

42E12NEØ196 23 VINCENT

PROJECT 571 - MAKI PROPERTY Vincent Township, District of Nipigon Thunder Bay Mining Division, Ontario Report of Assessment Work

March 1984

Robert C. Jones

J.T. Lionel Martin

DIAMOND DRILLING

Township: Vincent

REPORT No.: 23

WORK PERFORMED BY: Eldorado Resources Ltd.

CLAIM No.	HoLE No.	FOOTAGE	DATE	Note
TB 418431 TB 513154 TB 603298 TB 535288 TB 603295	571-1 571-2 571-3 571-4 571-5 571-6 571-7 571-8 571-9 571-10 571-11	53.9m 69.2m 75.3m 89.9m 44.8m 53.3m 66.1m 63.1m 50.3m 68.0m 58.5m	Oct/83 Oct/83 Oct/83 Oct/83 Oct/83 Oct/83 Nov/83 Nov/83 Nov/83 Nov/83	(1) (1) (1) (1) (1) (1) (1) (1) (1)

Notes: (1) #141-84

TABLE OF C....

- A. Introduction
- B. Diamond Drill Logs 571-1 571-11
- C. Report of Work Certificate Diamond Drilling
- D. Report of Work Certificate Geochemical Analysis
- E. Geochemical Analysis Results
- F. Certification

LIST OF TABLES

Table 1 List of Claims

LIST OF FIGURES

Figure 1 Claim Group Location Map

Figure 2 Diamond Drill Hole Location Map

A. Introduction

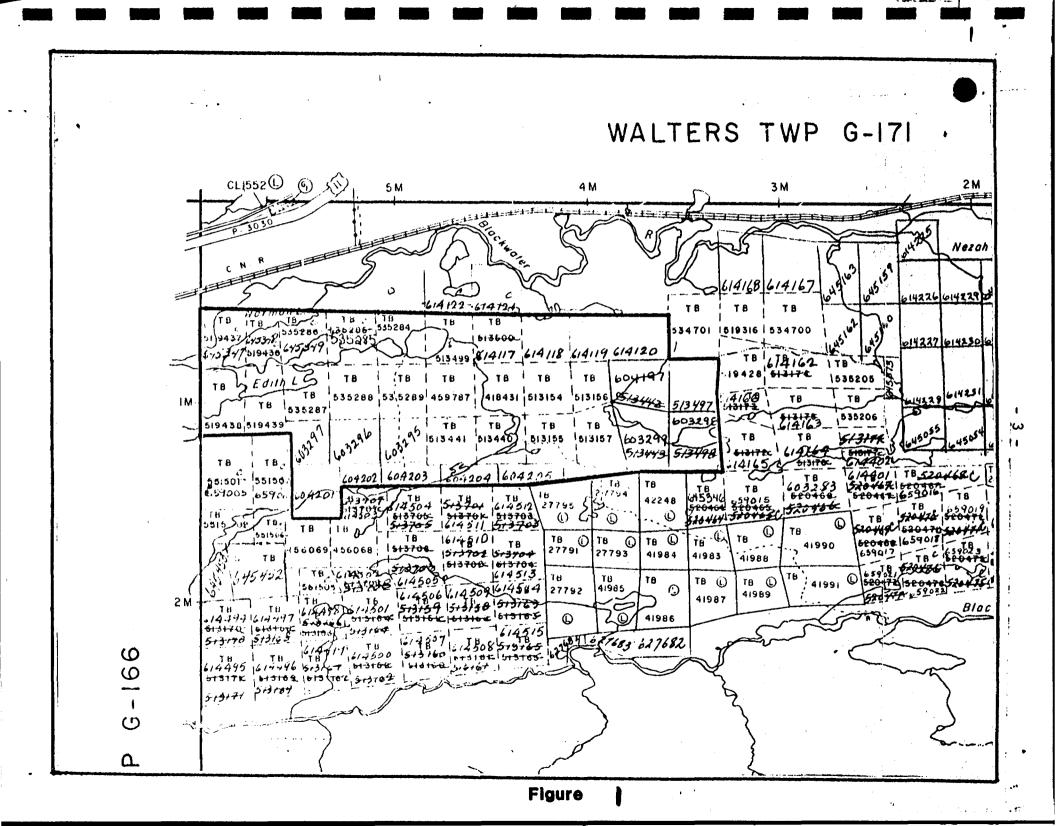

The claim group consists of 35 claims recorded in the name of Eldor Resources Ltd. and are located approximately 15 kilometres east-northeast of Beardmore and 1000 metres south of Highway 11. The property is in the northwest corner of Vincent Township, District of Nipigon, and is part of the Thunder Bay Mining Division. Figure 1 illustrates the location of the claims and Table 1 lists the claims.

TABLE 1

LIST OF CLAIMS

TB	459787	TB	535284	TB	604202
	418431		535285		604203
	513440		535287		604204
	513441		535288		604205
	513154		535289		614117
	513155		603295		614118
	513156		603296		614119
	513157		603297		614120
	513497		603298		645347
	513499		603299		645348
	519438		604197		645349
	519439		604201		

The exploration program consisted of diamond drilling 2272 feet of BQ core over 11 holes. The drilling took place during the period October 21 to November 8, 1983. The written descriptions of each drill hole appears in Section B, and a location map illustrating the drill holes with respect to the Claim Group appears in Figure 2. All drill core was split, with one half remaining on site, and the second half being analysed for gold. All geochemical analysis appear in Section E.

ELDOR RESOURCES LIMITED
DIAMOND DRILL HOLE 571-1

Location:

Maki Crystal 1+39W/0+21N

Length:

53.9 metres

Purpose:

Exploration

Azimuth:

004°

Dip

-45° from 0 to 27.0 metres -43° from 27.0 to 53.9 metres

Completed:

Oct. 23/83

Logged by:

R. Jones

Township:

Vincent

Claim:

TB 418431

Collar:

86m west of #2 Post, then 21m north

Core Size:

BQ (36.5mm diameter)

Mete	rage					Core Sa	mples	·
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
0	2.74	OVERBURDEN				•		
2.7	53.9	MAFIC METAVOLCANICS	-				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		The unit consists of alternating chloritic schists, andesites, and chloritic andesites. Sedimentary ironstones consisting of chert, magnetite and chlorite occur within the metavolcanic sequence. Quartz carbonate veins locally intrude the ironstones. Sulphide mineralization in the ironstones and quartz range from 5-50% consisting of pyrrhotite, arsenopyrite and pyrite; with the dominant mineralization occurring in association with the quartz-carbonate veins. The metavolcanic sequence is fine to medium grained, with amygdules present locally. Carbonate content is high, and locally ranges from 10-30%. Chlorite is the main constituent, with carbonate, pyroxene and plagioclase comprising the remaining composition. Pyrite and pyrrhotite are finely disseminated through the metavolcanics, and locally are stretched parallel to the foliation which is at 20° t.c.a.						
		2.7-24.1 CHLORITIC SCHIST Prominent quartz vein from 13.5 - 14.0 increased pyrite content in this zone, very fine grained.						
		24.1-25.1 BANDED IRON FORMATION Banded layers of magnetite, chert and chlorite occurring at 15° t.c.a. Pyrrhotite parallels the magnetite, which occurs as fine grained crystals as well as coarse grained crystals up to 2mm in diameter.	24.1	25.1	1.0	6663	640	.019 oz/t
		25.1- 31.1 ANDESITE Less carbonate content than in chloritic unit Sericite lines carbonate veins at 98' Speckled texture						

Metera	ge		Core Samples						
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)	
		31.1-31.4 BANDED IRON FORMATION							
		Similar to unit described above, except only fine grained magnetite crystals occur, and pyrrhotite mineralization occurs within the chloritic bands. The chert layers are highly fractured	31.1	32.5	1.4	6664	30 ppb		
		31.4-31.6 CHLORITE SCHIST							
		31.6-32.5 BANDED IRON FORMATION As above units, except sulphide mineralization also occurs within the chert							
		32.5- 32.9 CHLORITIC ANDESITE							
		32.9-33.5 BANDED IRON FORMATION Banded magnetite, chert and chlorite, with pyrrhotite within the magnetite The magnetite layers are highly fractured by chert	32.9	33.5	0.6	6665	50 ppb	•	
		33.5-34.1 CHLORITIC ANDESITE							
		34.1-34.5 QUARTZ VEIN Milky white quartz-carbonate vein, with up to 50% pyrrhotite locally, 15% arsenopyrite, and trace pyrite	34.1	34.5	0.4	6666	190 ppb		
		Tourmaline occurs as an accessory mineral within the quartz A gradual increase in chlorite and magnetite occurs at the bottom of the vein							
		34.5-35.3 BANDED IRON FORMATION Less magnetite than previous ironstones described, and more milky white quartz (which is probably post ironstone) More pyrrhotite is present compared to previous sections;	34.5	35.3	0.8	6667	600 ppb	.018 oz	
		occurring as local injections through the iron formation and as rims to the quartz-carbonate layers.					,		

Metera	ge			·	·	Core Samples		
From	То	Description	From	To	Width (m)	Sample	Au(ppb)	Au(ppb)
		35.3-43.6 ANDESITE Medium grained texture, with varying amounts of chlorite and carbonate material Amygdules occur at 36.0 - 37.2 Contorted quartz-carbonate vein at 36.3 (5 cm wide) Weak breccia zone at 37.7, contorted quartz vein with pyrite and pyrrhotite				,		
		Abundant quartz-carbonate veins occur between 41.2 and 41.8; mostly they occur as randomly oriented tight veinlets.					•	
		43.6-43.8 BANDED IRON FORMATION Weakly magnetic zone consisting of layers of chlorite, magnetite and chert Pyrrhotite and pyrite parallel the chlorite and magnetite layers	43.6	43.8	0.2	6668	840 ppb 1060 ppb	.025 oz/t .031 oz/t
		43.8'-53.9 CHLORITIC ANDESITE Fine to medium grained, speckled texture Abundant carbonate material, less pyrite than higher in hole Chlorite content increases toward bottom of hole						
53.9		E. O. H.						
Core Rec	overy 9	8 \$						
Core spl	it and s	sampled for Au entire length of Core						

Sludge samples collected every 6.1m

Robert Colorer

9 Core boxes.

01/03/84

Project 571
Hole 571-1
Gold Analysis - Core

Sample No.	Downhole depth (m)	Interval (m)	Gold (ppb)	Gold (ppb)	Gold (oz/ton)
6659	3.7 - 5.8	2.1	Ni 1		
6660	5.8 - 8.8	3.0	Ni 1		
6661	8.8 - 10.7	2.9	Ni1		
6662	10.7 - 13.7	3.0	Ni 1		
6669	13.7 - 17.7	4.0	Ni 1		
6670	17.7 - 20.4	2.7	Ni 1		
6671	20.4 - 24.1	3.7	Ni 1		
6663	24.1 - 25.1	1.0	640		.019
6672	25.1 - 28.0	2.9	Ni 1		
6673	28.0 - 31.1	3.1	Ni 1		
6664	31.1 - 32.5	1.4	30		
6674	32.5 - 32.9	0.4	Ni 1		
	33.5 - 34.1	0.6	Ni1		
6665	32.9 - 33.5	0.6	50		
6666	34.1 - 34.5	0.4	190		
6667	34.5 - 35.3	0.8	600		.018
6675	35.3 - 38.3	3.0	10		
6676	38.3 - 41.1	. 2.8	Ni 1		
6677	41.1 - 43.6	2.5	Nil		
6668	43.6 - 43.8	0.2	840		.025
			1060		.031
6678	43.8 - 47.9	4.1	Nj 1		_
5679	47.9 - 50.9	3.0	10		
6680	50.9 - 53.9	3.0	Ni 1		

ELDOR RESOURCES LIMITED

DIAMOND DRILL HOLE 571-2

Location:

Maki Crystal 1+39W/0+21N

Length:

69.2 metres

Purpose:

Exploration

Azimuth:

004°

Dip

-70° From 0 to 34.6 metres -63.5° from 34.6 to 69.2 metres

Completed:

Oct 24/83

Logged by:

R. Jones

Township:

Vincent

Claim:

TB 418431

Collar:

86m west of #2 post then 21m north

Core Size:

BQ (36.5mm diameter)

A the construction for the state of

DRILL HOLE LOG Hole No: 571-2

Metera	age	,	Core Samples
From	То	Description	From To Width Sample Au(ppb) Au(ppb) (m)
0	2.4	OVERBURDEN	
2.4	69. 2	MAFIC METAVOLCANICS	

The unit consists of alternating chlorite schists and andesites. Sedimentary iron formation consisting of chert, magnetite and chlorite occur within the metavolcanic sequence. Quartz carbonate veins locally intrude the ironstones. Sulphide mineralization within the iron formation and quartz vein range from 5%-50%, consisting of pyrrhotite, arsenopyrite and pyrite, with the dominant mineralization occurring in association with the quartz carbonate veins. The metavolcanic sequence ranges from fine to coarse grained, and amygdules filled with calcite are numerous. Chlorite is the main constituent of the metavolcanics, with carbonate material high, and plagioclase and pyroxenes comprising the remainder of the unit. Pyrite and pyrrhotite are common sulphides within the metavolcanic sequence, and locally are stretched parallel to the foliation which is at 45° t.c.a.

2.4-6.4 CHLORITE SCHIST Quartz-carbonate veining at 5.3, no sulphides

6.4-8.5 ANDESITE Carbonate content of rock up to 20% Quartz carbonate vein (5 cm wide) occurs at 6.7; barren with respect to sulphide mineralization White carbonate veins define foliation at 45°-50° t.c.a. Pyrite is abundant along shear planes.

8.5-13.1 CHLORITIC SCHIST Milky white quartz carbonate vein at 10.0 Carbonate vein at 11.0, lined with pyrite and pyrrhotite Many tight fractures infilled with calcite occur in this zone Broken core, high clay content occurs from 12.5-12.7.

Meterage Core Samples

From To Description From To Width Sample Au(ppb) Au(ppb)

(m)

13.1-14.3 ANDES ITE

Pyrrhotite becoming common along carbonate filled veins (45° t.c.a.)

14.3-16.8 CHLORITIC SCHIST

Abundant carbonate material from 15.1-15.2 (interfingers with the chlorite rock)

Amygdules infilled with calcite at 16.2

16.8-25.9 ANDESITE
Stretched pyrite crystals along shear planes, stretched and elongated at 45° t.c.a.
Broken core occurs from 18.0 - 18.3
Local decrease in carbonate content at 20.7
Sericite lines carbonate veins from 22.3-22.6
Crenulated carbonate vein occur at 25.6

25.9-32.7 CHLORITIC ANDESITE

Crenulated carbonate veining occurs at 27.2

Black bands of pyroxene? occur from 28.0-28.3

Blocky broken core from 31.4-32.0

Amygdules are common as well as crenulated carbonate veins in the lower section.

32.7-33.4 QUARTZ VEIN

Abundant sulphide mineralization cutting the quartz vein at 45° t.c.a.

Chert also occurs with the vein Dominant sulphide is pyrrhotite (up to 15%), with arsenopyrite 5%, and pyrite 2% Chlorite occurs as layers, and a vuggy texture predominates at 33.3

33.4-38.3 CHLORITIC SCHIST

Abundant carbonate content (up to 35%) defines schistosity at 45° t.c.a.

Milky white quartz veins occur from 35.7-36.0 (barren) Unit becomes coarser grained at depth.

Meterage		•				Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		38.3-38.8 BANDED IRON FORMATION Consists of alternating layers of magnetite, chert and chlorite; abundant carbonate material is associated with all Magnetite is highly fractured by tiny carbonate veins Thin wisps of pyrrhotite occur within the chlorite and magnetite.	38.3	38.8	0.5	6682	30 ppb	
		LOST CORE 38.8-39.6						
		39.6-44.2 CHLORITIC SCHIST Coarser grained chloritic schist, with some sericite and abundant carbonate 2.5 cm quartz vein occurs at 42.6, rimmed by sericite						
		44.2-45.1 ANDESITE Many amygdules present, less carbonate content						
		45.1-46.2 QUARTZ VEIN, IRON FORMATION Abundant sulphide mineralization (up to 50% pyrrhotite at 45.1, as well as arsenopyrite, pyrite and a trace of galena Bands of magnetite, chert and chlorite are layered at 10-15% t.c.a. Milky white quartz vein with radiating crystals of tourmaline occurs at 46.0.	45.1	46.2	1.1	6683	780 ppb	.023 oz/t
		46.2-46.9 ANDES ITE						
		46.9-47.6 QUARTZ VEIN Pyrrhotite, pyrite and tourmaline occur	46.9	47.6	0.7	6684	70 ppb	
		47.6-48.8 ANDESITE Increased sulphides and carbonate material at 48.2 and 48.5						
		48.8-53.3 ANDESITE Less carbonate content than overlying section Amygdules present						

Meterage		▼	Core Samples						
From	To	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)	
		53.3-57.3 CHLORITIC SCHIST Quartz vein occurs at 56.7, some pyrrhotite smeared along chloritic shear zone within vein							
		57.3-58.3 BANDED IRON FORMATION Alternating layers of quartz and magnetite and carbonate					•	₹ t:	
		Pyrrhotite and pyrite are smeared along magnetite layers							
		LOST CORE 58.3 - 59.1							

59.1-69.2 CHLORITIC ANDESITE
Abundant amygdules containing calcite

8 cm quartz carbonate vein at 65.4

69.2

End of Hole

Sampled and split from top to bottom, analyzed for Au Sludge samples collected every 6.1m 12 core boxes

Robert () Joseph 01/03/84

Project 571 Hole 571-2 Gold Analysis - Core

Sample No.	Downhole depth (m)	Interval (m)	Gold (ppb)	Gold (ppb)	Gold (oz/ton)
6686	5.2 - 8.2	3.0	Ni 1		
6687	8.2 - 11.3	3.1	Ni 1		
6688	11.3 - 14.3	3.0	Ni 1		
6689	14.3 - 17.4	3.1	Ni 1		
6690	17.4 - 20.4	3.0	Nil		
6691	20.4 - 23.5	3.1	Ni 1		
6692	23.5 - 27.1	3.6	Ni 1		
6693	27.1 - 30.2	3.1	90		
6694	30.2 - 32.7	2.5	100		
6695	33.4 - 36.9	3.5	Ni 1		
6696	36.9 - 38.3	1.4	Ni 1		
6682	38.3 - 38.8	0.5	30		
6697	38.8 - 42.9	4.1	Ni1		
6698	42.9 - 45.1	2.2	Ni 1		
6683	45.1 - 46.2	1.1	780		.023
6699	46.2 - 46.9	0.7	Ni 1		
6684	46.9 - 47.6	0.7	70		
6700	47.6 - 50.3	2.7	10		
6751	50.3 - 53.3	3.0	Ni 1		
6752	53.3 - 57.3	4.0	Ni 1		,
6753	58.3 - 63.1	4,8	10		
5754	63.1 - 66.1	3∳0.	20		
		•	10		
5755	66.1 - 69.2	3.1	Ni 1		

ELDOR RESOURCES LIMITED
DIAMOND DRILL HOLE 571-3

Location:

Maki Skidder 0+20W/0+30.6N

Length:

75.3 metres

Purpose:

Exploration

Azimuth:

348°

Dip

-45° from 0 to 37.6 metres

-43° from 37.6 to 75.3 metres

Completed:

Oct 25/83

Logged by:

R. Jones

Township:

Vincent

Claim:

TB 513154

Collar:

415m west of #2 post then 28m north

Core Size:

BQ (36.5mm diameter)

Width (m)

To

From

DRILL HOLE LOG Hole No: 571-3

Meter	age					
From	То	Description				
0	1.8	O V ER BURDEN				
1.8	75.3	MAFIC METAVOLCANICS				
		The unit consists primarily of andesitic sections with varying amounts of chlorite and carbonate material. The texture is fine grained in highly chloritic sections and coarser grained in the carbonate rich zones. Amygdules infilled with calcite are common, as well as disseminated sulphide mineralization (pyrite and pyrrhotite). The foliation is commonly at 15°-20° t.c.a. Sedimentary ironstones consisting of magnetite, chert and chlorite occur within the metavolcanics. Pyrrhotite, arsenopyrite and pyrite are common within the iron formation. Milky white quartz-carbonate veins occur in close association with the iron formation.				
		1.8-15.2 ANDES ITE Medium to coarse grained, highly chloritic, low carbonate content until 8.8 Carbonate veining is common as well as vein filling with serpentine and/or epidote Pyrite is plentiful and finely disseminated Black pyroxene crystals are stretched parallel to the foliation (20-25° t.c.a.)				
		15.2-18.9 ANDESITE Less chloritic than above section Amygdules filled with calcite are common Carbonate veins are crenulated				
		18.9-24.7 CHLORITIC ANDESITE Very fine grained, numerous carbonate veins up to 5 cm wide Increased sulphide concentration at 24.4 (pyrite and pyrrhotite smeared along bedding planes).				

Core Samples

Au(ppb)

Sample Au(ppb)

Metera	ige	*				Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au (ppb)	Au(ppb)
		24.7-25.2 IRON FORMATION Sugary quartz vein, with some carbonate material Thin wisps of magnetite and chlorite occur with the sugary quartz Minor sulphides present (pyrite)	24.7	25.2	0.5	6763	Ni 1	
		25.2-27.7 ANDES ITE Abundant carbonate content						
		27.7-28.3 QUARTZ VEIN Saccharoidal texture, lined with carbonate material Thin wisps of chlorite and pyrite occur	27.7	28.3	0.6	6765	Ni 1	·
		Quartz vein (barren) occurs at 30.3 Crenulated carbonate veining is common Carbonate content increases at 31.1 Chloritic content increases at 36.0 and becomes finer grained Quartz vein occurs at 41.3		,				
		44.3-44.6 BANDED IRON FORMATION Alternating bands of magnetite, chert and chlorite minor sulphide concentration (pyrrhotite and pyrite) occurs within chloritic and magnetite layers Magnetite crystals up to 3mm wide occur.	44.3	44.6	0.3	6772	20 ppb	
		44.6-50.3 CHLORITIC ANDESITE Very coarse grained, highly chloritic and carbonaceous					Ÿ.	

Metera	ge			 		Core Sa	mples	7-10-7-10-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		50.3-51.5 IRON FORMATION Saccharoidal quartz, occurring with a younger milky white quartz Magnetite and chlorite form layers between the quartz	50.3	51.5	1.2	6775	650 ppb 980 ppb	.019 oz/
		Sulphide mineralization consists of 5% pyrrhotite in thin wisps along the chloritic layers and 3% arsenopyrite occurring randomly.						
		51.5-53.9 CHLORITE ANDESITE Very fine grained						
		53.9-63.9 ANDESITE Very coarse grained, abundant carbonate material Carbonate vein parallel to the core axis from 54.7-54.9						
		Less carbonate content after 56.1 Irregular shaped volcanic laths composed of feldspar at 57.9 Becoming fine grained and more chloritic after 61.0						. •
		63.9-64.0 BANDED IRON FORMATION Very thin unit of alternating layers of magnetite and chert Thin wisps of pyrrhotite occur within the magnetite						
		64.0-75.3 ANDESITE Medium grained with calcite filled amygdules which become larger in diameter and more frequent at 70.7						
75.3		End of Hole.						
		Entire length of hole split and sampled for Au Sludge samples collected very 6.1m 13 Core Boxes Core Recovery greater than 95%						
		Robert C. Jane 01/03/84						

Project 571 Hole 571-3 Gold Analysis - Core

Sample No.	Downhole depth (m)	Interval (m)	Gold (ppb)	Gold (ppb)	Gold (oz/ton)
6756	3.35 - 6.4	3.05	Ni1		
6757	6.4 - 10.97	4.57	Ni 1		
6758	10.97 - 14.02	3.05	20		
6759	14.02 - 17.06	3.04	10		
6760	17.06 - 20.12	3.06	10		
6761	20.12 - 23.16	3.04	Ni 1		
6762	23.16 - 24.66	1.50	Ni l		
6763	24.66 - 25.21	0.55	Nil		
6764	25.21 - 27.68	2.47	Ni 1		
6765	27.68 - 28.29	0.61	Ni 1		
6766	28.29 - 31.09	2.80	10		
			20		
6767	31.09 - 34.14	3.05	Ni 1		
6768	34.14 - 37.12	2.98	10		
6769	37.12 - 38.71	1.59	Ni 1		
6770	38.71 - 41.76	3.05	10		
6771	41.76 - 44.32	2.56	Ni 1	•	
6772	44.32 - 44.59	0.27	20		
6773	44.59 - 47.85	3.26	Ni 1		
6774	47.85 - 50.32	2.47	Ni 1		
6775	50.32 - 51.51	1.18	650		.019
			980		.029
6776	51.51 - 53.95	2.44	Ni 1		
6777	53.95 - 57.0	3.05	Ni 1		
6778	57.0 - 60.05	3.05	10		
· -		-	10		
6779	60.05 - 63.09	3.04	Ni 1		
6780	63.09 - 66.14	3.05	10		
6781	66.14 - 69.20	3.06	10		
6782	69.20 - 72.24	3.04	Nil		
6783	72.24 - 75.29	3.05	Ni 1		

ELDOR RESOURCES LIMITED
DIAMOND DRILL HOLE 571-4

Location:

Maki Skidder 0+20W/0+30.6N

Length:

89.9 metres

Purpose:

Exploration

Azimuth:

348°

Dip

-70° from 0 to 45.0 metres

67.3° from 45.0 to 89.9 metres

Completed:

Oct 27/83

Logged by:

R. Jones

Township:

Vincent

Claim:

TB 513154

Collar:

415m west of #2 post then 28m north

Core Size:

BQ (36.5mm diameter)

Metera	age			-7-7-7-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-			Core Sa	mples	
From	То	*	Description	From	To	Width (m)	Sample	Au(ppb)	Au(ppb)
0	1.8 OVE	RBURDEN							<i>?</i> ••

90.5 MAFIC METAVOLCANICS

The metavolcanics consist in varying amounts of chlorite, carbonates, (calcite) pyroxenes and plagioclase. Epidote, sericite, pyrite and pyrrhotite are common as accessory minerals. The metavolcanic sequence ranges from coarse to fine grained, and amygdules infilled with calcite are common. The foliation and elongation of minerals occur at 45° t.c.a. Local fault zones occur within the chloritic schists. The ironstones consist of alternating layers of chert, magnetite, and chlorite; with pyrrhotite, pyrite and locally chalcopyrite occurring parallel to the bands. Carbonaceous material is common within the ironstones, and is prevalent as vein filling where the iron formation is highly fractured. Post ironstone quartz carbonate veins intrude the iron formation locally. It is within these veins

that the highest sulphide concentration occurs.

The unit consists of andesites, chloritic andesites and chlorite schists, with sedimentary ironstones and post ironstone quartz carbonate intrusions.

1.8-33.2 CHLORITIC ANDESITE
In the upper portion of the unit, dark colored
pyroxene grains are stretched parallel to the foliation
Abundant carbonate content exists from 1.8-12.8 - and from
14.7-33.2
The section is medium grained, except for very fine
grained from 12.3-12.8
The core is blocky and broken from 12.8-18.0 with
approximately 1 metre of core missing
Prominent quartz carbonate veins occur at 12.9, 13.2,
and 14.7
A vuggy texture exists from 22.9-23.2

Metera	ge					Core S	amples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		33.2-34.7 BANDED IRON FORMATION The section is predominantly a chlorite schist from 33.2-33.8 with only thin wisps of magnetite occurring. Pyrite and pyrrhotite crystals are abundant and are stretched parallel to the foliation (45° The section becomes strongly magnetic at 33.8, and alternating layers of chlorite, chert, and magnetite exist. Carbonate veining is common, as well as pyrite and	33.2 t.c.a.)	34.7	1.5	6793	10 ppb	•
		pyrrhotite 34.7-39.6 ANDESITE Fine grained texture, with abundant carbonate content Carbonate veins discordant to the foliation are crenulated 5 cm wide quartz carbonate vein occurs at 37.2 (45° t.c.a.)						•
		39.6-40.4 BANDED IRON FORMATION Alternating layers of magnetite, chert and chlorite, with thin bands of pyrite and pyrrhotite Crystals of magnetite are up to 2mm in size						•
,		40.4-52.7 CHLORITIC ANDESITE Fine grained, high chlorite content Carbonate veining prevalent, discordant to the foliation, and locally crenulated Increased pyrite (possibly some chalcopyrite) at 44.2 Carbonate content is low until 45.7, then increasing sericite lines the carbonate veins (45° t.c.a) at 50.3						
•		52.7-57.3 CHLORITIC ANDESITE (Fault Zone) The unit is similar to the above unit, except much of the core is blocky and broken Broken zones occur at 52.7-53-3, 53.9-54.3, and 56.4-57.0 .6 metre of core loss						

Metera	age					Core S	amples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		57.3-59.4 CHLORITIC ANDESITE Frequent veins of carbonate 5-7 cm wide Highly fractured, cross cutting the foliation				,		, ,
		59.4-60.6 BANDED IRON FORMATION Alternating layers at 45° t.c.a. consisting of magnetite chert and chlorite; magnetite crystals are	.*			•	•	
	-	up to 3mm in size. Sulphides occur up to 5%, mostly of pyrrhotite, pyrite and some arsenopyrite						:
		60.6-65.8 ANDESITE Fine grained, bleached in appearance "Speckled" texture due to light carbonate material and darker pyroxene A minor amount of carbonate veins (locally crenulated) cross cut the foliation						
		65.8-67.3 BANDED IRON FORMATION Alternating layers of chert, magnetite and chlorite A quartz carbonate vein intrudes the section at 66.1 and 66.2; the core is broken and blocky here and has the highest sulphide concentration (up to 10% pyrrhotite, with lesser pyrite, and trace chalcopy and arsenopyrite); the quartz veins are highly fractured.	rite	67.3	1.5	6806	190 ppb	
		67.3-83.8 ANDESITE Generally fine grained with abundant calcite filled amygdules Large (5 cm) carbonate veins occur at 74.1, 75.6, 78.0 an from 80.8-83.8 The section becomes coarser grained at depth	đ					

1

Metera	ige					Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		83.8-83.9 IRON FORMATION Very thin bands of magnetite, increased amounts of pyrite and chlorite						
		83.9-89.9 CHLORITIC ANDESITE Medium grained, with large euhedral cubes of pyrite (2 mm) occurring from 87.2-87.5, and then disseminated through to 89.9						
90.5		End of Hole Core split and sampled for Au entire length Sludge samples collected every 6.1m 16 Core Boxes.						
		Robert (-) Jones 01/03/84						· ·

Project 571
Hole 571-4
Gold Analysis - Core

6784	
6786 10.67 - 14.63 3.96 Ni1 6787 14.63 - 17.98 3.35 Ni1 6788 17.98 - 20.42 2.44 Ni1 Ni1 6789 20.42 - 23.47 3.05 Ni1 6790 23.47 - 26.52 3.05 Ni1 6791 26.52 - 29.57 3.05 Ni1 6792 29.57 - 33.22 3.65 10	
6787	
6788 17.98 - 20.42 2.44 Ni1 6789 20.42 - 23.47 3.05 Ni1 6790 23.47 - 26.52 3.05 Ni1 6791 26.52 - 29.57 3.05 Ni1 6792 29.57 - 33.22 3.65 10	
Nil 6789 20.42 - 23.47 3.05 Nil 6790 23.47 - 26.52 3.05 Nil 6791 26.52 - 29.57 3.05 Nil 6792 29.57 - 33.22 3.65 10	
6789 20.42 - 23.47 3.05 Ni1 6790 23.47 - 26.52 3.05 Ni1 6791 26.52 - 29.57 3.05 Ni1 6792 29.57 - 33.22 3.65 10	
6790 23.47 - 26.52 3.05 Ni1 6791 26.52 - 29.57 3.05 Ni1 6792 29.57 - 33.22 3.65 10	
6791 26.52 - 29.57 3.05 Nil 6792 29.57 - 33.22 3.65 10	
6792 $29.57 - 33.22$ 3.65 10	
6707 77 77 78 7E 1 E(1A	
6793 33.22 - 34.75 1.53 10 6794 34.75 - 37.80 3.05 10	
6795 37.80 - 40.84 3.04 Nil	
6796 40.84 - 41.45 0.61 Nil	
6797 41.45 - 44.2 2.75 Nil	
6798 44.2 - 47.24 3.04 Nil	
6799 47.24 - 50.29 3.05 Nil	
6800 50.29 - 53.34 3.05 10	
Ni 1	
6801 53.34 - 56.39 3.05 Nil	
6802 56.39 - 59.44 3.05 Nil	
6804 60.59 - 63.55 2.96 Nil	
6805 63.55 - 65.84 2.29 Nil	
6806 65.84 - 67.30 1.46 190	
6807 67.30 - 71.63 4.33 Nil	
6808 71.63 - 74.68 3.05 Nil	
6809 74.68 - 77.72 3.04 Nil	
6810 77.72 - 80.77 3.05 Nil	
6811 80.77 - 83.82 3.05 Nil	
6812 83.82 - 86.87 3.05 Nil	
6813 86.87 - 89.92 3.05 Nil	

ELDOR RESOURCES LIMITED

DIAMOND DRILL HOLE 571-5

Location:

Maki Big Trench 1+61E/0+85N

Length:

44.8 metres

Purpose:

Exploration

Azimuth:

004°

Dip

-45° from 0 to 22.4 metres -46.5° from 22.4 to 44.8 metres

Completed:

Oct 29/83

Logged by:

L. Martin

Township:

Vincent

Claim:

TB 513154

Collar:

242m west of #2 post then 73m north

Core Size:

BQ (36.5mm diameter)

Meter	age					Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
0	4.0	overburden						
4.0	19.1	CHLORITIC ANDESITE						
		Fine to medium grained, generally massive with few localized shear textures, and greenish grey in colour. Where shear textures are apparent, foliation cuts approx. 55° to 60° to core axis. Quartz-carbonate veins typically less than 2 mm wide cut varibly throughout, often cutting the apparent fabric; but also occurring concordant to foliation where shearing is locally more developed. Few bull quartz veins to 4 cm wide cut the core at various angles. Carbonate matrix content is present throughout generally as 2 to 3% content and sometimes up to 15% content. Finely disseminated sulphides are present from trace to 1% content. Shear textures become increasingly evident below 18.0 down-hole depth. The core is competant.						
		8.2 4.3 cm cream white to pale grey bull quartz vein with 3% pyrrhotite and pyrite, 10% carbonates and minor chlorite. The vein appears concordant to a poorly defined foliation.						
		13.9-14.0 2.0 cm wide bull quartz vein cutting acutely to core axis; barren						
		15.6 2.5 cm wide quartz carbonate vein incorporated with sheared andesite at 40° to core axis.						

Meter	age				 	Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
9.1	21.0	CHLORITIC SCHIST					· · · · · · · · · · · · · · · · · · ·	•
		Fine grained and greenish grey in colour with 20% grey-white colour incorporated within the rock fabric. Schistosity is evident throughout and cuts 60° to core axis. Quartz-carbonate veins 1-2 mm in width occur moderately abundant throughout and are concordant to foliation Carbonate matrix content is typically 10 to 15% content. Sulphide content is nominal.				,		
		Shearing becomes stronger with depth and is most developed below 20.1. The core is competant from 19.1 to 20.1; and moderately blocky from 20.1 to 21.0.						
1.0	21.5	BANDED IRON FORMATION						
		Fine grained with 35% steel grey to black magnetite bands ranging from 0.3 to 1.0 cm width, 55% greyish-white to pale grey quartz-carbonate and quartz bands, and 10% greenish to greenish grey chloritic bands. Fine disseminated magnetite is present within much of the darker quartz-carbonate bands. Bedding is measured at 64° to the core axis. Shear planes and textures occur within the iron formation and parallel to bedding. Sulphides are incorporated within the rock fabric and consist of 2 to 3% pyrrhotite and nominal pyrite and chalcopyrite. The core is competant to moderately blocky.	21.0	21.5	0.5	6820	100 ppb	
21.5	28.3	ANDESITIC SCHIST (with minor chloritic shears)	,					
		Fine to medium grained with a shear fabric evident throughout. The colour is generally medium grey to greenish grey. Lighter coloured feldspars and pale chlorite are pronounced due to the rock fabric and impart a lighter overall colour to this unit. Locally altered feldspar 'flecks' occur. Foliation is 60° to core axis. A strong shear zone occurs from 22.3 to 23.5. Foliation decreases with depth as the unit shows a decrease in shearing.						

Metera	ge					Core Sa	amples		
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)	
		Very few quartz-carbonate veins are present and are both concordant and discordant to the foliation. The veins are less than 2mm in width. Carbonate matrix content ranges from less than 1% to 10% locally. Overall carbonate matrix content is 2-3%. Sulphide content is overall 1% and occurs as very fine disseminations, minor cubic pyrite crystals less than 1mm in size, and fine stretched pyrrhotite incorporated within the rock fabric. Chloritic schist shear planes occur moderately frequently from 21.5 to 25.9. From 25.9 to 28.3 chlorite content is decreased. The core is competant with short moderately blocky sections occurring variably throughout.							
-		22.3 to 23.5							
		Shear Zone with 1m core loss. Recovered core is extremely broken-up and consists of chloritic schist fragments.						. •	
		23.5 to 23.6							
		5% pyrite content occurring as cubes to 4.0 mm in size.							
		$\frac{26.2}{4 \text{ cm}}$ bull quartz vein with minor pyrrhotite and tourmaline.							
28.3	29.9	BANDED IRON FORMATION							
		Similar to previous banded iron formation unit with the most notable difference being a marked increase in sulphide content. Fine grained with 35% to 40% steel grey to black magnetite bands 0.2 to 1.0 cm in width occurring in the upper portion and decreasing to 20% towards the end of the unit.				**	10.7		

Meter	age	,		~	 	Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		The remaining components are grey-white to light grey quartz and quartz-carbonate bands and sections which increase with depth; minor chlorite bands occur. Bedding cuts approximately 60° to core axis. Sulphide content is overall 5% and locally 10 to 15% and occurs concordant to bedding or incorporated within the paralleling shear fabric. Shearing appears minor within this unit. Of the sulphides 90% are pyrrhotite with 10% arsenopyrite crystals to 5 mm in size and generally less than 2 mm. The pyrrhotite is confined to shear fabric. The core is generally competant.						
29.9	30.6	COARSE GRAINED ANDESITE						
		Coarse grained, medium grey in colour and massive. Much of the feldspars have been altered to light coloured 'flecks'. Carbonate matrix content is less than 2%. Sulphides are nil to trace; occurring as fine disseminations.						• •
30.6	30.8	BANDED IRON FORMATION						
		Similar to previous unit. The overall composition is 20% magnetite, 70% quartz, 5% carbonates and 5% pyrrhotite. Less than 1% arsenopyrite and chalcopyrite are present.						
30.8	32.6	ANDESITE						
		Fine grained massive and medium grey with light colored veining. In places a foliation appears evident however, is not defined enough for measurement. Fine quartz carbonate veins generally 2 mm in width and up to 5 mm in width are moderately abundant throughout. Veining cuts at various orientations, however, most frequently at 50-55° to core axis. Carbonate matrix content is 10 to 20%. Sulphide content is nominal. The core is competant.						

Meter	age					Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
32.6	33.4	COARSE GRAINED ANDESITE						
		Coarse grained, medium grey in colour, and massive with a poorly developed fabric evident variably. This foliation fabric appears to cut 60 to 63° to the core axis. Carbonate matrix contents is 10 to 15% and sulphide content appears nil.						
33.4	35.4	ANDES ITE						
		Fine grained massive and medium grey in colour. Fine quartz-carbonate veins generally 1 to 2 mm in size are dispersed variably throughout. There is an increase in bull quartz veins with depth. Carbonate matrix content is 10%. Overall 1% disseminated sulphides occur with pyrrhotite being the only sulphide identifiable. The core is moderately competant with minor blockiness.						
		34.7 and 34.9 1 cm wide barren quartz veins						
		35.4 5 cm wide bull quartz vein; barren.						
35.4	40.1	COARSE GRAINED ANDESITE (with quartz-carbonate stockwork)			•			
		Medium to coarse grained massive and medium grey in colour with minor brownish green colour due to chlorite content. Overall this unit consists of 80% andesite with 20% creamy white to light greyish white bull quartz and quartz-carbonate veins. The veins are from 1.0 to 5.0 cm in width. The most prominent vein is bull quartz from 39.3 to 39.7 depth. Most of the veins are barren and where mineralized, the sulphide content is not high. Arsenopyrite, pyrrhotite and trace pyrite and chalcopyrite are contained in the vein stockwork.						

(

Meter	age	
From	То	Description
		Minor fuchsite and tourmaline mineralization is also present. Fine quartz-carbonate veins generally 2mm in width occur variably. Carbonate matrix is minimal. Andesite sulphide content is trace whereas the stockwork content is 2-3% with 5% locally. The core is competant.
		38.8 stockwork bull quartz vein with 5% sulphides comprising of arsenopyrite, pyrite and pyrrhotite in order of decreasing abundance. Fuchsite is present. The vein is broken up over 15 cm.
		39.3 to 39.7 Bull quartz vein. The vein contains tourmaline with lesser fuchsite, and only minor arsenopyrite in crystal form. 5% arsenopyrite as crystal form occurs within andesite at 39.5 within the vein, and at 39.7 at the vein contact.
		40.1 2 cm quartz vein with minor fuchsite.
40.1	44.8	COARSE GRAINED ANDESITE
		Coarse grained massive with fabric poorly developed in places, and medium grey in colour. Where evident, the fabric appears to be at 65° to core axis. Fine quartz carbonate veins generally 2mm in width and up to 1 cm in width cut variably throughout. Carbonate matrix content is 10 to 15%. Sulphides are finely disseminated and comprise up to 1% of the component content with pyrrhotite and pyrite recognizable locally.
		The core is competant.
44.8		tend of Hole. 7 Core Boxes 988 core recovery. March 01/84

Core Samples

To From

Width (m) Sample Au(ppb) Au(ppb)

Project 571 Hole 571-5 Gold Analysis - <u>Core</u>

Sample No.	Downhole depth (m)	Interval (m)	Gold (ppb)	Gold (ppb)	Gold (oz/ton)
6814	5.49 - 7.62	2.13	Ni 1		
6815	7.62 - 10.67	3.05	Ni 1		
6816	10.67 - 13.72	3.05	Ni 1		
6817	13.72 - 17.07	3.35	Ni l		
6818	17.07 - 20.42	3.35	Ni 1		
6819	20.42 - 21.03	0.61	Ni 1		
6820	21.03 - 21.49	0.46	100		
6821	21.49 - 25.91	4.42	10		
			20		
6822	25.91 - 28.35	2.44	10		
6824	29.87 - 30.63	0.76	Ni 1		•
6825	30.63 - 30.78	0.15	40		
6826	30.78 - 33.53	2.75	10		
6827	33.53 - 35.67	2.14	Ni 1		
6828	35.67 - 38.71	3.04	Ni 1		
6829	38.71 - 39.32	0.61	200		
0023	33.32	V- V-1	200	•	
6830	39.32 - 39.68	0.37	10		
6831	39.68 - 41.76	2.06	Ni 1		•
6832	41.76 - 44.81	3.05	Ni 1		

ELDOR RESOURCES LIMITED
DIAMOND DRILL HOLE 571-6

Location:

Maki Big Trench 1+61E/0+85N

Length:

53.3 metres

Purpose:

Exploration

Azimuth:

004°

Dip

-70°from 0 to 26.7 metres

-66.5° from 26.7 to 53.3 metres

Completed:

Oct 29/83

Logged by:

L. Martin

Township:

Vincent

Claim:

TB 513154

Collar:

242m west of #2 post then 73m north

Core Size:

BQ (36.5mm diameter)

Au(ppb)

Meter	age					Core Sa	mples
From	То	Description	From	То	Width (m)	Sample	Au(ppb)
0	3.7	overburden					
3.7	27.7	CHLORITIC ANDESITE (with coarse grained and schistose sections).				,	
		The core is generally fine to medium grained with local coarse grained sections made apparent by light coloured carbonate grains. Mostly massive with a poorly developed foliation commonly evident, and some sections of defined schistosity. Generally the fabric cuts 40° to 45° to core axis. The core is greenish grey throughout due to consistent chlorite content. Light coloured quartz carbonate veins generally hairline to 3mm width and up to 3 cm width are moderately abundant throughout. The veins are both discordant and concordant to fabric, however, are more often concordant. Carbonate matrix content is prevalent throughout; ranging from 5% to 15% content and locally concentrated. Overall there is 1% finely disseminated sulphides with pyrite and pyrrhotite recognized locally in association to shear planes and foliation. Schistosity occurs variably and is most intense below 26.5 where this unit grades to the next section. The core is generally competant.					
		3.7 to 4.9 schistose andesite - moderate fabric development; coarse grained					
		4.9 to 5.3 highly chloritic fine grained andesite with disrupted quartz and quartz-carbonate veining; minor sulphide enrichment associated to contact.					
	·	5.3 to 7.2 andesite - 1 to 2 cm wide barren bull quartz veining occurs from 5.8 to 6.0.					
		7.2 to 8.2 schistose andesite - good fabric development, coarse grained					

Meterage Core Samples

From To Description From To Width Sample Au(ppb) Au(ppb)

(m)

8.2 to 14.6
andesite - massive with a poorly to moderately developed schistose fabric variably throughout;
0.5 cm quartz vein at 10.4
Sheared chloritic blockly section from 10.8 to 11.0
1.0 cm wide quartz vein with lesser carbonate cutting core acutely at 11.9; 1-2% pyrrhotite and pyrite.
7.5 cm wide bull quartz vein with hairline carbonate and chlorite fracture filling at 12.1; minimal pyrrhotite.
Quartz carbonate concentration and vein concordant to foliation at 13.4 to 13.7

14.6 to 14.8 coarse grained andesite made apparent by coarse carbonate grains grades from very coarse to medium grained with depth on the basis of carbonate particles.

14.8 to 17.1 andesite 2 cm quartz carbonate vein at 15.2

17.1 to 20.6 coarse grained andesite 3 cm quartz carbonate vein perpendicular to core axis at 20.5 depth.

20.6 to 26.5

andesite - fine to medium grained massive with a poorly to moderately developed foliation occurring variably over short sections the schistose foliation increases as this portion grades to a schistose andesite with depth.

3mm wide quartz carbonate vein at 10° to core axis at 22.3

1 cm wide crenulated quartz vein with carbonate fracture line filling at 22.6

26.5 to 27.7 schistose andesite

age	•				Core Samples		
То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
30.8	CHLORITIC SCHIST						•
	Fine grained chlorite rich on shear planes with overall fine to medium grain size. Schistosity is developed throughout and is well defined due to light coloured mineral content. The schistosity cuts 40° to the core axis. Overall colour is greenish grey with 20% light coloured minerals. Fine quartz-carbonate veins generally cut concordant						
	to rock foliation, however, a few are discordant. Wide quartz rich veins occur. Carbonate matrix content is 5 to 20%. Sulphide content is trace to nil. From 27.7 to 30.2 the core remains fine to medium grained size and from 30.2 to 30.8 the rock is fine grained.						
	28.7 to 29.0 1.5 cm wide crenulated quartz vein with lesser carbonates.						
	$\frac{30.2}{1 \text{ cm}}$ wide broken-up quartz vein with lesser carbonates.	•					
31.2	BANDED IRON FORMATION						
	Fine grained with 35 to 40% steel grey to black magnetite, 5-10% sulphides mostly as pyrrhotite with minor chalcopyrite and arsenopyrite, and	30.8	31.2	0.4	6842	40 ppb	
	50 to 60% quartz and quartz-carbonates. Bedding is at 45° to core axis. The sulphides are concordant to bedding.						
	30.8-31.1 This portion consists of two light coloured quartz veins 2 to 3 cm wide parallel to the formation. The major portion is of dark coloured quartz carbonates and magnetite which lack any well defined boundaries. The sulphides are						
	To 30.8	To Description 30.8 CHLORITIC SCHIST Fine grained chlorite rich on shear planes with overall fine to medium grain size. Schistosity is developed throughout and is well defined due to light coloured mineral content. The schistosity cuts 40° to the core axis. Overall colour is greenish grey with 20% light coloured minerals. Fine quartz-carbonate veins generally cut concordant to rock foliation, however, a few are discordant. Wide quartz rich veins occur. Carbonate matrix content is 5 to 20%. Sulphide content is trace to nil. From 27.7 to 30.2 the core remains fine to medium grained size and from 30.2 to 30.8 the rock is fine grained. 28.7 to 29.0 1.5 cm wide crenulated quartz vein with lesser carbonates. 30.2 1 cm wide broken-up quartz vein with lesser carbonates. 31.2 BANDED IRON FORMATION Fine grained with 35 to 40% steel grey to black magnetite, 5-10% sulphides mostly as pyrrhotite with minor chalcopyrite and arsenopyrite, and 50 to 60% quartz and quartz-carbonates. Bedding is at 45° to core axis. The sulphides are concordant to bedding. 30.8-31.1 This portion consists of two light coloured quartz veins 2 to 3 cm wide parallel to the formation. The major portion is of dark coloured	To Description From 30.8 CHLORITIC SCHIST Fine grained chlorite rich on shear planes with overall fine to medium grain size. Schistosity is developed throughout and is well defined due to light coloured mineral content. The schistosity cuts 40° to the core axis. Overall colour is greenish grey with 20% light coloured minerals. Fine quartz-carbonate veins generally cut concordant to rock foliation, however, a few are discordant. Wide quartz rich veins occur. Carbonate matrix content is 5 to 20%. Sulphide content is trace to nil. From 27.7 to 30.2 the core remains fine to medium grained size and from 30.2 to 30.8 the rock is fine grained. 28.7 to 29.0 1.5 cm wide crenulated quartz vein with lesser carbonates. 30.2 1 cm wide broken-up quartz vein with lesser carbonates. 31.2 BANDED IRON FORMATION Fine grained with 35 to 40% steel grey to black magnetite, 5-10% sulphides mostly as pyrrhotite with minor chalcopyrite and arsenopyrite, and 50 to 60% quartz and quartz-carbonates. Bedding is at 45° to core axis. The sulphides are concordant to bedding. 30.8-31.1 This portion consists of two light coloured quartz veins 2 to 3 cm wide parallel to the formation. The major portion is of dark coloured quartz carbonates and magnetite which lack any well defined boundaries. The sulphides are	To Description From To 30.8 CHLORITIC SCHIST Fine grained chlorite rich on shear planes with overall fine to medium grain size. Schistosity is developed throughout and is well defined due to light coloured mineral content. The schistosity cuts 40° to the core axis. Overall colour is greenish grey with 20% light coloured minerals. Fine quartz-carbonate veins generally cut concordant to rock foliation, however, a few are discordant. Wide quartz rich veins occur. Carbonate matrix content is 5 to 20%. Sulphide content is trace to nil. From 27.7 to 30.2 the core remains fine to medium grained size and from 30.2 to 30.8 the rock is fine grained. 28.7 to 29.0 1.5 cm wide crenulated quartz vein with lesser carbonates. 30.2 1 cm wide broken-up quartz vein with lesser carbonates. 31.2 BANDED IRON FORMATION Fine grained with 35 to 40% steel grey to black magnetite, 5-10% sulphides mostly as pyrrhotite with minor chalcopyrite and arsenopyrite, and 50 to 60% quartz and quartz-carbonates. Bedding is at 45° to core axis. The sulphides are concordant to bedding. 30.8-31.1 This portion consists of two light coloured quartz veins 2 to 3 cm wide parallel to the formation. The major portion is of dark coloured quartz carbonates and magnetite which lack any well defined boundaries. The sulphides are	To Description From To Width 30.8 CHLORITIC SCHIST Fine grained chlorite rich on shear planes with overall fine to medium grain size. Schistosity is developed throughout and is well defined due to light coloured mineral content. The schistosity cuts 40° to the core axis. Overall colour is greenish grey with 20% light coloured minerals. Fine quartz-carbonate veins generally cut concordant to rock foliation, however, a few are discordant. Wide quartz rich veins occur. Carbonate matrix content is 5 to 20%. Sulphide content is trace to nil. From 27.7 to 30.2 the core remains fine to medium grained size and from 30.2 to 30.8 the rock is fine grained. 28.7 to 29.0 1.5 cm wide crenulated quartz vein with lesser carbonates. 30.2 1 cm wide broken-up quartz vein with lesser carbonates. 31.2 BANDED IRON FORMATION Fine grained with 35 to 40% steel grey to black magnetite, 5-10% sulphides mostly as pyrrhotite with minor chalcopyrite and arsenopyrite, and 50 to 60% quartz and quartz-carbonates. Bedding is at 45° to core axis. The sulphides are concordant to bedding. 30.8-31.1 This portion consists of two light coloured quartz veins 2 to 3 cm wide parallel to the formation. The major portion is of dark coloured quartz carbonates and magnetite which lack any well defined boundaries. The sulphides are	To Description From To Width Sample 30.8 CHLORITIC SCHIST Fine grained chlorite rich on shear planes with overall fine to medium grain size. Schistosity is developed throughout and is well defined due to light coloured mineral content. The schistosity cuts 40° to the core axis. Overall colour is greenish grey with 20% light coloured minerals. Fine quartz-carbonate veins generally cut concordant to rock foliation, however, a few are discordant. Wide quartz rich veins occur. Carbonate matrix content is 5 to 20%. Sulphide content is trace to mil. From 27.7 to 30.2 the core remains fine to medium grained size and from 30.2 to 30.8 the rock is fine grained. 28.7 to 29.0 1.5 cm wide crenulated quartz vein with lesser carbonates. 30.2 1 cm wide broken-up quartz vein with lesser carbonates. 31.2 BANDED IRON FORMATION Fine grained with 35 to 40% steel grey to black magnetite, 5-10% sulphides mostly as pyrrhotite with minor chalcopyrite and arsenopyrite, and 50 to 60% quartz and quartz-carbonates. Bedding is at 45° to core axis. The sulphides are concordant to bedding. 30.8-31.1 This portion consists of two light coloured quartz veins 2 to 3 cm wide parallel to the formation. The major portion is of dark coloured quartz carbonates and magnetite which lack any well defined boundaries. The sulphides are	To Description From To Width Sample Au(ppb) 30.8 CHLORITIC SCHIST Fine grained chlorite rich on shear planes with overall fine to medium grain size. Schistosity is developed throughout and is well defined due to light coloured mineral content. The schistosity cuts 40° to the core axis. Overall colour is greenish grey with 201 light coloured minerals. Fine quartz-carbonate veins generally cut concordant to rock foliation, however, a few are discordant. Wide quartz rich veins occur. Carbonate matrix content is 5 to 201. Sulphide content is trace to nil. From 27.7 to 30.2 the core remains fine to medium grained size and from 30.2 to 30.8 the rock is fine grained. 28.7 to 29.0 1.5 cm wide crenulated quartz vein with lesser carbonates. 30.2 1 cm wide broken-up quartz vein with lesser carbonates. 31.2 BANDED IRON FORMATION Fine grained with 35 to 401 steel grey to black magnetite, 5-101 sulphides mostly as pyrrhotite with minor chalcopyrite and arsenopyrite, and 50 to 604 quartz and quartz-carbonates. Bedding is at 45° to core axis. The sulphides are concordant to bedding. 30.8-31.1 This portion consists of two light coloured quartz veins 2 to 3 cm wide parallel to the formation. The major portion is of dark coloured quartz carbonates and magnetite which lack any well defined boundaries. The sulphides are

Meter	age		-			Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		31.1 to 31.2 This portion consists of several dark magnetite bands well defined within lighter quartz carbonates. Appears as typical B.I.F. The core is competant.				,		
31.2	32.7	ANDES ITE						
		Fine to medium grained massive with a poorly developed fabric. Medium grey in colour with a marked decrease in chlorite from overlying sections. Other than colour this is similar to the overlying andesites. Carbonate content is 10 to 20% variably. Sulphide content is nominal. A 0.5 cm quartz carbonate vein cuts 90° to core axis at 31.5; and a 1.5 cm quartz vein cuts concordantly at 32.0.					2	
32.7	36.8	ANDESITIC SCHIST						. •
		Medium to coarse grained with a schistose fabric developed throughout. Medium grey in colour with greenish-brown chloritic 'wisps' incorporated within the fabric. Other than a colour change due to decreased chlorite, this unit is similar to previously described andesitic schist. Carbonate content is 10 to 20% and sulphide occurring finely disseminated are trace. Quartz carbonate veins greyish-white in colour and up to 1 cm width cut variably throughout; generally concordant to foliation.						
		32.8 2.5 cm wide bull quartz vein; minor pyrite; concordant						
		35.7 1.5 cm wide quartz vein; concordant						
		$\frac{36.5}{2.0}$ cm wide quartz-calcite vein; 90° to core axis, minor fuchsite					•	

Meter	age					Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
36.8	39.5	ANDES ITE						
		Coarse grained in upper portion, grading to fine grained with depth; possibly representing a change from inner to outer flow zone. Medium to light grey in colour and massive with poor schist fabric evident from 37.5 to 38.0 (at this section there is a marked change from coarse to medium grain size downwards). Overall this is similar to the overlying andesites other than the lack of substantial chlorite. Chlorite 'wisps' to 10% local content occur. Carbonate content is not changed from above, and sulphides are nil to trace.						
39.5	40.9	BANDED IRON FORMATION						
		Approximate composition is 10% fine steel grey to black magnetite, 25% quartz, 50% quartz-carbonate, 10% fine grained chloritic bands, and 5% sulphides. Light coloured altered feldspar flecks are minor, but up to 10% locally within carbonate rich sections. Bedding generally cuts 35 to 45° to core axis, however, from 40.1 to 40.9 the unit is highly disrupted.	39.5	40.9	1.4	6846	600 ppb 750 ppb	.018 oz/t .022 oz/t
		bedding is generally 35 to 45° to core axis but has extremes of 25° and 50° to core axis; fine fracture lines are abundant and dislocation of quartz bands is common; altered feldspar 'flecks' to 2mm in size occur. Pyrrhotite is the major sulphide with only nominal arsenopyrite. The core is competant.						

1.4

Meter	age			· · · · · · · · · · · · · · · · · · ·		Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
40.9	42.4	FELSIC TUFF						
		Medium to coarse tuffaceous fragments up to 1mm in size set within a fine grained medium grey ground mass. The tuffaceous particles are light coloured feldspars sub-angular to spherical in shape. The overall colour of this unit is light grey and the core is massive. There is a marked change from above units to less than 1% carbonate matrix content. Sulphides appear to be lacking. The core is very competant.						
		41.8 5 cm wide bull quartz vein with 10% tourmaline, less than 1% sulphides comprised of bornite and chalcopyrite (?) and minor carbonate infilled fracture lines.						
42.4	42.5	BANDED IRON FORMATION						,
		Similar to uppermost iron formation. Consists of 10% fine and thinly banded magnetite, 5% sulphides, and 85% quartz and quartz-carbonate bands. The sulphide content is pyrrhotite.	42.4	42.5	0.1	6848	130 ppb	
42.5	44.5	ANDESITE (with thin iron formation unit)						
		Fine grained massive and medium grey in colour. A very subtle fabric is evident, cutting 45° to core axis. Carbonate matrix content is 10 to 20% and sulphides are lacking. The core is competant.						
		43.4 7 cm unit of banded iron formation consisting of 10% magnetite bands with 5% concordant pyrrhotite. These occur within banded quartz, quartz-carbonate and chlorite. Trace chalcopyrite occurs.						

Width (m)

To

From

Core Samples

Sample Au(ppb)

Au(ppb)

Meter	age	
From	То	Description
44.5	53.3	MEDIUM TO COARSE GRAINED ANDESITE
		Medium to coarse grained massive with a fabric variably evident. Medium grey in colour. Similar to previous andesites. Carbonate matrix content is 5 to 10%. Sulphides occur associated to quartz-carbonate veining, and within the andesite as fine disseminations and rare cubic pyrites to 1 mm in size. Overall sulphide content is less than 1%.
		49.1 pyrite concentration within a 2 mm wide quartz-carbonate vein.
		49.1 to 49.5 Concentration of quartz-carbonate veins with 2 to 3% pyrite. The core is competant with a local blocky section from 52.6 to 53.2
53.3		End of Hole 98% core recovery 9 boxes. March 01/84

Project 571 Hole 571-6 Gold Analysis - Core

Sample No.	Downhole depth (m)	Interval (m)	Gold (ppb)	Gold (ppb)	Gold (oz/ton)
6833	3.66 - 7.62	3.96	Ni1		
6834	7.62 - 10.36	2.74	Ni 1		
6835	10.36 - 13.72	3.36	10		
6836	13.72 - 16.76	3.04	Ni 1		
6837	16.76 - 20.12	3.36	Ni 1		
6838	20.12 - 23.16	3.04	Ni 1		
6 839	23.16 - 26.52	3.36	Ni 1		
6840	26.52 - 29.57	3.05	Ni 1		
6841	29.57 - 30.78	1.21	Ni 1		
6842	30.78 - 31.18	0.4	40		
6843	31.18 - 34.75	3.57	Ni1		
6844	34.75 - 39.47	4.72	10		
			20		
6846	39.47 - 40.93	1.46	600		.018
			750		.022
6847	40.93 - 42.37	1.44	40		
6848	42.37 - 42.46	.09	130		
6849	42.46 - 47.24	4.78	Nil		
6850	47.24 - 50.29	3.05	Ni 1		
6851	50.29 - 53.34	3.05	Ni 1		
6852	43.43	(2.0 cm)	40		

ELDOR RESOURCES LIMITED
DIAMOND DRILL HOLE 571-7

DRILL HOLE LOG Hole No: <u>571-7</u>

Location:

Maki Property 12+00E/2+02S

Length:

66.1 metres

Purpose:

Test Conductor C3

Azimuth:

004°

Dip

-60° from 0 to 33.1 metres -61.7° from 33.1 to 66.1 metres

Completed:

Nov 02/83

Logged by:

L. Martin

Township:

Vincent

Claim:

TB 603298

Collar:

333m west of #2 post then 180m north

Core Size:

BQ (36.5mm diameter)

Meter	age					Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
0	3.4	OVERBURDEN						
3.4	16.8	CHLORITIC ANDESITE						
		Medium to coarse grained massive. Most coarse from 3.4 to 5.8 metres, below which the core is generally medium grained with minor coarse sections. Shearing textures occur locally and cut 40° to core axis. Green to greenish grey in colour with 10 to 15% light coloured altered feldspar 'flecks' 1 to 1.5 mm in size, giving an overall speckled appearance. Fine quartz and lesser quartz-carbonate veins occur sparatically and cut the core at random orientations. The veins are not abundant and are typically hairline to 2 mm in width. Chlorite content inpinging a green colour to the core is consistent throughout. Freshly broken surfaces display pyroxene minerals readily. Carbonate matrix content is 2 to 3%. Disseminated sulphides consisting mostly of pyrrhotite with lesser arsenopyrite and chalcopyrite occur within the matrix as 2-3% content.						
		$\frac{8\cdot 1}{0\cdot 8}$ cm wide quartz vein cutting 40° to core axis The core is generally competant.						
16.8	17.7	QUARTZ CARBONATE VEIN/ANDESITE (ARSENOPYRITE RICH)						
		The upper portion of this section is mostly comprised of white-grey bull quartz-carbonate cutting sub-parallel to core axis. With depth both chloritic andesite and vein material occur until the bottom portion where the vein angles away from the hole. The chloritic andesite is similar to the overlying rock except for a marked increase in arsenopyrite content.				•	/* .	
		16.8 to 17.1 mostly quartz with 3 to 5% arsenopyrite and minor chloritic andesite					ı	

Meter	age	,		~		Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		17.1 to 17.5 similar quantities of quartz-carbonate vein material and chloritic andesite; the vein contains 3 to 5% arsenopyrite and the andesite contains 20% arsenopyrite crystals less than 1mm in size.						
		17.5 to 17.7 chloritic andesite with 20% arsenopyrite crystals generally 1 to 1.5 mm in size.						
17.7	20.3	CHLORITIC ANDESITE						
		Medium to coarse grained massive with the coarser rock occurring above 19.5 metres depth; green to greenis grey in colour with 10 to 15% light coloured 'flecks'. Similar to chloritic andestite unit overlying the above quartz-carbonate vein. The core is competant.	h					: . •
20.3	24.7	CHLORITIC ANDESITE-SCHIST					,	
		Coarse grained appearance due to light coloured content, however, overall medium to coarse grained andesite. Green to greenish-grey in colour with 20 to 25% light coloured mineral 'flecks'.						. '
		Similar to overlying section except for a well developed foliation being defined by orientation of the light coloured minerals; often stretched with the shear direction of 20 to 26° to core axis. The high chlorite content is especially evident on						
		exposed shear surfaces. Carbonate matrix content is 2 to 3% at best. Very minor fine disseminated sulphides occur variably. Quartz and lesser quartz-carbonate veins hairline						
		to 0.5 cm wide are moderately abundant and cut concordant to foliation. The core is generally competant.					1.1	

Meter	age					Core Sa	amples	
From	То	. Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		22.6 7 cm wide quartz-carbonate vein occurring within the shear fabric, however, having uneven contact boundaries.						
		23.0 to 23.2 broken-up chloritic rich shear zone.						
24.7	44.5	CHLORITIC ANDESITE						
		Fine to medium grained massive from 24.7 to 31.4 metre depth; and fine grained massive from 31.4 to 44.5 metres with a subtle foliation cutting 25° to core axis apparent below 41.5 metres Greenish-grey in colour from 24.7 to 41.1 metres, below which there is a decrease in chlorite content resulting in an increased grey colour. 5 to 10% white 'flecks' continue from the overlying unit and fine out with depth below 30.5 metre Moderately abundant quartz-carbonate veins hairline to 2mm width and sometimes to 0.5 cm width occur throughout and are generally concordant when						
		foliation is evident. 31.2 1.5 cm bull quartz vein						
		35.7 14 cm highly foliated andesite with quartz-carbonate veining parallel to the fabric of 25° to core axis.						
		43.0						
		2 cm bull quartz vein.						
44.5	45.7	FINE GRAINED ANDESITE - SCHISTOSE						
		Similar to directly overlying fine grained andesite with the added development of a moderate foliation 35° to core axis. Greenish-grey and fine grained with a decrease in chlorite content from overlying units. Nominal carbonate matrix content and no readily apparent sulphides.						

Meter	age					Core Sa	uples	
From	То	. Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		44.6 2 cm concordant bull quartz vein.						
		44.9 9 cm concordant bull quartz-carbonate vein.						
45.7	46.8	FINE GRAINED ANDESITE Same as above unit except for a change to massive texture.						
46.8	48.6	MAGNETIC VOLCANIC						
		Very fine grained massive at top and bottom of section, grading evenly to medium grained massive towards the centre. Dark steel grey to black with 2 to 3 mm lighter grey coloured outer margins - possible chilling effect. Central portion from approximately 47.2 to 47.5 metre contains 3 to 5% light coloured spherical amygdules generally 2 mm in size. The amygdules consist of carbonates and possible minor feldspar; and many have associated pyrite.						. •
		A most notable property of this unit is that there is a very distinct increase in magnetics towards the centre. Minor hairline carbonate veinlets occur. Sulphide content is low and occurs associated to the amygdules, and to fine pyrite veinlets. The coarser central portion has a gabbroic appearance.						
		47.7 pyritic hairline veinlet 10° to core axis						
		48.1 pyritic hairline veinlet 25° to core axis.						

From

Meter	age	
From	То	Description
48.6	66.1	CHLORITIC ANDESITE
		Fine grained massive with subtle foliation locally apparent with depth from 48.6 to 54.9 metres Fine to medium grained massive from 54.9 to 66.1 metres As an overview, this section is an approximate invert of the section from 24.7 to 46.8 metres resulting in the magnetic volcanic unit being enclosed by fine grained massive andesites.
		Green to greenish-grey in colour with the coarser andesite having a higher chlorite content. Few quartz-carbonate veins, becoming moderately abundant with depth; corresponding to increased grain size. The veins are 1mm to 8 mm in width typically. Towards the bottom of the hole the core exhibits weak fabric at 30° to core axis. The core is generally competant with blockiness from 48.8 to 49.4 metres and intermittently from 50.9 to 54.3 metres
		49.8 4.5 cm bull quartz vein.
		55.0 3.0 cm bull quartz vein.
		55.7 to 57.8 2 to 5% fine light coloured flecks.
		57.8 10 cm disrupted bull quartz vein.
		61.6 4 cm disrupted bull quartz vein.
66.1		Lione Marie 1/84

Core Samples
Sample Au(ppb)

Au(ppb)

To Width Sample Au(ppb) A

والجه ومجاهده وأشاميا والراران

Project 571 Hole 571-7 Gold Analysis - <u>Core</u>

Sample No.	Downhole depth (m)	Interval (m)	Gold (ppb)	Gold (ppb)	Gold (oz/ton)
6853	3.35 - 4.88	1.53	Ni 1		
6854	4.88 - 7.92	3.04	10		
6855	7.92 - 10.97	3.05	Ni 1		
6856	10.97 - 14.02	3.05	40		
6857	14.02 - 16.76	2.74	10	•	
5859	17.68 - 20.12	2.44	50	•	•
6860	20.12 - 23.16	3.04	130		
	20.12 20.10	J. U .	180		
6961	23.16 - 26.21	3.05	20		
6862	26.21 - 29.26	3.05	Ni 1		
6863	29.26 - 32.31	3.05	Ni 1		
6864	32.31 - 35.36	3.05	Ni 1		
6865	35.36 - 38.40	3.04.	Ni 1		
6866	38.40 - 41.45	3.05	Ni 1		
6867	41.45 - 44.5	3.05	10	•	
6868	44.5 - 46.79	2.29	Ni 1		
6869	46.79 - 48.62	1.83	Ni 1		
6870	48.62 - 51.21	2.59	Ni 1		
6871	51.21 - 54.25	3.05	Ni 1		
6872	54.25 - 57.0	2.75	10		
6873	57.0 - 60.05	3.05	10		
			10		
5874	60.05 - 63.09	3.04	10		
6875	63.09 - 66.14	3.05	Ni 1		

ELDOR RESOURCES LIMITED
DIAMOND DRILL HOLE 571-8

Location:

Maki Property 13+00W/1+90.5N

Length:

63.1 metres

Purpose:

Test Conductor Cl

Azimuth:

004°

Dip

-60° from 0 to 31.5 metres

-63° from 31.5 to 63.1 metres

Completed:

Nov 03/83

Logged by:

L. Martin

Township:

Vincent

Claim:

TB 535288

Collar:

26m west of #2 post then 225m north

Core Size:

BQ (36.5mm diameter)

Meter	age	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Core Samples	
From	To	Description	From	To Width (m)	Sample Au(ppb)	Au(ppb)
0	3.4	OVERBURDEN				
3.4	11.0	COARSE GRAINED CHLORITIC ANDESITE				•
		Coarse grained massive grading to medium grained massive with depth. The boundary to the underlying fine grained chloritic andesite is not defined. Greenish grey in colour due to chlorite content with a white 'speckled' appearance from 3.4 to 8.8 metres due to the presence of 20 to 40% feldspar crystals. From 7.6 to 8.8 metres the feldspar crystals are exceptionally well developed and elongate generally 1 to 5 mm in length. Otherwise the crystals are not as well defined. Fine quartz-carbonate veins 1 to 2 mm in width cut the core at various angles and are not common. Minor quartz veining of greater width is present. Carbonate matrix content is less than 1% and sulphide content is negligable to locally trace.				
		8.9 2 cm wide quartz and 'cherty' vein cutting 45° to core axis.				
		9.0 0.5 cm wide quartz vein.				
		9.7 8 cm disrupted bull quartz vein with lesser fracture related carbonates.				
11.0	28.8	CHLORITIC ANDESITE		7		
		Fine and lesser medium grained massive with poorly to moderately defined foliation from 26.5 to 28.0 cutting 45° to core axis. Greenish grey in colour and similar to the lowermost portion of the overlying unit; except for grain size.				

> Fine quartz-carbonate veining hairline to 2mm width cut the core at various angles and are not common. Bull quartz and quartz-carbonate veins are minor from 11.3 to 23.6 metres, and very abundant from 23.6 to 28.8 metres possibly indicating a stockwork. Unfortunately, this veining is typically barren. Carbonate matrix content is nil to minor from 11.0 to 27.0 metres, and increases to 5 to 20% with depth. Sulphide content is generally less than 11, however, from 23.0 to 24.2 metres there is overall 2 to 3% and locally 5% sulphides consisting of 90% arsenopyrite and 10% pyrrhotite. Quartz veins 12 cm in width associated to this sulphide zone of enrichment occur at 23.7 and 24.2 metres; both have only trace arsenopyrite. Chlorite content is moderately low and decreases to very minor with depth. The core is competant.

12.1

23 cm bull quartz vein.

15.4 to 15.7 Sub-parallel to core axis fracture with associated iron staining and 1% sulphides; fine pyrite and/or chalcopyrite

17.7 to 18.2 sub-parallel to core axis fracturing with surface coating of light coloured chlorite, carbonates and minor iron staining.

23.0 to 24.2 sulphide concentration, see above description.

28.8
8.5 cm bull quartz vein with 1% pyrrhotite and pyrite associated to a fracture.

Bull quartz and quartz-carbonate veins are abundant from 23.6 to 28.8 metres and comprise approximately 5 to 10% of the core. The veins range from 2 to 12 cm width with the larger veins occurring at 23.8, 24.2, 24.7, 24.8, 25.9, 28.7 and 28.8.

Meter	age	·				Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
28.8	29.1	GRAPHITIC-SULPHIDE RICH ZONE (VUGGY)						
		Fine grained throughout with flow structures having abundant incorporated massive sulphides. Light to medium grey from 28.8 to 29.0 metres, and dark grey due to graphite content from 29.0 to 29.1 metres. The core is vuggy throughout. 20% sulphides are incorporated within the flow texture of the core, and comprise of mostly pyrite in the lighter portion from 28.8 to 29.0 metres, and mostly pyrrhotite in the more graphitic portion. Graphite occurs disseminated and associated to the slip surfaces. The upper light portion has a softer texture possibly due to feldspar alteration that may have occurred during development of the vugginess. Quartz augens, some with sulphides, occur in the graphitic portion.						
29.1	31.4	ANDES ITE						
		Fine grained massive and light greenish-grey in colour grading rapidly to dark greenish-grey from 31.0 to 31.4 metre; probably associated to alteration from the underlying graphitic-sulphide rich core. Similar to the previously described andesite unit except for a decrease in chlorite content to result in a paler colour. Carbonate matrix content is 1 to 2% and sulphides are not apparent.						
31.4	31.8	GRAPHITIC-SULPHIDE RICH ZONE						
		Fine grained flow with disseminated sulphides, sulphide and carbonate amygdules, and incorporated carbonates. The amygdules primarily consist of sulphides with many indicating replacement of carbonate by sulphides. The unit is overall dark grey to black with 10 to 15% light coloured carbonates and 10 to 12% sulphides. The sulphides are 95% pyrrhotite and 5% pyrite.						

Meter	age					Core Samples
From	То	Description	From	То	Width (m)	Sample Au(ppb) Au(ppb)
		Of note is that this unit is not vuggy as is the previous graphitic-sulphide rich zone. Graphite is disseminated and associated to slips as a surface coating. The lower 7 cm of this core are intermixed with the underlying andesite.				
31.8	39.4	ANDES ITE				
		Fine grained massive with a coarser section from 30.5 to 32.8 metres. Pale greenish-grey becoming increasingly light grey, especially below 37.2 metres due to consistent decrease in chlorite content to				
		nominal. Fine quartz rich quartz-carbonate fracture filling is moderately abundant and is generally hairline to lmm in width. Veining is present to a minor degree however, the 'healed' fractures give sections of		,		
		this unit a 'crackled' appearance. The preferred direction of fracturing is in the range of 30° to core axis. Carbonate matrix content is 5% in the coarser section and overall 1 to 2%. Finely disseminated sulphides are less than 1%. Generally this section is similar to the previously described andesite.				
39.4	39.7	GRAPHITIC-SULPHIDE RICH ZONE				
		Similar to the uppermost graphitic-sulphide rich zone from 28.0 to 29.1 metres by the presence of massive incorporated sulphides, however, this zone is not vuggy.	,			
		The upper 5.5 cm of this zone contain amygdules exhibiting almost complete replacement of carbonate by sulphides. Rotated amygdules were recognized. Sulphide content is 20 to 25%, with pyrrhotite dominant except for the lowermost 3.5 cm which are pyrate rich.	•			
39.7	40.9	ANDESTITE (SCHISTOSE)				••
		Similar to the previously described andesite with the development of a shear fabric at 60° to core axis which becomes increasingly defined with depth. Below 40.2 metres is 2 to 3% incorporated fine altered feldspar flecks.				

Meter	age					Core Samples
From	То	. Description	From	То	Width (m)	Sample Au(ppb) Au(ppb)
		Chlorite is present on slip faces. Carbonate matrix content is less than 1%. Sulphide content is 1% finely disseminated and consists of pyrrhotite where recognizable.				
40.9	41.0	GRAPHITIC-SULPHIDE RICH ZONE				
		Similar to previously described graphitic-sulphide rich zone. Sulphide content is 15 to 20% with pyrrhotite the most abundant; incorporated within the flow in massive form.				
41.0	47.9	DIORITE (MODERATELY SCHISTOSE)				
		Medium grained with a poorly defined shear fabric made evident by the presence of orientated light coloured feldspars. Many portions of this section are almost massive in appearance. Overall colour is dark grey with 10% light coloured flecks generally less than 1 mm in size. The rock is similar to what has been termed andesitic schist under other areas of the property, however, the gradation to underlying very coarse dioritic rock leads to this terminology. This may possibly represent the cooled marginal portion. Within this defined section there is also a gradional increase in grain size with depth. Carbonate matrix material is not apparent. Sulphides content is trace. Pyroxenes are detectable on surfaces of freshly broken core.				
		44.5 5 cm quartz carbonate vein.				
47.9	59.4	DIORITE				
		Coarse grained becoming gradationally medium grained above and below the defined boundaries of 47.4 to 59.4 metres. Dark greyish-black with 10 to 15% light coloured minerals generally 1 to 2 mm in size.				

Meterag	<u>e</u>			*************************************			Core Sam	ples	-
From	То	9	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)

The light coloured mineral assemblage is primarily altered feldspar from 47.9 to 57.0 metres; below which carbonate content becomes apparent. Grain size of this rock is made evident by the light coloured grains which are of variable percent content and size. Carbonate matrix content is minimal from 47.9 to 57.0 metres and 2 to 3% (locally 5%) from 57.0 to 59.4 metres. Fine disseminated sulphide content is trace. Few quartz-carbonate veins generally 1 to 3 mm in width occur at various angles to the core axis.

59.4 63.1 DIORITE (SCHISTOSE)

Similar to the previously described schistose diorite except for an increase in shear fabric development from 59.4 to 61.0 metres. Below 61.0 metres the fabric quickly becomes less defined. A brownish hue is also present from 59.4 to 61.0 metres possibly due to chlorite. Carbonate content is 2 to 3% with local concentration of 10% in the more schistose portion.

The core is competant.

63.1 End of Hole Greater than 97% core recovery 11 core boxes.

wind Marks Month 01/84

roject 571
Hole 571-8
Gold Analysis - Core

Sample No.	Downhole depth (m)	Interval (m)	Gold (ppb)	Gold (ppb)	Gold (oz/ton)
6878	3.35 - 6.4	3.05	Ni1		
6879	6.4 - 9.45	3.05	Ni 1		
6880	9.45 - 11.28	1.83	Ni 1		
6881	11.28 - 14.33	3.05	Ni 1		
6882	14.33 - 17.37	3.04	Ni 1		
6883	17.37 - 20.42	3.05	10		
			10		
6884	20.42 - 23.01	2.59	Ni 1		
6885	23.01 - 24.23	1.22	40		
6886	24.23 - 26.52	2.29	Ni 1		
6887	26.52 - 28.8	2.28	Ni 1		
6888	28.8 - 29.11	. 31	60		
6889	29.11 - 31.36	2.25	Ni1		
6890	31.36 - 31.76	0.40	80		
6891	31.76 - 35.66	3.90	Ni 1		
6892	35.66 - 39.38	3.72	Ni 1		
6893	39.38 - 39.72	0.34	70		
6894	39.72 - 40.90	1.18	Ni 1		
6895	40.90 - 41.03	0.13	40		
6896	41.03 - 43.28	2.25	Ni 1		
6897	43.28 - 46.33	3.05	Ni 1		
6898	46.33 - 49.38	3.05	Ni 1		
6899	49.38 - 52.43	3.05	Ni1		
			10		
6900	52.43 - 53.95	1.52	Ni 1		
6902	53.95 - 57.0	3.05	Ni 1		
6903	57.0 - 60.05	3.05	Ni 1		
5904	60.05 - 63.09	3.04	Ni 1		

ELDOR RESOURCES LIMITED
DIAMOND DRILL HOLE 571-9

DRILL HOLE LOG Hole No: <u>571-9</u>

Location:

Maki Discovery Trench 10+41W/0+35.5S

Length:

50.3 metres

Purpose:

Exploration

Azimuth:

347°

Dip

-45° from 0 to 25.1 metre -45.5° from 25.1 to 50.3 metres

Completed:

Nov 05/83

Logged by:

L. Martin

Township:

Vincent

Claim:

TB 603295

Collar:

170m west of #1 post then 15m south

Core Size:

BQ (36.5mm diameter)

Meterage			Core Samples						
From	To	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)	
0	2.1	overburden						•	
2.1	6.2	CHLORITIC ANDESITE							
		Coarse, grading to fine grained massive with depth. A subtle foliation is increasing evident with depth and cuts 60 to 65° to core axis. The core is medium greenish-grey in colour. Quartz-carbonate veins are moderately abundant throughout and are generally hairline to 3mm in width. The veins cut the core axis at random angles. Carbonate matrix content is less than 2%. Chlorite content becomes more apparent with depth, occurring concentrated on shear faces as the schistose fabric increases. Sulphide content is 1 to 2% from 2.1 to 3.0 metres, occurring as fine to coarse pyrite disseminations and 'blebs' to 1 cm in size; minor cubic crystal development is present. From 3.0 to 6.2 metre sulphide content decreases to less than 1% as fine disseminations; pyrite is the only recognizable sulphide. The core is competant to moderately blocky.							
6.2	6.8	BANDED IRON FORMATION							
		Appears as typical banded iron formation, with a high sugary quartz and quartz band content. The banding is generally 1 to 2 cms wide with an overall decrease in width with depth. A 2 cm wide massive magnetite band occurs at 6.3 m. In the bottom 5.5 cm of the formation, banding is less than 2mm in width.	6.2	6.8	0.6	6908	590 ppb 600 ppb		
		Overall content is 50% sugary quartz and quartz, 25% fine grained chloritic andesite, 20% magnetite, and 5% sulphides comprising of 90% pyrrhotite, 5 to 7% arsenopyrite, and 3 to 5% chalcopyrite. Magnetite content decreases with depth. The chloritic andesite content increases with depth and is schistose. Quartz content is relatively consistent throughout and minor carbonates occur associated to hairline fractures.			·				
		Pyrrhotite occurs both concordant to the banding, and discordant in association to fracturing. Chalcopyrite occurs with the fracture related pyrrhotite. Trace arsenopyrite occurs as disseminated crystals less than 1 mm in size.							

Meterage			Core Samples					
From	То	Description	From	То	Width (m)	Sample Au(ppb) Au(ppb)		
6.8	11.0	CHLORITIC ANDESITE						
		Fine grained massive with a very subtle foliation cutting 65° to 70° to the core axis. The foliation is only variably evident. Medium greenish grey in colour. Greyish-white quartz-carbonate veins are generally moderately abundant. Short sections of vein concentration occur and appear as local "microstockworks." The veins are typically hairline to 3 mm in width and cut the core axis at random angles. Carbonate matrix content is nominal. Sulphide content is trace to less than 1% as fine disseminations.						
		9.4 5 cm concentration of concordant quartz carbonate veining cutting 70° to core axis; 2 to 3% finely disseminated arsenopyrite and pyrrhotite are incorporated.						
11.0	14.6	CHLORITIC SCHIST						
		Fine grained with a well developed schistosity defined by shear textures and high concordant quartz-carbonate vein content. Greenish-grey in colour. Quartz-carbonate veins generally hairline to 2 cm in width comprise 10 to 15% of this section. Veining is mostly concordant to the schistosity. The few cross-cutting veins are at low angles to the fabric. Chlorite content is consistant and is more concentrated than overlying rocks due to shearing. This results in an overall darker green colour. Carbonate matrix content is 1-2%, and locally to 5% most probably due to vein concentration in a shear zone. Sulphide content is nominal.						
14.6	15.5	BULL QUARTZ VEIN						
		From 14.6 to 15.1 metres the vein is mostly white quartz with 5% bright green fracture related chlorite. There is trace pyrite and arsenopyrite. From 15.1 to 15.5 metres the quartz is white massive and barren.	14.6	15.5	0.9	6912 10 ppb		

Meter	age					Core Samples	
From	То	Description	From	То	Width (m)	Sample Au(ppb) Au(ppb)
15.5	27.6	ANDES ITE					
		Mostly fine grained massive with a fine to medium grained massive section from 17.7 to 20.9 metres Chloritic schist occurs locally at 15.5 to 15.7 metres and at 21.8 to 22.0 metres. A subtle foliation in the massive core (not always evident) cuts 70° to core axis. The rock is light greenish-grey in colour due to low chlorite content, and is darker in the schistose portions.					
		Quartz-carbonate veins are moderately abundant in the upper portion from 15.5 to 16.9 metres, in the lower portion from 25.5 to 27.6 metres and in the local schistose core at 21.8 to 22.0 metres. Otherwise veining is much less frequent. The veins are generally hairline to 5mm width. Carbonate matrix content is 1 to 2%. Sulphides are generally trace fine disseminations. In the schistose unit from 21.8 to 22.0 metres there is a 2 to 3% sulphide consisting of pyrite, pyrrhotite and arsenopyrite in order of decreasing abundance.					•
		24.7 2.5 cm quartz vein					
		25.6 quartz vein with chlorite 0.7 cm wide on one side of core, and 4.0 cm wide on other.					
		27.5 to 27.6 crenulated quartz vein from 1.5 to 4 cms width occur along the core axis.					
27.6	28.9	BANDED IRON FORMATION					
		Banding is evident but not as defined as in the previously described iron formation. The unit has been silicified.	27.6	28.9	1.3	6918 230 ppb	:
		27.6 to 28.0 poorly defined banding					

Meterage					Core Samples	·
From To	Description	From	То	Width (m)	Sample Au(ppb)	Au(ppb)

28.0 to 28.5 no banding definition, appears broken-up and later healed by silicification.

28.5 to 28.9 Poorly defined banding

The unit is siliceous throughout with abundant and approximately concordant grunerite crystals occurring from 27.6 to 28.0 metres. Magnetite content is low. Minimal carbonate is evident and chlorite content is enough to inpinge a greenish colour to the section. Sulphides occur as 5 to 7% pyrrhotite and trace chalcopyrite.

28.9 37.0 CHLORITIC ANDESITE

Fine grained massive. Medium greenish-grey in colour with generally 1% and variably 2 to 3% fine altered feldspar 'flecks.' This section becomes gradually darker green with depth.

Quartz-carbonate veins hairline to 3 mm width are moderately abundant. The veins cut at various angles but are typically within the range of 55° to 70° to core axis Many are highly disrupted in appearance.

Chlorite content is fairly consistant and is not abundant. Carbonate matrix content is 2 to 3% at most, and generally less than 1%. Finely disseminated sulphides comprise up to 1% of the core; pyrite is detectable.

32.2

1 cm quartz-carbonate vein cutting 45° to core axis.

 $\frac{33.7}{2 \text{ cm}}$ quartz carbonate vein cutting 45° to core axis.

Meter	age					Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
37.0	37.2	BANDED IRON FORMATION						
		Similar to previously described banded iron formation units, except that the banding is better defined. Magnetite content is low and quartz banding content is high. The banding is mostly 0.5 to 1 cm wide and occurs at 75° to core axis. Sulphide content is 5 to 7% pyrrhotite and less than 1% chalcopyrite with nominal pyrite.	37.0	37.2	0.2	6923	10 ppb	
37.2	37.4	CHLORITIC ANDESITE						
		Fine grained massive. Medium to dark greenish-grey. Similar to the previous chloritic andesite unit.						
37.4	37.5	CHLORITIC SCHIST AND IRON FORMATION						
		Low content of poorly defined banded iron formation within chloritic schist. 2 to 3% sulphides occur concordant to the thin banding which is less than 2 mm width. The sulphides comprise of 60% pyrrhotite and 40% pyrite cubes.						•
37.5	47.9	CHLORITIC ANDESITE INTERLAYERED WITH CHLORITIC SCHIST						
		The core consists of a fine grained andesite having fine shear fabric and chloritic schist shears throughout. The schistose fabric is at 70 to 75° to core axis. Colour is greenish-grey. Quartz-carbonate veins generally 1 to 3 mm in width are moderately abundant and increase in frequency with depth. The veining is mostly concordant to the rock fabric. Carbonate matrix content is 1 to 2% and rarely up to 5%. 1% sulphide content, mostly as pyrite 'blebs' and crystals to 2 mm in size, occur associated to increased quartz-carbonate content at localized shears.						
		40.4 2.5 cm bull quartz-carbonate vein						

Meter	age					Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		45.9 4.0 cm bull quartz vein with less than 1% pyrite						
		$\frac{46.4}{2.5}$ cm bull quartz vein concordant to the rock fabric.						
47.9	49.7	QUARTZ-CARBONATE CONCENTRATION		•				
		This section consists of a concentration of 60 to 70% quartz-carbonate veins within a chloritic host similar to the overlying andesite and schist. A rapid gradation to this concentration from the overlying unit occurs within 10 cms of core. The quartz-carbonate content is relatively consistant and occurs as a tight vein network. The veins are generally 1 to 5 mm in width and are undefinable in places due to dense concentration.						
		48.3 5 cm bull quartz vein with minor carbonate material; the vein disperses above and below into the host rock, resulting in the lack of a sharp contact.		e.				•
		49.2 to 49.5 Bull quartz vein with minor bright green chlorite and trace pyrite. Contacts with the host rock are not sharp.						
49.7	50.3	CHLORITIC SCHIST						
		Similar to the interlayered chloritic andesite and schist unit above the previous section, with the exception of an increase in chloritic schist dominance. Less than 1% sulphide content.						
50.3		End of Hole.						
		The core is moderately competant in the upper portion of this hole, with a change to moderately blocky with depth; especially in the more schistose sections. Greater than 98% core recovery.						
		Nine core baxes. Marin Monch 01/84	,					

Project 571 Hole 571-9 Gold Analysis - <u>Core</u>

Sample No.	Downhole depth (m)	Interval (m)	Gold (ppb)	Gold (ppb)	Gold (oz/ton)
5906	2.13 - 4.57	2.44	Ni 1		
6907	4.57 - 6.19	1.62	Ni 1		
6908	6.19 - 6.80	0.61	590		.017
			600		
6909	6.80 - 8.23	1.43	Ni 1		
6910	8.23 - 11.28	3.05	Ni 1		
6911	11.28 - 14.63	3.35	10		
6912	14.63 - 15.54	0.91	10		
6913	15.54 - 15.85	0.31	20		
			30		
6914	18.85 - 20.42	1.57	Ni 1		
6915	20.42 - 23.47	3.05	Ni 1		
6916	23.47 - 26.52	3.05	Ni l		
6917	26.52 - 27.65	1.13	Ni 1		
6918	27.65 - 28.86	1.21	230		
6919	28.86 - 29.57	0.71	Ni1		
6920	29.57 - 32.61	3.04	Ni 1		
6921	32.61 - 35.66	3.05	Ni 1		
6922	35.66 - 37.03	1.37	Ni 1	·	
6923	37.03 - 37.52	0.49	10		
6924	37.52 - 38.71	1.19	Ni 1		
6925	38.71 - 41.76	3.05	Ni 1		
			10		
6926	41.76 - 44.81	3.05	Ni 1		
6927	44.81 - 47.91	3.10	Ni 1	•	
6928	47.91 - 49.68	1.77	200		
6929	49.68 - 50.29	0.61	Ni 1		

ELDOR RESOURCES LIMITED
DIAMOND DRILL HOLE 571-10

Location:

Maki Discovery Trench 10+41W/0+36.5S

Length:

68.0 metres

Purpose:

Exploration

Azimuth:

347°

Dip

-70° from 0 to 34.0 metres -69° from 34.0 to 68.0 metres

Completed:

Nov 06/83

Logged by:

L. Martin

Township:

Vincent

Claim:

TB 603295

Collar:

170m west of #1 post then 15m south

Core Size:

BQ (36.5mm diameter)

Meter	age					Core S	uples	
From	То	Description	From	To	Width (m)	Sample	Au(ppb)	Au(ppb)
0	1.8	OVERBURDEN						
1.8	8.3	CHLORITIC ANDESITE (Mildly Schistose)						
		Coarse grained grading to fine grained with depth. Massive with a moderate shear fabric evident throughout, becoming less apparent with depth. Chloritic shears occur throughout, much of the unit, especially in the higher more coarse portions. The shear fabric is generally 45° to core axis. Greenish-grey in colour. Greyish-white quartz-carbonate veins hairline to 3mm width cut the core at random angles. Veining is not						
		abundant. Carbonate matrix content is less than 2%. Chlorite content is moderately abundant throughout, and concentrated at shears in the coarser sections.						
	·	Sulphide content is overall 1 to 2% as fine to coarse disseminations which decrease in content with depth. The sulphides are largely pyrite with less pyrrhotite and trace chalcopyrite.						
		5.7 5 cm rusty bull quartz vein with minor chlorite and carbonate. The core is blocky.						
8.3	8.5	BANDED IRON FORMATION						
		Characteristic of typical banded iron formation, however, the banding is not sharply defined. The upper 5 cms consists of 95% sugary quartz bands less than 1 cm width, separated by thin chloritic interbeds. Sulphide content occurring as pyrrhotite	8.3	8.5	0.2	6932	220 ppb	
		and lesser arsenopyrite is less than 3%. Magnetite is trace. The remainder and more abundant of this formation is highly magnetic due to several massive magnetite bands grading from 2mm width to hairline with depth.						
		Overall content is 65 to 70% quartz with 10% interstitial chlorite and 5% interstitial carbonate, 15 to 20% massive magnetite, and 2 to 3% pyrrhotite occurring concordantly in the quartz bands. Banding occurs at 45 to 50° to core axis.						

<u>Meter</u>	age					Core Samples
From	То	Description	From	To	Width (m)	Sample Au(ppb) Au(ppb)
8.5	8.8	CHLORITIC SCHIST		•		
		Very fine grained with a schistose fabric at 45° to core axis. The core is moderately competant with schistosity being defined by the broken shear surfaces. Dark green in colour. Few quartz-carbonate veins hairline to 3mm width occur incorporated within the rock fabric. No apparent carbonate matrix content. Sulphide content is trace fine disseminations.				
8.8	9.5	BANDED IRON FORMATION			•	
		Highly siliceous and chloritic with a low sulphide, magnetite, and carbonate content. This unit is mostly made up of quartz bands generally in the 1 cm width range and up to 3.5 cm wide, separated by chloritic interbed material. A 10 cm chloritic unit occurs in the upper portion, commencing at 9.0 metres. Pyrrhotite is associated to the chloritic material. In places the banding is disrupted and fractured with	8.8	9.5	0.7	6934 170 ppb
		chlorite infilling. This results in pyrrhotite occurring concordantly with chloritic interbeds, and discordantly with chloritic infilled crossfractures. Overall content is 55 to 60% quartz, 30 to 35% chlorite, 3 to 5% magnetite disseminated in the lower portions, 3 to 5% pyrrhotite, and 2 to 3% carbonates.				
9.5	15.0	CHLORITIC ANDESITE WITH CHLORITE SCHIST				
	•	Mostly fine grained massive with chloritic shears and a variably occurring subtle foliation. Fine grained chloritic schist occurs at 12.3 to 12.8 metres, and over localized sections throughout. The colour is greenish grey to dark green in the schistose sections. Shear fabric within the andesite is generally 45° to core axis.		· .		

Meter	age					Core Sa	aples	
From	То	Description	From	To	Width (m)	Sample	Au(ppb)	Au(ppb)
		Quartz-carbonate veining hairline to 3mm width is moderately abundant and increases in frequency with depth. Often the veining has been incorported within the schistose fabric and takes on a resultant wispy and discontinuous appearance. The veining is greyish-white in colour and often appears as a concentration rather than veining; due to the shear textures. Carbonate matrix content is 2 to 3% increasing with depth to 5 to 10% locally; probably a function of increased quartz-carbonate veining. Finely disseminated sulphides are less than 1%.						
15.0	15.8	BULL QUARTZ VEIN						
		From 15.0 to 15.4 metres the core is white, massive and sulphide barren bull quartz. From 15.4 to 15.8 metres the core is white massive and barren bull quartz with 5% carbonates towards the bottom, and 5% chloritic andesite containing 1% disseminated sulphides.	15.0	15.8	0.8	6937	170 ppb	• • •
15.8	18.9	CHLORITIC ANDESITE WITH CHLORITE SCHIST					•	
		Similar to the previously described chloritic andesite with chloritic schist. Chloritic schist occurs within the andesite from 18.0 to 18.3 metres, and over 7 cm at 18.4 metres.						
		17.1 10 cm barren bull quartz vein						
		2.5 cm barren bull quartz vein.			•			
18.9	27.7	COARSE TO MEDIUM GRAINED ANDESITE						
		Medium grained massive from 18.9 to 20.4 metre, coarse grained massive from 20.4 to 21.5 metre, and medium grained massive grading to finer grained with depth from 21.6 to 27.7 metre. Light greenish-grey in colour due to a low but consistent chlorite content.						

Metera	ge					Core Samples	
From	То	Description	From	То	Width (m)	Sample Au(ppb)	Au(ppb)
		From 19.5 to 21.6 metre and most evident in the coarse section from 20.4 to 21.6 metre, there is 35 to 40% light coloured acicular feldspar crystal development less than 1 mm in size. These readily define the rock grain size.		·.			
		From 18.9 to 21.6 metres there is 1% creamy coloured feldspar (albite?) phenocrysts 0.5 to 1.5 cm in size. Below this they occur rarely. Quartz-carbonate veins range from generally 5mm width to hairline to 3mm with depth. The veins are often quartz rich and not abundant. Although veining occurs at random angles over this section, they most often trend between 45° and 75° to core					
		axis. Carbonate matrix content is low and sulphides are not apparent.					
		21.6 5.5 cm quartz vein.					
		26.3 Quartz vein 2 cm to core width cutting sub-parallel to core axis over 17 cms; the vein is barren and has 1 mm creamy coloured reaction rim.					
27.7	35.8	FINE GRAINED CHLORITIC ANDESITE					
		Fine grained massive with a very subtle fabric only rarely evident due to light coloured carbonate content. Minor chloritic schist shear zones occur over 8 cm at 27.9 metre, from 28.0 to 28.4 metre, ar from 34.6 to 34.7 metre; otherwise there are shear slip faces variably throughout. The core is medium greenish grey to dark green at chloritic schist zones	nd				
		quartz-carbonate veins are moderately abundant and are typically hairline to 4mm in width; sometimes to 1 cm width for the more quartz rich veins. The larger quartz rich veins cut at more random angles than the finer veins. Many of the finer veins are discontinuous, broken-up, and incorporated in the rock fabric of 45°					
		to core axis. 2 to 3% coarse grained carbonate rich bands 1 to 2 cm wide occur variably.					** 1

Project 571

Meter	age					Core Sa	mples	·
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		Carbonate matrix content is generally less than 1% and is 5 to 10% locally with depth; not typical. Sulphide content is overall trace and locally 1 to 3% associated to carbonate enrichment. Pyrrhotite is the only sulphide recognized.						
		$\frac{28.9}{3 \text{ cm}}$ barren white quartz vein cutting into but not through core.						
35.8	37.0	BANDED IRON FORMATION						
		The banding is moderately well defined from 35.8 to 36.1; and from 36.1 to 37.0 it has been highly distorted by shearing. Banding in the upper portion generally ranges from 0.5 to 3 cm in width. Below this, the banding has been stretched, thinned and even broken by shearing processes. From 35.8 to 36.1 magnetite occurs as a single massive band 0.5 cm in width, and as abundant and concordantly occurring crystals to 0.3 cm in size. High grunerite content also occurs concordantly over this section. From 36.1 to 37.0 the magnetite content decreases substantially to less than 5%. Chloritic schist interbeds also become prominent. Silicification is abundant throughout this formation. Overall content is 55% quartz, 20 to 25% chloritic material, 15% magnetite, 5% grunerite, 2 to 3% sulphides comprised of pyrrhotite and trace chalcopyrite, and 1% carbonates.	35.8	37.0	1.2	6947	30 ppb	
37.0	46.9	CHLORITIC ANDESITE						
		Variably fine to medium grained with a coarser grained section from 40.4 to 42.4 metres; made evident by 10 to 354 light coloured carbonate grains up to 2mm in size. Foliation is most apparent in the coarser sections and cuts 55 to 60° to core axis. The core is generally greenish-grey with variations due to light coloured carbonate grain content. From 42.4 to 44.3 metres the core is fine grained massive and very dark in colour.						

Metera	age					Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		The most notable feature of this section is the inconsistency of grain size, colour, and carbonate grain content.						
		Quartz carbonate veins are not very abundant and occur as hairline to 3mm width. The veins occur at randon angles to the core axis and are often						
		incorporated within the rock fabric. Carbonate matrix content is 2 to 3% at best. Sulphide content is 1%, being most abundant higher						
		up in the section where pyrite disseminations are incorporated and stretched within the rock shear fabric.						
		43.9 to 44.2 2 to 3% pyrite occurring as coarse disseminations in the rock fabric and as less than 1 mm lines concordant to fabric; also occurring is a sub-parallel to core axis hairline carbonate fracture.						
		44.6 fine foliation controlled concentration of pyrite and pyrite crystals to lmm in size.						·
6.9	68.0	CHLORITIC ANDESITE WITH CHLORITIC SHEARS						
	÷	The core is generally very fine grained massive with abundant chloritic shears and, lesser, localized chloritic schist zones. The shear fabric is 55 to 60° to core axis. Medium green to greenish-grey throughout. Thin quartz-carbonate veins are moderately abundant						
		and increase in frequency with depth. Variably throughout the veins are disrupted in appearance due to shearing. Carbonate matrix content is less than 1%. Sulphide						
		content is 1% as pyrite 'blebs' and fine disseminations. Quartz veins occur over 4.5 cm at 154.9, 1.5 cm at 177, 6.5 cm at 55.5, 7 cm at 57.0, 1 cm at 64.7, and 4.5 cm at 66.1 metres. 58.5 to 60.7; LOST CORE due to core tube not locking.	;					
8.0		End of Hole. Blocky core throughout.						
		968 core recovery 11 core boxes. Long Man L. Month of 184	•	:				· · · · · · · · · · · · · · · · · · · ·

Project 571 Hole 571-10 Gold Analysis - Core

Sample No.	Downhole depth (m)	Interval (m)	Gold (ppb)	Gold (ppb)	Gold (oz/ton)
6930	1.83 - 4.57	2.74	Ni 1		
6931	4.57 - 8.23	3.66	Ni 1		
6932	8.23 - 8.50	0.27	220		
6933	8.50 - 8.84	0.34	Ni 1		
6934	8.84 - 9.51	0.67	170		
6935	9.51 - 11.58	2.07	10		
6936	11.58 - 15.03	3.45.	60		•
			90		
6937	15.03 - 15.85	0.82	170		
6938	15.85 - 17.37	1.52	10		
6940	17.37 - 20.42	3.05	10		
6941	20.42 - 23.47	3.05	10		
0942	23.47 - 26.52	3.05	Ni 1		
6943	26.52 - 28.65	2.13	Ni 1		
6944	28.65 - 31.70	3.05	Ni 1		
6945	31.70 - 34.74	3.04	Ni 1		
6946	34.74 - 35.75	1.01	Ni l		
6947	35.75 - 37.03	1.28	30		
6948	37.03 - 38.71	1.68	Ni 1		
6949	38.71 - 41.76	3.05	Ni 1		
6950	41.76 - 44.81	3.05	Ni 1		
7001	44.81 - 47.85	3.04	Ni 1		
7002	47.85 - 50.90	3.05	Ni 1		
7003	50.90 - 53.95	3.05	Ni 1		
7004	53.95 - 57.0	3.05	Ni 1		
7005	57.0 - 61.26	4.26	Ni 1		
7006	61.26 - 64.0	2.74	Ni 1		
7007	64.0 - 67.97	3.97	Ni 1		

ELDOR RESOURCES LIMITED
DIAMOND DRILL HOLE 571-11

Location:

Maki Property 3+00W/3+50.5N

Length:

58.5 metres

Purpose:

Test Conductor C1

Azimuth:

004°

Dip

-60° from 0 to 29.3 metres

-59.4° from 29.3 to 58.5 metres

Completed:

Nov 08/83

Logged by:

L. Martin

Township:

Vincent

Claim:

TB 418431

Collar:

230m west of #1 post, then 65m south

Core Size:

BQ (36.5mm diameter)

Width (m)

To

From

Au(ppb)

Core Samples

Sample Au(ppb)

Meter	age	·
From	То	Description
0	1.8	OVERBURDEN
1 . 8	17.0	CHLORITIC ANDESITE
		Medium grained grading to fine grained with depth. Generally massive in appearance with a subtle foliation most evident in the coarser rock, due to incorporated light coloured grains. Chloritic shear surfaces occur throughout. The fabric cuts 45 to 50° to core axis. Greenish-grey in colour with 5% fine light coloured altered feldspar flecks from 6 to 11 metres, and 5 to 15% light coloured carbonate grains to 2mm size from 1.8 to 9.1 metres. Quartz carbonate veins are not common, however, they increase in frequency with depth. The veins are hairline to 3 mm in width and cut the core at random angles. Carbonate matrix content is less than 1%. Sulphide content as pyrrhotite and pyrite is trace to 1% and locally up to 5%. The sulphides occur as disseminations associated to carbonate enrichment, and sometimes concentrated on shear surfaces. Rusty shear surface coating occurs variably.
		4.9 2 cm quartz vein overlain by 1 cm quartz-carbonate concentration with trace pyrite.
		14.0 5% pyrite associated to a 4 cm greyish white quartz vein with minor carbonate.
		14.9 8 cm quartz-carbonate concentration with 5% pyrrhotite and trace chalcopyrite; appears as a quartz-carbonate vein which has been disrupted by shearing processes to conform to rock fabric; wispy and discontinuous in places.

Meter	age					Core Sa	mples	*
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
17.0	19.4	SUGARY QUARTZ-SULPHIDE RICH; AND GRAPHITIC-SULPHIDE RICH UNIT (with intervening banded iron formation)	17.0	17.9	0.9	7014	560 ppb 310 ppb	
		This section is comprised of two major units, preceded by two minor but distinct units. Although there are strong differences within, the section considered as one due to the elevated sulphide contents, and the presence of a magnetic property.	17.9	19.4	1.5	7015	330 ppb	
		17.0 to 17.1 Chloritic schist with quartz carbonate concentration containing 5% pyrrhotite and possible finely disseminated magnetite.						

17.1 to 17.4

Bull quartz vein with 5% chlorite and 2 to 3% pyrrhotite 'blebs' to 0.5 cm in size. Towards the bottom there is 5% massive pyrite.

17.4 to 18.5
Grades to lower unit but is distinguishable due to green chlorite content., This section comprises of approximately 70% sugary quartz, 20% chlorite, 5 to 10% sulphides occurring locally 20 to 25%, and 4 to 5% magnetite which increases with depth and changes from disseminated to fine bands of a thin banded iron formation unit. Sulphide content is primarily pyrite from 17.4 to 17.9 metres; present as 20 to 25% of the rock from 17.4 to 17.7 metres; followed by 3 to 5% content. From 17.9 to 18.5 metres pyrrhotite is the dominant sulphide occurring as 5% content and locally to 10% with minor pyrite. Shearing textures are evident with depth.

Meter	age					Core Sam	ples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		This unit is distinct from the previous by the lack of chlorite and the introduction of graphite. The rock is similar to that of the graphitic-sulphide rich unit of hole 571-8; drilled further west along the same conductor feature. Overall colour is grey-white and black with high massive sulphide content. Content is mostly quartz and lesser quartz-carbonate with 20% sulphides and 10 to 20% dark core consisting of magnetite and graphite. Graphite content is low. Sulphides are mostly pyrrhotite with lesser pyrite. The core is banded in appearance for the upper portion but with depth there becomes definite flow fabric. 5% pyrrhotite occurs as amygdules within this fabric.						
19.4	23.3	ANDES ITE						
		Fine grained massive with a poorly defined fabric occurring variably and cutting 45° to core axis. Medium grey in colour and markedly different from the overlying andesites by the lack of chlorite and shearing. Quartz-carbonate veins hairline to 5mm width cut randomly and are not abundant. Carbonate matrix content is 1 to 2% and sulphides are nil.						
		20.4 1.5 cm bull quartz vein.				. •		
		21.8 5.3 cm bull quartz vein.						•
23.3	24.3	BULL QUARTZ VEIN						
		Barren massive white bull quartz with 2 to 5% fracture associated chlorite for the bottom 32 cms. Minor tourmaline is present at the bottom.	23.3	24.3	1.0	7017	20 ppb	

Meter	age	•				Core S	amples	/*
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(pp
24.3	34.4	ANDES ITE						
		Similar and continuous from the previously described andesite separated only by the above quartz intrusion. Trace finely disseminated arsenopyrite is recognizable. A medium grained section with 1 to 2% finely disseminated pyrrhotite occurs from 30.9 to 32.8 metres.				;		
		$\frac{25.5}{4}$ cm bull quartz vein with minor rusty fracture lines						
		29.1 4.5 cm quartz vein with 2% arsenopyrite						
	,	29.6 10 cm quartz-carbonate and minor rusty sugary quartz vein with trace arsenopyrite.						•
34.4	34.8	GRAPHITIC-SULPHIDE RICH UNIT						
		Fine grained with flow structures having abundant sulphides. Overall dark greyish to black due to graphite content. The core consists of 20% pyrrhotite occurring disseminated, massive flow incorporated, and as amygdules. Graphite is disseminated throughout and concentrated on shear faces. Carbonate content is less than 1% typically. In the lower 14 cm of this unit the carbonate content is 10% and the core is massive fine grained with fine disseminated pyrrhotite and no clearly evident flow features.	34.4	34.8	0.4	7022	80 ppb 110 ppb	
34.8	35.1	ANDES ITE						
		Fine grained pale greenish-grey to grey. Similar to the previously described andesite.						
35.1	35.4	GRAPHITIC-SULPHIDE RICH UNIT						,
		Similar to previous.					•	

Meter	age					Core Samples
From	То	Description	From	То	Width (m)	Sample Au(ppb) Au(ppb)
35.4	35.5	ANDES ITE				
		Similar to previous.				
35.5	35.7	GRAPHITIC-SULPHIDE RICH UNIT				
		Similar to previous.				
35.7	35.8	ANDES ITE				
		Similar to previous.				
35.8	35.9	GRAPHITIC-SULPHIDE RICH UNIT				
		Similar to previous.				
35.9	40.7	ANDESITE (Quartz-veined)				•
		Similar to previous except for an increase in quartz veining and moderately abundant quartz-carbonate veins hairline to 3 mm in width. The core is pale greenish-grey due to low chlorite	·			
		content. Less than 1% carbonate matrix content, and sulphides are trace. For the lower 22 cm there is intermixing with the underlying graphitic sulphide rich unit. Quartz veins occur over 3 cm at 36.3, 1 cm at 36.4, 1 cm with trace arsenopyrite at 38.2, 6 cm with trace arsenopyrite at 39.6, 1.5 cm at 39.7, and 1 cm at 40.2 metres.				
40.7	41.2	GRAPHITIC SULPHIDE RICH UNIT				
		Similar to the previous units except that the foliation is highly contorted and there is a lack of amygdules. Graphite is concentrated on the shear surfaces. 5% quartz-carbonate 'vein type' material is present.	40.7	41.2	0.5	7025 40 ppb

<u>Meter</u>	age					Core Sa	mples	
From	То	Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
41.2	44.0	ANDES ITE			-			
		Fine grained massive and greyish in colour. Similar to previously described fine grained andesite units except for a slightly darker grey colour. Hairline to 3mm wide quartz-carbonate veins are generally concordant to a very subtle foliation						
		cutting 45 to 60° to core axis.						•
		138.6' 9 cm quartz and quartz-carbonate vein with minor graphite.						
44.0	44.1	GRAPHITIC-SULPHIDE RICH UNIT						
		Similar to previously described graphitic sulphide rich units except for having 10 to 15% pyrrhotite (previous units typically have 20%). Trace pyrite is recognizable. The core also contains 20% quartz-carbonate material.						•
44.1	44.3	ANDES ITE						
		Similar to previous andesite unit.						
44.3	44.5	GRAPHITIC-SULPHIDE RICH UNIT						
		Similar to previous graphitic-sulphide rich units except for a marked decrease in sulphide content. The core is mostly black graphitic rich and contains 5% pyrrhotite. 10% quartz-carbonate material occurs.						
44.5	45.1	ANDES ITE						
		Similar to previous andesite unit.	7					

Meter	age					Core Sa	mples	
From	То	, Description	From	То	Width (m)	Sample	Au(ppb)	Au(ppb)
		44.9 4 cm massive graphitic unit with 2 to 3% finely disseminated pyrrhotite.				- 1		
45.1	45.6	GRAPHITIC-SULPHIDE RICH UNIT						
		Fine grained massive lacking the flow features that have been diagnostic of this unit. Appears similar to lower portion of the graphitic sulphide rich unit at 34.4 to 34.9 metres. Sulphides occur as 10 to 15% finely disseminated pyrrhotite and 2 to 3% disseminated pyrite.						
45.1	58.5	ANDESITE (Quartz-veined)						
		Similar to previous fine grained andesites except for a medium greenish-grey colour due to low chlorite content; and an increase in quartz veining. Quartz veins occur over 1.5 cm at 48.3, 16 cm at 55.2 from 55.5 to 55.9, over 1 cm at 56.1, 2 cm at 56.1, 2.5 cm at 57.6, and 1.5 cm at 57.7 ft.						
58.5		End of Hole. Greater than 99% core recovery. The core is competant 11 core boxes. Lional March 01/84						

Project 571 Hole 571-11 Gold Analysis - Core

Sample No.	Downhole depth (m)	Interval (m)	Gold (ppb)	Gold (ppb)	Gold (oz/ton)
7008	1.22 - 4.57	3.35	Ni 1		
7009	4.57 - 6.10	1.53	Ni 1		
7010	6.10 - 9.14	3.04	Ni 1		
7011	9.14 - 12.19	3.05	Ni 1		
7012	12.19 - 14.02	1.83	10		
7013	14.02 - 16.98	2.96	Ni 1		
7014	16.98 - 17.89	0.91	560		.016
, •••			310		.009
7015	17.89 - 19.35	1.46	330		.010
7016	19.35 - 23.32	3.97	10		
7017	23.32 - 24.32	1.00	20		
7018	24.32 - 25.60	1.28	Ni 1		
7019	25.60 - 28.04	2.44	Ni 1		
7020	28.04 - 31.09	3.05	10		
7021	31.09 - 34.44	3.35	Ni 1		
7022	34.44 - 34.81	0.37	80		
			110		
7023	34.81 - 35.81	1.00	10		
7024	35.81 - 40.72	4.91	30	•	•
7025	40.72 - 41.21	0.49	40		
7026	41.21 - 44.81	3.60	Ni 1		
7027	44.81 - 46.63	1.82	Ni 1		
7028	46.63 - 49.38	2.74	10		
. • - •	,,,,,,		Ni 1		
7029	49.38 - 52.43	3.05	Nil		
7030	52.43 - 55.47	3.04	Ni1		
7031	55.47 - 58.52	3.05	Ni 1		•

Report of Work Certificate

Diamond Drilling

Supply required data on a separate form for each type of work to be recorded (see table below);
 Fer Geo-sechnical work use form no. 1382 "Report of Work (Geological, Geophysical, Geochemical and Expenditures)".

North and Postal Address of M	coorded Hold		1.7		7. 3		Prospector	t Llochob No.	6 - 6 - 1 - • • • • • • • • •			
ELDOR RESE		LIMITER					<u> </u>	1300	ared this.			
Suite Page Summary of Work Perform			07741	~ A	ONTARIO	KIP	6 9 9					
Total Work Days Cr. slalmed		Mining Claim	Work		Mining Claim	Work		ning Claim	Work			
2272 DAYS	Proffix	Number	Deys Cr.	Prefix	Number	Days Cr.	Profix	Number	Deys Cr.			
for Performance of the follows work. (Check one only)	ne Te	519438	15	TI	645 347	118	78	604203	98			
Menuel Work												
Sheft Sinking Drifting or other Lateral Work.												
Compressed Air, other	Compressed Air, other 53.52.85 98 603.298 98 619/17 98											
mechanical equip. 53 5287 58 603 299 98 614 118 98												
Power Strippine 53 52 68 58 604 197 98 614 119 98												
Diamond or other Core 53 5189 58 604 201 98 614 30 98												
Land Survey		603275	98		604202	98		645348 644349	118			
All the work was performed on Mining Claim(s):78 53 5288, 53 5289, 418431, 5/3/54, 503298												
Required Information eg:	type of equi	pment, Names, A	ddresses,	etc. (S	ee Table Below)							
DIAMOND DRIE	LING	COMPLETE	0	Duri	OG PERIOD	0(+	21- No	V B 1983				
DRILLING PER	FORMED	BY HEAT	H + 5.	HERWO	OF DRILLING	.			٠,			
		34			AVE. N.	•						
		• •										
		Pan	LANA 3L3	LAI	LE ONTARIO	>						
		7 4 70	313									
OPERATORS (A	LI Cons	Ac780										
0,120,100,5		TOTAL AT	ABOU	. 1	OPRESS)							
NORMAND ROY	PIERRO	TRUCHON,	Bill G	AGNON	. GEORGE DUI	RESNZ						
2272' (feet)	€ '	diamond dril	ling									
			•									
			,		Date of Report	10		folder or Agent (S	ignature)			
Certification Verifying Rep	art of Wark				MARCH A	184	Kobat	1.00				
I hereby certify that I have	s personal and					ork ennex	ed hereto, he	ving performed t	he work			
or witnessed same during an Name and Postal Address of Pr			ennexed re	port is t	rue.							
ROBERT JONES	sison Certifyii 54	M STILLWATER	OR.	j	Nefenu on	. k	24 562					
WONES.			<u> </u>	<u>`</u>	Date Certified	·	Certified to	S grature)				
Table of Information/Atta	chments Res	nuired by the Min	na Recor	der	MARCH A	. 184	Ridal	<u> </u>				
Type of Work		cific information pa			Other information (Co	mmon to 2	or more two	es Attach	ments			
Manual Work	34											
		Nii		1	Names and addresses	of men u.h	o nertormen					
Shaft Sinking, Drifting or other Lateral Work					manual work/operate with dates and hours	d equipme	nt, together	are require	d to show			
Compressed air, other power driven or mechanical equip.	Type of equ	Ipment			water and modify	pi071		the location axtent of virial to the control of virial to the control of the cont	vork in			
arren or mechanical adulp.	Type of any	ipment and amount	expended					nearest cia				
Type of equipment and amount expended. Note: Proof of actual cost must be submitted within 30 days of recording. Names and addresses of owner or operator together with dates when drilling/strepping												
Diamond or other core drilling	Signed core	log showing; footage or and angles of hole		of	done.	ज्ञान चारताति	yrstripping	Work Sket	ch (as luplicate			
Land Survey	Name and a	ddress of Ontario lar	d surveya	,		Nit		N				
269 (91/2)												

Report of Work Certificate

Geochemical Analysis

Geochemical Analysis Results

Report of Work (Geophysical, Geological,

Please type or print.
 If number of mining claims traversed exceeds space on this form, attach a list,

Ontario Geo	chemical and Expend	itures)		•	Note: -	Only days	credits celculate	d in the
	e - e e e e e e e e e e e e e e e e e e e	•	The Mining	Act	_	In the "E: Do not use a	res" section may spend. Days Cr." shaded areas below	oolumne
Type of Survey(s)					Township	or Area		7.4
GEOCHEMIC	AL ANALYS IS				V 11	VCEM		
Claim Holder(s)						Prospector	Licence No. /300	10 27
ELOOR RE	ssources Ly	0.					1300	
	Albert St.	Ott	awa C	nt. KIP	649		. •	
Survey Compeny	7.00,0			Date of Survey	(from & to)	4. 4.	otal Miles of line (Sut
(as above)	of Gao Tachaical ranget)			21 10 Day Mo.	ej 68 Vr. Dey	11 83 Mo. Yr.		
ROBERT JONES		WATER	DR.	NEFFAN	ONT.	KZM	5 K P	
Credits Requested per Each	Claim in Columns at r	ight		aims Traversed (List in num			
Special Provisions	Geophysical	Days per Claim	Prefix	ining Claim Number	Expend. Days Cr.	Prefix	ning Claim Number	Expend. Days Cr.
For first survey:	- Electromegnetic		T8	519438	10	TB	645347	7
Enter 40 days, (This includes line cutting)	- Magnetometer		1	5194 39	10	13.13	645348	7
For each additional survey:	- Radiometric			53 52 84	10		645349	7
using the same grid: Enter 20 days (for each)	- Other			51 52 85	10			
Citter 20 days (101 cucil)	Geological		4. 4.	5352 87	7.76			
	Geochemical			2321 8 8	7			
Man Days	Geophysical	Days per Claim	3	535289	7		- 	
Complete reverse side and enter total(s) here	- Electromagnetic			603295	7			-
and enter totalis, nere	- Magnetometer			603296	1		-	
	- Radiometric		2 22	603 297	7			
	- Other			603 278	7			
	Geological			603 299	7			
	Geochemical			604 197	7			
Airborne Credits		Days per Claim		604201	7	i		
Note: Special provisions	Electromagnetic			604 303	1 7			
credits do not apply to Airborne Surveys.	Magnetometer			604 203	7	·		1
	Rediometric			604204	7	·		
Expenditures (excludes pow	ver stripping)			604 805	7			,
Type of Work Performed		1						
DRILL CORE AN Performed on Claim(s)	INLYSIS			614117	1-7-1			ļ <u>.</u>
T8 53 52 98 53 52 8	9 418431 513.	-4		614118	7			<u> </u>
				614 119	1			
Calculation of Expenditure Day	rs Credits			614120	1			
Total Expenditures		Total s Credits						
\$ 2816.50	+ 15 - /9	7.76				Tota		
Instructions						1800	` L	

	s may be apportioned at the claim holder's	For Office Use Only	
in columns at righ		Total Days Cr. Date Recorded Recorded	Mining its
MARCH 2	Recorded Holder or Agent (Signature)	Date Approved as Recorde	d Branch
	ying Report of Work		
	nat I have a personal and intimate knowledge of t		nexed here to the work

or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying K 2 -NEPERN OF ONT MARCH 2 184

1362 (81/9)

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244

SOLDTO

Eldor Resources Limited 400 - 255 Albert St. Ottawa, Ontario K1P 6A9 S H I P

DATE	SHIPPED VIA	FED LICENCE NO	PROV LICENCE NO	YOUR ORDER NO	OUR ORDER NO	Net	SALESMAN
Nov.25/83				Proj571	,	30 days	
QUANTITY	# JAN.		DESCRIPTIO	N		UNIT PRICE	*# AMOUNT
12 12		ys PPB nandling No. 56558 Nov	.15/83 Shipme	nt-2720 L.	Martin	\$ 8.00 2.75	\$ 96.00 33.00
4	Au Assay					8.00	32.00
4		nandling No. 56587 Nov	. 15/83 Shipm	ent- ?		2.75	11.00
83	Au Assay					8.00	664.00
83		nandling No. 56636 No	v. 23/83 Ship	ment-2721 "		2.75	228.25
41	Au Assay					8.00	328.00
41	, ,	nandling No. 56639 Shi	pment-2722 N	ov.22/83	11	2.75	112.75
					TOTAL .		\$ 1505.00

MOORE BUSINESS FORMS 3 7060E

ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

FACTURE / INVOICE

ESTABLISHED 1928

P.O. BOX 10, SWASTIKA, ONTAFING ON 1TO TELEPHONE: (705) 642-3244

ANALYTICAL CHEMISTS . ASSAYERS . CONSULTANTS

Certificate of Analysis

Certificate No	56558	· 		ate:	November 15, 1983	
Received Nov.	10, 1983	12 ✓	Samples of	<u>-</u>	Split Core	
Submitted by	Eldor Resources	Limited,	Ottawa, Ontario	Attn:	Mr. R. Jones	
	Project			oment # 2		

SAMPLE NO.	GOLD PPB
6908	590 600
6912	10
6918	230
6923	10
6928	200
6932	220
6934	170
6937	170 £
6947	30
7014	560 L
	310
7015	330
7017	<u>ــــــــ</u> 20

 \mathbf{v}

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244

ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No.	56587			Date:	November 15, 198	3
Received November	12, 1983	4	Samples of		Split Core	
Submitted by Ele	dor Resources	Limited,	Ottawa, Ontario) Attn	: Mr. R. Jones	Translates commission and the state of
		Project	# 571	Samole	# Kremarle	a123

SAMPLE NO.	GOLD PPB	
7026-A	Nil =	-
7027-A	Nil 10	
7028-A	10 Z Nil	`
7029-A	Nil	

G. Lebel - Minister

ESTAPLISHED 1925

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

	•				
Certificate No.	56636		Date:	November 2	3, 1983
Received Nov	v. 10, 1983	83	Samples of	Split Co	ore
Submitted by	Eldor Resources L	imited. Ott	awa, Ontario At	tn: Mr. R.	Jones
bubilitied by			ct # 571 Samples		
					Page 2 of 2
	SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB	1490 2 02 2
	6854-A	10	T 6878-A	Nil	
	6855 - A	Nil	6879-A	Nil	
	6856-A	40	6880-A	Nil	
	6857 - A	10	6881-A	Nil	
	6859-A	50	6882-A	Nil	·
	6860-A	130 180	6883 - A	10 10	
	6861-A	20	6884-A	Nil	
•	6862-A	Nil	6886-A	Nil	·
	► 6863-A	Nil	6887-A	Nil	
	<u>-</u> 6864-₽.	Nil ,	€ 6889-A	Nil	
	6865-A	Nil	ν ₀ 6891-Λ	Nil	
	6866-A	Nil	6892 - 7	Nil	
	6867-A	10	6894-A	Nil	
	6868-A	Nil	6896-A	Nil	
	6870-A	Nil	6897-A	Nil	
	6871-A	Nil	6898 - A	Nil	
	. 6872-A	10	6899−∧	Nil	
	6873-A	10		10	
		10	6900−٨	Nil	
	6874-A	10	. 6902-ν	Nil	
	6875-A	Nil	6903-V	Nil	

G. Jahril - Managér

Mil

6904-A

V

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS ● ASSAYERS ● CONSULTANTS

Certificate of Analysis

Certificate No.	56636		Date:	November 23, 198	3
Received Nov	. 10, 1983	83	Samples of	Split Core	
Submitted by	Eldor Resources Li	mited, Ot	tawa, Ontario At	tn: Mr. R. Jones	
			t # 571 Samples		า
				Pac	ge 1 cf 2
	SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB	
	6792-A	10	6817 - A	Nil	
	6794-A	1.0	6818-A	Nil	
	6795-A	Nil	₩ 6828-A	Nil	
	6797-A	Nil	6829-A	200	
	6798-A	Nil	1	200	
	6799-A	Nil	6831-A	Nil	
	6800-A	10	6832-A	Ni.1	
		Nil	6833 - A	Nil	
	6801-A	Nil	6834 - A	Nil	
	6802-A	Nil	6835 - A	10	
	6804-A 6805-A	Nil	. 6836 - A	Nil	
	6805-A	Nil	6837 - A	Nil	
	6807-A	Nil	6€38 − V	Nil	
	6808-V	Nil	6839-A	Nil	
	6809-A	Nil.	6840-A	Nil	
	6810-A	Nil	6841-A 6843-A	Nil	
	6811-A	Nil	ن _{6843-A}	Nil	
	6812-A	Ni]	6844-A	10	
	6813-A	Nil	,	20	
		10	6849-A	Nil	
	6814 - Λ	Nil	6) 50 - A	Nil	
	\$ 6815-A	Ni]	6851-A	Ni 1	
	. 6816- ∆	ท่ำใ	571-7 (66) (6-7)	G. Lebel - Manager	/

Ø ...

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE (705) 642-3244

ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No. 56639 Date: November 22 1983							
Received	Nov. 10/83	41	Samples of	split core, whole	core		
Submitted by	v <u>Fldor Resc</u>	ources Ltd.,	ces Ltd., Ottawa, Ontario Att'n: Mr. R. Jones				
			Project - 571	Shipment - 2722			
	SAMPLE NO.	GOLD IPB		SAMPLE NO.	GOLD PPB		
******	- 6819A	Nil		6925A	Nil		
	6821A	10 20		6926A 6927A	10 Nil		
\	6822A 6824A	10		ίς 6927Α	Nil		
Ţ	6824A	Ni I		6929A	Nil		
	6826A	10		60304	Nii		
	6827A	Nil		6931A	Nil		
	6906A	Nil		6933A	Nil		
	6907A	Nil		6935A	10		
	6909A	Nil		6936A	60		
	6910A	Nil			90		
	6911A	10		6938A	10		
	6913A	20 30		694UA 6941A	10 10		
	6914A	Nil		6942A	Nil		
σ	6915A	Nil		6942A 6943A	Nii		
ì	6915A 6916A	Nil		5 6444A	Nil		
	n + 6917A	Nil		64444	Nil		
	6919A	Nil		69468	$X_{i,j}$		
	6920A	Nil	,	69484	N11		
	6921A	Nil		6949A	N(1)		
	1,9994	\il	-		N::		

SWASTIKA LABORATORIES LIMITED P.O. BOX 10, SWASTIKA, ONTARIO POK 170 TELEPHONE: (705) 642-3244

SOLDTO	Eldor Reso	urces Limite	đ		s\$ A	ME	
aumoun	400 - 255 Ottawa, On		***************************************				
	K1P 6A9	ls. B. Lannin			0	. Singappan speed on a gar 4 y 4 - 1 Think you	
Oct.31/83	shippel via	FED LICENCE NO.	PROV LICENCE NO	Proj. 571	DUA CADER NO	Net 30 days	SALESMAN
OUANTITY :	BERTOS.		DESCRIPTION	V "被海中"。可以为人	Carlot and Carlot		AMOUNT
6	Au Assay Sample h Cert.	andling	Oct. 31/83 Sh	ipment-2714	R. Jones	\$ 8.00 2.75	\$ 48.00 16.50
5	Au Assay			************************		8.00	40.00
5	Sample h		et. 31/83 Sh	ipment-2715	RJones	2.75	13.75
			The second secon				
							· • · · · ·
					and the same of th		
			,		TOTAL		\$ 118.25
MOORE BUSINESS FORM	IS 3 760E		ΔΝΑΙ	VTICAL CHEMIS	212 • ASSAV	ERS & CONS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FACTURE / INVOICE

ESTABLISHED 1928

SWASTIKA LABORATORI

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS . ASSAYERS . CONSULTANTS

Certificate of Analysis

Certificate No.	56412	Dat	e: October 31, 1983
Received October 25,	1983 6	Samples of	Ore/Split Core
Submitted by Eldor	Resources Limited,	Ottawa, Ontario	Attn: Mr. R. Jones
	Project # 571	Shipm	ent # 2714

6663	640	[
6664	30	
6665	50	
6666	190	-11-5
6667	600	3
6668	840	
	1060	

Per

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244

ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No.	56413		Date: October 31, 1983	
Received October 25	, 1983 5	Samples of	Split Core	
Submitted byEldor	Resources Limited,	Ottawa, Ontario	Attn: Mr. R. Jones	·
	Project # 571	Ship	pment # 2715	

SAMPLE NO.	PPB	
6673	Nil	571-1
6675	10	<i>311</i> ·
	•	

Per G. Lebel - Manager

30.25

11

SWASTIKA: LABORATORIES LIMITED P.O. BOX 10, SWASTIKA, ONTARIO POK 170 TELEPHONE: (705) 642-3244

SOLDTO	400 - 25: Ottawa, ("K1P 6A9"	Sources Limited 5 Albert St. Ontario Ms. B. Lannin	d		S SA		
DATE	SHIPPED VIA	FED LICENCE NO	PROV LICENCE NO	YOUR ORDER NO	OUR DROER NO	TERMS Net	SALESMAI.
Nov.9/83		,		Proj. 571	Ĭ	30 days	
OUANTITY 3	建 物质系统	NEW THE PARTY OF T	DESCRIPTION	NSBAR 使特别	the state of the s	EUNIT PRICE	AMILIST
33		ays PPB handling				\$ 8.00	\$ 264.00
		No. 56465 No	ov.9/83 Shipme	nt-2716 R.	Jones	2.77	90.75
i i	Au Assa			********************************		8.00	88700
11	Sample	handling				2.75	,

Cert. No. 56503 Nov.9/83 Shipment-2717

DATE	REGISTE	R NO		VEN	NDOR N	10.	ONE	INVOICE I	NUMB	ER	DUE PERIOD	BANK CODE	CHEQUE N. SER
11 0	120	236						8450			83	a	
DISCOUNT	IN	VOICE A	MOU	NT ·						CO	MENTS'		
	3 3								, -				
NVOICE NO	PURCHASE ORDER	TP CODE	\$	CORP.	ACC	COUNT		CENTER		SUB LEDGE		WORK DRDER	AMOU!"
			R	ENL	85	<u> </u>	36	5:26	a	9.3			473.00
													
							ļ		<u> </u>				
		<u> </u>					- 1	MOTAS	<u> </u>				
						EXF	7/01	RATION					
								. 6 1983					·
							101	TO 10.	-				
						- AI	Hu	WEDFU	-				
		+				•	Aq	16 1983 WED FOR YMENT	-				
		-							-				
	BATCH NO			1				···		APPROVA	L GOODS SERV	/PRICE	AUDITEL :
						-			K	1			

ning Form 2 5306

Per

ESTABLISHED (90%)

SWASTIKA LABORATORIES LIMITED POLBOX 10, SWASTIKA, ONT ARIG POR 1TO

P.O. BOX 10, SWASTIKA, ONTABIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No.	56465		•	Date:	November	9, 1983
Received October 28	1983	33 Sa	mples of	Angles of the state of the st	Split	Core
Submitted by Eldon	Resources Lim	ited, Ottaw	a, Ontario	Attn:	Mr. R.	Jones
	Project # .	571	Ship	ment # 271	16	

SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB
6659	Nil	6692	Nil
. , 6660	Nil	J 6693	90
۱ × 6661	Nil		100
→ 6662	Ni l	✓ 6694 ~	Ni l
6669	Nil	, 6695 , 6696-A	Nil
6670 س	Ni l	√ 5 ~ 6696-A	Nil
6671	Ni l	√ 6697-A	Ni I
_	Nil	6698	Ni l
5 · 0 6672	Nil	` V 6699	· Nil
1 0 6674	, Nil	/ 6700	10
- 6676	Nil	v 6763	Ni 1
· U 6677	Ni]	V 6765	Nil
° ~ 6678	Nil	تر مر 6772 قر س 6772	20
6679	10	√6775-A	650
6680	Ni l	ł	980
V 6686	Nil		
6687	Ni l		
6688	Nil	Λ	
6 0689	Nil		
✓ 6690	Nil	V Pid	
V 6691	Nil		
•		•	

350

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No.	56503		Date: November 9, 1983	
Received Nov.	3, 1983	L Samples of	Split Core	
Submitted by _	Eldor Resources Limit	ed, Ottawa, Ontario	Attn: Mr. R. Jones	
	Project # 571	Sh	ipment # 2717	

SAMPLE	NO.	GOLD PPB	
6793		10	571-4
6796		Ni l	ויונכ

Ti. Lebel - Manager

ESTABLISH D 1928

14.7

Ø.

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244

: SOLD TO Eldor Resources Limited

400 - 255 Albert St. Ottawa, Ontario K1P 6A9

Att'n: Ms. B. Lannin

SAME

	ACC 111 14	P. D. Callitii					
Nov.18/83	SHIPPED VIA	FED LICENCE NO	PROV LICENCE NO	Proj. 571	OUR ORDER NO	^{1ERMS} Net 30 days	SALESVAN.
QUANTITY	建	""""	DESCRIPTION	大学教育的	抗多体。特别	EUNIT PRICE!	Mark August
6	Au Assa Sample	handling		······································		\$ 8.00 2.75	\$ 48.00
6	Cert.	. No. 56527 N	lov. 11/83 Sh	ipment-2719	R. Jones		16.50
37	Au Assa					8.00	296.30
37	Sample Cert.	handling No. 56559 N	lov.16/83 - S	hipment-2718	71 1 1	2.75	101.75

							.
			****		TOTAL .		\$ 462.25

MOORE BUSINESS FORMS 3 7060E

ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

FACTURE / INVOICE

ESTABLISHED 1928

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, OUTARIO POK 1TO THE EPHONE (70% 642/3244 11) ANALYTICAL CHEMISTS • ASSAULTS • CONSULTANTS

Certificate of Analysis

Certificate No	30321		-	Date: N	lov. 11, 1983	
Received Nov.	8, 1983	6	Samples of _	<u>Split</u>	Core	
Submitted by	Eldor Resour	ces Ltd., Otta	wa, Ontario	Attn:	Mr. R. Jone	≥s
Proj.	#571	Shipment-27	19	Samples Per:	Mr. L. Marti	n
		SAMPLE NO.	COLD PPB			
		6869	Nil ·	٦		
		6885	40			
		6888	60	571-8		
		6890	80	1		
		6893	70			
		6895	40 -	1		

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642 3244

ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No.	56559			Date:	Nov. 16, 1	983	
Received Nov.	3, 1983	37	Samples of		Split Core		
Submitted by	Eldor Resource	s Ltd., Ott	awa, Ontario		Samples P	er: Mr	. L. Martin

Proj. #571 Shipment #2718

SAMPLE N	GOLD PPB	SAMPLE NO.	GOLD PPB
<u> </u>	Nil	6774	Nil
6752	Nil	6776	Nil
6753	10	6777	Nil
6754	20 10	6778	10 10
6755	Nil	6779	Nil
6756	Nil	्रे 6780	10
6757	Nil	6781	10
6758	20	6782	Nil
6759	10	6783	Nil
6760	10	6784	Nil
6761	Nil	6785	Nil
6762	Nil	6786	Nil
6764	Nil	6787	Nil
£ 6766	10 20	5-1-6788	Nil Nil
6767	Nil	6789	Nil
6768	10	6790	Nil
. 6769	Nil	6791	Nil
6770	10		
6771	Nil		
6773	Nil		

Por

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244

SOLDTO.	400 - 255 Ottawa, O K1P 6A9	ources Limite Albert St. ntario Ms. B. Lannin			5 3/A	. We to	
Nov.30/83	SHIPPED VIA	FED LICENCE NO	PROV LICENCE NO	Proj. 571	OUR ORDER NO	Net 30 days	
MOUNTINY	6.25		DESCRIPTION	A SELECTION		UNIT PRICE	Figure 1
24 24	Au Assay Sample h Cert.	ys PPB nandling No. 56680 No	ov. 25/83 Shij	pment-2723 R	. Jones	\$ 8.00 2.75	\$ 192.0 66.0
and the second section of the		,	,	,			
	,						

AND THE STREET			,	************	*** ** *** ** **		
er e e		• • • • • •		· · · · · .	TOTAL		\$ 258.0

ANALYTICAL CHEMISTS . ASSAYERS . CONSULTANTS

FACTURE / INVOICE

ESTABLISHED 1928

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

	t, es es				në 1002	
Certificate No.	566	80		Date: Nov.	25, 1905	
Received Nov.			24 Samples	ofSplit Co	re	
		rces Limit	ed, Ottawa, Ont	ario At	tn: Mr. I	. Jones
Sub=Itted by	EIGOT Kesse			Shipment	#2723	
			Proj. #571	Billpinene		
		SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB	
		7001-A	Nil	7023-A	10	•
		7002-A	Nil	₹7024-A	30	
		1 2 7003-A	Ni1	₹ 7025-A	40	•
	i	₹7004-A	Nil	7030-A	Ni1	
	į	7005-A	Ni1	7031-A	Ni1	
		7006-A	Nil		· .	•
		7007-A	Ni1			
		7008-A	Nil			
		7009-A	Nil Nil			
		7010-A	Nil			
		7011-A	Nil	·		_
		7012-A	10			
		∵ 7013-A	Nil		•	·
	į	7016-A	10			
	•	7018-A	Ni1	•		
		7019-A	Nil			
	0	7020-A	10			•
	•	7021-A	Ni1			
		7022-A	80 110			

Per

F. Certification

I Robert C. Jones of the City of Nepean in the Province of Ontario, do hereby certify that:

- 1. I reside at 54 Stillwater Drive, Nepean, Ontario, K2H 5K2
- 2. I hold a Bachelor of Science degree in Geology from the University of Calgary, Calgary Alberta, and graduated in 1978.
- 3. I have been employed by Eldor Resources Ltd. (formerly Eldorado Nuclear Ltd.) as a geologist since February 1978.
- 4. The diamond drilling program reported herein was completed under my supervision. I was present while the drilling took place, and have logged the core in conjunction with J.T. Lionel Martin.

DATED at Ottawa, Ontario, this 2nd day of March, 1984.

Robert C. Jones

Report of Work #141

together with dates when drilling/stripping

Nit

Work Sketch (as above) in duplicate

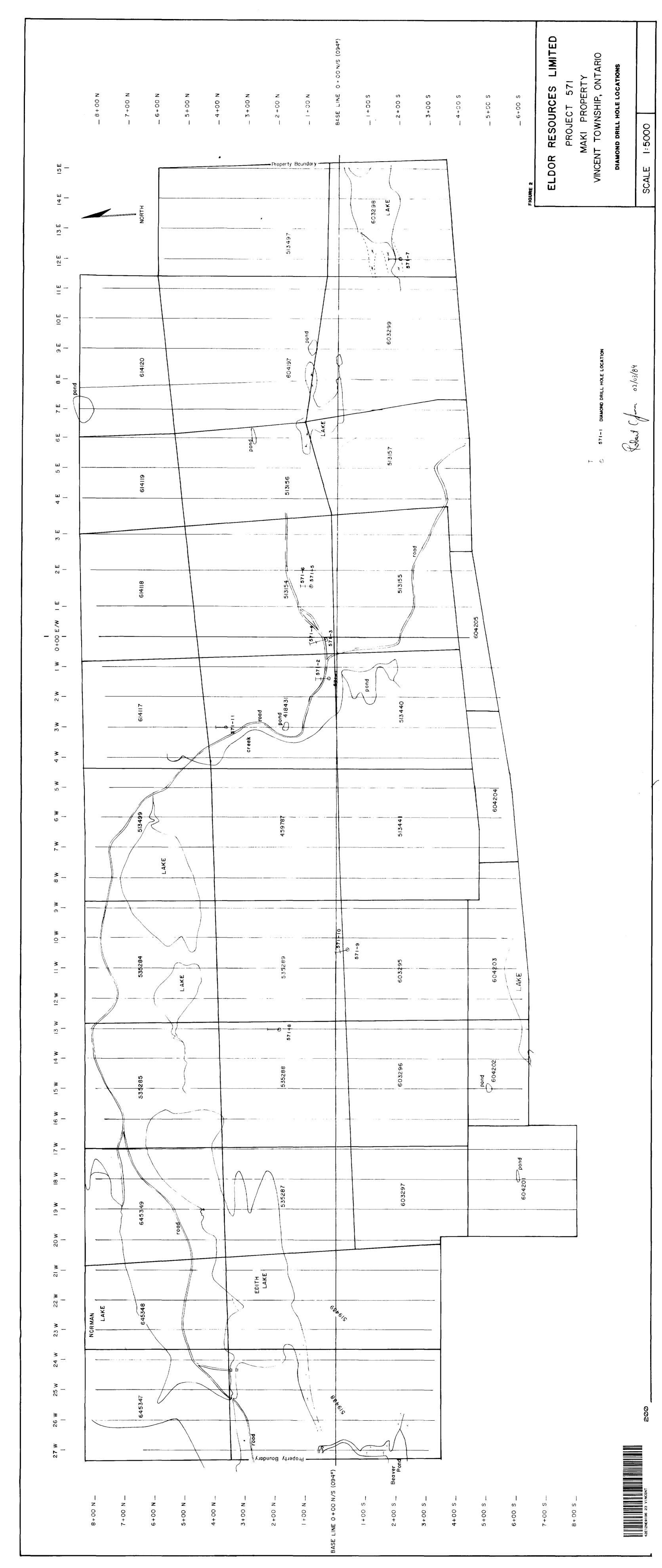
Nii

done.

Ontaria Resources	WORK	•						
VILE:	418431	The N	42E	12NE0196 23 VINC	ENT		9	300
Name and Postal Address of R	écorded Holder					Prospector's Lie		
ELOOR RESOL	ARGES LIMITED					7 13	00	
	- 255 ALBERT ST.	DTTAWA		ONTARIO	KIPE	8 A 9		·
Summary of Work Perform Total Work Days Cr. claimed	ance and Distribution of Cred Mining Claim	its Work	M	ining Claim	Work	Mining	Claim	Work
2272 DAYS	Prefix Number		efix	Number	Days Cr.	Prefix	Number	Days Cr.
for Performance of the follow work. (Check one only)	TB 519438	15 7	β	645 347 .	118	TB 60	4 2 03 V	98
Manual Work	519439	64		603296	98	6	04204 V	138
Shaft Sinking Drifting o other Lateral Work.	535284 4	17		603297	98	6	04205 V	138
Compressed Air, other	53 52 85 -	98		603298 .	98	6	14117 /	98
Power driven or mechanical equip.	53 5287 /	58		603299 1	98	6	14 118 <i>v</i>	98
Power Stripping	53 52 8 8	58		604197 v	98	6.	14119.	98
Diamond or other Core drilling	535289	58		604 201 V	98		4180 1	98
Land Survey	603295 1	98	·	604202 V	98	64	15348 V	118
All the work was performed o	n Mining Claim(s):78 53 528		4	18431, 513154	603a		13.37.1F.	1_110
	type of equipment, Names, A	<u>'</u>		· · · · · · · · · · · · · · · · · · ·		T		
nequired information og.	type or equipment, runney, r		,,,,,,				···	
DIAMOND DRI	LLING COMPLETE	o Du	RING	PERIOD	OCT	21- NOV	B 1983	
DRILLING PER	FORMED BY HEAT	H + SHER	wool	DRILLING	,			
	34			ive. N.	•			
	Pan	313	. A Ł Ē	ONTARIO		MINIDER E	YAR	
	, , , , ,	313				MINING DIVISION	IF M	
OPERATORS (A)	LL CONTACTED AT	_		\		C-FIA		
		ABOUE			บน	5 K	C:	
rocando koy	, PIERROT TRUCHON,	BILL GAGA	, מפע	GEORGE DUF	Eme	mynns to	23458	
2272 (feet)	of diamond dril	ling			31814			
Aug Our	$\mathcal{L}_{\mathbf{x}}$	Direction				∌.		
713 535288 - 149 xia	ys - bulance 3851		990	L ot				
TB418431-5957 NE	up. balance 3404.3	Heat y it.	191 1986 61	Date of Report		Recorded Hold	or or Asont (C	onatura)
78603298 - 1189 de	3: ys-bulance 385; ys-bulance 34043 ys-bulance -31367 ys-bulance -3881.)	1144220	140		184		one The state of t	igita (u. e)
Certification Verifying Rep	oort of Work						0	
	a personal and intimate knowledge nd/or after its completion and the				ork annex	ed hereto, havin	g performed th	e work
Name and Postal Address of Po	· ·	eranga seperaturan		- 0 -				
ROBERT JONES,	54 STILLWATER	OR.	- N	PERN ON	. K	Certified by (S	ignature)	
					184	Robert C.		
Table of Information/Atta	chments Required by the Min	ing Recorder					1	
Type of Work	Specific information pe	er type	Oth	er Information (Cor	nmon to 2	or more types)	Attachr	nents
Manual Work						·		
Shaft Sinking, Drifting or other Lateral Work	Nii		m	ames and addresses of anual work/operated th dates and hours of	equipme	nt, together	Work Sketc are required the location	to show
Compressed air, other power driven or mechanical equip.	Type of equipment						extent of w relation to t	ork in the
Power Stripping	Type of equipment and amount Note: Proof of actual cost must	•		amor and addresses	d aumar a			

Land Survey

drilling


Diamond or other core

within 30 days of recording.

core, number and angles of holes.

Signed core log showing; footage, diameter of

Name and address of Ontario land surveyer.

