

010

MAGNETIC
AND
HORIZONTAL LOOP ELECTROMAGNETIC
SURVEYS
FOR
BRINEX LIMITED
MANITOUWADGE PROJECT
GRID: LONER BOBCAT LAKE, A-E-6

Peter T. Gearge, P.Eng.
Consulting Geologist
July 1978

$$
\begin{gathered}
{\left[m+r^{\circ}+8\right.} \\
\text { जEt } 18
\end{gathered}
$$

INTRODUCTION:

The following report describes the results of ground geophysical surveys completed for Brinex Limited, Manitouwadge Project, Ontario. Line cutting and geophysical surveys were completed during the period June 1 to June $30,1978$.

PROPERTY DESCRIPTION:

The property consists of sixteen contiguous, unpatented mining claims designated as follows:

P501182 to P501191 inclusive
P501208, P501209
P516742 to P516744 inclusive
P516920

PROPERTY LOCATION AND ACCESS:
The property is located in Lessard Township, Porcupine Mining Division, Ontario, approximately 4900 feet west southwest of Bobcat Lake. Access to the property is via aircraft from Hornepayne, Ontario, a distance of approximately four air miles.

GEOPHYSICAL SURVEYS:
Mangetic and horizontal loop electromagnetic surveys were completed on the property.

The magnetic survey was carried out utilizing a Scintrex MP-2 Proton Magnetometer capable of reading total field values to an accuracy of ± 1 gamma. Readings were taken at 100 foot intervals on all base lines and cross lines. Base stations were established at 100 foot intervals along all base lines and tie lines. Diurnal variation was corrected for by tieing in to the base stations at time intervals generally less than one half hour and in no case greater than one hour.

The horizontal loop electromagnetic survey was carried out utilizing an Apex Parametrics Max Min II HEM. The HEM unit measures the in-phase and quadrature components of the secondary field developed in the vicinity of conductive material. The measurements are accurate to \pm 1\%. Readings were taken at 444 Hz . and 1777 Hz . frequencies utilizing a 400 foot reference cable.

Conductivity-width and depth of overburden determinations are presented on the 444 Hz . HEM maps.

REGIONAL GEOLOGY:
The Manitouwadge-Hornepayne area is underlain by Archean metavolcanic and metasedimentary rocks and high grade metamorphic rocks of probably metavolcanic and metasedimentary origin. Regional deformation, metamorphism, and granitic intrusive activity occurred during the Kenoran orogeny.

In the Manitouwadge area base metal mineralization occurs within felsic volcanic rocks. A zone of iron formation occurs near the top of the felsic volcanic unit. The iron formation can be traced for some distance to the east and west of the Manitouwadge area utilizing aeromagnetic data. The iron formation generally outlines the stratigraphic interval having the greatest potential in the area for base metal mineralization.

PROPERTY GEOLOGY AND PREVIOUS WORK:
No previous exploration work has been carried out in the vicinity of the property.

The property is probably underlain by migmatitic biotite-quartz-feldspar gneiss.

GEOPHYSICAL RESULTS:
:IACNETIC SURVEY (Map 4C, in pocket)
Maximum magnetic relief on the property is 14,100 gammas. The magnetic data displays very hict magnetic relief except in the north central sector of the property where the relief is generally less than 500 gammas.

The magnetic relief is caused by a series of narrow, elongate magnetic anomalies. The anomalies have an east-west strike direction and are probably due to magnetite bearing horizons within gneissic rocks.

Depths to bedrock based on the magnetic data in the vicinity of the HEM anomalies are as follows:

Line/Station Depth to Bedrock
4N/I1N 120
$16 \mathrm{~W} / 12+50 \mathrm{~N}$ 20

28W/15N 30
$00 / 23+50 \mathrm{~N}$
75

ELECTROMAGNETIC SURVEY (Maps 4A,4B,4D,4E, in pocket)

Three electromagnetic anomalies were located during the survey.

Anomaly A
Anomaly A occurs from line 32E to line 28 W and probably extends off the property to the west. The zone displays intermittent response at 444 Hz . The response at 444 Hz outlines a thin to 130 feet wide zone that varies in conductivity-width from very low to 240 mhos along strike. Depth of burial varies from 20 to 240 feet.

Detailed coverage of Anomaly A on lines $8 \mathrm{~W}, 20 \mathrm{~W}, 20 \mathrm{E}$, and 24E provides the following data:

Line/Station	Width (Feet)	$\frac{\text { Width (Feet) }}{y}$		Depth of Burial
$/ 12+25 N$	25	185	20	
$20 \mathrm{~W} / 16 \mathrm{~N}$	80	165	20	
$20 \mathrm{E} / 12+50 \mathrm{~N}$	20	230	40	
$24 \mathrm{E} / 12+50 \mathrm{~N}$	60	260	10	

The conductive zone occurs along the north flank of a 2000 to 5000 gamma magnetic anomaly.

Anomaly B
Anomaly B occurs from line 4W to line $28 W$ and may extend off the property to the west. The zone displays intermittent response at 444 Hz . The $444 \mathrm{~Hz} / 400$ foot cable data outlines a thin conductive zone with a conductivity-width of 0 to 115 mhos and a depth of burial of 100 to 230 feet.

Detailed coverage on line 20 W with a 100 foot reference cable indicates a conductive zone 50 feet wide with a conductivitywidth of 230 mhos and a depth of burial of 15 feet.

The zone is non magnetic.

Anomaly C

Anomaly C occurs from line 8 N to line 24 E . The $444 \mathrm{~Hz} / 400$ foot cable data indicates a conductive zone that varies in width from thin to 40 feet with a conductivity-width of 18 to 173 mhos and a depth of burial of 50 to 250 feet.

Detailed coverage of Anomaly C on lines 0 and 4 E indicates a conductive zone 30 feet wide with a conductivity-width of 50 to 140 mhos and a depth of burial of 35 to 50 feet.

The conductive zone occurs along the south flank of a 2000 to 9000 gamma magnetic anomaly.

CONCLUSIONS AND RECOMMENDATIONS:

The property is probably underlain by a sequence of migmatitic biotite-quartz-feldspar gneisses. The elongate magnetic
anomalies on the property are probably due to magnetite bearing meta-iron formation.

Three electromagnetic anomalies were located during the survey. All warrant follow-up by diamond drilling. Initial drill holes should be located as follows:

Anomaly	Line/Station		Bearing	
A	$20 W / 15+75 N$		180°	Dip
B	$20 W / 15+75 N$		-50°	
C	$4 E / 21+00 \mathrm{~N}$	0°	-50°	
		0°	-50°	

020

MAGNETIC
AND
HORIZONTAL LOOP ELECTROMAGNETIC
SURVEYS
FOR
BRINEX LIMITED
MANITOUWADGE PROJECT
GRID: LINBARR LAKE, A-E-1,2

Peter T. George, P.Eng. Consulting Geologist

July 1978


```
GRID: IINBARR LAKE, A-E-1,2
```


INTRODUCTION:

The following report describes the results of ground geophysical surveys completed for Brinex Limited, Manitouwadge Project, Ontario. Line cutting and geophysical surveys were completed during the period June 1 to June $30,1978$.

PROPERTY DESCRIPTION:
The property consists of eight contiguous, unpatented mining claims designated as follows:

P501192 to P501197 inclusive
P516741, P516740

PROPERTY, LOCATION AND ACCESS:

The property is located in Foch Township, Porcupine Mining Division, Ontario, approximately 800 feet west of Linbarr Lake. Access to the property is via aircraft from Hornepayne, Ontario, a distance of approximately ten air miles.

GEOPHYSICAL SURVEYS:

Mangetic and"horizontal loop electromagnetic surveys were completed on the property.

The magnetic survey was carried out utilizing a Scintrex MP-2 Proton Magnetometer capable of reading total field values to an accuracy of ± 1 gamma. Readings were taken at 100 foot intervals on all base lines and cross lines. Base stations were established at 100 foot intervals along all base lines and tie lines. Diurnal variation was corrected for by tieing in to the base stations at time intervals generally less than one half hour and in no case greater than one hour.

The horizontal loop electromagnetic survey was carried out utilizing an Apex Parametrics Max Min II HEM. The HEM unit measures the in-phase and quadrature components of the secondary field developed in the vicinity of conductive material. The measurements are accurate to $\pm 1 \%$. Readings were taken at 444 Hz . and 1777 Hz . frequencies utilizing a 400 foot reference cable.

Conductivity-width and depth of overburden determinations are presented on the 444 Hz . HEM maps.

REGIONAL GEOLOGY:

The Manitouwadge-Hornepayne area is underlain by Archean metavolcanic and metasedimentary rocks and high grade metamorphic rocks of probably metavolcanic and metasedimentary origin. Regional deformation, metamorphism, and granitic intrusive activity occurred during the Kenoran orogeny.

In the Manitouwadge area base metal mineralization occurs within felsic volcanic rocks. A zone of iron formation occurs near the top of the felsic volcanic unit. The iron formation can be traced for some distance to the east and west of the Manitouwadge area utilizing aeromagnetic data. The iron formation generally outlines the stratigraphic interval having the greatest potential in the area for base metal mineralization.

PROPERTY GEOLOGY AND PREVIOUS WORK:
No previous exploration work has been carried out in the vicinity of the property.

The property is underlain by migmatitic biotite-quartzfeldspar gneiss with approximately 50% granitic and pegmatitic material. Gneissosity on the property has a generally eastwest strike with steep dips.

GEOPHYSICAL RESULTS:
MAGNETIC SURVEY (Map 1c, in pocket)
Maximum magnetic relief on the property is 4,270 gammas. The magnetic data displays generally high magnetic relief north of the base line due to the occurrence of a number of narrow, elongate, east-west trending magnetic anomalies. South of the base line the magnetic data displays moderate to low magnetic relief with the exception of a 500 to 1000 gamma magnetic anomaly that crosses the south edge of the property.

The narrow magnetic anomalies are probably due to magnetite bearing horizons within the gneisses that underlie the property. Depth to bedrock estimates for a number of areas of the property are as follows:

Line/Station Depth to Bedrock (feet)
12W/6N 75
24W/5N 30
32W/6N 125
4W/7S 50
$00 / 17 \mathrm{~S} \quad 50$
20W/16S 50
$36 \mathrm{~W} / 17+50 \mathrm{~S} \quad 80$

The depth to bedrock estimates obtained from the magnetic data is in general approximately 50 percent less than the depth estimates obtained from the 444 Hz . HEM data (Map 1A, in pocket).

ELECTROMAGNETIC SURVEY (Maps 1A,1B,1D,1E, in pocket):
Two electromagnetic anomalies were located during the survey.

ANOMALY A

Anomaly A occurs from line 12W to 20W. The 444 Hz data for 400 foot and 600 foot cables indicates a conductive zone up to 80 feet wide with a depth of burial of 140 to 220 feet.

The 200 foot cable data indicates the presence of two thin, parallel conductors with a depth of burial of 40 to 60 feet. The shorter cable data provides better definition and is probably a better indication of the nature of the conductor.

The depth estimates correlate closely with those obtained from the magnetic data.

An 1800 to 3800 gamma magnetic anomaly occurs along the south flank of the HEM anomaly.

ANOMALY B

Anomaly B crosses the south part of the property and probably extends off the property to the east and west.

The best response is on line 8 W . Detailed HEM work utilizing a 200 foot cable indicates a conductive zone 60 feet wide with a depth of burial of 60 feet and a conductivity-width in excess of 350 mhos.

The 400 foot cable data indicates a zone that varies from thin to 60 feet wide, with a depth of burial of 115 to 240 feet. The conductivity-width data ranges from 18 to 135 mhos.

The conductive zone is basically non magnetic with the exception of lines 4 W and 16 W where there are weak (50 to 125 gamma) coincident magnetic anomalies.

CONCLUSIONS AND RECOMMENDATIONS:

The property is underlain by migmatitic biotite-quartzfeldspar gneiss. The narrow, elongate magnetic anomalies that occur on the property are probably due to magnetite bearing metairon formation.

Anomaly A occurs along the north flank of an inferred iron formation. The conductivity is probably due to two thin bands of sulphides within or immediately adjacent to the iron formation.

Anomaly B is non-magnetic and probably is caused by a thin sulphide horizon. The sulphide horizon"may contain some pyrrhotite in the vicinity of lines $4 W$ and 16 W .

It is recommended that one drill hole be planned to evaluate Anomaly B. The hole should be spotted on line 8 W at station $9+50$ bearing true north at a dip of -50°.

030

MAGNETIC
AND
HORIZONTAL LOOP ELECTROMAGNETIC SURVEYS

FOR

BRINEX LIMITED

MANITOUWADGE PROJECT

GRID: VISON LAKE, A-E-4

Peter T. George, P.Eng.,
Consulting Geologist
July 1978

$$
\text { GRID: VISON LARE, A-E }=4
$$

INTRODUCTION:

The following report describes the results of ground geophysical surveys completed for Brinex Limited, Manitouwadge Project, Ontario. Line cutting and geophysical surveys were completed during the period June 1 to June $30,1978$.

PROPERTY DESCRIPTION:

The property consists of five contiguous, unpatented mining claims designated as follows:

P501198 to P501201 inclusive
P516917

PROPERTY LOCATION AND ACCESS:
The property is located in Lessard Township, Porcupine Mining Division, Ontario, approximately 4000 feet north of Vison Lake.

Access to the property is via aircraft from Hornepayne, Ontario, a distance of approximately eight air miles.

GEOPHYSICAL SURVEYS:

Mangetic and horizontal loop electromagnetic surveys were completed on the property.

The magnetic survey was carried out utilizing a Scintrex MP-2 Proton Magnetometer capable of reading total field values to an accuracy of ± 1 gamma. Readings were taken at 100 foot intervals on all base lines and cross lines. Base stations were established at 100 foot intervals along all base lines and tie lines. Diurnal variation was corrected for by tieing in to the base stations at time intervals generally less than one half hour and in no case greater than one hour.

The horizontal loop electromagnetic survey was carried out utilizing an Apex Parametrics Max Min II HEM. The HEM unit measures the in-phase and quadrature components of the secondary field developed in the vicinity of conductive material. The measurements are accurate to $\pm 1 \%$. Readings were taken at 444 Hz . and 1777 Hz . frequencies utilizing a 400 foot reference cable.

Conductivity-width and depth of overburden determinations are presented on the 444 Hz . HEM maps.

REGIONAL GEOLOGY:
The Manitouwadge-Hornepayne area is underlain by Archean metavolcanic and metasedimentary rocks and high grade metamorphic rocks of probably metavolcanic and metasedimentary origin. Regional deformation, metamorphism, and granitic intrusive activity occurred during the Kenoran orogeny.

In the Manitouwadge area base metal mineralization occurs within felsic volcanic rocks. A zone of iron formation occurs near the top of the felsic volcanic unit. The iron formation can be traced for some distance to the east and west of the Manitouwadge area utilizing aeromagnetic data. The iron formation generally outlines the stratigraphic interval having the greatest potential in the area for base metal mineralization.

PROPERTY GEOLOGY AND PREVIOUS WORK:

No previous exploration work has been carried out in the vicinity of the property.

The property is underlain dominantly by biotite-quartzfeldspar gneiss. A zone of rusty weathering biotite gneiss crosses the north part of the property. Gneissosity on the property has a generally east-west strike with steep dips.

GEOPHYSICAL RESULTS:
MAGNETIC SURVEY (Map 2C, in pocket)
Maximum magnetic relief on the property is 4000 gammas. The magnetic data displays moderate to high magnetic relief with a definite east-west to east-southeast strike trend. A prominent 2000 to 4000 gamma anomaly crosses the central part of the property. The narrow, elongate magnetic anomalies are probably due to magnetite bearing horizons within the gneissic rocks that underlie the property.

Depth to bedrock estimates for the central sector of the property are as follows:

Line/Station Depth to Bedrock (feet)
$4 \mathrm{E} / 0+50 \mathrm{~S} \quad 80$
12E/3+50S 110
20E/3+00S 30

ELECTROMAGNETIC RESULTS (Maps 2A, 2B,2D, in pocket)
One electromagnetic anomaly was located during the survey. The anomaly crosses the central part of the property and probably extends off the property to the east and west.

Coverage of the property (Maps 2A and 2B) utilizing a 400 foot reference cable indicates a conductive zone that is generally thin except in the vicinity of lines $12 \mathrm{E}, 16 \mathrm{E}$, and 20E where the zone is 40 feet wide.

Detailed coverage on line 16E (Map 2D, in pocket) indicates a conductive zone 35 feet wide with a depth of burial of approximately 20 feet and a conductivity-width in excess of 230 mhos.

The anomaly is probably caused by a sulphide horizon within or adjacent to a magnetite bearing meta-iron formation. The electromagnetic anomaly correlates with a 2000 to 4000 gamma magnetic anomaly.

The property is underlain by biotite-quartz-feldspar gneiss. The linear, narrow, magnetic anomalies that occur on the property are probably due to magnetite bearing meta-iron formation.

The electromagnetic anomaly on the property is probably due to a sulphide bearing horizon within or adjacent to magnetite bearing iron formation.

Because of the close association of base metal mineralization and iron formation in the Manitouwadge area, the electromagnetic anomaly should be tested by a drill hole. The initial drill hole should be collared on line 16 E at station $5+00 \mathrm{~S}$, bearing true north at a dip of -50°.

Respectfully submitted,

Peter T. George, P.Eng. Consulting Geologist -8

MAGNETIC
AND
HORIZONTAL LOOP ELECTROMAGNETIC
SURVEYS

FOR
BRINEX LIMITED
MANITOUWADGE PROJECT
GRID: VISON LAKE, A-E-5

Peter T. George, P.Eng.,
Consulting Geologist
July 1978

GRID: VISON LARE;A-E-5

INTRODUCTION:

The following report describes the results of ground geophysical surveys completed for Brinex Limited, Manitouwadge Project, Ontario. Line cutting and geophysical surveys were completed during the period June 1 to June 30, 1978.

PROPERTY DESCRIPTION:
The property consists of eight contiguous, unpatented mining claims designated as follows:

P501202 to P501207 inclusive
P516918, P516919

PROPERTY LOCATION AND ACCESS:
The property is located in Lessard Township, Porcupine Mining Division, Ontario, approximately 2600 feet south of Vison Lake. Access to the property is via aircraft from Hornepayne, Ontario, a distance of approximately eight air miles.

GEOPHYSICAL SURVEYS:

Mangetic and horizontal loop electromagnetic surveys were completed on the property.

The magnetic survey was carried out utilizing a Scintrex MP-2 Proton Magnetometer capable of reading total field values to an accuracy of ± 1 gamma. Readings were taken at 100 foot intervals on all base lines and cross lines. Base stations were established at 100 foot intervals along all base lines and tie lines. Diurnal variation was corrected for by tieing in to the base stations at time intervals generally less than one half hour and in no case greater than one hour.

The horizontal loop electromagnetic survey was carried out utilizing an Apex Parametrics Max Min II HEM. The HEM unit measures the in-phase and quadrature components of the secondary field developed in the vicinity of conductive material. The measurements are accurate to \pm 1\%. Readings were taken at 444 Hz . and 1777 Hz . frequencies utilizing a 400 foot reference cable.

Conductivity-width and depth of overburden determinations are presented on the 444 Hz . HEM maps.

REGIONAL GEOLOGY:
The Manitouwadge-Hornepayne area is underlain by Archean metavolcanic and metasedimentary rocks and high grade metamorphic rocks of probably metavolcanic and metasedimentary origin. Regional deformation, metamorphism, and granitic intrusive activity occurred during the Kenoran orogeny.

In the Manitouwadge area base metal mineralization occurs within felsic volcanic rocks. A zone of iron formation occurs near the top of the felsic volcanic unit. The iron formation can be traced for some distance to the east and west of the Manitouwadge area utilizing aeromagnetic data. The iron formation generally outlines the stratigraphic interval having the greatest potential in the area for base metal mineralization.

PROPERTY GEOLOGY AND PREVIOUS WORK:

No previous exploration work has been carried out in the vicinity of the property.

The property is underlain by granitic gneiss, biotite-hornblende-quartz-feldspar gneiss, and amphibolitic to chloritic mafic volcanic rocks. A sulphide bearing gossan zone occurs within pegmatitic biotite-quartz-feldspar gneiss in the northwest sector of the property.

GEOPHYSICAL RESULTS:
MAGNETIC SURVEY (Map 3C, in pocket)
Maximum magnetic relief on the property is 9850 gammas. The magnetic data displays high magnetic relief over the whole property. The data indicates an east-west strike direction for the bedrock strata.

The numerous narrow, elongate magnetic anomalies present on the property are probably due to magnetite bearing horizons within the gneisses.

A north trending zone of very high magnetic relief occurs in the vicinity of line 36 E . Readings on the line were double checked on two separate days and are valid. No geological explanation is available for this discordant feature.

Depth to bedrock estimates based on the magnetic data in the vicinity of HEH Anomaly A are as follows:

Line/Station Depth to bedrock (feet)
12E/5N 40
20E/5N 35
28E/7N 70

ELECTROMAGNETIC RESULTS (Maps 3A,3B, in pocket)

One electromagnetic anomaly occurs on the property from line 4 E to line 36 E . The zone is non magnetic but occurs along the north flank of a 2000 to 6000 gamma magnetic anomaly.

The 444 Hz HEM data indicates a zone 30 to 180 feet wide with a conductivity-width of 12 to 185 mhos. Depth of burial varies from 0 to 115 feet. The zone dips to the south at 75 to 80 degrees.

The best response is on line 8 E where the data indicates a zone 50 feet wide with a conductivity-width of 185 mhos and a depth of burial of 75 feet.

The conductivity is due to a massive sulphide zone on the north flank of a magnetite bearing meta-iron formation. A rusty weathering sulphide showing occurs in the vicinity of the conductor on line 12 E .

The property is underlain by biotite-quartz-feldspar gneiss and amphibolitic to chloritic mafic volcanic rocks. The elongate magnetic anomalies on the property are probably due to magnetite bearing meta-iron formation.

The magnetic anomaly that occurs along the south flank of HEM Anomaly A is probably due to iron formation and occurs along the contact between mafic volcanic rocks and pegmatitic to granitic gneisses. This contact may represent a mafic volcanicfelsic volcanic contact.

Anomaly A should be given high priority for drilling because of the similarity of the geological environment with that at Manitouwadge and because of the known occurrence of sulphides in the conductive zone.

An initial hole to test the zone should be collared on line 12 E at station $8+00 \mathrm{~N}$ bearing true south at a dip of -50°. Respectfully submitted,

Peter T/Gebrge, P. Eng. Consulting Geologist

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.
Type of Survey (s) \qquad Geophysical
Township or Area LESSARD
Claim Holder (s)
\qquad
Claim Holder (s) BRINEX LTB.
Survey Company GEO EX LTD.
Author of Report R. GEORGE, R. ENG.
\qquad
Address of Author CEOEX $\triangle 70$. R. B. Box 70 , /Twins
\qquad
Total Miles of Line Cut

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Bydiometric \qquad

File No. Type
Claim Holder

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Instrument Seinteyp MP_{2} Siofor Mag.

Base Station check-in interval (hours) $0.5-1.0$ Hes.
Base Station location and value $00 / 00 \quad 6 / 193$

Coil separation
Accuracy

Method:
\square Fixed transmitter
Shoot back
In line
\square Parallel line
Frequency 444 + 1717 the.
Parameters measuredfor Pase + Quadrature

Instrument \qquad
Scale constant
Corrections made \qquad

Base station value and location

Elevation accuracy

Instrument \qquad
Method Time Domain
Parameters - On time \qquad Frequency

- Off time Range
- Delay time
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode
\qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT facts shown here need not be repeated in report TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) \qquad
Township or Area \qquad
Claim $\operatorname{Holder}(\mathrm{s})$ FRINGY LIMITeR
A. THERMUET

Survey Company \qquad
Author of Report \qquad P.T. GForeak, Ping.

Address of Author GK0 ix 470. RO. Box 70 , Timmons
Covering Dates of Survey 7 mene 4 - $7 \mathrm{n} / \mathrm{y} 15 / 78$
Total Miles of Line Cut _6.04

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radiometric \qquad (enter days per claim)

Res. Geol. \qquad Qualifications \qquad Previous Surveys
File No. Type
Date
Claim Holder

\square

GEOPHYSICAL TECHNICAL DATA
GROUND SURVEYS If more than one survey, specify data for each type of survey

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy \qquad

Instrument \qquad
MethodTime DomainFrequency Domain
Parameters - On time \qquad Frequency \qquad - Off time \qquad Range \qquad

- Delay time \qquad
- Integration time \qquad
Power \qquad
Electrode array \qquad
Electrode spacing \qquad
Type of electrode \qquad

Ministry of Natural Resources
File \qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) GeOPHYSICAL
Township or Area LESSARD
Claim Holder (s) BRINEY $\angle T D$.
A. THERIANET

Survey Company GKOEXY LTD
Author of Report RT. GEORCE, RE NQ

Total Miles of Line Cut

SPECIAL PROVISIONS		DAYs per claim			
CREDITS REQUESTED			\quad Geophysical	ENTER 40 days (includes	-Electromagnetic
:---	:---				

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Res. Geol. \qquad Qualifications

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS -- If more than one survey, specify data for each type of survey

y Instrument Apex Varanetrics Alay-Aliz II
Coil configuration H.L.M.
Coil separation \qquad
Accuracy -1%
Method:
\square Fixed transmitter
Shoot back
I In line
\square Parallel line
Frequency_ $\quad / 4 / 4 \mathrm{H}_{2}+1777 \mathrm{H} / 2$
Parameters measured /R Rose

Instrument \qquad
Scale constant
Corrections made \qquad

Base station value and location

Elevation accuracy

Instrument \qquad
Method \square Time Dom in
Parameters - On time \qquad
Frequency Domain
Frequency \qquad

- Off time \qquad Range
- Delay time \qquad
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode \qquad
\qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) GEOPHy Social
Township or Area LESSARD
Claim Holder (s) BRINEY $\angle T D$.
A. Theriantt

Survey Company GoOFy ED D.
Author of Report FR GFORCE, Y! Eng.
Address of Author GEOEx GTB., So. Boy 76, Timinins
Covering Dates of Survey $1 / 1.9^{\text {(linecuting to office) }} 1978$

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Res. Geol. Qualifications

Previous Surveys

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS If more than one survey, specify data for each type of survey

Number of Readings \qquad
Station interval _o oms
Line spacing $1 / 00^{\prime}$
Profile scale__ $\quad /{ }^{\prime \prime} 20 \%$
Contour interval 100γ

Diurnal correction method See station along R.L.
Base Station check-in interval (hours) 0.5-1.0 Hrs
Base Station location and value

Coil configuration \qquad

Coil separation
400'
Accuracy

Method: \square Fixed transmitter \square Shoot back $\quad \square$ In line Parallel line
Frequency \qquad Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain
Frequency Domain
Parameters - On time

- Off time
\qquad Frequency \qquad
- Delay time \qquad
- Integration time \qquad
Power
r
Electrode array
Electrode spacing \qquad
Type of electrode

2.2864

