ASSESSMENT REPORT DIAMOND DRILL LOGS AND ASSAYS HEARST PROJECT – FOURNIER PROPERTY MINING CLAIMS P 1217618 et al. FARQUHAR (G-2307) and ALDERSON (G-1548) TOWNSHIPS PORCUPINE MINING DIVISION NTS 42F

2.23489

MAY 0 2 2002 GEOSCIENCE ASSESSMENT OFFICE

Prepared for E. Fournier Prepared by Dave Gamble April 30, 2002

ALDERSON

42F08SW2003 2.23489

010

Feb 7 2002 Date / Time of Issue

TOWNSHIP / AREA

FARQUHAR

ADMINISTRATIVE DISTRICTS / DIVISIONS

Mining Division Land Titles/Registry Division **Ministry of Natural Resources District**

TOPOGRAPHIC

11:48h Eastern

PLAN

G-2307

Porcupine

ALGOMA

WAWA

LAND TENURE

Freehold Patent

Surface Rights Only

Surface And Mining Rights

Mining Rights Only

Leasehold Patent

Surface And Mining Rights

Surface Rights Only

Mining Rights Only

Licence of Occupation

Uses not Specified

Surface And Mining Rights

Surface Rights Only

Mining Rights Only

Land Use Permit

Order_in_Council

Water, Power, Lease Aggreement

1 C -					•	~
1	- 1	234	(5)	67		ł,
é.						ŝ
č.	<i>.</i>	$\mathbf{s}_{\mathbf{b}}^{\mathbf{b}}$	4		70	ł

Mining Claim

LAND TENURE WITHDRAWALS

Areas Withdrawn from Disposition

DDH No: <u>99 - 11 ext</u>

Sheet ____1___of ___2____

DAVE GAMBLE GEOSERVICES INC. 70 First Street, Kirkland Lake, Ontario, P2N 1N3, Tel: 705-567-4381, Fax: 705-567-3801

					DRILL RECOR	RD								
Project:	HEARST P	ROJECT	Azimuth:	015 deg.	Started:	MAY 30, 200	00	Logged	For: E. F	OURNIER			~	
Property	: FOURNIE	R PROPERTY	Dip:	- 60 deg.	Complet	ed: JUNE 5,	2000	Logged	By: DAVE	GAMBL	E, MAY 7	, 2001	C.L	CAG
Twp/Clai	m: FARQU	JHAR TWP P 1217618	Location:	L180mN and 200mE of Pos	st #3 Core Siz	e: AQ		Tests:	TD: N/A	Dip:	Az:			
Hole No:	99-11 ext.		Total Dep	th: 436- 526 ft.	Drilled B	y: E. FOURI	NIER		TD: N/A					
Purpose	of Hole: E	xtension of DDH 99-11 from	n 436.0 ft. to	526.0 ft. as DDH 99-11 ext.	. The hole was extended	ed to test fo	r rare earth	pegmatite	hosted m	ineralizat	tion.			
Remarks dates of the entire sequence	/ Results: drilling, wa e length of e as seen i	E. Fournier personally spo as supplied by E. Fournier 1 DDH 11-99 and 11-99 exten n the previously drilled upp	tted and dri to DGG Inc. sion, see a per part of t	lled this hole during part o who was requested to carr ccompanying Graphic Log, he hole. During the current	f a summer 2000 drill p y out only the logging and accompanying D logging no samples w	orogram. All of DDH 99- rill Section. vere taken fo	drill hole i 11 ext. Ma The hole e or assay fro	nformatior gnetic Sus xtension e om this hol	n regardin ceptibility ncountere e.	g the coll readings d a conti	ar location were take nuation o	n, azimutl en at regu f the gran	n, inclinati lar interva itic gneiss	ion, and als over s
Feet	Feet			Description		Sample	From:	To:	length	Au	Aa	Cu	Zn	Li
From:	To:					Number:			(ft)	ppb	ppm	ppm	ppm	ppm
436	526 EOH	GRANITE GNEISS SEQU The rock is essentially a fit with dark brown to black bi feldspathic grey granite gn medium to coarse grained granite gneiss. There is a si the biotite flakes are medii white coarse feldspar show 436.0' - 444.0' Broken frac green small pieces of chlo From 444.7' - 446.0' ft. dan At 453.4 m a strong slip at From 460 to 526 there is a trace pyrite occurs within t The overall texture is a 'lit +/- amphibole (homblende slightly hematitized or wea layers. Some feldspars ap grained medium gray gnei	ENCE- 'lit p ne to mediur jotite <u>+</u> fine g eiss are gne crystalline to strong gneiss um grained of v a slight ting tured core w ritic mud fau rk green chlo 55 deg. TC/ n increase in he coarse gr par lit' gneis) plagioclass kly reddener pear porphyr ssic layers a	ar lit' grey biotite to white n grained crystalline medium grained green amphiboles. W issic layers of 'lit par lit' coars extured white to pale pink qui sic fabric at 37 - 40 deg. TCA crystalline and generally dark ge of pink hematite discoloura ith fine rubble 439.5 - 441.0 : It gouge - a probable "fault z brite fine fracture fillings and A cuts the gneissic texture. In the granitic white to pale pin heissic segregation's of biotite sic layered sequence with gra- granite gneiss layers alterna d feldspars in white to pale pin roblastic and range up to 1-2 Iternating with the coarse granite granite granite grani	granite gneiss layers. grey granite gneiss ifthin this quartzo- se alternating bands of artzo-feldspathic artzo-feldspathic toroughout. Locally brown. Some of the ation. ft containing fine dark one". patchy clots of chlorite. The gneissic layers. Fine e. ey fine grained biotite ating with grey white to nk granitic gneissic cm in size. The fine ined white granite									

DDH No: <u>99 - 11 ext</u> Sheet _____2_of____2_

Feet From:	Feet To:	Description	Sample Number:	From:	To:	length (ft)	Au ppb	Ag ppm	Cu ppm	Zn ppm	Li ppm
From:	To:	gneiss layers that forms this migmatitic gneissic sequence may represent a possible compositional variation of the original protolith. The compositional variation of the gneissic layering most likely represents the granitization of a possible original sedimentary sequence (a possible dirty sittstone to cleaner quartz sandstone to arkose sequence). Recrystallization as a result granitization has resulted in the development of the granitic gneiss sequence. The 'lit par lit' alternating melano- to mesocratic to leucocratic gneissic banding that developed from the granitization process appears to mimic an the original compositional layering in order to produce this migmatitic gneissic layered sequence. Some of the leucocratic gneissic layers may also represent recrystallized granite during the development of the granite gneiss migmatitic sequence EOH Cone Stored of Fourier day day.	Number:			(ft)	ppb	ppm	ppm	ppm	ppm

DAVE	GAM	BLE GEOSERVIC	es inc	· · · · · · · · · · · · · · · · · · ·	
		DIAMON		L HOLE GR	APHIC LOG
PRC	DJECT:	E FOURNIER		L	
DDł	+ No:	<u>77-11 : 99-1</u>	11 2 + 1	-	Sheet of
CO	ORDS:	FARQUHAR T	TWP	IDE	c Turk
SM-5	DEPTH	MAGNETIC	DEPTH	GRAPHIC	REMARKS
(c.g.s.)	(m) ++	SUSCEPTIBILITY 0 1.0 2.0 3.0 4.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	(m)	LOG	
0.0	330 -		/ 00		
00	250 0 -				
0.0	360		10		GTRANITE GNEISS
0.0	370	┨┽╼╞╼┿╋╪┾┽┽╋┿┿┿┿┿┿┿┿┿┿┿┿┿┿ ┝┶┶┶┶╧┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿ ┨┼┶┝┥┾┾┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿			
0.0	380	┫╎┥╎┼╎┼╎╪╎┼┝┫┝┊┝┤╢┼╎┼ ┫╎┼╎┼┼┼┼┼			
0.0	390		20		
0.0	400'-	╊┿┽┿┿┿┿┿┿┿┿┿┿┿┿ ┨┥┶┿┿┿┿┿┿┿┿┿┿┿┿┿ ┨┥╎┽┽┽┽┽┽┽┽┿┿┿┿┿			
0.0	410				
0.0	420		30		(PREVIOUSLY LOGGED TO
0.0	430				EOH 99-11 436 teer) EOH 99-11 436 teer)
0.0	440				
0.0	45050	╷ ┫╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪ ┨╪┾┿┽╪╏╪┍┿┿╃┍┿┝┽╉╊╡╡	- 		
0.0	460				40 GTRANITE GNEISS
0.0	470				
0.0	460	╹	Н 50		
0.0	500'	╶╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴			
0.0	510				
00	520				Ent 99-11 pxt. 526 feet.
	25	╴ ╋┿╋╋╋┿╋╋╋╋╋╋ ╺			EUI II II EAI.
			Ħ		
	5				
			++- ^{/0}		
	7	₅ ╒╶<mark>╽┼┼┼┼┼┼┼┼</mark>┥┥┥┥			
			₩ 80		
	600				
			#		
	2	< ¹ ++++++++++++++++++++++++++++++++++++	 90		
			Ŧ.		
		50	Ħ		
				2	
L					DATE: 1051 2007 SIGNED: 201

Sheet ____1__of___3___

DAVE GAMBLE GEOSERVICES INC. 70 First Street, Kirkland Lake, Ontario, P2N 1N3, Tel: 705-567-4381, Fax: 705-567-3801

	DRILL	RECORD		
Project: HEARST PROJECT	Azimuth: 060 deg.	Started: JUNE 7, 2000	Logged For: E. FOURNIER	alla
Property: FOURNIER PROPERTY	Dip: - 60 deg.	Completed: JUNE 20, 2000	Logged By: DAVE GAMBLE, MAY 8, 2001	NH B
Twp/Claim: FARQUHAR TWP P 1217618	Location: 730 ft N and 715 ft E of Post #3	Core Size: AQ	Tests: TD: N/A Dip: Az:	77
Hole No: 00-12	Total Depth: 315 ft.	Drilled By: E. FOURNIER	TD: N/A	
Purpose of Hole: The hole was drilled to test	for rare earth pegmatite hosted mineralization and	possible sulphide mineralization i	n the gneiss sequence.	

Remarks / Results: E. Fournier personally spotted and drilled this hole during part of a summer 2000 drill program. All drill hole information regarding the collar location, azimuth, inclination, and dates of drilling, was supplied by E. Fournier to DGG Inc. who was requested to carry out only the logging of DDH 00-12. Magnetic Susceptibility readings were taken at regular intervals over the entire length of DDH 00-12, see accompanying Graphic Log, and accompanying Drill Section. The hole encountered several diabase dykes that intrude into a migmatitic gneissic sequence consisting of grey to pale pink granitic gneiss, biotite-amphibolitic gneiss, and grey quartzite with remnant lean iron formation. During the current logging 7 samples were identified for assay. Only two samples were submitted for Au, Li, and Rare Earth Element (REE) analyses, and one sample was submitted for Au, Ag analyses only. Low values were obtained from the assaying.

				-							
Feet	Feet	Description	Sample	From:	To:	length	Au	Ag	Cu	Zn	Li
From:	To:		Number:			(ft)	oz/ton	ppm	ррт	ppm	ppm
0	20.0	OVERBURDEN (CASING PULLED)									
20.0	141.3	DIABASE DYKE Medium green, fine grained, massive uniform diabase dyke. The unit carries fine < 1mm magnetite grains, see may suseptiblitity readings on graphic log profile. The magnetite as well as dark green amphibole or chlorite flecks occurs as a finely disseminated grains that impart a pepper-like texture. From 130-141.3 m the diabase becomes much finer grained with an aphanitic lower contact chilled margin. The lower contact is sharp with weak local undulations to a slightly wavy contact at 25 deg. TCA.									
141.3	146.9	GRANITIC GNEISS Grey to greenish, locally pale pink, fine to medium grained crystalline, granite gneiss. Gneissic layering at 35 deg. TCA. This grey granite gneiss consists of fine dark brown to black biotite in a light grey plagioclase ground mass locally with pale pink medium grained feldspar. At 141.7-142.0, 142.4-142.8, 143.1-143.4, 144.1-144.4, and 145.2-145.0, 5, 146.4-146.9, are a coarse grained granite gneiss bands consisting of coarse crystalline pink and white feldspar and quartz that delineate the alternating gneissic layering with the grey granite gneiss. The coarse grained gneissic layering approximates 35 deg. TCA and contribute to the overall gneissic texture. Lower contact sharp at 35 deg. TCA.	467*** 468*** plus (***) denotes REE analyses	141.7 144.4	144.4 146.9	2.7 2.5	<0.001 <0.001				8 7

Sheet ____2_of___3___

East	L Fast	Description	Romala	Energy	Ter	lam-th	A				
From	To	Description	Number	FIOID:	10:		Au	Ag		20	
	10.		realizer.				021011	Phil	Ppin	ppm	Phu Phu
146.9	160.7	 GREY QUARTZITE + BANDED AMPHIBOLITE (BIF) + DIABASE DYKLETS Gray, fine grained, siliceous quartzite with dark green to black alternating 1mm to 1 cm bands of amphibolite bands and fine remnant banded lean iron formation. Locally strong 1 mm to 5 mm magnetite layers but much of it has been recrystallized to amphibolitic layers. The finely layered texture of dark black magnetite (1mm to 5mm layers alternated with grey quartzite is strong evidence for a recrystallized banded iron formation, BIF, i.e. alternating thin siliceous sedimentary layers with thin bedded lean magnetite iron formation. Some of the dark green layers are now amphibolitic with trace to 5% finely disseminated pyrrhotite +/-pyrite. From 146.9 - 157.0 the layering/gneissocity is 30 deg. TCA. From 157.0 - 160.7 the layering steepens to 40 deg. TCA and quickly changes to 65 - 70 deg. TCA. Within this interval there are also several diabase dyklets that occur at 151.7 - 152.4 at 10 deg. TCA with wavy to minor undulating contacts, and at 154.1 - 156.5 as wavy irregular to undulating 1-3 inch thick dyklets that come in and out over the interval at 10 deg. to 25 deg. TCA. These dyklets are generally very narrow and are most likely small apopheses off of the larger dyke above. At 159.2 - 160.7 there is a coarse-grained buff tan feldspar and quartz gneissic segregation with coarse blebs of pyrite and trace pyrrhotite. The lower contact of this unit is sharp at 50 deg. TCA. 	469 470 471 472 473	146.9 150.0 153.0 156.2 159.2	150.0 153.0 156.2 159.2 160.7	3.1 3.0 3.2 3.0 1.5	<0.001	0.1			
160.7	208.6	AMPHIBOLITIC GNEISS CUT BY MINOR APLITE DYKES Medium to dark green, fine to medium grained amphibolite containing dark green amphiboles, dark brown to black biotite locally, and within a pale grey plagioclase gneissic groundmass. The gneissic fabric varies form 25 to 30 deg. TCA throughout. The unit is cut by fine-grained pale grey to pale pink aphanitic granite aplite dykes at the following intervals; 164.0 - 164.9 at 40 deg. TCA; 168.0 - 168.3 at 35 deg. TCA; 174.7 - 175.8 at 25 deg. TCA; 182.5 - 185.8 at 30 deg. TCA; 188.7 - 189.9 UCT at 50 deg. TCA and LCT at 10 deg. TCA; 191.5 - 192.5 at 25 deg. TCA; 197.7 - 199.7 irregular UCT and LCT at 10 deg. TCA; 202.7 - 202.9 at 20 deg. TCA; 205.1 - 205.5 at 30 deg. TCA; 205.3 - 207.9 UCT at 20 deg. TCA and LCT in the opposite sense at 30 deg. TCA with this dyke locally containing weak pale yellowish green epidote. Lower contact of the amphibolitic gneiss sequence is sharp at 30 deg. TCA.									

Sheet ____3__of____3___

.

Feet	Feet	Description	Sample	From:	To:	length	Au	Ag	Cu	Zn	Li
From:	To:		Number:			(ft)	oz/ton	ppm	ppm	ppm	ppm
208.6	235.5	DIABASE DYKE As previous, medium green, fine grained only weakly magnetic. The dyke is massive and uniform. Towards the lower contact the unit becomes more fractured. Lower contact irregular wavy but approximates 30 deg. TCA.									
235.5	265.8	GRANITE GNEISS Medium to coarse grained pink granite gneiss consisting of pink feldspar, dark green amphibole, and quartz. The unit varies from coarse grained quartzo-feldspathic gneissic layering to sections of finer grained amphibole + biotite feldspar granitic gneiss bands. Trace pyrite with minor quartz. Lower contact sharp at 45 deg. TCA.									
265.8	315.0 EOH	DIABASE DYKE (as previous) Medium green, fine grained, massive uniform diabase dyke with minor finely disseminated magnetite. At 307.0 - 315.0 the rock is extremely broken and shattered. Possible fault zone mud gouge at 302.9 - 303.1 ft. EOH Core Stored at Fournier cottage at Kangania Lake, Out.									

•

DAVI	E GAM	BLE GEOSERVIC	ES INC)	
		DIAMON		L HOLE GR	APHIC LOG
PR	OJECT:	E. FOURNIER	-		
DD	H No: _	00-12			Sheet of
co	ORDS: ⊿	FARQUHAR	TW	<u>P</u> ,	
	-	TO ACCOMPANY	DRILL	LOGFSO	ECTION
SM-5 (c.g.s.)	DEPTH (m) At	MAGNETIC SUSCEPTIBILITY	(m)	LOG	REMARKS
			00		
	-				0/8
0.1	20				
0.2	30		10		
0.1	40	╡╬┊╪╌╎╴╼╴┝╼╌┥╌╸╡╴┝╸┝╼╵┝╶┥╸┝╶┥╸┝╴╸ ╴			
0.2	50 50'				DARAGE DUKE
0.6	60		20		DIADASE give
0.0	70				
0.9	8073				
0.1	90				
1.1	100' -		130		
0.4	110				
1.1	120				
0.4	130		40		25,35
0.2	140				135 GRANITE GNEISS
0.8	10050				NUARTZITE + BIFINGE
79	160		50		50 5
0.0	170				10
0.0	180		-		13 AMPHIBOLITIC GNEISS
0.0	190				+ BIOTITE
00	2001.	╶╴	60		
0.7	210				130
0.0	220				DIABAGE DYNE
0.5	225 2		70		20
D.0	243				
0.0	250 50	, <mark><mark>┃<mark> </mark></mark></mark>			GRANITE GNEISS
1	260				45
1.2	220		0U		
3.0	2757		H		
0.0	290				DIABASE DYKE
OF	295	╱ <u></u> <u></u>	90		
0.0	305				
0	0/0		Ħ		EOH 315 teet.
	د		<u>H_ /00</u>		
					DATE: 1051200/ SIGNED: 201

Sheet ____1__of__4___

DAVE GAMBLE GEOSERVICES INC. 70 First Street, Kirkland Lake, Ontario, P2N 1N3, Tel: 705-567-4381, Fax: 705-567-3801

	DRII	L RECORD		
Project: HEARST PROJECT	Azimuth: 080 deg.	Started: JULY 3, 2000	Logged For: E. FOURNIER	-00
Property: FOURNIER PROPERTY	Dip: - 60 deg.	Completed: JULY 15, 2000	Logged By: DAVE GAMBLE MAY 8, 2001	Stab
Twp/Claim: FARQUHAR TWP P 1217618	Location: 730 ft N and 715 ft E of Post #3	Core Size: AQ	Tests: TD; N/A Dip: Az:	7
Hole No: 00-13	Total Depth: 277.0 ft.	Drilled By: E. FOURNIER	TD: N/A	
Durnage of Holey The hole was drilled to the	t for ram parth pagmatite bacted minoralization a	od poggible gulphide mineralizatio	n in the graine sequence	

Purpose of Hole: The hole was drilled to test for rare earth pegmatite hosted mineralization and possible sulphide mineralization in the gneiss sequence.

Remarks / Results: E. Fournier personally spotted and drilled this hole during part of a summer 2000 drill program. All drill hole information regarding the collar location, azimuth, inclination, and dates of drilling, was supplied by E. Fournier to DGG Inc. who was requested to carry out only the logging of DDH 00-13. Magnetic Susceptibility readings were taken at regular intervals over the entire length of DDH 00-13, see accompanying Graphic Log, and accompanying Drill Section. The hole encountered a diabase dyke that intrudes into a migmatitic gneissic sequence consisting of grey to pale pink granitic gneiss, biotite-amphibolitic gneiss, and grey quartzite with minor amphibolitic layers carrying weak pyrrhotite+ pyrite (possible remnant of magnetite lean iron formation). During the current logging 3 samples were identified for assay. Only one sample was submitted for assaying for Au, Ag, Pt, Pd, and ICP Whole Rock Analyses. Low assay values were reported.

Feet	Feet	Description	Sample	From:	To:	length	Au	Ag	Cu	Zn	Li
From:	To:		Number:			(ft)	oz/ton	ppm	ppm	ppm	ppm
0	21.0	OVERBURDEN (CASING PULLED)									
21.0	64.0	DIABASE DYKE Medium to dark green, fine grained, massive uniform dyke. Contains weakly disseminated magnetite and dark green flecks throughout imparting a fine speckled to pepper-like textural appearance. From 48 - 64 the diabase becomes finer grained towards the chilled margin, contact is sharp at 30 deg. TCA.									
64.0	95.1	 GREY GRANITE GNEISS Plagioclase, quartz, biotite grey granite gneiss, with minor amphiboles. Medium grey atternating with lighter grey bands with less biotite, gneissosity varies from 30 - 35 deg. TCA. Compositional segregation's forming medium grey mesocratic granitic gneissic layers to light grey white coloured leucocratic granitic gneissic layers 74.0 - 74.9 Granite Pegmatite, coarse grained crystalline grey quartz + feldspar small minor pegmatite with UCT at 25 TCA and LCT at 30 deg TCA. 79.5 - 79.6 Grey quartz vein at 30 deg. TCA. 									

Sheet _____2___of ____4____

Feet From:	Feet To:	Description	Sample Number:	From:	To:	length (ft)	Au oz/ton	Ag ppm	Cu ppm	Zn ppm	Li ppm
		89.2 - 90.3 Granite Pegmatite, coarse crystalline pale pink and pale green feldspar with grey quartz as a small minor granite pegmatite, UCT at 15 deg. TCA and LCT at 20 deg. TCA. TCA. From 90.3 - 95.1 grey biotite-plagioclase granite gneiss with 30 deg. TCA gneissic layering. Minor wavy to undulated lower contact at 30 deg. TCA.									
95.1	101.2	QUARTZITIC GNEISS + RECRYSTALLIZED BANDED LEAN IRON FORMATION BIF Finely layered pale to medium grey quartzite with light to dark alternating layers and with fine seams of pyrite and also some coarse splashes to thin layers of pyrrhotite. Some of the layered material is pale to medium green quartzite to darker green amphibolitic layers. Finely disseminated pyrrhotite + pyrite occurs within the grey quartzite rich layers and may represent a granitization of a thinly bedded 'banded lean iron formation', BIF. The gneissic layering is at 35 - 40 deg. TCA. Lower contact wavy irregular approximates 50 deg. TCA.	474 475** (**) denotes ICP WRA	95.1 99.2	99.2 101.2	4.1 2.0	<0.001	0.2	145	45	Plus g/tonne Pt <0.005 Pd <0.005
101.2	124.8	QUARTZITIC GNEISS WITH MINOR GNEISSIC LAYERS BIOTITE AMPHIBOLITE From 101.2 - 124.8 pale green-grey fine grained meta-quartzite with minor biotite + amphibolitic gneissic layering at 40 deg. TCA at 112.5. At 103.5 - 103.9, 104.1 - 105.3 Granite Pegmatite, pink granite coarse grained pink feldspar + quartz, UCT at 40 deg. TCA and LCT at 30 deg. TCA. From 108.8 - 110.8 fine layers of disseminated pyrite in a clean grey quartzite. From 113.5 - 115.6 fine layers of disseminated pyrite in grey quartzite layers at 35 - 40 deg. TCA. From 115.6 - 124.8 grey quartzite contain dark brown flecks of biotite. Lower contact sharp at 60 deg. TCA.	476	113.5	115.6	2.1					
124.8	129.4	BIOTITE - AMPHIBOLITE GNEISS Fine grained crystalline brownish black biotite and green amphiboles in a light grey plagioclase groundmass with alternating light grey to medium green gneissic layering at 40 - 50 deg. TCA. From 128 - 129 a small gneissic fold closure. Lower contact sharp at 60 deg. TCA.									
129.4	142.9	GREY GRANITE GNEISS Medium to light grey coarse to fine layered plagioclase - quartz - biotite gneiss with only minor biotite + amphibole fine layers from 133.5 - 134.3 ft. Locally coarse feldspar + quartz segregation's. Gneissic layering at 30 deg. TCA overall. Lower contact sharp at 40 deg. TCA.									
		1		1	1		1		1	1	1

5

DDH	No:	00-13

Sheet ____3___of____4___

-

Feet	Feet	Description	Sample	From:	To:	length	Au	Ag	Cu	Zn	Li
From:	10:		Number:			(π)	οΖΛ	ppm	ppm	ppm	ppm
142.9	164.4	AMPHIBOLITIC GNEISS Biotite - amphibolitic gneiss, dark green fine to medium grained with a gneissic layering at 40 deg. TCA. Locally contains fine pink to red garnets from 148.0 - 150.0 ft. At 146.7 - 147.5 ft. and 155.5 - 156.1 grey granite gneissic layer. Lower contact sharp at 30 deg. TCA.									
164.4	192.6	GREY GRANITE GNEISS Biotite - plagioclase grey granite fine to medium grained gneiss. Locally cut by leucocratic coarse grained pegmatite at 164.4 - 169.0 ft. 171.0 - 172.4 ft. that contains coarse grained white feldspar and grey quartz. Lower contact wavy irregular at 50 deg. TCA. Minor trace pyrite, trace biotite. From 172.4 - 192.6 grey biotite plagioclase gneiss. From 183.7 - 192.6 local leucocratic gneissic layering at 30 - 40 deg. TCA. Lower contact sharp at 40 deg. TCA.									
192.6	225.0	AMPHIBOLITIC GNEISS Dark grey, fine to medium grained biotite - amphibole - plagioclase gneiss with gneiss layering at 40 deg. TCA. At 193.3 - 194.1, 195.5 - 196.1, 197.4 - 198.7, 199.1 - 201.1, grey biotite-plagioclase gneiss (as previous). At 216.0 - 217.2, 221.2 - 222.3 quartz - feldspathic coarse grained leucocratic granite gneiss, gneissic fabric at 40 deg TCA. From 222.3 - 225 biotite amphibolitic gneiss. Lower contact sharp at 50 deg. TCA.									
225.0	225.8	APLITE DYKE Fine grained aphanitic, pale pink microcrystalline aplite dyke. Upper and lower contacts are conformable at 50 to 55 deg. TCA. The unit is micro fracture with dark grey fracture lined fillings.									
225.8	241.5	BIOTITE-AMPHIBOLITIC GNEISS From 235.0 - 241.5 biotite fine grained dark to medium grey weak amphibolitic gneiss. Granite Pegmatite, grey white coarse grained quartz - feldspar granite pegmatite as short intervals from 226.0 - 227.2, 228.8 - 231.0, 231.3 - 233.0, 234.0 - 235.0 at 40 deg. TCA with several at a lower angle 10 deg. TCA with wavy undulating contacts. Lower amphibolitic gneiss contact sharp at 30 deg. TCA, irregular to undulating.									

.

DDH	No:	00-13	

Sheet _____4___of____4___

-

Feet From:	Feet To:	Description	Sample Number:	From:	То:	length (ft)	Au oz/t	Ag ppm	Cu ppm	Zn ppm	Li ppm
241.5	277.0 EOH	GREY GRANITE GNEISS + BIOTITE AMPHIBOLITE GNEISS LAYERED SEQUENCE Coarse grained grey white feldspar + quartz + minor biotite as coarse gneissic layers alternating with dark grey fine grained biotite + amphibole gneissic layers at approximately 40 deg. TCA. From 241.5 - 245 and again from 272.5 - 277.0 grey granite gneiss with no alternating biotite amphibolitic bands. From 245.0 - 272.5 is an alternating gneissic layered sequence predominantly consisting of grey granite gneiss. EOH	at								
		Angen Larre, Uno.									

.

DDH No: 00-14 Sheet ______ of _____

DAVE GAMBLE GEOSERVICES INC. 70 First Street, Kirkland Lake, Ontario, P2N 1N3, Tel: 705-567-4381, Fax: 705-567-3801

	DRILL	RECORD							
Project: HEARST PROJECT	Azimuth: 110 deg.	Started: AUGUST 15, 2000	Logged For: E. FOURNIER						
Property: FOURNIER PROPERTY	Dip: - 60 deg.	Completed: OCTOBER 2, 2000	Logged By: DAVE GAMBLE, MAY 9, 2001	HISTOC					
Twp/Claim: FARQUHAR TWP P 1217618	Location: 730 ft N and 715 ft E of Post #3	Core Size: AQ	Tests: TD: N/A Dip: Az:						
Hole No: 00-14	Hole No: 00-14 Total Depth: 408.0 ft. Drilled By: E. FOURNIER TD: N/A								
Remarks / Results: E. Fournier personally spot dates of drilling, was supplied by E. Fournier t entire length of DDH 00-14, see accompanying consisting of grey to pale pink granitic gneiss, iron formation). During the current logging 8 s + 30 element ICP, and one sample was also an 469 ppm Cu reported in sulphidized lean iron f	tted and drilled this hole during part of a summer o DGG Inc. who was requested to carry out only t Graphic Log, and accompanying Drill Section. Th biotite-amphibolitic gneiss, and grey quartzite wi amples were identified for assay. Three samples w alysed for 30 element ICP, and one sample was al formation.	2000 drill program. All drill hole im he logging of DDH 00-14. Magneti- he hole encountered several diabas ith minor amphibolitic layers carry were submitted for Au, Ag, Pt, Pd. (so analysed for ICP Whole Rock A	formation regarding the collar location, azim c Susceptibility readings were taken at regul se dykes that intrudes into a migmatitic gneis ing weak pyrrhotite+ pyrite (possible remnar One sample was also assayed for Li, + Rare nalyses. The best assay value obtained was	uth, inclination, and ar intervals over the ssic sequence nt of magnetite lean Earth Elements (REE) in sample # 477 with					

Feet From:	Feet	Description	Sample Number:	From:	To:	length	Au	Ag	Cu	Zn	Li
	10.					(11)	021011	Ppm	ppm	Phil	PPIII
0	31.0	OVERBURDEN (CASING PULLED)									
31.0	82.0	DIABASE DYKE Medium green, fine to fine-medium grained crystalline texture, massive uniform, gradually becomes finer grained from 69 – 82 ft towards the lower contact. Fine grained chilled margin to dyke. Weakly magnetic becoming less to non-magnetic towards lower contact. Lower contact sharp at 25 deg. TCA.									
82.0	95.3	GREY GRANITE GNEISS Light grey plagioclase-quartz-biotite granite gneiss with alternating gneissic layers of medium grey biotite plagioclase gneiss. Gneissic layering at 30 deg. TCA. At 85.3 - 86.5, Granite Pegmatite, coarse grained crystalline pale pink and pale green feldspar + quartz with UCT at 50 deg. TCA. and LCT at 25 deg. TCA. At 87.4 - 87.9 Granite Pegmatite, coarse grained feldspar + quartz with UCT at 25 deg.TCA and LCT at 55 deg. TCA. At 92.1 - 92.6 Granite Pegmatite, UCT at 25 deg. TCA and LCT at 20 deg. TCA. At 94.0 - 95.0 Granite Pegmatite pink hematitized feldspars + quartz, coarse grained, UCT at 50 deg. TCA. LCT at 15 deg. TCA. Lower contact of grey granite gneiss sharp at 35 deg. TCA.									

Sheet ____2__of ____3___

Feet From:	Feet To:	Description	Sample Number:	From:	To:	length (ft)	Au oz/ton	Ag ppm	Cu ppm	Zn ppm	Li ppm
95.3	115.2	QUARTZITITIC GNEISS + RECRYSTALLIZED BANDED LEAN IRON FORMATION BIF Light grey siliceous grey quartzite layers alternating with medium green quartzite layers from 95.3-103.3 ft. at 30 deg. TCA. From 95.3 - 96.8 coarse 20% vuggy pyrite + pyrrhotite splashes and slugs. From 96.8 - 103.3 layered quartzite from grey to pale green with occasional fine disseminated pyrite as thin layers with several 1-3" heavily disseminated pyrite layers at 30 deg. TCA. From 103.3 - 115.2 grey siliceous quartzite layers alternating with dark green thin amphibole layers, carries finely disseminated pyrrhotite in both the grey siliceous quartzite layers and in the green amphibolitic layers. This unit also carries fine red 1-5 mm garnet crystals from 110.0 – 115.2 ft. This unit is probably a recrystallized banded lean iron formation, BIF, with the original magnetite recrystallized to amphiboles and also sulphidized to form the weak pyrite and pyrrhotite mineralization. Lower contact sharp at 30 deg. TCA.	477* 478 479** 480 481 482 483 plus * 30 elem ICP Plus ** WRA ICP	95.3 96.8 100.5 103.3 106.0 108.4 112.0	96.8 100.5 103.3 106.0 108.4 112.0 115.2	1.5 3.7 2.8 2.7 2.4 3.6 3.2	<0.001 <0.001 plus 477 479	0.2 0.1 <u>Pt q/t</u> <0.005 <0.005	469 150 <u>Pd q/t</u> <0.005 <0.005	93 80	,
115.2	156.8	AMPHIBOLITIC GNEISS Dark to medium green amphibole + biotite gneiss. Gneiss layering varies from 60 deg. TCA to 50 deg. TCA to 40 deg. TCA down the interval. Several minor narrow grey white pegmatite dykes occur at the following: 137.0 - 137.4 Granite Pegmatite, UCT at 85 deg. TCA, LCT at 80 deg.TCA, 138.1 - 139.0 Granite Pegmatite, UCT at 70 deg. TCA, LCT 60 deg. TCA. 148.9 - 150.0 Granite Pegmatite, UCT wavy, irregular at 15 deg. TCA, LCT sharp at 25 deg. TCA. The amphibolite varies from medium-fine grained to medium grained crystalline. Trace pyrite at 154.6 ft. Lower contact sharp at 40 deg. TCA.									
156.8	189.2	GREY GRANITE GNEISS Medium grained crystalline texture consisting of white plagioclase, quartz and fine biotite. Local segregation of biotite rich gneiss layers at 45 deg. TCA. Lower contact sharp at 60 deg. TCA.									
189.2	347.0	BIOTITE AMPHIBOLITIC GNEISS Medium green to grey-green biotite, amphibolitic gneiss with 'lit par lit' bands of grey white plagioclase quartz granite gneiss alternating throughout. Gneissic layering at 50 deg. TCA.									

.

Sheet _____3___of_____3_

Feet From:	Feet To:	Description	Sample Number:	From:	To:	length (ft)	Au oz/ton	Ag ppm	Cu ppm	Zn ppm	Li ppm
		The sequence is also cut by minor narrow grey granite feldspar quartz biotite granite pegmatite at 225.0 – 225.9, 241.6 - 242.2, 254.8 - 256.0 aphanitic dyke, 271.6 - 274.8, 277.6 – 280.0, 290.5 – 294.0, 326.8 - 328.8, with steeper angles to the core axis in contrast to the gneissic layering fabric. Quartz vein 337.3 – 338.4 grey quartz, fine aphanitic with 1-4% disseminated pyrite + minor graphite flecks, with UCT at 40 deg. TCA and LCT at 50 deg. TCA. From 340.0 – 347.2 fine black conductive graphite along fracture slips and as heavily Disseminated graphite in amphibolitic biotite bands 1 to 2 * thick at 341.5 - 342.1, 342.6 - 342.1 ft. The graphite is strongly conductive when tested with an ohm meter. Lower contact jagged to wavy undulated across the core axis at 90 deg. TCA.	488* *** plus *30 elem ICP, and ***15 elem REE	337.3	338.4	1.1	<0.001 plus # 488	<0.2 Pt g/t <0.005	48 Pd g/t <0.005	67	17
347.2	355.1	GREY GRANITE GNEISS Medium- grained, grey to pale pink granite gneiss, minor biotite. Lower contact sharp at 30 deg. TCA.									
355.1	361.2	DIABASE DYKE Fine-grained, medium olive-green in colour, massive and uniform diabase dyke. Fine grained aphanitic chilled contacts. UCT at 30 deg. TCA, LCT at 50 deg. TCA.					<u></u>				
361.2	380.8	GREY GRANITE GNEISS (as previous) Medium grained crystalline feldspar + quartz + minor biotite light grey granite gneiss. Lower contact at 60 deg. TCA.									
380.8	408.0 EOH	BIOTITE - AMPHIBOLITIC GNEISS (as previous) Dark to medium green amphibolite + biotite gneissic layers with alternating grey to grey white granite 'lit par lit' gneissic banding. At 399.3 - 400.8 Granite dyke or Pegmatite, pale pink, with UCT at 70 deg. TCA and LCT at 50 deg. TCA. At 404.1 - 404.3 and 404.6 - 404.7 very fine grained diabase dyklets with irregular wavy contacts that cross cut the gneissic fabric at 40 deg. TCA respectively. EOH CORE STORE OF FOURNISH Cottage and Constant of the store of the									

DAVE GAMBLE GEOSERVICES INC DIAMOND DRILL HOLE GRAPHIC LOG PROJECT: E. FOURNIER Sheet / of 2 DDH No: 00-14 COORDS: FARQUHAR TWP ACCOMPANY DRILL LOG SECTON -10 GRAPHIC DEPTH REMARKS SM-5 DEPTH MAGNETIC (m) ft SUSCEPTIBILITY LOG (m) (c.g.s.) 00 O/B 25 0.4 10 32 0.3 40 DIABASE DYKE 0.4 50 50' 0.4 60 20 Ŧο 0.0 **7**5' 80 0.0 GRANTE GNETS 0.0 90 95 130 11000 30 QUARTEITE - BIF! 10.3 10.4 105 Po+Py 110 ,30 \$00 × 100 100 120 150 NO AMPHIBOLITIC GNESS NO + BOTTE 25 0.0 130 40 0.0 140 0.0 40 150 50 145 160 0.0 50 GRANTIE GNEISS 0.0 120 75 0.0 180 .60 190 0.0 60 0.0 2001. 0.0 210 0.0 220 V AMPERSULTER GAJESS 70 0.0 230 240 00 25050 0.0 0.0 260 80 270 0.0 , 75 0.0 280 290 0.0 90 300' 0.0 0.0 310 00 320 25 / 00 DATE: 1051200 / SIGNED: 201

Sheet ____1__of___3____

DAVE GAMBLE GEOSERVICES INC. 70 First Street, Kirkland Lake, Ontario, P2N 1N3, Tel: 705-567-4381, Fax: 705-567-3801

		•	DRILL	RECORI	D								
Project: H	HEARST PF	ROJECT	Azimuth: 140 deg.	Started: C	OCTOBER 6	5, 2000	Logged I	For: E. F	DURNIER				00
Property:	FOURNIE	R PROPERTY	Dip: - 60 deg.	Complete	d: OCTOB	ER 20, 2000	Logged I	By: DAVE	GAMBLE	, MAY 9,	2001	451	16
Twp/Clair	m: FARQU	HAR TWP P 1217618	Location: 730 ft N and 715 ft E of Post #3	Core Size	: AQ		Tests: T	D: N/A	Dip:	Az:		$\overline{\mathbf{C}}$	
Hole No:	00-15		Total Depth: 291 ft.	Drilled By	: E. FOURM	IER	T	D: N/A					
Purpose	of Hole: Th	he hole was drilled to test fo	or rare earth pegmatite hosted mineralization and	possible su	ulphide min	eralization i	n the gneis	s seque	nce.				
Remarks dates of entire len grey to pa Three sau	Tarks / Results: E. Fournier personally spotted and drilled this hole during part of a summer 2000 drill program. All drill hole information regarding the collar location, azimuth, inclination, and so of drilling, was supplied by E. Fournier to DGG Inc. who was requested to carry out only the logging of DDH 00-15. Magnetic Susceptibility readings were taken at regular intervals over the re length of DDH 00-15, see accompanying Graphic Log, and accompanying Drill Section. The hole encountered a diabase dyke that intrudes into a migmatitic gneissic sequence consisting of r to pale pink granitic gneiss, biotite-amphibolitic gneiss, and a 13 ft interval of coarse grained crystalline granite pegmatite. During the current logging 4 samples were identified for assay. ee samples were analysed for Au, Li, and 14 element Rare Earth Elements (REE), with only low values for Au and Li reported.												
Feet From:	Feet To:		Description		Sample Number:	From:	To:	length (ft)	Au oz/ton	Ag ppm	Cu ppm	Zn ppm	Li ppm
0	19.0	OVERBURDEN (CASING	PULLED)										
19.0	76.1	DIABASE DYKE Medium green, medium to magnetic throughout. Beco Lower contact chilled marg	o fine grained crystalline, massive uniform diabase dyk ornes finer grained towards the lower contact from 64. gin, sharp contact at 30 deg. TCA.	ke. Weakly 0 - 76.1.									
76.1	113.2	BIOTITE-AMPHIBOLITIC Medium green, fine graine green discoloured sections biotite-amphibolitic gneiss gneissic granite pegmatite 82.6-83.2 Granite Pegmati LCT at 30 deg. TCA. 91.1-94.6 Granite Pegmati 100.2-100.4, 100.6-100.9 (103.4-104.7 Granite Pegm 30 deg. TCA. Quartz Vein at 109.2-110.0	GNEISS CUT BY NARROW GRANITE PEGMATITE d crystalline, biotite amphibolitic gneiss with local pate s exhibited by weak epidote from sausseritized plagioc sequence is locally intruded by narrow coarse crystall intervals as described below. ite, coarse grained feldspar + quartz with UCT at 35 de ite, UCT at 55 deg. TCA and LCT at 70 deg. TCA. Granite Pegmatite narrow coarse grained pegmatite hatite, pink, coarse grained with UCT at 30 deg. TCA a 0 with irregular upper and lower contacts. Grey barren	E chy pale clase. The line non eg. TCA, and LCT at quartz.									

Sheet ____2__of ____3___

Feet From:	Feet To:	Description	Sample Number:	From:	To:	length (ft)	Au oz/ton	Ag ppm	Cu ppm	Zn ppm	Li ppm
		At 110.6 - 112.4 Granite Pegmatite, grey with upper and lower contacts at 50 deg. TCA. Lower contact of biotite-amphibolitic unit sharp at 30 deg. TCA.									
113.2	126.2	GRANITE PEGMATITE Sharp upper contact at 30 deg. TCA. Coarse grained crystalline grey-white plagioclase quartz granite pegmatite that abruptly grades into very coarse grained crystalline or megacrystic zone characterized by pale to medium salmon pink massive K-feldspar from 122.0-124.3. Within the coarse megacrystic pink K-feldspar zone are several very fine blue-green 1x4 mm hexagonal shaped prismatic crystals either apatite or beryl, several coarse 2 cm lathes of dark green chlorite, and trace specks of pyrite. At 126.2 the grain size rapidly changes to a fine to medium-fine grained crystalline granite gneiss with the lower contact approximating 50 deg. TCA.	484 485*** 486*** 487*** plus *** 14 elem REE	113.2 116.5 119.8 123.1	116.5 119.8 123.1 126.2	3.3 3.3 3.3 3.1	<0.001 <0.001 <0.001				6 2 9
126.2	139.8	GREY GRANITE GNEISS Medium grained crystalline, plagioclase-quartz-biotite grey granite gneiss containing narrow biotite-amphibolite gneissic intervals. Generally massive with weakly gneissic texture to uniform throughout. Lower contact sharp to irregular embayed at 40 deg. TCA.									
139.8	179.6	BIOTITE - AMPHIBOLITIC GNEISS Dark green, fine to medium fine grained crystalline biotite amphibolitic gneiss with 'lit par lit' band of grey granite gneiss forming a gneissic banded or layered sequence. At 151.5 - 153.3 Quartz vein, barren grey, UCT at 15 deg. TCA, LCT at 50 deg. TCA. Lower contact of biotite-amphibolitic gneiss sharp at 50 deg. TCA.				-					
179.6	274.4	GREY BIOTITE GRANITE GNEISS Medium grey biotite-amphibole rich gneissic layers alternating with grey white plagioclase- quartz-biotite medium grained grey granite gneiss forming a lit par lit' gneissic layered sequence. Gneiss layers at 50 deg. to 60 deg. TCA throughout. At 230.9-231.1 grey quartz veinlet at 30 deg. TCA with trace splash pyrrhotite. Lower contact sharp at 50 deg. TCA.									
274.4	280.3	BIOTITE-AMPHIBOLITIC GNEISS Medium green, biotite-amphibolitic gneiss unit, (as previous). Upper contact at 50 deg. TCA. LCT at 45 deg. TCA. Minor quartz veinlet at 279.5-280.0 at 40 deg. TCA									

Sheet ____3___of ____3___

-

Feet From:	Feet To:	Description	Sample Number:	From:	To:	length (ft)	Au oz/ton	Ag ppm	Cu ppm	Zn ppm	Li ppm
Feet From: 280.3	Feet To: 291.0 EOH	BIOTITE GRANITE GNEISS Medium grey, biotite-plagioclase-quartz granite gneiss (as previous). Gneissic layers or fabric at 55 deg. TCA. EOH Core Store dat Focurnies con at Kengami Lata, Ont.	Sample Number:	From:	To:	length (ft)	Au oz/ton	Ag ppm	Cu ppm	Zn ppm	Li ppm

DAVE GAMBLE GEOSERVICES INC DIAMOND DRILL HOLE GRAPHIC LOG PROJECT: E FOURNIER DDH No: 00-15 Sheet / of ____ COORDS: EARQUHAR TWP TO ACCOMPANY DRILLOF SECTION GRAPHIC DEPTH REMARKS SM-5 DEPTH MAGNETIC LOG (m) 🕂 SUSCEPTIBILITY (c.g.s.) (m) 00 OB 0.3 20 25 0.2 30 10 DIABASE DYKE 0.4 40 0.7 50 50' 60 0.1 20 0.5 .30 70 75 75 80 0.3 0.0 AMPHIBOLITIC GNEISS 90 0.0 + BIOTITE 30 100' 0.0 30 110 0.0 GRANITE PEGMATITE coorse mega crystic felds, pur 00 120 50 20 40 130 GRANITE GNEISS 0.0 ,40 140 0.1 150 50 0.0 AMPHIBOLITIC GNERS 160 + BIOTITE 20 50 170 50 00 75 180 0.0 190 0.0 155 60 0.0 2001-GRANITE GNEISS 2.0 210 2.0 220 70 00 230 240 0.0 25050 0.0 260 0.0 80 .50 45 55 AMPHIBOLITIC ENEISS 270 0.0 280 0.0 GRANITE GNEISS 290 <u>_</u> EDH 291 feet 90 300' 25 100 1051200/ SIGNED: DATE:

APPENDIX

ASSAY CERTIFICATES AND INVOICES

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Assay Certificate

1W-1077-RA1

Date: MAY-31-01

Company: ELWOOD FOURNIER

Project:

Atm: E. Fournier

We hereby certify the following Assay of 10 Core samples submitted MAY-22-01 by .

Sample Number	Au oz/ton	Au Check oz/ton	Ag g/tonne	Li PFM	Pt g/tonne	Pd g/tonne	
467	<0.001	-		8			
468	<0.001	-	-	7	-	-	
470	<0.001	-	0.1		-	-	
475	<0.001	<0.001,	0.2	-	<0.005	<0.005	
476 not rec'd	-	-	-	-	-	-	
477	<0.001	-	0.2	-	<0.005	<0.005	
479	<0.001	-	0.1	-	<0.005	0.01	
485	<0.001	-	-	6	-	-	
486	<0.001	-	-	2	-	-	
487	<0.001	-	-	9	-	-	
488	<0.001	-	-	17	<0.005	<0.005	

Rare earth, Multi element and WRA results to follow.

film Certified by

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

	Swastika Laboratories Ltd.			
E. FOURNIER	1 Cameron Ave., Swastika, Ontario, P0K 1T0	Report No	:	1W1077 RL
Attention: E. Fournier	Tel: (705) 642-3244 Fax: (705) 642-3300	Date	:	May-31-01

Project:

Sample: Core

ICP Whole Rock Assay

Lithium Metaborate Fusion

Sampie Number	SiO₂ %	Al ₂ O3 %	Fe₂O₃ %	CaO %	MgO %	Na₂O %	TiO₂ %	K₂O %	MnO %	P₂O₅ %	LOI %	Ba ppm	Sr ppm	Zr ppm	Sc ppm	Y ppm	Be ppm	Co ppm	Cr ppm	Cu ppm	Ni ppm	V ppm	Zn ppm	Rb ppm	Nb ppm	Tot ai %
475	65.61	7.73	16.06	1.56	1.42	2.40	0.22	0.88	0.09	0.11	3.54	280	160	60	5	5	<5	10	240	145	30	50	45	<100	<10	99.73
479	63.69	12.37	9.91	2.23	2.41	3.38	0.40	1.76	0.14	0.13	2.99	650	350	110	10	10	<5	25	200	150	45	80	80	<100	<10	99.60

Up to 100 ppm Cr contamination due to sample grinding.

Sample is fused with Lithium metaborate and dissolved in dilute HNO3.

Signed:

.

	Swastika Laboratories Ltd.			
E. FOURNIER	1 Cameron Ave., Swastika, Ontario, P0K 1T0	Report No	:	1W1077 RJ
Attention: E. Fournier	Tel: (705) 642-3244 Fax: (705) 642-3300	Date	:	May-31-01
Project:				

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	Ai %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Рb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
477	<0.2	0.85	<5	30	0.5	5	0.23	1	62	194	469	14.40	0.09	0.63	290	2	0.04	83	420	24	5	3	<10	<1	0.11	44	<10	3	93	16
488	<0.2	1.02	<5	20	0.5	<5	0.33	<1	18	230	48	4.50	0.10	0.73	310	2	0.03	42	290	20	5	4	<10	2	0.10	36	<10	6	67	9

Up to 100 ppm Cr contamination due to sample grinding.

Sample: Core

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

.

Page 1 of 1

Client : Swastika Laboratories

Note: Analysis by NAA and ICPMS Reference # 1W-1077-RA1

	I.D.	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	Nd	Pr	Sm	Тb	Tm	Yb
		ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm
1	485	4.3	0.5	0.3	0.6	0.4	<0.1	2.6	<0.1	1.9	0.6	0.4	<0.1	<0.1	0.5
2	486	5.8	1.0	0.7	0.6	0.8	0.2	3.0	0.1	3.4	0.7	0.6	0.2	<0.1	0.8
3	487	13.4	1.3	1.0	0.5	1.0	0.3	6.5	0.2	5.3	1.6	1.4	0.2	0.2	1.2

.

,

Becquerel Laboratories Inc. 6790 Kitimat Rd,. Unit 4, Mississauga, Ont. L5N 5L9

Report: T01-00735.0

11-Jun-01

•

Client : Swastika Laboratories Ltd.

Reference # 1W-1077-RA1

ID		Wt	Ce	Cs	Eu	Hf	La	Lu	Nd	Rb	Sm	Sc	Та	Tb	Th	U	Yb
		grams	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm
1	467	2.25	23	1	0.7	2.0	12	-0.1	11	42	1.8	3.4	1.3	-0.5	1.8	-1	-0.5
2	468	1.96	7	1	0.5	1.0	4	-0.1	5	40	0.6	3.3	0.7	-0.5	0.8	-1	-0.5
3	488	1.85	22	1	0.6	2.0	11	0.1	12	52	1.9	5.5	0.5	-0.5	3.8	4	0.9

Swastika Laboratories Ltd P.O. Box 10, 1 Cameron Ave., Swastika,Ontario P0K 1T0 Tel:(705) 642-3244 Fax:(705) 642-3300 E-Mail:swaslab@nt.net

To:

E. FOURNIER P.O. BOX 256 SWASTIKA, ONTARIO P0K 1T0

DATE	INVOICE #
6/22/01	3235

Invoice

	P.O. NO.	TERMS	PROJ	ECT #
		30 DAYS		
QTY	DESCRIPTION	CERT#	RATE	AMOUNT
6 4 6 2 2 3 3 10	Au Au Pt Pd Ag Li WRA Package Multi Element Rare Earth Package with extra elements Rare Earth Package (research grade) Sample Prep Business Number: RT883022329 Disconstruction David Markowski Strandbox Markowski Strandbox Mark	1W-1077-RA1 Degree # 29	8.00 18.00 7.25 12.50 22.00 8.40 28.00 75.00 3.50	48.00T 72.00T 29.00T 75.00T 44.00T 16.80T 84.00T 225.00T 35.00T
		GST	L	44.02
TOTAL	· · · · · · · · · · · · · · · · · · ·			\$672.82

~ `

.

May 12, 2001

Invoice 0104

Mr. Elwood Fournier P.O. Box 103, Kearns, Ontario P0K 1J0

re: Farquhar Township Exploration Project - Drill Core Logging

Attn: Mr. Elwood Fournier

Following is the invoice for geological services rendered during the period from **May 07, 2001 through to May 11, 2001,** on your Farquhar Township exploration project. The services provided include geological consultation, logging of diamond drill holes 9911 extension, 0012, 0013, 0014, and 0015, and production of a drill log, and a drill section for each hole. A total of three days are charged for the logging services and two office days for the generation of the typed logs and drill sections.

Consulting Geologist: (services as above)		
Total Hours = 40.0 hrs x 1/8 = 5 days @ \$ 325.00/day		1625.00
	-	
On the above item 7% GST		113.75
(======
TOTAL DUE	\$	1738.75

Thankyou for this business.

Sincerely

et 2/200

Dave Gamble

GST Registration Number 133063602

April 30, 2002

Invoice 0209

Mr. Elwood Fournier P.O. Box 103, Kearns, Ontario P0K 1J0

re: Farquhar Twp.-Drill Logs/Assays/ Sections, Data for Assessment Filing

Attn: Mr. Elwood Fournier

Following is the invoice for geological services rendered during the period from **April 25, 2002 through to April 30, 2002**, on your Farquhar Township exploration project. The services provided include geological consultation, revision of diamond drill hole logs for holes 99-11 extension, 00-12, 00-13, 00-14, and 00-15, and production of the drill logs, and a drill section (colour and black white) for each hole. A total of 1.5 days are charged for the revision of the logs with assay data supplied, production of drill hole colour graphic sections, graphic log, and location maps, and for the reproduction of all data (logs and assay certificates) for assessment filing.

Consulting Geologist: (services as above)		
Total Hours = 12.0 hrs x 1/8 = 1.5 days @ \$ 325.00/day		487.50
Production of colour graphic drill sections and hole location plans		
Total 24 graphics @ 4.50 ea		108.00
Photocopying 140 copies @ .10 ea		14.00
	-	······
On the above item 7% GST		42.67
		======
TOTAL DUE	\$	652.17

Thankyou for this business. Sincerely,

Dave Gamble

GST Registration Number 133063602

Work Report Summary

Transaction No:		: W0260	W0260.00770			Status:		ROVED			
Recording Date:		: 2002-M	2002-MAY-02			Work Done from:		2000-MAY-30			
Approval Date:		2002-M	2002-MAY-24			to: 2000-OCT-20					
Cli	ient(s):										
13316		162 F	2 FOURNIER, ELWOOD								
300778		778 B	BOYCE, ERLE STANLEY								
Su	rvey Type(s):										
			ASSAY		PDRILL						
w	ork Report De	etails:									
Claim#		Perform	Perform Approve	Applied	Applied Approve	Ass	sign	Assign Approve	Reserve	Reserve Approve	Due Date
Ρ	1046639	\$0	\$0	\$4,000	\$4,000		\$0	0	\$0	\$0	2008-SEP-17
Ρ	1217618	\$37,588	\$37,588	\$6,400	\$6,400	\$29,	600	29,600	\$1,588	\$1,588	2008-SEP-04
Р	1217619	\$0	\$0	\$6,400	\$6,400		\$0	0	\$0	\$0	2008-SEP-17
Ρ	1238832	\$0	\$0	\$6,400	\$6,400		\$0	0	\$0	\$0	2005-JUN-03
Р	1238833	\$0	\$0	\$8,000	\$8,000		\$0	0	\$0	\$0	2004-JUN-03
Ρ	1238835	\$0	\$0	\$4,800	\$4,800		\$0	0	\$0	\$0	2004-OCT-26
	-	\$37,588	\$37,588	\$36,000	\$36,000	\$29,	600	\$29,600	\$1,588	\$1,588	
External Credits:		s:	\$0								
Re	eserve:		\$1,588 Res	erve of Wor	k Report#: W(0260.00)770				
			\$1,588 Tota	al Remaining	9						

Status of claim is based on information currently on record.

ALDERSON

42F08SW2003 2.23489

900

-

Ministry of Northern Development and Mines

Date: 2002-JUN-19

Ministère du Développement du Nord et des Mines

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO P3E 6B5

ELWOOD FOURNIER BOX 256 SWASTIKA, ONTARIO P0K 1T0 CANADA

Tel: (888) 415-9845 Fax:(877) 670-1555

Submission Number: 2.23489 Transaction Number(s): W0260.00770

Dear Sir or Madam

Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

If you have any question regarding this correspondence, please contact STEVEN BENETEAU by email at steve.beneteau@ndm.gov.on.ca or by phone at (705) 670-5855.

Yours Sincerely,

ncodit.

Ron Gashinski Senior Manager, Mining Lands Section

Cc: Resident Geologist

Elwood Fournier (Claim Holder) Assessment File Library

Elwood Fournier (Assessment Office)

Erle Stanley Boyce (Claim Holder)

