```
SUMMARY REPORT ON
LYNX - CANADA EXPLORATIONS LTD - ROXMARK MINES LTD CANADIAN REYNOLDS METALS COMPANY LTD MC LELLAN JOINT VENTURE MC LELLAN DEPOSIT ERRINGTON TOWNSHIP ONTARIO
``` BY
S. E. MALOUF

MARCH 08, 1982
CEEINED618 63.4021 ERRINGTON
CANADIAN REYNOLDS METALS COMPANY LTD
MC LELLAN JOINT VENTURE
MC LELLAN DEPOSIT
ERRINGTON TOWNSHIP ONTARIO
 BY\(010 c\)
S. E. MALOUF
MARCH 08. 1982
\begin{tabular}{lccc}
\hline & INDEX PAGE & PART 1 (of 2) & \\
INTRODUCTION & & \(\frac{\text { Page }}{1}\) \\
HISTORY AND WORK COMPLETED & & 1 \\
WORK COMPLETED IN 1981 & & 3 \\
GEOLOGY & & 3 \\
TRENCHING & 4 \\
DIAMOND DRILLING & 5 \\
SUNMARY OF LYNX - ROXMARK - CANADA REYNOLDS & 5 \\
GEOPHYSICS JOINT VENTURE DRILLING & 6 \\
RECOMMENDATIONS & 8
\end{tabular}
APPENDIX A - Heap Leaching Proposal
APPENDIX A - Heap Leaching Proposal
MAPS
\begin{tabular}{ll}
Map 1 & Holdings Map \(1^{\prime \prime}=1320\) feet \\
Map 2 & Surface Plan \(1^{\prime \prime}=200\) feet \\
Map 3 & Magnetometer Plan \(1^{\prime \prime}=200\) feet \\
Map 4 & VLF-2 E M-1 Plan \(1^{\prime \prime}=200\) feet \\
Map 5 & Drilling Plan - Plant Area \(1^{\prime \prime}=40\) feet \\
Map 6 & Longitudinal Plant Area \(1^{\prime \prime}=40\) feet
\end{tabular}
DRILL HOLE SECTIONS \(1^{\prime \prime}=40\) feet
PART 2 (of 2)
8+00 E 37
8+00 E 37
7+00E E L-81-7, 16, 36,9
7+00E E L-81-7, 16, 36,9
5+50 E L-81-5,L-81-6, 15, 35, 12
5+50 E L-81-5,L-81-6, 15, 35, 12
4+50E 17, 42, 14, 10
4+50E 17, 42, 14, 10
4+00 E L-81-3, L-81-4, 47, 51, 11-31, 38
4+00 E L-81-3, L-81-4, 47, 51, 11-31, 38
2+50 E L-81-1, L-81-2, 22, 29, 18,49
2+50 E L-81-1, L-81-2, 22, 29, 18,49
1+50 E 39
1+50 E 39
1+00 E 23, 24, 19,48
1+00 E 23, 24, 19,48
0+00 E 24, 20-40
0+00 E 24, 20-40
1+00 W 30, 21-41
1+00 W 30, 21-41
2+50W 43,44,50
2+50W 43,44,50
4+00W 33
4+00W 33
6+00W 52
6+00W 52
8+00W 53
8+00W 53
10+00 W 55
10+00 W 55
12+00W 58
12+00W 58
13+00W 62
13+00W 62
Drill Logs L-81-1 to \(1-81-7\) inclusive

\title{
LYNX - CANADA EXPLORATIONS LTD - ROXAIARK MINES LTD \\ CANADIAN REYNOLDS METALS COMPANY LTD
}

MC LELLAN JOINT VENTURE
MC LELLAN DEPOSIT
ERRINGTON TOWNSHIP ONTARIO
BY
S. E. MALOUF

MARCH 08. 1982
INTRODUCTION
The McLellan property consists of eight patented claims totalling 440 acres in Errington Township 5.25 miles south west of the town of Geraldton, Ontario. The shaft and principal showing are along the control fault in the Geraldton area; two miles west of the western most workings of Consolidated Mosher Mines. The property adjoins three previous gold producers, Roxmark Mines formerly Magnet Consolidated Mines to the west, Algoma Steel Corporation formerly Little Long Lac Mines to the north, and Tombill Mines formerly Elmos Mines on the McLellan east boundary. (See Map l Scale \(1^{\prime \prime}=1320^{\prime}\)) The property is particularily well located with respect to services including the Trans-Canada Highway and a main branch of the Ontario Hydro power line.

The property has been explored by a three compartment shaft to 325 feet with 2200 feet of drifting and crosscutting on two levels, 2500 feet of underground drilling and approximately 30000 feet of surface diamond drilling. The shaft is 6000 feet south 70 degrees east of the Magnet Consolidated shaft. The mineral occurrence is gold bearing pyritization, in a sheared greywacke associated with iron formation and quartz porphyry similar to the environment localising the gold ore at Consolidated Mosher Mines.

HISTORY AND WORK COMPLETED
The original discovery was made by Long Acre Gold Mines in 1933. Some 8000 feet of diamond drilling was completed according to reports but records are non existent. McLellan Long Lac Gold Mines was organized in May 1936 with further drilling and incomplete records. Sixty-two drill holes appear to have been completed with drill logs for thirteen holes 47 to 59 inclusive and some form of record from longitudinals and plans of an additional thirty-one holes for a total of 13820 feet. Records of any kind are lacking on eighteen holes.

Drilling by H. C. Dudley of Duluth, Minnesota was completed during the shaft sinking in 1941 and reported on by, A. Matheson. The drilling with a new number sequence involved one check hole № 101 at the Main showing and fourteen holes to the Northwest for a total of 7454 feet. The holes were reviewed in detail by the Magnet Consolidated geological staff and drill logs and assays are available.

Six additional holes were drilled with no available records other than holes 119 and 121 showing on Elmos Mines map as drilled on claim 10717 adjacent to the Elmos west boundary. The Dudley period of drilling is referred to in 1941 Northern Miner press releases.

A further period of drilling is reported on by the Northern Miner in 1950 on a 5000 foot drilling contract. A good portion of the drilling, at least holes \(5,6,7,9,10,11\), and probably 12, were in the Main Showing area but details are lacking. One hole NO 5 is reported as being just east of the shaft with an intersection of 0.205 ounces in gold per ton over 10.3 feet, 100 feet below the second level.

The McLellan shaft was collared in bedrock at 10.0 feet in 1941. It is a three compartment shaft with 5.0 by 5.5 foot compartments 8 X 8 inch B.C. fir with sets at 6 foot centers. The shaft was completed to 330 feet with levels at 150 and 300 feet. Assay plans showing samples taken on both levels are available at 1 inch equals 10 feet. Details on most of the underground diamond drilling are illustrated on the assay plans. A series of \(X\)-ray holes were drilled assessing values in the walls of the drift the highest legible number being fourteen. Regular core drilling, probably seven eighth inch, show as numbers from fifteen to twentyfive the longest hole being 127 feet. The data available appears to account for all the reported 2500 feet of underground drilling. All holes on the assay plans are horizontal.

The surface drilling results were reviewed by several consultants with the general concensus being of two zones in a North 70 degree west shear over a 1300 foot strike length from the east property boundary. The north zone had an indicated 250 tons per vertical foot grading 0.23 ounces in gold per ton with the south zone sixty feet to the south averaging 600 tons per vertical foot grading 0.14 ounces in gold per ton. The north zone was considered to have an average width of 6.0 feet and a length of 500 feet. The south zone was considered to have a width of 15.0 feet and a length of 480 feet. The combined 850 tons per vertical foot grading 0.17 ounces in gold per ton was generally considered to have been confirmed by the undergound exploration.

A sixty ton bulk sample was taken from a well sampled portion of the 150 level main drive on the south zone. The bulk sample was milled at Bankfield Mine with recovery grade of 0.089 ounces per ton. This was dissappointing and the underground operation was shut down.

Geophysical work appears confined to dip needle surveys with lines at 400 foot and 800 foot intervals. The Northern Miner stated that additional geophysics was contemplated but there is no record of it having been done. Outcrop is plentiful in the eastern portion of the property but the western two thirds is drift covered.

The company was reorganised in 1953 on an amalgamation with Dyno Mines Limited. No further work was completed on the Errington property and the holdings were eventually acquired by a sale of patented ground to a group of vendors represented by James E. Connors of Pompano Beach, Florida.

Lynx - Canada Explorations Limited acquired a 36 month option on the property including surface rights on October 15 , 1980, whereby they can earn a \(100 \%\) undivided interest by the payment of \(\$ 100000\) on or before October 14,1983 , the vendors retaining a \(10 \%\) net profit interest. Lynx - Canada entered into a Joint Venture agreement to explore the property with, Roxmark Mines Limited \(37 \frac{1}{2}\), Lynx - Canada Explorations Limited 37.5\%, and, Canadian Reynolds Metals Company Limited - \(25 \%\). Payments to date have been \(\$ 20000\) with \(\$ 25000\) due on October 14,1982 , and the final \(\$ 55000\) on or before October 14, 1983.

\section*{WORK COMPLETED IN 1981}

The Joint Venture partners completed the legalities of their Joint Venture and their option agreement with James E. Connors. Roxmark Mines was appointed Joint Venture manager. Work completed included the following:
\begin{tabular}{ll}
Line cutting & 14.02 miles \\
E.M. Survey & \(12.87 "\) " \\
Magnetometer Survey & \(12.86 " "\) \\
Geological Survey & \\
\begin{tabular}{ll}
Diamond Drilling & 2613 feet \\
Surface Stripping and & \\
Sampling
\end{tabular} & 175000 square feet
\end{tabular}

GEOLOGY

The Main NcLellan showing is within a broad belt of folded greywacke sediments with interbedded siliceous porphyries, diorite horizons and iron formation and narrow conglomerate beds.

The mineralization is in the tightly folded east west trending Hardrock Synclinorium cut off on the south by the North 80 degree West trending Bankfield Tombill fault the major structural control of the area. The Bankfield Tombill fault is a 50 foot wide shatter zone with 25 to \(50 \%\) quartz carbonate veining and intense silicification. It is frequently marked by a 3 to 6 foot mineralized mud seam carrying 10 to \(15 \%\) sugary pyrite and some gold values. The fault is south dipping at 60 to 70 degrees. There is considerable post ore movement along the fault and the gold values are probably from material trapped up in the movement along the fault.

A base line was established in the Main Showing area and a series of drill sections have been constructed utilizing all known data. Local magnetic attraction is strong and a transit survey is required establishing the exact location of the shaft, preferably on the Magnet Mine survey grid. All picket Iines, claim lines, property boundaries, drill holes, stripped areas and old trenchs should be surveyed. (See Map 2: \(1^{\prime \prime}=200\) feet)

\section*{TRENCHING}

The McLellan mineralization is in a 150 foot wide competent shear. The plant area centered around the shaft is approximately 1000 west of the McLellan east property boundary. The shear was exposed by overburden removal in a series of four 160 to 500 foot long trenchs approximately 150 feet apart in from the east boundary. The average thickness of overburden was 6.0 feet and involved approximately 175000 square feet of exposure. Stripping had to be done by shovel without adequate pumping facilities. The South ore zone was exposed in Trench \#l the first trench east of the plant area. Fault zone and carbonated wall rock was encountered resulting in considerable spoil and a hole 20 feet deep. The zone did not get properly sampled but grab samples gave encouraging results. A decision was made to sample by diamond drilling and the zone was well defined by Hole L-81-1 that gave 0.12 ounces in gold over 32.5 feet from 45 to 70 feet below surface. The North ore zone appeared also to occur in low ground in the same trench and shallow drilling gave narrow values only.

The trenchs to the east also failed to expose appreciable ore widths. Trench \#2, 150 feet of Trench \#l did not get far enough south to expose the South ore zone and got into low ground at its north end. The other two trenchs to the east appear to be under the ore zone plunge although Trench \(\# 4\) exposed a narrow zone with some free gold (Map 5 and 6). It is probable that the best portion of the ore zone is under the low grade development muck covering the plant area.

Exposing the ore zones would be facilitated by a proper drainage channel and a sump with adequate pumping facilities.

\section*{DIAMOND DRILLING (Maps \(5 \& 6\), and Sections)}

Seven drill holes were completed in the 1981 program for a total of 2613 feet. Results are tabulated on the attached sheet, Page 6. All known drill information has been set up on sections and longitudinals at 1 inch equals 40 feet. A considerable number of drill collars have been located but an effective analysis will require a transit survey. Drilling was laid out assuming Hole \#49 had been located. Hole L-8l-2 drilled to check this intersection failed to do so. Other holes found during the surface stripping did not correspond to known data and a formal survey is required.

Drill holes L-81-1, L-81-4, L-81-6, and, L-81-7, encountered the Bankfield Tombill fault followed by a quartz porphyry horizon in close proximity to the South ore zone. Holes logged by the Magnet geological staff such as M-47 and M-51 show similar relationships establishing the location of the South ore zone. With this correlation Hole ll - 31 that was located in drifting on the 150 level on \(3+25\) east section shows the south ore zone 0.09 ounces over 20.0 feet south of the 150 level drift and the North ore zone below the level probably grading 0.08 ounces over 30.0 feet or a combined 0.04 ounces over 139 feet. See Section \(4+00\) east.

The recent hole \(\mathrm{L}-81-4\) on \(3+75\) east section showed 0.05 ounces over 21.0 feet as the south zone in a similar location followed by 0.07 ounces over 65.0 feet under the north ore zone for a combined 0.04 over 156 feet. Hole 38 at a higher elevation on \(3+68\) east section had two zones 0.14 ounces over 39.5 feet forty feet above the 150 level to the south of the drift and 0.07 ounces over 30.0 feet thirty feet below the north zone on the level. Hole \(M-51\) on \(3+07\) east section is shown without the normal deviation as above the 300 level drift with the south zone averaging 0.10 ounces over 350 feet. The hole didn't go far enough to intersect the north zone. The crosscut to the north zone on the 150 foot level Section \(3+10\) east probably averages 0.10 ounces in gold over 26.9 feet combining the wall samples and U-15 and an overall of 0.05 ounces over 124 feet combined with what is known of the south zone on the level. The two zones seem to be close together on the 300 foot level combined for an average grade of 0.06 over 56.3 feet on \(4+00\) east section. The zones appear to have surfaced east of \(4+00\) east although Hole 9 gave 0.08 ounces over 58.0 feet at a 70 foot depth on \(6+23\) east.

\begin{tabular}{|c|c|}
\hline s，sie & 300＜－78 \(\quad\)－ 2 L \\
\hline S，LLz & ascs－7a \(\varepsilon\)－xid \\
\hline S，切 & 3L95－78 \(\varepsilon\)－xid \\
\hline S，0¢z & a0＜E－T8 \(2-x \mathrm{~L}\) \\
\hline 5，09 & 3968－7¢ 2 －x山 \\
\hline 5107 & alヶz－7a \\
\hline S،1ヶ & 98ヶて－7日 \\
\hline & NOILFO \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & N & N & N & N & N & \(\stackrel{-}{\infty}\) & \multirow[t]{2}{*}{｜cay} \\
\hline \[
\mathrm{N}_{0}
\] & － & 0 & \(\bigcirc\) & 0 & － & \[
\begin{aligned}
& \infty \\
& N
\end{aligned}
\] & \\
\hline z & z & \(z\) & \(z\) & z & z & － & 亩 \\
\hline & & & & & & \(\omega\) & 困 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \(90^{\circ}\) & \(0 \cdot 9\) & \(=\) & \(0 \cdot \varsigma を Z-0.6 乙 て ~\) \\
\hline \(\varepsilon 0^{*}\) & \(0^{\circ} \mathrm{OL}\) & ＝ & 0．9Iて－0．90て \\
\hline \multirow[t]{2}{*}{E．\({ }^{\circ}\)} & 0．6 & \(=\) & \(0^{\circ} 96 \mathrm{~L}-0^{\circ} \mathrm{L8}\) I \\
\hline & sKesse & 7 & 20］7tu8！s ON \\
\hline で & \(S^{*} I T\) & \(=\) & \(ร^{*} \angle 9 て-0 \cdot 5 \subseteq Z ~\) \\
\hline \(90^{*}\) & 0． 59 & ＝ & \(0^{\circ} 028-0^{\circ} 55 Z\) \\
\hline \(50^{\circ}\) & 0.92 & \(=\) & 0＊06T－0＊79I \\
\hline S LT＇ & \(9^{\circ} 0\) & \(=\) & L＊\(\angle E-T \cdot \angle E\) \\
\hline \(70^{\circ}\) & 0＊ & \(=\) & \(0^{*}\) LZ－0＊Sて \\
\hline \(70^{\circ}\) & \(\varepsilon \cdot Z\) & ＝ & 0．9－L． \\
\hline \(70^{\circ}\) & 8＊I & \(=\) & \(0^{\circ} 67-0 \cdot L Z\) \\
\hline TI． & \(S^{\circ} \mathrm{I}\) & ＝ & \(S^{\prime} 8 \mathrm{I}-0^{\circ} \mathrm{LT}\) \\
\hline \(70^{\circ}\) & \(0^{*}\) Z & \(=\) & 0．9－0．7 \\
\hline OT＊ & \(0^{*} \mathrm{~T}\) & ＝ & 0．9ST－0．SGT \\
\hline ZI＊ & S＊\(\tau\) & \(=\) & \(5^{\circ} \angle 0 T-0^{\circ} \mathrm{SL}\) \\
\hline TI＊ & \(0^{\circ} \mathrm{Z}\) & \(=\) & \(0^{\circ} \mathrm{ES-0}\)－TS \\
\hline szo ny & 山G马y & & OL WOYE \\
\hline
\end{tabular}

Section \(2+50\) east appears to be towards the center of the best part of the mineralized zone. L-81-1 on section \(2+50\) east, the first of the 1981 series, encountered the south zone just above the quartz porphyry horizon. The hole averaged 0.23 ounces in gold uncut over 32.5 feet and 0.12 ounces over 32.5 feet cut to one ounce. Free gold was observed averaging 4.55 ounces over 1 foot at 92.0 feet. L-81-2 failed to check hole 49 on \(2+\) 34 east but got abundant similar iron formation and some values. Hole 49 yielded 0.12 ounces over 21.5 feet fifty feet below surface. The plan position corresponds to a low spot in the trenching. Hole 18 on section \(2+17\) east averaged 0.13 ounces over 39.0 feet south of the drift on the first level with Hole 29 averaging 0.09 ounces over 23.8 feet on the same section between the levels but south of the drive on the second level. It is of interest to note appreciable values in the quartz porphyry north of the Bankfield Tombill fault on this section.

Hole 39 on section \(1+50\) east under the plant area intersected two zones probably part of the south zone averaging 0.11 ounces over 5.0 feet and 0.05 ounces over 45.5 feet with a narrow band of low grade as the north zone. Hole 19 on \(1+10\) east averaged 0.08 ounces over 21.0 feet likewise at a 70 foot depth.

A review of the records shows similar low grade values over appreciable widths west for another three hundred feet followed by values in highly altered material south of the Bankfield Tombill fault as in Hole 53 on \(8+00\) west with 0.15 ounces over 6.5 feet including 0.53 ounces over 2.0 feet at a shallow depth. All the Bankfield Mine ore was close to but south of the Bankfield Tombill fault. Hole 53 is in a general outcrop area that could be bull-dozed. Hole 58 on \(9+50\) west also got fair values that correlate geologically to the south ore zone, i.e., 0.05 ounces over 18.5 feet and the north zone 0.04 ounces over 39.0 feet including 0.15 ounces over 5.0 feet and 0.43 ounces over 1.0 feet. It is probable that a series of ore lenses occur along the McLellan shear.

It is of interest to note that free gold was encountered near the collar of Hole 56 in a cross section north from Hole 49. The intersection average @ 0.79 ounces over 2.0 feet but the check assay was trace.

Map 2 at 1 inch \(=200\) feet illustrates the location of the Magnet baseline and the drill holes completed to check on the possability of an extension onto the McLellan ground, i.e., holes 105, 106, 111, 113, 114, and, 115. The holes are along a 50 to 100 foot wide shear with at least 800 feet of length. The west
limit of the 105 to 115 shear is the Magnet boundary. The holes are on the south side of the Magnet fault and the apparent relationship of this shear to the Magnet shear may be coincidental. Movement along the Magnet fault in the mine area suggests the deep zone at the 2600 level below the Magnet fault to be 400 feet north of the Footwall zone. All holes showed gold values of .05 to .15 ounces but the sampling was character sampling only. The holes show good shearing, quartz porphyry and lively iron formation and suggest good exploration. Hole 109 had 0.35 ounces over 0.6 feet along a greywacke iron formation contact with considerable lost core. Hole 110 north of the Magnet zone extension got into a highly oxidised area with considerable mud that could be the Magnet fault or some similar occurrence.

Hole 111 encountered 0.39 ounces gold over 1.0 feet at 136.6 feet with related lost core and a series of other lively narrow intersections. Hole 112 never reached bedrock. Hole 113 encountered a zone from 120 to 150 feet with two assay of 0.40 ounces and 0.80 ounces over 0.6 feet each with similar leads of 0.10 ounce material in Hole 114-200 feet further east. Hole 115, an additional 600 feet to the east, encountered lively exploration horizons but stayed in a North South diabase dyke for a considerable length.

The geophysics indicated a good E.M. conductor in the Hole 105 area and to the west into Roxmark ground with a strong unexplored anomaly 400 feet north and 400 feet south of the Hole 109 to Hole 115 drilling.

\section*{GEOPHYSICS}

Work completed has included 12.87 miles of magnetometer survey and a VLF-2 electro-magnetic survey on a general 400 foot line spacing with some detail on lines at 200 foot intervals. Iron formation had been indicated from a dip needle survey on a line pattern of 400 to 800 foot intervals. The additional detail has been quite helpful and demonstrates a complexity probably due to the fold pattern that was not previously appreciated. (Map \(3 \& 4\))

The E.M. anomaly pattern shows an unexplored anomaly south of the Bankfield Tombill fault that had been explored to the west by Holes 208 and 204 on the Bankfield Consolidated ground, by Holes \(\mathrm{M}-14,15,16,17,18\), and, 19 , on the Magnet Consolidated and by Hole 29 and 28 on claim 11011 on the McLellan holdings. The portion of this zone that has been explored encountered quartz porphyry, quartzite, conglomerate and iron formative with considerable quartz and low values. The best portion of the indicated E.M. anomaly survey is unexplored. Drilling to the east on Tombill ground, that is probably related, gave continuous narrow gold values over narrow widths for a length of 1000 feet.
E.M. anomalies warranting additional attention in the area of the east extension of the Main Magnet zone have been mentioned. There is also a strong cross over pattern along the north boundary of claims 10716 and 10717 in an area associated with a diorite gabbro horizon. This is along the south flank of the Ellis Syncline. Magnet Consolidated exploration along the west extension of this zone gave a series of ore values that were confirmed by the 1981 Roxmark drilling. Tombill are currently drilling the same environment on the Talmora anticline in the Ellis Shaft area on Long Lac Bay.

\section*{RECOMMENDATIONS}

The McLellan property warrants considerable additional exploration supported by a transit survey to facilitate the consolidation of results obtained to date. The option payment of \(\$ 25000\) by October 1982 is strongly recommended together with a three stage program to assess the practability of Heap Leaching an open pit on the Main Showing hopefully involving 150000 tons of 0.10 ounces in gold on a 2 to 1 stripping ratio. See appendix A. Stage 1 expenditure involving sealing off the shaft collar and metallurgical testing of the ore dump total \(\$ 5000\). Stage 2 expenditures assuming Stage 1 is successful involves a test heap leach on broken ore on surface at an expenditure of \(\$ 50000\). Stage 3 involves readying the open pit for breakage and the total expenditure of \(\$ 300000\) is dependent on a gold price in excess of \(\$ 500\) Canadian per ounce of gold. Assumed net profit from the pit at \(\$ 500\) Canadian would be \(\$ 900000\).

S. E. Malouf Consulting Geologist Ltd.

APPENDIX

\section*{HEAP LEACHING}

The Ontario Bureau of Mines is encouraging consideration of "heap leaching" low grade gold ores by the offer of technical assistance. The McLellan showing is probably excellent material for a heap leaching test with it's ready access and surface dump.

The Mc Lellan plant area has been covered by mine rock to an average depth of 8.0. The area involved is approximately 150 X 200 feet. Tonnage and grade extracted from the underground workings using a factor of twelve cubic feet equals one ton is as follows:-

Shaft - \(18.0 \times 6.0 \times 330\) feet \(=2970\) tons @ 015
150 Leve 1
Main Drift \(315 \times 6.0 \times 7.0=1102\) tons @ .07
North Drift \(25 \times 30 \times 7.0=437\) tons @ .10
X-C's \(260 \times 60 \times 7.0=910\) tons @ . 015
Subtotat 2449 tons @ . 05
300 Level
Main Drift 320 X \(7.0 \mathrm{X} 7.0=1307\) tons @ . 08
North Drift \(47 \times 7.8 \times 7.0=213\) tons @ .09
X-C's \(\quad 240 \times 6.0 \times 7.0=840\) tons @ 03
Subtotal 2360 tons @ . 06
Total \(150 \& 300\) Levels 4809 tons @ . 056
Total including Shaft Muck 7509 tons @. 04

The surface ore bin and head frame have collapsed and there is approximately 1100 tons of stockpiled material that is probably the residue from the 60 ton bulk sample shipped to Bankfield Mines for mill test in 194l. The mill test at Bankfield showed a recovery grade of 0.089 ounces in gold per ton with recovery and cyanide consumption normal to that of the Geraldton Camp.

It is proposed that the development rock at the McLellan shaft be used for heap leach testing assuming the shaft muck can be avoided.

A test pad is proposed at the Magnet plant area 1 mile away probably on a refloored portion of the mill. A new approach to making an impervious base is being considered using crushed lime rock spray coated with lime 1 part lime to 3 parts lime rock - at a cost of \(10 ¢\) per square foot.

Operating Costs of the heap leach test will probably be as follows:-
1. Trucking including pick up \& stacking . 2.00/ton
2. Leach Operation

Reagents 3.00/ton
Labour 2.50/ton
Power \(\quad 0.60 /\) ton
3. Contingencies
\(\quad 6.10 /\) ton

\(1.90 /\) ton
\(\$ 10.00 /\) ton \(\$ 48,090\)
5. Indicated Revenue \(4809 \times .056 \times 60 \% \times \$ 500 \mathrm{C}=\$ 85,603\)
6. Capital Account

Stage One
\(\begin{array}{lll}\text { A. Cover on Shaft Collar } & \$ 2500 \\ \text { B. } & \text { Bottle Test at Lakefield Research } \\ \$ 2500\end{array}\)
\(\$ 5,000\)
Stage Two-Mill Test- 1120 tons initial-4809 tons eventual
A. Road Repair at McLellan \(\$ 4000\)
B. Road Allowance Magnet J.V. Share \(\$ 1000\)
C. Transit Survey Shaft Property Boundaries etc
\$5000
D. Leach Pad - Magnet Mill Site \(\$ 5000\)
E. Collector Sump and Constant Head Surge Tank - Use two 1000 gallon tanks
\(\$ 5000\)
F. Plastic Pipe Solution Distribution System
\(\$ 1000\)
G. Activated Carbon Column for Gold Absorption
\(\$ 5000\)
H. Building - Use Existing Trailer
Camp Rental \(\$ 300 /\) month 3 months \(\$ 900\)
\$26,900
I. Supervision - 3 months

Consultation O.B.M. Norad \(\quad \$ 3000\)
\(\begin{array}{ll}\text { Malouf Consultants } & \$ 3000 \\ \text { Leader } 3500 \times 3 \text { Extra Labour } & \$ 5250\end{array}\)
Labourers \(2^{2}\) Men \(\frac{4500 \times 3}{2}\) Extra " \(\$ 6750 \quad \$ 15,000\)
J. Sub Total Stage Two \(\$ 45,900\)
K. Contingencies \$4,100

Total Capital Account Stage One and Two \$50,000
Note - It is probable that Stage One will be completed
in April and a decision wether or not to
proceed to Stage Two will be made. Stage Two
will involve three months commencing in June.
Loaded Carbon in-pulp will be shipped to a
refinery for clean-up. Extra labour cost is
assumed because of low throughput. Revenue
\(\$ 85,603\) less Operating Cost \(\$ 48,090\) less
Capital Cost \(\$ 50,000\).
Total Cost of Test \(\$ 12,487\)

\section*{Stage Three}

An open pit is proposed in 1983, assuming the
results of Stage One and Two have been favourable.
A program involving 150,000 tons grading 0.10 over
a length of 300 feet an average width of 60 feet to
a depth of 100 feet with a stripping ratio of two
tons of waste to one ton of ore

\section*{Pit Operation}
1. Mining 2 tons waste 1 ton ore. Unit Cost \(\$ 2.00 \quad 6.00\)
2. Trucking including stacking at Pad 3.00
3. Crushing to \(3 / 8^{\prime \prime} \quad 3.50\)
4. Leach Pad
\begin{tabular}{lrr}
Reagents & 3.50 & \\
Labour & 2.92 & \\
Power & .58 & 7.00
\end{tabular}
5. Administration 1.00
6. Contingencies 3.50
7. Capital Account 2.00
8. Total 26.00

Capital Account will probably be:-
McLellan Pit
A. Drainage Channel and Sump Pump \(\$ 5000\)
B. Clearing to bedrock \(150 \times 500 \times 6 \quad \$ 22500\)
C. Sampling to establish grade and S.R. \(\$ 10000\)
D. Initial Cut probably at Trench I \(\$ 10000\)
E. Mining on Contract - includes waste disposal (2.00 Unit cost X 3)
F. Trucking on contract include stacking at pad

Leach Pad
A. Leach Pad \(300 \times 450^{\prime}\) to \(20^{\prime}\) height \(\$ 20000\)
B. Collection Sump and Constant Head Tanks
C. Plastic Pipe Solution Distribution \(\begin{aligned} & \text { System }\end{aligned}\)
D. Activated Carbon Columns and Carbon Stripper Generator - Reagent feeders - Storage Tanks
E. Electric Cell Rectifier Furnace \$5000
F. Building \& Security Area for activated Carbon, Electrolytic Cell, etc., \(\$ 100000\)
G. Generator Rental Purchase Lease \(\quad\) - 5 months
H. Sub total \$257500
I. Contingencies \(\$ 42500\)
J. Total Stage Three \(\$ 300000\)
/ton
\(\$ 2.00\)

Revenue per ton indicated at \(\$ 500\) Canadian per ounce of gold at \(60 \%\) recovery by heap leaching is \(0.10 \mathrm{X} .60 \mathrm{X} \$ 500 \mathrm{C}\) i.e. \(\$ 30.00\) with an indicated net profit of \(\$ 4.00\) per ton. The operation would be price and grade sensitive. Considerable selectivity would have to be exercised in the pit to average 0.10 ounces per ton. A good surface exposure and favourable surface sampling results will be required before proceeding but there is room for a small pit from the drill hole indications.

DRILL LOGS
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Departure BL anc's \(^{2} 1\) S - line \(110+91 E 751\) South Dip \(45^{\circ}\) strike \(\mathrm{A} 10^{\circ} \mathrm{E}\) (not surveyed) Started 12/10/81 Finished 14/10/81}} \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{rcc}
Footage & Dip & \begin{tabular}{c}
Magnetic \\
Azimuth
\end{tabular} \\
\hline \(100^{\prime}\) & \(\frac{46^{\circ}}{}\) & \(\frac{182}{200^{\prime}}\) \\
\(303^{\circ}\) & \(39^{\circ}\) & 182 \\
& 181
\end{tabular}

\section*{LOGGED BY: S.E. MALOUF}
\(0 \quad\) Greywacke - Fine grained sericitic type foliation at \(25^{\circ} \mathrm{CN}\) - Qc \(5 \%\) pyrite \(1 \%\) - L.M. Sil. - Med. Carb. - med. Chlorite no actual IF.
20.0 Box: spilled - core missing from 20.0 to 30.0
30.0 Greywacke - as above
35.0 Q.C. \(5 \%\) pyrite \(1 \%\)
40.0 Q.C. \(6 \%\) med. silica - med. carb. med. chlorite foliation at \(25^{\circ} \mathrm{CN}\).
51.0
51.0 Ore zone - shear at \(25^{\circ} \mathrm{CN}\) - Q.C. \(5 \%\) pyrite \(5 \%\) M.H. chl. - L.M. sil - med. carb. - shear L-M intensity.
75.0 Q.C. - \(15 \%\) - pyrite \(8 \%\) - some negligible chalcopyrite also arseno-pyrite.
85.0 Q.C. \(15 \%\) - pyrite \(12 \%\) - good type ore.
92.5 Free gold coarse - left in core - will split \& sample later.
92.8 Good type ore - continues with drop off in pyrite past \(95.0^{\prime} 8 \%\)
107.5
107.5 Shear zone Med. - at \(35^{\circ}\) core normal - med. chlorite low-med. sil. med-high carbonate Q.C. \(3 \%\) pyrite \(2 \%\)
124.0 Med. -high silica med. chl. med. carbonate - values continue but 0.02 - shear becomes contorted near contact - note \(1 \%\) chalcopyrite from \(126.0^{\prime}\) to 127.0
128.0
155.0

Quartz feldspar porphyry brecciated contact area with grey buff sericite or epidote - good porphyry past 130.0'. Porphyry fine grained to aphanitic some Quartz eyes and feldspar LathsQC veinlets \(3 \%\) highly siliceous - note some values ranging from Tr . to 0.10 at fault contact.
148.0 Olive green alteration - type of sericite with \(3 \%\) pyrite- high silica med. carbonate

Mud seam - Bankfield Tombill fault - note \(0.10 \%\) in gold over \(1.0^{\prime}\) to \(156.0^{\prime}\) - followed by 0.02 ozs. over 2.5 .
159.0 Lost core
161.5 Shattered fault zone shattering at \(70^{\circ} \mathrm{CN}\) - green mud should be sampled but left for character study.
170.5
170.5

Alteration high silica - low chlorite low carbonate fine grained to aphanitic - massive typical Bankfield Tombill fault silification. Pale yellow to white.
182.0 Mafics \(30 \%\) - QC \(30 \%\) - high silica balance
197.0 Ned-high silica med. chlorite quartz carb. veinlets \(15 \%\) with some negligible pyrite
210.0 Alteration weakens \(\$\) host is generally diorite some scattered valucs such as 211.5 to 213.5-.03/2.0' - QC veinlets \(10 \%\) pyrite \(1 \%\) ?olural host apuears to be diorite - med. sil. med. carbonde med arb. \(\therefore \because \because 14\) fuliatjon at \(65^{\circ}\) CN
\(30 \%\) ang or Nude
```

(x. ins

```

2-81-1
CORE
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAMPLE NO. & \% SULPHIDE & FOOTAGE & FEET & AU OZS. & AG OZS. \\
\hline 4956 & 1\% & 50-51 & 1.0 & Tr. & \\
\hline 4955 & & 51-53 & 2.0 & . 11 & . 04 \\
\hline 26783 & 5\% & 53-55 & 2.0 & . 03 & \\
\hline 26784 & & 55-57.5 & 2.5 & . 005 & \\
\hline 26785 & & 57.5-60 & 2.5 & . 005 & \\
\hline 26786 & & 60-61 & 1.0 & . 005 & \\
\hline 4957 & & 61-63 & 2.0 & . 035 & \\
\hline 26047 & & 63-65 & 2.0 & Tr. & \\
\hline 26048 & & 65-67.5 & 2.5 & Tr. & \\
\hline 26787 & & 67.5-70 & 2.5 & . 01 & \\
\hline 26788 & & 70-72.5 & 2.5 & . 02 & \\
\hline 26789 & 15\% & 72.5-75 & 2.5 & . 02 & \\
\hline 4958 & & 75-76 & 1.0 & . 04 & \\
\hline 4959 & & 76-78 & 2.0 & . 10 & . 04 \\
\hline 26790 & & 78-80 & 2.0 & . 09 & . 06 \\
\hline 4960 & & 80-81.5 & 1.5 & . 20 & . 03 \\
\hline 4962 & & 81.5-83 & 1.5 & . 003 & \\
\hline 4963 & 12\% & 83-85 & 2.0 & . 06 & \\
\hline 4964 & & 85-87.5 & 2.5 & . 04 & \\
\hline 4965 & & 87.5-90 & 2.5 & . 25 & . 05 \\
\hline 4966 & & 90-92 & 2.0 & . 11 & . 03 \\
\hline 26091 & & 92-93 & 1.0 & 4.55 & v.g. \\
\hline 4961 & & 93-95 & 2.0 & . 28 & . 04 \\
\hline 4967 & & 95-97.5 & 2.5 & . 04 & \\
\hline 4968 & & 97.5-100 & 2.5 & . 08 & . 03 \\
\hline 4969 & & 100-102.5 & 2.5 & . 04 & \\
\hline 26049 & & 102.5-105 & 2.5 & . 03 & \\
\hline 4971 & & 105-107.5 & 2.5 & . 04 & \\
\hline 4972 & 3\% & 107.5-108. & 51.0 & . 005 & \\
\hline 26079 & & 108.5-110 & 1.5 & . 03 & \\
\hline 26080 & & 110-113 & 3.0 & . 01 & \\
\hline 4973 & & 113-115 & 2.0 & Tr. & \\
\hline 4975 & & 115-118 & 3.0 & . 02 & \\
\hline 4974 & & 118-120 & 2.0 & . 025 & \\
\hline 4976 & & 120-122.5 & 2.5 & Tr. & \\
\hline 4977 & & 122.5-125 & 2.5 & . 005 & \\
\hline 4978 & & 125-127 & 2.0 & . 02 & \\
\hline 4979 & & 127-129 & 2.0 & Tr. & \\
\hline 4980 & & 129-130 & 1.0 & Tr. & \\
\hline 4981 & & 133-135 & 2.0 . & . 005 & \\
\hline 4982 & & 138-140 & 2.0 & . 04 & \\
\hline 26075 & & 140-142 & 2.0 & Tr. & \\
\hline 2301 & & 142-146 & 4.0 & Tr. & \\
\hline 4983 & & 146-148 & 2.0 & Tr. & \\
\hline 26076 & & 148-150 & 2.0 & . 02 & \\
\hline 26077 & & 150-153 & 3.0 & . 02 & \\
\hline 4984 & & 153-155 & 2.0 & Tr. & \\
\hline 4985 & Mud seam & 155-156 & 1.0 & . 10 & . 02 \\
\hline 26078 & Mud seam & 156-158.5 & 2.5 & \[
.02
\] & \\
\hline & & 158-5-160 & 1.5 & lost core & \\
\hline 4986 & & 163-165 & 2.0 & Tr. & \\
\hline 4987 & & 167-168 & 1.0 & Tr. & \\
\hline 4988 & & 174-175 & 1.0 & Tr. & \\
\hline 4989 & & 176-178 & 2.0 & Tr. & \\
\hline 4990 & & 180-182 & 2.0 & Tr. & \\
\hline 4991 & & 185-187 & 2.0 & Tr. & \\
\hline 4992 & & 190-193 & 3.0 & Tr. & \\
\hline 4993 & & 197-200 & 3.0 & Tr. & \\
\hline 4994 & & 200-202 & 2.0 & Tr. & \\
\hline 4995 & & 204-205 & 1.0 & Tr. & \\
\hline 4996 & & 205-207 & 2.0 & Tr. & \\
\hline 4997 & & 208.5-210 & 1.5 & Tr. & \\
\hline 4998 & & 211.5-213. & 52.0 & . 03 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAMPLE NO. & : SULI'HIDE & FOOTAGE & FEET & AL OZS. & AG OZS. \\
\hline 26203 & & 214-215 & 1.0 & Tr. & \\
\hline 4999 & & 215-217 & 2.0 & . 005 & \\
\hline 5000 & & 217-218 & 1.0 & Tr . & \\
\hline 26201 & & 222-224 & 2.0 & Tr. & \\
\hline 26202 & & 226-228 & 2.0 & Tr. & \\
\hline 26204 & & 236-238 & 2.0 & Tr. & \\
\hline 26205 & & 245-247.5 & 2.5 & Tr. & \\
\hline 26206 & & 247.5-248.5 & 1.0 & Tr. & \\
\hline 26207 & & 250.5-252 & 1.5 & Tr. & \\
\hline 26014 & & 252-255 & 3.0 & Tr. & \\
\hline 26015 & & 255-257 & 2.0 & Tr. & \\
\hline 26016 & & 257-259 & 2.0 & Tr. & \\
\hline 26208 & & 259-260 & 1.0 & . 005 & \\
\hline 26209 & & 265-267 & 2.0 & Tr. & \\
\hline 26210 & & 275-277 & 2.0 & Tr & \\
\hline 26211 & & 281-283 & 2.0 & Tr. & \\
\hline 26212 & & 287-289 & 2.0 & Tr. & \\
\hline 26213 & & 296-298 & 2.0 & Tr. & \\
\hline 26214 & & 302-304 & 2.0 & Tr. & \\
\hline
\end{tabular}

> ASSAYS
> \(L-81-1\)

SLUDGES
\begin{tabular}{|c|c|c|c|c|}
\hline SAMPLES & FOOTAGE & FEET & AU OZS & AG OZS CU \% \\
\hline 4722 & 0-10 & 10 & Tr. & \\
\hline 4723 & 10-20 & 10 & Tr. & \\
\hline 4724 & 20-30 & 10 & . 005 & \\
\hline 4725 & 30-40 & 10 & Tr. & \\
\hline 4726 & 40-50 & 10 & . 03 & \\
\hline 4726 & 50-60 & 10 & . 02 & \\
\hline 4727 & 60-70 & 10 & . 08 & \\
\hline 4729 & 70-80 & 10 & . 09 & \\
\hline 4730 & 80-90 & 10 & . 53 & \\
\hline 4731 & 90-100 & 10 & . 38 & \\
\hline 4732 & 100-110 & 10 & . 30 & \\
\hline 4733 & 110-120 & 10 & . 13 & \\
\hline 4734 & 120-130 & 10 & . 04 & \\
\hline 4735 & 130-140 & 10 & . 13 & \\
\hline 4736 & 140-150 & 10 & . 03 & \\
\hline 4738 & 150-160 & 10 & . 07 & \\
\hline 4737 & 160-170 & 10 & . 04 & \\
\hline & 170-180 & & no samples & \\
\hline 4739 & 180-190 & 10 & . 03 & \\
\hline 4740 & 190-200 & 10 & . 005 & \\
\hline 4741 & 200-210 & 10 & . 02 & \\
\hline 4742 & 210-220 & 10 & Tr. & \\
\hline 4743 & 220-230 & 10 & Tr. & \\
\hline 4744 & 230-240 & 10 & Tr. & \\
\hline 4745 & 240-250 & 10 & . 005 & \\
\hline 4746 & 250-260 & 10 & . 04 & \\
\hline 4747 & 260-270 & 10 & Tr. & \\
\hline 4748 & 270-280 & 10 & Tr. & \\
\hline 4749 & 280-290 & 10 & Tr. & \\
\hline 4750 & 290-300 & 10 & Tr. & \\
\hline - & 300-307 & no & & \\
\hline
\end{tabular}

AVERAGES
CORE
\begin{tabular}{lll}
\(51.0-107.5\) & \(=56.5^{\prime}\) & .08 (cut to 1 oz.\()\) \\
\(75.0-107.5=32.5^{\prime}\) & .23 (uncut) \\
& & .12 (cut to \(1 \mathrm{oz}\).) \\
\(155.0-156.0=1.0^{\prime}\) & .10 & .02
\end{tabular}
\(50.0-190.0=140.0^{\prime} \quad .13\)
\(50.0-140.0=90.0^{\prime} \quad .17\)
165.0 Grey green finely laminated greywacke - foliation at \(35^{\circ} \mathrm{CN}\) -
QC \(15 \%\) - pyrite \(5 \%\) - some ore type mineral with arsenopyrite - rarrow
0.1' widths. green slaty bands - grey portions more sandy - rapid
climatic changes
219.0 slatey greywacke - blue grey med. carbonate some coarse grey
sandstone - \(2 \%\) pyrite
240.0 Q.C. vein \(50 \%\)
2410 Slatey greywacke as above
300.0
300.0 I.F. green slate - foliation at \(45^{\circ} \mathrm{CN}\) - med. carbonate Q.C. veinlets
5\% pyrite \(2 \%\)
313.0 Q.C. \(20 \%\) - med. high carbonate pyrite \(1 \%\) - low high sericite
328.0
328.0 Grey green slatey member \(45^{\circ} \mathrm{CN}\) - dense siliceous pyrite \(1 \%\)
382.0 Q.C. \(5 \%\) - pseudo brecciation pyrite \(1 \%\)
419.0 END OF HOLE

\section*{HOLE L - 81 - 2}
\begin{tabular}{|c|c|c|c|c|}
\hline Location: & Trench 1 & Pjari & Compass & Magnetic \\
\hline Base line & \(277^{\prime}\) E 40's & 100' & \(42^{\circ}\) & \(027^{\circ} \mathrm{N}\) \\
\hline & Line 110 + 91E 751'S (not surveyed) & 200' & \(35^{\circ}\) & \(005{ }^{\circ} \mathrm{N}\) \\
\hline Strike \(\mathrm{N} 10^{\circ} \mathrm{E}\) & dip \(45^{\circ}\) Stopped 10/17/81 & \(300^{\prime}\) & \(29^{\circ}\) & \(005{ }^{\circ} \mathrm{N}\) \\
\hline & & \(400^{\prime}\) & \(26^{\circ}\) & \(009^{\circ} \mathrm{N}\) \\
\hline
\end{tabular}
\(0 \quad\) Casing
\(4.0^{\prime}\)
4.0' Shear zone - M - H foliation at \(65^{\circ} \mathrm{CN}\) contorted - some chloritoid clots - greywacke with slate \(\neq y\) I.F. med sil - med. high chlorite lowmed carb. - pyrite 5 to \(15 \%\) some negligible pyrrhotite and chalcopyrite Timmins type I.F. - not magnetic - chloritoid best expressed from 21.0 to 40.0 - QC \(5 \%\)
40.0 Foliation - med. - non magnetic \(45^{\circ} \mathrm{CN}\).
60.0 Carbonated - med.
69.0
69.0 I.F. sandstone - dense fine grained red - \(60 \%\) magnetite \(40 \%\) hematite pyrite \(15 \%\) Q.C. \(3 \%\) some coarse pyrite - generally fine.- some non-magnetic bands - grey green colour - contorted - need sensitivity meter.
87.0 Highly magnetic fine - foliated at \(45^{\circ} \mathrm{CN}-\mathrm{L}-\mathrm{M}\)
88.0 Greywacke coarse - non magnetic
90.0 I.F. magnetic
93.0 Non magnetic as above
96.5 I.F. Magnetic
98.5 Greywacke as above \(0.3 \%\)
100.6 I.F. magnetic - highly contorted - probably tells story all one I.F. band repeated by folding.
113.0
\(113.0 \quad\) Quartz vein ore type - not well sampled good type quartz pyrite \(10 \%\) some chalcopyrite also pyrrhotite, \(60 \%\) quartz re sample 26240
113.0 to 118.3 -
114.0 Greywacke med. fine grained.

115 I.F. with quartz
118.3
-.8.3 Greywacke med. - fine grained - some I.F. mgn. foliation at \(30^{\circ} \mathrm{CN}\). check with sensitivity meter scattered QC. veinlets \(5 \%\) - some not sampled pyrite 3\%

\subsection*{132.5 Lost core}
134.0 Greywacke as above - poor foliation at \(20^{\circ} \mathrm{CN}\)
145.0 Q.C. \(8 \%\) some pyrite \(3 \%\) - crumpled
159.0 lost core
\begin{tabular}{|c|c|c|c|}
\hline SAMPLE NO. & FOOTAGE & FEET & Au. ozs. \\
\hline 26574 & 4.0-6.0 & 2.0 & . 04 \\
\hline 26575 & 6.0-9.0 & 3.0 & Tr. \\
\hline 26577 & 9.0-12.0 & 3.0 & Tr. \\
\hline 26578 & 12.0-14.5 & 2.5 & Tr. \\
\hline 26055 & 14.5-15.0 & 0.5 & Tr. \\
\hline 2302 & 15.0-16.0 & 1.0 & Tr. \\
\hline 26225 & 16.0-17.0 & 1.0 & Tr. \\
\hline 26056 & 17.0-18.5 & 1.5 & . 11 \\
\hline 26239 & 18.5-20.0 & 1.5 & . 005 \\
\hline 26026 & 20.0-22.0 & 2.0 & . 01 \\
\hline 26576 & 22.0-25.0 & 3.0 & Tr. \\
\hline 26027 & 25.0-27.0 & 2.0 & Tr. \\
\hline 26226 & 27.0-29.0 & 2.0 & . 04 \\
\hline 2303 & 29.0-30.0 & 1.0 & Tr. \\
\hline 26579 & 30.0-31.5 & 1.5 & Tr. \\
\hline 26227 & 31.5-33.0 & 1.5 & Tr. \\
\hline 26228 & 33.0-34.0 & 1.0 & Tr. \\
\hline 26028 & 34.0-36.0 & 2.0 & . 005 \\
\hline 26580 & 36.0-37.5 & 1.5 & Tr. \\
\hline 26581 & 37.5-40.0 & 2.5 & Tr. \\
\hline 26791 & 40.0-42.0 & 2.0 & Tr. \\
\hline 26792 & 42.0-43.0 & 1.0 & . 005 \\
\hline 26582 & 43.0-45.0 & 2.0 & Tr. \\
\hline 26793 & 45.0-46.0 & 1.0 & . 005 \\
\hline 26583 & 46.0-48.0 & 2.0 & Tr. \\
\hline 26584 & 48.0-50.0 & 2.0 & Tr. \\
\hline 26794 & 50.0-52.0 & 2.0 & Tr. \\
\hline 26585 & 52.0-55.0 & 3.0 & Tr. \\
\hline 26229 & 55.0-57.0 & 2.0 & . 005 \\
\hline 26586 & 60.0-62.0 & 2.0 & Tr. \\
\hline 26587 & 65.0-67.0 & 2.0 & Tr. \\
\hline 26230 & 67.0-68.0 & 1.0 & Tr. \\
\hline 26231 & 70.5-72.0 & 2.0 & Tr. \\
\hline 26588 & 72.0-75.0 & 3.0 & Tr. \\
\hline 26232 & 78.0-80.0 & 2.0 & Tr. \\
\hline 26589 & 81.0-82.9 & 1.9 & Tr. \\
\hline 26590 & 83.4-86.2 & 2.5 & . 01 \\
\hline 26592 & 87.5-89.0 & 1.5 & . 02 \\
\hline 26593 & 91.0-92.0 & 1.0 & . 02 \\
\hline 26233 & 92.0-93.5 & 1.5 & Tr. \\
\hline 26594 & 96.5-98.5 & 2.0 & Tr. \\
\hline 26595 & 100.5-102.5 & 2.0 & Tr. \\
\hline 26596 & 103.5-105.0 & 1.5 & . 03 \\
\hline 26597 & \(107.0=110.0\) & 3.0 & . 005 \\
\hline 26090 & 113.0-114.0 & 1.4 & . 01 (check) \\
\hline 26240 & 113.0-114.0 & 1.0 & Tr. \\
\hline 26598 & 115.0-118.3 & 3.3 & . 085 \\
\hline 26240 & 113.0-118.3 & 5.3 & . 060 \\
\hline 26234 & 118.3-120.0 & 1.7 & Tr. \\
\hline 26241 & 125.5-128.0 & 2.5 & Tr. \\
\hline 26599 & 130.5-132.5 & Lost sample & \\
\hline 26235 & 134.0-135.0 & 1.0 & . 01 \\
\hline 26600 & 135.0-137.5 & Lost sample & \\
\hline 2301 & 142.0-145.0 & 3.0 & Tr. \\
\hline 26236 & 145.0-147.0 & 2.0 & Tr. \\
\hline 26237 & 150.0-152.0 & 2.0 & Tr. \\
\hline 26238 & 152.0-154.0 & 2.0 & Tr. \\
\hline 26242 & 165.0-168.0 & 3.0 & . 005 \\
\hline 26243 & 170.0-171.0 & 1.0 & Tr. \\
\hline 26245 & 180.0-182.0 & 2.0 & Tr. \\
\hline 26255 & 185.0-186.5 & 1.5 & Tr. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline SAMPLE NO. & FOOTAGE & FEET & Au. Ozs. \\
\hline 26246 & 192.0-193.0 & 1.0 & Tr. \\
\hline 26256 & 193.0-195.0 & 2.0 & Tr. \\
\hline 26257 & 205.0-207.0 & 2.0 & Tr. \\
\hline 26258 & 210.0-212.5 & 2.5 & Tr. \\
\hline 26247 & 215.0-216.5 & 2.5 & Tr. \\
\hline 26259 & 219.0-220.0 & 1.0 & Tr . \\
\hline 26260 & 220.0-222.0 & 2.0 & Tr. \\
\hline 26248 & 230.0-232.5 & 2.5 & Tr. \\
\hline 26261 & 237.5-240.0 & 2.5 & Tr. \\
\hline 26249 & 240.0-241.0 & 1.0 & Tr . \\
\hline 26263 & 249.0-250.0 & 1.0 & Tr. \\
\hline 26250 & 250.0-252.0 & 2.0 & Tr. \\
\hline 26262 & 265.0-267.0 & 2.0 & Tr. \\
\hline 26251 & 270.0-272.0 & 2.0 & Tr. \\
\hline 26252 & 272.0-273.0 & 1.0 & Tr. \\
\hline 26025 & 273.0-275.0 & 2.0 & . 005 \\
\hline 26253 & 280.0-283.0 & 3.0 & Tr . \\
\hline 26254 & 293.0-295.0 & 2.0 & Tr. \\
\hline 26264 & 297.5-300.0 & 2.5 & Tr. \\
\hline 26006 & 303.0-305.0 & 2.0 & Tr. \\
\hline 26007 & 306.0-307.0 & 1.0 & Tr. \\
\hline 26008 & 313.0-318.0 & 2.0 & Tr. \\
\hline 26010 & 318.0-320.0 & 2.0 & Tr. \\
\hline 26011 & 321.0-323.0 & 2.0 & Tr . \\
\hline 26013 & 327.0-329.0 & 2.0 & Tr. \\
\hline 26017 & 341.5-343.5 & 2.0 & Tr. \\
\hline 26018 & 349.0-350.5 & 1.5 & Tr. \\
\hline 26019 & 367.0-369.0 & 2.0 & Tr. \\
\hline 26020 & 377.5-379.0 & 1.5 & Tr. \\
\hline 26021 & 382.0-383.0 & 1.0 & Tr. \\
\hline 26022 & 397.5-398.5 & 1.0 & Tr. \\
\hline 26033 & 401.0-402.0 & 1.0 & Tr. \\
\hline 26024 & 411.5-413.5 & 2.0 & Tr . \\
\hline
\end{tabular}
\begin{tabular}{llll}
\(4.0-6.0\) & 2.0 & \(@\) & .04 \\
\(17.0-18.5\) & 1.5 & \(@\) & .11 \\
\(113.0-118.3\) & 5.3 & \(@\) & .06
\end{tabular}

\section*{L - 81 - 2 ASSAY RETURNS}

SLUDGE SAMPLES
\begin{tabular}{llll}
& SAMPLE NO. & FOOTAGE & FEET \\
4751 & \(0-10\) & Au Ozs \\
4752 & \(10-20\) & 10 & .01 \\
4753 & \(20-30\) & 10 & .02 \\
4754 & \(30-40\) & 10 & .02 \\
4755 & \(40-50\) & 10 & .02 \\
4756 & \(50-60\) & 10 & .03 \\
4757 & \(60-70\) & 10 & .01 \\
4758 & \(70-80\) & 10 & .01 \\
4759 & \(80-90\) & 10 & .01 \\
4760 & \(90-100\) & 10 & .01 \\
4761 & \(100-110\) & 10 & .01 \\
4762 & \(110-120\) & 10 & .005 \\
4763 & \(120-130\) & 10 & .03 \\
4764 & \(130-140\) & 10 & .02 \\
4765 & \(140-150\) & 10 & .005 \\
4766 & \(150-160\) & 10 & .005 \\
4771 & \(160-170\) & 10 & .005 \\
4767 & \(170-180\) & 10 & .02 \\
4768 & \(180-190\) & 10 & .02 \\
4769 & \(190-200\) & 10 & .005 \\
\hline
\end{tabular}

HOLE L - 81-3

```

HOLE L - 81 - 3

```
173.5
173.5 Green I.F. slate but with less py - \(1 \%\), very fine lamination and carbonated cross fractures dense (silicified) homogenous rock, with few quartz vlts. Abundent bleach chloritic spots //11 to bedding + shearing@ \(45^{\circ} \mathrm{CN}\).
201.0 Highly distorted qtz. v1ts. - 20\%, well py'd.
209.5 Carb'd qtz vlts - \(5 \%\) and some py
213.0 Dense green slate.
226.5 Highly carbonated black slate well py'd showing \(Z\) folding on micro scale.
231.5 Section with \(10 \%\) qtz. vlts. well py'd
235.0 Green slate.
249.0
249.0 I.F. - green slate - greenish grey in colour. Lamination distortion with some \(10 \% q t z\). and \(3 \%\) carb. vlts. also some yellow alteration Froducts along vits. (distorted)
268.0 Green slate aa qtz vlts. \(1 \%\), carb v1ts. \(2 \%\), highly carb'd and chloritized.
273.0 Fracture zone filled with carb. - \(50 \%\) qtz. vlts. \(5 \%\), pyrite \(1 \%\)
275.0 Green slate aa finely laminated carb. vlts. \(2 \%\) shearing (1amination) \(45^{\circ} \mathrm{CN}\), pry \(/ /\) to shearing.
291.5 Qtz. vlts. - \(2 \%\), py - \(3 \%\), some cpy, the vts are highly distorted. Lamination is vague.
297.0 Dense grey green slate very finely laminated. Carbonates and py on shear planes //11 to bedding. Fine dark (chloritic) speckles //11 to bedding.
303.0
303.0 I.F. green slate a and qtz. vlts. - \(5 \%\) with yellowish green discoloration around the distorted vlts. Lamination is obscure. Shearing @ \(45^{\circ} \mathrm{CN}\). carb'n 5\%
320.0
320.0 Light green grey IF sst (IF?) the rock colour becomes paler less than \(1 \%\) py, shearing @ \(45^{\circ} \mathrm{CN}\), lamination @ \(20^{\circ} \mathrm{CN}\), very fine speckly rock, carbonated.
325.0 Qtz. vlts. - 20\%, contorted, carb. v1ts. \(5 \%\)
330.0 Green grey sst aa little or no py.
334.0

HOLE L 81 - 3 ASSAYS

SluDges
\begin{tabular}{|c|c|c|c|c|}
\hline Sample No. & footage & Feet & Au. ozs. & Ag. ozs. \\
\hline 4774 & 10-20 & 10 & . 005 & \\
\hline 4775 & 20-30 & 10 & Tr. & \\
\hline & 30-40 & & & \\
\hline 4777 & 40-50 & 10 & Tr. & \\
\hline & 50-60 & not & & \\
\hline 4779 & 60-70 & 10 & . 005 & \\
\hline 4780 & 70-80 & 10 & . 005 & \\
\hline 4781 & 80-90 & 10 & Tr. & \\
\hline 4782 & 90-100 & 10 & Tr. & \\
\hline 4783 & 100-110 & 10 & . 02 & \\
\hline 4784 & 110-120 & 10 & . 005 & \\
\hline 4785 & 120-130 & 10 & Tr. & \\
\hline & 130-140 & not & & \\
\hline 4787 & 140-150 & 10 & Tr. & \\
\hline 4788 & 150-160 & 10 & Tr. & \\
\hline 4789 & 160-170 & 10 & Tr. & \\
\hline 4790 & 170-180 & 10 & Tr. & \\
\hline 4791 & 180-190 & 10 & Tr. & \\
\hline 4792 & 190-200 & 10 & . 005 & \\
\hline 4793 & 200-210 & 10 & Tr. & \\
\hline 4794 & 210-220 & 10 & Tr. & \\
\hline 4795 & 220-230 & 10 & . 01 & \\
\hline 4796 & 230-240 & 10 & Tr . & \\
\hline 4797 & 240-250 & 10 & Tr. & \\
\hline 4798 & 250-260 & 10 & Tr. & \\
\hline 4799 & 260-270 & not & & \\
\hline 4800 & 270-280 & 10 & . 01 & \\
\hline 26501 & 280-290 & 10 & . 005 & \\
\hline 26502 & 290-300 & not & & \\
\hline 26503 & \(300-310\) & 10 & Tr. & \\
\hline 26504 & 310-320 & 10 & . 005 & \\
\hline & 320-330 & 10 & Tr. & \\
\hline & 334 & of & & \\
\hline
\end{tabular}

HOLE L - 81-3ASSAYS
CORE ASSAYS

Hole L - 81-3

CORE ASSAYS
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAMPLE NO. & \% Sulphide & Footage & Feet & Au. ozs. & Ag. ozs. \\
\hline 26705 & & 261.5-263.0 & 1.5 & Nil & \\
\hline 26565 & & 265.0-266.5 & 1.5 & Tr. & \\
\hline 26706 & 2 & 266.5-267.5 & 1.0 & Tr. & \\
\hline 26563 & & 270.0-270.3 & 0.3 & . 01 & \\
\hline 26567 & & 280.0-282.5 & 2.5 & Tr. & \\
\hline 26568 & & 282.5-285.0 & 2.5 & Tr. & \\
\hline 26569 & & 286.0-288.0 & 2.0 & Tr . & \\
\hline 26708 & 3 & 291.0-293.0 & 2.0 & . 005 & \\
\hline 26709 & 1 & 296.0-297.0 & 1.0 & . 005 & \\
\hline 26710 & & 303.0-305.0 & 2.0 & Tr. & \\
\hline 26572 & & 306.0-307.5 & 1.5 & Tr. & \\
\hline 26570 & & 310.0-313.0 & 3.0 & Tr. & \\
\hline 26711 & & 317.0-319.0 & 2.0 & Tr. & \\
\hline 26712 & & 319.0-320.0 & 1.0 & nil & \\
\hline 26629 & & 326.0-328.0 & 2.0 & & \\
\hline 26571 & & 328.0-329.0 & 1.0 & Tr. & \\
\hline
\end{tabular}

HOLE L-81-4

\(0 \quad\) Casing
3.0
3.0 Diorite - dark green - non magnetic - altered quartz carb. vlts 20\% - some patchy sulphide - marbelised some negligible chalcopyrite low-med. shear poor foliation at \(25^{\circ} \mathrm{CN}\) no sign of bedding could be \&andesite.
33.0 med shear - pyrite \(4 \%\) shear at \(35^{\circ}\) CN Q.C. veining \(15 \%\)
35.0 High silica - QC veining \(25 \%\) note chalcopyrite \(1 \%\) in siliceous gangue
37.0 Diorite shattered as above probably related to master faulting note leucoxene med-high \(10 \%\), med-high chlorite rock is generally massive but foliated at \(15^{\circ} \mathrm{CN}\) - QC \(15 \%\) part of Major fault - not green slate - too uniform - no distinct bedding.
60.0 QC building up to \(20 \%\) - some pseudo amygdubes
80.0 QC veinlets \(35 \%\) - med-high carbonate - med-high silica low-med chlorite - very altered.
83.0
83.0 Altered zone - high sil. med. carb. low chlorite - low pyrite \(2 \%\) some negligible sphalerite - not sampled QC veinlets \(20 \%\)
90.0 High silica could be porphyry but probably alteration
95.0 high silica or porphyry
96.0
\(96,0 \quad\) Mud seam - in at \(15^{\circ} \mathrm{CN}\) sharp - brecciated with poषphyry like fragments \(70 \%\) mud \(50 \%\) porphyry - should be spot sampled.
100.8
100.8 Porphyry - grey to light yellow quartz eyes 5\%, feldspar laths \(10 \%\) high silica, low carbonate low chlorite - note some patchy epidote like alteration pyrite \(2 \%\) some values - contaminated past 115.0 interfingered with greywacke
116.0
116.0 Shear zone - med-high chlorite - low-med. silica low-med. carbonate pyrite \(3 \%\) - QC veinlets \(15 \%\) foliation poor at \(35^{\circ} \mathrm{CN}\)
118.0 High chlorite - \(5 \%\) sericite, pyrite \(1 \%\) carb. veinlets \(5 \%\) QC \(10 \%\)
135.0 Crumpled \(60^{\circ} \mathrm{CN}\) slately type pyrite \(2 \%\)
143.0
143.0 Slate green greywacke ? pyrite \(4 \%\) in narrow bands QC fillings \(10 \%\) sericite \(5 \%\) - crumpled but not major shear.

158 Yellow green sericitic alteration could be similar to band at Magnet
160.0 Dark green IF slate
\begin{tabular}{|c|c|}
\hline & 163.0 \\
\hline \multirow[t]{5}{*}{163.0} & Shear zone pyrite \(8 \%\) - massive seams - crumpled at \(15^{\circ} \mathrm{CN}\) ore zone type QC 8\% \\
\hline & 180.0 Shear zone - south shear type grey green low-med intensity \(40^{\circ} \mathrm{CN}\) \\
\hline & 182.0 Pyrite \(10 \%\) QC \(5 \%\) note silver assays 0.03 to 0.05 important gold to silver ratio \\
\hline & 185.0 low pyrite 3\% QC 3\% foliation at 3\% \\
\hline & 202.0 \\
\hline \multirow[t]{4}{*}{202.0} & Diorite - green fine grained weak foliation at \(30^{\circ} \mathrm{CN}\) QC veining \(5 \%\) pyrite \(1 \%\) could be fine grained slatey type low-med. sericite \\
\hline & 209.0 QC veining \(25 \%\) poorily mineralized \\
\hline & 211 Dense green slate or diorite carb \(10 \%\) med-high chlorite med sericit banding or shear at \(45^{\circ} \mathrm{CN}\) \\
\hline & 255.0 \\
\hline \multirow[t]{6}{*}{255.0} & Ore zone pyrite \(15 \%\) to \(30 \%\) Q.C. \(5 \%\) med-high sil. med. chlorite low-med. carbonate - red IF bands at \(15^{\circ} \mathrm{CN} 0.1\) to 0.5 in width \(20 \%\) good type ore reddish hematite sandstone type \\
\hline & 259.0 high chlorite contorted pyrite 3\% \\
\hline & 279.0 pyrite 5\% QC 5\% IF 10\% note some fuchsite patchy good ore \\
\hline & 281.0 bands of solid pyrite 0.1' \\
\hline & 296.0 IF \(20 \%\), QC \(10 \%\), sericite \(8 \%\), well foliated laminated \\
\hline & 300.0 \\
\hline \multicolumn{2}{|l|}{300.0 Ore zone pyritised IF \(5 \%\) finely laminated- some hematite - note banding infolded-hole along base of fold.} \\
\hline & 310.0 faulted brecciated zone pyrite 5\% \\
\hline & 313.0 fault zone angular fragments \(30 \%\) carbonates and silicified a solut breccia \\
\hline & 316.0 Pyrite 20\% paralled to lamination \\
\hline & 319.0 Brecciated contact ore zone type \\
\hline & 320.0 \\
\hline \multirow[t]{2}{*}{320.0} & Diorite ? fine grey non bedded pyrite \(1 \%\) banding at \(30^{\circ} \mathrm{CN}\) ore zone could be along contact. \\
\hline & 334.0 \\
\hline 334.0 & End of hole \\
\hline
\end{tabular}

CORE SAMPLES
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAMPLE NO. & FOOTAGE & FEET & Au Ozs & Ag ozs & Cu\% \\
\hline 26713 & 3.0-5.0 & 2.0 & . 005 & & \\
\hline 26714 & 13.5-15.0 & 1.5 & . 02 & & \\
\hline 26715 & 21.0-23.0 & 2.0 & Tr. & & \\
\hline 26716 & 33.0-35.0 & 2.0 & . 01 & & \\
\hline 26717 & 35.0-37.0 & 2.0 & . 005 & & \\
\hline 26718 & 37.0-38.0 & 1.0 & Tr. & & \\
\hline 26719 & 42.0-44.0 & 2.0 & Tr. & & \\
\hline 26720 & 48.0-50.0 & 2.0 & Tr. & & \\
\hline 26721 & 51.0-53.0 & 2.0 & . 005 & & \\
\hline 26722 & 55.0-57.0 & 2.0 & . 01 & & \\
\hline 26723 & 60.0-62.0 & 2.0 & . 005 & & \\
\hline 26724 & 74.0-75.0 & 1.0 & Tr. & & \\
\hline 26725 & 83.0-85.0 & 2.0 & . 005 & & \\
\hline 26726 & 88.0-90.0 & 2.0 & . 005 & & \\
\hline 26727 & 93.0-95.0 & 2.0 & . 005 & & \\
\hline 2307 & 95.5-97.0 & 1.5 & . 02 & & - \\
\hline 2308 & 97.5-98.0 & 0.5 & Tr. & & \\
\hline 2309 & 98.5-99.0 & 0.5 & . 03 & & \\
\hline 2310 & 99.5-100.0 & 0.5 & . 04 & & \\
\hline 26728 & 103.0-105.0 & 2.0 & . 01 & & \\
\hline 26729 & 107.0-109.0 & 2.0 & . 02 & & \\
\hline 26730 & 110.0-112.0 & 2.0 & Tr. & & \\
\hline 26731 & 112.0-113.0 & 1.0 & Tr. & & \\
\hline 26732 & 113.0-115.0 & 2.0 & . 005 & & \\
\hline 26733 & 115.0-117.5 & 2.5 & . 02 & & \\
\hline 26734 & 117.5-120.0 & 2.5 & . 005 & & \\
\hline 2201 & 120.0-125.0 & 5.0 & Tr. & & \\
\hline 2202 & 125.0-130.0 & 5.0 & . 01 & & \\
\hline 2203 & 130.0-135.0 & 5.0 & . 01 & & \\
\hline 26735 & 135.0-137.0 & 2.0 & . 03 & & \\
\hline 2204 & 137.0-140.0 & 3.0 & . 005 & & \\
\hline 26081 & 140.0-143.0 & 3.0 & . 01 & & \\
\hline 26736 & 143.0-144.0 & 1.0 & . 04 & & \\
\hline 26082 & 144.0-148.0 & 4.0 & . 02 & & \\
\hline 26737 & 148.0-150.0 & 2.0 & . 04 & & \\
\hline 26083 & 150.0-153.0 & 3.0 & Tr. & & \\
\hline 26738 & 153.0-155.0 & 2.0 & . 04 & & \\
\hline 2205 & 154.0-158.0 & 4.0 & . 03 & & \\
\hline 26084 & 155.0-158.0 & 3.0 & Tr. & & \\
\hline 26739 & 158.0-160.0 & 2.0 & . 02 & & \\
\hline 26165 & 160.0-162.0 & 2.0 & Tr. & & \\
\hline 26740 & 162.0-164.0 & 2.0 & . 005 & & \\
\hline 26155 & 164.0-165.0 & 1.0 & . 04 & & \\
\hline 26741 & 165.0-167.0 & 2.0 & . 03 & & \\
\hline 26156 & 167.0-170.0 & 3.0 & . 04 & & \\
\hline 26157 & 170.0-172.0 & 2.0 & . 04 & & \\
\hline 26742 & 172.0-174.0 & 2.0 & . 10 & . 03 & \\
\hline 26158 & 174.0-176.0 & 2.0 & . 12 & . 03 & \\
\hline 26743 & 176.0-178.0 & 2.0 & . 03 & & \\
\hline 26159 & 178.0-180.0 & 2.0 & . 02 & & \\
\hline 26160 & 180.0-182.0 & 2.0 & . 005 & & \\
\hline 26744 & 182.0-183.0 & 1.0 & . 05 & . 04 & \\
\hline 26745 & 183.0-185.0 & 2.0 & . 11 & . 05 & \\
\hline 26161 & 185.0-186.0 & 1.0 & Tr. & & \\
\hline 26746 & 186.0-188.0 & 2.0 & . 02 & & \\
\hline 26747 & 188.0-190.0 & 2.0 & . 03 & & \\
\hline 26748 & 190.0-192.0 & 2.0 & . 01 & & \\
\hline 26162 & 192.0-195.0 & 3.1 & . 01 & & \\
\hline 26749 & 210.0-212.0 & 2.0 & Tr. & & \\
\hline 26750 & 218.0-220.0 & 2.0 & Tr . & & \\
\hline 26751 & 223.0-225.0 & 2.0 & Tr. & & \\
\hline 26752 & 237.0-239.0 & 2.0 & Tr. & & \\
\hline 26753 & 241.0-242.0 & 1.0 & nil & & \\
\hline 2311 & 242.0-247.0 & 5.0 & Tr . & & \\
\hline 2312 & 247.0-253.0 & 6.0 & Tr. & & \\
\hline 26754 & 253.0-254.0 & 1.0 & nil & & \\
\hline 2313 & 254.0-255.0 & 1.0 & Tr. & duplicate & \\
\hline 26163 & 254.0-255.0 & 1.0 & Tr. & & \\
\hline 26755 & 255.0-257.0 & 2.0 & . 49 & . 07 & \\
\hline 26756 & 257.0-259.0 & 2.0 & . 27 & . 07 & \\
\hline
\end{tabular}
- HOLE L 81-4

CORE SAMPLES
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAMPLE NO. & FOOTAGE & FEET & Au OzS. & Ag ozs & Cu\% \\
\hline 26164 & 259.0-260.0 & 1.0 & . 02 & & \\
\hline 2314 & 259.0-260.0 & 1.0 & . 01 & duplicate & \\
\hline 26757 & 260.0-262.0 & 2.0 & . 33 & . 06 & \\
\hline 26758 & 262.0-263.0 & 1.0 & . 07 & . 04 & \\
\hline 26029 & 263.0-264.0 & 1.0 & Tr. & & \\
\hline 26759 & 264.0-265.0 & 1.0 & . 05 & & \\
\hline 26041 & 265.0-267.5 & 2.5 & . 03 & & \\
\hline 26042 & 267.5-270.0 & 2.5 & . 05 & & \\
\hline 26043 & 270.0-272.5 & 2.5 & Tr. & & \\
\hline 26044 & 272.5-275.0 & 2.5 & Tr. & & \\
\hline 26045 & 275.0-277.0 & 2.0 & Tr. & & \\
\hline 26760 & 277.0-279.0 & 2.0 & . 14 & . 05 & \\
\hline 2315 & 279.0-280.0 & 1.0 & . 01 & duplicate & \\
\hline 26046 & 279.0-280.0 & 1.0 & Tr . & & \\
\hline 26761 & 280.0-282.0 & 2.0 & . 02 & & \\
\hline 26762 & 282.0-284.0 & 2.0 & . 02 & & \\
\hline 26030 & 284.0-285.0 & 1.0 & . 005 & & \\
\hline 26763 & 285,0-287,5 & 2,5 & . 02 & & \\
\hline 2316 & 287,5-288.5 & 1.0 & . 005 & & \\
\hline 26764 & 288.5-290.0 & 1.5 & . 02 & & \\
\hline 26031 & 290.0-292.5 & 2.5 & . 005 & & \\
\hline 2317 & 292.5-297.0 & 4.5 & Tr. & & \\
\hline 26034 & 295.0-297.0 & 2.0 & Tr. & duplicate & \\
\hline 26765 & 297.0-300.0 & 3.0 & . 01 & & \\
\hline 26766 & 300.0-302.0 & 2,0 & , 02 & & \\
\hline 26767 & 302.0-304.0 & 2.0 & . 07 & . 04 & \\
\hline 2318 & 304.0-305.0 & 1.0 & . 035 & & \\
\hline 26035 & 304.0-305.0 & 1.0 & Tr. & duplicate & \\
\hline 26768 & 305.0-306.0 & 1.0 & . 36 & . 06 & \\
\hline 26036 & 306.0-308.0 & 2.0 & . 03 & & \\
\hline 26037 & 308.0-310.0 & 2.0 & . 005 & & \\
\hline 26769 & 310.0-311.0 & 1.0 & . 02 & & \\
\hline 26038 & 311.0-313.0 & 2.0 & . 02 & & \\
\hline 26770 & 313.0-314.0 & 1.0 & . 01 & & \\
\hline 26039 & 314.0-316.0 & 2.0 & . 03 & & \\
\hline 26771 & 316.0-318.0 & 2.0 & . 19 & . 06 & \\
\hline 26040 & 318.0-319.0 & 1.0 & . 01 & & \\
\hline 26772 & 319.0-320.0 & 1.0 & . 18 & . 05 & \\
\hline 26773 & 320.0-322.0 & 2.0 & . 005 & & \\
\hline 2319 & 320.0-322.0 & 2.0 & Tr. & duplicate & \\
\hline 26118 & 322.0-325.0 & 3.0 & Tr. & & \\
\hline 26119 & 325.0-327.5 & 2.5 & Tr. & & \\
\hline 26120 & 327.5-330.0 & 2.5 & Tr. & & \\
\hline 26121 & 332.0-335.0 & 2.5 & Tr. & & \\
\hline
\end{tabular}

AVERAGES - CORE
\begin{tabular}{rrr}
\(164.0-185.0\) & 21.0 & .05 \\
\(255.0-263.0\) & 8.0 & .28 \\
\(255.0-279.0\) & 24.0 & .12 \\
\(302.0-320.0\) & 15.0 & .08 \\
\(255.0-320.0\) & 65.0 & .07
\end{tabular}

Note Ag. probable . 03 ozs.
```

HOLE L - 81 - 4

```

SLUDGE ASSAYS

```

HOLE L - 81 - 5

```
\begin{tabular}{lllll}
Location & Trench 3 & Pjari Compass Magnetic \\
Dep. BL \(-567 E\) & \(41^{\prime}\) S Line & & & \\
Dip. \(45^{\circ}\) & & \(100^{\prime}\) & \(45^{\circ}\) & \(15^{\circ} \mathrm{N}\) \\
Started \(21 / 10 / 81\) & finished \(23 / 10 / 81\) & \(200^{\prime}\) & \(43^{\circ}\) & \(00^{\circ} \mathrm{N}\) \\
& & \(300^{\prime}\) & \(34^{\circ}\) & \(04^{\circ} \mathrm{N}\)
\end{tabular}

\section*{\(0 \quad\) Casing}
8.0
8.0 IF magnetic red sst. bands \(1^{\prime \prime}-6^{\prime \prime}\) wide \(20 \%\) of zone py \(1 \%\) qtzcarb. vlts \(5 \%\) finely laminated sediments folded. Low to med. carb., med. chl., low-med. silica. Bedding © \(25^{\circ} \mathrm{CN}\)
20.2
20.2 Gwk fine grained grey green slate qtz. carb. \(3 \%\), py \(1 \%\), some contorted banding, general foliation © \(35^{\circ} \mathrm{CN}\) some patchy high carb.
38.0 Qtz - cc vein \(60 \%\), py \(1 \%\)
38.5 Gwk as above - very uniform fine grained. Sericite slate ? Note foliation @ \(50^{\circ} \mathrm{CN}\). Some contorted or folded material.
62.0 Fold axis - Note: grain gradation
62.8 Dense fine grained foliation (primary) @ \(60^{\circ} \mathrm{CN}\). Note: bedded py \(2 \%\).
71.5 Qtz - cc local \(8 \%\), py \(2 \%\)
72.0 Folded gwk as above. Note - foliation @ \(65^{\circ} \mathrm{CN}\) - probably strike change, low-med chl, low-med carb, low-med. silica.
120.0 Note @ \(45^{\circ} \mathrm{CN}\) as above
125.0 Shearing @ \(45^{\circ} \mathrm{CN}, \mathrm{qtz}-\mathrm{cc} 5 \%\), py \(5 \%\), no value
135.0 Gwk as above
145.0 Qtz - cc \(10 \%\), py \(5 \%\), good type of material as on surface. Shear zone @ \(45^{\circ} \mathrm{CN}\).
156.0 Dense medium fine grained gwk. Some contortion at bedding contacts such as \(160.0^{\prime}-162.0^{\prime}\)
170.0 Fine banding some Q -cc generally dip at \(25^{\circ} \mathrm{CN}\)
180.0 Yellow buff sericitic alteration Py \(3 \%\), med-carb, med-high sericite low-med silica
189.0 Contorted bedded gwk. - no IF
192.0
192.0 Shear zone at \(50^{\circ}\) CN low-med shear, med ch1., low-med carb \(5 \%, \mathrm{py} 3 \%, \mathrm{Q}\)-cc \(5 \%\) 198.0 Sericite low-med. shaly gwk - host
202.0 Low shear
207.0 Low-med. shear as above
215.0 Q-cc \(10 \%\), some buff yellow sericite or epidate
218.0 Foliated low shear
221.0 Q-cc \(10 \%\), py \(3 \%\)
223.0
223.0 Gwk - altered slate fine grained, some contorted bedding low-med foliation @ \(35^{\circ} \mathrm{CN}\), low-med carb, low silica, med chl, Q-cc vlts \(5 \%\), py \(1 \%\)
232.0 Q-cc \(15 \%\), py \(3 \%\) foliation @ \(50^{\circ} \mathrm{CN}\) cross shear
234.0 Gwk as above Note: crumpling at \(238.0^{\prime}\)
243.5 Lost core
245.0 Q-cc 10\%, Carb'd, py 2\%
247.5 Lost core - bad drilling
250.0 Gwk - carbonated - grey green in colour, contorted bedding Q-cc 3\%, py \(1 \%\)
271.0 Q-cc \(10 \%\), py \(1 \%\)
272.8 Gwk as above Q-cc 5\%
275.0 Q-cc \(10 \%\), py \(2 \%\)
283.0 Gwk as above, some speudoriorite from 284.0' - 292.0' relatively unaltered gwk foliated @ \(35^{\circ} \mathrm{CN}\)
300.0
300.0 End of hole

LYNX-ROXMARK MC LELLAN JOINT VENTURE L-81-5 ASSAYS
\begin{tabular}{|c|c|c|c|c|c|}
\hline CORE ASSAYS & & & & & \\
\hline SAMPLE NO. & \% SULPHIDE & FOOTAGE & FEET & Au-ozs & Ag ozs \\
\hline 26775 & & 14.0-15.0 & 1.0 & . 01 & \\
\hline 26776 & & 33.0-34.0 & 1.0 & Tr. & \\
\hline 26777 & & 37.0-39.0 & 2.0 & Tr. & \\
\hline 26778 & & 43.5-45.0 & 1.5 & Tr. & \\
\hline 26779 & 4 & 55.0-56.5 & 1.5 & . 005 & \\
\hline 26780 & & 71.0-72.0 & 1.0 & Tr. & \\
\hline 26781 & & 74.0-75.0 & 1.0 & nil & \\
\hline 26782 & & 77.0-79.0 & 2.0 & nil & \\
\hline 26795 & & 93.0-95.0 & 2.0 & Tr. & \\
\hline 26796 & & 98.0-100.0 & 2.0 & Tr. & \\
\hline 26797 & & 100.0-102.0 & 2.0 & Tr. & \\
\hline 26798 & & 108.0-110.0 & 2.0 & Tr. & \\
\hline 26799 & & 110.0-111.0 & 1.0 & Tr. & \\
\hline 26800 & & 111.0-113.0 & 2.0 & Tr. & \\
\hline 26801 & 2 & 113.0-115.0 & 2.0 & Tr. & \\
\hline 26802 & 1 & 125.0-127.0 & 2.0 & Tr. & \\
\hline 26803 & 4 & 130.0-132.5 & 2.5 & Tr. & \\
\hline 26804 & & 132.5-135.0 & 2.5 & Tr. & \\
\hline 26805 & & 138.0-140.0 & 2.0 & Tr. & \\
\hline 26806 & & 145.0-146.0 & 1.0 & Tr. & \\
\hline 26807 & & 146.0-148.0 & 2.0 & Tr. & \\
\hline 26808 & & 148.0-150.0 & 2.0 & Tr. & \\
\hline 26809 & & 150.0-152.5 & 2.5 & Tr . & \\
\hline 26810 & & 152.5-155.0 & 2.5 & Tr. & \\
\hline 26811 & & 155.0-157.0 & 2.0 & & \\
\hline 26812 & 1 & 170.0-171.0 & 1.0 & Tr. & \\
\hline 26813 & & 171.0-173.0 & 2.0 & Tr. & \\
\hline 26814 & & 180.0-182.0 & 2.0 & Tr. & \\
\hline 26815 & & 182.0-184.0 & 2.0 & Tr. & \\
\hline 26816 & & 188.0-190.0 & 2.0 & Tr. & \\
\hline 26817 & & 193.0-195.0 & 2.0 & Tr. & \\
\hline 26618 & & 195.0-197.5 & 2.5 & Tr. & \\
\hline 26619 & 4 & 197.5-200.0 & 2.5 & Tr. & \\
\hline 26620 & 4 & 200.0-202.0 & 2.0 & Tr. & \\
\hline 26621 & & 204.0-205.0 & 1.0 & Tr. & \\
\hline 26622 & & 207.0-209.0 & 2.0 & Tr. & \\
\hline 26623 & & 210.0-212.0 & 2.0 & Tr. & \\
\hline 26624 & & 214.0-215.0 & 1.0 & Tr. & \\
\hline 26625 & & 215.0-217.0 & 2.0 & Tr. & \\
\hline 26626 & 2 & 217.0-219.0 & 2.0 & Tr. & \\
\hline 26627 & & 221.0-223.0 & 2.0 & Tr. & \\
\hline 26628 & 2 & 232, 0-234.0 & 2.0 & Tr. & \\
\hline 26630 & & 242.0-243.5 & 1.5 & Tr. & \\
\hline 26631 & & 245.0-247.0 & 2.0 & Tr. & \\
\hline 26632 & 1 & 252.0-253.0 & 1.0 & Tr. & \\
\hline 26635 & & 255.0-256.0 & 1.0 & Tr. & \\
\hline 26633 & & 257.0-258.0 & 1.0 & Tr. & \\
\hline 26634 & & 259.0-260.0 & 1.0 & Tr. & \\
\hline 26636 & & 268.0-270.0 & 2.0 & Tr. & \\
\hline 26637 & & 271.0-272.8 & 1.8 & Tr. & \\
\hline 26638 & & 275.0-277.0 & 2.0 & Tr. & \\
\hline 26639 & 1 & 277.0-279.0 & 2.0 & Tr. & \\
\hline 26640 & & 280.0-282.0 & 2.0 & Tr. & \\
\hline 26641 & & 282.0-283.0 & 1.0 & Tr. & \\
\hline & & 300.0 End of & Hole & & \\
\hline
\end{tabular}

LY:Z - ROXMARK MC BELLAN JOINI VENTURE
\(L-81-5\)

SLUDGES
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAMPLE NO. & \% SULPHIDE & FOOTAGE & FEET & Au.ozs & Ag ozs \\
\hline \multirow[t]{8}{*}{26538} & & 10-20 & 10 & & \\
\hline & & 20-30 & 10 & & \\
\hline & & 30-40 & 10 & & \\
\hline & & 40-50 & 10 & & \\
\hline & & 50-60 & 10 & & \\
\hline & & 60-70 & 10 & & \\
\hline & & 70-80 & 10 & & \\
\hline & & 80-90 & 10 & & \\
\hline 26539 & & 90-100 & 10 & & \\
\hline \multirow[t]{20}{*}{26540} & & 100-110 & 10 & Tr. & \\
\hline & & 110-120 & 10 & & \\
\hline & & 120-130 & 10 & & \\
\hline & & 130-140 & 10 & & \\
\hline & & 140-150 & 10 & & \\
\hline & & 150-160 & 10 & & \\
\hline & & 160-170 & 10 & & \\
\hline & & 170-180 & 10 & & \\
\hline & & 180-190 & 10 & & \\
\hline & & 190-200 & 10 & & \\
\hline & & 200-210 & 10 & & \\
\hline & & 210-220 & 10 & & \\
\hline & & 220-230 & 10 & & \\
\hline & & 230-240 & 10 & & \\
\hline & & 240-250 & 10 & & \\
\hline & & 250-260 & 10 & & \\
\hline & & 260-270 & 10 & & \\
\hline & & 270-280 & 10 & & \\
\hline & & 280-290 & 10 & & \\
\hline & & 290-300 & 10 & & \\
\hline
\end{tabular}

HOLE L - 81-6
\begin{tabular}{|c|c|c|c|c|}
\hline & & Pjari & Compass & magnetic \\
\hline LOCATION & Trench \#3 & \(100^{\prime}\) & \(43^{\circ}\) & \(09^{\circ} \mathrm{N}\) \\
\hline Dep. BL & 575E 277'S & \(200{ }^{\prime}\) & \(40^{\circ}\) & \(00^{\circ} \mathrm{N}\) \\
\hline Latitude & Ll13 \({ }^{\circ} \mathrm{E} 959^{\prime} \mathrm{S}\) & \(300{ }^{\prime}\) & \(36^{\circ}\) & \(20^{\circ} \mathrm{N}\) \\
\hline Dip \(45^{\circ}\) & Strike: \(\mathrm{N} 10^{\circ} \mathrm{E}\) & \(400^{\prime}\) & \(29^{\circ}\) & \(353^{\circ} \mathrm{N}\) \\
\hline Started: & 24/10/81 Finished 26/10/81 & \(500^{\prime}\) & \(27^{\circ}\) & \(355^{\circ} \mathrm{N}\) \\
\hline
\end{tabular}

0 Casing
9.0
9.0 Diorite fine grained even textured - foliated low-med. © \(40^{\circ} \mathrm{CN}\) Q-cc vits \(8 \%\), two ages some with good looking py as from 12.5 14.0 Altered med-high chlorite, low-med silica, med carb. Py 1\%, see vits @ 26.5
50.0 Build up of \(Q-c c\) vlts to \(15 \%\)
80.0 Q-cc vlts strong \(15 \%\), note sphalerite like alteration could be a carbonate
95.0 High silica - high med alt' \(n\), low-med chl, med-high silica, low-med carb. py 1\%
103.0
103.0 Altered zone high silica Q-cc vlts \(15 \%\) - note same as \(\mathrm{L}-81-4\) before not brecciated porphyry but high siliceous alteration related to movement along faults. note patchy ep, grey green, low py
120.5
120.5 Mud seam - probably Bankfield Tombill fault \(60 \%\) mud balance shattered porphyry
122.0
122.0 Qtz - Feldspar porphyry - shattered high silica, low carb., low chl, Q-cc vlts \(10 \%\), Qtz eyes \(5 \%\) some large Fs \(5 \%\) as phenocrysts py \(1 \%\), massive non foliated
133.5 lost core
135.0 as above
141.0 Med-high silica - banded some grey buff siliceous material with \(2 \%\) py, low grade only. Q-cc vlts \(8 \%\) siliceous alt'n
150.0 Shear zone foliated @ \(20^{\circ} \mathrm{CN}\) low to med intensity Q-cc \(5 \%\), fine foliation rock could be fine
187.0 Pyrite 5\% - good type Q-cc 5\%
202.0
202.0 Shear zone with IF magnetic some good type sulphide but assays are low - probably below main zone \(15 \%\) IF mgn. - not at right horizon py \(5 \%\) but on main south zone
222.0 Py \(2 \%\) past this point \(Q-c c 3 \%\), low to med shear © \(20^{\circ} \mathrm{CN}\)
238.0 Low-med shear at \(20^{\circ} \mathrm{CN}\)
240.0 Low shear - general IF mag. 5\%

HOLE L - 81-6
250.0
250.0 I.F. mag. 25\%, some scattered py rock is generally massive, bedding variable but 20 to \(45^{\circ} \mathrm{CN}\)
265.5
265.5 Shear - cross structure med @ \(60^{\circ} \mathrm{CN}\) crumpled, med ch1, med carb, low silica could be sheared dyke.
279.5
279.5 IF mgn as above bedding @ \(60^{\circ} \mathrm{CN}\) mgn \(30 \%\) interstitial olive green sediments
286.5 Pyritized carbonated bands excellent type \(25 \%\) py, Q-cc \(20 \%\), did not assay - but could be under north zone - assayed 0.02 ozs.
287.5 Shear - med. @ \(45^{\circ} \mathrm{CN}\) Note some pseudo quartz eyes, could be cross structure.
292.0 IF mgn as above no real shearing delicate folding primary
299.0 Shearing @ \(30^{\circ} \mathrm{CN}\) py \(5 \%\)
303.0 IF mgn as above @ \(20^{\circ} \mathrm{CN}\) variable Q -cc vlts \(3 \%\)
330.0
330.0 Gwk -fine lamination but sedimentary no definite IF, Q-cc \(2 \%\), py \(1 \%\), foliation (d \(25^{\circ} \mathrm{CN}\) no real shearing
377.0 Lost core
380.0 Gwk as above
384.0 Lost core
385.0 Q-cc V1ts \(2 \%\), py \(1 \%\), dark grey fine grained shale some patchy pyritization - no significant shearing
432.0
432.0 Shear zone @ \(60^{\circ} \mathrm{CN}\) - probably cross structure, med intensity, med chl, med carb, low silica.
438.0 Shearing @ \(45^{\circ} \mathrm{CN}\) - Qtz carb vlts \(10 \%\) pyrite \(5 \%\), probably another zone but values are poor
444.0
444.0 Gwk - finely bedded gwk dull grey green - no strong shear, Q-cc \(2 \%\), py \(1 \%\), some coarse grained beds
502.0
502.0

CORE ASSAYS
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAMPLE NO. & \% SULPHIDE & FOOTAGE & FEET & Au. ozs & Ag. ozs \\
\hline 26643 & & 12.5-14.0 & 1.5 & . 03 & \\
\hline 26644 & & 19.0-20.0 & 1.0 & Tr . & \\
\hline 26645 & & 25.0-26.5 & 1.5 & Tr . & \\
\hline 26646 & & 37.0-39.0 & 2.0 & Tr . & \\
\hline 26647 & & 40.0-42.0 & 2.0 & Tr. & \\
\hline 26648 & & 50.0-52.0 & 2.0 & Tr . & \\
\hline 26649 & & 58.0-60.0 & 2.0 & Tr . & \\
\hline 26650 & & 65.0-67.0 & 2.0 & Tr . & \\
\hline 26651 & & 75.0-77.0 & 2.0 & Tr . & \\
\hline 26652 & & 80.0-82.0 & 2.0 & Tr . & \\
\hline 26653 & & 88.0-90.0 & 2.0 & Tr. & \\
\hline 26654 & & 95.0-97.0 & 2.0 & Tr . & \\
\hline 26655 & & 100.0-102.0 & 2.0 & Tr . & \\
\hline 26656 & & 104.0-105.0 & 1.0 & Tr. & \\
\hline 26657 & & 106.5-108.0 & 1.5 & Tr . & \\
\hline 26658 & & 116.0-118.0 & 2.0 & Tr . & \\
\hline 26659 & & 120.0-121.0 & 1.0 & nil & \\
\hline 26660 & & 124.0-125.0 & 1.0 & Tr. & \\
\hline 26661 & & 127.0-128.0 & 1.0 & Tr. & \\
\hline 26662 & & 132.0-134.0 & 2.0 & . 005 & \\
\hline 26663 & & 137.0-139.0 & 2.0 & . 005 & \\
\hline 26664 & & 139.0-140.0 & 1.0 & . 03 & \\
\hline 26668 & & 140.0-141.5 & 1.5 & Tr. & \\
\hline 26669 & & 143.0-145.0 & 2.0 & Tr. & \\
\hline 26670 & & 145.0-147.0 & 2.0 & . 02 & \\
\hline 2320 & & 147.0-149.0 & 2.0 & Tr. & \\
\hline 2321 & & 149.0-154.0 & 5.0 & Tr . & \\
\hline 2322 & & 154.0-159.0 & 5.0 & Tr . & \\
\hline 26672 & & 159.0-161.0 & 2.0 & . 02 & \\
\hline 26673 & & 161.0-162.0 & 1.0 & . 02 & \\
\hline 2323 & & 162.0-166.0 & 4.0 & Tr . & \\
\hline 26674 & & 166.0-167.0 & 1.0 & Tr. & \\
\hline 26675 & & 175.0-176.0 & 1.0 & Tr. & \\
\hline 26676 & & 181.0-182.5 & 1.5 & Tr. & \\
\hline 2324 & & 182.5-187.0 & 4.5 & Tr. & \\
\hline 2377 & & 187.0-189.0 & 2.0 & . \(04 \times\) & \\
\hline 2325 & & 189.0-190.0 & 1.0 & Tr. & \(319.0^{\prime}\) \\
\hline 2378 & & 190.0-192.0 & 2.0 & . 03 \} & (1) 9.0 \\
\hline 2379 & & 192.0-194.0 & 2.0 & . 02 & \\
\hline 2326 & & 194.0-196.0 & 2.0 & . 041 & \\
\hline 26680 & & 196.0-198.0 & 2.0 & . 005 & \\
\hline 26058 & & 200.0-202.0 & 2.0 & Tr. & \\
\hline 26081 & & 202,0-203,0 & 1.0 & . 03 & \\
\hline 26059 & & 203.0-205.0 & 2.0 & Tr. & \\
\hline 26060 & & 205,0-206.0 & 1.0 & . 01 & \\
\hline 26682 & & 206.0-208.0 & 2.0 & . 037 & \\
\hline 26683 & & 208.0-208.5 & 0.5 & . 125 & \\
\hline 26057 & & 208.5-210.5 & 2.0 & . 005 & \\
\hline 26684 & & 210.5-212.0 & 1.5 & . 02 & \(03 / 10.0\) \\
\hline 2327 & & 212.0-213.0 & 1.0 & Tr. & \\
\hline 26685 & & 213.0-215.0 & 2.0 & . 02 & \\
\hline 26686 & & 215.0-216.0 & 1.0 & . 03 J & \\
\hline 26061 & & 216.0-218.0 & 2.0 & Tr. & \\
\hline 26062 & & 218.0-220.0 & 2.0 & Tr. & \\
\hline 26687 & & 220.0-222.0 & 2.0 & Tr. & \\
\hline 26688 & & 230.0-231.0 & 1.0 & Tr. & \\
\hline 26689 & & 238.0-240.0 & 2.0 & nil & \\
\hline 26690 & & 247.0-250.0 & 3.0 & . 005 & \\
\hline 26691 & & 252.0-254.0 & 2.0 & Tr. & \\
\hline 26692 & & 261.5-263.0 & 1.5 & Tr. & \\
\hline 2328 & & 281.0-286.0 & 5.0 & Tr. & \\
\hline 26693 & & 286.0-287.0 & 1.0 & . 02 & \\
\hline 2329 & & 287.0-289.0 & 2.0 & Tr. & \\
\hline 2330 (check & ple) & 289.0-290.0 & & Tr. & \\
\hline 26694 & & 289.0-290.0 & 1.0 & Tr. & \\
\hline 2331 & & 294.0-299.0 & 5.0 & . 005 & \\
\hline 26108 & & 299.0-300.0 & 1.0 & . 03 & \\
\hline
\end{tabular}

\section*{HOLE L - 81-6}

\section*{CORE SAMPLES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAMPLE \# & \% SULPHIDE & FOOTAGE & FEET & Au.ozs & Ag.ozs \\
\hline 2332 & & 300.0-302.0 & 2.0 & . 05 & \\
\hline 26695 & & 302.0-303.0 & 1.0 & . 01 & \\
\hline 26696 & & 325.0-327.0 & 2.0 & Tr. & \\
\hline 26697 & & 331.0-333.0 & 2.0 & . 005 & \\
\hline 26698 & & 335.0-336.0 & 1.0 & Tr. & \\
\hline 26665 & & 340.0-342.0 & 2.0 & Tr . & \\
\hline 26666 & & 347.0-348.0 & 1.0 & nil & \\
\hline 26667 & & 352.0-354.0 & 2.0 & nil & \\
\hline 26699 & & 371.0-372.0 & 1.0 & Tr. & \\
\hline 26700 & & 388.0-390.0 & 2.0 & Tr . & \\
\hline 26101 & & 394.0-395.0 & 1.0 & Tr . & \\
\hline 26102 & & 401.0-402.0 & 1.0 & . 01 & \\
\hline 26103 & & 415.0-417.0 & 2.0 & Tr. & \\
\hline 26104 & & 420.0-422.0 & 2.0 & Tr. & \\
\hline 26105 & & 422.0-423.0 & 1.0 & Tr. & \\
\hline 26106 & & 433.0-435.0 & 2.0 & Tr. & \\
\hline 26107 & & 437.0-438.0 & 1.0 & Tr. & \\
\hline 26109 & & 441.0-443.0 & 2.0 & Tr. & \\
\hline 26110 & & 447.5-448.5 & 1.0 & Tr. & \\
\hline 26111 & & 451.0-452.0 & 1.0 & . 005 & \\
\hline 26112 & & 462.0-464.0 & 2.0 & Tr . & \\
\hline 26113 & & 470.0-472.0 & 2.0 & Tr. & \\
\hline 26114 & & 474.0-475.0 & 1.0 & Tr. & \\
\hline 26115 & & 481.5-482.5 & 1.0 & Tr. & \\
\hline 26116 & & 492.0-493.0 & 1.0 & Tr. & \\
\hline 26117 & & 499.0-500.0 & . 0 & Tr. & \\
\hline
\end{tabular}
503.0 End of hole
```

HOLE \# L - 81 - 7

```

Pjori Compass Magnetic
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Location: Trench \#4} \\
\hline Dep. & BL 700E 315'S & \(100^{\prime}\) & \(45^{\circ}\) & \(02{ }^{\circ} \mathrm{N}\) \\
\hline Latitude & L114 + 76E 873S & \(200{ }^{\prime}\) & \(43^{\circ}\) & \(02{ }^{\circ} \mathrm{N}\) \\
\hline Dip \(45^{\circ}\) & Strike \(\mathrm{N} 10^{\circ} \mathrm{E}\) & \(300{ }^{\prime}\) & \(37^{\circ}\) & \(355^{\circ} \mathrm{N}\) \\
\hline Started: & 27/10/81 Finished 30/10/81 & \(400^{\prime}\) & \(32^{\circ}\) & \(352^{\circ} \mathrm{N}\) \\
\hline & & \(500^{\prime}\) & \(27^{\circ}\) & \(285{ }^{\circ} \mathrm{N}\) \\
\hline \multicolumn{5}{|l|}{LOGGED BY S.E. Malouf} \\
\hline \multirow[t]{2}{*}{0} & \multicolumn{4}{|l|}{Casing} \\
\hline & \multicolumn{4}{|l|}{12.0} \\
\hline \multirow[t]{2}{*}{12.0} & \multicolumn{4}{|l|}{Diorite? fine grained even textured not foliated, some ferromagnesium minerals low-alteration, med. chlorite.} \\
\hline & \multicolumn{4}{|l|}{20.0} \\
\hline \multirow[t]{7}{*}{20.0} & \multicolumn{4}{|l|}{Low foliation @ \(20^{\circ} \mathrm{CN}\) start of carb. alteration, med. chlorite, med-high carbonate, low silica, Q-cc \(5 \%\), py \(1 \%\)} \\
\hline & \multicolumn{4}{|l|}{30.0 Q-cc \(15 \%\) med to high carbonate, low foliation} \\
\hline & \multicolumn{4}{|l|}{35.0 Low to med foliation @ \(20^{\circ} \mathrm{CN}\) - shear zone patchy py - good type as from 47 to 49 no values, \(\mathrm{Q}-\mathrm{cc} 15 \%\)} \\
\hline & \multicolumn{4}{|l|}{58.0 Low foliation - believe rock is diorite - could be fined grained slate but IF and other signs of sedimentation are located} \\
\hline & \multicolumn{4}{|l|}{86.0 Q-cc as above} \\
\hline & \multicolumn{4}{|l|}{87.5 Bleached shattered zone Q-cc \(15 \%\) Breccia fault zone - py \(3 \%\) no values} \\
\hline & 89.0 & & & \\
\hline \multirow[t]{3}{*}{89.0} & \multicolumn{4}{|l|}{Diorite heavily carbonated as in previous holes, Note - heavy silica locally - py and cpy as from 95.0-97.0 no values good clean cpy \(0.30 \%\), Q-cc \(30 \%\)} \\
\hline & \multicolumn{4}{|l|}{118.5 High silica white, low carb - Note contact @ \(20^{\circ} \mathrm{CN}\)} \\
\hline & 120.6 & & & \\
\hline
\end{tabular}
120.6 High alteration associated with Bankfield Tombill fault Note: Brecciation bad coring high silica, med carb, low-med ch1.
129.0 Lost core
130.0
130.0 Brecciated zone - mud seam \(10 \%\) silicified Breccia
131.5 Qtz feldspar porphyry dyke - massive aphanitic matrix, Qtz eyes \(5 \%\) feldspar laths \(10 \%\), contact @ \(20^{\circ} \mathrm{CN}\)
132.5 Brecciated acid host - silicified fragmental habit - probably Bankfield Tombill fault.
135.5
135.5 Qtz feldspar porphyry, aphanitic matrix pyrite \(10 \%\) good host rock.
137.4 Shear zone mud seam like carrying \(1 \% \mathrm{Cu}, 2 \%\) py, med chlorite, some mud seam 5\%
138.0 Qt\% feldspar porphyry as above Q-cc vlts \(15 \%\) - Note: patchy epidote like matrix \(10 \%\)
152.0 Mud seam - pyritized
152.2 Q.F.P. as above
158.0
158.0 Shear zone fine grained foliated matrix @ \(10^{\circ} \mathrm{CN}, \mathrm{Q}-\mathrm{cc}\) vlts \(10 \%\), Py \(1 \%\) could be fine grained grey slate or diorite - med to high shear, med. chl med to high silica, low-med carbonate
165.0 Olive green shear could be epidote or yellow sericite, med-high shear @ \(10^{\circ} \mathrm{CN}\)
167.0 shear as above © \(10^{\circ} \mathrm{CN}\)
173.0 Shear seems contorted \(930^{\circ} \mathrm{CN}\) - could be primary banding.
178.5 Pyrite \(3 \%\) some asp. suspected but no values, \(Q\)-cc vlts \(5 \%\)
180.0
\(180.0 \quad\) Gwk - green slate type - fine grained foliated @ \(25^{\circ} \mathrm{CN}\) Note: Chalco rich band from 187.0 - 188.0 - narrow shear, low to med silica, lowmed carb. not well defined sedimentary bands.
200.0
200.0 Shear zone foliation @ \(25^{\circ} \mathrm{CN}, \mathrm{Q}-\mathrm{cc} 5 \%\), pyrite \(3 \%\), Note: some clots of chloritoid as at 225.5 fair sulphide @ 227.5 no IF mag.

\section*{229.0}
229.0 Ore zone - pyrite \(8 \%\) coarse grained, Q-cc vlts \(10 \%\), shear @ \(35^{\circ} \mathrm{CN}\), Note: buckle at end of zone with pseudo chloritoid Note: could be classed as black slaty horizon
236.0 Shear @ \(90^{\circ} \mathrm{CN}\) buckle with chloritoid
237.0
237.0 Slate horizon - even textured fine grained low py, poor foliation 242.0 Shear @ \(30^{\circ} \mathrm{CN}\), py \(3 \%\), Q-cc \(5 \%\), some IF mag \(10 \%\) some rear ore material
250.0 Slate horizon low sulphide low Q-cc foliation @ \(30^{\circ} \mathrm{CN}\)
266.0
266.0 IF mag - 50\% green slate Q-cc \(5 \%\) fine carbonated foliation some black slate - shear © \(20^{\circ} \mathrm{CN}\)
270.0 Bank of sericitic slate - even textured dense
272.0 Sheared @ \(25^{\circ} \mathrm{CN}\) - some fiqe mineral could be ore zone at right horizon some contorted shear
289.0 Good cpy zone
290.5 Sericitic slate - low sulphide
292.0 Pyritized band leading into poor py zone tipical. Light green slate and IF in narrow \(1 / 8^{\prime \prime}\) bands.
299.5 Sericitic slate - no sulphide
313.0 IF mag - fine foliation some hematite \(1 / 8^{\prime \prime}\) bands @ \(25^{\circ} \mathrm{CN}\) some drag folding, py 3\%, Q-cc 3\%
324.0
324.0 Sericitic slate horizon - low sulphide, some late Q-cc
328.0
328.0 Diorite ? Benedict type fine grained even textured massive, could be dense sediment, \(\mathrm{Q}-\mathrm{cc} 1 \%\), py \(1 \%\).
353.0 Q-cc \(8 \%\) local some \(2 \%\)
357.0 Dense pseudo diorite - low alteration
361.0 Q-cc \(3 \%\), py \(3 \%\)
365.0 Dense diorite
368.5 Lost core
372.5
372.5 Gwk contact obscure but rock appears to be an altered slate horizon some negligable Q-cc \(3 \%\) fine banding
398.0 Pseudo diorite
401.0 Gwk as above
406.0
406.0 Diorite not definite but even textured - some poor foliation @ \(30^{\circ} \mathrm{CN}\) could be fine foliated sediment but too uniform
415.0 Shearing @ \(40^{\circ} \mathrm{CN}\), py \(2 \%\), Qtz - carb \(3 \%\)
420.0 Lost core
425.0

Gwk - fine banded slate - no visible IF - some shear med @ \(30^{\circ} \mathrm{CN}\) py \(1 \%\), Q-cc 3\%
438.0 Pseudo diorite
440.0 Lost core
445.0 Gwk - no definite IF but good banding contorted some negligable sulphide
472.0
472.0 Diorite - dense fine grained could be gwk slate Q-cc 3\%
492.0 Q-cc 15\%, good type - could be good exploration
494.0 Q-cc \(5 \%\) py \(5 \%\), excellent type qtz @ 497.0 to 498.0
502.5 Sheared zone, Q-cc \(8 \%\) excellent type pyrite \(3 \%\) with some cpy should be resampled.
506.0 Diorite - pseudo as above some patchy Q-cc with good type sulphide - watch for this zone in exploration
515.0 Good type Q-cc \(5 \%\), py \(3 \%\)
517.0 Dense diorite

\section*{HOLE L - 81-7}
527.0 Good type Q-cc \(5 \%\), py \(3 \%\) foliation @ \(20^{\circ} \mathrm{CN}\)
528.5 Dense diorite or fine slaty sediment
535.0 Q-cc veining good type \(4 \%\), py \(3 \%\), foliation @ \(25^{\circ} \mathrm{CN}\)
537.0 Dense Diorite
539.5
539.5 End of hole

HOLE \# L - 81-7 ASSAYS
CORE ASSAYS
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAMPLE NO & \% SULPHIDE & FOOTAGE & FEET & Au. ozs & Ag. ozs \\
\hline 26122 & 1 & 14.0-15.0 & 1.0 & Tr. & \\
\hline 26123 & & 18.0-19.0 & 1.0 & Tr. & \\
\hline 26124 & & 24.0-25.0 & 1.0 & Tr. & \\
\hline 26125 & & 28.0-30.0 & 2.0 & Tr. & \\
\hline 26126 & & 42.5-43.5 & 1.0 & . 005 & \\
\hline 26127 & & 47.0-49.0 & 2.0 & . 01 & \\
\hline 26128 & & 49.0-50.0 & 1.0 & Tr. & \\
\hline 26129 & & 52.0-54.0 & 2.0 & Tr. & \\
\hline 26130 & 2 & 58.0-59.0 & 1.0 & . 02 & \\
\hline 26131 & & 65.0-67.0 & 2.0 & Tr. & \\
\hline 26132 & & 68.0-69.0 & 1.0 & Tr . & \\
\hline 26133 & & 70.0-72.0 & 2.0 & Tr. & \\
\hline 26134 & & 72.0-74.0 & 2.0 & Tr . & \\
\hline 26135 & 2 & 88.0-90.0 & 2.0 & Tr. & \\
\hline 26136 & & 95.0-97.0 & 2.0 & Tr. & \\
\hline 26137 & & 100.0-102.0 & 2.0 & . 005 & \\
\hline 26138 & & 105.0-107.0 & 2.0 & Tr. & \\
\hline 26139 & & 110.0-112.0 & 1.0 & Tr. & \\
\hline 26140 & & 115.0-117.0 & 2.0 & Tr . & \\
\hline 26141 & 1 & 119.0-120.0 & 1.0 & Tr. & \\
\hline 26142 & & 137.0-138.0 & 1.0 & . 01 & \\
\hline 2333 & & 149.0-154.0 & 5.0 & Tr. & \\
\hline 26143 & 2 & 154.0-155.0 & 1.0 & . 03 & \\
\hline 2334 & & 155.0-158.0 & 3.0 & . 005 & \\
\hline 26144 & & 158.0-160.0 & 2.0 & . 005 & \\
\hline 26145 & & 165.0-167.0 & 2.0 & Tr. & \\
\hline 26146 & & 171.0-172.0 & 1.0 & Tr. & \\
\hline 26147 & & 179.0-180.0 & 1.0 & Tr. & \\
\hline 26148 & & 187.0-188.0 & 1.0 & Tr. & \\
\hline 2335 & & 209.0-214.0 & 5.0 & Tr. & \\
\hline 26149 & 2 & 214.0-215.0 & 1.0 & . 02 & \\
\hline 2336 & & 215.0-218.0 & 3.0 & . 005 & \\
\hline 26150 & & 218.0-219.0 & 3.0 & . 01 & \\
\hline 2337 & & 219.0-220.0 & 1.0 & . 005 & \\
\hline 26063 & & 220.0-222.5 & 1.0 & Tr. & \\
\hline 26064 & 3 & 222.5-225.0 & 1.0 & Tr. & \\
\hline 26065 & & 225.0-227.0 & 2.5 & Tr. & \\
\hline 26066 & & 227.0-229.0 & 2.5 & Tr. & \\
\hline 26151 & & 229.0-231.0 & 2.0 & . 11 \} & \(06 / 6.0\) \\
\hline 26154 & & 231.0-233.0 & 2.0 & .03 , & \\
\hline 26152 & 10 & 233.0-235.0 & 2.0 & . 04 & \\
\hline 26153 & 2 & 235.0-237.0 & 2.0 & . 01 & \\
\hline 2338 & & 237.0-242.0 & 5.0 & . 02 & \\
\hline 26166 & 10 & 242.0-245.0 & 3.0 & . 005 & \\
\hline 26067 & & 245.0-246.0 & 1.0 & Tr . & \\
\hline 26167 & & 246.0-248.0 & 2.0 & . 06 & \\
\hline 26068 & 1 & 248.0-250.0 & 2.0 & Tr. & \\
\hline 26168 & 1 & 256.0-257.0 & 1.0 & Tr . & \\
\hline 26169 & 4 & 266.0-268.0 & 2.0 & . 005 & \\
\hline 26186 & & 268.0-270.0 & 2.0 & . 005 & \\
\hline 2339 & & 270.0-272.0 & 2.0 & Tr . & \\
\hline 26069 & & 272.0-274.0 & 2.0 & . 01 & \\
\hline 26185 & & 274.0-275.0 & 1.0 & . 08 & \\
\hline 26170 & & 275.0-276.0 & 1. 0 & . 02 & \\
\hline 26187 & & 276.0-278.0 & 2.0 & Tr . & \\
\hline 26171 & & 278.0-280.0 & 2.0 & Tr. & \\
\hline 26172 & & 280.0-282.0 & 2.0 & . 03 & \\
\hline 26188 & & 282.0-284.0 & 2.0 & Tr. & \\
\hline 2340 & & 284.0-286.0 & 2.0 & Tr. & \\
\hline 2373 & & 286.0-288.0 & 2.0 & . 03 & \\
\hline 2341 & & 288.0-289.5 & 1.5 & Tr. & \\
\hline 2374 & & 289.5-290.5 & 1.0 & . 03 & \\
\hline 2342 & 2 & 290.5-292.0 & 1.5 & Tr. & \\
\hline 2375 & & 292.0-293.0 & 1.0 & Tr. & \\
\hline 2376 & & 311.0-313.0 & 2.0 & Tr. & \\
\hline
\end{tabular}

HOLE L-81-7

\section*{CORE ASSAYS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAMPLE NO. & \% SULPHIDE & FOOTAGE & FEET & Au. ozs & Ag. ozs \\
\hline 2377 & & 316.0-318.0 & 2.0 & Tr. & \\
\hline 2378 & & 318.0-319.0 & 1.0 & Tr. & \\
\hline 2379 & & 320.0-322.0 & 2.0 & Tr. & \\
\hline 2380 & & 322.0-323.0 & 1.0 & Tr. & \\
\hline 26181 & 1 & 323.0-325.0 & 2.0 & Tr . & \\
\hline 26181 & & 330.0-331.0 & 1.0 & . 01 & \\
\hline 2343 & & 331.0-333.0 & 2.0 & Tr. & \\
\hline 2344 & & 333.0-338.0 & 5.0 & Tr. & \\
\hline 26183 & & 353.0-355.0 & 2.0 & Tr. & \\
\hline 26184 & & 355.0-357.0 & 2.0 & Tr . & \\
\hline 26189 & & 361.0-363.0 & 2.0 & Tr. & \\
\hline 26190 & & 363.0-365.0 & 2.0 & Tr. & \\
\hline 26191 & & 378.0-379.0 & 1.0 & Tr. & \\
\hline 26192 & & 395.0-397.0 & 2.0 & Tr. & \\
\hline 26193 & & 418.0-420.0 & 2.0 & Tr. & \\
\hline 26194 & & 427.0-428.0 & 1.0 & nil & \\
\hline 26195 & & 431.0-433.0 & 2.0 & Tr . & \\
\hline 26196 & & 452.0-454.0 & 2.0 & nil & \\
\hline 26197 & & 460.0-462.0 & 2.0 & . 005 & \\
\hline 26198 & & 475.0-476.0 & 1.0 & nil & \\
\hline 26199 & & 492.0-494.0 & 2.0 & . 005 & \\
\hline 26085 & & 494.0-496.5 & 2.5 & Tr. & \\
\hline 26200 & 2 & 496.5-498.0 & 1.5 & . 05 & \\
\hline 26286 & & 498.0-500.0 & 2.0 & Tr. & \\
\hline 2206 & & 500.0-503.0 & 3.0 & ? & \\
\hline 26001 & & 503.0-505.0 & 2.0 & ? 2207 & \\
\hline 2345 & & 505.0-508.0 & 3.0 & Tr. & \\
\hline 2346 & & 508.0-511.0 & 3.0 & Tr . & \\
\hline 2347 & & 511.0-515.0 & 4.0 & Tr. & \\
\hline 26002 & 2 & 575.0-577.0 & 2.0 & Tr. & \\
\hline 26003 & 2 & 521.0-523.0 & 2.0 & Tr . & \\
\hline 26004 & 10 & 527.0-529.0 & 2.0 & Tr . & \\
\hline 26005 & 2 & 535.0-537.0 & 2.0 & Tr. & \\
\hline
\end{tabular}


```

