since the andesite is sil				<u> </u>		***************************************
		at the contacts. Minor py in first				•		
		chert band(or flow top) at the contac	∦ ≵ ,					
		otherwise barren. Colour is dark grey	· · · · · · · · · · · · · · · · · · ·					·····
	1	black.						
		After the chert band the andesi	te is	·····				
	- <u> </u>	again highly carbonatized; the first	164	167		3 .		<u>35 disseminated ry, wir</u>
	-	occurrence of po is noted here - only	/					cp in carbonatized AF
		weakly magnetic though.						,
		Around 200 the alteration is qu	lte					
		strong and later around 225 the rock	S					
		crudely bacded in layers of alterati	on					
		at 60° to the core axis mairly						
		brownish carbonate and chlorite.						
		After 175 there is generally s	ome					
		sulphide mineralization throughout.						
	1	overall py-3% - in large clots,						
		in stringer fillings, disseminations	;					
		and along shear planes,						
		ro - minor - usually associated						
		with small clots or blobs of py.						
`		op-minor may be disseminated in smal						
		splashes - rarely alone as a larger		١				

FORM \$22 NORTH _____ EAST. _____

ELEV. AZIM. DIP

DIAMOND DRILL REPORT

HOLE NO. 2-4-723 COMMENCED______ FINISHED______ PURPOSE OF______ HOLE_____

PROPERTY MILSON OPTION # 1

					more T			
FROM TO		DESCRIPTION			DRE SAMPL		DESCRIPTION OF SAMPLE	
			FROM	то	RECOV.	WIDTH	ASSAY	
	·	bleb, since usually found with py						
		either with or without po.	<u> 200</u>					smell clot of py in
		213.5-214.5 - small white chert	pand					calcite - Geochem. & au
		Around 230 the cp content begins to						
		increase - still in the cerbonatized andesite.						
		cp is the main mineral here - up						Cu,7n,Ag
		to approximately 254.	230	235		5		A2-003 -2% cp
•		- 236-234 isolated stringers and	250	252		2		" -5% cp 3% po
		blobs of cp. 1-2% overall	252	- 254		2		" -2-3% cp 2% po
		- 234-049 very minor cp	254	258		4		" -minor cp, po, py
		- 249-250 chert, white	258	259		1		" -4;5 cp, 4;5 po py
		250-254 numerous small stringers	259	260		1		
		of cp w/w'out po approximately 5% cp	260	265		5		" -3.5% cp minor po ; " -2-3% cp 4% py po
		254-265 brownish, carbonatized,	265	270		5		" -1-2% cp 2% po py
		andesite - blobs calcite, numerous	270	275		5		" -minor cp
		blebs cp, po, some py locally along	275	276		1		" -45 cp
		shears especially after 257.5						
		some biotite? small xls. may be Zn.						
		265-271 mainly stringers of cp						
		again, some po - rock grades back to						
		more grey green carbonatized andesite						
		271-274 grey green carbonatized						
•		andesite. Only one small stringer of	cp.					
		275-276 some brownish carbonate						
		4% cp					1	

FORM 822

EAST. ____ ELEV. ____ AZIM. ____ DIP _____

DIAMOND	DRILL	REPOR	27
---------	-------	-------	----

HOLE NO. A-4-72 .../4 COMMENCED_______ FINISHED_______ PURPOSE OF_______ HOLE______

PROPERTY_____WILSON OPTION #1

			Ashnore Twp.						
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DES	CRIPTION OF SAMPLE
		276-291 mostly grey green carbonatize	a						
		andesite. local blotches of cp with py	& po						
•		some brown carbonate with cp @ 278.5-							······································
		280 and 290-291.5				1			
		291-294 3 short bands of chert, brecc	iated						
		with minor py po				L			
		294-302 some stringers of py, a few s	tringe	°8					
		of cp, very minor po	276	280		4		A2-CO3	- 1% cp # 3% py p
		302-303 small chert band	280	285		5		n	- 1 small blob cp
		303-314 strongly silicified zone,	285	290		5		11	- very minor cp
		brecciated with substantial blobs of	CP 290	295		5		Ħ	- minor cp
		dark grey - local patches of chlorite	295	300		5		Ħ	- minor cp
		very massive	300	303		3		11	- minor cp
		314-320.5 more of a transition zone t	han 303	305		2		11	- 4% cp blobs
		an actual change in rock type. Locall	, 305	307		2		n	- minor cp
		silicified and local patches of	307	310		3		Ħ	- 1% cp very mind
		carbonate alteration. minor cp locall	, 316	318		2		n	- minor cp po
		320.5-337 a short unit of tuff -							
		would appear to be more of a dacite t	han an						
		andesite paler green - fragments							·
	·	are generally small and leached whiti	sh in d	olour					
		Mineralization - negligible - only							
		occasional py. Both contacts are							
		gradational into 5 feet of heavily							
		carbonatized rock.							,
	·		1		{		1		

FORM 822

NORTH
EAST
ELEV
AZIM
DIP

DIAMOND DRILL REPORT

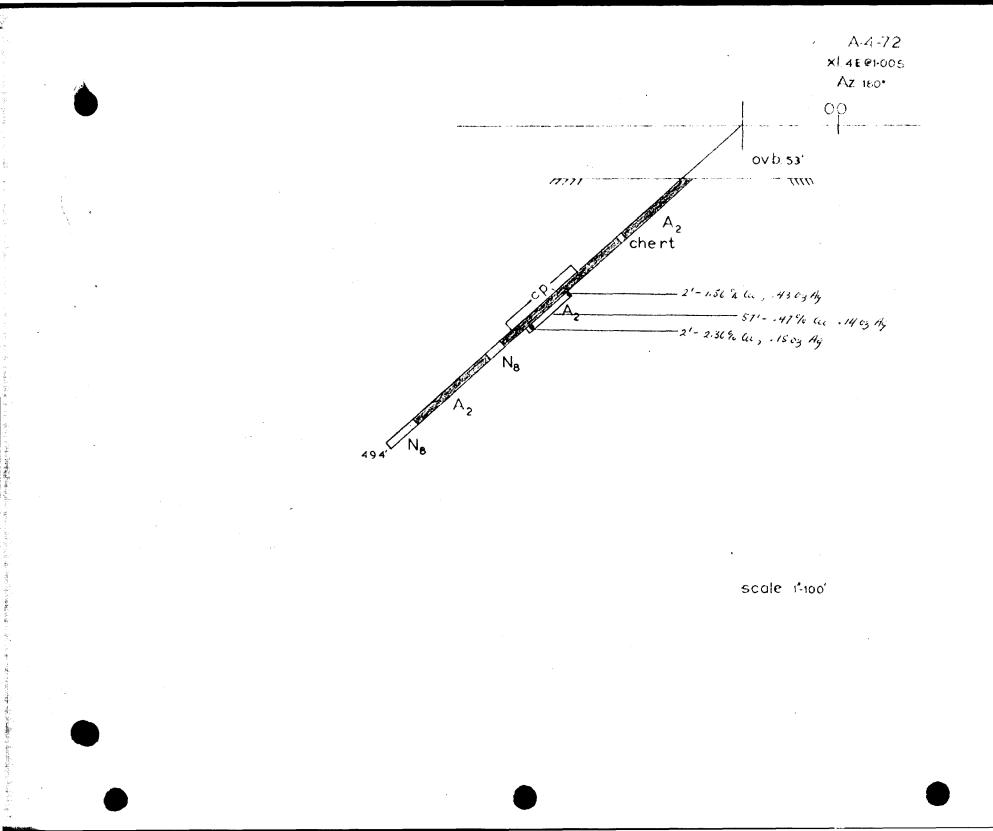
HOLE NO. A-4-	-725
FINISHED	
PURPOSE OF	
HOLE	· · · · · · · · · · · · · · · · · · ·

PROPERTY_____Wilson Option #1

				Ashmore Twp.				
ROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
337	357.7	Diorite? - this zone is siliceous, gr	ey					
		in colour, with a general developemer of feldspar phenocrysts throughout.	t					
<u> </u>		fairly massive unit, unmineralized -						
		some epidote near contacts. Sugary				•		
		texture - strongly carbonatized.						
357.7	458	Andesite - darker green and more chlo	ritic	at the				
		contacts, while the central portion is		1				
		lighter in colour and more siliceous.		·				
		There are a few splashes of cp in the						
		first 20 feet but afterwards the						
		mineralization is negligible. Some sma						
		quartz carbonate stringers with local						
		iron stainings. Minor epidote.						
458	494	Diorite - Pale grey to dark grey in						
		colour. Darker than previous intersect Numerous small blotches of epidote	ion.					
		alteration, rock is silicified and can	bonat	zed.				
		Feldspar phenocrysts (or metacrysts),						
- <u></u>		common as before. No mineralization						
		non-magnetic.						
	494	End of hole.						
		CASING LEFT IN HOLE.						
		HOLLINGER MINES LIMITED		•				

	-
NORTH_	
DIP	

DIAMOND DRILL REPORT


HOLE NO. A-4-72 ...6

COMMENCED_	
FINISHED	
HOLE	

PROPERTY	WILSON	OPTION	#1

				Ashmore				
FROM	то	DESCRIPTION	ļ		ORE SAMP		DESCRIPTION OF SAMPLE	
	+		FROM	то	RECOV.		ASSAY	
	╂╂	SAMPLES FOR THIN SECTION						
	_							
	117.5	Andesite (tuff?) with chloritic frage	ents					
	150	Carbonatized andesite with minor						
		disseminated py				•		
	200	Carbonatized andesite minor py, cp						
	249.5	Just previous to the copper zone -						
		carbonatized andesite						
	300	Pale grey green carbonatized andesite						
		(dacite?) py & cp						
	350	Carbonatized diorite						
	400	Silicified andesite						
	450	Altered andesite						
	479	Carbonatized diorite with epidote						
								<u></u>
		Check collar @ 42° Azimuth @ 180°					·	

		an an tha an						
	1					·		······
				· ·	+			
								Day 2 De
• · · · · · · · · ·								Day. R. alexand
							<u> </u>	HOLLINGER LANES LANTED
	.Iİ.		1	L	1	L		HULLMALL MINLO LMMILD

TIEMMINS, ONTARIO

FORM S22

NORTH_ EAST. ELEV. ______Surface_____ AZIM. ______180° DIP _____Collar @ 45° __@300-41°

DIAMOND DRILL REPORT

HOLE NO. A-	5-72 January	-20:1972
HOLE		

		Claim TB 22961	<u></u>	<u>A</u> \$	hmore	Ewp. On		-Prilled by ; Brudley Bros
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
0	76	Casing				•		
76	235.6	Andesite - massive with tuffaceous						
		sections. The andesite is generally dar	k					
		green in colour but is often lighter in						
		tuffaceous sections.				•		
		The first part is unmineralized,						
		non-magnetic, and chloritic						
		The tuffs have a very fine fragment	t					
	_	size - usually less than 1/26". In some						
		sections there is a predominance of				•		
		chlorite blebs throughout the rock :						
		Tuff : 95-97, 103-106, 108-112, @ 117.2		<u></u>				
		and 122-122.5.						·
		@ 112 a crude chicken track structure						· · · · · · · · · · · · · · · · · · ·
		is developed with numerous blebs of						
·		chlorite and some lath-like crystals						
		which appear to be altered to chlorite.						
		There are also some quartz-carbonat	te					
		stringers with hematite staining in this	6					
		zone.						
		Some contacts between different						
		units are readily visible and are						
		consistently @ 80° to the core axis.						
		Some other contacts are either irregular	r					
		or gradational.		• • •				

•

FORM 922 NORTH...... EAST. ELEV. AZIM, DIP

DIAMOND DRILL REPORT

HOLE NO. A=5=72 ...2 COMMENCED______ FINISHED______ PURPOSE OF______ HOLE_____

PROPERTY___WILSON__OPTION_#1____

	Ī	Ţ,			hmore T			
ROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
		around 162, as pyrite in a short silic	eous					
		band 160.9-162						
		Small amount of tuff ? @ 165 with			· · · · · · · · · · · · · · · · · · ·			
		chlorite blebs.						
		169.8-171.5 , Short zone of chert	['					
		bands (or flow tops). Same as material	4'					
		in holes A-1 &A-2. A short stringer of	<u> </u>					
		pyrite @170.9. The rock is grey in col	our	<u> </u>		· .		· · · · · · · · · · · · · · · · · · ·
		and leached whitish.	<u> </u> '	<u> </u>				
		171.5-177.4 - Grey green andesite	 '	<u> </u>				
		with minor disseminated pyrite.	<u> </u> '	 				· · ·
		177.4-181 very dark chloritic andes			-		+	
		- tiny white flecks of leucoxene - may	·	 				
·		be a diorite since there are vestiges	 '	 		+		
		of feldspar.	 '			+		
		The rock now becomes strongly	′					
		carbonatized - brownish carbonate with	<u> </u> '	 				
		some minor pyrite.	 '	 				
		200.6-205 small chert bands also @	 '	1				
		214.1-215.4, 217-218.8	<u> </u> '	. 				
		Around these chert bands, the andesi	te					
		appears to be tuffaceous, only occasio	- II I					
		fragments though.	['					
		@ 221.5 start of a zone of carbonat	dizatic	'n				
		- brownish colour. Extends to 233 when		· ·				
	·	it grades into a very siliceous gone,	1	1	<u> </u>]		· · · · · · · · · · · · · · · · · · ·

FORM 622 NORTH_____ EAST. _____

ELEV.

DIAMOND DRILL REPORT	DI	AMOND	DRILL	REPORT
----------------------	----	-------	-------	--------

HOLE NO. A-5-72	3
FINISHED	
PURPOSE OF	
HOLE	

AZIM. DIP PROPERTY -WILSON OPTION #1-Ashmore-Two. CORE SAMPLES то FROM DESCRIPTION DESCRIPTION OF SAMPLE RECOV. WIDTH ASSAY FROM то up to 235.6. First minor cp in this zone - 2 small splashes - one @ 221.5 and one @ 230. Minor py 235.6 254.9 Short dyke of hornblende gabbro very dark green with numerous small blocky crystals of hornblende 1/16 " size. carbonatized Contacts with the andesite are irregular upper @ 90° to C.A. lower @ 45° to C.A. @ 240.2 a large bbob of cp along Cu, Zn, Ag a quartz-carbonate stringer. No mineral 240 241 1 Kl - 2% Cu? before that but afterwards there some cp and py all through the dyke. It is 241 245 L " - neg. sulphides usually associated with small quartz-" - 3% sulph. 1.5% cp 245 250 5 " - minor sulph. vis. cp 250 255 5 carbonate stringers but this is not always the case. 254.9 264.2 Silicified and carbonatized andesite - very minor py po 302 303 A2 - 5% sulph. 2% cp 264.2 267 Diorite (or albite porphyry) - grey with numerous feldspar phenocrysts (or metacrysts). There is some epidote alteration - contacts irregular, Minor disseminated pyrite throughout. 267 270.1 Andesite, grey-green, ummineralized. Diorite (or albite porphyry), as 270.1 279.5

previous section, grey, feldspar, epidote

FORM 822 NORTH_ EAST. ____ ELEV. ____ AZIM. ____

DIAMOND DRILL REPORT

...4

T	<u> </u>			وبز صحب محد الراب	shmore			
ROM	то	DESCRIPTION	FROM	то	RECOV.		ASSAY	DESCRIPTION OF SAMPLE
		and disseminated pyrite.						
279.5	306.5	Andesite - grey-green, locally						
		carbonatized or silicified, minor ser	cite					
		in streaks. Mineralization is minor,						
		disseminated pyrite, very minor cp.				•		
		There are two blobs of cp between 302	303					
		with some po, - just cutting the core.						
306.5	326	Diorite (or albite porphyry),		<u></u>				····
		contact 2 80° to the core axis. Sparse						
		mineralized with py cp - only one tin						
		splash of cp seen. carbonatized.						
		The rock is similar to before exe						
		that from 317-322 it becomes more mas:	ive					•
		and finer grained.						
326	330.9	Carbonatized andesite - unminera	ized					
330.9	336.8	Diorite (or albite porphyry), ver	у					
		dark here, with feldspar as before, th						
		is a lot of epidote alteration in this						
		Only one small splash of cp seen @ 33						
336.8	437	Andesite - grey-green to the vari						
		that is carbonatized and brownish, Very						
		sparsely mineralized - cp is very mine	r.					
		Mineralization is usually with quartz-		- <u>11 - 11 - 11 - 11 - 11 - 11 - 11 - 1</u>				
		carbonate stringers. Around 402 the		·····		.	<u> </u>	
		andesite becomes darker in colour and	is	•				

FORM \$22 NORTH____

ELEV. _ AZIM.

DIP _

DIAMOND DRILL REPORT

HOLE NO. A-5-72 ...5

COMPLETOED
FINISHED
PURPOSE OF
HOLE

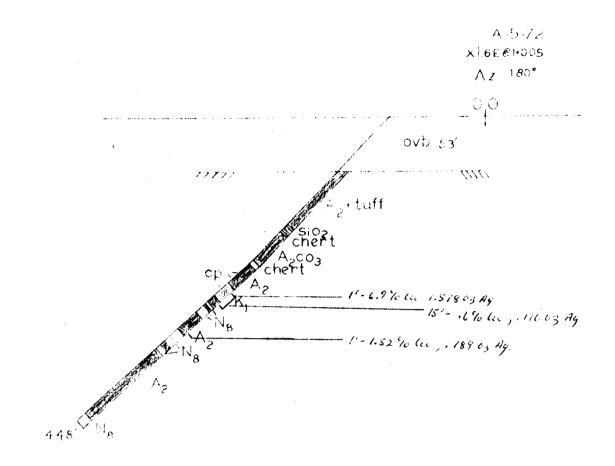
PROPERTY____WILSON_OPTION #1

	T			AS	hmore			
FROM	то	DESCRIPTION	FROM	то	RECOV.		ASSAY	DESCRIPTION OF SAMPLE
		iron staining in the quartz-carbonate		;				
	1	stringers. Minor epidote and/or seric	1					
437	448	Diorite (or albite porchyry), as		· .				
		before - a bit coarser grained, minor						
		disseminated pyrite, epidote alterati				•		
		carbonatized.				,		
	448	End Of Hole						······································
				<u></u>				
			ļ					
		· · · · · · · · · · · · · · · · · · ·						
	_ _		 		[
								······
<u></u>								· · · · · · · · · · · · · · · · · · · ·
			 					······································
								······································
	_							· · · · · · · · · · · · · · · · · · ·
					 	ļ		
	_] 			<u> </u>		
			 					
	1	1	ĥ	1	1)	1.

FORM \$22 NORTH_____ EAST. _____

ELEV. _

DIP _


DIAMOND DRILL REPORT

HOLE NO. A-5-72 ...6

COMMENCED
FINISHED
PURPOSE OF
HOLE
110 E H

PROPERTY WILSON OPTION #1

			<u>п</u>		ORE SAMP			
FROM	то	DESCRIPTION	FROM	то	RECOV.	DESCRIPTION OF SAMPLE		
						WIDTH .	ASSAY	
		SAMPLES FOR THIN SECTION			}			
	76	Grey green andesite - chloritic						
	112	Chicken track structure in tuff ? -						
		chloritic						
	150	Grey green andesite						
	200	Carbonatized andesite						
	250	Hornblende gabbro						
	300	Andesite - grey green						
	350	Andesite - dark green - weakly carbons	tized					
	400	Andesite - few quartz-carbonate string	ers					
	440	Diorite(or albite porphyry) - pyrite						
	1							
	1							
	-							
					1			· · · · · · · · · · · · · · · · · · ·
								HOLLINGER MINES LIMITED
	1							TIAMANS, ONTARIO
	1				+			Dave R. alexande
	-1							
	1		1		1		1	
	1			{			<u> </u>	**************************************

scale 1"-100"

HOLE NO.	
COMMENCED_	January 25/72 January 28/72
FINISHED	lamary 28/72
PURPOSE OF_	
HOLE Che	ck EN-anomaly

PROPERTY	ILSON	-OPTIC	DN#1	· · · · · · · · · · · · · · · · · · ·
Claim	TB 22	9616 1	Ashmore	Twp. Ont

NO EA! ELE	RTH ST EV	675-N x1-12-E burface 180	DRIL	LR	EPOF	RT	COM FINIS PUR	MENCEDJANUARY_25/72 SHEDJANUARY_28/72 POSE OF
DIP	'			TON	£'٦		HOL	E-Check EN-anomaly
	@	300-42° Claim TB	229616	Ash	more Tv	p. Ont	Dr	illed by: Bradley Bros.
FROM TO			CORE SAMPLES			LES ·		· · · · · · · · · · · · · · · · · · ·
	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
0	_4	Casing(AX)						
4 37.4 Hornblende Gabbr		Hornblende Gabbro - medium to dark						
		green in colour with numerous blocky						
		crystals of hornblende. The rock is						
		quite highly altered with carbonate a	nd			•		
		talc, local specks of leucoxene.						
		Some shearing with talc and chlori	.e -					
		13.5 - 14 @ 45° to Core axis and @ 18.	5 -					· · · · · · · · · · · · · · · · · · ·
		20 also@ 45° to core axis There are						
		some very fine hairline stringers of						
		quartz-carbonate which usually carry a						
		smell of po and cp.		<u></u>				
		23.5-23.9 blob of chert very irreg	lar					
		in shape			 			
	-	The lower contact of the hornblend						
		gabbro is finer grained @ 45° to the						
	Core Axis along a quartz-carbonate							
		stringer with po, cp						
37.4 40.8	Chert - grey to whitish in colour	[[
	rather milky. The first inch is filled			L				
	with numerous laths of amphibole - ver	¥						
	black. The remainder of the zone is							
	weakly banded in darker and lighter	37	41		4		Chert - 5% po minor cp	
	patches, massive. There are some blobs					 		
	of po with some cp. The po is quite				ļ			
		strongly magnetic. locally, very fine	1	·		1		

FORM 822

FORM \$22 NORTH...... EAST.

ELEV. __ AZIM. __ DIP ____

DIAMOND DRILL REPORT

IOLE NO.	A-6-72	2	
COMMENCED_			
INISHED			

PROPERTY____WILSON__OPTION__#1___

				C	ORE SAMP	1		
ROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
		disseminated mineral.						
40,8	46.3	Zone of carbonatized andesite -?-						
		Most of the rock is carbonate and ther	41	46		5		A2? - minor po, py, cp
		are local patches of dark grey chert -	47	49		2	5%.	" - 5% po cp
		gradational - and irregular in shape.						······································
		It is also gradational from the more						
		massive cherty material. There is a lo						· · · · · ·
		of blue-grey chert as interstitial wit						
		the carbonate. Mineralization is mostly			1	·		
		po - very minor cp. (5% po)						· · · · · · · · · · · · · · · · · · ·
46.3	47.9	Short zone of cherty material, ban	led					
		blue-grey and darker grey @ 45° to the						· · · · · · · · · · · · · · · · · · ·
		Core Axis. Numerous guartz-carbonate						
		stringers. The upper contact is more of					 	
		less gradational - lower @ 45° to the (ore Ax	is				
		Some shearing and some biotite along						
		single planes of shearing @ 45° There						
		are some small stringers of po usually			1			,
		with quartz-carbonate often minor cp.						
		@ 47.8 small bit od cp with a po		•		.*		· · ·
		bearing stringer.						
4 7.9	63.2	Andesite - and carbonatized andes	te					
		The first 2 feet is massive andesite w						
		numerous quartz-carbonate stringers @ /			· ·			
		to the Core Axis, bearing some po and p						
·····	· · · · ·	Mineralization is erratic though.	 		1		t	1

FORM 522 NORTH

EAST. __ ELEV. __ AZIM. __ DIP ___

DIAMOND DRILL REPORT

HOLE NO. A=6=72 ...3 COMMENCED______ FINISHED______ PURPOSE OF______ HOLE_____

PROPERTY____WILSON_OPTION_#1____

	T			cc	RE SAMP	.ES	1	
ROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
		After that the andesite is generally						
		massive with carbonatized sections.						······································
		Very minor disseminated py, cp only						
		locally. Lower contact slightly irregul	lar					
		@ 60° to the Core Axis.						
63.2	76.4	Albite porphyry (logged in previou	JS					
		holes as diorite), There are numerous						
		feldspar phenocrysts or metacrysts,						
		some epidote alteration, and some biotit	te.					
		Mineralization is minor with some very						·
		finely disseminated po, py. The lower						
		contact of the dyke is nearly normal to						
		the Core Axis.						
76.4	84.8	Andesite - brownish, carbonatized	i,					
		with very minor mineral (some py visible	•)			· · · · · · · · · · · · · · · · · · ·		
		Contact with dyke @ 84.8 is at 45°						
84.8	128.4	Albite porphyry with numerous						
		feldspars as before, locally finer						· · · · · · · · · · · · · · · · · · ·
		grained. There is some biotite developed	1					
	i	throughout. Epidote alteration is common	n.	-				•
		There is approximately 3% pyrite dissemi	inated					
		throughout. A quartz-carbonate stringer						
		@ 108.5 has the only po cp seen in this						
		zone - only a minor amount -				L		
· · · · · · · · · · · · · · · · · · ·		The pyrite commonly shows a cubic habit		·				
		Lower contact @ 45°.)	\ \	1	

FORM 622

DIAMOND DRILL REPORT

HOLE NO. A-6-72 ...4 COMMENCED FINISHED PURPOSE OF HOLE

PROPERTY___WILSON_OPTION_#1 10.00

				Ashmore Twp.						
FROM	то	DESCRIPTION	H	· · · · · · · · · · · · · · · · · · ·	ORE SAMPI	1	DESCRIPTION OF SAMPLE			
			FROM	то	RECOV.	WIDTH	ASSAY			
128.4	1			<u> </u>	'	'				
/	<u>اا</u>	massive and chloritic but it grades in	<u>to</u>	ا ــــــــــــــــــــــــــــــــــــ	·'	·'	·			
<u> </u>	<u> </u>	a darker carbonatized lava. Mineraliza	cion	L'	·	'				
/	<u> </u>	is very minor - usually pyrite but a f	ew	1						
,		specks of cp are seen (rare). Around 1	60	<u> </u>	['					
		you start to get some epidote alteration	pn							
ļ	1!	in the andesite. some talc ? in the		<u> '</u>	' '					
		sections that are strongly chloritic.	Ĺ'	<u> </u> !	!					
· · · ·	· ·	Around 183 the andesite becomes	ſ'	[]	['					
	[]	brecciated with infillings of calcite	(<u> </u>					·		
)		and numerous bands of alteration. These	•							
!		bands show no consistent strike. @ 185								
!		the andesite becomes quite siliceous	<u> </u>	<u> </u>						
·'	<u> '</u>	and hard with a few of the breccia	 '	 '						
'	↓ '	fractures filled with py, po, and cp. It	 '	Ļ'		1				
······································	<u> '</u>	appears to grade into a chert horizon a	around	187.2	,			.4		
187.2	195.6	A short blue-grey chert band,	ſ'	['						
		locally layering @ 80 to 85° to the	185	190		5		5% po minor cp		
······································		Core Axis. The chert is brecciated as	190	195		5		5% po minor cp		
!		the surrounding andesite with mainly	<u> </u>	[·'						
		po filling stringers - very minor cp.	ſ'	<u> </u>						
· · · · · · · · · · · · · · · · · · ·	Í'	The EM-17 conductor plots here. The	<u> </u>	['						
′	<u> '</u>	po is magnetic but not strongly so.	<u> </u> '	<u> </u>		<u> </u>				
195.6	492	Andesite - banded @ 90° to the	<u> </u> '	<u> </u> '						
<u> </u>	['	Core Axis in alteration layers of	<u> </u>	<u> </u>				•		
• •	l'	chloritic and carbonatized andesite.	1'							

ELEV. ____ AZIM. ____ DIP _____

DIAMOND	DRILL	REPOR'	T
---------	-------	--------	---

HOLE NO. A-6-72 ...5 COMMENCED______ FINISHED______ PURPOSE OF______ HOLE_____

PROPERTYWILSON	OPTION-	¥1
----------------	---------	----

	T				ORE SAMP			
FROM	то	DESCRIPTION	FROM	то	RECOV.	(ASSAY	DESCRIPTION OF SAMPLE
		There is some biotite developed. The						
		rock grades to a more uniform carbonat	ized					
		andesite around 202 it is more green						
		than the ordinary brownish carbonatize						
		andesite. Generally unmineralized but						
		there is a small stringer @ 212.7 with						
		some po, cp and py.						
		- 253-255 blue-grey chert band with				•		
		some py and minor cp in stringers.	254	255		1		Chert - minor py cp
		Contacts normal to the Core Axis.						
		After 255 we return to a carbonatiz	ed					· · · · · · · · · · · · · · · · · · ·
		andesite with a speckled type of						
		carbonate alteration.						
		@ 286 and @ 299.8 quartz stringer						
		with some tourmaline.						
		328-329 short black siliceous band	328	329		1		10% diss. py
		with strong alteration at both contact	в,					
		Contacts are gradational - 7% dissemin	ated p	y				
		After that there is minor dissemin	ated					
		po, py and cp in a zone that has patchy	335	340		5		minor diss. sulph. py po
		alteration - mainly local zones of	340	345		5		п п п рурос
		of silicification and carbonatization.						
		@ 346.5-348.5 gradational contacts						
		on a paler green tuff unit. The fragme	nts					
		are small - leached white - locally						,
	·	feldspar metacrysts. After the tuff					1	

,

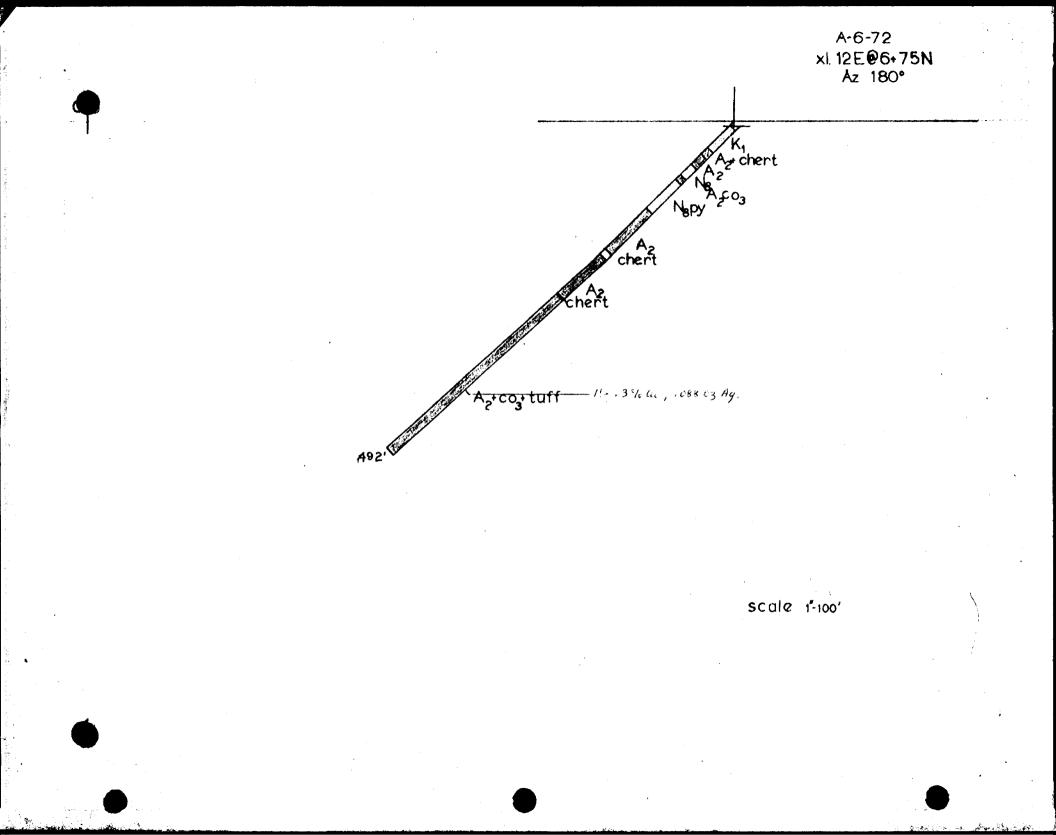
DIAMOND DRILL REPORT

HOLE NO. Commenced_	A-6-72	6	
FINISHED			
PURPOSE OF_ HOLE			_

PROPERTY____WILSON_OPTION_#1

					ORE SAMP			
FROM	то	DESCRIPTION	FROM	τó	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
		there are a few bands of the brownish						
		carbonatized andesite.						
		Around 350 there is some silicific	ation					
		and another tuff unit(352.3-353)						
		353-360 zone of strong leaching,				•		
		chloritization and carbonatization						
		no mineral.						
		After 360 a return to the dark gre	en					
		carbonatized andesite - only rare spec	ks				 	
		of mineralization - some biotite devel			ļ			
		389.2-389.8 Short altered band	ļ <u> </u>					
		containing 15% po 3% cp (EM-16 ?)	389	390	ļ	1		A2 alt 10% po 2% cp
		Around 415, the rock starts to bec	ome					
		strongly silicified and greyer in colo	ur.					
		It is not a chert unit unmineralized						
		around 424 this zone ends in a short					ļ	
		altered, breccia zone.	ļ				<u> </u>	
		After 424 - brownish carbonatized			<u> </u>		ļ	
		andesite. leaching around quartz-carbo	nate					
		stringers. @435 and @438 chert.						
·····		440.8-444 short tuff band as befo	re				ļ	
		444-463.8 andesite carbonatized			ļ		ļ	
	<u> </u>	463.8-465 a highly contorted zone		ļ	ļ			
		of mixed andesite and blue-grey chert.			ļ			
		465-467 silicified andesite		ļ	ļ	 		
		The remainder of the hole is		} `	1		1) ·

FORM \$22 NORTH..... EAST.


ELEV. __ AZIM. __ DIP ____

DIAMOND DRILL REPORT

HOLE NO. A=6=72 ...7 COMMENCED______ FINISHED______ PURPOSE OF______ HOLE_____

PROPERTYWILSONOPT	ц	٥	٨		#	1	
-------------------	---	---	---	--	---	---	--

					more T				
FROM	то	DESCRIPTION	CORE SAMPLES					DESCRIPTION OF SAMPLE	
		· · · · · · · · · · · · · · · · · · ·	FROM	то	RECOV.	WIDTH	ASSAY		
-		andesite with short zones of						·	
		carbonatization.			ļ				
	_								
	492	END OF HOLE						· · · · · · · · · · · · · · · · · · ·	
~								· · · · · · · · · · · · · · · · · · ·	
-		SAMPLES FOR THIN SECTION							
		· · · · · · · · · · · · · · · · · · ·							
•	-5	Hornblende Gabbro							
	51	Massive andesite							
	100	Albite porphyry - with epidote							
	150	Chloritic and carbonatized andesite mi	nor py						
	200	Dark green strongly chloritized andesi	te						
	250	Very dark silicified andesite							
	254	Chert band							
	300	Carbonatized andesite - ummineralized							
	350	Carbonatized band in the andesite							
	356	Strongly altered zone - chlorite carbo	nate						
	399	Dark green andesite with biotite							
	450	Altered andesite with carbonate chlori	te					HELLINGER MINES HEATED	
	492	massive andesite						TIMMINS, ONTARIO	
								Dan R. alexand	
•	1				1			· · · ·	
	1	· ·			1				
	· ·		╢		<u> </u>	t	<u> </u> −−−		

N

D

runm	011				
NORT	H	775N-			
EAST	H	<u>v1_1</u>	F		
ELEV		Surfa	če		
AZIM.		-186	jo		
DIP _	oheck	-c511	an a	470	
		ニズズズロ		~	

DIAMOND DRILL REPORT

Hole NO. A-7-72 COMMENCED January 29/72-FINISHED January 31/72-PURPOSE OF Test EN & 1/89--Test-EM & Hag.

@-300 - 41°				hmore Tw		Drilled by: Bradley Bros.		
FROM	то	DESCRIPTION	FROM	с то	CORE SAMPI		ASSAY	DESCRIPTION OF SAMPLE
	+	{	FROM	10	RECOV.	WIDTA	ASSAT	
0	10	Casing	# '	 	'			-
10	53	Hornblende Gabbro - after 39 the ga	bbro !	 	'			
	'	is similar to the previous hole	 '		·'			
	'	numerous blocky crystals of hornblende	· '	1	′			
······	′	- some altered to chlorite, occasional						
]′	hairline stringers of Quartz-carbonate	/'		'			
	Τ′	nonmagnetic, unmineralized, carbonatized	,ed.					
	1	Previous to 39, the gabbro is much						
•		more highly altered - almost all of the						
	1,	hornblende crystals are altered to chl	orite,	·				
	,	with the pseudomorphic shapes best see						
	1	on the fresh surface. There are some						
		large greenish feldspars developed and	·					
	1	occasionally you can see some amphibol	.•'					
		and biotite. Much more carbonate in th	18					
		zone - unmineralized.						
		The gabbro becomes finer grained						
		near the contact. Contact broken.						·
53	76.3	The first 2 feet here is massive						
	<u> </u>	andesite, while after that there is a	/					
······································		whole zone of interbedded chert and						
	1	andesite. Units are too small to be						
		logged individually.						· · · · · · · · · · · · · · · · · · ·
•	1 ,	3 main types - grey-green carbonat	tized					
	1	andesite, blue-grey chert, and a dark	grey		1			
	1.	to black siliceous member. the latter	ţ		1	1	1	

FORM 822

EAST. ____ ELEV. ____ AZIM. ____ DIAMOND DRILL REPORT

HOLE NO. A=7=72 ...2 COMMENCED_______ FINISHED_______ PURPOSE OF_______ HOLE______

				C	ORE SAMP			
ROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
-		is very massive. Banding is generally						
		normal to the Core Axis. There is some						
		finely disseminated py po locally, whi	1e					
		most of the mineralization is in large	r 68	70		2		minor cp po
		blobs and stringers as po & cp.	70	73		• 3		negligible sulphides
		69.5-69.9 iron? very fine grained,	73	75		2		minor sulphides
		black, strongly magnetic, with cp po.						
76.3	131.1	Andesite - the first foot is the		<u>.</u>				
		brownish carbonatized variety, while			·			
		after that there is approximately 10:				•		
		of massive andesite. The rest of the g	one					· · · · · · · · · · · · · · · · · · ·
		is carbonatized andesite but it is dar	k					
		green in colour. Strong alteration @ 9	9					•
		with some epidote. There is usually so	me					·
		very fine specks of cp throughout the			ļ			
		the zone although there is not much cp]
		overall. Some tremolite ? locally.						
		Around 121 some silicification -						
		core changes to a dark grey to black						
	·	@ 123 After 128, brownish carbonatizat	ion.					
131.1	150.6	Albite porphyry - asin previous h	oles					·····
		with feldspar, minor epidote, some						
		biotite, and unmineralized. Upper cont	act					
		@ 90° lower @ 45°.						
150.6	302	Massive grey-green andesite, 2			1			

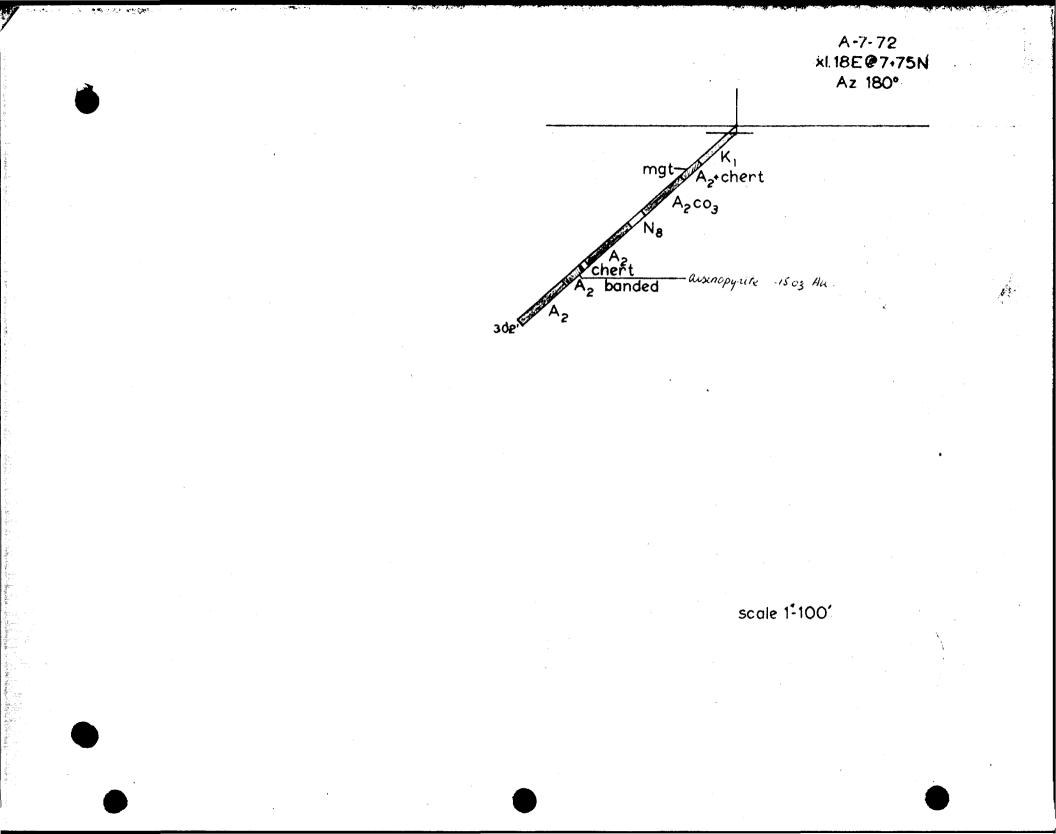
FORM \$22

FURM SZZ	
NORTH	
EAST	
ELEV	
AZIM	
DIP	

DIAMOND DRILL REPORT

HÓLE NO.	A-7-72	3
		-
FINISHED		
HOLE		

		Гр	[C	ORE SAMPL	LES		
ROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
	·	becomes highly carbonatized and browni	sh	' ۱'		<u> </u>		
		around 194, then the rock grades into		<u> </u>	['	['		
		one of the dark silicified zones aroun	d 203.	[]		['		
		208-210.2 - Silicified but pale gre	en			[]	′	
		andesite.	210	212		2	· · · · · · · · · · · · · · · · · · ·	A2 silic - minor po py cp
·		210.2-216.5 - Darker andesite grade	S 212	215		3		" - 5-7% ро ру ср
		darker grey with cherty and carbonatiz	ed 215	217		2		" - 5-7% po py cp
		sections. 5% py po cp	217	220	/	3		A2 alt neg. sulph.
		216.5-218 - banded altered andesite		1		· .		
	·	218-219.8 - silicified band - grey		1'		· · · · · · · · · · · · · · · · · · ·		•
		219.8-240.2 - banded altered andesi	te	1		[]		· · ·
		- banding @ 90°, numerous stringers of	-h	I'	!	· · ·		
		quartz-carbonate; Some bands are chlor	itized	·[•]		ĺ '		
		some carbonatized andesite with talc?		·'				
		& biotite. @ 225.5 3 tiny bands carry	ing	1'		· · · · · · · · · · · · · · · · · · ·		
		arsenopyrite z' of core along quartz-	225.	5				grab sample - Aspy for
		carbonate stringers. Very minor minera	lizati	on				Geochemistry & Au
		some core broken @ 230.		(•		, 		· · ·
		240.2-250 - grey silicified andesit	8 -	1	[,		
		very minor mineralization - isolated b	lebs	1.	· · · · ·			
		of po cp. 250-302 - Massive andesite c	nly	1	· · · · · ·			
		local splashes of mineralization.	1	1	,			
	<u> </u>	264-265 Quartz-carbonate stringer	264	265	1	1	<u> </u>	mass. andes minor po
		along the core axis with minor po py c	P•	, 			+	· · · · · · · · · · · · · · · · · · ·
		, I	1 '	1 '	1	1		- -


DIAMOND DRILL REPORT

HOLE NO. A-7-72 ...4 COMMENCED______ FINISHED______ PURPOSE OF______ HOLE_____

PROPERTY	WILSON	OPTION	#1	
		46	hrano	Twn.

			a						
FROM	то	DESCRIPTION	FROM	то	RECOV.		ASSAY	DESCRIPTION OF SAMPLE	
		SAMPLES FOR THIN SECTION	PROM		RECOV.	WIDTA	A33A1		
· · · · · · · · · · · · · · · · · · ·									
	10	Hornblende Gabbro - altered		<u></u>					
•									
	50	Hornblende Gabbro							
	100	Carbonatized andesite - tremolite?						· · · · · · · · · · · · · · · · · · ·	
	200	Carbonatized andesite - brownish band	•						
	250	Dark green silicified andesite.							
	300	Massive andesite							
<u> </u>	235	Banded altered andesite with talc?							
								•	
	-								
								······	
							···	· · ·	
			·					•••••	
	-				 			·	
_									
								HOLLINGER MINES LINITED	
~ n		•					······································	TERRED OFFICE	
								Dale R. alexander	
		· · · · · · · · · · · · · · · · · · ·						Unle K. Ullyander	
								· · · · · · · · · · · · · · · · · · ·	
				<u> </u>	<u> </u>	<u> </u>			
	1		1]]		\ ·		

,

FORM 522 NORTH 1 + 25 5 EAST. 4L 8 E ELEV. 0171 3Ce AZIM. 180³ DIP Check collar 9 45⁶

DIAMOND DRILL REPORT

HOLE NO. A-8-72 COMMENCED Feb. 2; 1972 FINISHED Feb. 3; 1972 PURPOSE OF Test copper 2008 HOLE

PROPERTY	WILSON	OPTION	#1

Claim TB 229617, Ashmore Township, Ont.

Drilled by: Bradley Bros.

<u></u>				co	DRE SAMPI	.ES		
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
0	69	Casing.						
69	160.4	The first 10 feet is carbonatized andesite	-					
F.		brownish - minor biotite. Then the andes	{					
		becomes more massive and grey green in						
		colour. First bit of mineralization seen		· ····				
<u>.</u>		around 82 - minor pyrite.						
			1			•		
<u></u>		Around 100 there are a couple of elliptics lenses of po py - magnetic.	•					
,		After that the andesite becomes weakly						
		brecciated with chlorite and minor pyrite		· · · · · · · ·				
		along these fractures.				·····		
	-	Locally the rock is carbonatized brownish		······				· · · · · · · · · · · · · · · · · · ·
		There are a few qtz-CO3 stringers cutting		* <u>**</u> *****		- <u></u>		· · · · · · · · · · · · · · · · · · ·
		the core - some are stained brownish.						
		Around 119 there is some dark green						
		silicified andesite which grades to the						
		brownish carbonatized andesite around 124						
		The intermediary (121-124) is a putty		•				
,		colour. Only minor mineralization - a fer						
	_	specks cp seen.						
		129-133 grey green silicified andesite.						
		133-143 brownish carbonatized andesite.						
		143-144.2 intermediary.		·				•
		144.2-145.3 dark green silicified andesit	9.					
		Short band of py @ 145.1						

FORM 522
NORTH______
EAST._____
ELEV._____
AZIM._____
DIP

DIAMOND DRILL REPORT

PROPERTY____WILSON OPTION #1 Ashmore Township

				C	DRE SAMP	LES		
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
		145.3-148 grey green eilicified andesite		,				
		grades to a rore chorty member @ 147						
		with 15% py.						
		148 dark grosn carbonatized andesito						
		grades to a grey green massive andesite					 	·
		around 150.						
		153.2 dark green and carbonatized andesite						
		again with minor pyrite, grades to a				-		· · · · · · · · · · · · · · · · · · ·
		brownish carbonatized rock around 154.5						
		and then to a massive grey green andesite						
		with local carbonatized patches around 157.	5.					
160.4	183.8	Albite porphyry - light grey to dark grey						•
		with numerous foldspar phenocrysts (or	184	186		2		A ₂ + chert minor sulph.
	ļ	metacrysts). This dyke is a bit finer	186	188		2		Cherty .6Cu.
		grained than that usually encountered.						
		Minor biotite developed, epidote alteratio	n					
		common. Upper contact broken. Lower @						
		60° to the Core Axis.						
183.8	212	Up to 185 - short zone of highly car-						
		bonatized andesite, some very fine						
		disseminated mineralization @ 184.7 some						
		ру ср.						
		185-193 a whole zone of mixed blue-grey						
		chert and andesite. A few quartz stringer	188	193		5		Cherty neg. sulph.
		and some cp, po, py throughout.	193	196		3	<u> </u>	Neg. sulph.
		193-200.9 weakly banded carbonatized	196	201		5		A ₂ - minor py, po, cp.

FORM S22 NORTH_ EAST. _____ ELEV. _ AZIM. DIP -

DIAMOND DRILL REPORT

WILSON OPTION #1

HOLE NO. A-8-72 COMMENCED

COMMENCED	
FINISHED	
PURPOSE OF	
HOLE	

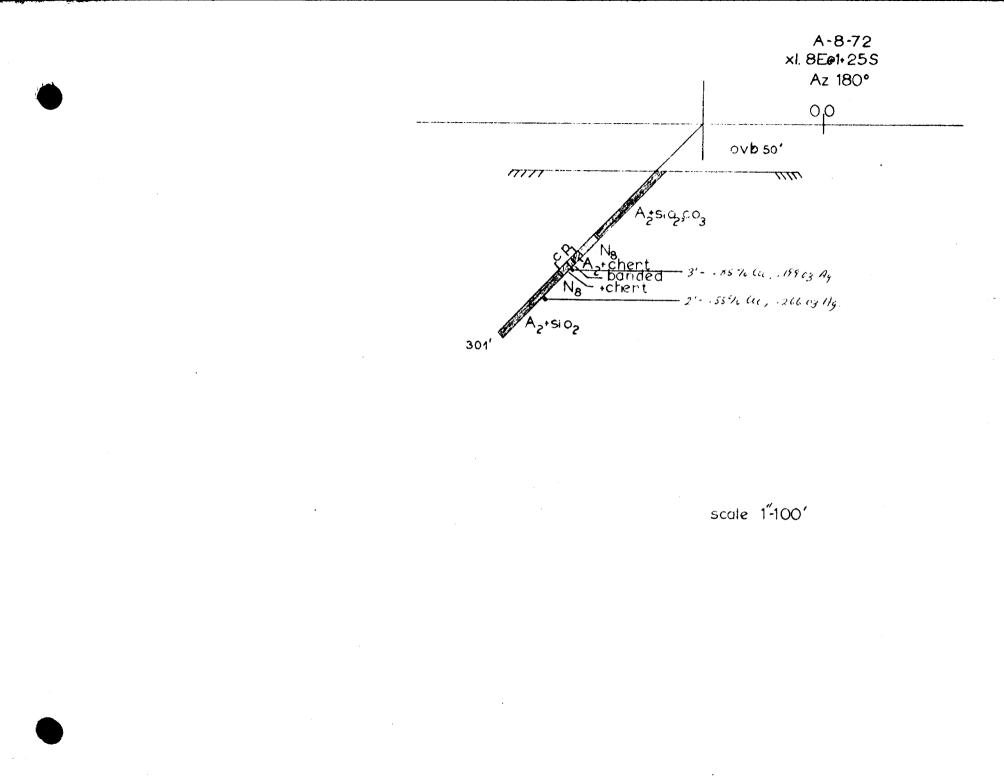
	1	1	(As'more Township			The second secon	
FROM	то	DESCRIPTION	FROM	то	RECOV.		ASSAY	DESCRIPTION OF SAMPLE
		andesite, some biotite - Ailiceous zone	201	202		1		Cherty - minor sulph.
		(dark) 194.5-195 some disseminated py po	202	204	<u> </u> '	2	<u> </u>	Cherty - 1% Cu.
		cp. 200.9-212 zone of mostly blue-grey	204	210	!	6	<u> </u>	" - minor sulph.
		chart fractured with cp and po. Minor py.	210	212		.2		A_2 + chert5 Cu.
		Some andenite?	t'		 '	<u> </u> '		
212	213.6	Albite porphyry - as provious with	H'	<u> </u>	·'	 		
'		feldspar, minor epidota, some biotite.	<u>(</u> '	<u></u>	'	·'		
213.6	301	Andesite - mixed grayiah siliceous zones	# '		<u> </u>	<u> </u> '		· · · · · · · · · · · · · · · · · · ·
		and grey green massive andesite zones in	242	244	ļ!	2		A2 - with qtz-CO3 str.
		general crude contacts at 45° to the	l'			 		Minor cp, py, po.
······································		Core Axis. Only minor op seen in gtz=CO3	·	+	'	 '		
		stringers. @ 243, 276, 290 the rock	('	<u> </u>	'	 '		· · · · · · · · · · · · · · · · · · ·
		itself is generally unmineralized. Some	·'	<u> </u>		 '		
		biotite.	∦ −−−−′			 		
			<u> </u> '	+		<u> </u>		
	301	END OF HOLE.	ı '					
		!	#'	+				
		·	('	+		 '		
			f'			 '		
		/	l'	1				-
		/	 '					
		p	# '	+				
		/	 '	+				<u> </u>
			f'	+				
			ţ'	+	<u> </u>			
	<u></u>		4			1	4	

3.

FORM \$22 NORTH___ EAST. __ ELEV. AZIM. _ DIP ____

.

DIAMOND DRILL REPORT


A-9-72 HOLE NO.

COMMENCED____ FINISHED_____ PURPOSE OF___ HOLE

4.

WILSON OPTION #1 PROPERTY_

					re Town			
FROM	то	DESCRIPTION	CORE SAMPLES			WIDTH	DESCRIPTION OF SAMPLE	
	1	SAMPLES FOR THIN SECTION						
	69							
	100	Brownish cerbonatized andesite. Massive andesite.]			······································
	150	Park green carbonatized andesite with py						
	200			<u></u>		.		
	250	Massive andesite.				\		
<u></u>	300	Silicified andesite - biotite.						· · · · · · · · · · · · · · · · · · ·
	300	Massive and site.						······································
	+					•		
			· · · · ·	,				
			,, ,					
								Nau P. Allwander
								Dau R. Alexander, HOLLINGER MINES LIMITED
								TIMMINS, ONTARIO
								IIMINO, OITTING
					 			· · · · · · · · · · · · · · · · · · ·
				·				
				····-				
				·•				
<u></u>								
		· · · · · · · · · · · · · · · · · · ·	<u></u>			[
1	<u> </u>	l	<u> </u>		<u> </u>	l		l

SUIMARY OF ASSAY RESULTS

Ťæ.

2 **4** 9

ŝ.

1

a subsection of the section of the s

 $\frac{\pi}{2}$

£

e So V

بها و به الد فوقير ؟ من يريونو و مدينة

Average Values

	Cu(ppm)	Zn(ppm)	Ni(ppm)	Ag(oz)	Pb(ppm)	<u>Au(oz)</u>
DDH A-3-72						
208-213	1174	64		•070		NIL
215-230	779	75		•059		Nil
234-235	1830	67	165	•093	18	Nil
240-245	2940	261	254	.128	209	NIL
249- 250	3380	61 00	326	.231	2060	Nil
255- 260	70 0	126	183	.073	43	.02
285- 320	1026	67	222	.072	21	Nil
Best	intersecti	ons: 240-2	45 .294%	Cu, .128	oz Ag.	
		249-2	50 .338%	Cu, .61%	Zn, .231	oz Ag.
DDH A-4-72						
164-167	84	60	121	.029	12	Nil
@ 200 - py	173	1050	1410	.082	85	Nil
230- 235	4990	132	119	.181	10	,02
250-3 07	4700	182	139	.14	13	•006
307-310	1630	199	51	.070	10	NIL
316-318	1370	92	171	.073	13	NIL
Best	intersecti	ona: 250-	252 1.56%	Cu, .43	oz Ag.	
		275-	276 .69%	Cu, .23	oz Ag.	
		303-	305 2.36%	Cu, .15	os Ag.	

Appendix III Sheet bf 3

	Cu(ppm)	En(ppm)	N1(ppm)	<u>Ag(oz)</u>	Pb (ppm)	<u>Au(oz)</u>
DDH A-5-72						
240-255	5987	80	90	.176	18	
302-303	15200	134	299	•789	34	
Best	intersection	s: 240-24	1 6.9% C	u, 1.578	oz Ag.	
		302-30)3 1.52%	Cu, .789	oz Ag.	
DDH A-6-72						
37-46	176	56	106	.035	27	Nil
47-49	720	38	78	.038	10	.01
185-195	398	33	97	.028	8.5	.005
254-255	1550	108	56	.064	17	•005
328-329	282	137	105	.053	39	Nil
335-345	145	56	139	.034	9	NIL
389-390	3010	71	156	•088	13	.005
Best	intersection	: 389-390	•3% Cu,	.088 oz	Ag.	
DDH A-7-72						
58-83	151	5 5	82	.024	12	.017
207-232	95	75	193	.046	14	Nil
@ 225.5 Asp	y 8	37	264	•0 9 6	27	.15
264-265	454	90	93	•0 9 4	10	.05
		- 58-75	.025 oz A	u .		

1.21.20

「観光をつせる

a che 1913

などのないの言語

ing Ay

「「日本語」を見ていていた。

調査

541.4

ないないと思想

pharts.

Append Sheet III 6f 3

	Cu(ppm)	Zn(ppm) N	li(ppm)	Ag(oz)	Pb(ppm)	<u>Au(oz)</u>
DDH A-8-72						
184-212	1540	74	88	.086	14	Nil
242-244	5490	60	110	• 266	15	.005
Best	intersection	s: 201-201	.85%	Cu, .199	or Ag.	
		242-244	55%	Cu, .266	or Ag.	

į.

14 14) 14

ï

020

HOLLINGER MINES LIMITED

REPORT

01

GOVERNMENT EXPLORATION ASSISTANCE PROGRAMME

WILSON and KALSON OPTIONS

ASHMORE TOWNSHIP

020C

TABLE OF CONTENTS

の変換

PICE

A SHEET

alle series

			Page
I	-	SUMMARY OF EXPLORATION	1
		A - LOCATION	1
		B - WORK DONE	1
II	•	OPTION TERMS	2
III	••	GENERAL GEOLOGY	3
IV	•••	RESULTS	5
×		A - DRILLING	5
		B - ASSAYING	6
Y		CONCLUSIONS and RECOMMENDATIONS	6

APPENDICES

APPENDIX	I	-	PLANS OF DRILLING
APPENDIX	11		DRILL SECTIONS
APPENDIX	III	••	SUMMARY OF ASSAYS
APPENDIX	IV	-	MAP OF PROPERTY

I. SUMMARY OF EXPLORATION

A. Location

Ashmore Township is located in the Thunder Bay Mining Division and comprises part of the Little Long Lac gold mining area.

The property consists of 25 unpatented and two patented claims under option, and is located approximately four miles east of Geraldton along Highway 11.

The unpatented claims included are:

TB 139350-353 incl.; TB 229616-618 incl; TB 230337-339 incl.; TB 238726-728 incl.; TB 239955; TB 325351-359 incl.; and TB 372798-799 incl.

The two patented claims under option are:

TB 10164 and TB 10971.

B. Work Done

A DESCRIPTION OF A DESC

20

The original 14 claim group was acquired in March, 1970, and Hollinger Mines Limited performed geophysical (magnetic and electromagnetic) surveys over most of this group. On the basis of the geophysical data, two holes were drilled in 1970, with a total length of 1117 feet. Later in mid-1971 a geological survey was performed over this original group. Both the drilling results and the geological survey were filed for assessment.

In the last quarter of 1971, Hollinger Mines Limited applied and received a subsidy to do further work on the property through the provisions of the Ontario Government's Exploration Assistance Programme. Under this programme, geophysical (magnetic and electromagnetic) surveys were performed on nine claims that had been added in 1971. These claims (numbered TB 325351-359 incl.) were adjacent to the original group on the eastern boundary.

The assistance programme continued into the first quarter of 1972, when a drilling programme was initiated. Six holes, with a total footage of 2433 feet, were drilled to check anomalous copper values obtained in the 1970 drilling and to test a sone of ground conductivity. In May 1972, a geological survey was completed over the nine claims to the east (TB 325351-359 incl.), and in November 1972, magnetic, electromagnetic and geological surveys were completed over the two patented claims,

In April 1973, a second Exploration Assistance Agreement was signed to cover a drilling programme designed to test:

- (a) a coincident magnetic-electromagnetic anomaly on patented claim 10971;
- (b) the best intersection obtained in the 1972 drilling at depth; and
- (c) a magnetic anomaly assumed to be on or near the contact between the Temiskaming sediments and Keewatin volcanics.

II. OPTION TERMS

An option agreement, dated March 23, 1970; between Donald Wilson of P. O. Box 730, Geraldton, Ontarie, of the first part and Hollinger Mines Idmited of the second part, gave Hollinger the right to explore the original 14 claims and any subsequent contiguous claims staked by Wilson or Hollinger.

The payments, under which Hollinger may acquire the property, are:

A sum of \$ 1,500.00 upon signing the Option, \$ 1,000.00 on or before March 23, 1971; \$ 1,000.00 on or before March 23; 1972; \$ 1,000.00 on or before March 23; 1973; \$ 1,000.00 on or before March 23; 1974; and a further sum of \$100,000.00 on or before March 23; 1975.

Thus, total payments of \$105,500.00 are needed to acquire the property.

Also, for any ore mined and milled from said mining lands in excess of the first million tons, Wilson shall receive a 25-cent-per-ton royalty.

A total of \$4,500.00 has been paid to date as set out by the above agreement.

By a similar agreement dated October 30, 1972, the two patented claims (TB 10164 and TB 10971) were optioned to Hollinger by Mr. Herbert Kalson of Geraldton, Ontario.

The payments by which Hollinger may acquire this property are:

A sum of \$ 1,000.00 on signing the Option, \$ 1,000.00 on or before October 30, 1973; \$ 1,000.00 on or before October 30, 1974, and a further sum of \$125,000.00 on or before October 30, 1975.

A total of \$1,000.00 has been paid to date, as outlined in the above agreement.

III. **GENERAL GEOLOGY:**

議

The property is largely underlain by a sequence of Keewatin lavas intruded by younger hornblende gabbros, hornblende diorites and albite (or just feldspar) porphyry. The southern portion of the property is underlain by Temiskaming sediments. The Temiskaming sediments encountered were conglomerates and arkose which are similarly intruded by the gabbro, diorite and albite porphyry.

The Keewatin lavas consist of andesitic to dacitic flows and tuffs which are highly metamorphosed. Biotite and chlorite are often found in these volcanics, with accessory carbonate and silica. The tuffs are characterised by numerous, small, subangular fragments in a chloritic matrix. The tuff horisons generally have a gradational contact with the massive flows.

The massive flows often contain narrow chert horisons. Initially these cherty mones were thought to represent flow tops, but there are at least three different types of occurrences:

- Chert bands gradational with the andesite (flow tops?)
- 2. Chert bands with abrupt contacts.
- 3. Zones of mixed blue grey chert and andesite (silicification?)

Although intersections of chert were quite common in the 1972 drilling, very few chert horisons were encountered in the present programme. Hence, no additional interpretations can be made about these units. The hornblende gabbros are easily distinguished by the numerous blocky crystals of hornblende in a dark green chloritic matrix. Often these blocky crystals are altered to chlorite; however, the crystal habit usually remains. The gabbros, as with the diorites, are presumed to be Early Algoman in age.

The only hornblende diorite encountered was in hole A-14-73, on claim TB 139352. No surface exposures of this unit are noted on the property. Although the blocky crystals of hornblende still persist, as in the gabbro, they are only locally developed and calcic feldspar is the predominant mineral. Unlike the gabbro, the diorite was weakly magnetic, although there is no expression of an anomaly from the geomagnetic survey performed in the area.

The albite porphyry dykes are presumed to be Late Algoman in age, since in a couple of surface exposures the porphyries are seen to intrude the hornblende gabbro. The high sodic feldspar content is diagnostic of all dykes encountered. This rock is usually pale grey in colour and quite hard, with the main alteration noted being slight amounts of epidote after feldspar.

Temiskaming sediments are encountered in surface exposures on the Kalson claims and in drill hole A-14-73, on claim TB 139352. Most of the Temiskaming series here is represented by conglomerates, with only a few somes of arkosic material noted in the drill hole.

The conglomerate contains a variety of pebble types that show a wide range of size and shape. Many of the smaller pebbles (usually less than § inch), tend to be quite angular, while the larger ones (1 inch or greater), are distinctly more rounded in nature. The matrix of the conglomerate is brownish and moderately biotitic with small quarts 'eyes' scattered throughout. Local increases in alteration create a much softer, more chloritic matrix.

The arkosic bands seen in the drill hole are relatively narrow and are characterised by numerous small grains of quartz and feldspar, in a greyish to grey-green matrix. Contacts are usually gradational with the conglemerate units.

教育の

IV. RESULTS

A. Drilling

Five holes were drilled encountering the rock types previously described under general geology, being: Chert, Andesite, Hornblende Diorite, Hornblende Gabbro, Albite Porphyry, and Tomiskaming sediments including arkose and conglomerate.

All of the drill logs will be filed for assessment, hence only a plan of the drilling plus a copy of the drill sections accompany this report. A total of 2391 feet were drilled; 1005 feet to test the magnetic-electromagnetic anomaly on the Kalson claims; 596 feet to check the wide copper bearing some found in the 1972 drilling, and 790 feet to test the magnetic anomaly in the Temiskaming sediments.

The magnetic-electromagnetic anomaly on the Kalson claims was attributed to a narrow (up to one foot) band of massive pyrrhotite carrying minor pyrite and chalcopyrite. The excellent profiles obtained from the geophysical surveys from such a narrow some are probably related to the rather shallow overburden depths in the area.

During the 1972 drilling, an intersection of 57 feet assaying .475 copper, .14 ounces/ton silver, was obtained in hole A-4-72. Hole A-12-73 was set out to cross this sone approximately 100 feet vertically below the original intersection. Although a substantial width of rock anomalous in copper was encountered, assays show the sone to be leaner at this depth.

Drill hole A-14-73 was designed to cross section a magnetic anomaly presumed to be in the Keewatin volcanics -- the additional footage allowing the hole to cut the volcanic-sedimentary contact. Unexpectedly, after 126 feet of overburden, the hole collared in Temiskaming conglomerate which extended to a dyke of hornblende disrite at 640.3 feet. The magnetic anomaly was attributed to approximately 45 feet of conglomerate containing numerous disseminated blebs of pyrrhotite.

Previous to the drilling of hole A-14-73, two claims were added along our south boundary to protect any possible results obtained in that hole. Thus, the present number of claims mentioned at the first of this report is two greater than the number indicated upon signing the Exploration Assistance Agreement. No work was carried out on these two new claims (TB 372798 and TB 372799), so that none of the provisions of the Agreement were violated.

B. Assaying

影

Assaying of core samples was completed at Hollinger Mines Limited, Assay Department, by the atomic absorption method. Samples were assayed for various elements, including: copper, sinc, nickel, silver, lead and gold.

Each sample is prepared by crushing and grinding the rock to a -100 mesh fraction, then decomposing the product by the addition of het nitric and hydrochloric acids.

A list of the assay results accompanies this report in summary form,

V. CONCLUSIONS and RECOMMENDATIONS

Exploration to date has revealed two relatively strong electromagnetic anomalies with associated high magnetics, to be related to narrow bands of massive or near massive pyrrhotite with minor assessory pyrite and chalcopyrite. One of these anomalies was outlined and drilled in 1972, the second anomaly lying within the Kalson claims and being drilled during the course of the present programme.

Further, a some of disseminated sulphides having economic implications was previously outlined by drilling, to the east of the geophysical anomalies more recently located on the Kalson claims. Thus, the Kalson anomalies appeared to be ideal targets for drilling as suggested from the nearby pyrrhotite-chalcopyrite some. Unfortunately, the data now available indicate that this entire section is not viable for mineral exploitation.

However, due to the intimate relationship between pyrhotite and chalcopyrite noted in this area, magnetic horisons would appear to be favourable drill targets, either with or without a coincident electromagnetic anomaly. Several untested magnetic anomalies, which do not appear to be indicative of a change in rock type, remain on the Wilson claims. The most probable interpretation to be applied to this is that the anomalies suggest the presence of pyrrhetite - hopefully continuing its association with chalcopyrite. The presence of Timiskaming sediments on the property may indicate an additional exploration opportunity, in search of gold. Although most of the Timiskaming belt here has been extensively drilled, very little work has been done in the Eldee Lake area. Unfortunately, the results received to date in the sediments have been very poor and no major structural features, which are often closely associated with gold ores, appear to be indicated. In the absence of known stringer sones, or structural controls, a couple of cross-sectional holes may be warranted to test the Keewatin-Timiskaming contact.

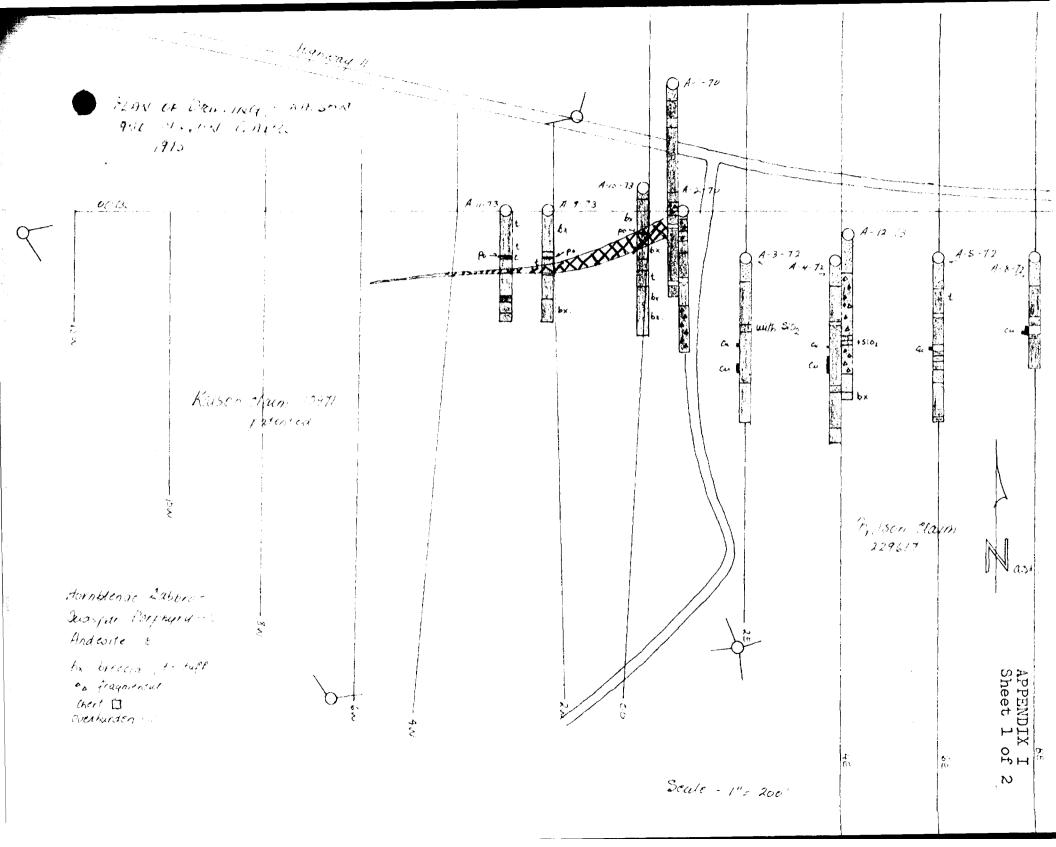
August 1, 1973.

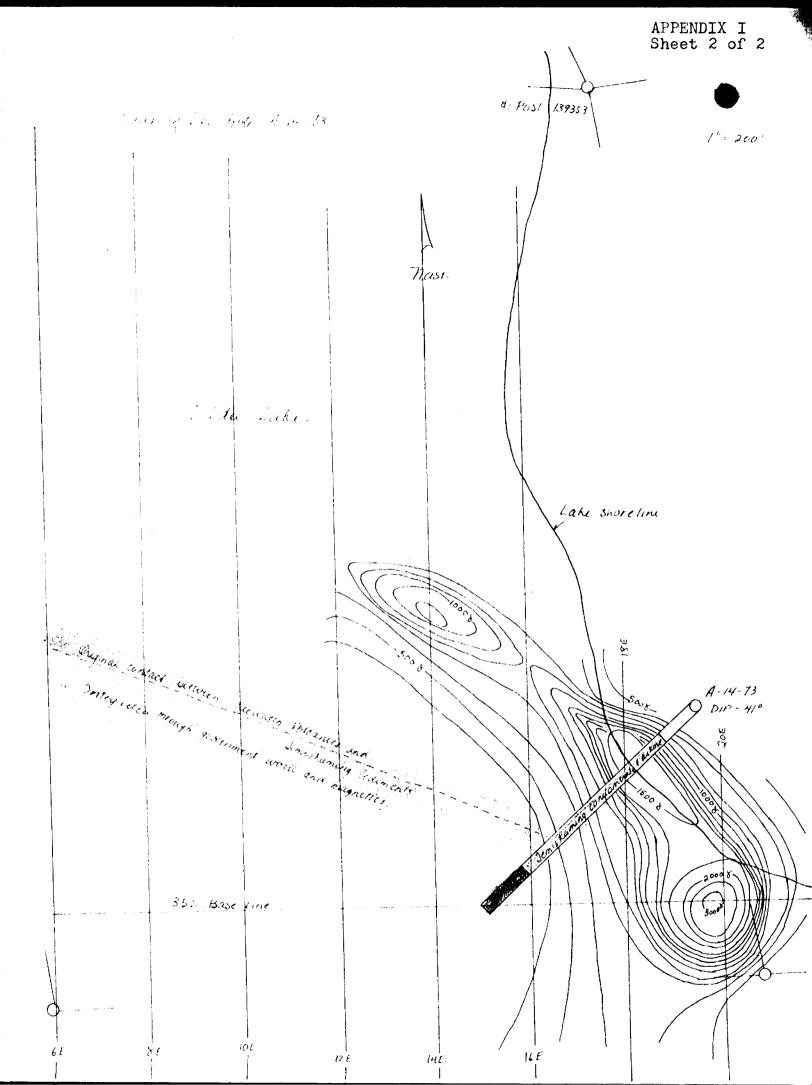
一連二 二日来

÷

and the second second

う温見

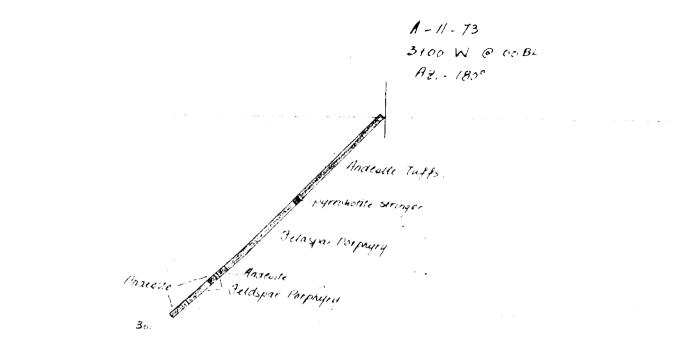

Ŧ,


1907

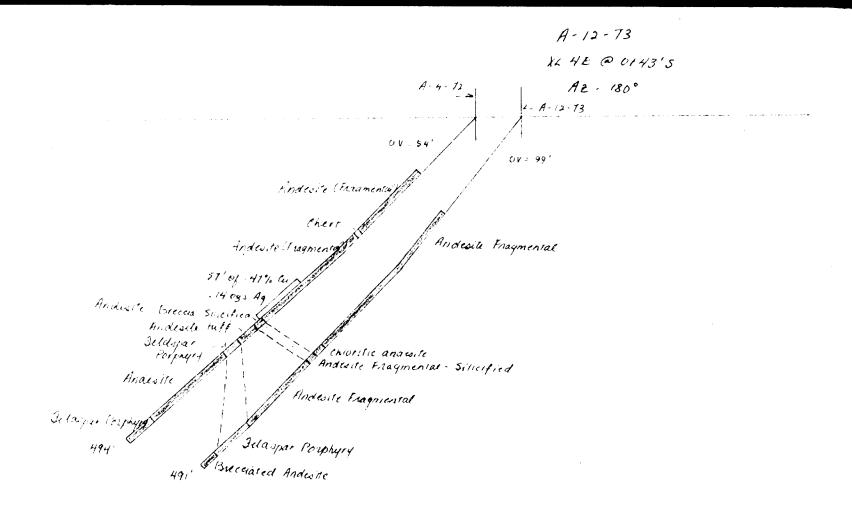
144

Dale R. alexander

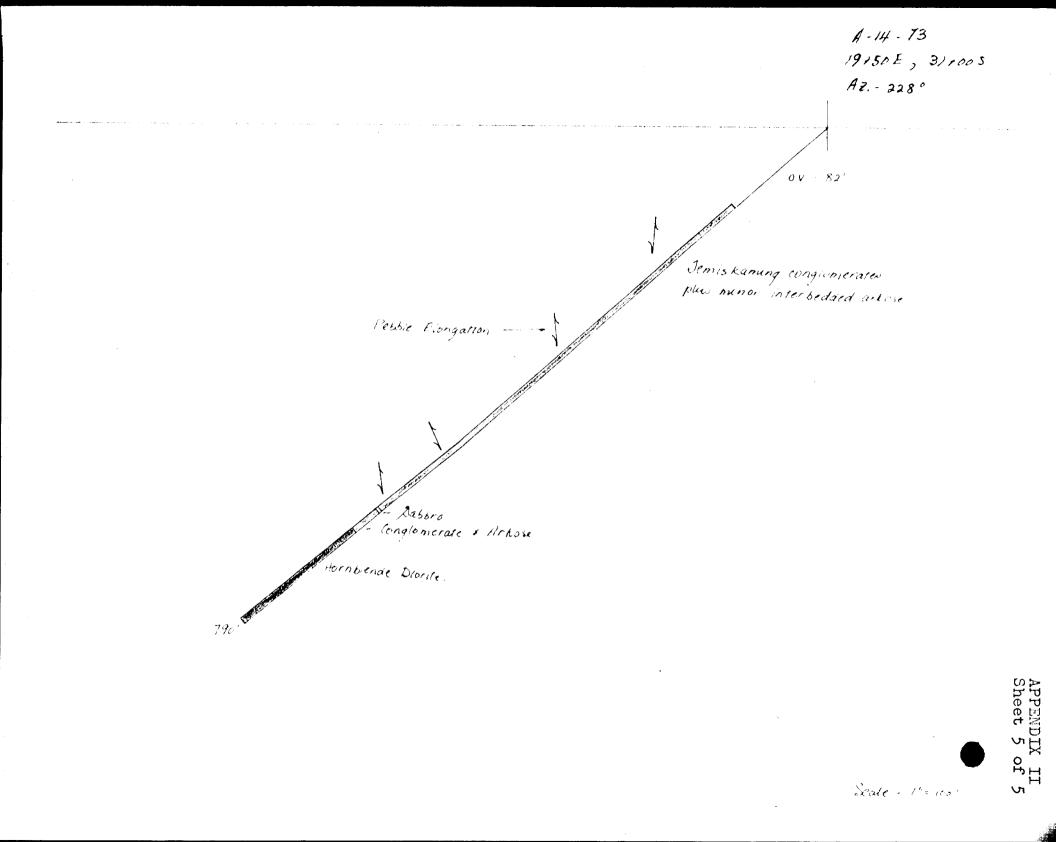
HOLLINGER MINES LIMITED



A - 9 - 73 XLOW @ ODBL. A2. 180° "Breccuted Anderite Andesite Juff - Carbonatized Andesite 3-3" pyrrohotile Arringers - Belasparporphyry Andesete Juffs Jeldypar porphyry 302 60000 Brecciated Andworde



A-10-73 XL 00 @ 0150'N Az- 180° Andente 00=21 And wite Breecea Juldopar Porphyry - Andesite massure pyrrohorule Breecuted Andwite Bientic Anderite Andenire Juy Brecciated Andesite 402. 1985


APPENDIX II Sheet 2 of 5

APPENDIX II Sheet 3 of 5

Scale 1º 100

SUMMARY OF ASSAY RESULTS

4.6

1111 NG-0

Second Second

- We are the

1.76

三郎の一

12.54

1. 1824

. Althe Contribution of the

All a state of the
in Ge

.

Are summer of

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

いいまましたい ない

AVERAGE VALUES

DDH A-9-73	Cu(ppm)	Zn(ppm)	Ni(ppm)	Ag(os)	Pb(ppm)	Au(os)
85-140	385	84	79	• 04	12	N11
265-302	725	53	126	•06	16	N11

Highest assays: 87-90 .17% Cu, .08 os Ag 110-112 .26% Cu, .07% Zn, .09 os Ag - 3 bands of pyrrhotite 132-135 .26% Cu, .11 os Ag 275-280 .17% Cu, .10 os Ag Two sections with gold in trace amounts: 85-87 .07% Cu, .04 os Ag, .01 os Au and 130-132 .01% Cu, .02 os Ag, .01 os Au.

The grab samples (at 25 foot intervals) for geochemistry were all background with exception to one sample @ 275 feet: 1.16% Cu, .38 os Ag, .01 os Au from a quarts stringer with chalcopyrite.

DDH A-10-	73 Cu(ppm)	Zn(ppm)	Ni(ppm)	Ag(os)	Pb(ppm)	Au(os)
40-60	329	48	77	.03	20	N11
80-135	1074	83	82	•05	13	N11
(88-130)	1358	88	76	.05	12	N11
240-250	783	58	73	.05	11	Nil
(242-247)	1580	82	90	.09	10	N11
305-402	492	102	129	.05	32	N11
(370-380)	2380	78	177	.10	20	NIL
	Highest assays:	45-47 88-90 90-93 117-119	.19% Cu; .32% Cu; .32% Cu; .25% Cu;	.08 01 A .09 03 A .12 01 A	5	

119-121 1.63% Cu, .06% Zn, .250s Ag -1.6 feet of massive pyrrhotite with pyrite, chalcopyrite. A-10-73 (continued)

i chi anggar

r' T

「日本語を言い

All a state of the

242-245	.19% Cu;	.11 os Ag
242-245 245-247	.10% Cu.	OS OR AR
370-375	.34% Cu.	.13 ON Ag
370-375 375-380	.135% Cu,	.13 os Ag

All grab samples showed background values. All assays for gold were Nil.

DDH A-11.	-73	Cu(ppm)	Zn(ppm)	Ni(ppm)	Ag(os)	Pb(ppm)	Au(oz)
40-50		190	45	87	.03	12	N11
80-130		284	82	84	.03	17	Nil
	Highost	, absa ys :	100-105 123-125		05 cs		loot of
	A]] 288	www.and	arah samn'	-			

All assays and grab samples in this hole were much peerer. All assays for gold were Nil.

DDH A-12-	73 Cu(p)	pm) Zn(ppm)	Ni(ppm)	Ag(os)	Pb(ppm)	Au(os)
160-195	334	37	89	.02	12	NIL
(172-177)	1608	38	121	•03	12	N11
250-265	201	47	111	.03	14	NIL
285-360	372	89	91	•05	11	Nil
(350-360)	510	302	98	•05	10	NIL
	Highest ass	ys: 167-170	.08% Ci	u, .03 o	a Ag	
		172-175	.222%	0u, .05	OE Ag	
		175-177	.068% (Du, .02	os Ag	
		253-255	.077% (Ju, .05	os Ag	
		292-294	145% (Ju, .05	os Ag	
		295-300	.069% (, .03	on Ag	
		310-315	.06% Ch	a,	a Ag	
		320-323	.066% (24, .21	os Ag	
		330-335	.08% Ci	u, .07 o	# Ag	
		355-360	.09% Ci	u, .06 o	Ag	

A-12-73 (continued)

á

「名にきた」

約月代を

ŝ,

2

11.00

Most of the grab samples in this hole yielded background values, except for two as follows:

		Cu	Zn	MA.	Ag	Pb	Au
		ppm	ppm	ppm	01	ppm	05
R	2751	57	3460	35	.3	18	Nil
(P	3001	3170	85	188	2.6	38	N11

In the light of high assays for split samples shown above, it thus appears that the interval 275' to 360' is characterised by values which are high background or slightly above.

All assays for gold values were Nil.

DDH A-14-73	Cu(ppm)	Zn(ppm)	Ni(ppm)	Ag(os)	Pb(ppm)	Au(es)
200-360	108	83	97	•02	19	N£1
640-695	500	40	50	•04	10	N11
(640-655)	1240	58	54	.07	11	N11
720-745	450	48	59	•04	11	N11
760 - 7 8 0	523	32	40	•03	12	NIL

Highest assays: 315-320 .03% Cu, .02 os Ag 640-645 .17% Cu, .10 os Ag

All grab samples yielded background values.

Although this hole intersected Temiskaming conglomerate and arkose which enhanced the prospect of finding gold, all assays for gold were Nil. The sediments would appear to be barren unless affected by a major structural feature and/or host to one or more stringer sones.

645-650 .13% Cu, .06 os Ag 650-655 .08% Cu, .05 os Ag 732-735 .09% Cu, .07 os Ag 737-740 .13% Cu, .08 os Ag 764-765 .32% Cu, .17 os Ag 768-770 .09% Cu, .04 os Ag

770-771 .07% Cu, .03 OB Ag

TB 134353 30 Astmore Trop Report H. 102-73. Hallinger Mines St. T.B A-14-73 - 41° 1_190' 570 35 5 13.1. Spo'. 20E. IRE 86. 101 LIMITED - 1'= 200 HOLLIN TIMMINS, ONTARIO

Location	3925	sollar from
		≥ 31∻005
	NORTH	19:507
	ELEV	<u>2225</u>

North	570 - 30 -
	DIABAOL

DIAMOND DRILL REPORT

HOLE NO. A-14-73

COMMENCED	inn.	21. 1573	
FINISHED	<u> </u>		
HOLE est 11	<u>Cletic</u>	<u>anomaly</u>	

AZIM. 2220 DIP Uneck collar 0 41 <u>-36.5</u>5 41° 7001 6001 30

MILSON OPTION /1

Drilled by radley mas

	DESCRIPTION		CORE SAMPLES					
то			то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE	
126	CABING.				4	<u> </u> '	<u></u>	
640.3	Conglouerate - Temiskaming in age.			'	<u> </u>	ļ'		
	Up to 180 the conclomerate is slightly				ļ	ļ'		
	greenish grey to grey in colour. After				ļ	ļ!	· · · · · · · · · · · · · · · · · · ·	
	180 the conglowerate is trey in colour	ļ				· · · · · · · · · · · · · · · · · · ·		
	with numerous fragments or pebbles. The	ļ				ļ'		
· · · · · · · · · · · · · · · · · · ·	more sedimentary nature of the conclomerat	e		<u></u>		<u> '</u>	· · · · · · · · · · · · · · · · · · ·	
	is not truly noted until further down the	·	- <u> </u>				· · · · · · · · · · · · · · · · · · ·	
 '	hole where the pebbles are much more	 '				<u> </u> '		
	rounded.				_	ļ		
	After 180 we start to get a few smoky	·			· .	<u> </u> ′		
	quartz eyes and the conglomerate tends to	_				ļ!		
	look nearly identical to the outcrop on		4			'		
	the Kalson Option. The texture also	ļ'				'		
	changes somewhat after 180 from the sugary	4				·		
_	nature over the first 601 to a more	4						
	massive groundmass with the quartz eyes.	4						
	about the only other distinguishable	· ·						
	mineral in the matrix is biotite which							
	occurs in very tiny brownish flecks. The							
	amount of biotite decreases after 180.							
	The pubble size is generally in the							
	to 2" range although some fragments are	ļ	_	·				
	greater than an inch. The larger pebbles	4	_				-	
	are usually elongate at approximately 45°	·						
	to the core axis. The smaller fragments							
		126 CARTIC. 640.3 Conglomerate - Temiskaming in age. Up to 180 the conglomerate is slightly greenish grey to grey in colour. After 180 the conglomerate is grey in colour with numerous fragments or pebbles. The more sedimentary nature of the conglomerate is not truly noted until further down the hole where the pebbles are much more rounded. After 180 we start to get a few smoky quartz eyes and the conglomerate tends to look nearly identical to the outcrop on the Kalson Option. The texture also changes somewhat after 180 from the sugary nature over the first 60' to a more massive groundmass with the quartz eyes. about the only other distinguishable mineral in the matrix is biotite which occurs in vory tiny brownish flecks. The ancount of biotite decreases after 180. The pebble size is generally in the 4 to ½" range although some fragments are greater than an inch. The larger pebbles are usually elongate at approximately 45°	126 CANTEG. 640.3 Conglomerate - Teniskaming in age. Up to 180 the conglomerate is slightly. greenish grey to grey in colour. After 180 the conglomerate is grey in colour with numerous fragments or pebbles. The more sedimentary nature of the conglomerate is not truly noted until further down the hole where the pebbles are much more rounded. After 180 we start to get a few smoky quartz eyes and the conglomerate tends to look nearly identical to the outcrop on the Kelson Option. The texture also changes somewhat after 180 from the sugary nature over the first 60' to a more massive groundmass with the quartz eyes. About the only other distinguishable mineral in the matrix is biotite which occurs in very tiny brownish flecks. The amount of biotite decreases after 180. The pebble size is generally in the 4 to 3" range although some fragments are greater than an inch. The larger pebbles are usually elongate at approximately 45°	TO DESCRIPTION FROM TO 126 CADING.	TO DESCRIPTION FROM TO RECOV. 126 CUITIG.	TO DESCRIPTION FROM TO RECOV WIDTH 126 CANTRG.	TO DESCRIPTION FROM TO RECOV. WIDTH ASSAY 126 CATHO.	

EAST. __ ELEV. __ AZIM. __ DIP.___

DIAMOND DRILL REPO	ORT	
--------------------	-----	--

HOLE NO. 4-14-73

COMMENC	ED
INISHED.	
PURPOSE	DF

Ashrore Tup.

				cc	RE SAMPL	.ES			
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE	
		are generally more angular although this							
		type of occurrence is also seen in the							
		outcrop on the Kalson property. The							
						,		·	
		pebbles are of several types - the dominan type being blue grey and cherty - in some	M						
		instances almost translucent; grey to buff							
		charty peobles; black siliceous pebbles -							
		further down the hole some of these look					·	2 2 2	
		repher slaty; plus some dark brownish to							
		greenish peobles which often contain						<u> </u>	
		cl.orite-biotite.						20 87) 20	
		153.4-158 and 167-180 are more massive						<u> </u>	
		sections - dark grey green in colour -							
		nc distinguishable minerals. The pebble							
		size and number just generally decreases						· · · · · · · · · · · · · · · · · · ·	
		irgo these zones - arkosic?							
	1	After 180 the pebble size fradually						18	
	<u> </u>	increases over 21 and then we start to			+				
		get some better conglomerate and the							
		quartz eyes begin to occur.					 		
· · · · · · · · ·		<u>L'ineralization is ouly minor with a</u>							
	 	few tiny blebs of sulphides in the early			·	 			
	 	part of the hole - mostly pyrite - some		·`		 		<u>_</u>	
		pyrrhotite and rarely chalcopyrite. The			ļ			· · · · · · · · · · · · · · · · · · ·	
		pyrrhotite is only weakly magnetic - and			ļ				
	J	the chalcopyrite is generally associated					1		

FORM \$22

EAST.

ELEV. ___

AZIM. _

DIP

DIAMOND	DRILL	REPORT
---------	-------	--------

			-	1	~	1
HOLE	NO.	<u>.</u>	-1-	'). -	-7	2

COMMENCED
FINISHED.
PURPOSE OF
HOLE

				Ashmor	e Tup.			
				co	RE SAMPL	ES		DESCRIPTION OF SAMPLE
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
	ļ	with it in tiny splashes. After 210 there					. к. 	
		is a general increase in the amount of						
		sulphides - here we have mostly dissemin-	200	205		5		Cgl - very minor sulph.
	<u> </u>	ated blebs of pyrrhotite and the rock is	205_	210		5		12 12 12 12
		more magnetic. Cp is very minor here.	_210	215		Ę		<u>""; tr. cp</u>
		Around 282 the size and number of	215	220		5		" winor po py
		pebbles gradually decreases into a short	220	225		5		" <u>po py, tr cp</u>
		zone of arkose from 304.5 to 330. In the	225	_230_		5	·	n h bo bà
		conglomerate up to the arkose the fragments	230	_235_		5		" <u>"po jy</u>
-		are mainly of the bluish grey type;	235	240	 	5		<u>"po_py</u>
•		similarly at the lower contact after 330	21,0	245		5		" " po py, tr. cp
<u></u>		although the gradation here (330) is much	245	250		5		" " po py, tr. cp
<u></u>		faster.	_250	255		5		" <u>vự cợ "</u>
		The arkose is greener in colour than	_255	_ 260_	 	5		<u>n n bo bâ</u>
		the crey conglomerate and contains a few	260	265		5		"very minor sulph
		noticeable grains of quartz and feldspar.	265	270_		5		<u>n n n n</u>
		Practically_unaltered = very_minor	_270	.275		5		<u>17 17 17 17 17 17 17 17 17 17 17 17 17 1</u>
		chlorite-sericite nearly the same as the	275	230		5		" minor pyrite
<u></u>		alteration in the conglomerate. Very	280	285		5		" pyrite
		minor pyrite in the arkose - splash of	285	290		5		" very minor py
		chalcopyrite at 319.5. There are a few	290	_295_		5		n n n py
		carbonate stringers in the arkose unlike	295	300	 	5		" minor py
		the conglomerate and there is some minor		· ·				
		precciption and alteration with a few						
		narrow carbonate stringers from 303.5 to						
<u></u>	<u> </u>	310.5.				<u> </u>		1

FORM 522 NORTH

EAST. ELEV. AZIM.

D	L	A	N	1	0	ſ	J	D)	D	F	7	ĺ	L			F	R	E	F	2	0	F	2	٦
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	---	---	---

4-31-73 HOLE NO.

11

11

11

DY TO

00 00

57 °50

1 DT DO

by no cp

COMMENC	ED
FINISHED.	
PURPOSE	OF
HOLE	•

WILSON OFTION #1 PROPERTY ... DIP Ashnore Two. CORE SAMPLES DESCRIPTION DESCRIPTION OF SAMPLE FROM TO RECOV. WIDTH FROM то ASSAY After the arkose we are into a good conglomerate before 340. There is a 305 300 5 Cel - very minor by po notable increase in py po here as well 305 310 5 irkose - very minor Ty no with numerous blebs all along the core. 11 310 315 5 12 Schistosity due to fragment elongation at 55° to the core. Similar lithology as 12 315 320 5 Ħ 11 -325 5 11 previously described conglomerate. 320 17 After 360 the matrix of the congiomerale325 330 5 11 330 335 5 101 minor ry no. becomes greener and there are very numerous 335 34.0 11 18 well rounded pebbles. Mostly blue grey 5 cherty, some white, some porphyry, some 345 340 12 3. py po___ 5 350 black, some brown and some dark green. 34.5 r, 17 minor by po Pyrite-pyrrhotite content rapidly 350 355 11 3, py po_ E 355 360 5 12 35 py po decreases after 380. 406-407.5 - short arkosic band: speckled nature of otz-feldspar. 419.4-445 - rather sharp upper contact at 40° to dark grey fairly massive, very slightly altered arkose. 445-448 - very dark crey conclomerate very small blue grey fragments, some pyrit - contacts gradational. 448-456.7 - Fradation to Freenish arkose, fairly massive, minor pyrite. 456.7-501.2 - gradation to a good conglomerate - mostly bluish grey and × .

1. .

EAST.

ELEV.

AZIM. ...

DIP

DIAMOND	DRILL	REP	ORT
---------	-------	-----	-----

HOLE NO. 4-14-73

COMMENCED.

FINISHED

HOLE

PURPOSE OF___

•

5.

Ashmore Twp.

		The second s			nmore 11					
FROM	то	DESCRIPTION	FROM	то	RECOV	ES WIDTH	ASSAY	DESCRIPTION OF SAMPLE		
		whitish cherty fragments, minor py po.						· · · · · · · · · · · · · · · · · · ·		
		Lineation of fragments at about 75° to the								
		core.				•				
		501.2-509.1 - short shear (1") at				•				
		401.2 at 60° to core then conglomerate						·····		
, * * * • • • • • • •		with a more arkosic matrix. Fragments are								
		h.ch fewer in number than other conglomera	te							
		h rizons.								
		509.1-521 - short band of coarse con-								
		elomerate - more brownish chloritic alter-								
		avion. Traces of sulphides.								
		521-543.8 - some arkose but mostly								
		cingloweratic fragments in a more arkosic								
		m_trix = similar to the unit 501-509 but								
		byre there is some areas with no fragments								
			•		1					
		Poth contacts gradational - lower is more								
		repid. A little more alteration here -			+			· · · · · · · · · · · · · · · · · · ·		
		chlorite, sericite. Lineation at 60° to								
		core.			<u> </u>		·			
		543.8-605.8 - return to conglomerate		 						
		lineated at 60° (long axis of fragments).								
		Luch more highly altered than previous -		 	. -					
	ļ	matrix is quite brownish. Large number		, ,				· · · · · · · · · · · · · · · · · · ·		
		of pebbles as before - mostly blue grey		ļ		L		· · · · · · · · · · · · · · · · · · ·		
	 	cherty, some white, some buff cherty, some								
		brownish and sandy. At 554.9 trace of								

EAST. ____ ELEV. ___ AZIM. ____ DIP____

-

.

DIAMOND DRILL	. REPORT
---------------	----------

A-14-73

HOLE NO.

COMMEN	CED		
PURPOSE	OF	 	
HOLE		 	_
		 	_

Ashmore Nup.

				cc	DRE SAMPL	.ES				
FROM	τo	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE		
		chalcopyrite - otherwise very little sul-								
		phides. Around 565 we grade into a less								
		altered conglomerate and the colour change	0							
•		from brownish to grey. Further along the		<u> </u>						
		zone the conglomerate also becomes more								
								······································		
		arkosic and the size and number of pebbles								
		decreases to the end of the zone.								
		605.8-609.8 - contacts at 45° - con-			<u> </u>	,				
. <u></u>		verging to a short Dyke of gabbro??								
		Very fine groundwass with some fairly larg	e		·			· · · · · · · · · · · · · · · · · · ·		
		irregular blebs of brownish biotitic								
		material and some jade green spots of				•				
		chlorite. It appears to have no effect						· · · · · · · · · · · · · · · · · · ·		
		on the arkosic material at either contact								
		although the dyke seems to be slightly								
		chilled and brownish at its contacts.				 		· · · · · · · · · · · · · · · · · · ·		
		Non-magnetic, carbonatized.								
		609.8-611.3 - arkosic, grey green as								
·		before.								
		611.3-623 - sharp contact at 45° to			<u> </u>					
		band of conglomerate, grey hard, numerous						24		
		pebbles. Minor sulphides, trace of cp @								
		612.1. Lower contact is quite abrupt at								
		80° to core into the much finer conglomera	te.							
		623-640.3 - Fradation from the con-								
		Elomerate for the first 2' then quite a								

ే.

EAST. _

AZIM. ...

DIP___

DIAMOND DRILL	L REPORT
---------------	----------

HOLE NO. A-14-73

COMMENCED.
FINISHED
PURPOSE OF
HOLE

		T			TO TWP.	FC		1
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
		dark grey green arkose. Massive. Very						
		minor sulphides. Lower contact along a						
		guartz_stringer.	640	645		. 5		L1 - very minor op po py
540.3	790	Hornblende diorite dyke, upper contac	645	650		5		" minor py po cp
		along a quartz stringer. Rather high per-	650	655		5		n n cp py
<u>.</u>	_	centage of feldspar here and locally the	655	660		5		n n py cp
		feldspar content is extreme. The rock is	660	665		5		n n py cp
		medium freen in colour with fairly numerou	<u>s 665</u>	670		5	ļ	very minor py, tr. cp
		blebs of pseudomorphic chlorite after horn	- 670	675		5		"trace_py
		blende. The rock is very slightly magneti	c. 675	680		5		"negligible_sulph
		Up to 662 there are quite a few quartz	_680_	685		- 5-		"few traces of ty
		stringers - usually at a low angle to the	685	690_		5		minor py cp
		core - mostly bluish in colour. Associated	-690-	695		5		"few traces py
		around these stringers are some sulphides	.					
•		py po with some good sized splashes of						·
		chalcopyrite.						
		667.5-670.3 - few quartz-carbonate						
		stringers here, making the diorite quite						
		altered. The diorite becomes finer graine	à ,					
		nore silicified, with some brick red						· · · · · ·
		staining of the feldspar. Accessory chlor	ite					
		with the stringers - less than normal					<u> </u>	
		chlorite within the diorite.	 				+	
		Some chalcopyrite around a quartz			<u> </u>			
		stringer at 686.				 		
		Around 722.5 the diorite becomes a bit		L	[L	<u> </u>	<u> </u>

FORM 622 NORTH_

EAST.

ELEV. AZIM. __

DIP____

VILSON OPTION #1 PROPERTY_

.

	• •		~ ^
NO.	- A-1	/ · … `	/ 4
NO.	· · · · · ·	· - ·	• ~

HOLE

COMMENCED
FINISHED
PURPOSE OF
HOLE

				Ashmor	e Twp.			
				C0	RE SAMPL	.ES		
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
	ļ	finer grained and then around 728.8 the	ا ا					
•		rock becomes very brownish and micaceous.		 				
• ·		ifter 728.8 to 741.3 the rock looks some-	720	725		5		L ₁ - traces of py po cp
•		what like the matrix of the brownish con-	725	730		5		"minor_gtz, winor_py_po
	_	Elomeratic. There is so much biotite and	730	732		2		u u ninor py po cp_
		quartz around this zone that it is very	732	- 735				" 80,5 " tr. py cp
, 	ļ	difficult to interpret. There is about	735	737		2	ļ	" 30; " minerty po cp
		30's bluish gtz stringers here and some	737	740		3	 	" 20; " minor py to cp
, 		sulphides associated with them.	740	742		2	Ì	" minor " " py po cp_
		741.3-790 - greyer diorite than	742	745		3		" neglig. sulph or qtz
		previous - contact along stringer zone	745	750		5		17 17 17 17 17
		with above. Rather mottled appearance				 	 	
	ļ	with the high feldspar content. Only 3	ļ!	 		_		· · · · · · · · · · · · · · · · · · ·
		stringers here - white, quartz-carbonate	· 760	764		4	 	L ₁ mass. (slightly magnetic)
		with very minor sulphides: - 764.8, 778.2	764	765		1		Li mass., 1" str. @ 20° to C.A bordered by heavy black tourma-
		and 788.	 				ļ.,	line with minor cp throughout.
مى بىرى بىرى بىرى بىرى بىرى بىرى بىرى بى			765	768		3		Mass L1 - minor py @ 30° to C.A. (magnetic).
	<u> </u>		768	770		2		Slightly min qtz L1 w. small tourmaline strs w. cp & py (mendi
	790	END OF HOLE	770	771		1		Mass. alt. L _l with py & cp (magnetic)
<u>`</u>			771	775		4	ļ	Coarse grained L1 massive,
	.l	Dale R. alexander	775	777		2		Coarse gr. L1 - slightly min.
·		HOLLINGER MINES LIMITED	777	779		2	ļ	1" green qtz str 20° to C.A., cp + py, shear plain @ 10° to C.A.
		TIMMINS, ONTARIO	779	780		1	<u> </u>	Otz diorite - chloritic and pyritic (magnetic)
			788	789		1		2" qtz calcite str. in an un- mineralized diorite.
	<u> </u>			<u> </u>		_	ļ	
	<u> </u>		<u> </u>	1		<u> </u>		<u> </u>

FORM S22

EAST. __

AZIM. -

DIP___

DIAMOND DRILL REPORT

A-14-73

HOLE NO.	x=24;=7,2
FINISHED	

Ashnore Twp.

			CORE SAMPLES						
то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE		
	Geochemistry and Thin Section								
126	Temiskaming conglomerate - biotitic								
150	Biotitic conglomerate				•		·		
175	fore massive sedimentarkose?								
200	Conglowerate								
225	17								
250	. 17					·	. •		
275	17								
300	Hore_arkosic_part_of_gradation		-						
325	irkose - greenish								
_350	flood coarse conglomerate - some py								
375	Coarse conglomerate								
400	Finer conglomerate								
425	Dark grey arkose								
1,50	Arkose with a few dark fragments						·		
_475	Conglouerate, blue grey pebbles								
500	Lark grey conglomerate				 				
_ 525	Conglomerate - few pebbles - arkosic matri	x							
550	Conflomerate - more highly altered + py								
575	Conglomerate - greyish								
600	Conglomerate - more arkosic matrix								
608	To Dr. Hoddle - gabbro?		· · ·	 					
625	Grey green arkose	•							
650	Guite highly altered diorite, py cp								
	150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 608 625	Ceochemistry and Thin Section 126 Temiskaming conglomerate - biotitic 150 Biotitic conglomerate 175 Fore massive sediment - arkose? 200 Conglomerate 225 " 226 " 2275 " 300 Hore arkosic part of gradation 325 irkose - greenish 350 Good coarse conglomerate - some py 375 Good coarse conglomerate - some py 375 Good coarse conglomerate 400 Finer conglomerate 425 Dark grey arkose 450 Arkose with a few dark fragments 475 Conglomerate, blue grey pebbles 500 Eark grey conglomerate 525 Gonglomerate - few pebbles - arkosic matri 550 Conglomerate - more highly altered ÷ py 575 Conglomerate - greyish 600 Conglomerate - more arkosic matrix 608 To Dr. Foddle - gabbro? 625 Grey green arkose	Geochemistry and Thin Section 126 Temiskaming conglomerate = biotitic 150 Biotitic conglomerate 175 Core massive sediment - arkose? 200 Conglomerate 225 " 250 " 260 Conglomerate 225 " 250 " 250 " 275 " 300 Core arkosic part of gradation 325 irkose - greenish 350 Coarse conglomerate - some py 375 Coarse conglomerate - some py 375 Coarse conglomerate 400 Finer conglomerate 425 Dark grey arkose 450 Arkose with a few dark fragments 475 Conglomerate, blue grey pabbles 500 Lark grey conglomerate 525 Gonglomerate - nore highly altered + py 575 Conglomerate - greyish 600 Con	TO DESCRIPTION FROM TO Geochemistry and Thin Section	TO DESCRIPTION FROM TO RECOV. Geochemistry and Thin Section	TO DESCRIPTION PROM TO RECOV. WIDTH Ceochemistry and Thin Section -	TODESCRIPTIONFROMTORECOV.WIDTHAssartCeochemistry and Thin Section		

FORM S22 NORTH___

EAST.

ELEV. ...

AZIM. ____

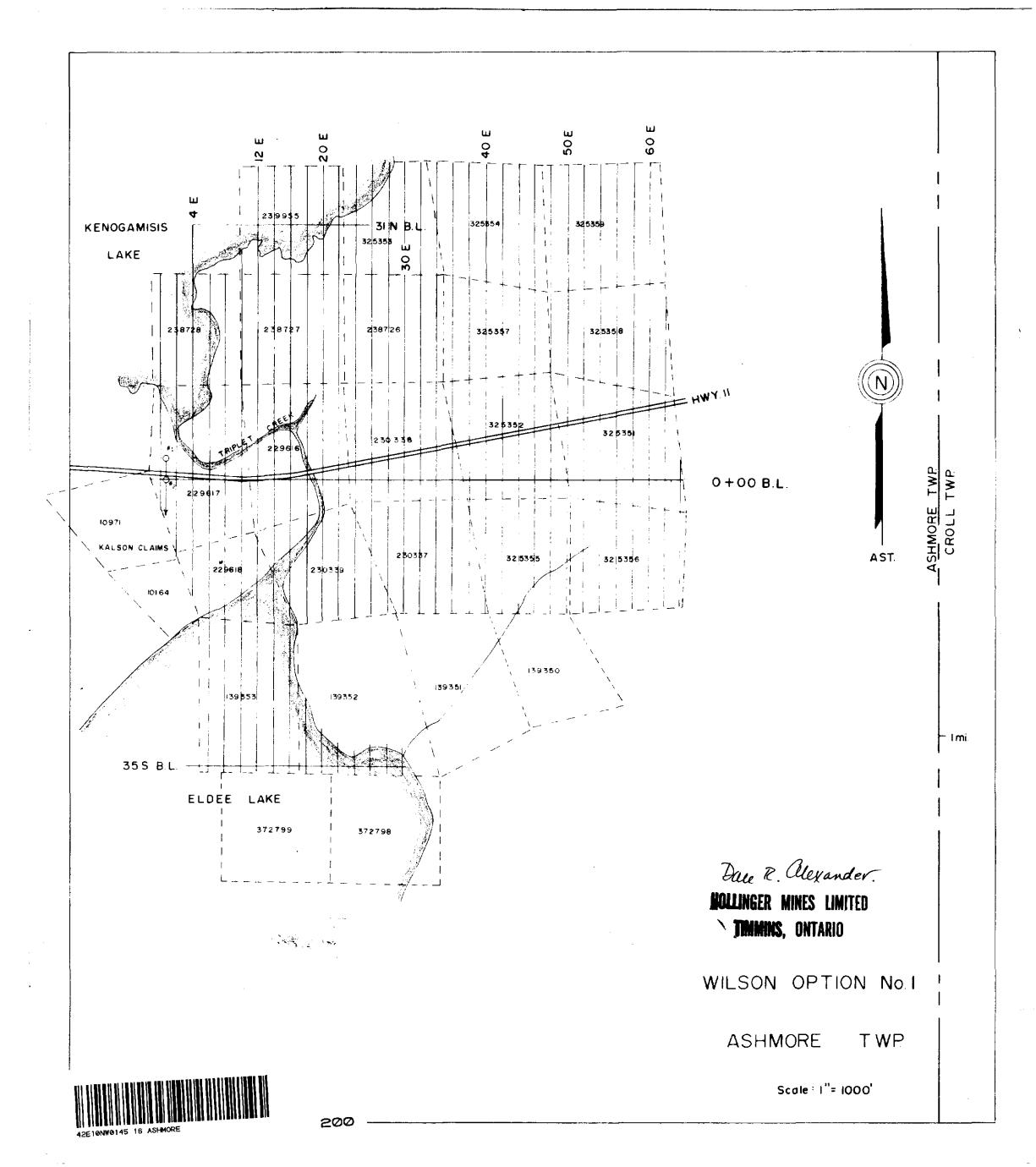
DIP___

D	1/	AM	0	N	D	D	R	LL	R	E	P	0	R	T
---	----	----	---	---	---	---	---	----	---	---	---	---	---	---

A-14-73 HOLE NO.

HOLE

PURPOSE OF


HOLE NO.	
COMMENCED	
FINISHED	

MILSON OPTION /1 PROPERTY_

Ashnore Typ.

÷.

	[DESCRIPTION	CORE SAMPLES					
FROM	то		FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
		Geochemistry and Thin Section						
C	675	Diorite with high feldspar content						
G + TS	700	Diorite - some py				•		
G	725							
		Diorite - fine grained with quartz						
<u> </u>		Greenish diorite - some po						
G		Greyish biotitic diorite			,			
<u> </u>		17 17 17			<u></u>		•	
<u></u>		·				ļ		
		·						
- <u> </u>								
					•	1	1	
<u> </u>				1	T		1	

