

010

GEOPHYSICAL REPORT

on the

Hoblitzell Township Property

for

BEAVERHEAD RESOURCES LTD.

RECEIVED

AUG - 1 1986

MINING LANDS SECTION

by

Greg Hodges Geophysicist

Robert S. Middleton Exploration Services Inc. P.O. Box 1637 Timmins, Ontario P4N 7W8

July 25, 1986

42H09SE0010 2.9296 HOBLITZELL

.

Ø10C

Page

INTRODUCTION	1
Location, Access and Facilities	1
Claim Status	1
Personnel	2
Previous Work	2
JEOLOGY	3
Regional Geology	3
Property Geology	5
SURVEY PROCEDURES	
Max-Min II	
Theory	8
Field Method	10
Magnetics	
Theory	10
Field Method	12
INTERPRETATION	12
CONCLUSIONS AND RECOMMENDATIONS	14
EUDGET	16
CERCIFICATE	

LIST OF FIGURES

Figure 1 Location Map

IN BACK POCKET

Figure 2 Claim Map

Figure 3 Property Location Map

Max Min 1777 Hz 1:5,000

Max Min 444 Hz 1:5,000

Proton Magnetometer Survey 1:5,000

INTRODUCT ION

A program of Linecutting, Magnetometer Survey, and Horizontal Loop Electromagnetic surveying was carried out on the Hoblitzell Township property for Beaverhead Resources Ltd. The work was done by R. S. Middleton Exploration Services Inc., between March 31 to May 23, 1986.

An early break-up necessitated applying for an extension on some of the claims and the work was completed in May, 1986.

The purpose of the survey was to delineate known conductive and magnetic horizons which were suspected of underlying the claim group.

Location, Access and Facilities

The property is located in the southwest part of Hoblitzell Township, approximately 50 air miles northeast of Cochrane, Ontario (see Figure 1). Access to the property is via helicopter from Cochrane. There is a lake on the property but it is not suitable for fixed wing. In addition, the all weather Tomlinson road ends 5 miles east of the property.

Claim Status

The property consists of 24 unpatented mining claims in the Larder Lake Mining Division of Ontario (see Figure 2). The numbers are as follows:

 Claim Number
 No.
 Recording Date

 848104-848121
 18
 April 19, 1985

 848409-848414
 6
 June 19, 1985

 24
 24

Claims 848104-848121 are under extension until July 21, 1986. All the claims are held by Maurex Resources Ltd. in trust for Beaverhead Resources Inc.

Personnel

The following personnel were involved with the project between March 31 to May 23, 1986:

R. J. Meikle	Timmins, Ontario
Steve Anderson	Crystal Falls, Ontario
Lanny Anderson	Crystal Falls, Ontario
Fern Duquette	Crystal Falls, Ontario
Francois Bonhomme	Toronto, Ontario

Previous Work

In 1976, ground electromagnetic horizontal loop surveys were carried out by Hudson Bay Mining and Smelting on the present claims and several conductors were outlined that trend approximately 85°. These conductors have not been tested by drilling except for one on the northeast side of West Porphyry Lake. This hole was not assayed for gold. There is no other previous work on record for the property.

In 1982 - 1985 Newmont Exploration carried out an extensive overburden drilling, geophysical and diamond drill program 10 miles east of the property and have recently announced an

- 2 -

important drill intersection of 4 gm/7.5m (N. Miner, April 18, 1985a) and 0.116 oz Au/25 feet with an 8 foot section assaying 0.27 oz Au, Northern Miner 1985b. This hole is on the same iron formation trend that extends west through the Hoblitzell, Blakelock and Tweed Township area (see Figure 3). Extensive staking has taken place west of the Newmont property by Esso Resources, which is tied on to the east side of the Beaverhead property (see claim map in back pocket). A block of 132 claims to the west of the Newmont Mikwam claim block in Hoblitzell Township have been optioned from Golden Shield by Newmont, Northern Miner 1985c. The Golden Shield claim group extends west to within a mile of the Beaverhead property and is surrounded by Esso claims on the south and west sides of the property.

GEOLOGY

The property is scheduled for geological mapping in the summer, 1986. The following is a description of the regional and property geology taken from a report on the property by Mr. Paul Bowen, P.Eng., dated December 1985.

Regional Geology

A series of iron formations hosted in sediments and felsic-mafic volcanics extend from the Casa Berardi area of Quebec into the Burntbush greenstone belt area in Ontario. The geology is illustrated on Ontario Department of Mines Map 2161.

- 3 -

These iron formations closely related to the gold are mineralization as shown by the new Casa Berardi discovery by (see Northern Miner 1984a, b and d) but upon detailed Inco. examination gold occurs within several rock types including oxide sulphide iron formation, argillites, greywackes, conglomerate and and felsic tuffs. Carbonate and silica alteration - veining with pyritization is directly associated with the gold values within the various rock types at the Inco discovery. Bedded stratabound zones within the oxide iron formation also contain pyrite important gold values. Recent assays released by Inco give gold grades and widths in widely spaced holes of 0.13/6.7 ft., 0.26/24.9 ft., 0.73/15.7 ft., 0.23/81.5 ft. (Northern Miner 1984b).

The aeromagnetic data as shown on the aeromagnetic map in the back pocket can be utilized to trace the iron formation markers, and zones where the magnetic gradient becomes less indicate areas of change from oxide (high magnetic gradient) to sulphide and or carbonate facies. In Noseworthy township a gold showing is reported to occur near the Burntbush River (Cyril Knight showing) which is situated along the same magnetic horizon that links the iron formation markers in Quebec with the area containing the property.

Approximately 3 miles east of the Cyril Knight discovery, a new discovery made in March, 1985 has been announced by Newmont

- 4 -

Exploration of Canada. This zone occurs, associated with sulphide-oxide-carbonate iron formation, on the south side of Noseworthy Lake and assays 0.116/25 ft. with a section grading 0.27 oz Au/8ft. (Northern Miner, June 20, 1985b). This discovery was the result of overburden drilling giving high gold values (up to 1.5 oz in heavy media concentrates in till samples) coupled with EM magnetic and I.P. surveys. The geophysical work pin pointed the diamond drill targets "up ice" from the overburden holes.

Overburden cover and general lack of outcrop in the region has prevented conventional gold prospecting and the principle exploration effort in the past 25 years has been base metal exploration using electromagnetic methods for outlining conductors. Gold analysis was not routinely done during these base metal programs, and as a result the gold potential for the area was not assessed nor was the geological setting appreciated until recent gold discoveries were made elsewhere along the belt.

Property Geology

The geology underlying the property consists of felsic, intermediate and mafic volcanic tuffs and flows which are intruded by local high level porphyry bodies. The south side of the property is underlain by a sedimentary unit containing an alteration zone with blue quartz eyes. Drilling in 1976 by Hudson Bay Exploration Development Company was directed at one

- 5 -

conductor on the property with the purpose of base metal exploration. This type of setting is similar to that of the Agnico Eagle mine in Quebec, portions of the Inco Casa Berardi discovery and Hemlo in Ontario. Siliceous, blue quartz eye and sericite alteration occurs in the host rocks (seen by the writer on the north side of West Porphyry Lake) which act as guides to tracing out sulphide horizons that may contain concentrations of precious or base metals. In other words the areas with greatest alteration would likely occur near and adjacent to areas with metal concentrations.

Analysis of disseminated pyrite in a porphyritic unit in Noranda hole HK 75-2 which is situated 1/4 mile west of the Mikwam River (claim L 848 389), 3 miles west of the property, assayed 0.03 oz Au/3 feet showing that gold is present and is anomalous in this sulphide and porphyry (possibly porphyritic rhyolite) environment (logs on file at MNR, Kirkland Lake). Therefore further exploration for stratabound sulphide and porphyry gold deposits within this area is warranted.

Consideration should also be given to delineation of what is now being described as the "Casa Berardi Break". This break may prove to be of a similar order of magnitude as the Destor-Porcupine, Kirkland Lake-Larder Lake or Cadillic-Malartic Breaks. Heretofore syngenetic exhalative gold deposits similar to Agnico-Eagle have been the targets of gold exploration

- 6 -

programs. This is largely because the depth of overburden and lack of outcrop prevented extended geological assessment of the area in order to develop exploration targets and most companies were desirous of finding large tonnage lower grade deposits that were amenable to bulk mining methods. It was much simpler to fly large areas with airborne geophysical surveys (primarily magnetic and electromagnetic), define conductors, use ground follow-up vertical and horizontal loop electromagnetic, induced methods: polarization/resistivity surveys and overburden drilling/heavy media separation analysis to discriminate and refine targets and finally diamond drill those targets. Considering what has been found from diamond drilling on several properties and from examining old diamond drill core, a model for the distribution for the gold mineralization based more along structural lines should perhaps be considered.

If one analyzes observations from the Inco-Golden Knight diamond drilling four types of mineralized rocks occur:

- 1) Gold in graphitic fault zones that have been brecciated and silicified and have numerous quartz veins.
- Gold in the sulphide-rock portions of interbedded magnetic iron formation chert horizons, more specifically the "lean" iron formations or dirty iron formations with varying amounts of chloride within them.
- 3) Gold in chert of "lean" iron formations recrystallized chert and low sulphide content.
- 4) Gold in quartz veins:
 a) Gold in narrow high grade quartz veins 5-15 feet wide with sphalerite and visible gold, 10% pyrite

and arsenopyrite with the best grades with the coarse grained arsenopyrite.

b) Gold in 10 to 100 foot wide quartz veins or generally within 70 metres of these veins. The bulk of the tonnage developed to date comes from these zones. Highly carbonatized rocks occur to both sides of these structures.

SURVEY PROCEDURES

MAX-MIN II

Theory

The Max-Min II is a frequency domain, horizontal loop electromagnetic (HLEM) system, based on measuring the response of conductors to a transmitted, time varying electromagnetic field.

The transmitted, or primary EM field is a sinusoidally varying field at any of five different frequencies. This field induces an electromotive force, (emf), or voltage, in any conductor through which the field passes. This is defined by:

 $\oint E.dl = \frac{-\partial \not B}{\partial t}$ (the Faraday Induction Principle)

where E is the electric field strength in volts/metre (and so \oint E.dl is the emf around a closed loop) and \oint is the magnetic flux through the conductor loop. This emf causes a "secondary" current to flow in the conductor in turn generating a secondary electromagnetic field.

This changing secondary field induces an emf in the receiver coil (by the Faraday law) at the same frequency, but which differs from the primary field in magnitude and phase. The difference in phase (the phase angle) is a function of the conductance of the conductor(s), both the target and the overburden and host rock. The magnitude of the secondary is also dependant on the conductance, and also on the dimensions, depth, and geometry of the target, as well as on the interference from overburden and the host rock.

These two parameters (phase angle and magnitude) are measured by measuring the strength of the secondary field in two components: the real field or that part "in-phase" with the primary field; and the imaginary field, or that part in "quadrature" or 90° out of phase from the primary field.

The magnitude and phase angle of the response is also a function of the frequency of the primary field. A higher frequency field generates a stronger response to weaker conductors, but a lower frequency tends to pass through weak conductors and penetrate to a greater depth. The lower frequency also tends to energise the full thickness of a conductor, and gives a better measure of its true conductivity-thickness product (conductance).

For these reasons two or more frequencies are usually used; the lower for penetration and accurate measure of good conductors, and the higher frequency for strong response to weak conductors.

- 9 -

Distinction between conductive targets, overburden, and host rock responses are made by studying the shape of the secondary field, and the difference in the frequency responses.

- 10 -

The transmitted primary field also creates an emf in the receiver coil, which is much stronger than the secondary, and which must be corrected for by the receiver. This is done by electronically creating an emf in the receiver, whose magnitude is determined by the distance from receiver to transmitter as set on the receiver, and whose phase is derived from the receiver via an interconnecting wire.

Field Method

The Max-Min II survey was carried out in the "maximum coupled" mode (horizontal co-planar). The transmitter and receiver are carried in-line down the survey line separated by a constant distance (in this case 150 m) with the receiver leading. Two transmitter frequencies were used: 444 Hz and 1777 Hz. The transmitter and receiver are connected by a cable, for phase reference and operator communication.

MAGNETICS

Theory

The magnetic method is based on measuring alteration in the shape and magnitude of the earth's naturally ocurring magnetic field caused by changes in the magnetization of the rocks in the earth. These changes in magnetization are due mainly to the presence of the magnetic minerals, of which the most common is magnetite, and to a lesser extent ilmenite, pyrrhotite, and some less common minerals.

Magnetic anomalies in the earth's field are caused by changes in two types of magnetization: induced and remanent (permanent). Induced magnetization is caused by the magnetic field being altered and enhanced by increases in the magnetic susceptibility of the rocks, which is a function of the concentration of the magnetic minerals.

Remanent magnetism is independent of the earth's magnetic field, and is the permanent magnetization of the magnetic particles (magnetite, etc.) in the rock. This is created when these particles orient themselves parallel to the ambient field when cooling. This magnetization may not be in the same direction as the present earth's field, due to changes in the orientation of the rock or the field.

The most common method of measuring the total magnetic field in ground exploration is with a proton precession magnetometer. This device measures the effect of the magnetic field on the magnetic dipole of hydrogen protons. This dipole is caused by the "spin" of the proton, and in a magnetometer these dipoles in a sample of hydrogen-rich fluid are oriented parallel to a magnetic field applied by an electric coil surrounding the

- 11 -

sample. After this magnetic field is removed, the dipoles begin to precess (wobble) around their orientation under the influence of the ambient earth's magnetic field. The frequency of this precession is proportional to the earth's magnetic field intensity.

Field Method

The magnetics data were collected with a proton precession magnetometer, which measures the absolute value of the total magnetic field of the earth to an accuracy of \pm 1 n Tesla. The magnetometer is carried down the survey line by a single operator, with the sensor mounted on a short pole to remove it from the surface geologic noise. Readings are normally taken at 25 m intervals, and at 12.5 m intervals where the operator observes a high gradient (anomaly).

The readings are corrected for changes in the earth's total field (diurnal drift) by repeating readings at base stations and "tie points" several times each day.

INTERPRETATION

The major feature visible on the grid is a strong magnetic response running northeast from 14W, 8+75 across the grid. This anomaly (Anomaly A) is continuous to line 1W at 2+75S. A weaker branch continues from 2W, 4+25S to 2E, 3+50S.

An apparent continuation of the same zone occurs at line 5E

- 12 -

from 100m baseline to 100m south to 100m north. Another strong anomaly occurs at 2+00N on L4E to 3+50N on L9E.

North of Anomaly A there are numerous minor magnetic anomalies, reasonably strong, but mostly of limited extent.

South of Anomaly A the magnetics are exceptionally quiet, and the change is very abrupt. The dashed line on the magnetics map sheet (in the back pocket) indicates this contact between the iron formation and the nonmagnetized unit to the south.

A portion of the contact coincides with an electromagnetic anomaly on lines 2W, 1W, 0 and 1E, as shown on the Max Min (1777 Hz) map sheet as Anomaly B. This anomaly is very weakly conductive, and may only be a bedrock trough. Futher detailed work would be necessary to resolve this.

The largest electromagnetic anomaly, C, trends northeast from L16W, 7+00S to 8W, 4+00S. At the eastern end the conductor is quite strong, with a conductivity thickness as high as 21 Siemens. It ends very abruptly on line 8W, at the point of highest conductivity thickness. There is no evidence of a fault or other offsetting feature at this point.

There is another EM anomaly (Anomaly D) trending northwest from 2+258 on L9W to about 0+508 on 16W. The conductivity thickness of this anomaly is less than that of Anomaly C, approximately 5 - 6 Siemens.

Another weak EM anomaly, E, is from 1+75S on 6E off of the

- 13 -

north edge at 9E.

There are a few isolated moderate conductors on some of the western lines at the extreme north edge. They are too close to the claim boundary to be detailed except by extending the survey north of the property.

CONCLUSIONS AND RECOMMENDATIONS

The major feature on the grid is north-east trending iron formation detected by the magnetics, flanked by several EM conductors. The appearance of the anomalies is that of a west plunging, synclinal fold.

EM anomalies C and D may be from the same zone, folded back.

There is a definite lithologic contact suggesting that south of a line under Anomaly B is less magnetic rock, probably metasediments.

It is recommended that Phase II of the exploration program recommended by R. P. Bowen be started, and the geological mapping of the grid, part of Phase I, be completed.

There is outcrop indicated on the southeast shore of West Porphyry Lake (Ontario Geological Survey map 2410, Twopeak Lake), and pilots report rock outcrops in the lake (a boat may be useful for mapping).

Induced polarization/resistivity surveying has proven useful in the past in the delineation of sub-overburden lithology, and

is recommended for this grid. A series of lines at approximately 200 m intervals would be best, with concentration on the major EM and magnetic anomalies.

The geologic survey should start as soon as possible, to be completed before the first snow falls. Closely following the I.P. and geologic surveys, a program of overburden drilling should be started, planned to drill "down ice" of the major anomalies.

From the data collected, the overburden depths vary considerably, from 12 to 40 m. An overburden program of 12 holes would require a total of at least 300 m of drilling. More drilling may be recommended from the geologic mapping.

Diamond drilling would best wait for the results of the geologic mapping and overburden drilling, but the most likely targets for drilling now defined would be the strong iron formation (Anomaly A) and EM Anomaly C. The drill hole for Anomaly A could also investigate the lithologic contact, and if it proves interesting another hole drilled at Anomaly B.

A recommended budget would be:

BUDGET

COMPLETION OF PHASE I Geological Mapping - 35 km @ \$320/km	\$ 11,200.00	
TOTAL PHASE I		\$ 11,200.00
PHASE II		
Induced Polarisation Survey		
- 10 days @ \$1,300/day	\$ 13,000.00	
Travel & Subsistence	2,000.00	
Preliminary Overburden Drilling		
- 1,000 feet @ \$20/ft	20,000.00	
Drill Mobilization	6,000.00	
Assaying	2,000.00	
Drill Supervision	3,000.00	
Sample processing, plotting and report	4,000.00	
TOTAL PHASE 11		50,000.00
PHASE III (Contingent on results of Phases Diamond drilling	I and II)	
- 2.000 feet @ \$30/ft	\$ 60.000.00	
Assaving, reports, core splitting	6,000.00	
Supervision, subsistence and transportation	ion <u>4,000.00</u>	
TOFAL PHASE III		70,000.00

TOTAL PHASES I, II AND III

\$131,200.00

Respectfully submitted,

bale

D. Greg Hodges Geophysicist

•

CERTIFICATION

I, D. Greg Hodges, of 136 Cedar Street South, in the city of Timmins, Province of Ontario, certify as follows concerning my report on the Heaverhead Resources Ltd. property in Hoblitzell Township, Province of Ontario and dated July 25th, 1986:

- 1. I am a member in good standing of the Society of Exploration Geophysicists
- 2. I am a graduate of Queen's University at Kingston, Ontario, with a B.Sc. (Hons.) Geological Sciences with Physics, obtained in 1980.
- 3. I have been practising in Canada, and occassionally in the United States, Europe, and Australia for the past six years.
- 4. I have no direct interest in the properties, leases, or securities of Beaverhead Resources Ltd., nor do I expect to receive any.
- 5. The attached report is a product of:
 - a) Examination of data included in the report which was collected on the property concerned.

Dated this July 25th, 1986 Timmins, Ontario

D. Greg Hodges, Geophysicist

۰.

42H09SE0010 2.9296 HOBLITZELL

900

Mining Lands Section

File No 29296

.

Control Sheet

TYPE OF SURVEY _____ GEOPHYSICAL _____ GEOLOGICAL _____ GEOCHEMICAL _____ GEOCHEMICAL _____ EXPENDITURE

MINING LANDS COMMENTS:

lgol Ld.

p. Aust

Signature of Assessor

aug 6/84.

Date

September 5, 1986

Your File: 230/86 Our File: 2.9296

Mining Recorder Ministry of Northern Development and Mines 4 Government Road East Kirkland Lake, Ontario P2N 1A2

Dear Madam:

RE: Notice of Intent dated August 8, 1986 Geophysical (Magnetometer & Electromagnetic) Surveys on Mining Claims L 848105, et al, in Hoblitzell Township

Please disregard the above-noted Notice of Intent. Additional information has been submitted by the claim holder and the report has been approved as recorded. Enclosed is a copy of Report of Work No. 230/86.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

J.C. Smith, Supervisor Mining Lands Section

Whitney Block, 6th Floor Queen's Park Toronto, Ontario M7A 1W3

Telephone: (416) 965-4888

SH/mc

cc: Beaverhead Resources Ltd P.O. Box 9535 1600 Bow Valley Square II Calgary, Alberta T2P 2V7

bcc: Mr. G.H. Ferguson Mining & Lands Comm. Toronto, Ontario R.J. Meikle P.O. Box 1637 Timmins, Ontario P4N 7W8

G. Hodges P.O. Box 1637 Timmins, Ontario P4N 7W8

Encl.

alat des. (Geophysical, Geological, 230/86 scare on this form, attach a list Resources Only dows credits calculated in the "Expend tures" section may be entered in the "Expend. Days Cr." columns. Geochemical and Expenditures) 29290 Note: --Untario Mining Act Do not use shaded areas below. Jug 5 Township or Area voe of Su HCBLITZELL Prospector's Licence No. MAGNE TUMETE? Holder(s) T_36.21 Reserves D. V. Jenes Bow Valley Square II Calques HA TOP 207 Total Miles of line Cut RS MIDDLETON Explored 7/6. Size J. (. Bay Mo. Size 23 CS EL Day Mo. Yr. 7418 PUN 00 BN 1637 TIMMINS HOOLLS ONT Credits Requested per Each Claim in Columns at right Mining Claims Traversed (List in numerical sequence) Special Provisions Expend. Days Cr. Mining Claim Mining Claim Days per Claim Exnend. Geophysical Prefix Prefix Number Days Cr. Number 1 For first survey: - Electromagnetic 40 Enter 40 days. (This includes line cutting) Magnetometer 84 C 04 848 413. - Radiometric For each additional survey: 84 105 1 using the same grid: Other 106 Enter 20 days (for each) Geological 102 Geochemical RECEIVED Man Days Days per Claim Geophysical Complete reterA sideD E R LAKE and enter total(s) here^{MINING} DIV, Electromagnetic JUL 1 0 1986 110 EGEIVAEntid D İ. MINING LANDS SECTION JUN 1 6 10 Miliometric Other PM 111 7 18 19 10 11 12 11 2 3 14 15 16 PORCUPINE MINING E n TE 20am 5 Geochemical Airborne Credits Days per Claim Note: Special provisions Electromagnetic credits do not apply Magnetometer to Airborne Surveys. £48 112 Radiometric 119 Expenditures (excludes power stripping) 120 Type of Work Performed 21 Performed on Claim(s) 409 Ц 411 Calculation of Expenditure Days Credits Total **Total Expenditures** 412 Days Credits \$ 15 Total number of mining claims covered by this ÷ 4 report of work. Instructions Total Days Credits may be apportioned at the claim holder's For Office Use Only choice. Enter number of days credits per claim selected Total Days Cr. Day Mining Recorder HCHI in columns at right. Recorded AIN 16 1986 0× Date Approve " as Recor Date Recorded Holder or Agent (Sighature) June 13 86 Certification Verifying Report of Work I hereby certify that I have a personal and intimate knowledge of the facts set is the in the Report of Work annexed hereto having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Postal Address of Person Certifying R4.V 118 20 DAY 1637 MEIKLE TIMMINS 0~5 - 5 Date Certified Certified by (Signature) n 13 ?ĉ (ens 1362 (81/9)

ROBERT S. MIDDLETON EXPLORATION SERVICES INC.

EPHONE (705) 264-4246 [705] 264-4247 P.O. BOX 1637 TIMMINS, ONTARIO P4N 7WB

August 25, 1986

RECEIVED

AUG 27 1986

Mr. W.L. Good, Chief Mining Recorder Ministry of Natural Resources Room 6521, Whitney Block Queen's Park TORONIO, Ontario M7A 1W3

Dear Sir:

Re: Your File #2.9296

Please find enclosed, ammended pages to be inserted in the Beaverhead Report, as well as ammended copies of the maps.

As discussed with Ms. Susan Hurst we omitted a row of 7 claims numbered 848106-07-12-13-18-19, 848409. The work was done on these claims at the same time as the others, however, they were mistaken for another company.

I trust everything is in order. If there are any questions please call.

Yours truly,

1 mail

R.J. Meikle.

RJM/lm Encl.

more maps

Ministry of Northern Development and Mines

August 8, 1986

Your File: 230/86 Our File: 2.9296

Mining Recorder Ministry of Northern Development and Mines 4 Government Road East Kirkland Lake, Ontario P2N 1A2

Dear Sir:

Enclosed are two copies of a Notice of Intent with statements listing a reduced rate of assessment work credits to be allowed for a technical survey. Please forward one copy to the recorded holder of the claims and retain the other. In approximately fifteen days from the above date, a final letter of approval of these credits will be sent to you. On receipt of the approval letter, you may then change the work entries on the claim record sheets.

For further information, if required, please contact Mr. R.J. Pichette at (416) 965-4888.

Yours sincerely,

J.C. Smith, Supervisor Mining Lands Section

> Whitney Block, 6th Floor Queen's Park Toronto, Ontario M7A 1W3

cc: Beaverhead Resources Ltd P.O. Box 9535 1600 Bow Valley Square II Calgary, Alberta T2P 2V7

> Mr. G.H. Ferguson Mining & Lands Commissioner Toronto, Ontario

G. Hodges P.O. Box 1637 Timmins, Ontario P4N 7W8

R.J. Meikle P.O. Box 1637 Timmins, Ontario P4N 7W8

Ministry of Northern Development and Mines

> Notice of Intent for Technical Reports August 8, 1986 2.9296/230/86

An examination of your survey report indicates that the requirements of The Ontario Mining Act have not been fully met to warrant maximum assessment work credits. This notice is merely a warning that you will not be allowed the number of assessment work days credits that you expected and also that in approximately 15 days from the above date, the mining recorder will be authorized to change the entries on the record sheets to agree with the enclosed statement. Please note that until such time as the recorder actually changes the entry on the record sheet, the status of the claim remains unchanged.

If you are of the opinion that these changes by the mining recorder will jeopardize your claims, you may during the next fifteen days apply to the Mining and Lands Commissioner for an extension of time. Abstracts should be sent with your application.

If the reduced rate of credits does not jeopardize the status of the claims then you need not seek relief from the Mining and Lands Commissioner and this Notice of Intent may be disregarded.

If your survey was submitted and assessed under the "Special Provision-Performance and Coverage" method and you are of the opinion that a re-appraisal under the "Man-days" method would result in the approval of a greater number of days credit per claim, you may, within the said fifteen day period, submit assessment work breakdowns listing the employees names, addresses and the dates and hours they worked. The new work breakdowns should be submitted directly to the Land Management Branch, Toronto. The report will be re-assessed and a new statement of credits based on actual days worked will be issued.

Ministry of Northern Development and Mines

			File 2.9296
August 8,	1986	Mining R Work No.	ecorder's Report of
L			

r

Becorded Holder BEAVERHEAD	RESOURCES LTD
Township or Area HOBLITZELL	TOWNSHIP
Type of survey and number of Assessment days credit per claim	Mining Claims Assessed
Geophysical	
Electromagnetic days	
Magnetometer 20 days	L 848104-05 848108 to 111 inclusive
Radiometric days	848114 to 117 inclusive 848120-21
Induced polarization days	848410 to 414 inclusive
Other days	
Section 77 (19) See "Mining Claims Assessed" column	
Geological days	
Geochemical days	
Man days 🗍 Airborne 🗌	
Special provision 🔀 Ground 🕱	
Credits have been reduced because of partial coverage of claims.	
Credits have been reduced because of corrections to work dates and figures of applicant.	
Special credits under section 77 (16) for the following	mining claims
No credits have been allowed for the following mining	claims
not sufficiently covered by the survey	insufficient technical data filed
	L 848106-07-12-13-18-19 848409

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geologocal - 40; Geochemical - 40; Section 77(19) - 60.

File_

OFFICE USE ONLY

837 (5/79)

Ministry of Natural Resources

GEOPHYSICAL – GEOLOGICAL – GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) <u>Electromagnetic</u> Magnetic	
Township or Area Hoblitzell Township	MINING CLAIMS TRAVERSED
Claim Holder(s) Maurex Resources Ltd.	List numerically
Survey Company Robert S. Middleton Exploration Survey Company Services Inc. Author of Report D. Greg Hodges Address of Author 136 Cedar St. So., Timmins P4N 7W Covering Dates of Survey March 31 to May 23, 1986 (linecutting to office) Total Miles of Line Cut 29.8 km	848104 848412 (prefix) (roumber) 848105 848413 848106 848414 848107 848108
SPECIAL PROVISIONS CREDITS REQUESTEDDAYS per claim.GeophysicalPer claim.Floctromognetic40	
ENTER 40 days (includes line cutting) for first	848111
survey. –Radiometric	848112
ENTER 20 days for eachOther	848113
additional survey using Geological	848114
AIRPORNE CREDITS (a. 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	
Magnetometer Electromagnetic Radiometric (enter days per claim)	848115 848116
DATE: July 31/86 SIGNATURE: Author of Report of Agent	848117
	848118
Res. Geol. $Qualifications 2.5919$	848119
Previous Surveys DCFIVED	848120
File No. Type Date KC Claim Holder	848121
	848409
NINING LANDS SECTION	848410
	848411
	TOTAL CLAIMS24

GEOPHYSICAL TECHNICAL DATA

ģ	ROUND SURVEYS -	- If more than one survey, spe	cify data for each type of survey	,										
N	lumber of Stations	1,200		Mag-1, EM-2										
с С	tation interval	25 m	Line snacing	100 m										
ני ם	mation interval	1:2.500	tsuc speciel											
r c	ronne scale		<u></u>											
Ľ														
• •	Instrument	EDA OMNI IV Tie-Li	ne											
Ĭ	Accuracy – Scale co	nstant <u>+ · 1 nT</u>												
N	Diurnal correction m	ethod Tie Lines												
MAG	Base Station check-in	n interval (hours)2												
	Base Station location	n and value <u>On Grid</u>	59180.0 nT											
			-											
	••••••••••••••••••••••••••••••••••••••													
<u>ប</u>	Instrument	Apex Parametrics Ma	x Min II											
IET)	Coil configuration _	Horizontal Co-Plana	r											
U	Coil separation	150 m												
WW	Accuracy	<u>+</u> 1/4%												
IRC	Method:	E Fixed transmitter	🗆 Shoot back 🛛 📥 In lin	e 🛛 Parallel line										
EC	Frequency	444 Hz 1777 Hz												
EL	(specify V.L.F. station)													
· · · ·	Parameters measured	<u> </u>												
	Instrument													
	Foolo constant													
건	Scale constant													
	Corrections made													
JRA		.]]												
0	Base station value and location													
			annan a'n ¹⁹⁴ - Cananan a'n y 1970 y 1971 y 1970 y 19											
	Elevation accuracy_		an a											
	In structure and													
.1	Instrument	Domoin		main										
	Method I Time I	Domain	Frequency											
	Parameters – On tin	1e	Pange	анцин на алан алан алан алан алан алан алан										
H	– Off th	ne	Range											
	- Delay	time												
SIS	- Integra	ation time												
RE N	Power			<u></u>										
k	Electrode array													
1	Electrode spacing													
	Type of electrode													

SELF POTENTIAL

Instrument	Range
Survey Method	
Corrections made	
RADIOMETRIC	
Instrument	
Values measured	·
Energy windows (levels)	
Height of instrument	Background Count
Size of detector	
Overburden	
(1	type, depth — include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGIN	NG ETC.)
Type of survey	·
Instrument	
Accuracy	
Parameters measured	
Additional information (for understanding re	esults)
,	,
AIRBORNE SURVEYS	
Type of survey(s)	
Instrument(s)	
(i	specify for each type of survey)
Accuracy(specify for each type of survey)
Aircraft used	
Sensor altitude	
Navigation and flight path recovery method.	
· · · · · · · · · · · · · · · · · · ·	

Aircraft altitude	Line Spacing
Miles flown over total area	Over claims only

GEOCHEMICAL SURVEY – PROCEDURE RECORD

Numbers of claims from which samples taken_____

Total Number of Samples	ANAL VTICAL METHODS
Type of Sample	Values expressed in: per cent p. p. m. p. p. b.
Method of Collection	Cu, Pb, Zn, Ni, Co, Ag, Mo, As,-(circle)
Soil Horizon Sampled	Others
Horizon Development	Field Analysis (tests)
Sample Depth	Extraction Method
Terrain	Analytical Method
	Reagents Used
Drainage Development	Field Laboratory Analysis
Estimated Range of Overburden Thickness	No. (tests)
	Extraction Method
	Analytical Method
	Reagents Used
SAMPLE PREPARATION	Commercial Laboratory (tests)
Mach size of fraction used for analysis	Name of Laboratory
Mesh size of fraction used for analysis	Extraction Method
	Analytical Method
	Reagents Used
General	General
	

, **(**

· · ·	m	EM		ŋ	EN. 2.9296												
848164	\checkmark	~	848110	31	V				1								
1 55	~	~	10	1/	\checkmark												
6	\checkmark	~	 20	\sim	V												
1	V	\checkmark	2		~												
8	~	~	 84840	i													
9	V	~	10		V												
10	~	V	[[
	\checkmark	/	ľ	2 ~													
CI	\checkmark	\checkmark	/2		V												
			14	11	1	1		•		l.							
14		~]										
15	\checkmark	~	l l														
16	\checkmark	/	<i>. . . .</i>														
17	1	/	Υ														
<i>,</i>			· · · · · · · · · · · · · · · · · · ·														

to be a constrained process we assure the entropy to a proceeding sprace.

1761057 1761668 1930710 930721 8919371 8919371 891940 891943 69194 89194 891952 891955 1891958 1891964 1891964 1891967 1891970 891973 891976 891973 891976 891978 1982

1932525 932526 932520 932510 932510 93530 893539 693542 930768 789217 789218 789232 789246 789246 789262 789262 789261 789261 789261 789262 789261 789262 789261 789261 789262 789261 7892

1932524 932521 9325181 893531 893538 893543 930767

432523 932526 932526 932522 936517 893532 893537 893544 893549 893549 893549 893537 893544 893549 893549 89295 789229 789259 789259 789264 789278 789264 789278 789289 789264 789278 789289 789264 789278 789289 789264 789278 789289 789264 789278 789289 789289 789264 789278 789289 788289 78889289 788289 788289 788289 788289 7

41 564 191315 194157 191567 191366 1941574 191367 191366 1941579 191366 194157 191366 194157 191366 194157 19136 1

363 1 333 1 421396 1421389 421369 421389 421369 421389 421368 421373 421373 421368 421373 421373 421368 421373 421373 421368 421373 421373 421368 421373 421373 421373 421368 421373 421373 421368 421373 421

 35^{10} 1933637 192367 192367 192367 192377 192378 1921372 1921372 1921372 19237 19226 199272 199223 19926 199272 199225 199272 1992

Mikwam

Porphyry Lake

135⁵⁷¹ 935⁵⁶ 92139⁶ 92139⁶ 92139⁶ 92139⁷ 9213

9354 1 33537 872022 87202 8720

872026872019 872019 872018 872019 872018 872019 872018 871976 836601 4334600 628648 628596 628604 836601 4334600 628648 628596 628604 836601 4334600 628648 628596 628604 628596 628608

1839474 334 920 Biga466 1839462 1839958 834954 1814522 1834519 1834513 1834506 1834506 1834484 1834484 1834482 1834482 1834481 183448

834516 1 834512 834597 1 324 582 1 834 407 1 834 408 1 834 487 1 634 486 83448

1 83 4500 834 503 939 934 94 834493 834492 834991 1834990

1 8 3 4 4 8 8 3 4 4 9 7 8 14 4 9 6 8 3 4 4 9 5

TOMUNSON

CROWN LAND SALE 1 123

B.L. 0+00S 3+00S **4+00S** 2+00S 6+00S 200+7 2+00S 1+00 S 887 1020 1061 1058 1158 104 107 954 870 836 828 828 815 896 -840 -860 855 844 852 872 926 -066--981 838 875 861 .919 897 1016 904 LIE 53 588 766 1050 045 045 1151 1115 1115-1122 1601 840 -835 837 838 -830 -815 849 994 1115 950 958 959 880 36 855 606 1036 852 816 819 386 LIOE 82 1601-99QL 1173 -1056 1033 1056 1040 1028 -857 .956 112 926 -933 921 987 825 852 .862 881 364 912 853 838 829 824 851 -847 ·835 862 822 865 986 811 Г9Е 021 9121-887 84 8120 848121 90E/. ÌLZI-ODE, 984 1297 1164 $\mathcal{D}_{\mathcal{G}}$ 1154 945 8867 867 830 836 1048 830 964 878 393 826 -829 -877 863 -903 -819 -821 936 100 847 L 8E 902) 25 12-101 - 10 1067 909 887 869 869 -878 -846 -856 -867 871 - ST -854 856 852 854 847 115 139 Lπ $\omega_{\ell'}$ abr -787 -1467 -1442 -1357 -1027 -846 -879 -881 0091------1468 -1232 -1275 -1129 1861-1201 62 1017 -857 -860 -850 66 850 B47 -857 -862 -869 \$28 L GE 995

ROBERT S. MIDDLETON EXPLORATION SERVICES INC M-110 N.T.S.: File: M-29296 CONTOURED MAGNETOMETER SURVEY 1 Lac BEAVERHEAD RESOURCES LTD. Scale: 1:5000 TWP Approved HOBLITZELL С. G. 8 Backgrour Date: JUL Title Draw for REVISIONS

INSTRUENT: FLA CANN IX Proton Precession PARMETERS MAD: Proton Precession Diumals Corrected by Pase Station Looping AOTRAY: +/- 10 nano - teslas CONTAR NT-FLAL: 100 nano - teslas

CLAIM POST (Assumed)
 CLAIM POST (Located)

Lithologic Magnetics LEGEND

3	a)		1104	1208					875	0%	61.01	E911	7341	6661	114	14 15	en e	1307	11.0	872	000 2.4 2		1 C 0	857	106	637	169	887												
L3		666 296							+							J	//			-+	•	-		······	V		J	~ +					<u> </u>							
		196- 186-	N (II)		\sim					6			200 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -				1120 1200								-			_												F
L4W	01), 00), 00),		200	971				+		162		ELT		11		185	157		292 1	866					8	-852	878-	8 78	866	-862	188 188	908+ 408		+873	856	847	878	+857	1662 B45	
	W6	868	$\overline{//}$		- 	 		\		$\overline{)}$							00	168					N						I I											
-5W		928- 688 7887	936	1165	886	+920	11.6	4214	668	-932	1886	+855	-890 	è 008	99	SEN 1135		1867	1752	1234	1382		100	877	869	-863	-859	+857	861	898	+879	-890 887		878	+861	-852	-849	+854	-860 841	
		516				12	»		/									Ŵ																						
3	{	887.98	-868	242	1109	14.27	14.02	942	996	1077	2005	168	928 •••1	970	1050	-1093	1064	1024	-1184	14.88	14.34	1309	-007 	. 689.	615	-860	855	-867	8 57	867		80U	871	887	871	861	851	857	.860 86'	140
Γe	t t	668+						8			Γ		++								þ				8,		- +				·•·····	+		-14		<u> </u>	•···· • •			
_	1	858- 16		0 4	00	It T		18 48 84 BJ	58	-	6	99	6 5 5	• 6		75	8	43	08		41 N 0 / 01						Q	5	t		ų			8484 84	6	0	ىر	¢	m r	7
∧	!	588 958	/ ^{[6} +			-8				- 89	85	+ 86	++ 	78	 	86	6.		12	•	T fi				60	+- \		-1-		85	Ω ₩	85		× 88	8			80 +	20 	
		278-			005 -	/	/		. /			ۍ رو	1						\backslash				T			Sc.							006 /	\			\bigcap			
8W	1000 - Z	.911			855	¥656+	+ 911		+96+	-928	-920	- 648	+965 +951	216+	80 60 60	-875	877	568	205	1561	+1164	+ 1126		15 15 15 15	1302	//	105	884	-+ 882	816	C 00	627	886 886 886	-929	568	-1887	106	+955	906	*
-	2	201	<u>9</u> ,	8 <u>3</u> 8 <u>3</u> 8 <u>3</u>			\square							/	/ #	- <u></u>			\ 		\ 		191/ +++/	F.—												<u> </u>		<u> </u>		₽┥
2	6	000 -053 الم	12	985 600	298	166	044	69	82	89	59	39	92	70		75	82	175	11	21	50	228	612 781	221	466	0081	167	m.L.	60		4 c	20 CC	82 80	10	124	06	81	88	18	1.0
L9 V	- 00-	ES6 678							6		-+	<u>°</u>			-	₩	<u>~~</u>		80 +		$\overline{\mathbf{A}}$		ترت \						Ĩ		φ	<u> </u>	₽ ¶	<u>}</u>	+-		-			
		978- ZE6-																		8			\sim	1500	??					X						/				
L IOW	(876 678	887.9	066 +	926+	-957	1917 84.6		+825	-813		+886	+848 +843	82	865	6 19 8 		897	8,9		+ 406	E76	100/	1237	1419	+1420	1231	1202	576-	126		7/0		87 7	+895		+872	-862	862	6/0 886
	(566	-					1														1	/	/ /			()		11		\backslash									1

2.9296 HOB. 172ELL

