010

JUL 47495
GEOPHYSICAL REPORT
On The

Magnetic and Electromagnetic Surveys
Conducted on

Mining Claims
L 591079 - 591084
591099 - 591128
619175 - 619180
619461 - 619480
619181 - 619194
393758 - 393761
393766 - 393769

393777

Located in
Blakelock and Tweed Townships
in the
Mining Division of Larder Lake Ontario
W. S. Mitchell

TABLE OF C.........
INTRODUCTION 1
MINING CLAIMS COVERED BY SURVEY 1
LOCATION AND ACCESS 2
GENERAL DESCRIPTION OF GEOLOGY, PHYSIOGRAPHY AND 3
VEGETATION
LINECUTTING - GRIDS 3
METHODS OF GEOPHYSICAL SURVEYS
(A) Magnetic Survey 5
(B) Electromagnetic Survey 7
CONCLUSIONS 12
TECHNICAL DATA STATEMENT APPENDIX 1
FIGURES

Location of Claim Groups	Figure	1
Location Map of Claim Block A	Figure	2
Location Map and Grid Plan Claim Block B	Figure	3
Location Map and Grid Plan Claim Block C	Figure	4
Location Map and Grid Plan Claim Block E	Figure	5

MAPS - TO Accompany Report

Magnetic Survey	Block A	-	Map	1
Magnetic Survey	Block B	-	Map	2
Magnetic Survey	Block C	-	Map	3
Magnetic Survey	Block E	-	Map	4

TABLE OF CONTENTS

MAPS - To Accompany Report

Max-Min II Survey	$\begin{array}{r} 444 \mathrm{~Hz} \\ 1777 \mathrm{~Hz} \end{array}$	Block A Block A	-	Map 5 Map 6
Max-Min II Survey	444 Hz	Block B	-	Map 7
	1777 Hz	Block B	-	Map 8
Max-Min II Survey	444 Hz	Block C	-	Map 9
	1777 Hz	Block C	-	Map 10
Max-Min II Survey	444 Hz	Block E	-	Map 11
	1777 Hz	Block E	-	Map 12

INTRODUCTION

This report provides a description of the magnetic and electromagnetic surveys which were completed by Utah Mines Limited personnel, on mining claims located in Blakelock and Tweed Townships in the mining district of Larder Lake, Ontario. A Total of 85 mining claims in four separate claim groups: A, B, C, and E were covered by the ground geophysical surveys which were completed between January 18 and April 15, 1982.

MINING CLAIMS COVERED BY SURVEY
The 85 mining claims held by Utah Mines Limited in Blakelock and Tweed Townships are in four separate claim groups as follows:

Block A (62 claims) - L591079 - L591084, L591099 L591128, L619175 - L619180, L619461 - L619480

Block B (14 claims) - L619181 - L619194
Block C (4 claims) - L393766 - L393769
Block E (5 claims) - L393758 - L393761 \& 393777

Claim blocks: A, B, and C are all located within Blakelock Township, and claim block E is located approximately six miles west of these three claim blocks in Tweed Township (Figure 1). All of the claims are within the Larder Lake

Mining Division of Ontario

LOCATION AND ACCESS

The claim groups are located in Blakelock and Tweed Townships approximately 44 miles northeast of Cochrane, Ontario. Block A comprising 62 claims is the largest of the claim blocks and is located just west of Mikwam and Brayley Lakes. 14 claims contained within Block B are located approximately one mile northeast of Block A claims on the east shore of Kanitama Lake. The Block B claims extend from Kanitama Lake southeasterly towards Little Mikwam Lake. Block C is a four claim group which is located on the northeastern shores of Little Mikwam Lake. The five claims of Block E are located in Tweed Township on and south of Spear Lake. The Block E claims are situated immediately east of the Detour Lake road and are approximately six miles distant from the main Block A group of claims.

During summer, float plane or helicopter can be used to access the property from Cochrane. In winter, Block E is readily accessible via the Detour Lake road, which is currently under construction and which branches north of Highway No. 652, at a point approximately twenty miles east of Cochrane. Snowmobile trails allow access to Blocks A, B and C from the Detour Lake road during the winter months.

GENERAL DESCRIPTION OF GEOLOGY, PHYSIOGRAPHY AND VEGETATION
All of the claim groups are covered by glacial drift, and no outcrop has been found on any of the claims. Ontario Department of Mines Map 2161, a four mile geological compilation sheet of the Coral Rapids - Cochrane Area covers Blakelock and Tweed Townships. This map indicates that the southern half of Blakelock and the extreme southeast corner of Tweed Townships are underlain by a series of mafic to felsic metavolcanic rocks and metasediments. The northern part of both Townships is interpreted as being underlain by granitic rocks.

There is very little variation in topographic relief in any of the claim blocks, which are generally thickly wooded with black spruce, poplar, cedar and minor birch. Areas of swamp, common in the northern part of grid A sustain only muskeg and small shrubs.

LINE CUTTING - GRIDS

Prior to completing the geophysical surveys, cut line grids were established on each of the claim blocks. The line cutting was completed between January 18 and March 10 by Dane Inc. of Amos, Quebec, under contract to Utah Mines Limited.

On the largest group of claims, claim Block A, an east-west base line ($B L-0$) was established from Monday Lake
in the west for 6,550 feet eastwards towards Brayley Lake. To avoid Brayley Lake the base line is offset 300 feet due south at line 64 east, from which point the base line continues east to line 104 east (10,400 feet east). Cross lines spaced at 400 foot intervals were cut from the base line to provide complete coverage of all 62 claims within Block A.

Additional directional control of the cross lines on the Block A grid is provided by four east-west trending tie lines. Two of the tie lines were established 4,000 feet and 8,000 feet north of the base line (lines 40 north and 80 north) while two other tie lines were positioned 4,000 feet and 6,600 south of base line zero (lines 40 south and 66 south). The tie line at line 80 north marks the northern boundary of grid A, while the tie line at 66 south forms the southern boundary.

Tie line 40 north also provided control for cross lines L68E to L92E which were cut on the northern section of grid A between the 4,000 and 8,000 foot tie lines only. On claim Block B a base line extending 7,600 feet in the northwest-southeast direction provides the necessary control for cross lines of grid B which were cut at 400 foot intervals in a northeast-southwest direction. The base line on claim Block C was also cut in a northwest-southeast direction and extends for 2,800 feet. Cross lines on grid C
were also established in a northeast-southwest direction at 400 foot intervals.

The base line for grid E extends 4,800 feet northwest to southeast, again with cross lines cut at 400 foot intervals in a northeast-southwest direction. Tie lines were not utilized on grids B, C or E because of the relatively short length of the cross lines.

Base lines and cross lines on each of the four grids were chained and picketed at 100 foot intervals. Pickets were all clearly marked with their respective grid designations to provide adequate station control for the planned geophysical surveys.

METHODS OF GEOPHYSICAL SURVEYS
(A) Magnetic Survey

Magnetic surveys were completed by Utah Mines Limited personnel on grids A, B, C and E during the period January 18 , 1982 to April 15, 1982. The instrument used for the magnetic surveys was the Barringer GM-122 Proton Precession Magnetometer. The instrument operates on the principle of measuring the precession frequency of protons contained in a proton rich liquid in a sensor head when an induced magnetic field is abruptly removed. The sensor is mounted on a staff which can be held at arms length from the operator, thus decreasing the
effect of any magnetic material that the operator may unknownly be wearing or carrying. The output from the GM-122 portable magnetometer is in the form of a five digit display in gammas. This magnetometer measures the total intensity of the earth's magnetic field with an accuracy of better than ± 1 gamma and a resolution or sensitivity of 1 gamma. The instrument is portable and battery operated.

Magnetic readings must be corrected for diurnal and instrumental drift. This was done by establishing central base stations on each of the grid as follows:

Grid	Location of Base Station	Base Station Reading (Gammas)
Grid A	L64E, 0+00	59558
Grid B	L40N, 0+00	60020
Grid C	Ll6N, 0+00	59413
Grid E	Ll2N, 0+00	59500

The base stations and their corresponding values are shown on the accompanying plan maps. On each of the four grids additional base stations were set up along the full length of the base lines. These base stations were corrected for diurnal and instrumental drift in relation to the central base station pertaining to each grid. All magnetometer readings were then taken at 100 foot intervals along the cross lines which were surveyed in loops from the base line.

The operator would commence taking readings along the cross lines and return to the base station to complete his loop. In this way, any diurnal variations in the magnetic field* or drift within the instrument could be monitored, and each reading taken along the loop could be corrected for the relative amount of dirunal drift. With base stations set up along the base line, readings along the cross line loops were normally completed and closed within a period of one hour.

All magnetometer readings were taken at 100^{\prime} intervals over each grid and a total of 3,895 readings were recorded during this survey. After correcting the readings for diurnal and instrumental drift the values were plotted as gamma values on a map of the grid drawn to a scale of 1 " to 400^{\prime}. The plan map for each grid was plotted and contoured using computer methods.
(B) Electromagnetic Survey

The electromagnetic survey was carried out by Utah Mines Limited personnel using an Apex Max-Min II EM system. The Max-Min II EM unit consists of a transmitter coil and console which generates an oscillating primary field at one of four operating frequencies $(222,444,888$ or 1777 cycles per second). The choice of frequency is made primarily on the type and depth of overburden and the type, size and depth of target being sought. In general a lower frequency
will reduce geological noise, have increased depth penetration, but at the same time will reduce sensitivity of the system. The transmitter coil of the Apex Max Min unit is connected to the receiving coil and console by a reference cable of suitable length. The choice of cable length is made primarily on the basis of depth to which EM penetration is desired for exploration. Generally, depth of exploration with an EM unit increases with coil separation.

The receiving console, once tuned and nulled for local ground conditions gives an automatic read out of the real and imaginary components of the secondary field as a percentage of the phase shift of the primary field. With no conductor present, no secondary field is produced and only the primary field is detected by the receiving coil with a response of zero, real and quadrature readings.

In the presence of a conductor, a secondary field is produced and negative real and quadrature readings are recorded. As the leading coil approaches the conductor, positive readings are observed which are commonly referred to as the positive shoulder. When the coils have moved to a point where the conductor is approximately mid way between the two coils, a maximum negative response will be observed. As the coils move off the opposite side of the conductor, a second positive shoulder is observed.

The readings obtained are plotted as percentages of the primary field at the midpoint between the transmitter and receiver coils. The values are then profiled to outline the anomalous regions. The shape of the profiles will depend upon the separation of the coils, the nature of the conductor present, and its physical location as well as the frequency at which the primary field is transmitted.

The depth penetration of this instrument is a function of the coil separation and is generally regarded as being one half to two thirds of the separation distance between the coils. The nominal sensitivity of the instrument is about 0.2% of the total field.

All four grids were surveyed with the Max-Min instrument using a 400 foot reference cable. Readings were taken at frequencies of 444 and 1777 cycles per second. The values of real and quadrature readings for each frequency are plotted on the accompanying maps of each grid.

INTERPRETATION OF THE GEOPHYSICAL RESULTS

A. Magnetic Survey

Results of the magnetometer surveys on each of the four grids A, B, C and E, are shown on the accompanying contoured magnetic maps for each respective claim block. The maps are drawn at a scale of $1^{\prime \prime}=400^{\prime}$ and the magnetic values are contoured at an interval of 100 gammas.

On Block A the most striking magnetic feature is a northeasterly trending zone of relatively high magnetic relief in the southern portion of the property. This magnetic feature coincides with several northeasterly trending electromagnetic anomalies.

Other areas of high magnetic intensity occur in the northwestern part of the claim block and in some cases again coincide with anomalous EM conductivity. A weak north/south trending feature in the western third of the property, possibly reflects a diabase dyke.

The magnetics on Block B indicate a strong northwesterly trending series of magnetic highs. There is again a broad coincidence with magnetic highs and anomalous EM conductivity.

On Block C a distinct zone of high magnetic values occur in the western part of the property. There is no coincident electromagnetic conductivity associated with these magnetic highs which are difficult to interpret because of the total lack of outcrop and undeterminate
thickness of glacial overburden in this area.
Apart from a relatively weak easterly magnetic trend near the centre of claim block E, the magnetics over this area are relatively flat. The weak east trending magnetic high coincides with a moderate to weak electromagnetic conductivity anomaly.
B. Electromagnetic Survey

Max-Min II data are plotted as a series of profiles on the accompanying plan maps of the grids drawn at a scale of $l^{\prime \prime}=400^{\prime}$. The profile scale is 40% per inch for both frequencies 444 and 1777 Hertz. Areas of conductivity are shown on each of the maps and the anomalies are noted alphabetically.

On Block A anomalies A \& B have significant strike length and as noted previously are located in the southern portion of the claim group coincident with an area of northeasterly trending magnetic highs. Also on Block A are a series of short strike length conductive anomalies C to H inclusive.

A long continuous conductive zone (anomaly I) trends northwest, southeast, across Block B and coincides with a similar trending zone of relatively high magnetic relief. A short strike length anomaly J, also with high magnetic expression is located approximatley 600^{\prime} away from the main conductor at its northwestern limit.
B. Electromagnetic Survey (Continued)

Max-Min II data on Block C, indicates only weak deflection on the out-of-phase readings. This deflection probably represents overburden response or bedrock topography.

Two conductive anomalies were detected on Block E. These anomalies K and L, trend approximately eastwest and have weak coincident magnetic expression.

Conclusions
Conductive and magnetic anomalies located on Block's A, B, and E, appear to be untested anomalies and drill testing of the higher priority anomalies is warranted.

WANEHALC.
W.S. Mitchell

District Geologist
Eastern Canada

WSM/ca

APPENDIX I

GEOPHYSICAL TECHNICAL DATA STATEMENT

FIGURE 1
LOCATION OF CLAIM BLOCK\& A,B,C ANDE

FIGURE 2 LOCATION MAP CLAIM BLOCK A

$:$
FIGURE 3 LOCATION MAP AND GRID PLAN CLAIM BLOCK 8

FIGURE 4 LOCATION MAP AND GRID PLAN CLAIM BLOCK C

FIGURE 5 LOCATION MAF AID CRID PIAN CLAIM BLOCK E

```
Utah Mines Ltd
Suite 1406
4 King Street West
Toronto, Ontario
M5H 1B6
Attention: W.S. Mitchell
Dear Sirs:
RE: Geophysical (Electromagnetic and Magnotometer) Survey submitted on Mining Claims 2591079 et al in the Townships of Blakelock and Tweed
```

Enclosed are the plans, in duplicate, for the abovermentioned survey. Please plot on the plans, the original values at each station for both the Electromagnetic and Magnetometer Surveys and return the plans to this office.

For further information, please contact Mr.F.W. Matthews at (416) 965-1380.

Yours very truly,
E.F. Anderson

Director
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A IW3
Phone: (416) 965-1380
R. Pichette:mc

Encis.
cc: Mining Recorder Kirkland Lake, Ontario
Page
INTRODUCTION 1
MINING CLAIMS COVERED BY SURVEY 1
LOCATION AND ACCESS 2
GENERAL DESCRIPTION OF GEOLOGY, PHYSIOGRAPHY
AND VEGETATION 3
LINECUTTING, GRIDS 3
METHODS OF GEOPHYSICAL SURVEYS
(A) Magnetic Survey 5
(B) Electromagnetic Survey 7
CONCLUSIONS 12
TECHNICAL DATA STATEMENT Appendix 1

FIGURES

Location of Claim Groups

- Figure 1
Location Map of Claim Block A - Figure 2
Location Map and Grid Plan Claim Block B - Figure 3
Location Map and Grid Plan Claim Block C - Figure 4
Location Map and Grid Plan Claim Block E - Figure 5

MAPS - To Accompany Report

Magnetometer Survey, Block A	- Contour Map
Magnetometer Survey, Block A	- Data Values
Magnetometer Survey, Block B, C, and E	- Contour Map
Magnetometer Survey, Block B, C, and E	- Data Values
MaxMin II Survey, Block A	-1777 Hz Profiles
MaxMin II Survey, Block A	444 Hz Profiles
MaxMin II Survey, Block B, C and E	-1777 Hz Profiles
MaxMin II Survey, Block B, C and E	444 Hz Profiles

Mining Lands Comments

to: Geoophyiss Mo. Barlow.

To: Geology - Expenditures

Comments	
\square Approved	\square Wish to see again with corrections

To: Geochemistry

Comments	
\square Approved	\square Wish to see again with corrections

\square

MINERAL EXPLORATION
SUITE 1406, 4 KING STREET WEST, TORONTO, ONTARIO, CANADA M5H 1 B6 (416) 368-3884

Date: August 11, 1983

E.F. Anderson

Whitney Block, Room 6450 Queen's Park, Toronto, Ontario M7A IW3

Dear Sir:

In compliance with your request of June 17, the enclosed, signed plan maps in duplicate are being returned with data values posted at each station. In order to accommodate this the total number of maps and the titles for various map sheets have been altered. Since this affects the "Table of Contents" of the associated report, it is included in duplicate, for insertion to the report.

Sincerely yours,

P.A. Diorio

Geophysicist
PAD/ca

RECEIVED

AUG 151983

Mining Lands Comments
(1)
To: Geophysics

To: Geology - Expenditures

Comments	
	\square Wish to see again with corrections

\square To: Geochemistry

| Comments | |
| :--- | :--- | :--- |
| | |
| | |
| | |

\square To: Mining Lands Section, Room 6462, Whitney Block.
(Tel: 5 -1380)

```
Mining gecorder
Ministry of Natural Resourcee
4 Government Road geet
P.O. Box }98
Kirkland Lake, Ontario
P2N 1A2
```

Dear Siz:

We have received reports and mape for aeophyeical (Electromagnetic and Magnetometer) Survey uubmitted under Special Provisions (credit for Performance and Coverage) on Kining Clains $L 591079$ et al ln the Townships of Blakelock and Tweed.

This material will be axamined and assessed and a statement of assessment work credits will be lesued.

Yours very truly
E.F. Anderson

Director
Land Management Branch
Whitney Block, Room 6450
Queat's Park
Toronto, Ontario
M7A 1H3
Phone: 416/965-1316
J. Skura:sc
cc: Utah Mines Limited Toronto, Ontario Attn: W.S. Mitchell.

UTAH MINES LTD.
 mineral exploration

SUITE 1406, 4 KING STREET WEST, TORONTO, ONTARIO, CANADA MEH 1B6 (416) 368.3884

RECEIVED

JUL 271982
July 26, 1982

mining Lands section

Ministry of Natural Resources, Mining Lands Section, Room 6450, 99 Wellesley Street, West, Whitney Block, Queen's Park Toronto, Ontario M7A 1W3

Attention: Mr. Arthur Barr
Dear Sir:
Please find enclosed two complete signed copies of an Assessment Work Report, covering mining claims located in Tweed and Blakelock townships, Ontario. The Geophysical Assessment Reports hereby submitted pertain to the claims listed in the attar chad copy of the report of work form filed with the Ministry of Natural Resources, in Larder Lake on May 28, 1982.

I trust that you will find everything in order.

Sincerely yours,
w. A. Altichell
W.S. Mitchell

District Geologist Eastern Canada

WSM/ca
Enclosures:

Fieport of Work
(Geophysicsi, Geological,
Geochemical and Expenditures)
instructions: - Please iype or prim.

- 11 number of mining cla exceedi space on this form, atrech s fist.
Note: - Only devs credits calculated in the "Expendizures" section may be entered In the "Expend. Days Cr." columns.
$\lambda^{\prime}(6 \mid G \downarrow 74)$ تTho Mining Act
Trpo of Survordit U
Survoy Dater (linecunting 80 office)

fTotal Miles of une Cut Cisim Holderca
Doy |Mo. 1 Yr. Day Wo. 1 Yr. ${ }^{2}$........ 84 … Dane Inc. - Linecutting only
\qquad
Townihip or Area
Blakelock a Tweed
Prospector's Llañe No.
Name and Addrati of Author (of Beo-Technical roport)
W.S. Mitchell, Suite 1406 , 4 King SEreet, West, Torontö, Ontario, M5H-186

Special Provisions Credits Requested

Instruetions	Geophysica!	Days per -Clalm.
For first survey: Enter 40 days. IThis	- Electromagnatic	40
includes line cutting)	- Mognatometor	20
For each additional survey: using the same grid:	Radiometr	
Enter 20 deys ffor	Ouologlcal	
	Geochemica!	

Man Days

Airborne Credits

Expenditures (exotrodespowerderipping)

Calculation of Expendiure Deva Croditu

Tnirvetione
Total Days Cedita may be epportioned at the clalm holder't choles. Enter number of deys credta per clelm selecied In eelumne et righe.

Report Completed

Dete of hoport
May 27, 1982
Certificstion Verifying Report of Work

Mining Claims Traversed (List in numerical sequence)

Expend	Expend
Days	Days
CR	CR

L 6194686
L 619469 .
L 61918660

L 619470
L 619187

L 619471
L 619188

L 619472
L 619189

L 619473
L 619190
L. 619474

L 619191

L 619475
L 619192

L 619476
L 619193

L 619477
L 619194

L 619478
L 393758

L 619479
L 393759

L 619480
L 393760
L 393761
L 619481 J.W.N.
L 619482 F. L .
L 393766

L 619483 下. 1 . N.
L 393767

L 619484 J. $\omega . N$.
L 393768
L 393769

RECEIVED
 JUL $\angle 79988$

MINING LANDS SECTIO:

L 619485 V.W.N.

Ministry of Natural Resources

\qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

AIRBORNE CREDITS (Special provision credits do not apply to airborne nurveys)

Res. Geol. \qquad Qualifications 2.2763\qquad				
Previous Surveys				
File No.	Type	Date	Claim Holder	1

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations_3895 Number of Readings 3895
Station interval 100 feet \qquad Line spacing _, 400 feat
Profile scale__I" = $\quad I^{\prime \prime} 00$ feet
Contour interval \qquad 100 gammas

Instrument Barringer Proton Precession Magnetometer Total Fleld
Accuracy - Scale constant ± 1, gammas
Diurnal correction method Linear Loop Base Station Control
Base Station check-in interval (hours) 1.0 hours
Base Station location and value Grid_A I 64 E base station $0+00-59558$ gatmas
Grid_B L 40 N $0+00-60020$ gammas: Grid_ $C 16 \times 0+00-59413$ ghmas:
Grid E L 12 N 0+00-59500 gammas
Instrument APEX MAX MIN II
Coil configuration HORIZONTAL LOOP
Coil separation $\quad 400$ feet
Accuracy +18
Method:
\square Fixed transmitter
Shoot back
In line
Parallel line
Frequency $444 \quad 1777 \mathrm{~h}$,
(specify V.L.F. station)
Parameters measured Real and quadrature components of secondary field

Instrument \qquad
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy
4

Instrument \qquad
Method \square Time Domain
Frequency Domain
Parameters - On time Frequency \qquad

- Off time Range \qquad
- Delay time
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode \qquad
SELF POTENTIAL
Instrument Range
Survey Method
\qquad
Corrections made

\qquad
RADIOMETRIC
Instrument
Values measured

\qquad
ـ
Energy windows (levels)Height of instrumentBackground Count

\qquad
\qquad
Size of detector
\qquad
Overburden(type, depth - include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of surveyInstrument
—_
AccuracyParameters measured
\qquad
Additional information (for understanding results)

AIRBORNE SURVEYS

Type of survey(s)
Instrument(s) (specify for each type of survey)
Accuracy
(specify for each type of survey)
Aircraft used \qquad
Sensor altitude
\qquad
Navigation and flight path recovery method \squareAircraft altitude
\qquad Line Spacing
Miles flown over total area

Numbers of claims from which samples taken

GEOPHYSICAL-GEOLOGICAL-GEOCHEMICAL TECHNICAL DATA STATEMENT

APPENDED LIST OF CLAIMS SCHEDULE A
L. 591114
L. 591115
L. 591116
L. 591117
L. 591118
L. 591119
L. 591120
L. 591121
L. 591122
L. 591123
L. 591124
L. 591125
L. 591126
L. 591127
L. 591128
L. 619175
L. 619176
L. 619177
L. 619178
L. 619179
L. 619180
L. 619461
L. 619462
L. 619463
L. 619464
L. 619465
L. 619466
L. 619467
L. 619468
L. 619469
L. 619470
L. 619471
L. 619472
L. 619473
L. 619474
L. 619475
L. 619476
L. 619477
L. 619478
L. 619479
L. 619480
L. 619181
L. 619182
L. 619183
L. 619184
L. 619185
L. 619186
L. 619187
L. 619188
L. 619189
L. 619190
L. 619191
L. 619192
L. 619193
L. 619194
L. 393758
L. 393759
L. 393760
L. 393761
L. 393766
L. 393767
L. 393768
L. 393769
L. 393777

-

\rightarrow

