ALCOMA ORE PROPERTIES EXPLORATI ON
(GABLeD FOLLOW UP)
A.C.R. NORTHERN TOWNSHIPS

1961

Introduction

During the sumaer of 1961 electromagnetic and magnetic surveys were conducted on certain anomalies in the township: of Way, Landry, Templeton, Franz and Derry.

During the original work in the nortiern townships (1957) prospective anomalies were chusen on the basis of:

\author{

1. High E.M. ratio
 11. E.M. and magnetic relationship
}

During the summer of 1961 anomalies were chosen for survey on the basis of (1) and (11) and also on:
111. Magnetic configuration
IV. Isolation (location with respect to other anomalies)

Diamond mrilline
In the fall of 1961 two anomalies were drilled, No. 13 and No. 55. brill logs and sections are attached to the individual reports.

Two other anomalies No. 9 and No. 52B were suggested for drilling but bricause of freezing-up approaching and the fact that further work in the northern townships was stopped, these were not worked on further.

Instruments Used

1. Mcthar, Vertical Loop, R.E.M. 5,000 C.P.S.
2. Ronka Horizontal Loop
3. Sharpe $-A_{2}$ - Magnetometer scale constant 35 gamuras per scale division.

> "V. K. Venn"

Northern Townships

Anomaly \# 3

Nortbern Block
Location Sheet \# 2 Twp. of Way

İne Cutting

Two base lines were cut on this anomaly. Base line A, 1,400' long, Azim. 326° Base Line $B, 800$ long, Azim. 056°

Cross lines were cut at 2001 intervals and at 90° to both base lines to form a box work grid of squares 200^{\prime} on a side.

Surveys Completed
(1) Magnetometer
(11) Vertical loop (R.E.M.)
(111) Horizontal loop (E.M.)

Magnetics
Two areas of anomalous magnetics were encountered. The first area is located 2001 west of base line "A". It is about 75-100' wide and strikes parallel to base line "A".

The second area of magnetics is located south of $4+00 \mathrm{~N}$ on base line "B" the band is from 25'-1001 wide and very irregular in shape.

The peak intensity on the first zone is 3,000 gammas and on the second zone is 2,500 ganmas. Background in both areas is around 2,200 gammas.

Vertical E.M.
A series of weak cross-overs parallel to the east side of the first band.

Horizontal E.M.
No positive indications.

Conclusions

The band of magnetics paralleling the west side of base line MA" is probably caused by a diabase dike. The cross-overs which are indicated by the vertical loop probably represent a contact relationship between the diabase and the country rock.

The irregularly shaped magnetics located in the S. E. corner of the grid are the result of disseminated magnetite in the country rock. There is no E. M. associated with it.

Recommendations
No further work warranted.

Northern Townships

Anomaly \# 5

Northern Block
Sheet \# 2
Tup. of Way
Sine Cutting
A base line 3,400 feet long was cut from the A.C.R. track at an azim. of 090°. Four cross-lines were cut 2,400' S at 90° to base lini.

Surveys Completed
(1) Magnetameter
(11) Vertical E.M.
(111) Horizontal E.M.

Magnetometer Survey

The magnetometer survey indicates a band of magnetics about 3001 wide striking north westerly across the grid. The peak intensity is 2,700 gammas, background beine about 2,000 gammas.

Electromagnetic Surveys

Neither the vertical or horizontal E.M. surveys show any conductive trends of consequence.

Ceology

An outcrop of diorite is located on line $34+00 \mathrm{E} ; 25+00 \mathrm{~S}$. The diorite is part of a dike striking at 085°.

Conclusions
by a diorite dike.
2. The magnetic trend crossing the property is caused
2. The lack of positive E.M. results indicate that there are no conductive bodies of consequence associated with the magnetic trend. Recommendations

No further work is warranted.

Anomaly \# 9

Iocation

Northern Block Township of Way Sheet \# 3

IIne Cutting
A base line was cut at an azimuth of 327° for a distance of 2,000'. Cross lines were cut at 200 foot intervals and at 90° to the base line.

Surveys Completed
(1) Magnetometer
(II) Vertical E.M.
(111) Horizontal E.M.

Magnetometer Survey
The magnetometer survey indicates a plum of magnetics about 8001 long and 650^{\prime} wide lying in a N.W. - S. E. direction. Background readings are approximately 2,100 gammas, with a peak intensity over the anomaly of 3,700 genmas.

Vertical E.M.
Litile to no indication of any conductive bodies. A small cross-over occurs on line $10+20 \mathrm{~N}, 0+75 \mathrm{E}$.

Horizontal E.M.
Two indication of conductivity were picked up on this survey. They occur on lines $12+00 \mathrm{~N}$ and $10+00 \mathrm{~N}$. In both cases the results coincide with a small creek flowing through the property. Coincidently the ground E.M. indications occur exactiy where the airborne indications show it to be.

Conclusions

1. The poor E.M. results indicate that the anomaly is not caused by the massive sulphides.
2. The magnetics indicate a body containing a low percent of magnetite.

Recommendations
Since the actual cause of the anomaly has not been completely ascertained and because of the possible occurrence of secondary asbestos or disiaminated sulphidos, more ground work is advisable.

Northern Townships

Anomaly \#13

Northern Block
 Sheets 3 and 4 Twp. of Way

Location

Ifne Cutting

A base line 1,800' was cut in a north-south direction. Cross lines were cut at 200^{\prime} intervals and at 90° to the base line.

Surveys Completed
$\begin{array}{ll}\text { (1) } & \text { Magnetoneter } \\ \text { (11) } & \text { Vertical E.M. } \\ \text { (1il) } & \text { Horizontal E.M. }\end{array}$

Magnetometer Survey

The survey shows strikings 20° west of north. The band is about 200 ' in width. The higher intensity readings are represented by the 5,000 gamma contour line. Background is about 2,600 gammas.

Vertical E.M.
A conductor was indicated about 200 feet west of the west side of the magnetic band and striking parallel to it.

Horizontal E.M.
The results obtained with the horizontal loop are coincidental with the higher magnetics, showing them to be weakly conductive.

Geology
An outcrop of diorite, located on the tie line into the anomaly lies on strike with the magnetic trend. It contains about 5-10 magnetite.

Conclusions

The magnetic highs on the anomaly are the result of disseminated magnetite in the diorite. The vertical E.M. conductor is caused by the contact relationship between the intrusive diorite and the country rock.

On line $2+001 \mathrm{~N}$ and $2+00 \mathrm{~W}$ there is a relationship betweer. all three surveys. There is a possibility that mineralization has been introduced along this contact zone.

Recommendations
The zone at $2+00 \mathrm{~N}, 2+00 \mathrm{~W}$ should be checked with a drill
hole.

COPI

ALGOMA ORE PROPERTIES

Division of
The Algoma Steel Corporation, Limited
Exploration Department

Diamond Deill Hole No.	1			Troperty	13		
Location of Collar	$\begin{array}{r} 2+00^{\circ} \\ 090^{\circ} \\ 4.5^{\circ} \end{array}$	$2+15$		Elev.			
Azimuth at Collar							
Hip At Collar							
Vertical Section No.		Length		2601	Core	Size	EX
Rec. in Min. Zone		By	R.v.	ted Nov.		Finish	

Northern Townships

Anomaly \#23

Location

Line Cutting

Northern Block
Sheet \#2
Township of Way

A Base line was cut at an axdmuth of 032°. Cross section lines were cut at 2001 intervals and at 90° to the base line.

Surveys

Magnetometer Survey
The magnetometer survey shows a magnetic atriking at $N 60^{\circ} \mathrm{W}$., and crossing the base line at $5+50$ south. The magnetic high is 3,150 gammas and background is about 2,500 gammas.

Horizontal E.M. Survey
The survey was completed with essentially poor results. The proximity of the C.N.R. tracks and telephone lines caused a great deal of interference. However, the survey line which was run along the base line and directly across the magnetic high indicated that there was no conductive body present. At this point no interference from telephone lines is indicated by the E.M. machine.

Conclusions
The magnetic trend is caused by a dike containing a small percentage of magnetite.
\therefore ecommendations
(1) Magnetometer
(1i) Horizontal E.M.

No further work is warranted.

Anomaly \#24

Location
Northern Block
Sheet No. 2
Township of Way

Iine Gutting

Two base lines were cut at azimuths of 323° and 53°. Cross lines were cut on both base lines at 200' intervals to form a square grid.

Surveys Completed
(1) Magnetameter
(11) Vertical E.M.
(111) Horizontal E.M.

Magnetometer Survey

The magnetometer survey revealed a circular shaped magnetic anomaly similar to that shown on the airborne magnetic sheet. The highest magnetic intensity is 2,800 gammas, background being 2,200 gamnas.

Horizontal E.M.
The horizontal E.M. survey gives no indications that a conductor is associated with the magnetics.

Vertical E.M.
The Vertical E.M. verifies the results of the Horizontal
E.M. No conductor of consequence was indicated.

Conclusions

The good correlation between the two E.M. surveys suggests that there are no conductors of importance associated with the magnetic anomaly. The magnetic anomaly is thought to be caused by a faulted segment of dike material containine a low percentage of magnetite.

Recommendations
No further work is warranted.

Northern Townships

Anomaly \# 28

Northern Block
Sheet \# L
Township of Way

İno Cutting

Surveys Completed
(1) Magnetometer
(11) Vertical E.M.

Note No Horizontal E.M. because of the number of wire fences.

Magnotometer Survey
The magnetometer survey results showed a small plum of magnetics with a peak intensity of 3,700 gamas. The background is about 2,600 gamnas. The anomaly lies along the west side of the base line and strikes parallel to it.

Vertical E.M.
A weak E.M. conductor is indicated on the east side of the base line. It parallels the magnetic trend.

Conclustions
There is no correlation between the rapnetic trend and the E.M. conductor. Neither ol the surveys are significant.

Recommendatione
No further work is warranted.

Northern Townships

Anomaly \# 30

Iocation

İne Cutting

Northern Block
Sheet \# 4
Township of Landry

Surveys Complated
A base line $1,600^{\prime}$ was cut at an azim. of 310°. Cross lines were cut at 400^{\prime} intervals and 90° to the base line.
(I) Magnetometer
(11) Horizontal E.M.

Magnetics
No magnetics of any consequence were located.
E.M.

No conductors located.
Conclusions
The survey results indicate nothing of interest on the anomaly.

Recormendations
No further work is warranted.

Northern Townships

Anomaly \# 52B

Location

Central Block
Sheet \# 16
Twp. of Derry

IIne Cutting
Base line 4, 4001 long
Azimuth 109°
Cross lines 400' intervals

Surveys

(1) Magnetometer
(11) Vertical E.M. (R.E.M.)
(111) Horizontal Loop (E.M.)

Magnetics

A plum shaped anomaly (magnetic) 1,0001 long and 700^{1} wide was outlined by the survey. The shape of the ground magnetic anomaly is the same as the airborme. The peak intensity over the anomaly on the ground survey is 6,500 garmas, background being 2,500-3,000 gammas. The plum of magnetics trends parallel to the base line.

Vertical E.M.
Four weak cross-overs were located on the south side of the base line, striking north westerly. The zone probably represents a contact relationship or fault plane.

Horizontal E.M.
No results of interest.
Geology
On line $32+0 C E-900^{\prime}$ south 2 diabase dikes, striking parallel to each other are found cutting the greenstone. The greenstone, (Qtz., biot, Hbd, schist) strikes gest-west and dips $85^{\circ} \mathrm{N}$. The diabase dikes 50-601 wide strike N-W toward the magnetic zone. The diabasc contains $5-10 \%$ magnetite.

The E.M. surveys do not indicate any conductive body that might represent a sulphide zone. The absence of conductivity leaves the anomaly to be explained only by the presence of very disseminated sulphides (pyrrhotite) or low concentrations of magnetite.

The anomaly could be explained by the fact that the magnetics along the greenstone band have been re-enforced by the diabase, which is relatively magnetic, at the point of intersection of the diabase and the greenstone.

There is also a possibility that small deposits of asbestos have been formed at the intersection of the greenstone and the diabase.

Recormendations
Further instrument work and a diamond drill hole are warranted.

Northern Townships

Anomaly 52C

Location
Central Block
Sheet \# 15
Twp. of Derry
İno Cutting
Base line 4,000'
Azimuth 307°
Cross lines 4001 intervals
Surveys
(1) Magnetometer
(12) Horizontal E.M.

Magnetics
E.M.

Geology
Small plums of magnetics with peak intensities around 6,000 gammas were located. They strike to north west.

No results of interest

Country Rnck - greenstcne basic intrusive - diabase (5-10\% mag.)

Conclusions
The anomalous magnetics are probably caused by the diabase, high in magnetite, re-enforcing the magnetic field at the junction of the diabase and greenstone.

Recommendations
No further work is warrantad.

Northern Townships

Anomaly \# 55
$\begin{array}{ll}\text { Location } & \begin{array}{l}\text { Central Block } \\ \text { Sheet \# Templeton }\end{array}\end{array}$

Ifno Cuttine

Surveys
(1) Magnetometer
(11) Horizontal E.M.

Magnotics
A base line 2,800 feet long was cut at an azim. of 136°. Cross lines were cut at 90^{8} to the base line and at 200^{\prime} and 400 intervals.
(12)

A band of magnetics 6001 long and 501 wide was located. The band strikes to the north west and has a peak intensity of 6,000 gamas. Background is approximately 2,600 gammas.

Horizontal E.M.
The horizontal loop gives a small indication of conductivity on the south side of the magnetic band.

Dri2ing
A diamond drill hole was put down on line $16+00 \mathrm{E} ; 501 \mathrm{~N}$ at $1,5^{\circ}$ to the north. The hole was 3221 long. The rock type was a meta sediment composed of Qtz., Hbd., biotite, schist, through much of the core there occurs disseminated magnetite ($5-10 \%$).

Conclusions
The magnetic ananaly ir caused by disseminated magnetite in the netasediments.

Recommendations
No further work warranted.

ALCOMA ORE PROPERTXES

Division Of
The Algoma Steel Corporation, Iimited
Expioration Department

Diamond Drill hole No. Location of Collar Azimuth at Collar Ilp at Collar Vertical Section No.

1
1600E-50: N
46°
45°

Logged By V.R.V. Started Dec. 3/61 Finished Dec. 5/61 am pm

Casing
Alternating bands of light gray to dark gray Qtz. biot. gneiss and Qtz. hict., Hbd., gneiss. The bands vary from a few inches to a foot in thick. ness. A few unaltered bands appear as a greywacke where the amphibole is plentiful the ruck approaches an amphibolite schist.

Some of the sections of the core are magnetic, containing magnetite and minor sulphides.

5-10\% Magnetic
5-10\% Magnetic
10-15\% Nagnetic
5-10才 Magnetic
5-10 N Nagnetic
Core angle varies between 50° and 55° with the axis of the core.

Hp 57° corrected 501
Jfp 52° corrected 3001

Northern Tomships

Anomalles \#61 and 61A

Location

Central Block
Sheet HIL
Twp. of Franz (south 1/2)

Fine Gut.ting

Surveys Completed

Magnetometer Survey

Vertical E, M. Survey
No conductors indicated.
Horizontal E.M. Survey
No conductors indicated.
Re anomaly HtinA
(1) Magnetometer 61
(11) Vertical E.M. 61
(111) Horizontal E.M. 6i and 61A

A base line 5,2001 long was cut on \#61 at an azir. of 090°. Cross lines were cut at 400^{\prime} inturvals. A second grid was cut on anomaly \#61A by employing line $40+00 \mathrm{E}$ on the north side of the base line of anomaly \#6l. Cross lines were cut at 90° to the base line and at 400^{\prime} intervals.

The nagnotometer survey shows a band of low magnetics tiending east - west. The peak intensity over the anomaly is 3,000 ganmas, backeround is about 2,500 gammas.

This anomaly appears as an E.M. anomaly on the airborne survey sheets. Because of its proximity to the magnetics on anonaly \#61 a grid was cut on it. Only a horizontal E.M. survey was run on the grid with negative results.

Conclusions
The magnetic highs on \#61 are caused either by basic intrusives or by disseminated magnetite in the country rock.

Recommendations
No further work is warranted.

INTRODUCTION
At the request of Mr. Donsld E. Smith of Franc. R. Joubin \& ssociate; itd., the writer has examined the results of airturne and grownd geophysical investigations, and of some geolovic mapping and driliing which were carried out on the following nins townships in the Sault Ste. Marie Mining Division, Ontario: Way, Landry, Templeton, Alderson, Franz (S $1 / 2$), Derry, Martin, Mildred aind Glasgow (W 1/2). The townships lie close to the track of the Algoma Central and Hudson Bay Railway.

The alrborne sirveys consisted of total intensity aeromagnetic and dual frequency out-of-phase electromagnetic measurements, made aiong lines which were nominally $1 / 8 \mathrm{mile}$ apart, oriented due north-south, at a mean terrain clearance of 500'. These surveys were flown and compiled over the period of Cctober, 1956 - May, 1957.
an initial atage of ground investigation was carried out in 1957 and a second stage in 1961, entailing geological mapping, magnetometer and.electromagnetic surveys and four diamond drill holes. Ground recovery of atrborne conductors proved to be very poor, with less than 25% of the targets investigated being confirmed on the ground.

Generul comments

Airborne Surveys

The clectromagnotic system employed on these surveys measured relative phase angles at $400 \mathrm{c} . \mathrm{p} . \mathrm{s}$. and $2300 \mathrm{c} . \mathrm{p} . \mathrm{s} . \mathrm{m}^{*}$:eory predicts, and experience has shown, that this type of syster.
2.
emphasizes a middie range of conductors, suppressing both very strong and very weak conductors. Highly conducting, massive sulphide bodies have been known to give rather insignificant response, whereas clays and lake-bed sediments in Canada often give very large responses. Some degree of discrimination is provided by comparing the ratio of the low frequency to high frequency phase angles. For homogeneous bodies, a ratio of 1 or greater implies high conductivity, whereas a ratio of luss than 0.5 generally implies low conductivity. Sometimes, however, a large massi.vo sulphide body nas a disseminated halo around it, and it is the lattor bidin primarily gives rise to the observed phase angles, resultigg in a low ratio.

Other criteria by which one may select conductors of possible econnaic interest include
(a) Shape of anomaly - sulphide bodies of interest are usually tabular and less than one mile in strike length. Thus the resultant conductive indications should be rather sharply peaked and not too long.
(b) Magnetic correlation - at least 50% of all base metal sulphide ore bodies in the Precambrian Shield have an appreciable mametic expression due to their pyrrhotite or magnetite content. Thus direct maęnetic correlation is encouraging, although it is neither necessary nor really sufficient for a conductor to be of base metal interest. Graphitic shear zones often carry some associated pyrrhotite.

The above remarks are intended to empnasize the dimitations of the present type of ajrborne electromanetic survey and of the interpretation of results therefrom. The proof lies in the record of t.o.P. ground investigations based on these airborne data: of about 40 "conductors" investigated only 10 wert really confirmed on the ground.

Four categories of conductive indication may be observed on these sheets:
(a) True bed-rock conduction - relatively rare
(b) Overburden conduction - the bulk of \because se indications
(c) Power line effects - narticularly in Way 'lwp.

3.

and (d) Instrumental malfunctioning - certain lines in Way and Martin Trps., for example, show conduction along their entire length, often with good ratios, whereas the adjacent lines show nothing. Whereas some of this may be due to differences in terrain clearance, others can only be caused by equipment noises.

It is unfortunate that the A.O.P. ground investigators did not discriminate as much as they could have done between the four categories of conductors, thus giving rise to the very poor recovery ratio.

Judging by the trends indicated by the aeromagnetic maps, the regional geologic strike is often within a few degrees of the filght line direction. The detectibility of this system for a conductor striking in such a direction is poor.

On several counts, therefore, one can conclude that the present airborne electromagnetic survey has not provided a complete and adequate investigation of these areas for bed-rock conductors.

Ground Surveys
The bulk of the ground electromagnetic surveys have been carried out using a portable vertical loop system with a parallel L'ze reconnaissance technique. No indication of transmitter location is given and no detail (fixed transmitter set-ups) surveys have been done to pin down conductor positions with precision. This has resulted in some waste of drilling footage.

On the few conductors which have been confirmed by the ground surveys, the tendency has been to do much too much work. For example, in Templeton Twp. one conductor was followed for nine miles on the ground, whereas this continuity was already apparent from the A.E.if. resulte, and thereafter only one hole was drilled on itd

COMMENIS BI TOWNSHIP

Way Twp.

The airborne electromagnetic (A.E.M.) results are characterized by considerable overburden effects, tempered by changes in aircraft elevation from line to line. there are also conductive effects from power lines along iarm roads.

The A.O.P. ground investigation included seven "conductors", none of which was really confirmed on the ground. One hole was drilled on "conductor" \#13, and, of course, revealed no cause for the very weak tilt angles observed.

Three new A.E.M. conductors have been designated A, B and C by the writer. These are selected as being possibly due to bed-rock conduction and each has a ratio of 0.7 or greater.

Conductor A strikes generally $\mathrm{F}-\mathrm{W}$, parallel to a road, and crosses the A.C.R. track just west of the town of Huarst. There is a strong probability that it is due to a power line, but some contorted magnetic activity in the area suggests that bedrock conduction is possible. In view of the ready access, it is recomended that the site should be examined and, if a correlating power line does not exist, ground electromagnetic and magnetometer surveys should be carried out.

Conductor B, in the south central portion of the township,
 nicely correlates a 700-800 gammas ridge. The possibility here is for a basic intrusive body carryinf asbestos or nickel. Ground follow-up is recommended on line 519.

Conductor C, lies at a bend of the h.C.K. track in the southeast quarter of the townshif, also on a road. Whereas power line and other man-made conductors are distinct possibilities here, the same road and track do not elsewhere give rise to such effects, Once again, in view of the ease of access, the writer suggests that this target should be examined on the ground.

Landry Twp.
There appears to be little of interest in the A.E.K. results. A fair amount of overburden conduction is in evidence, with the low frequency phase angle of up to 0.6° but with low ratios.

The A.O.P. investigated one area (\#30) which is primarily a magnetic anomaly with no conduction, and no ground conductor was found.

Templeton IWp.
Two major east-west striking conductors lie in the middle of the sheet. The north zone is four miles long and is still open

5.

to the east. The south zone is at least nine miles long and is open to the east and possibly to the west also. It splits into two conductors for about four miles of its length. The strongest phase angles are of the order of 0.8° and ratios are up to 0.8 .

There is intermittent, weak magnetic correlation, of the order of $20-40$ gammas on both conductors. A major cross-cutting shear or fault zone is indicated by the aeromagnetics in this vicinity.

A considerable amount of ground work has been carried out on chese two conductors by A.O.P. In particulur, the south zone has been covered by ground E.M., magnetometer and geologic surveys over its entire length: on lines 4001 apart. Noderate-tostrong multiple conductors have been confirmed on the ground, with i:at-ruittent direct magnetic correlation: of up to several thousands of gammas.

According to the outcrop picture, the conduction eenerally occurs in metasediments, including schists of various types. A single drill hole intersected graphitic schist with some pyrite and pyrrhotite. Assays were negative.

In the 1961 propram, anomaly \#55 was investigated on the ground by A.O.P. As it was an aeromagnetic anomaly only, without any A.E.M. indication, it is not surprising that no significant conduction was encountered on the ground. It was, however, drilled by one hole, to reveal numarous sections of 5% - 10% magnetite in quartz biotite gneiss, but with only minor sulphides.

In conclusion, Templeton Twp. has been the scune of considerable and largely unnecessary ground investigations. The two major conducting zones are very likely due to cross-cutting shear structures containing praphite with some pyrite and pyrrhotite.

No other A.s..ll. indications on the sheet are of sufficient promise for bed-rock conduction to warrant ground investipation.

Alderson Twp.
A long, irregular conducting zone crosses the northeast portion of the township. Phase angles of up to 0.6° and ratios of up to 1.5 suggest that bed-rock conduction exists, A second, shorter

6.

zone lies to the south near the east boundary of the sheet. There appears to be no aeromagnetic correlation on these conductors. They are probably shear zones containing graphite, with at most minor sulphdes. Although some geological mapping has been done in the central region of the madn conductor, there is no evidence of any ground geophysical investigation.

As the south zone is of reasonable length, it may be worth a ground check at C, just west of Mawgi Lake, or, if more convenient, at C, just east of this lake and close to the A.C.K. track.

Two additional conductors exhibiting moderate electrical amplitude, good ratios and apparent direct marnetic correlation, have been indicated by the latters A and B. In neither case is the conductor strike well established, but it is possibly NW for A and EN for B. The former is really incompletely defined by the present survey as it lies on the south bcundary. It is recommended that A and B should be subjected to ground investigations as well.

Franz Twr. (S $1 / 2$)
A group of conductors exist in the northeast corner of the sheet, which have good ratios and reasonably sharply peaked curve forms. These have already been followed up on the ground as A.U.P. conductors 32A, B, C, and 32A. Cood conductors with intermittent magnetic correlation were found on the ground. Conductor 31C was drilled to reveal graphte and pyrrhotite in biotite homblende schist. Presumably the remainder are similar in origin.

One h.E.M. conductor remains of possible bed-rock orign. It is designated as A and lies in the Nhi cosner of the sheet, within $1 / 4$ mile of the Canadian National Railway track. It strikes northwest and coincides with the peak of a 200 ganma closure. The ratios are ratizer poor, but the magnetic corretation compensates, in the writer's opinion. Despite the fact that this may be an accidental coincidence, the writer reconmends eround follow-un on this conductor.

Serry The.
With the exception of one line, which is probably equipment noise, the observed cenductive effects have low ratios and occur largely in lakes. A total of cleven of these poor

7.

indications have been investigated to date, and only one (\#3) confirms a minor conducting zane. On this conductor there may be a coincidence with a 500 gammas magnetic anomaly.

It is recomended that conductor \#3 should be rechecked at a convenient time under winter conditions, as it is under Lake Kabinakagam, to determine the extent of the conductor and confirm the magnetic correlation.

Two rather weak A.E.M. conductors remain, which, together, warrant ground investigation as they are only $3 / \mathrm{mile}$ apart. They are designated A and B and lie in the northwest quarter of the sheet, west of the Kabinakagand Idver. The strikes are WNW. Conductor A lies on or near the top of a 600 gammas ridef, which is possibly a basic intmusive. Asbestos and nickel poseibilities would exist. It should be checked near lines 239-2hi. Conductor B has possibly weak necative magnetic correlation, and should be checked near lines 243-245.

Martin Thp.
Aside from abnormal effects on two lines, which the writer would attribute to instrumental noise, the indicated conductors are of low amplitude and ratio.

EHeht conductore were investigated on the roundi by A.C.P., all of which fall in the above category of probaile instrumental noise. No conductors were confirmed on the ground.

There appears to be no further interest in these data. Midred Twp.

Only very minor A.E.M. conduction occurs, none of which exhibits significant magnetic correlation and most of which lies in lakes.

Glasgow 'Wp. (W $1 / 2$)
Once again, the observed conduction is of low order and mainly in lakes. No probable bed-rock conductor indications are to be seen.

GIFNERAL GROUND FOLLOW-UP PROCEDURE

For the ten A.E.M. conductors on which further work has teen recommended, the following ground follow-up procedure is suggested:

1. Out or blaze two Lines, 4001 apart, for about 20001 long, across the probable conductor strike.
2. Traverse these lines with the parallel line technque, vertical loop E.M. system to locate the conductor, if present, on each line.
3. Cut a base line along the conductor for about 1600 : total, and cut five cross lines, each 1000 ' long at LOO' intervals, centred on the base line.
1.. Carry out reconnaissance and detail E.M. surveys and magnetometer surveys on these lines.
4. Map the grid area geologically, paying special attention to the vicinity of the conductor trace, as determined by 4.

It is not generally necessary to extend the ground grid beyond what is indicated above, even if the conductors exterd, on strike, beyond the grid limits. All that is required at this stage is a selective sampling of the A.E.M. conductor in a representative section. Extension would came only after drilling or trenching, etc., had established special interest in the conductor.

Respectfully submitted,
"Harold O. Seigel"
Toronto, Ontario
Harold C. Seigel, Ph.D., P.Eng.
March 23rd, 1963.

SUMMARY

A study of the results of the airborne geophysical surveys and subsequent ground investigations in these nine townships has revealed a total of ten indications which are possibly due to bed-rock conduction and which may be of base metal or asbestos interest. One of these has been partially investigated by A.O.P. and lies on a lake. The remainder are on land and it is recomended that they should be subjected to ground geophysical and geological investigation.

The A.O.Y. ground program in this area has had a singularly poor record of conductor recovery, some of which is fundamental to the nature of the basic A.E.K. data but possibly more is attributable to improper selection of targets.

THE ALGOMA CENTRAL AND HUDSON BAY RAILWAY COMPANY

-C. WAUGH
PRESIOENT ANO OKAR W.AL MANAOET

Mr. D.P. Douglass, Esq., Deputv Minister of Mines.
Parliament Buldings,
Toronto 2, Ontiario.
Dear Mr. Donglass:

$$
L a \mu
$$

RE: Surronder of mining rights by Algoma Central Railway on limols north of C.P.R.

As ralled for in letter agrefoment ditrod torember 28th, luto, and signed by the lonorable I. A. M.lonm. Minister, we are releasing our mining rights covelud u. That
 first, lu63.
l'nder Parafiaph (7) of the atereament we ares required to submit atly addjtional informatjon obtainod prior $L 0$ October lst, 1063 , with respert to these lamde. The information is isterhed to this jettar in duplidite.

Township Copirs Number Description

Way

$\sqrt{2}$	3
$\checkmark 2$	3
$\checkmark 2$	24
$\checkmark 2$	24
$\checkmark 2$	24
-2	24

$\begin{aligned} & \text { Ground } \\ & \text { " } \end{aligned}$	$\begin{gathered} \text { Magnet ometer } \\ \text { " } \end{gathered}$	\%	Horisontal Vertic.al	$\begin{array}{ll} \operatorname{lonp} \\ 10 \end{array}$	$\underset{\#}{\text { F. . }_{i}}$	Surn
"	n	"	"	n	"	"
"	"					"
n			Horizontal	"	"	"
"			"	"	"	"

「ont'd, Page : .

Page 2
TME ALEOMA cEnPaAb amo mubeon oav mallwar company

D．P．Douglass，Esq．，

1961 Data by Algoma Ore Properties－Ground FollowUI

No．of Anomaly
Township Copies Number

Way	$\xrightarrow{2}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$		$\begin{aligned} & \text { Ground } \\ & \text { " } \end{aligned}$			vertical	$1 \text { oop }$	$\underset{\pi}{E_{0}}$	Survey
	$\checkmark 8$	23		1	Marnetometer	E	horizontal	\cdots	＂	＂
	レ2	13		n	\％	\cdots	vertical	＂	＊	＂
	\checkmark	13		＂	n	\cdots	horizontal	＂	n	＂
	$\checkmark 2$	5		＂	＂	\cdots	n	\cdots	\cdots	H
	\checkmark	5		＂	n	n	vertiral	＂	＂	n
	$\checkmark 2$	0		\％	＂	＂	horizontal	n	＂	＂
	2	1		＂	＂	＂	vertical	1	n	＂
Landry	2	90		＂	＂	－	horizontal	＂	n	\％
Templeton	－	55		＂	＂	－	＂	n	＂	＂
Derry	－ J	こ	C	＂	＂	＂	＂	n	＂	1
	2	52	13	＂	H	＂	n	＂	n	＂
	\checkmark－	门－	13	＂	＂	＂	verticas	＂	7	＂
Frand	V：	61	A	＂	11	n	horizontal	\cdots	＂	\cdots
	\checkmark	i！		＂	＂	＂	N	＂	n	＊
	－：	い1		＂	＂	＂	verrtical	＂	＂	＂

Reports by \mathfrak{Z}^{\prime} Corrring abowe ment joned anomalies
V．R．Virnt
1H6i-Franr. K, Inmin Pe Assoriates.

The aerial geophysical maps, on which are located the various anomaly numbers mentioned in the above list and in the reports, were included with other geophysical data sent to the Ontario Department of Mines by the Railway a couple of yrats ago. Consequently, additional prints of the aerial mips ard not included in the enclosed material.

For the actual transfer of the mining rights including the descriptions, would you rontact the Company fienoral Comnsel 6 Secretary, Mr. D.A. Berlis at Suite gl4, 111 Richmond Stroet, West, Tormto. It is our hope that since the nining rights are being surrendered in their erilidety l'anhet transfers for earh township will be adequate. ln so fat as our light-of-way theough the lands in question, it has prondweyd a few years ago and fhis sharery is regisford with the Master of Titles at Salll Ste. Marle and Cow home as applicathle.

Yours vory truly,

ri: Mr. H.A. Mr.jis
KRI: い!
lim:

FRANC. R. JOUBIN \& ASSOCIATES

REPORT ON AMOHALI A

WAY TWP.
District of Algoma

InTRCHOCTION

The solve for inomaly A in Nay Twp. 18 an airborne, combined mafmetnmetor and electromagnotic sirvey carriod out by A.0.P. recently. A possible conductor was indicated by the eurvey, at Wybor:s St., on the A.C.R. It was recomended by Dr. Harold O. Sedcel vinat the anomaly be investigstad on the ground.

THE SURVEY

Two lines 7 fo feet long and 400 feet apart wero run with E.i., and marnotometer. The work was hampors! by tho railway iracks and several high tension transinssion lines which crose the area.
cubreurnas

The araa is flat and open farminf, country (clay) and no outcrops wero seen.
"llakon 0. Lien"
Wyborn Station (R.c....)
June 2, 1963

THE SURVEY

Two lines ton feet lone and one 300 Seev lonk, 200 feet apart, were run with E.M. Cnly two linut wole sha kith tho magnetaweter (bok foct anart). The ralliay as nell as a high tension trancmission line cross the ruriciged wosa,

Owntwone

mainly by clay, so cutcroje wero soen'。
"takon O. Lien"

Stavert Station, A.C.R.
June 2, 1963

PRANC. R. JOUBIN \& ASSOCIATES
FUSPORT ON ANOMALY B
WhY TWP.
District of Algoxa

An sirborne geophysical survey carried out by A.O.P. some time ago, indicated a possible conductive zone in the southwestern portion of Way Tomship. It was recomended by Harold O. Seifel and Associates that the anomely should be investigatcd on the ground.

A survey crew tried to reach the area June 3, but the ground work could not be carriad out becuuse the area was flooded. The flooding is bollev'rd to be caused by a beaver dam.

As no tydro power tranimibsion lines or othar manmade constructions could be seen in the ares, it is rocomnended that the anomaly ehould be investifatud during the winter monthe.

Stavort Station (A.C.R.)
June 3, 190.3

> HAROLD O. SEICKEL \& ASSOCIATES, LIKITSD. CONSULTIH COFOPEYSICISTS
> suite 913,25 Adelaide st. Heast TORONTO 1, ORTARIO

PRANC. R. JOIDIN \& ASSOCIATES GROUND IHESSIGAIION IEPORT ATEA C, WAY TWP.

INTRODLCTTOK

The securce of interesi hare was an airborne k.M. Indication selected by the wrilar on ro-exatination of the original A.i.e.t. cata. the orgenai comionte regariing this conductor are as follons:
"Conductor C jucs at a ions of the , rep. ircick in the southesst quarter of the tomsinip, ciso on a rend. Theroas power ine and other mathmacif: conductors ure dastinct porsibilities here the bame road and tracl do not elsewhere give ribe to sucin orfecte. Once acain, in vieu of the oase of accuct, the writer surrecta that this target should be mestred on the ercunc."

A copy of u report ly Haion 0 . Ifen, wrich is attached, Eives the description of the grid and the surfaca fontures.

DTSCUSSAOM OR RTSULSS

A maxinum rango of approximately lifo gammas was observed on the two lines run by macnetaseter.

The electromacnetic survey was hamperen by A.C. noise from tho power line and railway lino traversine the area. A Hre rence also parallele the above two featuree. Strangely onough, litile or no conduction was observed, although it is noted that uicht stations in the iotrodicte vieinity of the metal lines were not raadible due to A.C. notse.

2.

CONCLUSTONS \& RECOATSNATIO:

Whoreas the presont teat cinnot be re, urded as conclusive vectuso of the noise, the writer repards the source of the airborne indtication to be 21 kely duc to the coincidence of the three inan-made conductors.

Bo further action is recomended on rua ie
despectixlly sumittoà,
(chmod) "ancle ". .c:
hrole s. re, ox, tho.., roing.

Toronto, Canero June 15, 9'5

INTHODUCTION

The busis of interest in t.if a area was an airborne electromagnetic anomaly, indicated 0, an A. in. M. burvey carried out on lehalf of 4.0.l. The followhe f s tie writar's orignal desoribtion c: tilio aneraly:
Honcector strikes generaliy init Ferallel to a road,
arre crorsod the A.C.R. wrack just west of the own of
Hexrst. There is a stronf probability that it is due
to a power line, but some contoried ruenetic activity
In the arca succests that bedrock concuction 18 possiblo.
In vicw of the ready nccoss, it :s recominced that the
aite should be oxampned and, if ε correlatine power line
coos not exist, fround electronagnetic and marnetoneter
survers should be carriod out."
a copy of a roport by haxon 0. It an, whid ch 1.3 appended hereto, describns the grid of two lines whish were traversed by magaetoiacter ad eloctranagnetic surveys.

IUSCUSSION OF RESULTS

As the surface plan indicates, the anomalous aren is traversod ly the f.C.il, ral lisay track and by no fewer than four intersectine, power linee.
fre to A.c. noise, little useful fifl. information was obteined.

Approximately 700 gammas nagnetic relief was observed, due mainly to one negrtive anomaly in the vicinity of
track.

FRANC. R. JOUBDN \& ASSOCIATES

REPORT ON ABCTALY CI
ALDERSON TOWNSHIP
instrict of Algom

Abstract

INTRODUCTION An airborne geophysical survey carried out by A.O.P. mome yeara ago indicated a possible conductor in the esstern portion of alderson fownship. Harold 0 . Seigel orul isteciater, Tronto, recommended the ares to be investigated on the rround.

THE SURVEY

Gne eixieen hundred foot lone baseline wes cut, and 5 croselings, respoctively, $700,2000,2000,1100$ and 4400 feet long were blazed enc chajned, alonf which Eoil, and magnetameter surveys wore carried out.
overbueren

The surveyed area is flat, low tround covernd by muskeg. io outcrops were seen. The botiom (along the shore line; of the lake to the west of the grid is covered by same.
"Hakon O. Lion"

Kennedy Station, A.G.?.
Lune 13, 1963

BAROLD O. SEIGEL \& ASSOCIIATES, LIMITED

COMSULTMO GEOPISSICISTS
Sufte 913, 25 Adolaide St. West
Toronto 1 , Onterfo
TRIEPMONE

FRARC. R. JOUBIN \& ASSOCIATES GROUDD INESTIOATION REPORT AREA C^{1}, ALDERSON TWP., ONT.

INTHODUCITO:

The basis of interest in this arod was a conductive indication obtained on an alrborne electromecnetic survey previously carried out by A.O.P. For the writer's coments thareon, please refrer to the report on area C, Alderbon iwp.

A copy of a brief report oy Ar . ilakon 0 . Lacn is attached, coveriaf his aurface examination of this erea.

Five croselinae, oriented $N 30^{\circ} \mathrm{h}$, were set in at li00' intarvals by pace and corapasa from a base inne. One transverbe line, gencrally paralled to the base line was also established. These lines were covered by majnetaneter and electronanetic surveys.

DSSCISST: (f RuSUTTS

Tho magnetometer survey resul.ts show a maximum relief of about Gol gamnas. Unfortunately, the survey lines are almost parallel to the magnetic strike, so that linc 16 E is about 400 gammas abovo the regional levol along most of its leneth. The strikn e.s detarnined on erid C, on the other side of South Mawill Late, is about $N 30^{\circ} \mathrm{W}$.

The cluctromagnetic survey nows a maximun of 7° tilt ancle relief. When the 3° bias is taken into account, three possible in nor conductive indications are ooserved. The most prominent of these, on line $L E$ near the base line, has not been corroborated by a fixed transmittor set-up. Incroased null widths, of up to μ°, are observed at various places on the grid.
once again weak be irock conduction, or more Likely, overburden effeots dire the source of the very minor ground E.M. Indioations and the etrouger ajrbornc effocts. The same reatarks apply as for Area C, rogarding the besic lack of discrimination of the A.E.M. out-of-phase ryster.

No further work is reconnended on the 6 target.

```
    Wos:yectNully subraitted,
(sieneci) "!jaruli w. veif;c,"
```

Harola C. Selizel, Ph.D., P.Eng.

Toronto, ontario
June $151 \mathrm{~h}, 2963$
2.

Once again weak bedrock conduction, or more likely, overburden effects are the s ource of the very minor ground E.M. indications and the stronger airtornc effocts. The sane remarks apply as for Area C, regarding the ansic lack of discrimination of the A.K.M. out-of-phase syotem.
io furtizer work is recomenden on tile tarect.

$$
\begin{aligned}
& \text { (ws:octraj. :unaitice, } \\
& \text { (st,meci) ":arus: . . veicicu } \\
& \text { Harold i. Sei til, PhoD., P.Ene. }
\end{aligned}
$$

Toronto, Ontario
June $2: 3 \mathrm{n}, 2013$

An airborme geophysical survey carrjed out same years ago by A.O.I. indicated a possible conductor in the southeastern corner of Alderson Tormship. It was reconmended by Harold 0 . Setgel and Aesociates that the arba should be investigated on the ground.

TIE SUIVEY

Cround E.M. and magnetometer survey were carried out along eeven ilnes, each 1000 feet long and with a spacing of 200 feet. The bearing of the base line is 120°.

OVERBURTDEN

The survoyod area is located on a flat ridge (less than 50 feet high) in a swampy country. No outcrops were seen.
"能on O. Lien"

Norris Sitation, A.C.i.,
June 17, 1963.

HAROLD O. SESCSSL \& ASSOCTATES, LHMITKD CONSULTAG GAOPHYSICISTS
Suite 913,25 Adelaide St. West
Toronto 1 , Ontario
TELEPFPOM:
CABTB:

FRAMC. R. JOUBIN \& ASSOCIATES
OROURD INYESTIOATION REPORT
AREA C, ALDERSON TWP., CNTRRIO

INTRODUCTION

The basis of interest in this area was an airborne electromagnetic indioation obtained on a survey previously carried out on behalf of R.O.P. The writer's comments on this conductor, as embodied in his report clated March 23rd, 1963 aro 50 follons:
"A lons, irregular conducting zone crosses the northeast portion of the tomship. Phase anfies of up to 0.60 and ratios of up to 1.5 eugcest that bodrock. conduction oxists. A second, shorter sone liee to the south near the east toundary of the sheet. there appears to be no acronagnetic correlation on these conductors. They are probably chear zones containing graphito with, at most, minor sulphides. As the south $20 n 0$ is of reasonable length, it me, be worth a ground chccy at C, just west of Mawgi Lake, or, if nore convenient, at C^{1}, just east of this lake and close to the A.C.R. track".

Mr. Ilakon O. Iien has inepected the aren in question (c) and reports that "it is flat and covered by muskeg, and no outcrops were suen".

A base line striking 300° and three crossines at LCO intervals, were ostablished by blaze and compass. Two short crossilnos were also put in. All lines were covored by magnetonctor and parallel line electromagnetic traverses. One detail (fixed transmitter) traverse was run as well.

DISCUSSION OF RESULTS

The magnetoneter aurvey indicater a feature of fromgological granch: 800-1500 gammas amplitude, striking NNW across the grid.

The electromagnetic survey has not revealed ary clear-cut cross-overs or oven tile angles larger than 7°. A und form 3° tilt was seems apparent on the readings, and Instructions have been sent to correot this. When thd s bias 18 takon into account, a minor conductor (6° poak-to-peak) appoars on line 0 , striking parallel to the magnetio feature. The increased null widhs $\left(8^{\circ}-10^{\circ}\right.$ rather than $4^{\circ}-5^{\circ}$ normaily) in thi c region also tend to conflim very weak conduction in this area.

Inds concuction may to a vome weak thees or fault zone in the bodrock, or moy te due to overburden eflecte. In either care it would unciouttedly show up more strongly on the outwof-phase airlorne E.M. system than on the in-phase ground systam. This is anothor instance of the lacis of discrinanation of the aircome E.M. systom.

Ancmaly C is deemed to be of no further interest, at least on the basis of the prosent information.

```
    Respoctfully sutmatted,
(oigned) "Yarold O. sei,ci"
Harold O. Seigol, Ph.J., P.Eng.
Toronto, ontario
June 10th, }196
```


INTHODUCTION

An airborne geophysical aurvers carried out by A.O.P. some time ago, revealed a possible conductive zone in the westiern portion of Franz Iwpo, just north of Albany Forke Station on C.I.R. It wes recomended by llarold O. Seigel and Assuciates that the anomaly should be investigatod on the ground.

THE SUINEY

Fivo linee, 1000 foet long, 400 feot apart, and with a bearing of 65° wero blazed and chainod. A ground E.M. and mannotometer survey was carried out alang the linos.

OVERBUR"EN

The surveyod area is ilat and covered mainly by ewamp. The part of the area that lies betwean $1+00 \ddot{E}$ and $5+00 \mathrm{E}$ (all crossilines) on the surveyod exid is underlain by semi-dry jauskeg.

No outcrops were seen.

Edison Lako
June 2h, 19(3

HAROLD O: SETGEIG ASSOCLATIS, NTHITIDD CONSULTIMO osophisicisis Surto 913: 25 Adelaide St. West Toronto 1, onterio

PRUNC. R. JOOSIN \& ASSOCIATES, LIMITKD OROUND INVESTIOATI ON RBPORT ARES A, AIDERESON TVP., ONTARIO

The object of this ground investipation was a conductor indicated by an airborne electromagnetic survey carried out proviously on behalf of A.O.P. The writerls description of this indication, as presented in his report of March 23rd, 1963, follows:
"Two additional conductors exin of ting noderate electrical amplitude, good ratios and apparent direct mapnetic correlation, have been indicated by the letters A and B. In neither caso is the conductor strike well established, but it is possibly NW for A and Elf for B. The former is really incompletely defined by the present survey as it lies on the south boundary. It is recomnended that A and B should be subjected to ground investication as well."

A report by Mr. Hakon O. Lien, which is attached, Bives dotails of the grid of lines which was surveyed by magnetomater and eloctromagnotic methods, and describes the surface festures of the area.

DISCUS:SION Or REOUITS

The magnetoneter survey has confirmed the aeromapnetic unomaly which was a large part of the interest in this conductor through its apparent correlation. This maznetic anomaly is visible on five lines (LE to OW) and varies in amplitude from 300 to 1600 gammas. Depth intorpretations based on these magnetic curve forms indicate that the depth of cover is not more than 30^{\prime} on the west side of the grid (Iine liW), but may deepen to as much as 901 on line 2E.

2.

The electronagnetic survory shows no tilt angle conductive indications. The intercoil spacing was only 200 ' for the reconnalssance survey, which has a maximum depth of penotration of only about 100'. We cannot, however, attribute the lack of canductive effects to the tidckness of overburden, as a maximun of only 301 is expected on the wost side of the erid.

Since the magnetic foature has been located on the eround, we are reasonably assured that the gric is properly locatec.

Tic :uriter concludes tant tie l.i.a.i. conductur was तue to a thickening (yot or so) of cociuctive overiourcos, ute: a Sortujtousij sorrolatine macnetic leature.

No further investigation apptiars warrawted on this area, nased on the present data.

$$
\begin{aligned}
& \text { "iespectrulizy bubait ted, } \\
& \text { (sined) "saralu . Seizel" }
\end{aligned}
$$

Toronto, Enterio
Jume 20th, 190?
\qquad
FRARC, R JOUBIN \& ASSOOTATES' Raspots or Alomatis B DEREX TOHESHP MISTRTCT OF ALOOMA.
An alrborne geophysicel survey carried out some yeare ago bi A.O.P. Indicated possible conduotor in the northwestern portion of Derry Twp. It was reconenanded by Dr. Harold O. Seigel that the area should be investigated on the ground.

THE SURVEY
A ground E.M. and magnetometer survey was carried out along five linos, each 1000 feet long end with a spacing of 400 foet. The bearing of the lines is li-S.

GEOLOGY
Only one outcrop was seen 2 r the area. It is located 50 feet east of $2+00 \mathrm{~N}$ on 1.16 E , ard conrists of diabese. It was impossible to detervine the striko direction of the aika.

OVETBURTEN

The survoyed area is ilat and covered mostiy by cedar Bwanp. A creok running E-H is locate. Just south of the base line.
"Fiakon C. Lien"

Kabinakagani Lake
July lst, 1963

shancon, toromio

> HAROLD O. SKIGEL \& ASSOCTATES, LINITTED
> consultina opophrsictsis
> Surto 913; 25 AdeJalde St. West

FFALBC. R: JOUETM \& ASSOCTATES, LTMITTED GROUND INVESTICATION RESPORT AFREA A, FRANZ TWP., ONTARIO

INTHODUCTION

Intereat in this area is ba id on a conductive indication observod on an airborme eloctromagnetic aurvoy carried out on behalf of A.O.P. The writer's caments thereon, excerpted from his report of Karch 23rd, 1963, follow:
"Onc A.E.M. conduotor remains of possible bod-rock origin. It is dosignated as A and Lies in tho Mi cornor of the sbeot, wilhin $1 / 4 \mathrm{mil}$ le of tho Canadian National Railway track. It strikes northwest and coincides with the peak of a 200 gomina closure. The ratios are rather poor, but the magnetic correlation compensatos, in the writer's opinion. Despito the fact that this may be an accidental coincidenco, the writer recomends ground follow-up on this conductor."

A report by Hakon 0 . Ifen is attachod, describing the brid of lines surveyed and the surface foatures in the area.

DISCUSSION OF RESULTS

The mapnotomater survoy has confirmod tho presence of a magnotic anomaly of about 1000 gammas peak araplitude, striking about $\mathrm{N} 30^{\circ} \mathrm{W}$ across the survey area. ithis is presumably the magnotic foature observed on the afroorne survey.

The electroragnetic survey has failed to indicato tho presence of tilt angle changes greater than about 1° frosa a moan (blas) levol on oach line. Since the indicated depth of overburdon on lines 8 N to 16 N is $208 s$ than 50^{\prime}, wa must concludo that
(a) Tho nagnotic foature, which formod a large part of the interest in this area, is not conductipe RECE|VED
(b) The conduction is due to the overburiden (there are nuil widths of up to 25°) and the magnetic correlation was acfidental.

No further action is recomended for this area based on the above results:

Respectrulis submitted,
(sitned) "Harrild 0. Seicel"

Toronto, Untario,
larold C. Soigel, Ph.D., P.Eng. July 3rd, 1963

HARODD 0 . SEIGEL \& ABSOCIATES, LITITTE CONCULITMO OLOPHISICISTS
Suite 913,25 Adelaide St. West
CABLS: TORDito 1, artarto

TELEPPIOIRS .
TOROPTO
364-2650

PRANC. R. JOUBIN \& LSSOCIATES, LIMITED
GROUND INVESTICATION REPORT
ARBAS A \& B, DERRX TiP., CATARIO

INTRODUCTION

The basis of interest in these areas was a conductor indicated on an airborne electronagnetic survey carmed out on behalf of 1.0. P. The writer's comants on these conductors, in his report of March 23rd, 1963, follow:
"Two rather weak A.E.M. conductors remain, which, together, warrant ground investigation as they are only 3Λ nd le apart. They are designated A and B and $11 e$ in the northwest quarter of the sheet, west. of the Kabinakagand fiver. The strikos are WNW. Conductor A lies on or near the top of a 600 gemmas ridge, which is poasibly a basic intrusive. Asbestos and nickel possibilities would axist. It should bo checked near lines 239-242. Conductor 3 has possibly weak negative marnetic correlation, and should be checked noar linos 2/3-245."

Seports by Mr. Hakon O. Lien are attached, describing the grid of lines traversed in each area and the surface features of these pride.

MSCUSSION OS PRSULSU
Aroa A
The aeromagnetin anomal:r referred to in the a area has been confirmed on the pround as a broac zone strikins generally east-west across the grid. The peak magnotic relief ranges up to 3300 ganmas.

No oleotromagnetic tilt anfles greater than about $1 / 2^{\circ}$ from a moan were observed on the ontire grid area. It is apparent that no part of the mapnetic etructure is appreqehty $V E D$

OCT 8

:lespeotfully sucuitted,
(sipned) "harold O. Seigel"

Barold O. Sielfel, Ph. D., PoEng.
Toronto, Ontario.
July 5th, 1963

TME SUTVEY
Six north-south oriented linos were blazed, each 300 feet to the south and 700 fect to the north of ε base line, and 400 feet apart. The grid was surveyed with magneto neter and E.t.

OVERBURIEN
The surveyed area is fairly flat and covered by swarp in the northern part of the grid. λ small creck runs parallel to $L 12$ E and curns toward NW at the northern end of the ilne. The base line cuts the north tip of n drumlin at L \mathcal{E}.

No outcrop was gecn.
"Rakon O. Licn"

Norris Station, A.C.R.
July 12, 1963

INTRODUCTION

The source of intarest in the area was a conductor Indicated by an airborne sotromagnotic aurvey carried out in 1956 on behalf of A.C.R. 10 following were the writer's coments on tho airborne indication, as prosented in his raport of March 23rd, 1963:
"Two additional conductors exhibiting moderate electrical axplitude, good ratios and apparent dire ot macnetic correlation have been indicated by the lettere A and B. In neither case ds the conductor strixe well established, but it is possibly WW for A and $E W$ for B. It is recomended that A and B shoula be subjected to ground investigations as well."

The accomparvinf; report by Mr. Hakon O. Hen describes the gxid of lines ifich were esteblished, by biaze and coxpass, and which ware traversed by electromagnetic and magnetoneter surveys.

DISCUSSION OF PESULTS

The magnetometer survey has confirmed the presence of a magnetic ridge of about 300 gamsas poak amplitude, striking EN through the centre of the grid, and a second ridge of up to 600 gamas relief lying in the southwest corner of the grid.

Based on the magnotic curves, the dapth of overburder. is less than 5^{\prime} on must lines.

The electromagnotic results are singularly flat, with no tilt anfle departing by more than 1° from a mean.

RECEIVED

OCT 81963

2.

It is concluded that the airborne conduction was caused by overburdon effects and that the apparent ragnetic correlation was fortuitous.
No hurther Investigation can be recomuended, based on the present information.

Rospectfuldy eubraitted, (adgned) "!aroldi O. Seigel"
Harold O. Selgel, Ph. D., P. Einfo

Toronto, Ontario
July 100th, 1963

FRANC. R. JOUBTA \& ASSOCLATES LIND. FRPORT OS AKROKX AHOMALI

IRNIHO THP.
Diatrict of Algoma

DATRODUCTION

Asbeston 18 known to occur in serpentin zed rocks in the northern postion of Irving Twpes about one mile north of Akron Station on the A.C.R. An airborne g3ophyaical survey revealed a trend of magnotic activity in the ger.

A Iround E.M. and magnotio survery was carried out along five Jines, having a bouring of 55° of which two wore 2000 feet long and three 2000 feet long. The grid 18 located on the east side of the railway, and the Lines havo apacing of 400 feet.

GEOLOGY

Only a few outcrops wore seen. In the western corner of the ourveyed prid outcrops of granite ard banded gnelss were seen. Gneiss was al8o found in the southmastern cormer of the surveyed area. In the central portion a few outcrops of serpentine occur.

OVERDUIODEN

The central part of the surveyed area:s covered by swamp. The remaining portions consist of poplar-ridges.
"Hakon O. Lien"
Langdon Station, A.C.R.
July 18, 1963

PrANC. R. JOUERE ASSOCIATES IDIITED REPORT ON OROURD INVESTIGATION AKRON AKOLAET; IRVING TWP. ONTAKIO

INIRODUCTION

The basis of interest in this area was on aeromagnetic anomaly revealed by an earlier burver carried out on behalf of A.C.R. Aebestos in known to occur in serpentindzed rocks in this general vicinity, and it was hoped that the serpentimized bodies would be revealed by the aoromagnetic data.

A geological report and plan by Mr. Kakon O. Lien is attached, showing as well, the grid of lines surveged by magnetameter and electromagnetic methods.

DISCUSSION OF RESULTS

The crourd magnetometer survey confl'us the presence of a band of magnetic material, of sinuous form, striking generally north-south across the erid lines. The maximum magnetic relief on any line is only 2000 eatusas, so that the average magnetic content is 2% or less by weight. Tris does not supgest a high degree of serpentinization of an ultrabacic intrusive.

Only very minor tilt anglf ondy was observed on the electromagnetic survey, the maxdmum beine bout $5^{\circ} \mathrm{p}-\mathrm{p}$ on line 0 . Detadl traverses on this line iailed to corroborato any localized conduction.

Mr. Hakon O. Lien, has noted a few outcrops of serpentine bying within the region of the mannetic anomaly but no mention is mado of any asbestos occurronces.

Whisumerar,

Although a bic 1atruadve has been confirmed on the ground, the present geologicaj-geophyeical picture does not, in the writerls opinion, foster further interest in the Akron Anomaly area, either for asbestos or for base metals.

No further investigation can be recommended on this basis.

$$
\begin{aligned}
& \text { Respectfully submitted, } \\
& \text { signed "ihrold O. Seigel" } \\
& \text { Harold O. Self gel, Ph. Do, P. Eng. } \\
& \text { Consulting Geophysicist. }
\end{aligned}
$$

Toronto, Ontario July 30, 1963.

ALGOMA ORE PROPERTIES LIMITED
 EXPLORATION DEPARTMENT

DIAMOND DRILL HOLE NO. 1

PROPERTY BOON

CONTINUED

154-158 Biotite schist, altered to sericite banding quite jrevalent, with colors altering from light gray to green

158-165: Rock type graphitic schist concentrated massive type at footage 158-160 al30 104-165. Some graphite bears sulfides

165-166 Biotite schist
166-171 Garnetiferous schist biotite and hornblend garnet metacrysts are very small but abund . It

171-175: Quartz biotite schist - light gray in color with a coarser texture

175-180 Mixture of sch1st sulfides and graphite

180-200: Predominately biotite - with little hornblend schist, coarser texture and darker medium gray in color, also beaprs sprinkling of sulfides pyrite

200 - Quarts biotite schist, fine 211.4 grain and light gray
211.4 - Massive graphito bearing $212.4 \quad 212.2$ 212.2 sulfides
212.2 - Biotite schist
214.5
214.5 - Concentrated massive pyrite
and pyrrhotite
Rock type quartz biotite schist bearing disseminated sulfides, richer portion assayed

ALGOMA ORE PROPERTIES LIMITED

PROPERTY BOON CONTINUED

ALGOMA ORE PROPERTIES LIMITED
 EXPLORATION DEPARTMENT

diamond drill hole no. 1 Anomaly 32 property Matavitchaman
continued

diAmond drill hole no. 1 Anomaly 31 property Matawitchavan
CONTINUED

ALGOMA ORE PROPERTIES LIMITED
 EXPLORATION DEPARTMENT

diAMOND DRILL HOLE NO. 1 Anomaly 31 property
Location of collar
AZIMUTH AT COLLAR.
diphat collar
VERTICAL SECTION NO.
REC GIN MIN. ZONE
dececaiption

Pegmatite.
358-359x Lost core
358-359
Hornblond amphibole schist,
with trace of sulfides
Xatawitohawan
Elev.

LENGTH
LOGGED BY.
staRTED.
sampling
CORE SIZE
FINISHED.

Lost core
359-360
360371.2

Hornblend - amphibole schist
371.2
371.8 Schist and leached sulfides
371.8
372.12 Pine grain - schist
372.11
373.2 Schist and pyrrhotite stringers

373.2	Hornblende schist
375	

${ }_{376.2}$ Oraphite - massive

376.2	Hornblende ach1et
377	

${ }^{377} 378.3$ Schist and disseminated $377 \quad 378.3$
${ }^{378.3} 3$ Lose core
380381.5 Schist and trace of sulfides
382.5 Lost core
diamond drill hole no. 1 Anomaly 32 property Matawdtchavan
C.

CONTINUED

Anomaly $4 \& 6$, Central Area
Anomaly 6-A, Central Area

Anomaly No. 50 A , Central Area " Anomaly No.52, Block "B" Anomaly 2, Block "C"

Anomaly 3, Block "C"
Anomaly 5, B1.ock "C"
Anomaly 6, Block "C"
Anomaly 12, Block "C"
Anomaly 13, Block "C"
Anomaly No. 54, Block "C"

Aeromagnetic
Aero Electromagnetic Geology

Soil Samplins
Aeromagnetic
Aero Electromagnetic
Magnetometer

Electromagnetic
Magnetometer
Electromagnetic
Magnetometer
Electromagnetic Magnetometer Electromagnetic Magnetometer Electromagnetic Electromagnetic Magnetometer Electromagnetic Magnetometer Electromagnetic Magnetometer Electromagnetic

1 inch = 1320 ft
1 inch $=200 \mathrm{ft}$.
E-W 1 inch $=300 \mathrm{ft}$. $\mathrm{N}-\mathrm{S} 1$ inch $=400 \mathrm{ft}$.

1 inch $=1320 \mathrm{ft}$.
1 inch $=200 \mathrm{ft}$.

1 inch $=100 \mathrm{ft}$.
1 inch $=200 \mathrm{ft}$. " " " $"$
"

$"$	$"$
$"$	$"$
$"$	$"$
$"$	$"$
$"$	$"$
$"$	$"$
$"$	$" 1$
1 inch $=100 \mathrm{ft}$	

Aeromagnetic Surveys Oct.,1956 - Apr., 1957 Aug., 1957

Oct., 1956 - May, 1957 Oct.,1956 - Apr., 1957 April, 1960

$" 1$	$"$
$" 1$	$"$
$"$	$"$
June,	1958
$"$	$"$
$"$	$"$
May,	1958
June,	1958
$"$	$"$
$"$	$" 1$
$"$	$"$
$"$	$"$
$"$	$"$
$"$	$"$

Algoma Ore Properties Exploration Dept.

Aeromagnetic Surveys Algomè Ore Properties, Exploration Dept.

$$
\text { April, } 1960
$$

ALSONA ORE PROPERTIES LTD.

Oeological legend

1. AcId to Intermediate Volcanice ---	A - Massive B - Tuff - Pine Grained Pyroolastio C - Banded 8 - Quarta Eyes F - Peldspar forphyry
	A - Shale, Argillite B - Oroywacke COL.- Conglomerate GRAith.- Graphitic PY.- Pyritiforous
3. Iron Pormation --.-....-.-.-.-.-.--	A - Chert B - Siderite C - Pyrite D - Magnetite H - Homatite
4. Easic to Intermediate Volcanics --	```A - Massive B - Pillows C - Banded D - Pyroclustic 1.0. Tirfawqous B - Chlorite Schist```
	A - Quarte Schist B - Biotite - Qts. Schist C - Hornblende Schist D - Garnot Schist
6. Basic to Intermediate -....-.....-.	$\begin{aligned} & \text { A - Diorite } \\ & \text { B - Gabbro } \\ & \text { C Lamprophyre - "Mica Diken } \\ & \text { D - Poridotite, Pyroxenite, otc. } \end{aligned}$
	$\begin{aligned} & \text { A - Granite - Massive } \\ & \text { B - Granite - Qaeis - } \\ & \text { C Granite - Porphyaticic } \\ & \text { D - Granite - Felsitio } \\ & \text { E Poematite } \\ & \text { F - Aplite } \\ & \text { G Syonite } \\ & \text { H Granodiorite } \end{aligned}$
	A - Massive B - Porphoritic

ALGOMA ORE PROPERTIES LTD.
MAGNETOMETER SURVEY
ANOMALY 1 a 2
SCALE: I' $^{\prime \prime}$ 200' JAN. 29/58.

GLASYOW-0013 7

sault ste. maile, ont.
 shult ste. marie

LEGEND

Me PHAR R. E. M.

1000	$\begin{array}{c}5000 \\ \text { C.P. } \\ \text { c. P. S }\end{array}$

$\longrightarrow \quad$ C.P.S. $\begin{gathered}\text { C.P.S } \\ 1000 \text { c.e.s }\end{gathered}$

- CONDUCTOR

URVEYED by
CONDUCTOR

ALGOMA ORE PROPERTIES LIMITED EXPLORATION DEPARTMENT

BLOCK "C"
ANOMALY 37-B
MARTIN TWF
ELECTROMAGNETIC SURVEY
sCALE $\mathrm{I}^{\prime \prime}=200^{\circ}$
may 1956

ALGOMA ORE PROPERTIES LTD.

 ELECTROMAGNETIC SURVEYANOMALY 1 a 2
SCALE: $1^{\prime \prime}=200^{\circ} \quad$ JAN. $31 / 58$

LEGEND

=EGMATtE

ALGOMA ORE PROPERTIES LIMITED EXPLORATION DEPARTMENT

ANOMALY 4 a 6 CENTRAL AREA geology

LEGEND

GLAS900-001345

LEGEND
RNSTRUMENT "Shampe" MCDEL A-2 MAGNETOMETER
READINGS IN GAMMAS

ALGOMA ORE PROPERTIES LIMITED EXPLORATION DEPARTMENT

ANOMALY
NO. 24
NORTH
MAGNETOMETER SURVEY

252

HAROLD O SEIGEL \& ASSOCIATES, LIMITED
PROJECT: A ANC R NOUAIN : ASSOciATRS LTO

GLASGOW-0013 107
S-at.
"\# - araceroad
HTH H:ste power ir nirie
,-- Ence

$$
\begin{gathered}
\text { Franc } R \text { Joubin ond Assoc } \\
P=A N \text { of } A N O M A=Y C \\
\because A \because T W P
\end{gathered}
$$

Scuic $\mathrm{IN}^{\prime \prime}=200^{\prime}$

GLASGOU-0013 109
HAROLD O. SEIGEL \& ASSOCIATES, LIMITED
PROJECT. Franc. Jowoin and issoc
SUBJECT Griu C in wAY Twp
SURVEY Majnetometer
Scoles:
begend
$I^{\prime \prime}=200^{\prime}$
$\gamma^{\prime \prime}=1000 \gamma$

glasgow-0013 111

GLASGOW-0013118
HAROLD O. SEIGEL \& ASSOCIATES, LIMITED
PROJECT Frani R. Joubin ano Associates SUBJECT Anomal α A in ilderson Iwp SURVEY Magn=tometer

Scoles:
$1^{\prime \prime}=200^{\circ}$
$i^{\prime \prime}=1000 \gamma$
Legend

BASE IEEVEL 200 जAmmAS
KEMOVCD FROM OASERKSO
VALUES.
WORK BY H.O.L. \quad PLOT BY H.U.L. OATE
GLASGOW-0013 119
HAROLD O SEIGEL $\&$ ASSOCIATES, LIMITED
PROJECT:FIRANC R VOUBIN; ASSOCIATES LTO
SUBJECT: ANOMALY "c"" in- Anoarson Iwe.
SURVEY: LOCATION
Scales:
Legend:
$\prime^{\prime \prime}=1320^{\circ}$

PROJECT Frani R. Joubin and Assonistes		
SUBJECT Anomair "C" in Aiderasn İwp		
SURVEY Magnetometer		
$\begin{aligned} & \text { Scoles: } \\ & r^{\prime}=200^{\prime} \\ & i^{\prime \prime}=1000 \gamma \end{aligned}$	begend.	
WORK Bry How.	Plot by m. O.L.	Date June?

 ~ 1
 SURVEY: E.M.

Scoles:

$\mu=200^{\circ}$
$\mu=20^{\circ}$

Leqend:

PABALLALLINF RELCOR. : \because.
FIBCO TAANSMirrea $x--a$
Thansmirrea bocarien a
GONVENTION: EAST TILA ON
NONENTION: EAST TILA O SIGE OF LINAS.

