

TIMMINS EXPLORATION - AMENDED ROCK LEGEND - v9.0

1. MAIN ROCK DIVISIONS

2

1

Ab

BI

C>

Cb

Ch

Ер

F>

He

K>

Ka

Rs

Se

Si

Sr

Тс

Τk

Mafic Volcanic rocks

3. ALTERATION MODIFIERS

Albitization

Carbonaceous

Chloritization

Epidotization

Hematization

Kaolinitization

Rust Stained

Sericitization

Serpentinization

Talc-Carbonatization

Silicification

Talc

Carbonatization

Iron Carbonatization

Potassic Alteration

Bleached

Ultramafic Volcanic Rocks

	_	<i>~</i>		
15	Phanerozoic Sediments	2. TEXT	URAL/GEOCHEMICAL MODIFIER	RS
14	Huronian Supergroup	а	Fine Grained	А
		Ь	Medium Grained	В
13	Metamorphic (Unknown)	bx	Breccia	
		с	Coarse Grained	С
12	Gneiss	d	Quartz-Feldspar Phyric	D
		е	Amygdaloidal/Vesicular	E
11	Schist	f	Primary Fragmentals	F
	-	g	Graphitic/Argillaceous	G
10	Diabase) h	Tholeiitic	н
	-	i	Alkalic	
9	Felsic Intrusive	j	Calc-Alkalic	J
	-	k	Komatiitic	к
8	Intermediate Intr. Rocks	1	Flows (banded)	L
_	-	m	Massive	м
7	Mafic Intrusive Rocks	n	Variolitic/Spherulitic	N
		р	Pillowed	Р
6	Ultramafic Intr. Rocks	q	Quartz Phyric	Q
		r	Oxide Iron Formation	R
5	Sedimentary Rocks	s	Sulphides, Exhallites	S
		t	Pyroclastic	Т
5,s]Sulphide (>40%)	u	High Mg	U
		v	High Fe	v
4	Felsic Volcanic Rocks	w	High Al	w
		×	Andesite	х
3	Intermediate Volcanic Rocks	У	Icelandite	Y
		z	Highly Evolved (Y>60)	Z
3,C	Heterolithic Volcanic Rocks			
	—			

ROCK NAMES MUST HAVE ALL MODIFIERS COMMA DELIMITED AND CAN BE NO LONGER THAN 15 CHARACTERS, COMMAS INCLUDED. Example: 3,*y,d,<DAC>,*t

4. Textural./Structural MODIFIERS

*a	Tuff (67% <2mm)
*b	Lapilli Tuff (2-64mm)
*c	Lapillistone (76% <264mm)
*ct	Cataclastic
*d	Block (>64mm)/Xenolith

- ٩° Autoclastic/Hyaloclastic
- *f Thickly Laminated
- Thinly Laminated *g
- *h Clast Supported
- *i Matrix Supported
- *j Granule (grit 2-4mm)
- Pebble (4-64mm)
- *k *1 Cobble (64-256mm)
- Boulder (>256) *m

- Graded Bedding *n
- Cross bedding *****0

Primitive (Y<20)

Heterolithic Feldspar Phyric

Chert

Wacke

Pyroxenite

Dunite

Ophitic

Porphyritic

Polysutured Fractured

Adcumulate Mesocumulate

Orthocumulate

Gabbroic Textured

Pyroxene Spinifex **Olivine Spinifex** Skeletal/Crescumulate

Net Textured Peridotite

Evolved (Y>20<60)

Leucoxene Bearing

Basaltic Komatiite

- *p Fault Gouge
- Augen *q
- Porphyroblastic *г
- *s Hornfels
- *t foliated/sheared
- folded *u
- boudinage *v
- fragmental (felsic>mafic) *w
- fragmental (mafic>felsic) *x
- Crystal Tuff (>50% of frags) *у *z Lithic Tuff (>50% of frags)

ALTERATION CODES		MINER	MINERALIZATION CODES						
FOF		FOR		PERCENTAGE					
S	Spots	D	Disseminated/Blebs	·····					
F	Fracture/vein controlled	F	Fracture/vein controlled	Numeric pecentage, or percentage					
Р	Pervasive	M	Massive						
STR	ENGTH	В	Bedded	range (i.e. 1-3%), must always be					
s	Strong	c	Clasts/Fragments	specified					
M	Moderate		-						
w	Weak								
	nala, Fa Ri M - Faidata Conversion								
L ⊏xai	nple: EpPW = Epidote,Pervasive,	vveak Exan	nple: CpB3% = Chalcopyrite, Bedd	1ed, 3%					

ed Firmune Rock Legend v B

5. MINERALOGICAL NAMES

AkActinoliteFcFuchsiteAlbAlbiteGnGalenaAlAlmandineGtGarnetAmAmphiboliteVGGoldAhAnhydriteGfGraphiteAdAndalusiteGSGravel & sandAyAnthophylliteGypGypsumApApatiteHemHematiteArArgentiteHbHomblendeAspAssestosIIIlmeniteAugAugiteI-FIron FormationAzAzuriteJrJarosite	
AlAlmandineGtGarnetAmAmphiboliteVGGoldAhAnhydriteGfGraphiteAdAndalusiteGSGravel & sandAyAnthophylliteGypGypsumApApatiteHemHematiteArArgentiteHbHomblendeAspAssenopyriteHyHyperstheneAsbAsbestosIIIlmeniteAugAugiteI-FIron FormationAzAzuriteJrJarosite	
AmAmphiboliteVGGoldAhAnhydriteGfGraphiteAdAndalusiteGSGravel & sandAyAnthophylliteGypGypsumApApatiteHemHematiteArArgentiteHbHomblendeAspAssestosIIIlmeniteAugAugiteI-FIron FormationAzAzuriteJrJarosite	
AhAnhydriteGfGraphiteAdAndalusiteGSGravel & sandAyAnthophylliteGypGypsumApApatiteHemHematiteArArgentiteHbHornblendeAspArsenopyriteHyHyperstheneAsbAsbestosIIIlmeniteAugAugiteI-FIron FormationAzAzuriteJrJarosite	
AdAndalusiteGSGravel & sandAyAnthophylliteGypGypsumApApatiteHemHematiteArArgentiteHbHornblendeAspArsenopyriteHyHyperstheneAsbAsbestosIIIlmeniteAugAugiteI-FIron FormationAzAzuriteJrJarosite	
AyAnthophylliteGypGypsumApApatiteHemHematiteArArgentiteHbHomblendeAspArsenopyriteHyHyperstheneAsbAsbestosIIIlmeniteAugAugiteI-FIron FormationAzAzuriteJrJarosite	
ApApatiteHemHematiteArArgentiteHbHornblendeAspArsenopyriteHyHyperstheneAsbAsbestosIIIlmeniteAugAugiteI-FIron FormationAzAzuriteJrJarosite	
ArArgentiteHbHornblendeAspArsenopyriteHyHyperstheneAsbAsbestosIIIlmeniteAugAugiteI-FIron FormationAzAzuriteJrJarosite	
Asp Arsenopyrite Hy Hypersthene Asb Asbestos II Ilmenite Aug Augite I-F Iron Formation Az Azurite Jr Jarosite	
Asb Asbestos II Ilmenite Aug Augite I-F Iron Formation Az Azurite Jr Jarosite	
Aug Augite I-F Iron Formation Az Azurite Jr Jarosite	
Az Azurite Jr Jarosite	
Be Denite Ku Kuenite	
Ba Barite Ky Kyanite	
bi Bismuthite Ls Limestone	
Bi Biotite Lm Limonite	
Bo Bornite Mag Magnetite	
Ca Calcite Mc Malachite	
Cn Chalcedony Ma Marcasite	
Cc Chalcocite Mi Mica	
Cp Chalcopyrite Mk Microcline	
Chi Chlorite Mi Millerite	
Ch> Chloritoid Mo Molybdenite	
Cr Chromite Mu Muscovite	
Cpx Clinopyroxene Ne Nepheline	
Co Cobalt Minerals Nc Niccolite	
Cv Covellite Ni Nickel minerals	
Ct Cordierite Ov Olivine	
Dp Diopside Or Orthoclase	
Dol Dolomite Opx Orthopyroxene	
Epi Epidote PI Phlogopite	
Fel Feldspar Pg Plagioclase	
FI Fluorite	

6. ROCK TYPE / PROTOLITH

<qfg></qfg>	Quartzofeldspathic	<per></per>	Perídotite	<chm></chm>	Chem. Precip.
					•
<qtz></qtz>	Quartzite	<ser></ser>	Serpentinite	<sla></sla>	Slate
<mar></mar>	Marble	<du> </du>	Dunite	<kim></kim>	Kimberlite
<ska></ska>	Skam(Calc-Silicate)	<pre><pre>PRX></pre></pre>	Pyroxenite	<car></car>	Carbonatite
<phy></phy>	Phyllite	<lmp></lmp>	Lamprophyre	<amp></amp>	Amphibolite
<ton></ton>	Tonalite	<sst></sst>	Sandstone	<mig></mig>	Migmatite
<syn></syn>	Syenite	<ark></ark>	Arkosic sandstone	<peg></peg>	Pegmatite
<gra></gra>	Granite	<wck></wck>	Graywacke	<leu></leu>	Leucocratic
<mon></mon>	Monzonite	<cgl></cgl>	Conglomerate	<mel></mel>	Melanocratic
<grd></grd>	Granodiorite	<slt></slt>	Siltstone	<unk></unk>	Unknown Protolith
<apl></apl>	Aplite	<arg></arg>	Mudstone-argillite	<umf></umf>	Ultramafic
<fel></fel>	Felsite	<exh></exh>	Chert/exhalite	<maf></maf>	Mafic
<qdi></qdi>	Quartz Diorite	<qif></qif>	Silicate IF	<and></and>	Andesite
<gab></gab>	Gabbro	<0IF>	Oxide IF	<dac></dac>	Dacite
<nor></nor>	Norite	<sif></sif>	Sulphide IF	<ryd></ryd>	Rhyodacite
<ant></ant>	Anorthosite	<cif></cif>	Carbonate IF	<rhy></rhy>	Rhyolite
<dio></dio>	Diorite	<sha></sha>	Shale	<scl></scl>	Sulphide Clasts
		<lst></lst>	Limestone	<rwv></rwv>	Reworked Volcanic Debris

Pn

Py Px

Po

Qt

Ro

Ru

Sur Sc Sh

Sid

Sil

Slm

Sps

Sph Ti

Ag Sp

Spd St Sb

Sul

S-M

S-D

Tk

Те

Tt

Ta-Cl

ΤI

Tr

Wo Zr Pentlandite

Pyrrhotite

Rhodochrosite

Quartz

Rutile Serpentine Sericite

Scheelite

Silliminite

Spessarite

Sphalerite Sphene (Titanite)

Siderite

Silica

Silver Spinel Spodumene Staurolite

Stibnite

Talc

Sulphides

Telluride

Tertrahedrite

Tourmaline

Tremolite Wollastonite

Zircon

Tantalite-Columbite

**** Z

Mass.Sulphides

Diss Sulphides

Pyrite Pyroxene

7. HUF	RONIAN SUPERGROUP	8. PHAN	EROZOIC SEDIMENTARY FORM	ATIONS		
	Cobalt Group	MOOSE	RIVER BASIN	TIMISKAMING OUTLIER		
BR	Bar River Formation					
GL	Gordon Lake Formation	MtFm	Mattagami Formation	ThFm	Thornloe Formation	
LR	Lorrain Formation	LRFm	Long Rapids Formation	EtFm	Earlton Formation	
GW	Gowganda Formation	WIFm	Williams Island Formation	WaFm	Wabi Formation	
	Quirke Lake Group	MIFm	Murray Island Formation	DPFm	Dawson Point Formation	
SP	Serpent Formation	MRFm	Moose River Formation	FrFm	Farr Formation	
ES	Espanola Formation	KwFm	Kwataboahegan Formation	BuFm	Bucke Formation	
BC	Bruce Formation	SRFm	Stooping River Formation			
	Hough Lake Group	SXFm	Sextant Formation			
MS	Mississagi Formation					
PC	Pecors Formation					
RL	Ramsey Lake Formation					
	Elliot Lake Group					
MK	McKim Formation					
мт	Matinenda Formation					
SL	Salmay Lake Formation					
DL	Dollyberry Formation					
тн	Thessalon Formation					
LC	Livingstone Creek Formation			[

Animiest Timmins Rock Legend v 9

HOLE NUMBER: HOB15-01		FALCONBRIDGE LIMITED DRILL HOLE RECORD						
PROJECT NAME: 8264	PLOTTING C	XORDS GRID: UTM	ALTERNATE COORDS GRID:	· · · · · · · · · · · · · · · · · · ·	COLLAR DIP: -90° 0' 0			
PROJECT NUMBER: 8264		NORTH: 5586494.00mN	NORTH:	0+ 0	LENGTH OF THE HOLE: 267.00M			
CLAIM NUMBER: P-1216637		EAST: 453214.00mE	EAST :	0+ 0	START DEPTH: 0.00M			
LOCATION: Hobson Twp		ELEV: 0.00	ELEV:	0.00	FINAL DEPTH: 267.00M			
	COLLAR ASTRONO	HC AZIMUTH: 0° 0' 0"	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"				
DATE STARTED: 09/22/1998	COLLAR SURVEY : NO		PULSE EM SURVEY: NO		CONTRACTOR: Major Dominik			
DATE COMPLETED: 09/24/1998	RQD LOG: NO		PLUGGED: NO		CASING			
DATE LOGGED: 09/27/1998	HOLE MAKES WATER : NO		HOLE SIZE: BQ		CORE STORAGE: Kidd Creek			
					UTM COORD.: Zone 17			

COMMENTS : WEDGES AT:

DIRECTIONAL DATA:

F.

	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-		·			-	_	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		1 -	-	-	-	~	
-	-	~	-	-			-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	~	-	-		-	-	-	-	~	
-	-	-	-	-		-	-	-	-	~	
-	-	~	-	-			-	-	-	-	
-	-	~	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	~	
-	-	~	-	-			-	-	-	~	
-	-	~	-	-			-	-	-	-	
	-	~	-	-		-	-	-	-	~	
-	-	~	-	-		1 -	-	-	-	~	
-	-	-	-	-		-	-	-	-	~	
-	-	~	-	-		-	-	-	-	~	
-	-	-	-	-		-	-	-	-	-	
-	-	~	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	-	~	-	-		-	-	-	-	~	
-	-	~	-	-		- 1	-	-	-	~	
-	-	~	-	-		- 1	-	-	-	~	
-	-	~	-	-		-	-	-	*	~	
	-	~	-	-		i -	-	-	-	-	

HOLE NUMBER: HOB15-01

DRILL HOLE RECORD

1

DATE: 03/17/1999

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	REMARKS
0.00 TO 33.00	<pre></pre> <pre></pre> <pre></pre> <pre>Casing </pre> Overburden	-May include Mattagami Fm	- !			
33.00 TO 137.30		 -black to blue green finely laminated clay/shale -33-60.45 dominantly blue green shale w/ 3-20cm bands of black shale, fairly competant w/ some plastic sections -60.45-83.94 dominantly black shale to fine sandstone w/ 0.01-1m bands of blue green clay, minor bioturbation noted beneath several of the clay bands -83.9-103 as 33-64 but w/patchy dolomitization noted 97.5-100, large gastropod or belemnite cast intersected 95.1-95.65m -103-111.5 as 60-84 but more extensively bioturbated, common soft sediment deformation textures (excellent ball and pillow structures Φ 105.38) -111.5-121 essentially all black shale w/ marcasite/pyrite beds and blebs -121-129.5 sub equal amounts of black shale and blue clay, extensive bioturbation beneath clay beds, shell fragment rich beds noted Φ 129m -129.5-137.3 dominantly blue grey clay w/ minor black shale interbeds, patchy dolomitization after132, sections rich in brachiopod shell fragments -lower contact sharp, slightly irregular, at high angle to c.a. #48.40-48.41]*			<pre>-trace fine marcasite, bedded and as blebs to lcm #111.00-120.00#*MaB0.0-1.0*> 0.0-1.0* bedded/banded marcasite #117.38-117.41#*SphF0.0-1.0*> 0.0-1.0* fracture/vein controlled sphalerite -yellow green mineral in 1-2mm late calcite vein oreinted @ low angle to c.a., appears to be sphalerite as found in Young Mine in Tenn>> gives rotten egg smell when dilute HCl dropped on vein</pre>	
	15,WIFm,<l ST>,bx Phanerozoic Sediments Williams</l 	-white to tan massive medium to fine grained dolostone, tan to grey fine to medium grained limestone, grey to brown mudstone, extensively brecciated with mixed fragments, matrix of calcite, dolomite or grey clay		-pervasive to patchy weak to strong dolomitization	-trace to locally 5% py as bedding // laminations and as vug and fracture filling	

HOLE NUMBER: HOB15-01

LOGGED BY: M.Collison

PAGE: 2

LE NUM	BER: HOB15-01			DRILL HOLE RECORD		DATE: 03/17/1999
TO TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
	Island Fm. limestone breccia	-137.3-138 fine to medium grained grey dolostone, vuggy, vugs to 2-3cm filled w/ sparry Fe-calcite, sulphides (Py) in vugs, stylolites, fractures, 3-5%				
		<pre>-138-144 tan to white fine to medium grained limestone, vuggy, blocky, fratured, pieces knit w/ tan to orange lime mud RQD=5, 1.5m core not recovered 138-141, 1.4m core not recovered 141-144</pre>				
	 	 -144-144.4 matrix supported breccia, grey clay matrix, fragments include LRFm				
		<pre>-144.4-147 clast supported breccia, limestone and dolostone fragments to .7m w/ minor clay matrix > reference piece @ 144.6 dolomitic fragments surounded by sulphide rim (seems to be just py) with micrite cement, sparry calcite in vugs> implies multiple brecciation episodes, one w/ mineralizing event</pre>				
		<pre>-146.4-146.8 medium grained dolomitic limestone fragment w/ up to 10% sulphides along bedding/stylolitic planes, rotated so planes are subparallel c.a.</pre>				
i		-147-151.3 as 138-144 RQD=10				
		-151.3-155.7 non-consolidated plastic grey mud w/ small fragments of limestone and one cohesive section of black shale which appears to be LRFm from 155-155.52, 1m core not recovered 150-153				
		<pre>1 1-155.7-161.65 finely laminated fine grained white 1-155.7-161.65 finely laminated fine grained white to tan moderately dolomitized limestone w/ orange to ochre partings and stylolites, moderately fractured, weakly vuggy, becomes progressively more fractured and block to bottom of interval RQD=30, 0.3m core not recovered 159-162</pre>				
		<pre> -161.65-164.3 dark grey to dark brown calcareous shale, extensively fractured and knit w/ calcite veins, calcareous layers make unit verycompetent, minor small fragment component</pre>				

HOLE NUMBER: HOB15-01

LOGGED BY: M.Collison

PAGE: 3

: HOB15-01			DRILL HOLE RECORD		DATE: 03/17/1999
ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
	-164.3-165.1 white fine grained gypsum bed -165.1-165.71 as 162-165 but more fragmental -165.71-169.5 medium grained grey calcarenite, very blocky, RQD=0. Im core not recovered 165-168, 0.5m core not recovered 168-171 -169 5-170.9 as 165.1-165.7				
	 -170.9-171.95 massive medium to fine grained calcarenite -171.95-173.1 calcareous grey shale, massive to finely laminated, solution textures or				
	 -173.1-175.17 fine to medium grained grey fossiliferous limestone, mostly corals w/ some brachiopods -end of unit is gradational to grey				
15,WIPm, <s A>⇒ hanerozoic ediments illiams sland Fm.</s 	156.30-156.31 *+ S0 84° → Bedding -grey to blue green thinly laminated to massive shale/clay -very monotonous unit, fairly competent to plastic			-trace py noted	
shale	-177-178.5 fossiliferous, brachiopod shells, some coral -stromatoporida (?) noted @ 219.8 -gradational lower contact over 2m from greyshale to shaly brown limestone to limestone #186.10-186.11#e450 89° >> Bedding				
A h e i s	5,WIFm, <s >> anerozoic diments lliams land Fm.</s 	TYPE TEXTURE AND STRUCTURE -164.3-165.1 white fine grained gypsum bed -165.1-165.71 as 162-165 but more fragmental -165.1-165.71 as 162-165 but more fragmental -165.71-169.5 medium grained grey calcarenite, very blocky, RQD=0, lm core not recovered 165.10.50 0.5m core not recovered 165-168.0, 0.5m core not recovered 165.10.90 0.5m core not recovered 165-169.0, 1m core not recovered 165.17 -170.9-171.95 massive medium to fine grained calcarenite -171.95-173.1 calcareous grey shale, massive to finely laminated, solution textures or bioturbation noted 171.95-172.35 -173.1-175.17 fine to medium grained grey fossiliferous limestone, mostly corals w/ some brachiopods -end of unit is gradational to grey mudstone/shale #156.30-156.31# +50 84° +> Bedding 5,WIFm, <s< td=""> -grey to blue green thinly laminated to massive shale/clay amerozoic -very monotonous unit, fairly competent to plastic -177-178.5 fossiliferous, brachiopod shells, some coral -stromatoporida (?) noted @ 219.8 -gradational lower contact over 2m from greyshale to shaly brown limestone to limestone</s<>	TYPE TEXTURE AND STRUCTURE TO CA -164.3-165.1 white fine grained gypsum bed -165.1-165.71 as 162-165 but more fragmental -165.1-165.71 as 162-165 but more fragmental -165.71-169.5 medium grained grey calcarenite, very blocky, RQD=0, lm core not recovered 165-168, 0.5m core not recovered 165.168, 0.5m core not recovered 165-168, 0.5m core not recovered -169.5-170.9 as 165.1-165.7 -170.9-171.95 massive medium to fine grained -171.95-173.1 calcareous grey shale, massive to finely laminated, solution textures or bioturbation noted 171.95-172.35 -173.1-175.17 fine to medium grained grey fossiliferous limestone, mostly corals w/ some brachiopods -end of unit is gradational to grey mudstone/shale #156.30-156.31\$*{50 84°}* Bedding -very monotonous unit, fairly competent to 11iams plastic land Fm. -177-178.5 fossiliferous, brachiopod shells, some coral -stromatoporida (?) noted @ 219.8 -gradational lower contact over 2m from greyshale to shaly brown limestone	TYPE TEXTURE AND STRUCTURE TO CA ALTERATION -164.3-165.1 white fine grained gypsum bed -165.1-165.71 as 162-165 but more fragmental -165.1-165.71 as 162-165 but more fragmental -165.1-165.71 as 162-165 but more fragmental -165.71-169.5 medium grained grey calcarenite, very blocky, RQD+0, 1m core not recovered 168-171 -165.71-169.5 medium grained grey calcarenite -170.9-171.95 massive medium to fine grained calcarenite -171.95-173.1 calcareous grey shale, massive to finely laminated, solution textures or bioturbation noted 171.95-172.35 -173.1-175.17 fine to medium grained grey fossiliferous limestone, mostly corals w/ some brachiopods -end of unit is gradational to grey mudstone/shale -grey to blue green thinly laminated to massive shale/clay -grey to blue green thinly laminated to massive shale/clay 5, WIFm, <5 >> -grey to blue green thinly laminated to massive coral -very monotonous unit, fairly competent to plastic plastic 11iams land Fm. ale -177-178.5 fossiliferous, brachiopod shells, some coral -stromatoporida (?) noted # 219.8 - -gradational lower contact over 2m from greyshale to shaly brown limestone to limestone	TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION -164.3-165.1 white fine grained gypsum bed -165.1-165.7 as 162-165 but more fragmental -165.5-186 0.5m core not recovered 165.1-165.7 -165.1-165.7 -170.9-171.95 massive medium to fine grained -171.95-173.1 calcareous grey shale, massive to finely laminated, solution textures or -172.15.17 fine to medium grained grey -173.1-175.17 fine to medium grained grey -173.1-175.17 fine to medium grained grey fis5.30-156.3.1k-450 44*/s Bedding -strace py noted -trace py noted 5.WIPm, <s< td=""> -structorous unit, fairly competent to -trace py noted liame -171.71.75.5 fossiliferous, brachiopod shells, some -trace py noted -171.718.5 fossiliferous, brachiopod shells, some -trace py noted</s<>

..... i

HOLE NUMBER: HOB15-01

LOGGED BY: M.Collison

HOLE NUMBER: HOB15-01

ł

DRILL HOLE RECORD

DATE: 03/17/1999

1

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
	<pre>«15,MIFm.<l ST>» Phanerozoic Sediments Murray Island Fm limestone</l </pre>	-dark brown to grey fine to medium grained fossiliferous limestone -220.2-221.15 dark brownish grey finely laminated shaley limestone to calcareous mudstone -221.15-223.95 grey fine to medium grained fossiliferous limestone w/ brachiopod shells, crinoid columnals, rare ostracods, unidentified shell fragments -223.95-228.57 sparsely fossiliferous grey fine to medium grained limestone, fractured and knit by late calcite veins w/ trace py, weakly to moderately vuggy {220.70-220.71} ≤ 84° + Bedding			-223.95-228.57 limestone, fractured and knit by late calcite veins w/ trace py, weakly to moderately vuggy	
то		 -light to dark grey limestone, dolostone and rare gypsum fragments in grey calcareous shale to calcite matrix -228.57-230.3 grey calcareous shale w/ up to 40% small fragments, mostly shale but about 1/3 limestone, fragments to 4cm -230.3-231.0 mostly gypsum fragments, RQD<40 -231-241 light grey limestone fragments w/ minor vitreous brown dolomite fragments, minor gypsum ina clast supported breccia w/ grey calcareous shale/clay matrix> 70% fragments RQD=60% -241-253.36 as above w/ predominantly carbonate matrix, sulphide bearing vugs noted @ 242.05, 247.4 			sulphide bearing vugs noted @ 242.05, 247.4	
	<pre>«15, KwFm, <l ST>» Phanerozoic Sediments Kwataboaheg an Fm. limestone</l </pre>	 -interbedded brown to grey-blue fine sandstone to shale and massive fine to medium grained limestone -253.36-254.2 massive stylolitic grey limestone w/ brown shaly partings -254.2-256 brown to blue-grey fine sandstone to shale w/ minor limestone interbeds to 1-2cm -256-256 interbedded 2-5cm bedsof limestone and brown shale 				

HOLE NUMBER: HOB15-01

HOLE NUM	BER: HOB15-01			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		-258-260.98 as 253-254	-]} 			
260.98 TO 263.19	ST>*	sparsely fossiliferous limestone w/ clastic				
263.19 TO 267.00	Qt.»	 -red to pink highly weathered quartz-feldspar-biotite gneiss, RQD=50, .5m core not recovered 				
267.00 TO 267.00	«E.O.H.»					
HOLE NUME	BER: HOB15-01		<u> </u>	DRILL HOLE RECORD	LOGGED B	(: M.Collison PAGE: 6

1

HOLE NUMBER : HO	B15-01
------------------	--------

ASSAYS SHEET DATE: 17/03/1999 Hg ppb Pb Sample From То Leng. Cu Zn Ni Au Ag Cu/Zn Co Pt Pd s Se As Mn (M) (M) (M) ppb ppb ppb ppm AU02505 137.30 138.00 0.70 11 56 10 19.0 0 0 35 11 35 AU02506 146.43 146.82 0.39 11 9 9.0 7 0 AU02507 240.00 241.00 1.00 12 12 8.0 0 0 13 AU02508 241.00 242.17 1.17 14 7.0 0 0

HOLE NUM	BER : HOP	915-01								GEO	THEMICAL	ASSAY														DATE: 18/	03/1999
Sample	(M)	To (M)	Leng. (M)	SIO2	AL203		NA20 ¥	K20 ¥	FE203	T102	P205 ¥	MINO ¥	CR203	LOI \$	SUM ¥	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NTB PPM	CU PPM	ZN PPM	NI PPM	PPM	FIELD CHEM NAME ID	ALUM
AU02731	138.00			() 																				*****			
AU02732				li																							
AU02733				ļ																							
AU02734				R																							
AU02735																											
AU02736																											
AU02737 AU02738				1																							
AU02738 AU02739				8	1																						
AU02740																											
AU02741				р Ц																							
AU02742				1																							
				Ï																							
				Ä																							
				Î																							
				l																							
				1																							
				ł																							
				ł																							
				1																							
				1																							
			ĺ	Í																							
			1	1																							
				ļ																							
			[ļ																							
				1																							
				1																							
			1	1																							
				í																							
			1	i																							
			i	i																							
			i	i																							
			i	i																							
			i	İ																							
			i	Ì																							
			i	1																							
			i	1																							

PAGE : 1

HOLE NUMBER: HOB22-01			IBRIDGE LIMITED L HOLE RECORD		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNIT
PROJECT NAME: 8264	PLOTTING COORDS GR	ID: UTM	ALTERNATE COORDS GRID:		
PROJECT NUMBER: 8264	NOR	TH: 5581855.00N	NORTH :	+	LENGTH OF THE HOLE: 42.0
CLAIM NUMBER: 1212868	EA	ST: 455581.00E	EAST:	+	START DEPTH: 0.0
LOCATION: Hobson Twp	EL	EV: 0.00	ELEV:		FINAL DEPTH: 42.0
	COLLAR ASTRONOMIC AZIMU	TH: 0° 0' 0"	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"	
DATE STARTED: 10/04/1997	COLLAR SURVEY: NO		PULSE EM SURVEY: NO		CONTRACTOR: Bradley Bros.
DATE COMPLETED: 10/05/1997	RQD LOG: NO		PLUGGED: NO		CASING: 22m BW pulled
DATE LOGGED: 11/01/1997	HOLE MAKES WATER: NO		HOLE SIZE: BQ		CORE STORAGE: Kidd Creek Mine
					UTM COORD.: Zone 17

ł

COMMENTS : WEDGES AT:

DIRECTIONAL DATA:

1

epth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments		pth M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
		-					-	_	_	-	-	
-	-	-	-	-			-	-	-	-	-	
-	-	-	-	-		!	-	-	-	-	-	
-	-	-	-	-		ļ	-	-	-	-	-	
-	-	-	-	-		!	-	-	-	-	-	
-	-	-	-	-		!	-	-	-	-	-	
-	-	-	-	-			-	-	-	-	-	
-	-	-	-	-			-	-	-	-	-	
-	-	-	-	-			-	-	-	-	-	
-	-	-	-	-		1	-	-	~	-	-	
-	•	-	-	-		1	-	-	-	-	-	
-	-	-	-	-			-	•	-	-	•	
-	-	-	-	-			-	-	-	-	-	
-	-		-				-		-	-	-	
-	*		-	-			-	_	-	-	~	
-	_		_	_		;				_	_	
-	_	_				•	_	-	_	-	-	
-	_	_	_	_		1	_	_	-	-	-	
-	_		_			1	_	_		_	_	
_	-	_	-	-					_	-	-	
_	_	_	_			1	_	_	_	_	-	
_		-		_		1		_	_			
-	-	-	_	_			_	-	_	_	_	
-			-	-		!			-	-	-	

LOGGED BY: M. Gollison PAGE: 1

HOLE NUM	BER: HOB22-01			DRILL HOLE RECORD		DATE: 03/17/1999	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS	
0.00	«- OB -»		_				
TO	Casing						
22.00	Overburden						
22.00	<12, <gra>></gra>	-medium grained pink to green			-none noted		
то	Gneiss	quartz-feldspar-biotite gneiss					
42.00	granite	-fresh looking @ top of hole -becomes more weathered, saprolitic @ 25.9m -medium to coarse grained felsic intrusive dikes (possibly pegmatitic) account for 40-50% of rock after 33m -22-25 ROD-80 -25-26 0.5m core not recovered -26-29m 0.9m core not recovered, RQD=30% -29-32m 1.9m core not recovered, RQD=0 -32-35m 0.9m core not recovered, RQD=10% -35-38m RQD=70%					
42.00	«EOH»						
TO	End-Of-Hole						
42.00							
HOLE NUME	BER: HOB22-01			DRILL HOLE RECORD	LOGGED	BY: M.Collison PAGE:	2

ł

IOLE NUMBER : HOB	24-01				BRIDGE LIMITED L HOLE RECORD			IMPERI	DATE: AL UNITS:		17/1999 IC UNITS:
PROJECT NAME:	8264	PLOTTING COORD	S GRID:	UTM	ALTERNATE COORDS GR	RID:			COLL	AR DIP:	-90* 01 (
PROJECT NUMBER:	8264		NORTH :	5584757.00mN	NOR	RTH: 0	+ 0		LENGTH OF TH	HOLE:	183.00M
CLAIM NUMBER:	P-1216654		EAST:	454949.00mE	EA	AST: 0	+ 0		START	DEPTH:	0.00M
LOCATION:	Hobson Twp.		ELEV:	0.00	EL	LEV:	0.00		FINAL	DEPTH:	183.00 M
		COLLAR ASTRONOMIC	AZIMUTH:	0° 0' 0H	GRID ASTRONOMIC AZIMU	UTH: 0	° 0' 0"				
DATE STARTED:	09/17/1998	COLLAR SURVEY: NO			PULSE EM SURVEY: NO			CONTRACTOR :	Major / Dominil	¢	
DATE COMPLETED:	09/19/1998	ROD LOG: NO			PLUGGED: NO			CASING:	BX - PULLED		
DATE LOGGED:	09/22/1998	HOLE MAKES WATER: NO			HOLE SIZE: BQ			CORE STORAGE:	Kidd Creek Min	2	
								UTM COORD.:	ZONE 17		

1

COMMENTS : WEDGES AT:

DIRECTIONAL DATA:

à.

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-						_	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	
-	-	-	-	•		- 1	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		~	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	~	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	

PAGE: 1

LOGGED Andro Black

HOLE NUMBER: HOB24-01

÷

DRILL HOLE RECORD

DATE: 03/17/1999

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	MINERALIZATION	REMARKS
	 « OB » Casing Overburden	-may include Mattagami Fm.	 	 	
то	<pre>415,LRFm,<s ha="">> Phanerozoic Sediments Long Rapids Fm. shale</s></pre>	33.0 to 45.8 Black to dark grey bituminous shale. Sparce cubic to fine diseminated py throughout the unit. Core is badly broken up, RQD=<10%.		Cubic and nodular py found throught the black shale. (<1%) Sizes range between lmm to 13mm. Fine diseminated py in the blue clay/mudstones between 57.55 to \$8.3 with the last 5cm before the contact between the two major units being semi-massive.	
		-45.8 to 54.9 grey-blue fossiliferous mudstone/clay intercalated with black to dark grey bituminous shale. Some ichnofossils occurances at 48.85, 49.4, 50.2 and 52m. Small lenticular beds from 52.7 to 53.88. Bedding @ 85° tca. The blue clay interbeds contain small (icm) shell fossils.			
		-54.9 to 58.3, grey blue brecciated, fossiliferous mudstone/clay. Fossils are mostly shell fragments between 2mm and 10mm. Fine and nodular py locally.			
		- 0.5m lost core between 36 and 39m. ∦52.70-53.88∦≪ S0 85° → Bedding			
	RG>, <lst>,b</lst>	Grey to tan brecciated limestone intercalated with grey to dark grey to tan to ochre mudstone /argillite.			
	Sediments Williams Island Fm. mudstone-ar gillite limestone breccia	-58.3 to 74.84 Brecciated tan limestone in a grey clay/mudstone matrix. From 60 to 63.5 core is stained yellow due to possible ground water leaching. The limestone @ 63.2 contains a "smokey quartz" colored, cubic mineral ?? Moderate pyrite content for the first 1.5 m (\sim 1-2% py) of unit.Core is badly broken up with poor recovery			
		-lost 3m of core @ 60 to 63m, 2m @ 66 to 69m and 2m @ 69 to 72m. RQD=10≹.			
		-74.84 to 77,46 dark grey calcarious argillite with pale grey elongated cacite bleb.		 	

HOLE NUMBER: HOB24-01

HOLE NUM	BER: HOB24-01			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		-77.46 to 81.75 Finely laminated tan to grey to / dark brown, porous limestone. Bedding is @ 80° tca. Core becomes grey from 78.3 to 79.1 then becomes poreous and tan. 2m of lost core between 81 to 84m. RQD=20%.				
		-81.75 to 95.77 Tan to grey to ochre becciated mudstone/clay intercalated with tan brecciated limestone. The mudstones vary in colors begining grey then tan to ochre to tan. Limestone sections are interbedded with black organic/bituminous beds. The mudstone sections are quite uniform while the limestone is badly broken up. RQD =30-40%.				
		<pre>-95.77 to 98.14 dark grey mudstone. Unit is quite uniform,RQD=90%, ichnofossils "worm tubes" occuring at 96.2 and 97.6 and from 96.81 to 97.45 the entire lenghth seems to be of this pattern.</pre>				
		98.14 to 99.66 tan to grey calcarious, fossiliferous limestone. Unit begins tan in color and increases in fossil content as it turns to grey. Fossils are mostly shell fragments ranging in sizes between 2mm to 10mm. Lower contact with the Lower Williams Island formation appears to be 60° tca.				
	1	 78.00-78.50 ;≪ S0 80° ≫ Bedding				
99.66 TO 147.85	Sediments Williams	shale. -102.3 to 103.5, grey blue shale with 20 to 40% fossil content. Fossils consist of mostly				
	Island Fm. shale	brachiopod shells and shell fragments, some crinoid stems and corals.				
147.85 TO		 Tan to grey fossiliferous, brecciated, limestone. 				
	Phanerozoic Sediments Murray	-Top of unit, fossils are mostly brachiopod shells ranging in size between 2mm to 30mm. 				
	Island Fm limestone	-150.9 to 153.3 fossils are almost exclusively well defined crinoid stems from 5mm to 10mm in				

HOLE NUMBER: HOB24-01

PAGE: 3

LE NUMBI	ER: HOB24-01			DRILL HOLE RECORD		DATE: 03/17/1999
TO TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
-		width and some are 3cm long.	 			
		<pre>- 153.3 to 156.01,unit becomes brecciated and slightly grey with a darker tan mudstone matrix. Bottom contact is 65° tca. RQD for the unit is good @ 80%.</pre>				
		 156.01-156.01 ++ SO 65° → Bedding Contact between the Murray Island and the Moose River Formations.				
TO 78.63	RG>, <lst>,b</lst>	<pre> Tan to light grey becciated, vuggy, poreous, finely laminated, limestone with grey mudstone and grey mudstone matrix. -156.01 to 159.3 finely laminated, slightly</pre>				
i	Moose River Fm. mudstone-ar	gypsiferous limestone.Bedding is approximately 70° tca				
ļ	gillite limestone breccia	-159.3 to 159.8 grey mudstone/clay, unit is quite ductile and sticky.				
		-159.8 to 178.63 vuggy, porous, brecciated limestone intercalated with a grey mudstone matrix. Vugs are calcite filled, range in size from 5mm to 20mm. The limestone breccia is finely laminated, jagged with pieces in no particular				
		orientation bound together with a dark grey mudstone. Clasts become smaller and less jumbled and angular downhole. Bottom contact is broken up. RQD for unit is approx. 30%. Lost core:2m 156 to 159 1.5m 159 to 162 1.2m 162 to 165 1.5m 165 to168				
TO 3.00	<pre>«15,SxFm,» Phanerozoic Sediments </pre>	Brown to red, fine to medium grained sandstone. Unit is strongly hematized, varies from clay-like to medium grained in texture and does not appear to be badly consolidated as in other				
i	Sextant Fm arkosic sandstone	holes. RQD=40.Unit also contains small lighter colored section, which could be limestone.				
то	«EOH» End-Of-Hole					
33.00	sandstone «EOH»					

}

HOLE NUMBER: HOB24-01

HOLE NUM	BER : HOB	24-01								AS	SSAYS SH	IEET			_				DATE: 17/03/19
Sample	From (M)	To (M)	Leng. (M)	Cu ppm	Zn ppm	Pb ppm	Ni ppm	Au ppb	Ag Cu/Zn ppm	Co ppm	Pt. ppb	Pđ ppb	S ppm	Se ppm	As ppm	Hg ppb	Mn ppm		
AU02501 AU02502	58.13 60.40	58.63 60.80	0.50 0.40	21 17		6 8	60.0 31.0	0 0	0 0	-									₩ <u>₩₩₩₩₩₩₩₩₩</u> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
				1															
				1 															
			i				•												
			l																
															2				

HOLE NUMBER: HOB24-01

HOLE NUME	BER : HOE	24-01										GEOC	CHEMICA	L ASSA	ť											DATE: 18/	03/1999
Sample	From (M)	To (M)	Leng. (M)		2 AL20)3 ¥	CA0 1	MGO ¥	NA20 ¥	к20 1	FE203		P205		CR203	SUM ¥	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NB PPM	CU PPM	ZN PPM	NI PPM	FIELD CHEM NAME ID	ALU
U02714		63.26			<u> </u>											 										 	
	148.30 150.60																										
J02717	155.60	155.80	0.20	Ĩ																							
	156.50 172.30			1																							
U02720	178.30	178.40	0.10	Ű.																							
				1																							
				й Н																							
				i.																							
				l.																							
				l.																							
				H																							
				1																							
				1																							
				Ä																							
				H																							
				n H																							
				9																							
				8																							
				Ň																							
				l.																							
				R K																							
				ii 👘																							
				8																							
				N II																							
				Ĩ																							
				1																							
				1																							
				l.																							
				H																							
				и 1																							
				Ï																							
				ŀ																							
				N		-														AND 14 10 10 10 10 10						 	

3

•

HOLE NUMBER: HOB25-01			BRIDGE LIMITED L HOLE RECORD		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNITS:
PROJECT NAME: 8264	PLOTTING C	ORDS GRID: UTM	ALTERNATE COORDS GRID:		COLLAR DIF: -90° 0' 0
PROJECT NUMBER: 8264		NORTH: 5585757.00mN	NORTH :	+	LENGTH OF THE HOLE: 243.00M
CLAIM NUMBER: P-1216637		EAST: 454059.00mE	EAST:	+	START DEPTH: 0.00M
LOCATION: Hobson Twp.		ELEV: 0.00	ELEV:		FINAL DEPTH: 243.00M
	COLLAR ASTRONO	NIC AZIMUTH: 0° 0' 0"	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"	
DATE STARTED: 09/19/1998	COLLAR SURVEY: NO		PULSE EM SURVEY: NO		CONTRACTOR: Major-Dominik
DATE COMPLETED: 09/21/1998	RQD LOG: NO		PLUGGED: NO		CASING: BW Pulled
DATE LOGGED: 09/24/1998	HOLE MAKES WATER: NO		HOLE SIZE: BQ		CORE STORAGE: Kidd Creek Mine
					UTM COORD.: Zone 17

DIRECTIONAL DATA:

COMMENTS : WEDGES AT: ÷

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-					_	_	-	-	
-	-	-	-	-		1 -	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	~	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
~	-	-	-	-		-	-	-	-	-	
-	-	-	-			-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	~	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	

HOLE NUMBER: HOB25-01

DRILL HOLE RECORD

LOGGED BY: Andre Taillefer PAGE: 1 poke Talk

*

HOLE NUMBER: HOB25-01

DRILL HOLE RECORD

3

DATE: 03/17/1999

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
то	<- OB↓> Casing Overburden	-may include Mattagami Fm.	 			
33.00 TO 123.10	<pre>*15,LRFm,<s ha="">> Phanerozoic Sediments Long Rapids Fm. shale</s></pre>	 Black to grey bituminous shale intercalated with grey-blue shale/clay. The first 14m is composed mostly of blue clay with small sections of slightly harder, black bituminous shale. Unit becomes increasingly composed of mostly black bituminous shale with thin sections of blue-grey shale. Ichnofossils (worm tubes) occuring at 52.35, 53.9, 54.5, 61.0, 61.8 and 63.75. Py content is limited at first to single nodules at 50m and 67.15 but from 66.9 to 71.42 py content is very fine, disseminated and thinly bedded. -71.42 to 83.3 Grey-blue shale intercalated with thin layers of grey bituminous shale. -83.3-84.25 thinly laminated black bituminous shale -84.25-87.5 grey shale w/ wispy bituminous interbeds, mildly bioturbated -89.1-89.93 grey shale w/ fine laminations -89.93-99.1 dominantly black shale w/ minor sections blue grey shale, strongly bioturbated, dolomitic sections to 3-7cm width, py concretion noted @ 93.05 -99.1-110 finely laminated black bituminous shale, disseminated fine py, py (marcasite) concretions noted, calcite filled late 1-2mm wide fractures noted RQD=40 overall, RQD=0 102.5-103.5, 105-107 -110-123.1 dominantly blue grey shale w/ black bituminous shale interbeds to 30 cm (10cm common), minor bioturbation, trace py, minor 		-minor dolomitization noted throughout	Fine py nodules at 50m and 67.15. -66.9 to 71.44 very finely disseminated py and thin beds of py. -py (marcasite?) concretion noted @ 107.2m -fine py bed noted @ 109.65	

	HOB25-01			DRILL HOLE RECORD		DATE: 03/17/1999
TO TO	ROCK TYPE		ANGLE	ALTERATION	MINERALIZATION	REMARKS
		dolomitization RQD=45	-			
		-lower contact irregular, possibly structural				
		{ 83.50-83.51 ≪ S0 67° -> Bedding				
то	<15,WIFm, <l ST>,bx» Phanerozoic</l 	ochre to black shale interbeds				
	Sediments Williams	-common brecciation of units				
	Island Fm. limestone breccia	-123.1-127.8 unit starts w/ 15cm section of grey limestone with bedding @ 40° to c.aprobably a fragment within breccia				
		-vuggy limestone fragment with py deposited within vugs @123.3m				
		-remainder of interval to 127.8m composed of ground and broken fragments of tan limestone w/good porosity and permeability, some showing internal brecciation and calcite cementing. RQD=15, 1m core not recovered.				
		-127.8-129.75 unit dominated by ochre to red shale w/ minor grey shale and vuggy limestone @ 129m				
		-129.75-135 ground and broken fragments of white to tan limestone, larger fragments showing subvertical fractures sealed w/ ochre mud RQD=10 1.4m core not recovered 129-132m, 1m core not recovered 132-135m				
		-135-140.38 limestone fragments bound together by ochre to blue clay matrix, minor limestone fragments to 135.5, unit becomes black mud to 138 RQD=0, 1m core not recovered -unit becomes cohesive weakly laminated grey to black calcareous shale				
		-140.38-146.3 porous permeable white to tan limestone fragments, commonly vuggy RQD=0, 1.5m core not recovered 141-144, 1m core not recovered 144-147				

}

HOLE NUM	BER: HOB25-01			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		-146.3-150 matrix grey to ochre clay matrix with sections of clast supported breccia, trace py noted 147-149.5 RQD=60				
		-150-150.9 gypsum fragments in ochre matrix				
		-150.9-153.5 tan limestone fragments, RQD=0				
		 -153.5-156 heterolithic pebble breccia, matrix supported, ochre to brown clay to very fine sand matrix, fragments dominantly shale w/ some gypsum				
		 -156-160.5 gypsum, thin interbeds of grey shale and massive grey limestone. Unit ends w/ lm of rust yellow coloured massive weakly fossiliferous				
		limestone, top contact @ low angle to c.a., probably disrupted fragment in collapse breccia				
	1	-lower contact lost in platic clay				
то	<pre>«15,WIFm,<s ha="">» Phanerozoic</s></pre>	sparsely fossiliferous				
	Sediments Williams	-very monotonous unit				
	Island Fm. shale 	very fossiliferous 163.5-164.85, contains minute bryazoa, echinoderm fragments, large (l0cm) ammonite or gastropod shell w/ py in open spaces, brachiopod shell fragments				
	 }	-possible cross-bedding, and/or soft sediment deformation noted @ 167.95				
		 -most textures lost in plastic deformation due to drilling, core covered in fines				
		-fine mm scale laminations noted 186.5-186.9				
		-minor calcareous layers @ 187.6, 192.3m				
		<pre>- drying fractures parallel bedding indicate change in beddiing orientation @ 198m, possible slumping?</pre>				
		 -some limestone fragments from underlying Murray Island Fm in lower 0.4m				

ĩ

HOLE NUMBER: HOB25-01

)

OLE NUM	BER: HOB25-01		_	DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		-lower contact irregular, @ high angle to c.a., trace fine py noted @ contact				
	1	167.80-167.81 •< S0 64° +> Bedding	 			
		199.50-199.51 - S0 37° +> Bedding				
то	ST>»	 -massive fine to medium grained grey fossiliferous limestone				
12.29	Phanerozoic Sediments Murray Island Fm	-becomes increasingly vuggy towards end of unit, vugs filled w/ sparry calcite crystals				
	Island Fm limestone 	-minor in situ brecciation, fragments knit w/ white calcite	1			
		 -fossils dominantly echinoderm columnals (spectacular specimans @ 206.4m) w/ minor brachiopod shell fragments				
		 -lower contact called @ colour and texture change and start of brecciation, loss of fossils	 			
12.29 TO 34.80	Phanerozoic	<pre> -tan to grey medium to fine grained massive to laminated limestone and dolostone, brecciated, commonly w/ blue grey clay matrix</pre>				
	Sediments Moose River Fm. breccia					
	 	-213.15-214.5 heterolithic matrix supported breccia w/ grey clay matrix, fragments to 2-3 cm	t 			
		-214.5-215.45 pelletoidal or oolitic limestone				
		-possible shell fragments in grey clay @ 215.7m				
		-216.75-222 massive fine to medium grained grey limestone fragments RQD=10 1.4m core not recovered 216-219m				
		-limestone/dolostone becomes extremely vuggy			1	1

HOLE NUMBER: HOB25-01

DRILL HOLE RECORD

LOGGED BY: Andre Taillefer

PAGE: 5

Ì

LE NUM	BER: HOB25-01			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		after 221m, some vugs filled w/ dolomite grains (may be calcite but carbonate stain is too cold to react)			////////////////////////////////////	
		 -unusual brown "laminated" material found in vugs @ 225.1m possibly organic or maybe an evaporite mineral				
		-core becomes sacroidal dolomite, extremely vuggy and porous, 225.4-227? RQD=10, 0.5m core not recovered 225-228				
		-228-234.8 dominantly vuggy massive fine grained dolostone w/limestone, breccciated, some fragments show multiple brecciation episodes				
		-lower contact appears structural, ground dolostone fragments in contact w/ bleached brown laminated calcarenite				
4.80 TO 7.40	HA>» Phanerozoic Sediments	-fine to medium grained brown laminated calcarentie w/ cherty (?) nodules/fragments, subrounded, many with shapes which imply no transport				
	Stooping River Fm. shale	-unit matches GSC description of some beds of Stooping River Fm, but may be ochre stained Moose River Fm -lower contact gradational, marked by end of "modules"				
		236.60-236.61 -< \$0 70° -> Bedding				
7.40 TO 3.75	ST>»	-fine to medium grained moderately sorted, moderately mature dark brown to red sandstone w/ clay matrix				
	Sextant Fm sandstone	-no discernable beding -lower contact gradational to saprolite, made more dificult to discern because of brown clay coating to core				

1

PAGE: 6

......

HOLE NUM	BER: HOB25-01			DRILL HOLE RECORD		DATE: 03/17/1999	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS	
238.75 TO 243.00	<pre></pre>	-strongly saprolitic and oxidized for upper 1m, becomes good coarse grained granite @ last 0.5m of core					
243.00 TO 243.00	<eoh» End-Of-Hole</eoh» 						
HOLE NUM	BER: HOB25-01			DRILL HOLE RECORD	LOGGED I	BY: Andre Taillefer	PAGE: 7

÷

i

HOLE NUM	BER : HOE	25-01									AS	SAYS SH	EET						 	DATE: 17/03/199
Sample	From (M)	То (М)	Leng. (M)	Cu ppm	Zn ppm	Pb ppm	Ni ppm	Au ppb	Ag ppm	Cu/Zn	Co ppm	Pt ppb	Pd ppb	S ppm	Se ppm	As ppm	Hg ppb	Mn ppm		
AU02503 AU02504	156.00 163.50	157.00 165.00	1.00 1.50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 26	22 35	29 30	11.0 35.0	0	0											

HOLE NUMBER: HOB25-01

ķ

HOLE NUMB	ER : HOE	25-01							GEOCI	HEMICAL	ASSAY													 DATE: 18/	/03/1999
Sample	From (M)	To (M)	Leng. (M)	2 AL203	MGO ¥	NA20 \$	К20 %	FE203	TI02 %	P205		CR203	roi \$	SUM ¥	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NB PPM	CU PPM	ZN PPM	NI PPM	FIELD CHEM NAME ID	ALUM
AU02721 AU02722 AU02723 AU02724 AU02726 AU02727 AU02727 AU02728 AU02730	123.15 144.10 154.60 159.45 206.20 212.00 212.75 226.00 233.30	123.35 144.20 154.85 159.60 206.30 212.13 212.90 226.15 233.40	0.20 0.10 0.25 0.15 0.10 0.13 0.15 0.15 0.15 0.10										-												

}

HOLE NUMBER: HOB25-01

GEOCHEMICAL ASSAY

PAGE: 3

HOLE NUMBER: HOB31-01			NBRIDGE LIMITED LL HOLE RECORD		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNITS:
PROJECT NAME: 8264	PLOTTING COOR	DS GRID: UTM	ALTERNATE COORDS GRID:	# ind die verseren i	COLLAR DIP: -90° 0' 0
PROJECT NUMBER: 8264		NORTH: 5579867.00N	NORTH :	+	LENGTH OF THE HOLE: 69.20M
CLAIM NUMBER: 1212863		EAST: 456429.00E	EAST :	+	START DEPTH: 0.00M
LOCATION: Hobson Twp		ELEV: 0.00	ELEV:		FINAL DEPTH: 69.20M
	COLLAR ASTRONOMIC	AZIMUTH: 0° 0' 0"	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"	
DATE STARTED: 10/01/1997	COLLAR SURVEY: NO		PULSE EM SURVEY: NO		CONTRACTOR: Bradley Bros.
DATE COMPLETED: 10/03/1997	RQD LOG: NO		PLUGGED: NO		CASING: Reamed to 29, 10m NW
DATE LOGGED: 11/01/1997	HOLE MAKES WATER : NO		HOLE SIZE: BQ		CORE STORAGE: Kidd Creek Mine
					UTM COORD.: Zone 17

COMMENTS : WEDGES AT:

DIRECTIONAL DATA:

(M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-				~	_	_	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-		-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
	-	-	-	-			_				
	-	-	-	-		_	_	_	_	-	
	-	_	_			-	-	-	-	-	
-	-	-	-			-	_	-	-	-	
-	-	_	-	-		-	~	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	~		i -	-	-	-	-	
-	-	-	-	-		j -	-	-	-	-	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-		1 -	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	~	-	-		- 1	-	-	-	-	

HOLE NUMBER: HOB31-01

DRILL HOLE RECORD

LOGGED BY: M.Collison PAGE: 1 ١

LE NUM										
TO	ROCK	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	REMARKS				
0.00 TO 7.00										
TO	<pre>«15,MRFm,<l ST>» Phanerozoic Sediments Moose River Fm. limestone</l </pre>	<pre>-fine to medium grained lenticular to wavy bedded finely laminated grey limestone w/ interbedded clay/shale and thin sandstone interbeds -7-13m rubbly limestone, very poor core recovery, possibly still overburden -13-14.3m breccia w/ calcareous shale/clay matrix, matrix supported, disrupted laminations present throughout -14.3-16.7m clay/shale, calcareous, redox reaction fronts visible, varicoloured blue-brown -16.7-20.9m wavy to lenticular bedded limestone w/clay shale partings and shale to sandstone interbeds near base of unit, small vugs to 2-3mm common d[19.90-19.91]*{S0 87°} > Bedding</pre>			-none noted					
TO		-dark red strongly hematized poorly consolidated immature arkosic sandstones to pebble conglomerates. -extremely poor core recovery noted between 20.2 and 38.0m. -over 16m of lost core noted. -downhole contact is marked by the occurance of unbedded, strongly in situ leached sapprolitic gneiss -due to abundance of lost core, true contact location may occur within section of lost core.		-strong pervasive hematization overprints entire section.	-no sulphides observed 					
38.20 TO 90.10	<12, <gra>> Gneiss granite</gra>	-brick red chlorite/biotite granitic gneiss -gneiss is relatively massive, locally becoming weakly banded. -chlorite may be retrograde mineral produced through the leach decomposition of biotite -from uphole contact to 62.0m, unit is badly leached containing numerous intervals of poorly consolidated material accompanied by several intervals of lost core. -1.5m lost core occurs between 38.0 and 41.0m. -1.3m lost core between 41.0 and 44.0m -0. 20m lost core between 44.0 and 47.0m.		-strong pervsasive hematization, decreasing in intenstiy downhole from 50.0m.	-no sulphides observed.					

HOLE NUMBER: HOB31-01

HOLE NUME	BER: HOB31-01			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
90.10	«EOH» End-Of-Hole					
	l		<u> </u>			

HOLE NUMBER: HOB31-01

DRILL HOLE RECORD

LOGGED BY: M.Collison PAGE: 3

HOLE NUMBER: HOB33-01			DGE LIMITED OLE RECORD		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: 8264	PLOTTING CC	ORDS GRID: UTM	ALTERNATE COORDS GRID:		COLLAR DIP: -90° 0' 0"
PROJECT NUMBER: 8264		NORTH: 5583052.00mN	NORTH :	+	LENGTH OF THE HOLE: 181.00M
CLAIM NUMBER: P-1216656		EAST: 456878.00mE	EAST:	+	START DEPTH: 0.00M
LOCATION: Hobson Township		ELEV: 0.00	ELEV:		FINAL DEPTH: 181.00M
	COLLAR ASTRONOM	IC AZIMUTH: 0° 0' 0"	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"	
DATE STARTED: 09/10/1998	COLLAR SURVEY: NO		PULSE EM SURVEY: NO		CONTRACTOR: DOMINIK
DATE COMPLETED: 09/13/1998	RQD LOG: NO		PLUGGED: NO		CASING: BW - Pulled
DATE LOGGED: 09/16/1998	HOLE MAKES WATER: NO		HOLE SIZE: BQ		CORE STORAGE: KIDD CREEK MINE
					UTM COORD.: Zone 17

ł.

.

DIRECTIONAL DATA:

COMMENTS : WEDGES AT:

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
		-				-	_	_	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-			-				-	-	-	-	
-	-	-	_	-			-	_	-	-	
_			_			-	_	_	-	_	
_	-	-	~	-		-	-	-	-		
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-		- 1	-	-	-		
-	*	~	-	-		i -	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	~	~	-	-		1 -	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	

HOLE NUMBER: HOB33-01

DRILL HOLE RECORD

LOGGED BY:/Andre Taillefer PAGE: 1

AN

UOLE 1	HOB33-01	

DRILL HOLE RECORD

i

DATE: 03/17/1999

۰.

.

FROM	ROCK		ANGLE			
то	TYPE	TEXTURE AND STRUCTURE	TO CA	ALTERATION	MINERALIZATION	REMARKS
TO	« OB » Casing Overburden	-may include Mattagami Fm.				BW casing reamed to 75m.
	<pre>«15,LRFm,<a RG>,<sha>> Phanerozoic Sediments Long Rapids Fm. mudstone-ar gillite shale</sha></a </pre>	Fine grained, interbedded black to dark brown bituminous to blue-grey to grey shales intercalated with light green mudstones. -Black organic shale in the first 15m of unit with the exeption of a greenish mudstone bed from 47m to 47.5m. Nodules and thin beds of py occur throughout the black shale with carbonate filled fractures occuring mostly @ 48m to 51m. From 57m to 68.8 Black shale beds become interbedded with the blue-gray shale with the two units mixing by "worm tubes". From 64.5 to 66.1 beds of thin, dark brown, intercalated, gradational shale occur due to broken rock.			small nodules of py throuout the black argillite, with nodules varing in sizes from 1mm to 1.5cm. Unit also contains py beds generally <1mm thick with the exeption of an 8mm thick bed @ 56.8m.	
68.80 TO 104.00	<15,WIFm, cA RG>, <lst>> Phanerozoic Sediments Williams Island Fm. mudstone-ar gillite limestone</lst>	 -Opper unit consists of light to dark tan, vuggy, porous, fossilliforous, brecciated and muddy limestones intercalated with light to dark gray calcareous argillite/mudstone. -68.8 to 78.45 unit is composed of tan limestone interbeded with gray calcareous agillite and from 69.7 to 72.0 brecciated mudstone. Beds are -80° tca. Limestone becomes orangish @ 72.3 due to hemetite staining. Unit becomes broken up and porous between 72.4 to 73.0 and vuggy between 76.1 to 77.45 with vugs between 2mm to 1m. -77.45 to 80.4 unit is a dark gray to tan argillite containing white calcite fragments. -80.4 to 84.6 porous, tan limestone core recovery is very poor, RQD <10%. -84.6 to 90.4 gray to tan brecciated clay/mudstone. Unit contains a few shell fragments 			py nodules occur at 68.9m ,94.4, 95.9m, 100.7 and between 86 and 87mNodules are of fine cubic py and vary in sizes between 3mm to 3.5cm.	

HOLE NUMBER: HOB33-01

SNUM	BER: HOB33-01			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		broken seams. RQD= 10%.				
		<pre>-93.1 to 96.8 similar to 84.6 to 90.4 except unit contains several fine py nodules and two bituminous sections containing small(1 mm)calcite pebbles and py nodules.</pre>				
		96.8 to 104.0 gray mudstone. Unit is homogeneous to 98.8m then becomes very fosiliforous with mostly coral and shell fragments, and becomes tan in color briefly with large white coral sections. large Py nodule amongst the fossils at 100.7m lost core @ 70.5m and 74.5				
.04.00 TO .44.95	HA>»	 The lower section of the Williams Island formation is composed of homogeneous, dark gray to blue-gray shale. 	80°			
	Williams Island Fm. shale	-Bedding appears to be @ 80° tca. 				
TO		Brown to grey, fossiliferous, limestone commonly brecciated with grey clay interbeds/matrix. -From 145.0 to 146.5 strongly fossiliferous tan limestone composed of mostly brachiopod shells from 3mm to 4cm. 30 cm grey clay section @145.5 RQD = 1 0. -146.5 to 151.95 fossiliferous, lenticular brown to grey limestone. Bracciopods and crinoid stems dominant after 150.0m, some vugs filled with calcite. RQD = 60.			Trace py.	
		 -151.95 to 155.25 breciated vuggy, fossilliferous imestone. Vugs filled with sparry calcite, crinoid most common, brachiopods and ostrocods, stylolitic fractures, RQD = 20. -155.25 to 155.88. Fossilliferous limestone breccia with grey shale / clay matrix / interbeds. Solution collapse. Approximately 40% clay, 				

}

HOLE NUMBER: HOB33-01

PAGE: 3

ROM ROCK TEXTURE AND STRUCTURE TO TYPE TEXTURE AND STRUCTURE 4.88 <15,MRFm, L Tan to grey finely laminated limestone breccia TO ST>,bx* with grey shale matrix 9.42 Phanerozoic -154.88-156.4 dominately grey clay with small Moose River angular limestone fragments, gypsum noted at Fm. 156.04 and 156.36 limestone -156.4 to 167.7 finely laminated tan limestone breccia -156.4 to 167.7 finely laminated tan limestone stylolitic, minor gypsum interbeds, good porosity, minor clay section @ 158.3 to 159.35, 160.45 to 160.85, 161.7to 162.0, 165.8 to 161.4. - minor echinoderm fossils @ 160.1 to 161.3, trace py, minor vugs with sparry calcite, low to moderate porosity and permeability, RQD = 5, 1m core not recovered 162 to 165. - 167.7 to 171.0 Large increase in porosity, 10% of unit small vugs 1-2 cm in size, trace gypsum. -171.0 to 177.0 approximately 50% ground core and small fragments, RQD=5,	ANGLE TO CA ALTERATION	MINERALIZATION	REMARKS
TO ST>,bx• with grey shale matrix 9.42 Phanerozoic Sediments -154.88-156.4 dominately grey clay with small Moose River angular limestone fragments, gypsum noted at Fm. 156.04 and 156.36 limestone breccia -156.4 to 167.7 finely laminated tan limestone stylolitic, minor gypsum interbeds, good porosity, minor clay section @ 158.3 to 159.35, 160.45 to 160.85, 161.7to 162.0, 165.8 to 161.4. - minor echinoderm fossils @ 160.1 to 161.3, trace py, minor vugs with sparry calcite, low to moderate porosity and permeability, RQD = 5, 1m core not recovered 162 to 165. - 167.7 to 171.0 Large increase in porosity, 104 of unit small vugs 1-2 cm in size, trace gypsum. -171.0 to 177.0 approximately 50% ground core and small fragments, RQD=5,			
-171.0 to 177.0 approximately 50% ground core and small fragments, RQD=5,		Ì	
 -177 to 179.42 limestone breccia with limestone matrix, becomes more hematite colored @ bottom 50 cm, lower contact irregular. 9.42 <15,SxFm,<s brown="" fine="" immature="" pebble<br="" red="" sandstone="" to="">TO ST>> conglomarate.</s> 1.00 Phanerozoic Sediments -Rapid grain size changes from fine sandstone to Sextant Fm pebbles upper meter of unit. 24cm gneiss boulder, sandstone strongly hemetised at 179.05 to 179.29, Unit is poorly consolidated, porosity is low to moderate, permeability low to good. RQD = 10. 			
L.00 ≪EOH> TO End-Of-Hole L.00			

HOLE NUMBER: HOB33-01

.

DRILL HOLE RECORD

LOGGED BY: Andre Taillefer

HOLE NUM	BER : HOE	33-01								GEOC	HEMICAL	ASSAY													DATE: 18/	03/1999
Sample	From (M)	To (M)	Leng. (M)		2 AL203	*	NA20	*		TI02 %		MINO ¥	CR203	101 1	SUM 1	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NB PPM	CU PPM	2N PPM	NI PPM	FIELD CHEM NAME ID	ALUM
Sample AU02701 AU02703 AU02704 AU02706 AU02706 AU02707	(M) 146.30 150.80 155.00 156.70 169.00 177.30	(M) 146.40 150.95 155.10 156.80 169.10 177.40	(M) 0.10 0.15 0.10 0.10 0.10 0.10 0.10	₩ ₩ ₩ ₩ ₩ ₩					*		*	+		1												

ì

HOLE NUMBER: HOB33-01

1

PAGE :

4

ł

HOLE NUMBER: HOB34-01			BRIDGE LIMITED L HOLE RECORD		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: 8264	PLOTTING COORDS GF	ID: UTM	ALTERNATE COORDS GRID:		COLLAR DIP: -90° 0' 0"
PROJECT NUMBER: 8264	NOF	TH: 5583852.00mN	NORTH:	+	LENGTH OF THE HOLE: 228.00M
CLAIM NUMBER: P-1216655	EA	LST: 455901.00mE	EAST:	+	START DEPTH: 0.00M
LOCATION: Hobson Twp	EI	JEV: 0.00	ÉLEV:		FINAL DEPTH: 228.00M
	COLLAR ASTRONOMIC AZIMU	TTH: 0° 0' 0"	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"	
DATE STARTED: / /	COLLAR SURVEY: NO		PULSE EM SURVEY: NO		CONTRACTOR: Major-Dominik
DATE COMPLETED: / /	RQD LOG: NO		PLUGGED: NO		CASING: BW-Pulled
DATE LOGGED: / /	HOLE MAKES WATER : NO		HOLE SIZE: BQ		CORE STORAGE: Kidd Creek Mine
					UTM COORD.: Zone 17

COMMENTS : 40m of drill rods lost in hole. WEDGES AT:

DIRECTIONAL DATA:

-

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments		Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-					-	_	-	-	-	
-	-	-	-	-			-	-	-	-	-	
-	-	-	-	-		1	-	-	-	-	-	
-	-	-	-	-		1	-	-	-	-	-	
-	-	-	-	-		1	-	-	-	-	-	
-	-	-	-	-		1	-	-	-	-	-	
-	-	-	-	-			-		-	-	-	
-		-		_		1	_		_	_	_	
	-	_	-	-		i i	-	-	_	-	-	
-	-	-	-	-			-	-	-	-	-	
-	-	-	-			i	-	-	-	-	-	
-	-	-	-	-		i	-	~	-	-	-	
-	-	-	-	-		i	-	-	-	-	-	
-	-	-	-	-		i	-	-	-	-	-	
-	-	-	-	-		ĺ	-	-	-	-	-	
-	-	-	-	-		1	-	-	-	-	-	
-	-	-	-	-			-		-	-	-	
-	~	-	-	-			-	-	-	-	-	
-	-	-	-	-			-	-	-	-	-	
-	-	-	-	-			-	-	-	-	-	
-	-	-	-	-			-	-	-	-	-	
-	-	-	-	~			-	-	-	-	-	
-	-	-	-	-			-	-	-	-	-	
-	~	-	-	-			-	-	-	-	-	

HOLE NUMBER: HOB34-01

DRILL HOLE RECORD

HOLE NUMBER: HOB34-01

DRILL HOLE RECORD

DATE: 03/17/1999

	BER: NODJ4-01			DRIDE HODE RECORD		DAID: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 60.00	Casing	-May include Mattagami Fm.	 			
60.00 TO 118.52	RG>, <sha>></sha>	interbedded with light green mudstone -60.0 to 67.3 black bituminous/oily shale, thinly bedded @ 80° tca, itercalated with blue-grey shale with "worm tubing" occuring at 61.3, 61.7			Fine diseminated py nodules occuring mostly in the black shales from 60.0 - 67.3 and from 89.57 to 107.1 and again from 113.0to 114.94.Nodules measure between 2mm to 4cm and thin beds of fine diseminated py are also common throgh the same units. Some nodular py also occuring in the blue-gray shale from 116.6 to 117.5	
		 and are fairly hard and blocky with dolomitic nodules. -86.3 to 89.8 gray to black shale,thinly bedded with bedding @ 80° tca. -89.8 to 94.42 grey-blue to dark grey shale interbedded with grey to grey-blue mudstone. Echnofossils (worm tubings) can be seen @89.8, 90.7 and at 91.3. The mudstone unit at 90.7 to 90.9 is blue-grey at the top and dark grey at the bottom with worm tubining decsending to the bottom. The mudstone at 94.08 to 94.42 is grey similar in composition to previous units with the exeption of small (5mm) py nodules. 				
		-94.42 to 107.12 dark gray calcareous shale, diseminated py beds and nodular py occur throughout with nodules between 5mm and 2cm in size. Carbonate filled joints are also found locally. -107.12 to 188.52 grey to grey blue shale interbeded with pale green mudstone. Shale is finely bedded, gradational with some py nodules				

FROM ROCK TO TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
	and thin beds. Musdtone unit is light green calcareous and contains some fossils (brachiopod shells) from 115.5 to 116.0m Lower contact difficult to measure due to broken core.				
TO RG>, <lst< td=""><td><pre>oic ochre mudstone. s -118.52 to 131.8 tan vuggy limestone,</pre></td><td></td><td></td><td>Disseminated py clusters @ 140.35</td><td></td></lst<>	<pre>oic ochre mudstone. s -118.52 to 131.8 tan vuggy limestone,</pre>			Disseminated py clusters @ 140.35	

ł

HOLE NUMBER: HOB34-01

1

HOLE	NUMBER :	HOB34-01
------	----------	----------

DRILL HOLE RECORD

DATE: 03/17/1999

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	MINERALIZATION	REMARKS
154.30	<pre> *15,WIFm,<s ha="">></s></pre>	Lower Murray Island Formation consists of sparsely fossiliferous, ductile grey-blue clay/shale. -154.3to 156.16 unit is fossiliferous shale, with mostly brachiopod shells and fragments and large white coral fossils. Py blebs appear in the contact with the corals and the shale at 156.13. -156.16 to 196.2 Grey blue to grey clay to shale, bedding planes are @ 60° tca, and unit becomes fossiliferous at the last 10cm before the contact with the Murray Island Formation, which is 65° tca.		<pre>Minor disseminated py blebs at contact between the shale and coral fossil</pre>	
то	<pre>«15,MIFm,<l ST>» Phanerozoic Sediments Murray Island Fm limestone</l </pre>	 Tan to grey, fossiliferous, slightly brecciated limestone -196.2 to 198.1 strongly fossilised tan limestone, mostly brachiopod shells, minor crinoid stems. Shells vary in size from 2mm to 2.5 cm -198.0 unit becomes brecciated with a darker tan to brown matrix. -200.3 to 202.5 abundant crinoid stems from 2mm to 5mm, some brachiopod shells and ostracods. Well formed calcite crystals occur in vugs @ 		none seen 	
то	<15, MRFm, <l ST>, bx* Phanerozoic Sediments Moose River Fm. limestone breccia</l 	 202.5 and 204.2 -204.5 to 204.95 finely laminated (oriented 70° tca) tan to brown limestone. Bottom contact is unmeasurable. RQD for entire unit is good @ ~ 60% Finely laminated, porous, vuggy, becciated limestone with gray mudstone matrix. -206.0 to 207.42 grey limestone breccia with grey mudstone matrix. -207.42 to 209.1 thinly laminated tan to brown gypsiferous, brecciated limestone. Bedding oriented at 70°tca. Unit contains a few calcite vugs ranging in size from 5 to 10mm. 		 none seen 	

HOLE NUMBER: HOB34-01

LE NUMBER: HOB34-01			DRILL HOLE RECORD		DATE: 03/17/1999
FROM ROCK TO TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
c	209.1 to 211.1 Brecciated limestone. Unit contains small to large angular clasts of imestone in a grey mudstone matrix. Core RQD = 0¥				
	211.1 to 212.5 light tan to brown, thinly aminated limestone.				
j j 2	212.5 to 213.13 brecciated limestone, similar to 09.1 to 211.1 except clasts are grey and light an in color.				
 	213.13 to 216.05 thinly laminated tan to gray to lark brown limestone. Several thin beds of ituminous material appear in this unit. Bedding $s \oplus 50$ fca. Core is poreous from 213.60 to 14.2. RQD is 40%.				
 w r	216.05 to 228.0, vuggy brecciated, tan to grey imestone. Vugs vary in size from 3mm to 3cm in idth and are filled with spary calcite. core ecovery is poor, RQD is 10%. 1.8m of lost core etween 222 and 225m. Hole was abandonded due to ad ground.				
28.00 «EOH» TO End-Of-Hole 28.00					

HOLE NUMBER: HOB34-01

DRILL HOLE RECORD

LOGGED BY: Andre Taillefer PAGE: 5

IOLE NUME	BER : HOE	34-01		_							GEOC	HEMICAL	ASSAY			_				_						 DATE: 18/	/03/199
Sample	From (M)	То (M)	Leng. (M)	\$102	AL203	CA0	MGO ¥	NA20	К20 ¥	FE203				CR203	LOI 1	SUM ¥	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NB PPM	CU PPM	ZN PPM	NÍ PPM	FIELD CHEM NAME ID	ALU
U02708 U02709 U02710 U02711 U02712	196.20 199.90 205.60 207.60 218.80 225.70	200.10 205.80 207.80 219.00	0.20 0.20 0.20 0.20																								
				H H H H H																							
				17 17 14 17 17	·																						
				4 1 1 1 1																							

i.

HOLE NUMBER: HOB43-01		DRILL	IDGE LIMITED HOLE RECORD		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: 8264	PLOTTING COO	ORDS GRID: UTM	ALTERNATE COORDS GRID:		COLLAR DIP: -90° 0' 0"
PROJECT NUMBER: 8264		NORTH: 5583525.00N	NORTH :	+	LENGTH OF THE HOLE: 176.00M
CLAIM NUMBER: 1212869		EAST: 458191.00E	EAST:	+	START DEPTH: 0.00M
LOCATION: Hobson Twp		ELEV: 0.00	ELEV:		FINAL DEPTH: 176.00M
	COLLAR ASTRONOM	IC AZIMUTH: 0° 0' 0"	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"	
DATE STARTED: 10/05/1997	COLLAR SURVEY: NO		PULSE EM SURVEY: NO		CONTRACTOR: Bradley Bros.
DATE COMPLETED: 10/07/1997	RQD LOG: NO		PLUGGED: NO		CASING: Pulled
DATE LOGGED: 11/15/1997	HOLE MAKES WATER: NO		HOLE SIZE: BQ		CORE STORAGE: Kidd Creek Mine
					UTM COORD.: Zone 17

COMMENTS : WEDGES AT:

DIRECTIONAL DATA:

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-					_	_	-	-	
-	-	~	-	-		- 1	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	~	-	-	
-	-	-	-	-		-	-	-	-	-	
~	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	~	
-	-	-	-	-			-	_		-	
-	-	-	_	-			_	_			
-	_	_	-				-	-		_	
	_	_	_				-	_			
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-		
~	-	-	-	-		i -	-	-	~	-	
-	-	-	-	-		i -	-	-	-	-	
-	-		-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	

HOLE NUMBER: HOB43-01

DRILL HOLE RECORD

LOGGED BY: G.COLLINS

Theonge

	BER: HOB43-01					· · · · · · · · · · · · · · · · · · ·
TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	REMARKS
0.00 TO 4.00	Casing					
	RG>, <dol>></dol>	 -Dark grey to black carbonaceous argillite. -From 24.0 to 32.8m, formation characterized by semi gradational intercalated beds containing variable ammounts of organic hydrocarbons. 3-5cm diameter nodual of PY osbserved at 26.35m. -From 32.8m, to 40.0m intercalations of bioturbated calcareous mudstone become intercalated with organic argillites. Locally ichnofossils (worm tubes)? can be observed extending out from the lower contacts of calcareous sections into underlying organic material. -No other macroscopic fossils identified. -From 40.0 to lower contact, formation is characterised by thinly laminated calcareous and organic mustones. Bedding defines lamination, occuring 80° TCA. -Lower contact is sharp, parallel to bedding. 429.80-29.90 + FAI +> Fault -Calcite infilled breccia of angular argillitic sediments occurs adjacent to thin seam of ground core. 		-Minor fracture filling calcite. -Between 29.8 and 29.9m, calcite infills small fault breccia zone.	-Minor nodular Py observed between 26.0 and 27.0m.	
	<15,WIFm, <a RG>,<lst>,< SHA>> Phanerozoic Sediments Williams Island Fm. mudstone-ar gillite ilmestone shale</lst></a 	-Upper member of Williams island formation characterised by heterogeneous intercalations of brecciated and vuggy fossiliferous, and muddy limestones gradational into beds of calcareous mudstones and organic argillites. -Between 44.1 an 49.6m, interval is composed of framework supported fragments of brecciated corals and clastic limestone. Unit is highly vuggy stained yellow due to effects of ground water leaching. -Between 49.6 and 51.2m, unit is characterised by brecciated bed of angular fragments of limey mudstone. Unit could represent a storm bed. -Prom 51.2 to 78.50m, unit is characterised by brecciated to vuggy dolomitic limestone gradationally interspaced upward fining sequences of mudstone and argillite.	80°	-Minor fracture controlled calcite appears to cement material more strongly between 77.0 and 70.1m.	-Patchy clusters of PY/marcasite is 1 to 2% abundant throughout vuggy limestone section between 58.2 and 58.6m. -Locally fine disseminated cubic PY is observed. -PY dissemination are focussed along vaguely definable bands within calcified section between 77.0 and 77.9m 458.20-58.60 #*Ma, PyD1.0-2.0%> 1.0-2.0% disseminated/blebby 477.00-77.90 #*PyD0.5-1.0%> 0.5-1.0% disseminated/blebby pyrite	-Coral fragments previously unidentified within upper Williams Island formation1.2m lost core between 44.0 and 47.0m1.4m lost cor between 56.0 and 59.0m1.3m lost cor between 74.0 and 77.0m.

HOLE NUMBER: HOB43-01

DRILL HOLE RECORD

LOGGED BY: G.COLLINS

IE NUM	3ER: HOB43-01	T		DRILL HOLE RECORD	· · · · · · · · · · · · · · · · · · ·	DATE: 03/17/1999
OM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
.50 TO	<15, MIPm, <l ST>, bx></l 	-Bitumous material becomes more abundant accompanying unique sequence between 78.5 and 86.2m. Rounded ameboid shaped fragments of coral accompanied by colites and brachiopod fragments define the base of two fining sequences at 82.65 and 86.2m respectively. Sequences grade out of matrix supported bitumous fossiliferous material into finely laminated argillitic/mudstone. These organic rich beds appear to mark the lower margin of the upper Williams Island formation. -Downhole from 86.2m, unit is characteristed by grey shale typical of the lower Williams Island formation. Unit is extremely homogenous, soft and pliable and can absorb considerable ammounts of water when exposed. -Unit appears poorly consolidated frequently cleaving along bedding planes 80 deg TCA. -Between 126.1 and 126.5m, organic content appears to increase, rendering core darker brown in colour.		-Minor free qtz infills vugs and fracture surfaces. -Minor fracture controlled calcite.	-No sulphides observed.	REMARKS
	limescone breccia	 between 126.5m and 130.7m. Downhole from 130.7m, Crinoid fragments become extensively abundant. Crinoid fragments are typically 1cm in diameter and up to 2cm long. Fossils occupy 10 to 15% of unit. -Sandy limstone beds are typically poorly sorted defined by overall massive textures/excluding fossils. -Massive beds are broken up by minor jointing and weakly carbonaceous mudstone intervals. Mudstone seams appear to infill collapse breccia. -Pormation retains relatively good competency reflected by good overall RQD's. -Downhole contact is broken and rubbly, marked by minor collapse breccia. 				

HOLE NUMBER: HOB43-01

DRILL HOLE RECORD

1

DATE: 03/17/1999

HOLE NUMBER: HOB43-01

HOLE NUMBER: HOB43-01

DRILL HOLE RECORD

DATE: 03/17/1999

1

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	REMARKS
138.50 TO 161.70	<pre><15,MRFm,<li st="">,bx> Phanerozoic Sediments Moose River Fm. limestone breccia</pre>	 Fine grain brecciated beds of limestone. Blocks of limestone are interspaced with breccia sections and seams of mudstone. Breccia sections and overall discordance of limestone blocks with erratically oriented beds of brecciated argillite suggest that unit has undergone extensive collapse. Karsting due to groundwater (?) appears to have removed any evaporitic material resulting in chaotic collapse breccia. Limestone defined by finely laminated beds commonly exhibiting carbonaceous stylolites. No macroscopic fossils observed. Bedding laminations occur erratically, possibly reflecting displacement of beds caused by collapse. Limestone blocks are interspaced by brecciated cavities typically infilled by calcitic muds and silts. Frequently mudstone seams display minor brecciation possibly caused my movement of karst blocks after infilling. Downhole contact is sharp but irregular. 		-Unit appears relatively unaltered. -Groundwater leaching of carbonate/evaporite minerals has rendered core vuggy.	-Traces Py observed along carbonaceous fracture surfaces.	-Core is badly broken and blocky but retains excellent core recovery.
TO	<pre>«15,SxFm,<a RK>,C,*k> Phanerozoic Sediments Sextant Fm arkosic sandstone heterolithi c pebble</a </pre>	-Brick red immature arenitic sandstones to pebble conglomerated. -Unit grades out of poorly sorted, weakly laminated arkose sandstone containing clasts of limestone into an immature pebble conglomerate. -Fracture/matrix controlled pervasive hematite staining stongly overprints sandstone, resulting in brick red colour. -Downhole from 167.0m, badly leached clasts similar in appearance to the underlying gneisses become increasingly abundant. -Downhole contact is gradational, marked by 3m section of badly leached poorly consolidated rust stained material. Section marking downhole contact believed to signify weathered unconformity.		-Strong fracture controlled to pervasive hematite staining. -Near uphole contact matrix of formation is strongly calcitic.	-No sulphides observed.	
167.80 TO 176.00	<gra>»</gra>	-Pink to greenish grey biotite and diopside bearing granitic gneiss. -Gneiss is overprinted by strong fracture controlled epidote alteration and minor guartz veining. -Pinkish hue appears to reflect strong		-Strong fracture controlled epidote. -Minor quartz veining.	-Trace disseminated PY.	

HOLE NUMBER: HOB43-01

HOLE NUM	BER: HOB43-01			DRILL HOLE RECORD		DATE: 03/17/1999	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS	
		hematization. -Unit is hard, competant and relatively non- fractured.					
176.00	≪EOH»						
TO 176.00	End-Of-Hole	1					
HOLE NUME	BER: HOB43-01			DRILL HOLE RECORD	LOGGED BY:	G.COLLINS PAGE:	5

HOLE NUMBER: HOB43-01

ł.

noonio oneel	ASSAYS	
--------------	--------	--

PAGE :

6

1

HOLE NUM	BER : HOB	43-01									AS	SAYS SH	IEET				-		DATE: 17/03/199
Sample	From (M)	То (M)	Leng. (M)	Cu ppn	Zn ppm	dq mqq	Ni ppm	Au ppb	Ag ppm	Cu/2n	Co ppm	Pt ppb	Pđ ppb	S ppm	As ppm	Hg dqq	Mn ppm		
AT09155 AT09156		58.60			6 25		1.0	03	000										

	BER : HOE	43-01				_				GEOCI	HEMICAL	ASSAY									_				DATE: 18/	03/1999
Sample	From (M)	To (M)	Leng. (M)	SIO2	AL203		NA20 ¥	K20 \$	FE203	T102	P205 1	MINO ŧ	CR203	roi f	SUM 1	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NB PPM	CU PPM	2N PPM	NI PPM	FIELD CHEM NAME ID	ALUM
AT09096	43.65	43.80	0.15	43 76	11 20	10 20	 																		 	
AT09097	125.00	125.25	0.25	1																						
	127.85																									
	134.00																									
			-0.05 -1.80																							
			0.20																							
			0.15	Í																						
AT09160	161.80	161.95	0.15																							
			1																							
			ł								n a di straa	instantistan e	, уст. 1. так 1													
			ĺ																							
			i																							
			1																							
			İ																							
			1																							
			į																							
			1																							
			l																							
			4	I																						
			ľ																							
			İ																							
			l																							
			ĥ																							
			l.																							

ł

PAGE: 6

٠,

HOLE NUMBER: HOG75-01			BRIDGE LIMITED L HOLE RECORD		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: 8264	PLOTTING COOR	DS GRID: UTM	ALTERNATE COORDS GRID:		COLLAR DIP: -90° 0' 0"
PROJECT NUMBER: 8264		NORTH: 5585329.00N	NORTH :	+	LENGTH OF THE HOLE: 74.00M
CLAIM NUMBER: P-1212864		EAST: 448345.00E	EAST:	+	START DEPTH: 0.00M
LOCATION: Hogg Twp		ELEV: 0.00	ELEV:		FINAL DEPTH: 74.00M
	COLLAR ASTRONOMIC	AZIMUTH: 0° 0' 0"	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"	
DATE STARTED: 10/19/1997	COLLAR SURVEY: NO		PULSE EM SURVEY: NO		CONTRACTOR: Bradley Bros.
DATE COMPLETED: 10/20/1997	RQD LOG: NO		PLUGGED: NO		CASING: 25m BW pulled
DATE LOGGED: 10/21/1997	HOLE MAKES WATER: NO		HOLE SIZE: BQ		CORE STORAGE: Kidd Creek Mine
					UTM COORD.: Zone 17

COMMENTS :

-

WEDGES AT:

DIRECTIONAL DATA:

1

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-				-	_	_	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-						_	-	-	-	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-		-	-	-		-	•	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
_	-	-	-	-		_	-	-	-	-	
-	-	-	-	-		-	-		-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		j -	-	-	-	-	

HOLE NUMBER: HOG75-01

DRILL HOLE RECORD

LOGGED BY: M.Collison PAGE: PAGE: 1

ţ

.

HOLE NUM	BER: HOG75-01			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 25.30	Casing					
25.30 TO 43.20	ST>*	-tan to dark grey fine to medium grained fossiliferous to bioclastic bituminous limestone -25.3-34.5m very fossiliferous, common stromatoporid, rugosa corals, echinoderm fragments, macerated shell fragments, sections almost bioclastic, this section is most bituminous part of Kwatoboahegan Fm exposed in this drill hole -common vugs w/ little to no internal crystal growth -34.5-43.2m less fossiliferous than above, common single rugosa corals to 10cm, smaller colonys, macerated shell fragments in fine to medium grained limestone, less bituminous, poorly developed layering @ =90° to c.a. -lower contact appears conformable, marked @ imm clay layer marking colour, textural change and lack of fossils			-none noted	
43.20 TO 56.24		<pre> 43.19-43.20 ++ 50 77° Contact→ Bedding -beige to gray fine to medium grained sparsely fossiliferous laminated limestone w/ thin interbeds of grey clay/shale -vuggy w/ dolomite crystals and trace py -quartz grains noted towards bottom of section, last 20cm is matrix supported quartz pebble conglomerate w/ calcite cement/matrix</pre>			-trace fine py/marcasite noted	
то	<15,SxFm, <s ST>» Phanerozoic Sediments Sextant Fm sandstone</s 	-blue to brown fine to medium grained sandstone w/ occasional pebbles -grains subangular to subrounded -matrix rich, poorly consolidated -common oxidation fronts noted -30cm core not recovered, 56-59m -lower contact lost in saprolitic/regolithic material			-none noted	
то	<pre>«9, a, b» Felsic Intrusive fine</pre>	-fine to medium grained felsic to intermediate intrusive -greenish colour imparted by extensive pervasive epidotization -pervasive hematite or rust staining to 67m				

ŀ

HOLE NUMBER: HOG75-01

DRILL HOLE RECORD

LOGGED BY: M.Collison

HOLE NUM	BER: HOG75-01			DRILL HOLE RECORD		DATE: 03/17/1999	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS	
	grained medium grained						
HOLE NUM	BER: HOG75-01			DRILL HOLE RECORD		OGGED BY: M.Collison	PAGE: 3

LE NUMB	ER : HOG	/5-01		 						GEOC	HEMICAL	ASSAY													 DATE: 18,	/03/19
ample	From (M)	To (M)	Leng. (M)	AL203	CAO	MGO ¥	NA20 ¥	к20 ¥	FE203 \	T102 \			CR203	f 01	SUM 1	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NB PPM	CU PPM	ZN PPM	NI PPM	FIELD CHEM NAME ID	AL
09075 09076	26.02 31.84																									
09077	42.97																									
09078			0.12																							
09079	56.38	56.50	0.12																							
			Ĩ																							
			H H																							
			i																							
			H																							
			ñ																							
			ļ																							
			L L								10.00	+														
			l																							
			1																							
			ľ																							
			H H																							
			1																							
			Î																							
			1																							
			ÿ																							
			ļ																							
			l l																							
			į																							
			j																							
			Ĩ																							
			l.																							
			N II																							
			ÿ																							
			ļ																							
			l.																							

}

)

HOLE NUMBER: HOG88-01			NBR1DGE LIMITED LL HOLE RECORD		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: 8264	PLOTTING COORDS GRID	UTM	ALTERNATE COORDS GRID:		COLLAR DIP: -90° 0' 0"
PROJECT NUMBER: 8264	NORTH	5590653.00N	NORTH :	+	LENGTH OF THE HOLE: 82.35M
CLAIM NUMBER: 1212874	EAST	449938.00E	EAST:	+	START DEPTH: 0.00M
LOCATION: Hogg Twp.	ELEV	0.00	ELEV:		FINAL DEPTH: 82.35M
	COLLAR ASTRONOMIC AZIMUTH	0.0,0.	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"	
DATE STARTED: 10/15/1997	COLLAR SURVEY: NO		PULSE EM SURVEY: NO		CONTRACTOR: Bradley Bros.
DATE COMPLETED: 10/16/1997	RQD LOG: NO		PLUGGED: NO		CASING: 34m BW pulled
DATE LOGGED: 10/17/1997	HOLE MAKES WATER: NO		HOLE SIZE: BQ		CORE STORAGE: Kidd Creek Mine
					UTM COORD.: Zone 17

COMMENTS :

Ì

WEDGES AT:

DIRECTIONAL DATA:

epth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-				-	_	_	-	-	
-	-	-	-	-		-	-	~	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-					-	-		
-	_	_		-			-	_	_		
	-	_	_				_	_	-		
_	_	_	-	_		-	-	_	_	-	
-	-	_	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
~	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	

LOGGED BY: M. Collison PAGE: PAGE: 1

HOLE NUMBER: HOG88-01

DRILL HOLE RECORD

DATE: 03/17/1999

FROM	ROCK		ANGLE			
то	TYPE	TEXTURE AND STRUCTURE	TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00	«- 0B -»		i i			
TO	Casing		1 1			
34.00	Overburden		!!!			
34 00	¦ ≰15,KwFm, <l< td=""><td>-beige to dark grey bituminous fossiliferous</td><td></td><td></td><td><pre>-trace fine grained pyrite noted as</pre></td><td></td></l<>	-beige to dark grey bituminous fossiliferous			<pre>-trace fine grained pyrite noted as</pre>	
54.00 TO	ST>*	limestone, massive to lenticular bedded, aphanitic	1 1		coating in vugs and disseminated blebs,	
49.18		to fine grained	1 1		0-0.1%	
	Sediments	-34-34.6 dominantly crinoid stem plates, shell	i i			
	Kwataboaheg	fragments, small coral fragments	i i		48.40-49.00 ≪PyD0.0-0.1%»	
	an Fm.	-34.6-34.74 white calcareous fossiliferous			0.0-0.1% disseminated/blebby pyrite	
	limestone	clay/mudstone	!!!			
		-35.04-35.42 stromatoporid -35.42-38.0 very fossiliferous (short sections				
		bioclastic), very bituminous, high porosity,				
		probable high permeability common vugs to 1cm	i i		1	
		-becomes more matrix rich after 38m w/ smaller	i i			
		macerated shell fragments, large coral fragments	1 1			
		(3-10cm) w/ open corallites and minute sparry				
		calcite growths on disepiments noted @ 35m, 40.8m				
		41.3m, 44.8m, 48.9m -possible ammonite fragments noted @ 42.4m and				
		43.74m				
		-lower contact appears depositional	i i			
			i i		İ	
		∦49.17-49.18∦≪ S0 74° Contact> Bedding				
	<15,SxFm, <c< td=""><td>-blue grey to red quartz pebble conglomerate to</td><td>i i</td><td></td><td>-none noted</td><td></td></c<>	-blue grey to red quartz pebble conglomerate to	i i		-none noted	
	GL>, <sst>></sst>	clay rich sandstone				
70.73	Phanerozoic Sediments	-quartz grains subangular to subrounded, poorly sorted				
	Seaiments Sextant Fm	-grains cemented by blue clay material,				
	conglomerat	calcareous for upper 4m	1 1			
	e sandstone	-49.18-50m fine to medium grained dirty grey	i i		l I	
		sandstone	1 1		İ	
		-50-50.5m poorly sorted pebble conglomerate				
		-50.5-53.8m blue to grey medium grained dirty				
		sandstone, rare pebbles, some red staining -53.8-61.26m blue to red dirty coarse to medium				
		grained sandstone, red colour due to iron				
		staining, oxidation front visible in core, $\sim 0.75m$			· · ·	
		core not recovered between 53-56m	i i		1	
		-61.24-62m dark red clay	i i			
		-62-65.6m as 53-61 but slightly coarser, -0.5m	1 İ			
	1	core not recovered between 62-65m			I	
		-65.6-68.1m fine to coarse red to blue sandstone	!!			
		<pre>w/ clay interbeds, limonitic staining common,</pre>	I I		I	

HOLE NUMBER: HOG88-01

HOLE NUM	BER: HOG88-01			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
70.73 TO 82.35	1,Qt*	gives yellow brown appearence to core, oxidation fronts visible @ high angle to c.a. -68.1-69.05m very immature grit sandstone -69.05-70.73m as 65-68m -lower contact determined from grain size and matrix composition, difficult to determine due to pervasive iron staining -deeply weathered and iron stained medium grained quartz-feldspar-biotite gneiss			-none noted	
HOLE NUM	BER: HOG88-01			DRILL HOLE RECORD	LOGGED B	Y: M.Collison PAGE: 3

ļ,

i

l.

HOLE NUME	ER : HOG	88-01									AS	SAYS SH	IEET						 	DATE: 17/03/1999
Sample	From (M)	То (M)	Leng. (M)	Cu ppm	Zn ppm	Pb ppm	Ni ppm	Au ppb	Ag ppm	Cu/Zn	Co ppm	Pt ppb	Pd ppb	S ppm	Se ppm	As ppm	Hg ppb	Mn ppm		
AT09153	48.50	48.80	0.30	156	75	24	34.0	0	0									1050		
			i																	
			l																	
			i																	
			l. I																	
			ii I																	
			ï																	
			ų H																	

i

HOLE NUMBER: HOG88-01

1

HOLE NUME	BER : HOG	88-01									GEOCI	HEMICAL	ASSAY												DATE: 18/	
Sample	(M)	To (M)	Leng. (M)		2 AL203	o MG	io N2 1:	420 K	20 FE 1	203 1	т102 %	P205 %	MINO 1	roi F	+	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NB PPM	CU PPM	ZN PPM	NI PPM	FIELD CHEM NAME ID	ALUM
AT09066 AT09067 AT09068 AT09069 AT09070	34.30	41.14 48.40 50.00	0.10																							_
				H H H H																						
																							_			

;

HOLE NUMBER: HOG88-02		DRI	ONBRIDGE LIMITED ILL HOLE RECORD		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: 8264 PROJECT NUMBER: 8264 CLAIM NUMBER: P-1212874 LOCATION: Hogg Twp.		TH: 5591006.00N ST: 450308.00E	ALTERNATE COORDS GRID: NORTH: EAST: ELEV:	+	COLLAR DIP: -90° 0' 0" LENGTH OF THE HOLE: 83.0CM START DEPTH: 0.0CM FINAL DEPTH: 83.0CM
	COLLAR ASTRONOMIC AZIMU	.H: 0°0'0"	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"	
DATE STARTED: 10/17/1997 DATE COMPLETED: 10/18/1997 DATE LOXGED: 10/19/1997	COLLAR SURVEY: NO RQD LOG: NO HOLE MAKES WATER: NO		PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: BQ		CONTRACTOR: Bradley Bros. CASING: 52m BW pulled CORE STORAGE: Kidd Creek Mine UTM COORD.: Zone 17

į.

COMMENTS : WEDGES AT:

WEDGES AL.

DIRECTIONAL DATA:

Oepth (M)	Astronomic Azimuth	Dip degrees		FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-			· · · · · · · · · · · · · · · · · · ·	-	_	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		_	-	_	-		
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		i -	-	-	-	-	
-	- ·	-	-	-		- 1		-	-	-	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	- ·	-		-		-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	•	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-		-	-		-	-	-	-	-	

LOGGED BY: M.Collison PAGE: PAGE: 1

HOLE NUM	BER: HOG88-02			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 52.00	≪ 0B » Casing Overburden					
то		 l-light to dark grey fine to medium grained bituminous fossiliferous limestone, low to moderate porosity, low to moderate permeability -52-58.5m strongly bituminous, ~30% fossils, dominantly rugosa corals and stromatoporids -58.5-67.4m less bituminous, fossils are sparser, matrix grain size appears smaller, fossils noted include larger (to 10cm) rugosa, shell fragments (brachiopods), crinoid stems, possible ammonite and gastropods -67.4-67.86m as above w/ clastic comlponent, quartz grains and pebbles to 1cm (sub angular to well rounded) 			-none noted	
то	<pre>«15,SxFm,<s st="">» Phanerozoic Sediments Sextant Fm sandstone</s></pre>	-blue grey to dark brown fine to grit sandstone with clay matrix -grains angular to subrounded, poorly to moderately sorted -calcareous matrix in upper 0.1m -carbonate concretions noted from 71.7-73.2m -oxidation fronts visible from 70.5m to end of unit -1.6m core not recovered 68-71m -lower contact in broken and not recovered core			-none noted	
то ј	<12,b,Bi,Fe 1,Qt> Gneiss medium grained biotite feldspar quartz	-medium grained saprolitic pervasively rust stained gtuartz feldspar biotite gneiss -0.5m not recovered 74-77m -2.3m not recovered 77-80m -0.9m not recovered 80-83m -possible mafic dike @ 80-80.56m			-none noted	
83.00 TO 83.00	«EOH» End-Of-Hole					

ł

HOLE NUMBER: HOG88-02

DRILL HOLE RECORD

LOGGED BY: M.Collison

HOLE NUM	BER : HOG	88-02									GEOC	HEMICAL	ASSAY													DATE: 18/	03/199
Sample	From (M)	To (M)	Leng. (M)	SI02	AL203	CAO ¥	MGO ¥	NA20 ¥	к20 1	FE203	T102 1	P205 1	MINO \$	CR203	r01 \$	SUM ¥	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NB PPM	CU PPM	ZN PPM	NI PPM	FIELD CHEM NAME ID	ALU
.T09071 .T09072 .T09073 .T09074	67.57	52.18 63.40 67.67 71.16	0.10 0.10																								
			1																								
		·		as 11 14 14 14 14 14																							
				1 1 1 1 1																							
	JER: HOG			 								HEMICAL	_ +=													 PAGE :	, at a state of the state

i

HOLE NUMBER: HOG			DR	ONBRIDGE LIMITED ILL HOLE RECORD		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME : PROJECT NUMBER : CLAIM NUMBER : LOCATION :	8264 1212867	PLOTTING COORDS GRI NORT	H: 5580208.00N T: 452328.00E	ALTERNATE COORDS GRID: NORTH: EAST: ELEV:	+	COLLAR DIP: -90° 0' 0" LENGTH OF THE HOLE: 57.00M START DEPTH: 0.00M FINAL DEPTH: 57.00M
		COLLAR ASTRONOMIC AZIMUT	H: 0° 0' 0"	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"	
DATE STARTED: DATE COMPLETED: DATE LOGGED:	10/21/1997	COLLAR SURVEY: NO RQD LOG: NO HOLE MAKES WATER: NO		PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: BQ		CONTRACTOR: Bradley Bros CASING: 20m BW pulled CORE STORAGE: Kidd Creek Mine UTM COORD.: Zone 17

COMMENTS : WEDGES AT:

DIRECTIONAL DATA:

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-				-		_	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	~		-	-	-	~	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	~	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			•	-	~	-	

LOGGED BY: M. Collison PAGE: 1

1

HOLE NUMBER: HOG91-01

DRILL HOLE RECORD

DATE: 03/17/1999

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE	ALTERATION	MINERALIZATION	REMARKS
0.00	«- OB -»	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
TO	Casing		1 1			
9.66	Overburden		i i			
			i i			
9.66	«15,MRFm, <l< td=""><td>-grey to white fine to medium grained limestone</td><td>i i</td><td></td><td>-sulphides (py) noted infilling</td><td></td></l<>	-grey to white fine to medium grained limestone	i i		-sulphides (py) noted infilling	
то	ST>>	and limestone breccia w/ 1-10cm grey clay/shale	i i		stylolitic type fractures and within	
5.90	Phanerozoic	interbeds	i i		dolomite filled vugs from 23.3m to end	
i	Sediments	-commonly vuggy	i i		of unit	
i	Moose River	-both limestone matrix and clay matrix in breccia	i i			
Í	Fm.	sections	i i		23.36-25.90 +*PyD0.0-0.1*,PyF0.0-0.1*>	
Í	limestone	-trace gypsum fragments noted 20.10m, 20.45m	1 1		0.0-0.1% disseminated/blebby pyrite;	
1		-sparry to white dolomite infilling vugs noted			0.0-0.1% fracture/vein controlled	
		after 20.8m	1 1		pyrite	
		-lower contact gradational, called at most	1 1		1	
		obvious contact above start of fossiliferous	1			
		limestone				
_						
	<15,KwFm»	-fine to medium grained tan to dark grey	! !		-trace fine py grains noted	
то	Phanerozoic	bituminous fossiliferous limestone				
6.27	Sediments	-commonly vuggy, especially upper 2m	! !			
	Kwataboaheg an Fm.	-fossils noted include rugosa corals,	! !			
	an rm.	stromatoporids, echinoderms, macerated shell fragments in lower part of section				
1		-lower contact sharp, appears depositional				
ł		-Iower concact sharp, appears depositional	1 1			
ļ		\$36.26-36.27 ≪ S0 84° Contact> Bedding				
16 27	<15,SRFm, <l< td=""><td>-white to grey lenticular bedded aphanitic to</td><td></td><td></td><td>-none noted</td><td></td></l<>	-white to grey lenticular bedded aphanitic to			-none noted	
TO	ST>>	medium grained limestone w/ 0.2-10cm interbeds of	1			
	Phanerozoic	poorly consolidated green to red grit to fine	i i			
i	Sediments	sandstone and grey shale	i i		i i	
i	Stooping	-rare vugs, most common @ top of section	i i		i i	
i	River Fm.	-minor beds w/ possible macerated shell fragments	i i		i i	
i	liméstone	only fossils noted gradational lower contact	i i		İ İ	
ļ		╣37.70-37.71╠≪┤S0 87°┟» Bedding				
1.76	<15,SxFm, <s< td=""><td>-fine grained to granular immature dirty</td><td></td><td></td><td>-none noted</td><td></td></s<>	-fine grained to granular immature dirty			-none noted	
	ST>>	sandstonse, brick red w/ minor blue-grey sections,	1 1			
	Phanerozoic	solution textures noted	i			
i	Sediments	-1m core not recovered, 41-44m	i i		i i	
i	Sextant Fm	-1.6m core not recovered, 44-47m	i i		i i	
i	sandstone	-0.8m core not recovered, 47-50m	i i			
i		-1m core not recovered, 50-53m	i i		1	
i	i	-0.5m core not recovered, 53-56m	i i			
i		-0.2m core not recovered 56-57m	i 1		i l	

HOLE NUMBER: HOG91-01

DRILL HOLE RECORD

LOGGED BY: M.Collison PAGE: 2

HOLE NUM	BER: HOG91-01			DRILL HOLE RECORD		DATE: 03/17/1999				
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS				
57.00	«EOH»	i i i i i i i i i i i i i i i i i i i	i i		1	i i				
то	End-Of-Hole	Í	i i		Ì	Ì				
57.00			1		1	1				
	l				1	1				
HOLE NUM	BER: HOG91-01			DRILL HOLE RECORD	LOGGED 1	LOGGED BY: M.Collison				

1

HOLE NUMBER: HOG91-01

PAGE: 4

DLE NUM	BER : HOG	91-01									AS	SAYS SH	IEET			-			 	 DATE: 17/
	From (M)	То (M)	Leng. (M)	Cu ppm	Zn ppm	Pb ppm	Ni ppm	Au ppb	Ag ppm	Cu/Zn	Co ppm	Pt ppb	Pd ppb	S ppm	Se ppm	As ppm	Hg ppb	Mn ppm		
209154			(M) 0.80	ppm 11	34		ppm 7.0	0 0	0 0		ppm	ppb	ppb	ppm	ppm	ppm	ppb	2007 768		

)

HOLE NUME	ER : HOG	91-01									GEOCI	HEMICAL	ASSAY													 DATE: 18/	03/199
Sample	From (M)	То (M)	Leng. (M)	S102	AL203	CAO 1	MGO ¥	NA20 \$	K20 F1 1	E203 ¥	T102 \$	P205 %	MINO \$	CR203	LOI ¥	SUM ¥	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NB PPM	CU PPM	ZN PPM	NI PPM	FIELD CHEM NAME ID	ALU
T09080	19.90	20.00	0.10	() 													-										
T09081	25.52			H.																							
AT09082 AT09083	27.50		0.10	K K																							
T09084			-3.90																								
T09085		44.40		ű																							
				1																							
				1																							
				H 11																							
				ï																							
				Ĩ																							
				1																							
				N																							
				я 1																							
				Ï																							
				1																							
				ł																							
				i																							
				l l																							
				1																							
				l																							
				l l																							
				l																							
				r H																							
			i	Ĩ																							
				ł																							
				ł																							
				1																							
											·						۰ <u> </u>					والمرجمة المحمد المحمد				 	

HOLE NUMBER: HOG91-02		DRI	NBRIDGE LIMITED LL HOLE RECORD		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: 8264 PROJECT NUMBER: 8264 CLAIM NUMBER: 1212867 LOCATION: Hogg Twp			ALTERNATE COORDS GRID: NORTH: EAST: ELEV:	+ +	COLLAR DIP: -90° 0' 0" LENGTH OF THE HOLE: 95.00M START DEPTH: 0.00M FINAL DEPTH: 95.00M
	COLLAR ASTRONOMIC AZI	MUTH: 0° 0' 0"	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"	
DATE STARTED: 10/23/1997 DATE COMPLETED: 10/24/1997 DATE LOGGED: 10/25/1997	COLLAR SURVEY: NO RQD LOG: NO HOLE MAKES WATER: NO		PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: BQ		CONTRACTOR: Bradley Bros. CASING: 26m BW pulled CORE STORAGE: Kidd Creek Mine UTM COORD.: Zone 17

COMMENTS : WEDGES AT:

DIRECTIONAL DATA:

١

(M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	_	_				-	_	_	-	-	
•	-	-	-	-		- 1	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	~	-	-	-		- 1	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
~	-	-	-	-		-	_	_	-	-	
_		-	-				_	_		-	
_		_	_	_		_	-		-		
_		_	_	_		_	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	_	-	-		-	-	_	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-		1 -	-	-	-	-	

HOLE NUMBER: HOG91-02

DRILL HOLE RECORD

LOGGED BY: M. Collison PAGE: 1

١

			Lange Bl			
ROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00	«- OB -»					
то	Casing	Ì	1 1		i i	
5.54	Overburden					
.54	<15, MRFm, <l< td=""><td> -fine to medium grained grey to beige laminated</td><td></td><td></td><td> -trace fine py grains noted in vugs @ </td><td></td></l<>	 -fine to medium grained grey to beige laminated			 -trace fine py grains noted in vugs @	
тој	ST>*	limestone w/ interbedded tan to grey clay/shale	i i		28.3m	
8.87	Phanerozoic	-commonly vuggy, vugs to 1cm	1 1			
1	Sediments	-minor breccia @ 27-27.5m	1			
- 1	Moose River	-lenticular laminations/bedding	1 1			
l	Fm.	-possibly sparsely fossiliferous @ 28.3-28.4m	1 1		ļ	
	limestone	-lower contact gradational				
ļ		27.90-27.91 ≮ S0 88° +> Bedding				
8.87	«15,KwFm, <l< td=""><td> -fine to medium grained beige to dark grey</td><td></td><td></td><td>-none noted</td><td></td></l<>	 -fine to medium grained beige to dark grey			-none noted	
TO	ST>>	fossiliferous bituminous limestone	1 1		1	
9.78	Phanerozoic	-pelletoidal or oolitic w/ chalky clay or gypsum	1		1	
I	Sediments	material to 30m	 			
	Kwataboaheg	-dolomitic Fe carbonate concretions common to	1			
	an Fm.	32.5m	!!			
ļ	limestone	-fossils noted include stromatoporid,	!!		1	
		rugosa corals, echinoderms, brachiopod shells				
		-fossils sparser after 32.4m -sharp lower contact, appears depositional				
1		-sharp lower concace, appears depositional				
		\$39.77-39.78 #≪ \$ \$ 87° + Contact > Bedding				
9.78	≪15,SRFm, <l< td=""><td>-laminated interbedded fine grained grey to beige</td><td>1</td><td></td><td>-none noted</td><td></td></l<>	-laminated interbedded fine grained grey to beige	1		-none noted	
то	ST>*	limestone and green			l	
4.53	Phanerozoic		4		[
	Sediments	medium sandstone				
ļ	Stooping	-wavy to lenticular bedded	1			
1	River Fm.	-soft sediment deformation structures common,	1			
	limestone	especially 40.7-43m				
i		-lower contact depositional			1	
Ì		42.40-42.41⊧« S0 86° » Bedding				
	<15, SxFm, <s< td=""><td>-medium to granule red sandstone w/ red shale</td><td>i i</td><td></td><td>-none noted</td><td></td></s<>	-medium to granule red sandstone w/ red shale	i i		-none noted	
•	ST>»	interbeds, poorly consolidated	1		Į į	
2.02	Phanerozoic	-blue dirty sandstone intervals w/ oxidation				
1	Sediments	front solution textures and calcareous			ļ	
	Sextant Fm	concretions common in upper 2m of unit			!	
ļ	sandstone	-remainder of unit is fairly monotonous massive	i i			
-		medium to coarse immature poorly sorted red bed	!!!			
		sandstone				

	Dogu		L N MAY D			
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	I REMARKS
			_			
	İ	-89-92m becomes matrix supported quartz pebble	i		1	1
	ĺ	con glomerate	1	1	1	
	1	-47-50m 1.5m core not recovered	1	1		1
		-65-68m 2.4m core not recovered	1	1		
	1	-68-71m 2.4m core not recovered				1
		-74-77m 1m core not recovered	1		1	1
		-80-83 0.8m core not recovered	1 1	1		1
		-83.86m 1.1m core not recovered			Î.	
i	1	-86-89m 0.5m core not recovered	1			
		-89-92m 1.5m core not recovered				
92.02	≪12,b,Bi,Fe	-medium grained red to black saprolitic gneiss	l l	-moderate to strong hematite staining	-none noted	
	l,Qt»					1
95.00	Gneiss					l
	medium					
	grained					
	biotite					
	feldspar					
	quartz					
			1	· · · · · · · · · · · · · · · · · · ·	1	

i

HOLE NUM	BER : HOG	91-02							GEOCI	HEMICAL	ASSAY													DATE: 18/	03/1999
Sample	From (M)	То (M)	Leng. (M)	02 AL203	MGO ¥	NA20 ¥	к20 1	FE203	TI02	P205	MINO ¥	CR203	1 01	SUM ¥	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NB PPM	CU PPM	ZN PPM	NI PPM	FIELD CHEM NAME ID	ALUM
AT09086 AT09087 AT09088 AT09089 AT09090	30.29 39.45 41.06	39.55 41.18	0.10 0.10 0.10 0.12 0.13							· · · ·															

HOLE NUMBER: HOG91-03			BRIDGE LIMITED JL HOLE RECORD			DATE: 03/17/1 IMPERIAL UNITS: METRIC 1	UNITS: X
PROJECT NAME: 8264 PROJECT NUMBER: 8264	PLOTTING COORDS GRID NORTH	: UTM : 5579827.00mN	ALTERNATE COORDS ON	GRID: ORTH:	+	COLLAR DIP: -90 LENGTH OF THE HOLE: 5	
CLAIM NUMBER: 1212867	EAST	: 451970.00mE	E	EAST:	+	START DEPTH:	0.00M
LOCATION: Hogg Twp	ELEV	: 0.00	E	ELEV:		FINAL DEPTH: 5	56.00M
	COLLAR ASTRONOMIC AZIMUTH	: 0°0'0"	GRID ASTRONOMIC AZIM	MUTH: 0	° 0' 0"		
DATE STARTED: 10/24/1997	COLLAR SURVEY: NO		PULSE EM SURVEY: NO			CONTRACTOR: Bradley Bros.	
DATE COMPLETED: 10/25/1997	RQD LOG: NO		PLUGGED: NO			CASING: 32m BW pulled	
DATE LOGGED: 10/26/1997	HOLE MAKES WATER: NO		HOLE SIZE: BQ			CORE STORAGE: Kidd Creek Mine	
						UTM COORD.: Zone 17	

COMMENTS : WEDGES AT:

DIRECTIONAL DATA:

	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-					-	_	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	~	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
	-	-		-		-	_	-	-	-	
	-	-	_				_	_	_		
_	-	-	-			-	-	-	-	-	
		~	~	-		í -	-	-	-	-	
	-	-	-	-			-	-	-	-	
	-	-	-	-		~	-	-	-	-	
	-	-	-	-		í -	-	-	-	~	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		- 1	-	-	~	-	
•	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		ļ -	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
	-	-	-	-		-	-	-	-	-	
	-	-	-	-			+	-	-	-	

HOLE NUMBER: HOG91-03

DRILL HOLE RECORD

LOGGED BY: M.Collison PAGE: 1

ļ

HOLE NUM	BER: HOG91-03			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 31.54	< 0B > Casing Overburden					
	ST>»	<pre> -fine to medium grained tan to grey lenticular to wavy bedded thinly laminated vuggy limestone w/ some brecciated sections -sparsely fossiliferous @ 31.8 and 32.4m -gradational lower contact lost in broken core ╣31.90-31.91\$+(50 90°}> Bedding</pre>			-none noted	
TO	<pre>«15,KwFm,<l st="">» Phanerozoic Sediments Kwataboaheg an Fm. limestone</l></pre>	fossiliferous bituminous limestone -pelletoidal/oolitic @ upper 1.5m -Fe carbonate to dolomitic concretions noted in upper 1m -fossils noted include stromatoporid, rugosa corals, echinoderm fragments, brachiopods, macerated shell fragments, spectacular gastropod cast @ 43m -sharp lower contact			 -none noted 	
то	<15, SRFm, <l ST>> Phanerozoic Sediments Stooping River Fm. limestone</l 	43.11-43.12 < <>> 78° Contact> Bedding -fine grained grey thinly laminated wavy bedded unfossiliferous limestone w/ interbedded blue-green to brown clay/shale to medium sandstone -common soft sediment deformation structures -minor breccia -lower contact in lost core 46.05-46.06 + 50 77° > Bedding			 -none noted 	
47.64 TO 56.00	<15, SxFm, <s ST>> Phanerozoic Sediments Sextant Fm sandstone</s 	 -dark brown medium to granule poorly consolidated sandstone -minor quartz pebble conglomerate 50-53m -hole lost due to swelling @ 56m			 -none noted 	
56.00 TO 56.00	«EOH» End-Of-Hole					

-

DRILL HOLE RECORD

LOGGED BY: M.Collison

PAGE: 2

1

HOLE NUM	BER : HOG	91-03										GEOC	THEMICAL	ASSAY														DATE: 18/	03/1999
Sample	(M)	То (M)	Leng. (M)	l s:	102 %	AL203	CAO ¥	MGO ¥	NA20 ¥	K20 ¥	FE203	T102	4	*		roi \$	SUM ¥	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NB PPM	CU PPM	ZN PPM	NI PPM		FIELD CHEM NAME ID	ALUM
AT09091 AT09092 AT09093 AT09094 AT09095		33.60 42.90 44.00	0.10 0.10												<u> </u>			-			± <u></u>	<u></u>	<u></u>	<u> </u>			<u></u>		_
													.																
				# # #																									
OLE NUME	BER: HOG	91-03										GEOCI	HEMICAL	ASSAY														PAGE :	12

)

ŧ

1

HOLE NUMBER: HOG96-01		FALCONBRIDGE LIMITED DRILL HOLE RECORD		DATE: 03/17/1999 AL UNITS: METRIC UNITS: X
PROJECT NAME: 8264 PROJECT NUMBER: 8264	PLOTTING COORDS GRID: UTM NORTH: 5587188	ALTERNATE COORDS GRID: 8.00N NORTH:	•	COLLAR DIP: -90° 0' 0" LENGTH OF THE HOLE: 230.00M
CLAIM NUMBER: 1212872 LOCATION: Hogg Twp.	EAST: 452129 ELEV: 0.	9.00E EAST: .00 ELEV:	*	START DEPTH: 0.00M FINAL DEPTH: 230.00M
	COLLAR ASTRONOMIC AZIMUTH: 0° 0'	0" GRID ASTRONOMIC AZIMUTH:	0° 0' 0"	
DATE STARTED: 10/09/1997 DATE COMPLETED: 10/11/1997 DATE LOGGED: 10/12/1997	COLLAR SURVEY: NO RQD LOG: NO HOLE MAKES WATER: NO	PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: BQ	CASING:	Kidd Creek Mine

COMMENTS : WEDGES AT:

DIRECTIONAL DATA:

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-				-		-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	~	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		~	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-		-		_	_	-	
-	-		-	-			_	_	-	_	
-	-	-	-	-			-	-	-	-	
-	-	_	-	_				_	-	_	
-	-	-	-	-				-	-	-	
-	-	-	-	-		-	-	-	-	-	

HOLE NUMBER: HOG96-01

DRILL HOLE RECORD

LOGGED BY: M. Collison PAGE: 1

DRILL HOLE RECORD

DATE: 03/17/1999

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 43.00	« OB » Casing Overburden					
TO	<pre>«15,LRFm,<s ha="">» Phanerozoic Sediments Long Rapids Fm. shale</s></pre>	-interbeded fine grained blue green shale and grey to black bituminous shale -dolomitic concretions to 1 cm noted @ 43.35 -soft sediment deformation noted @ 48.55 -greenish beds calcareous in upper 20m of hole -bioturbation common between dark and light bands, also soft sediment deformation such as ball and pillow structures -lower 10m brecciated, increased concentration of large concretions, layering becomes complex, mildly convoluted, probably due to soft sediment deformation -lower contact irregular, in broken core and plastic clay, approximately 90° to c.a.			<pre>-pyrite nodules noted in black units, <<l* of="" unit<br="">-nodules to 3cm @ 69.3m and 72.3m -minor sulpide rich beds to 1-3mm wide also common</l*></pre>	
		 53.05-53.06 50 73° > Bedding				
	ST>»	 -white to tan to orange massive limestone, limestone breccia and vuggy limestone, interbedded with minor calcareous sandstone to shale -86.65-90.5m brecciated limestone, 4cm vug filled with orange brown sparrry calcite @ 86.95 -90.5-98.5m dominantly massive limestone w/ small breccia sections, minor clay interbeds -98.5-103.9 grey calcarenite -103.9-109.24 lenticular laminated massive to friable and vuggy Fe rich limestone -109.26-112.6m tan to white dolomitic fragments in grey calcareous mudstone matrix, some dominant vein-like structures give net texture appearance to core, sections are orange coloured, Fe rich -112.6-117.7m massive to lenticular laminated limestone, tan to orange, some brecciated sections, vuggy for first 1/2m -117.7-119.4m as 109-112 but even more orange colour -112.63-123.44m fossiliferous limestone - coral fossils in grey limestone matrix 		-pervasive weak iron staining	-none noted	

HOLE NUMBER: HOG96-01

LOGGED BY: M.Collison

HOLE NUM	BER: HOG96-01			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		 104.10-104.11 ** \$0 71° → Bedding	- 			
		120.50-120.51 * \$0 72° +> Bedding				
	<15,WIFm,*g , <sha>»</sha>	 -grey fine grained shale and clay, somewhat plastic			-none noted	
	, <sha>* Phanerozoic Sediments Williams Island Fm.</sha>	plastic -fine mm scale bedding laminations -monotonous unit, but acts as marker horizon -125.5-126.5 fossiliferous, brachiopod shells				
	thinly laminated shale	¦ 136.90-136.91 ⊧∢ S0 72° > Bedding 				
то		 -massive grey to tan limestone to dolostone, strongly fractured and blocky core -fossiliferous, mostly fragments, fairly intact brachiopod shell @~177m, coral fragment @ -178.5 -179-182.3 RQD=0, dominantly small fragments, very blocky -182.3-185.1 mostly tan, thinly laminated, lenticular bedded, sparsely fossiliferous, RQD=20 			-none noted	
185.10 TO 208.24		 white, grey and brown limestone and dolostone fragments, commonly angular, to 20cm in size in calcareous clay or limestone matrix -188-190.5 fragments of extremely pourous, finely laminated slightly bituminous limestone -190.2-190.5 tan gypsum fragments(?) softness <2, partially replaced by Fe-dolomite -191.1 fragment demonstrating at least two cycles of brecciation -fragments become more vuggy after 194m -196.5 fossiliferous massive limestone fragment, possible Murray Island Fm. -201.5-205.5m very sparse fragments, dominantly grey clay/mud matrix -205.9-207.1m fragments more dominant, almost clast supported, matrix is much harder, probably oldest phase of brecciation -unit ends & start of ochre unit, grey clay at bottom w/ some white (gypsum?) pebbles to 3-4mm 			-none noted	

HOLE NUMBER: HOG96-01

HOLE NUM	BER: HOG96-01			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	REMARKS
208.24 TO 222.48	<ls, *g<br="" kwfm,="">, <lst>> Phanerozoic Sediments Kwataboaheg an Fm. thinly laminated limestone</lst></ls,>	laminated bituminous fossiliferous limestone			-pyrite infilling vug @ 217.64m -trace minute py grains noted @ 218.8m -trace disseminated specularite(?) noted	
то	ST>>PhanerozoicSedimentsStoopingRiver Fm.limestone	-massive white to beige limestone -one shell fragment noted, otherwise not fossiliferous -probably actually bed in Kwataboahegan Fm, but may be very thin Stooping River -lower contact appears structural #222.77-222.78#< SO 24° Contact> Bedding			-mineralized fracture running through unit, very fine py noted on fracture surfaces	
	<pre>«12,b,Bi,Fe l,Qt> Gneiss medium grained biotite feldspar quartz</pre>	-mottled red-black-white weathered quartz-feldspar-biotite gneiss -strongly saprolitic throughout		-strongly weathered	-none noted	
230.00 TO 230.00	≪EOH» End-Of-Hole					

DRILL HOLE RECORD

DATE: 03/17/1999

HOLE NUMBER: HOG96-01

DRILL HOLE RECORD

LOGGED BY: M.Collison

DLE NUME	BER : HOO	196-01										AS	SAYS SH	IEET						 DAT	E: 17/03/1
Sample	From (M)	To (M)	Leng. (M)	C pp		Zn ppm	Pb ppm	Ni ppm	Au ppb	Ag ppm	Cu/Zn	Co ppm	Pt. ppb	Pd ppb	s ppm	Se ppm	As ppm	Hg ppb	Mn ppm		
09151	222.48	222.78	0.30	8	2	77	2	6.0	0	0									1090		
				H 																	
				H																	
				Ĥ																	
				ļ																	
				H																	
				ŀ																	
				N																	
			İ																		
				l																	
				l																	
				1																	
				1																	
			į	l .																	

(M) (M) (M) * * * * * * * * * * * * * * * * * PPM PPM	HOLE NUM	BER : HOG	96-01					 GEOC	HEMICAL	ASSAY										DATE: 18/	03/1999
AT0905187.3367.470.14AT09052174.70174.800.10AT09053183.40185.400.20AT09054189.55189.690.14AT09055189.55189.690.14AT09057205.85206.000.15AT09057215.780.13AT09059222.24222.360.12	Sample																				ALUM
	AT09052 AT09053 AT09054 AT09055 AT09056 AT09057 AT09058	87.33 174.70 183.40 185.20 189.55 205.85 208.90 215.65	87.47 174.80 183.50 185.40 189.69 206.00 209.00 215.78	0.14 0.10 0.10 0.20 0.14 0.15 0.10 0.13								PPM	5.6M	PPM		PPM	. P.F.M.		PPM	NAME ID	

HOLE NUMBER: HOG96-02			ONBRIDGE LIMITED ILL HOLE RECORD		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: 8264 PROJECT NUMBER: 8264 CLAIM NUMBER: 1212872 LOCATION: Hogg Twp.	E	RTH: 5587578.00N AST: 452345.00E LEV: 0.00	ALTERNATE COORDS GRID: NORTH: EAST: ELEV: GRID ASTRONOMIC AZIMUTH:	+ + 0° 0' 0"	COLLAR DIP: -90° 0' 0" LENGTH OF THE HOLE: 257.00M START DEPTH: 0.00M FINAL DEPTH: 257.00M
DATE STARTED: 10/11/1997 DATE COMPLETED: 10/14/1997 DATE LOGGED: 10/15/1997	COLLAR SURVEY: NO RQD LOG: NO HOLE MAKES WATER: NO		PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: EQ		CONTRACTOR: Bradley Bros. CASING: Pulled CORE STORAGE: Kidd Creek UTM COORD.: Zone 17

COMMENTS : WEDGES AT:

DIRECTIONAL DATA:

(M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-				-		_	-	-	
-	-	-	~	-		-	-	-	-	-	
-	-	-	*	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		~	-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	~	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	_	_	-	-	
-	-	-	-	-			_	-			
-	-	-	-	-			-	-	_	-	
-	-	-	_	-			_	-	-	_	
-	-	-		-				_	-		
-	-		-	-			_	_	_		
-		-					_	-	_		
-	-	_	-	-		-	-	-	-		
	_	-	-			-	-		-	_	
	_	_	_	-		-	-	-	-	-	
		-		-			-	-	-	-	
		-	_			-	-	-	-	-	

LOGGED BY: M.Collison TAGE: 1

DRILL HOLE RECORD

DATE: 03/17/1999

FROM	ROCK		ANGLE			
TO	TYPE	TEXTURE AND STRUCTURE	TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00						······································
TÔ			i			
	Overburden	1	i			
	1	Ì	1		1	
64.00	<pre>«15,LRFm,<s< pre=""></s<></pre>	-alternating black bituminous shale and blue green	1			
TO	1	clay/shale	1			
130.14	Phanerozoic		1		107.00-117.60 *PyD0.0-1.0%,PyB0.0-0.5%	
	Sediments	blue-green clay beds every 1-2m			3	
	Long Rapids	-72.3-72.4m qtz-calcite vein w/ qtz filled vug	!		0.0-1.0% disseminated/blebby pyrite;	
	Fm. shale	-82-95m dominantly blue-green clay/shale beds	1		0.0-0.5% bedded/banded pyrite	
	1	with 0.5-1m black shale beds every 2-3m -94.5-97.6m Fe-dolomite (blue carbonate stain)	-			
	1	concretions noted in blue-grey clay/mudstone	1			
	1	-98-107m mixed intervals black shale and grey	1			
		clay/mudstone with dolomite concretions and	i			
	İ	occasional bioturbation	i		i i	
	ĺ	-107-117.6m black bituminous shale w/ py nodules	i i		İ.	
	ĺ	and 1-3mm py rich bands	1		1	
		-117.6-123m alternating layers of black			1	
		bituminous shale and blue-grey clay/shale,				
		10-30cm beds				
		-123-130.14m dominantly blue-grey clay/shale w/				
		minor interbeds of black bituminous shale -lower contact marked @ top of carbonate beds				
		I - Tower contact marked w cop of carbonate beds				
		177.00-77.01 ≪ S0 85° > Bedding				
		110.00-110.01 * S0 86° + Bedding				
130.14	≪15,WIFm , <l< td=""><td> -upper member of Williams Island Formation</td><td>1</td><td></td><td></td><td></td></l<>	 -upper member of Williams Island Formation	1			
	ST>, <sha>></sha>	-upper contact dolomitized w/ 1-3% diss py in			i	
	Phanerozoic	upper 10-20cm	i l		130.14-130.24 vPyD1.0-3.0%	
	Sediments	-130.14-131.6m laminated, fine to medium grained	i i		1.0-3.0% disseminated/blebby pyrite	
	Williams	dolostone, small sections brecciated, possibly	j I			
	Island Fm.	stromatoporid	1			
	limestone	-131.6-137.1m fine to medium grained laminated				
	shale	limestone, porous in part, vuggy in part,				
		stromatoporid fossils	! !			
		-very vuggy @ 134	!!			
		-ground core, ~1m core not recovered between 134 and 137m, ground core, RQD~30% -137.1-143.4m				
		and 137m, ground core, RQD=30% -137.1-143.4m vuggy porous fine to medium grained laminated				
		limestone, w/ minor interbeds of grey shale,				
		green clay (gouge?) and one occurrence of ochre				
		clay, minor brecciation, ROD-10				
		, easy, manes bicconcern, hgp-iv	· · ·			

HOLE NUMBER: HOG96-02

DRILL HOLE RECORD

1

DATE: 03/17/1999

1

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE	ALTERATION	MINERALIZATION	REMARKS
		<pre>-143.4-148.4m grey calcareous clay/shale w/ tan limestone interbed 144-144.7 -148.4-153.6m finely laminated impure limestone -153.6-155.4m grey calcareous mudstone -155.4-156.1m ochre coloured mudstone, lower contact structural(?) @ 20° to c.a. -156.1-156.85m fossiliferous grey calcareous mudstone, mostly shell fragments -156.85-162.35m lenticular bedded fine to medium grained limestone, minor bituminous interbeds -162.35-164.55m breccia, angular fragments to 6cm + in clay/mudstone matrix, ochre stained for last 60cm, RQD=25.1m core not recovered -164.55-168.67m tan to dark grey limestone and limestone block breccia w/ limestone matrix, parsely fossiliferous (corals) in lower 1.5m, 0.86m grey shale interbed @ 165.9 []145.70-145.71]&</pre>				
то	HA>>	<pre>{ glb5.60-165.61 ft [s0 83⁻][*] Bedding -grey aphanitic shale to mudstone -fossiliferous, bioturbated upper 30cm -fossiliferous, shell fragments, appear to be brachiopods, 171.5-173.3m -1-2cm carbonate concretions 203.5-205.5m -slightly coarser grained after 217m { glb9.00-189.01 states and states 217m }</pre>				
то	<15,MIFm> Phanerozoic Sediments Murray Island Fm	 -tan to grey rubbley and blocky limestone -RQD=5 -shell fragments, coral fragment, crinoid stem plates noted ~221.5m -224-226.3m breccia, blue grey clay matrix -226.3-228.3m laminated beige limestone, calcarenite, possibly oolitic -228.3-223.65 porcois limestone, as above -232.65-233.35m breccia, as above -233.35-234.95m limestone, as above, RQD=0 			-none noted	

HOLE NUMBER: HOG96-02

	1					
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
234.95 TO 243.25	SHA>, bx>	 -vuggy white to beige limestone and limestone breccia w/ interbeds of mudstone matrix breccia w/ possible gypsum fragments -brown cherty nodules noted % 235.6m -becomes laminated, lenticular bedded after 241m -lower contact at top of ochre bed 			-none noted	
243.25 TO 255.30		rich shale and blue grey clay/mudstone			-none noted	
255.30 TO 257.00	Qt.»	-medium grained rød to black quartz-feldspar-biotite gneiss -saprolitic for upper 50cm			-none noted	

DRILL HOLE RECORD

LOGGED BY: M.Collison

Sample		То	Leng.	Cu				Au		Cu/Zn	Co	Pt	Pd	s	Se	As	Hg	Mn				
	(M)	(M)	(M)	ppm	ppm	ppm	ppm	ppb	ppm		ppm	ppb	ppb	ppm	ppm	ppm	ppb	ppm	 	 		
09152	130.14	131.00	0.86	11	7	3	10.0	10	0		3							1240				
			Í																			
			ļ																			
			ļ																			
			l																			
			1																			
			11 																			
			li li li li li li li li li li li li li l																			
			1																			
			ļ																			
			H																			
			Ĩ																			
			i																			
LE NUMB	ER: HOGS	6-02	·								AS	SAYS SH	EET						 		PAGE :	

ASSAYS SHEET

÷

HOLE NUMBER : HOG96-02

DATE: 17/03/1999

IOLE NUM	BER : HO	396-02									GEOC	THEMICAL	L ASSAY	<u></u>											DATE: 18,	/03/199
Sample	(M)	To (M)	Leng. (M)		2 AL2O3	CA0 *	MGO ¥	NA20 ¥	К20 1	FE203 *	T102			CR203	LOI \$	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NB PPM	CU PPM	ZN PPM	NI PPM	FIELD CHEM NAME ID	ALU
T09061 T09062 T09063 T09064	221.46 232.10 235.00 241.90	232.20 235.10 242.00 245.54	0.10 0.10 0.10 0.10																					<u> </u>		
				H H H H							en staffere	da ngawa af sa t	an an an an an an an an an an an an an a													
				и 																						
				H H H																						

HOLE NUMBER: HOG97-01		FALCONBRIDGE LIMITED DRILL HOLE RECORD		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: 8264	PLOTTING COORDS GRID: U	M ALTERNATE COORDS GRI	D:	COLLAR DIP: -90° 0' 0"
PROJECT NUMBER: 8264	NORTH: 5	588589.00mN NORT	Ή: +	LENGTH OF THE HOLE: 281.00M
CLAIM NUMBER: P-1216627	EAST: 4	151573.00mE EAS	T: +	START DEPTH: 0.00M
LOCATION: Hogg Twp	ELEV:	0.00 ELE	:V :	FINAL DEPTH: 281.00M
	COLLAR ASTRONOMIC AZIMUTH:	0° 0' 0" GRID ASTRONOMIC AZIMUT	"H: 0° 0' 0"	
DATE STARTED: 09/24/1998	COLLAR SURVEY: NO	PULSE EM SURVEY: NO		CONTRACTOR: Major Dominik
DATE COMPLETED: 09/27/1998	RQD LOG: NO	PLUGGED: NO		CASING: Pulled
DATE LOGGED: 10/01/1998	HOLE MAKES WATER: NO	HOLE SIZE: BQ		CORE STORAGE: Kidd Creek Mine
				UTM COORD.: Zone 17

COMMENTS : WEDGES AT:

DIRECTIONAL DATA:

÷

epth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-				-	_	_	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	~	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	~	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	

HOLE NUMBER: HOG97-01

DRILL HOLE RECORD

LOGGED BY: M.Collison

.

M.I.bl

HOLE NUM	BER: HOG97-01	-		DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 65.16	Casing	-includes Mattagami Fm.				
65.16 TO 147.25	HA>»	<pre>shale/clay -65-71.5 dominantly blue-grey clay w/ black shale interbeds to 10cm, plastic for upper 1m -71.5-97.5 dominantly black shale w/ grey cshale interbeds to 15cm, generally 3-5cm, commonly bioturbated at grey shale interbeds -97.5-114 grey shale w/ black shale interbeds to 0.7m, calcareous after 108.5, dirty limestone (or strongly calcified shale) noted between 110-111m -114-134 black shale w/ grey shale and limestone interbeds to 20cm, commonly bioturbated, marcasite/py nodules and thin diseminated beds</pre>				
		noted -134-147.25 dominantly blue-grey shale/clay w/ minor black shale interbeds, becomes somewhat plastic near base of unit, calcareous throughout { 88.40-88.41 4+{\$0.79°}} Bedding				
		¦ { 124.50-124.51 ≪ S0 80° » Bedding				
		139.00-139.01 ≪ S0 74° + Bed ding				
то		-grey to white fine to medium grained limestone to dolostone with grey to red calcareous shale intervals -147.25-151.5 white to tan finely laminated limestone, brecciated, blocky core, RQD=5, 1m core not recovered 147-150				
		-151.5-153.2 ochre calcareous shale, possibly minor gypsum, 1mm dolomite nodules (?) noted.				

DRILL HOLE RECORD

LOGGED BY: M.Collison

LE NUMBE	R: HOG97-01			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE	ALTERATION	MINERALIZATION	REMARKS
		-153.2-165.2 as 147.25-151.5 w/ clay kniting brecciated limestone fragments, RQD=20, vuggy calcite/dolomite knit breccia noted 154-154.5.				
		 -165.2-176.15 interpreted as matrix supported solution collapse breccia, limestone/dolostone blocks in grey to red clay matrix, evidence of secondary sulphide deposition (py) in limestone breccia noted @ 168.8-169.5m, lm core not recovered 174-177m. -176.15-181 partially dolomitized, highly permiable dirty argillaceous limestone, dolomite crystals to 0.5mm 				
		-gradational lower contact to calcareous shale ∦149.50-149.51∦∢{\$0 77°¦⊁ Bedding				
		∦177.10-177.11 ∦∢ {S0 84°∤ > Be dding				
TO 1 23.02 1 1	«15,WIFm, <s <br="">HA>» Phanerozoic Sediments Williams </s>	-grey calcareous shale to blue grey clay, finely laminated, in part plastic -monotonous section, lower Williams Island Formation				
	Island Fm. shale	-fossilferous to 184.5, shell fragment rich beds				
		-1.5m core not recovered 186-189m. -sharp lower contact @ 84° -calcite veins w/ py noted in lower 0.6m of unit {215.50-215.51}*<{S0 83°}* Bedding				
TOS	×15,MIFm, <l <br="">ST>» Phanerozoic </l>					
N	Sediments Murray Island Fm	-common brachiopod shell fragments and echinoderm columnals				
	limeston e	-stylolitic				
i	i	-common vugs to 4-5mm	I İ		1	

i

HOLE NUMBER: HOG97-01

PAGE: 3

ROM	ROCK		ANGLE			
TO	ТҮРЕ	TEXTURE AND STRUCTURE	TO CA	ALTERATION	MINERALIZATION	REMARKS
		- -bottom of unit at start of breccia, unit thickness is probably not representational of original depositional thickness				
09		 -matrix supported breccia w/				
ТО 29	Phanerozoic Sediments Moose River Fm. breccia	limestone/dolostone/gypsum fragments from <lcm to<br="">>2m in size, in a matrix of blue grey clay and/or calcite. Multiple generations of brecciation evident, w/ calcite matrix predating clay matrix</lcm>				
	Fill Dieccia	-228.09229 appears to be blocky fragments of overlying Murray Island Fm.				
i		-229-237 RQD=5, 2.5m core not recovered				
		-gypsum noted @ 229 & 231.25m				
		-relict anhydrite noted in vugs @ 243m, laminations w/ gypsum and calcite @ 239, 239.5				
		-fine sulphides (marcasite/py) noted in vugs in calcite cemented breccia section @ 241.5				
		-240.5-247 matrix dominantly calcite, RQD-50 -247-255.5 dominantly clay matrix, rubbly core, poor recovery, RQD-10				
		-255.5-258.29 hematite stained clay matrix breccia, higher clay percentage, smaller limestone fragments, probably correlates w/ beds used as top of Kwataboahegan in 1997 DDH HOG96-01 and -02				
		-bottom of unit called where shale beds become more obviously depositional				
		∯257.82-258.00∯« FAI 50° Slips» Fault -slips w/ lineations interpreted as slickensides noted ⊕ 50° to c.a.				
ļ		∦258.28-258.29⊭« S0 87°⊦» Bedding				

HOLE NUM	BER: HOG97-01			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
258.29 TO 273.00	ST>»	-grey bituminous fossilferous limestone, micritic to medium grained, wavy bedded to massive, stylolitic, commonly vuggy, vugs to 2cm -258.29-261 sparsely fossiliferous, weakly dolimitized, vuggy, w/ organic/bituminous partings, stylolitic				
		<pre>-261-264 chert nodules noted @ 261, unit is fairly massive, carbonate stain indicates section is more iron rich than common, sparesly fossilferous, mostly shell fragments</pre>				
		-264-268.1 classic bituminous fossiliferous Kwataboahegan Fm., common corals, brachiopod shell fragments, stromatoporoids				
		-268.1-273 detrital quartz clastic component starts to appear, starting w/ 30cm bioclastic band @ 268.1				
		-sparry calcite and trace py noted in vugs and open coralites.				
		-lower contact appears depositional, @ 70° to c.a.				
273.00 TO 281.00		-red medium to coarse grained granite to quartz syenite -very weakly weathered in top 1m, no saproliite in section				
281.00 TO 281.00						
OLE NUME	BER: HOG97-01			DRILL HOLE RECORD	LOGGED B	(: M.Collison PAGE: !

HOLE NUME	BER : HO	397-01							_		GEOCI	HEMICAL	ASSAY													DATE: 18/	03/1999
Sample	From (M)	То (M)	Leng. (M)	510	2 AL203	CAO \$	MGO ¥	NA20 ¥	K20 ¥	FE203	TI02 \$	P205 \$	MINO ¥	CR203	roi \$	SUM 1	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	NB PPM	CU PPM	ZN PPM	NI PPM	FIELD CHEM NAME ID	ALUM
AU02743												1														 	
AU02744				ļ.																							
AU02745 AU02746				n u																							
AU02747				i																							
AU02748	236.50	236.65	0.15	Ü																							
AU02749				N.																							
AU02750 AU02551				H Is																							
AU02552				u .																							
AU02553				i i																							
				K																							
				1																							
				i i																							
				i																							
				l.																							
				l.																							
				Î																							
				Î																							
				1																							
				1																							
				# #																							
				i																							
				1																•							
				ļ																							
				ï																							
				l																							
				1																							
				1F 19																							
				Î																							
				l																							
				l																							
				11																							
				u d																							
				ï																							
				1																							
				ļ																							
				H H																							
				II																							

i

HOLE NUMBER: HOG97-01

)

HOLE NUMBER: HOG97-02		DATE: 03/17/1999 IMPERIAL UNITS: METRIC UNITS: X			
PROJECT NAME: 8264	PLOTTING COORDS G	RID: UTM	ALTERNATE COORDS GRID:		COLLAR DIP: -90° 0' 0"
PROJECT NUMBER: 8264	NC	RTH: 5589827.00mN	NORTH :	+	LENGTH OF THE HOLE: 276.00M
CLAIM NUMBER: P-1216623	Е	AST: 451257.00mE	EAST:	+	START DEPTH: 0.00M
LOCATION: Hogg Twp.	E	LEV: 0.00	ELEV:		FINAL DEPTH: 276.00M
	COLLAR ASTRONOMIC AZIM	UTH: 0° 0' 0"	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"	
DATE STARTED: 09/27/1998	COLLAR SURVEY: NO		PULSE EM SURVEY: NO		CONTRACTOR: Major Dominik
DATE COMPLETED: 09/29/1998	RQD LOG: NO		PLUGGED: NO		CASING: 52.5m Pulled
DATE LOGGED: 10/05/1998	HOLE MAKES WATER : NO		HOLE SIZE: BQ		CORE STORAGE: Kidd Creek Mine
					UTM COORD.: Zone 17

ì

COMMENTS : WEDGES AT:

DIRECTIONAL DATA:

2h)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-				-	_	_	- "	-	
	-	-	-	-		I -	-	-	-	-	
-	-	-	-	-				~	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	~	-			-	~	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-		
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	*	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		j -	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	

HOLE NUMBER: HOG97-02

DRILL HOLE RECORD

LOGGED BY: M. Collison PAGE: 1 PAGE: 1

HOLE NUM	BER: HOG97-02			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 52.50	Casing	-may include Mattagami Fm.				
52.50 TO 121.86	HA>»				-trace bedded and diseminated py, beds to 2mm, <<1%	
то	<15,WIFm, <l ST>> Phanerozoic Sediments Williams Island Fm. limestone</l 	<pre>\$\$\frac{1}{103.60-103.61}*> Bedding \$\$\frac{1}{103.60-103.61}*> Bedding \$\$\frac{1}{10000000000000000000000000000000000</pre>				

HOLE NUMBER: HOG97-02

the state

+

HOLE NUM	1BER: HOG97-02			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		shale matrix breccia (?) w/ possible limestone fragments or interbeds to 20cm, net texture calcite veining noted throughout middle of section.				
		-127.9-137.3 as 121.86-126.2, limestone fragments larger, variation in bedding angles suggests collapse breccia, poor percentage of core recovered, suggests matrix washed away, lime sand noted @ 134.6, below calcified shale matrix breccia.				
		-137.3-139.8 competent shale unit w/ minor limestone				
		-139.8-146.25 as 122-126				
	1	-146.25-154.35 predominantly competent shale unit, grey to ochre, minor limstone interbeds				
		-154.35-158 limestone, micritic w/ small vugs becoming white and chalky by end of interval, fairly competent at start, becomes highly fragmented by end, poor core recovery 156 -159 -70%, ostrocods noted in chalky sections				
		 -158-159.9 red-brown shale matrix breccia				
		 -159.9-164 grey wavy bedded limestone, partially dolomitized, dolomite crystals to 0.5mm give core a "peppery" texture towards end of interval, sparsely fossiliferous 				
		-py rimming calcite filled vugs to 3cm noted in lower 2m of unit				
		 ╣160.50-160.51╠≪┥S0 72°⊦> Bedding				
164.00 TO 216.00		 -blue-grey calcareous shale/clay, finely laminated, commonly plastic -monotonous unit, serves as marker horizon				
	Williams Island Fm.	-fossilferous to 170.5m, mostly brachiopod shells				
	shale	-plastic throughout rest of unit, drying cracks common as core dries out			 	

i.

HOLE NUMBER: HOG97-02

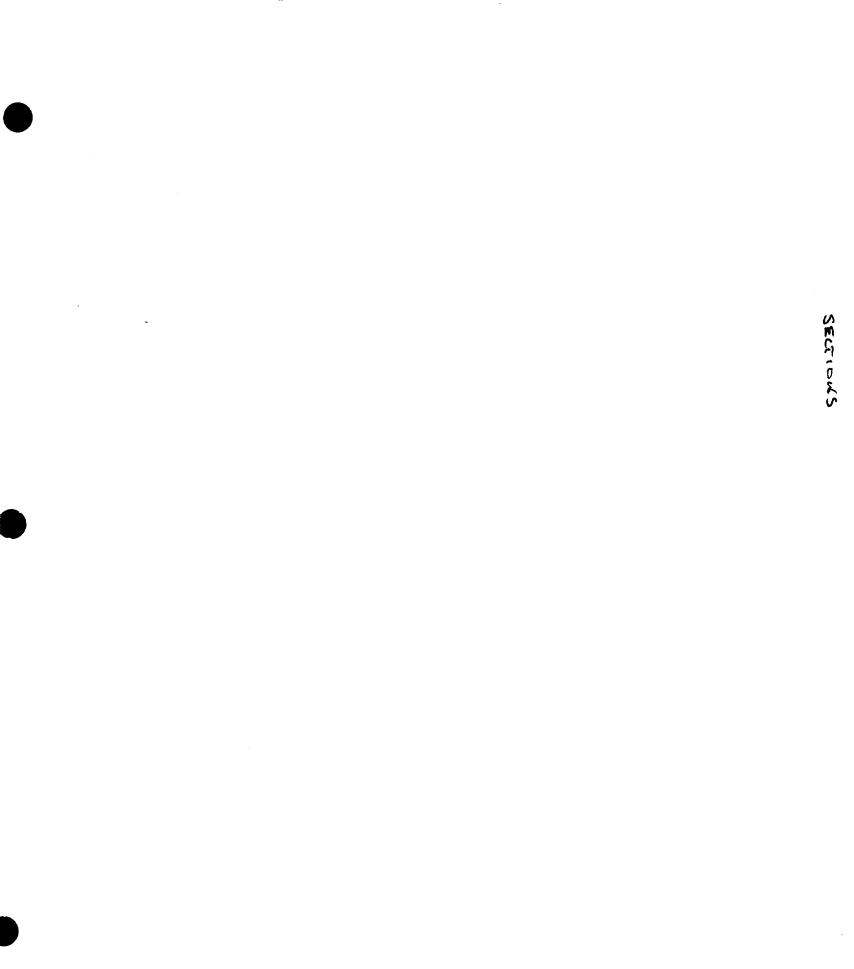
LOGGED BY: M.Collison

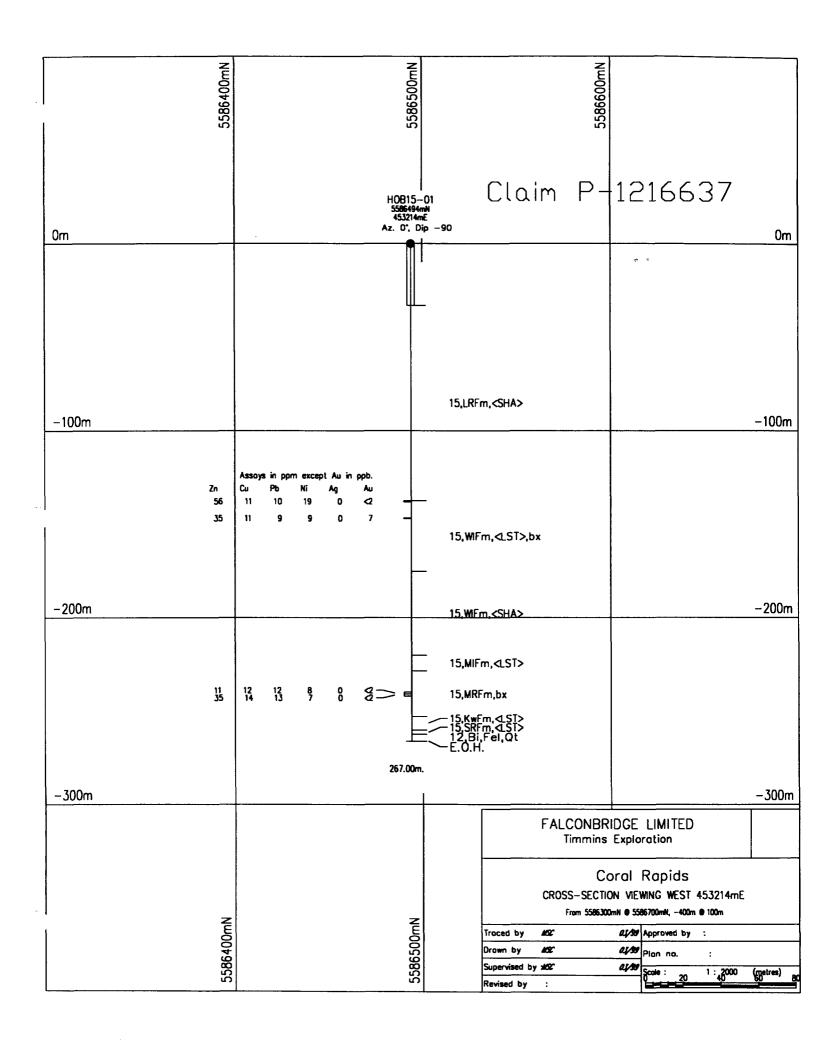
OLE NUME	BER: HOG97-02			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		-becomes increasingly calcareous at base of unit, somewhat gradational lower contact				
		∦181.60-181.61╠≪√S0 75°∤» Bedding				
		moderately fossiliferous				
	Sediments Murray Island Fm	-216-219.7 RQD=20, massive, crinoid stems, brachiopod shells and rare ostrocod shells noted				
	limestone	-219.7-224.3 blocky core, RQD<5, stylolitic in part, sections appear to be brecciated and recemented, fossils as above				
		 -unit appears to be roof of collapse breccia, base of unit called at start of shale units and shale matrix to breccia				
то		-breccia, dominantly matrix supported, limestone and minor shale pebble to block size fragments in shale/clay or limestone matrix				
ļ	Moose River Fm. breccia	 -multiple phases of brecciation noted 				
		-224.3-230.8 dominantly shale fragments in shale matrix, 1.5m core not recovered 225-228, 1m core not recovered 228-231				
	ĺ	-230.8-237 limestone fragments w/ minor shale matrix recovered, RQD = 30				
		-237-243.9 RQD=60, dominantly limestone or calcareous shale matrix				
то	ST>>	-fine to medium grained grey bituminous fossiliferous limestone, w/ minor shale interbeds				
	Sediments Kwataboaheg an Fm.	-unit starts at red shale interbed w/ minor limestone fragments, 243.9-244.8				
	limestone	-244.8-252 massive limestone, sparsely fossiliferous, weakly bituminous, stylolitic, minor thin shale interbeds, RQD>90, smal 1 (<3mm)				

HOLE NUMBER: HOG97-02

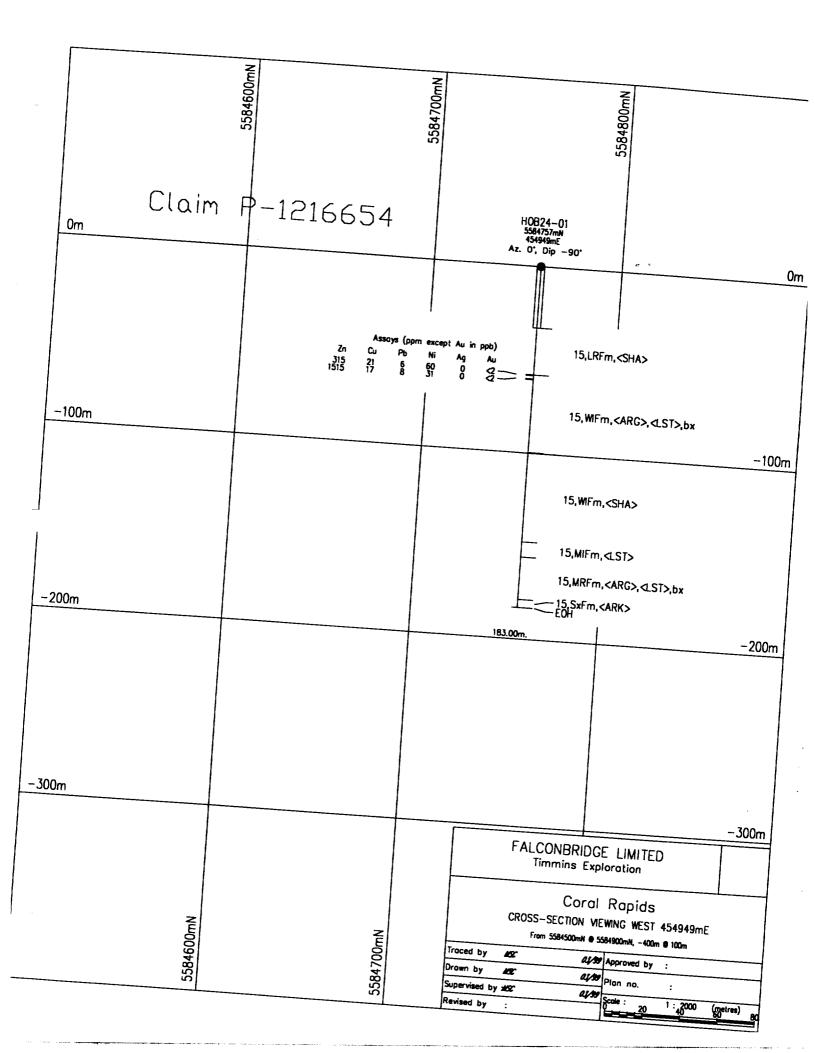
LOGGED BY: M.Collison

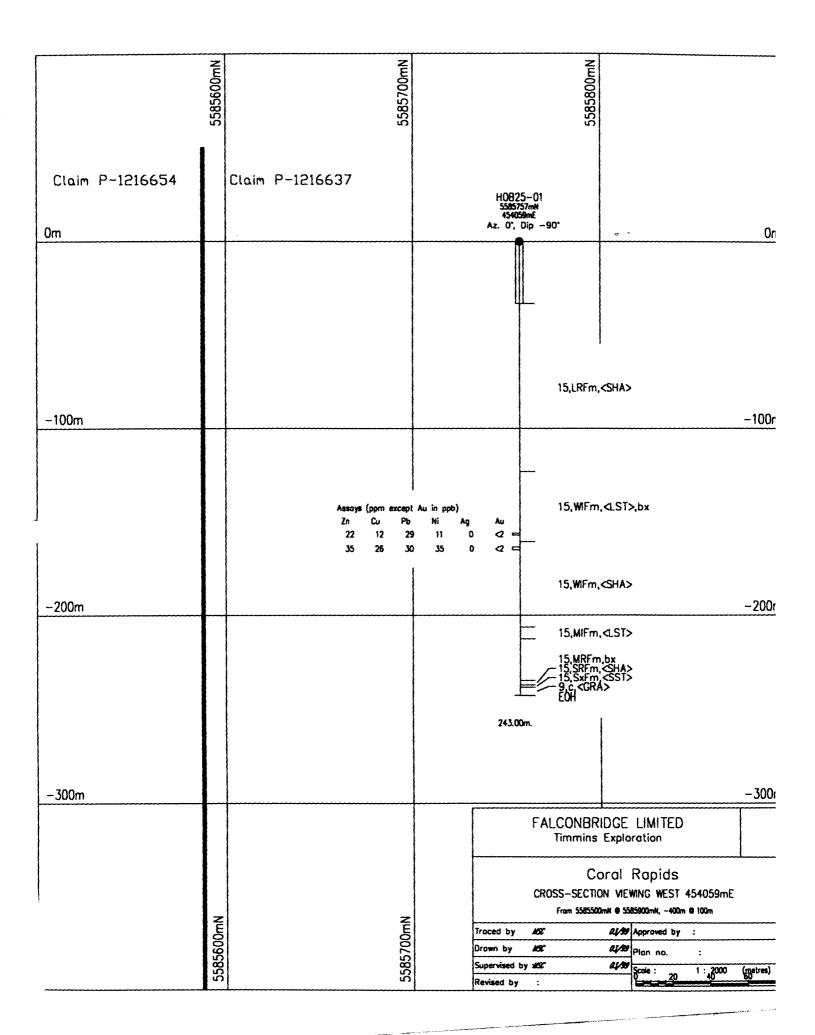
HOLE NUM	BER: HOG97-02			DRILL HOLE RECORD		DATE: 03/17/1999
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE	ALTERATION	MINERALIZATION	REMARKS
		 -252-257.9 classic Kwatoboahegan Formation, up to 30% rugosa (?) corals, strongly bituminous grey limestone, common small vugs filled w/ sparry calcite				
		<pre> -257.9-261.5 fossiliferous sandy limestone, significant clastic quartz component, grit to granule size grains, fossil component is broken grains to 3-4mm maximum size, no bitumen noted, very poorly consolidated core 258.5-261, appears to be a high energy area deposit (beach?)</pre>				
		<pre>-261.5-267.59 fossiliferous medium to fine grained grey limestone, minor bitumen, dominantly coral fossils, 3-6cm bands w/ significant clastic component noted, minor vugs filled w/ sparry calcite</pre>				
		-lower contact appears depositional, @ approximately 60° to c.a., appears to be paleoslope because clastic rich bed above is at high angle to core axis				
то	<12,Qt,Fel, Hb> Gneiss feldspar hornblende quartz	 -medium grained green to white quartz-feldspar-hornblende-biotite gneiss -saprolitic to 269.5, deeply weathered throughout section 				
276.00 TO 276.00						

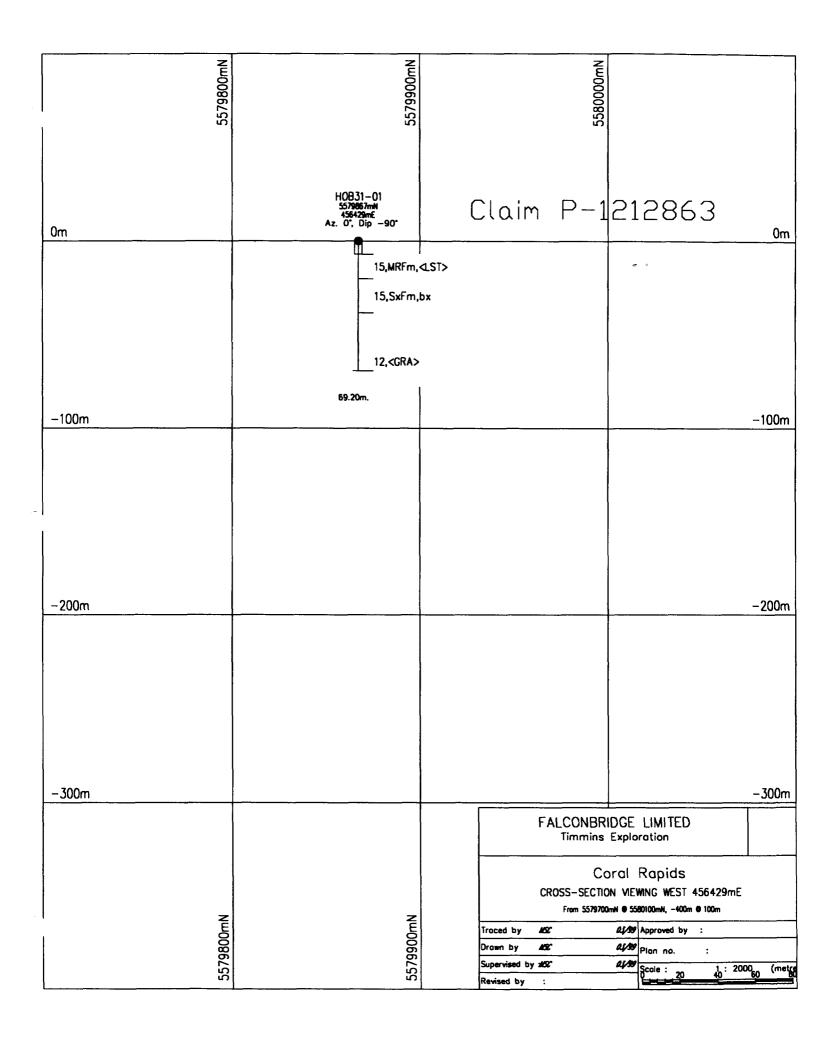

ł

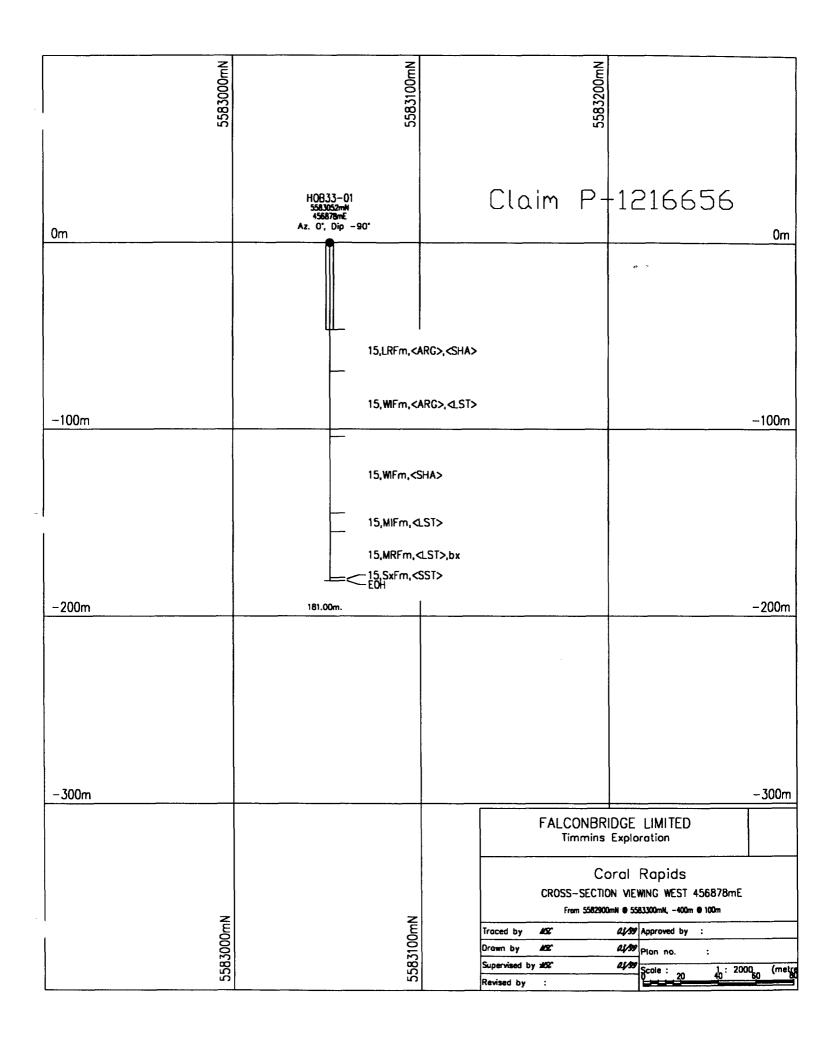

HOLE NUMBER: HOG97-02

DRILL HOLE RECORD

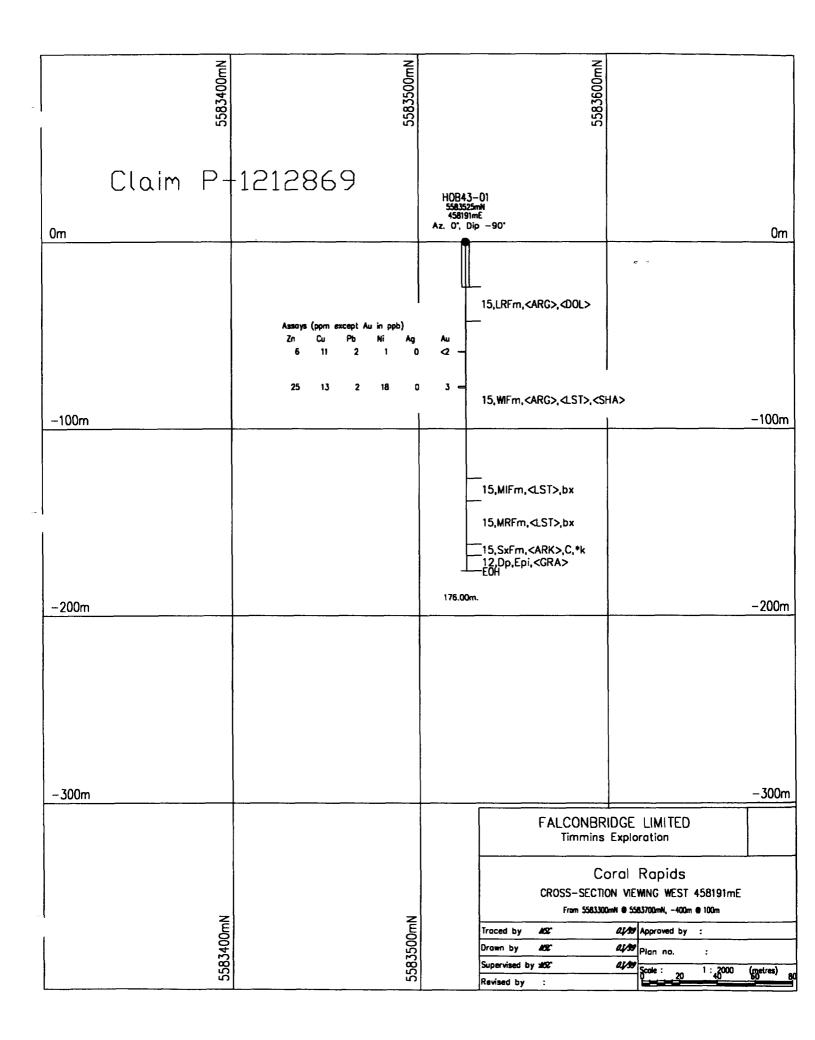

LOGGED BY: M.Collison

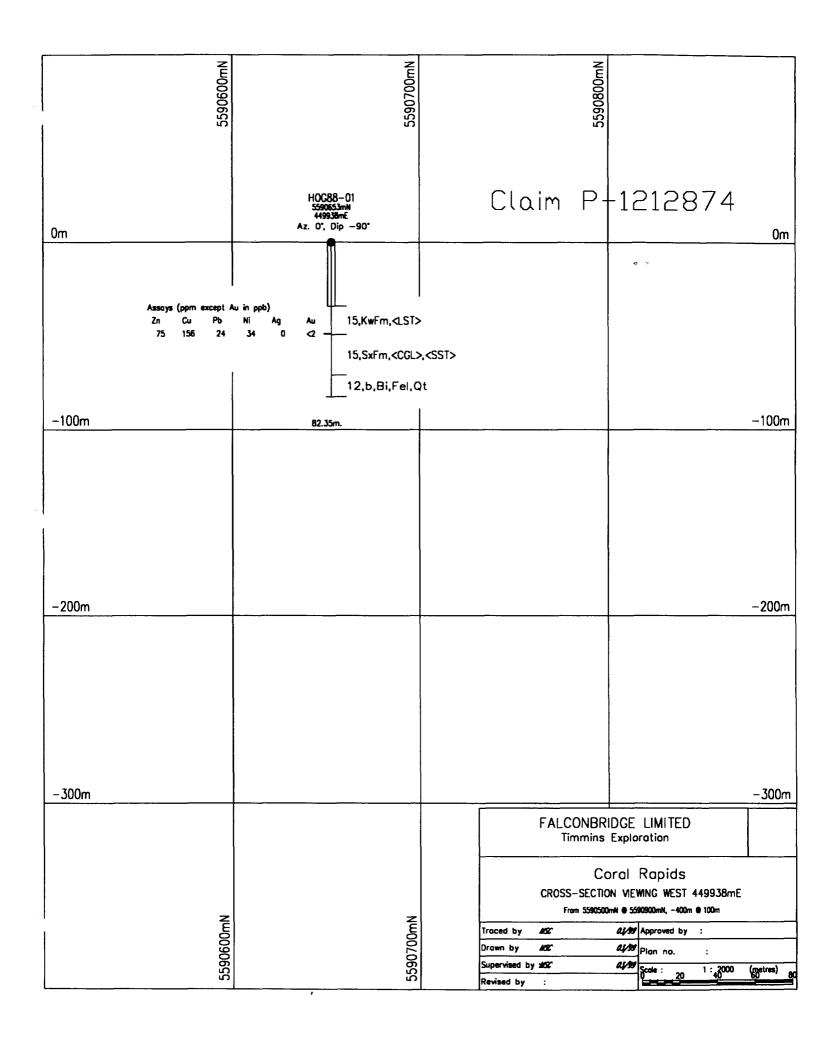

(M) (HOLE NUM	BER : HO	G97-02						GEOC	HEMICAL	ASSAY							DATE: 18/	03/1999
AU02555 144.00 144.00 144.00 144.00 144.00 14.00	Sample	From (M)																	ALUM
AUD256 16.3-50					-; <u></u>	 					-	 							
Mu20157 216.00 216.00 0.20 MU20157 225.00 226.00 0.10 MU20157 230.00 230.40 0.10 MU20157 230.40 0.10 1 MU20157 230.40 0.10 1 MU20157 240.40 0.10 1 MU20157 240.40 0.10 1 MU20157 240.00 1.01 1 MU20157 240.00 0.10 1 MU20158 240.00 0.10 1 MU20158 240.00 0.10 1 MU20158 247.00 247.18 0.16 1 MU20158 247.00 247.18 0.16 1					ļ.														
AUB2159 231.50 231.50 1.5 AUB2159 231.50 231.50 1.5 AUD2150 231.50 231.50 1.5 AUD2150 241.50 0.15 1 AUD2150 241.50 0.15 1 AUD2150 241.50 0.15 1 AUD2150 241.50 0.15 1 AUD2150 245.67 0.17 1 AUD250 251.00 251.10 251.10 251.10 1																			
AUR256 226.60 226.70																			
AU0256 237.80		225.50																	
AUQ256 28-50 28-16 0.17 AUQ256 24:8 04:0 0.16 AUQ258 24:0 0.17 AUQ258 25:0 15 0.17 0 17					N														
ARU2SES 245.0 240.10 10 10 10 10 10 10 10 10 10 10 10 10 1					ä														
AU22562 265.07 256.07 0.17 AU22563 267.00 257.16 0.16 1					Ä														
	AU02563				ii 🛛														
			256.67	0.17															
	AU02565	267.00	267.16	0.16	1														
					1														
					1														
					1														
					Ň.														
					Ű.														
					1														
					1														
					1														
					n H														
					ï														
					li i														
					Į.														
					1														
					8														
					ű														
					ï														
					ï														
					Î														
					1														
					1														
					1														
					1														
					ll l														
					1														
					1														
					ï														

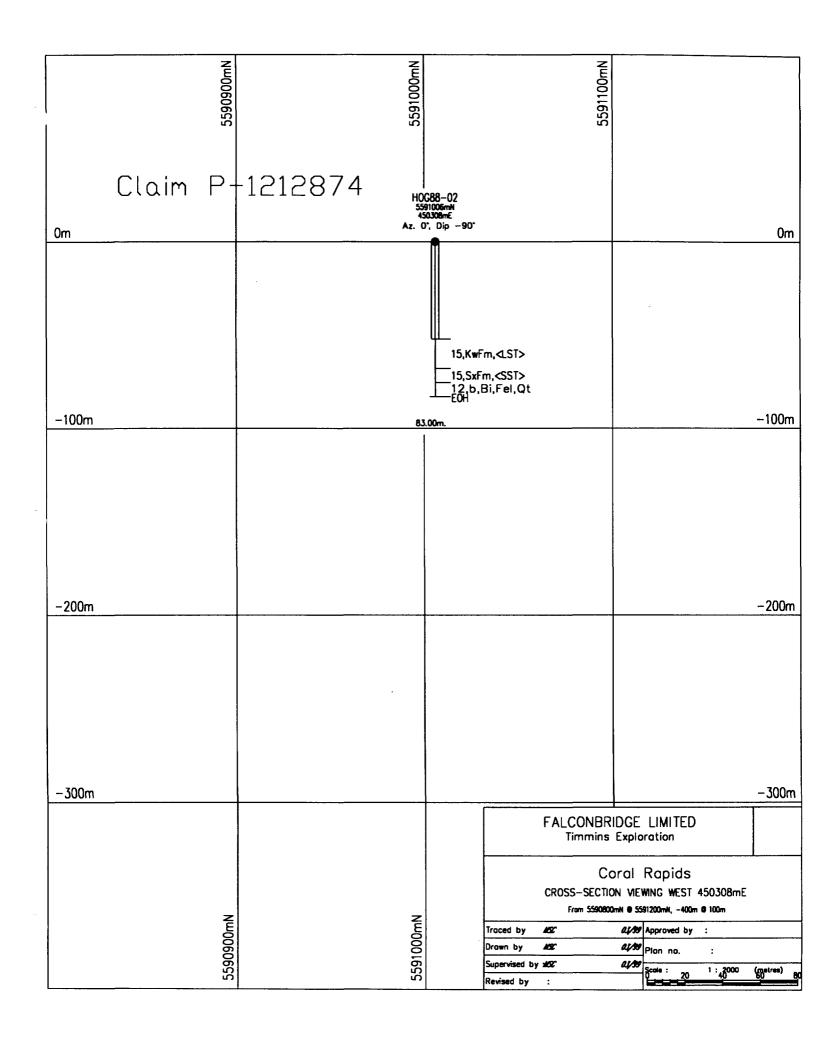


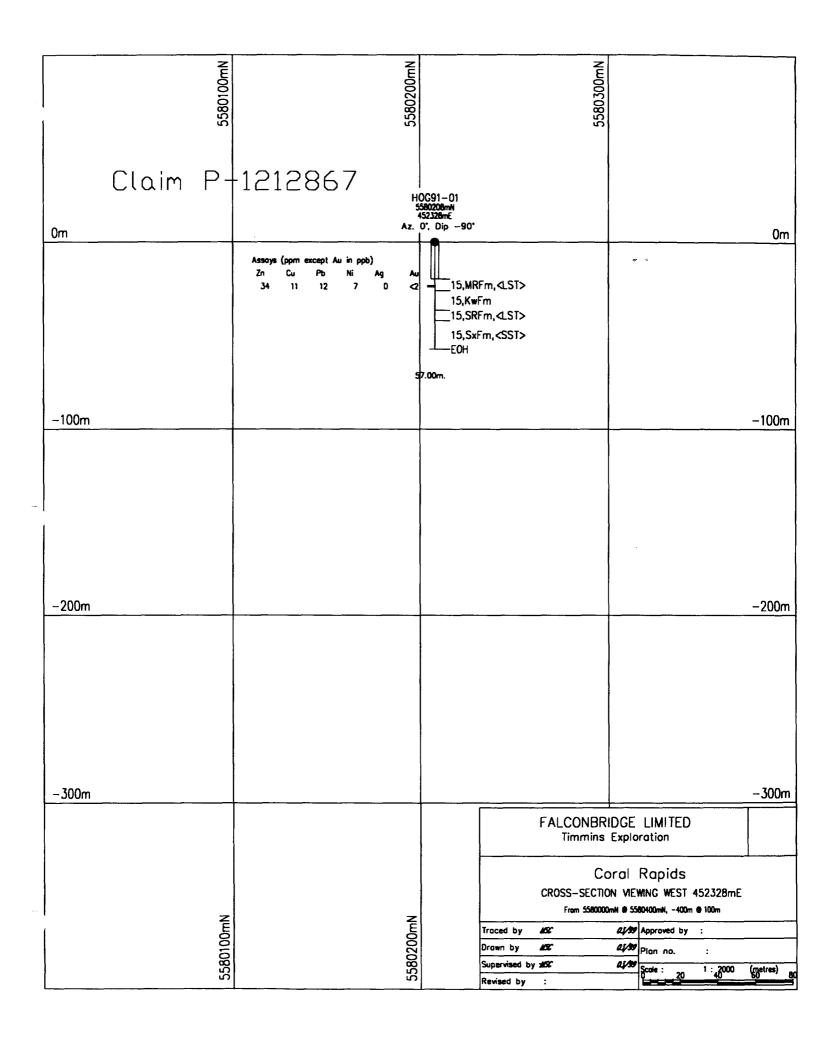


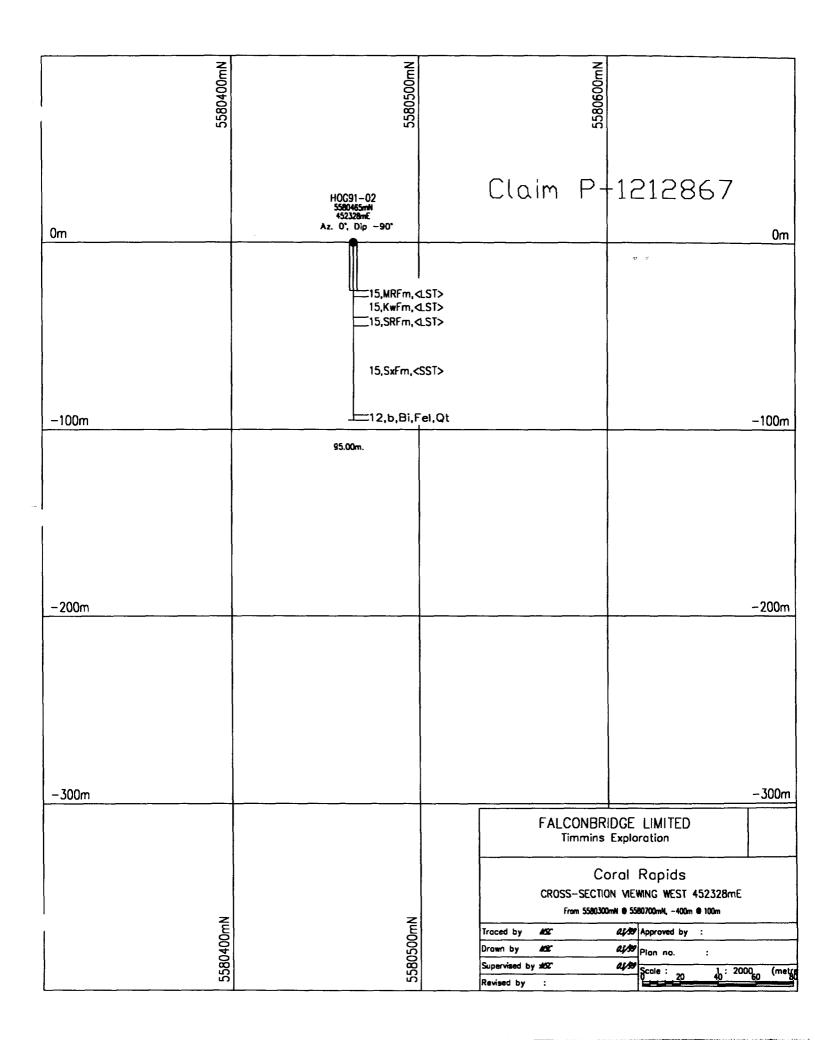

5581700mN	5581800mN	5581900mN	
Claim	P-1212868	HOB22-01 5581855mN 455581mE Az. 0*, Dip -90*	0m
		12, <gra> EOH 42.00m.</gra>	2 X
_100m			-100m
-			
_200m			200m
- 300m		Timmins Co CROSS-SECTIO	300m HDGE LIMITED Exploration oral Rapids ON VIEWING WEST 455581mE DN VIEWING WEST 455581mE
5581700mN	5581800mN	Traced by 452° Drawn by 458° Supervised by 452° Revised by :	Alfs Approved by : Alfs Plan no. : : Alfs Scale : 1 : 2000 (metry Old 1 : 2000 (metry



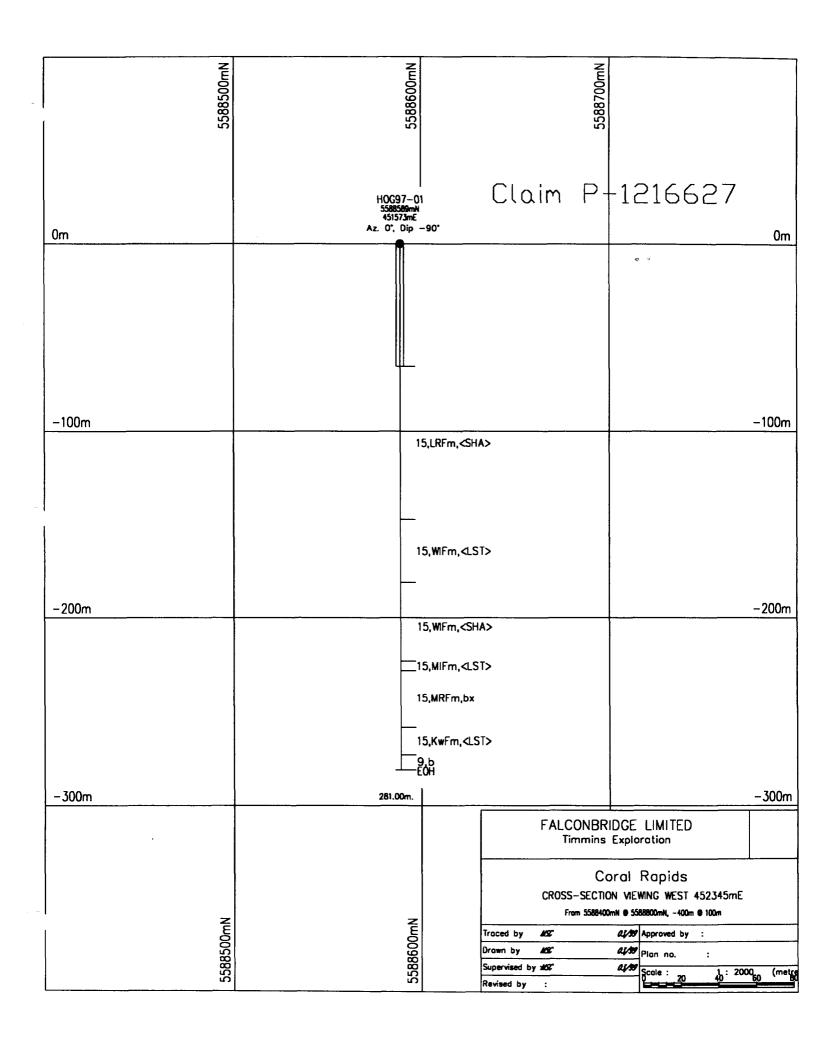


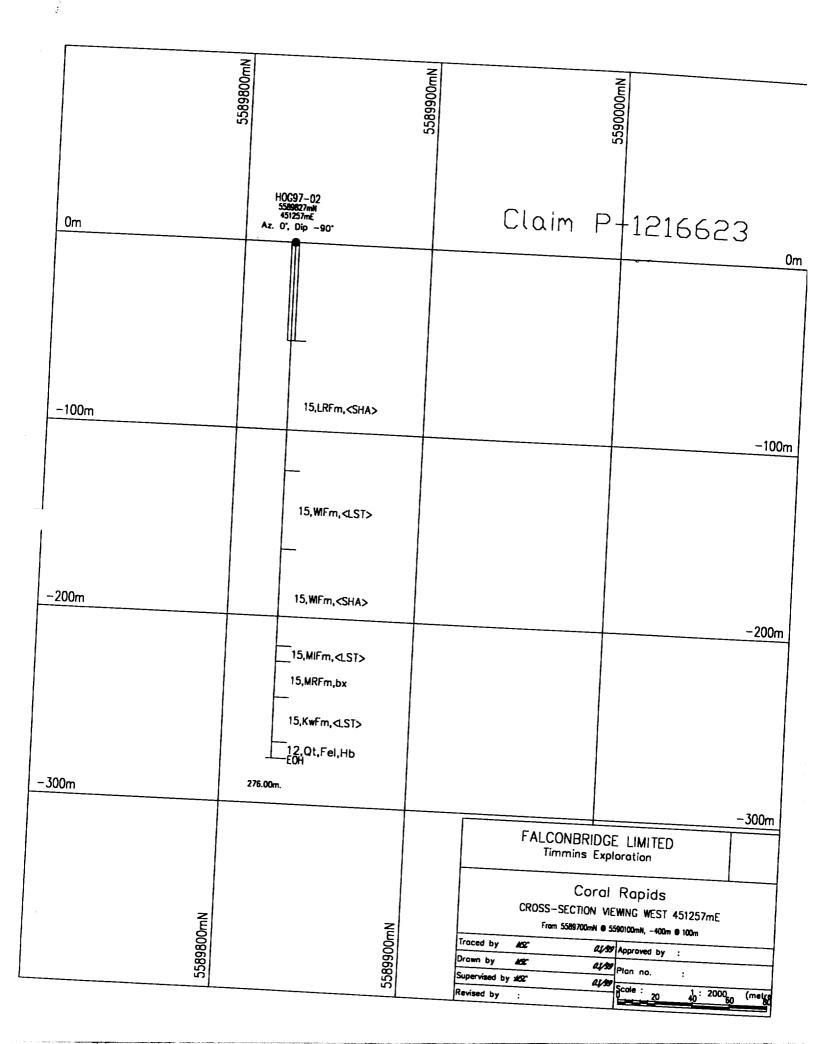


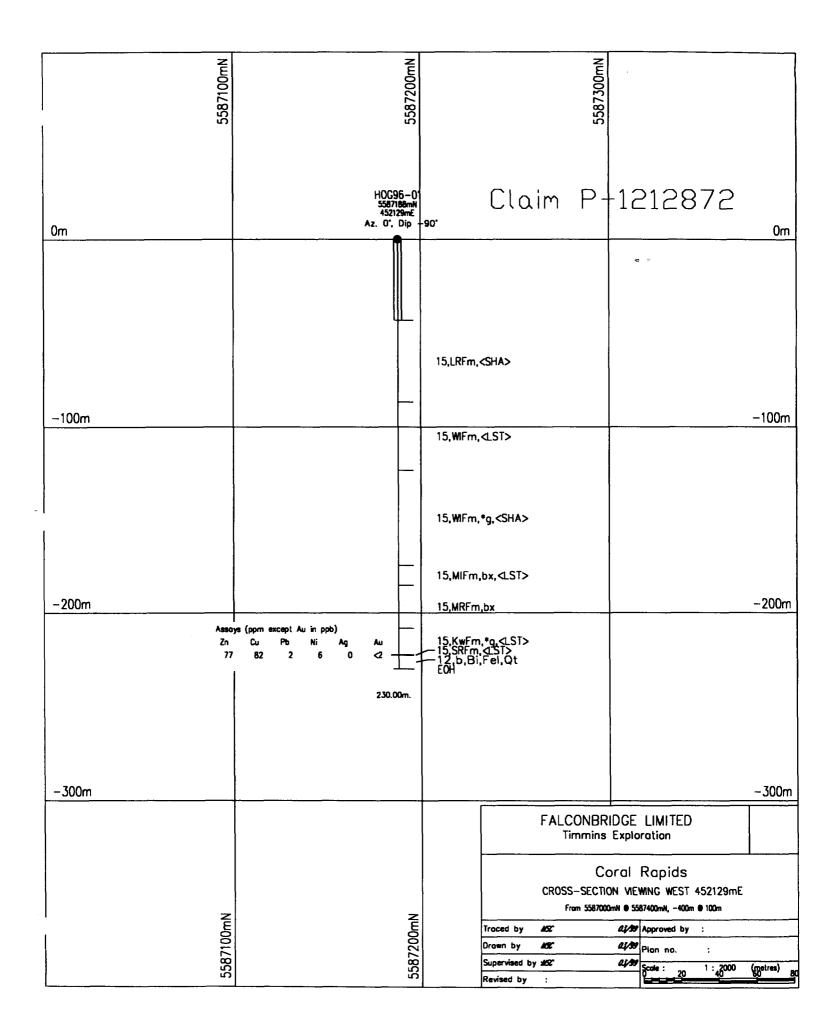


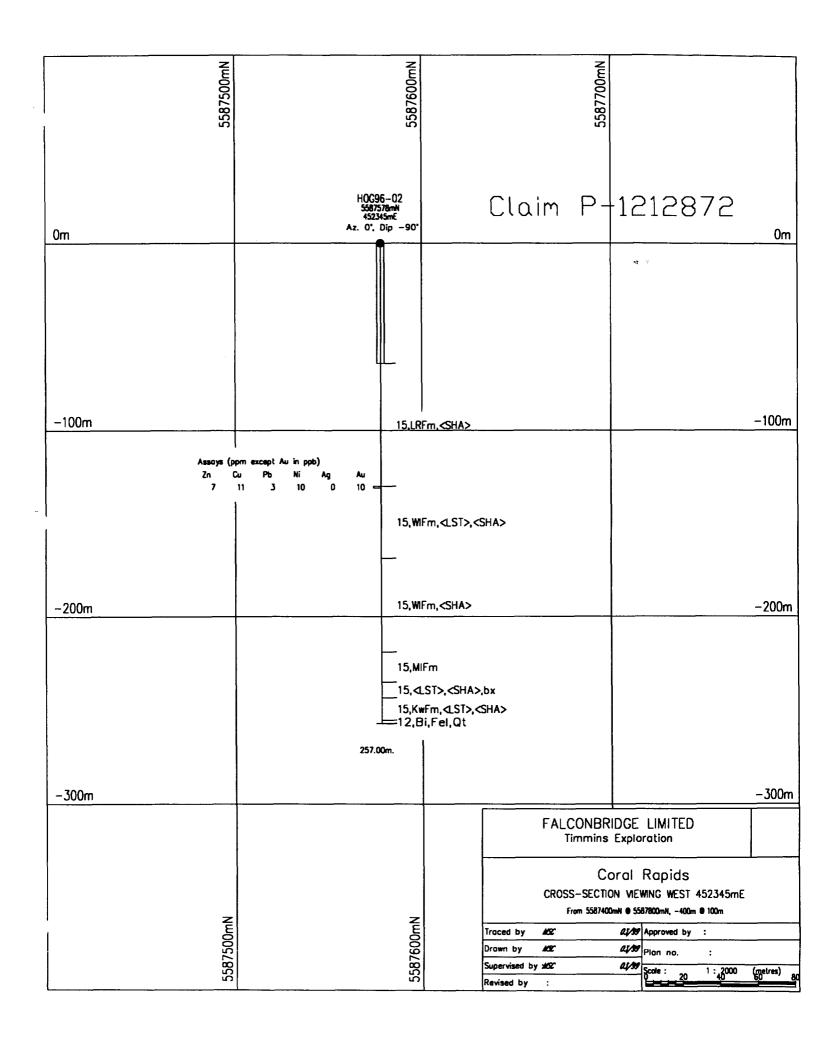


			5585200mN	5585300mN			5585400mN		
0	m	Claim I	Ρ-	-1212864	HOG75 558512 448341 Az. 0', D	—01 Эмм imE ip —90'			0m
						 15,SRFm,⊲ 15,SxFm, <s 9,a,b </s 	ST>	रू न	
_	-100m				74.00r	n.			-100m
	- <u>200m</u>								<u>-200m</u>
	-300m								-300m
-			5585200mN	5585.300mN		C Traced by #	Timmins Cc ROSS-SECTIO Fram 55851000	DGE LIMITED Exploration oral Rapids NV VIEWING WEST 448345mE mNI @ 5585500mNI, -400m @ 100m 4/39 Approved by : 4/39 Plan no. :	
			5585	5585 5585		Supervised by all Revised by :		AL/39 Scole : 20 40 : 200	00(metre 508









- [5579700mN	5579800mN	S579900mN	
	Cla Om	im P-12	12867	HOG91-03 5579827mN 451970mE Az. 0*, Dip -90*	Om
				15,MRFm, 4.ST> 15,KwFm, 4.ST> 15,SRFm, 4.ST> 15,SRFm, 4.ST> 15,SxFm, <sst> E0H</sst>	47 - Y
	–100m			56.00m.	-100m
*					
	– 200m				200m
	-300m			Timmins	-300m IDGE LIMITED Exploration
		5579700mN	5579800mN	CROSS-SECTIO	DN VIEWING WEST 451970mE DmN • 5550000mM, -400m • 100m 41/39 Plan no. 21/39 Scole : 20 40 20 40 2000 60

PLANS

Declaration of Assessment Work Performed on Mining Land

Mining Act. Subsection 65(2) and 66(3), R.S.O. 1990

900

Transaction Number (office use) W9960.00133 ent Files Research Imaging

r of subsection 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, ne assesment work and correspond with the mining land holder. Questions about this if Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury,

5NR2001

Instructions: - For work performed on Crown Lands before recording a claim, use form 0240. - Please type or print in ink.

1. Recorded holder(s) (Attach a list if necessary)

Name	Client Number
Falconbridge Limited	130679
Address	Telephone Number
P.O. Box 1140, Timmins Ontario,	(705) 267-1188
	Fax Number
P4N 7H9	(705) 267-8874
Name	Client Number
Address	Telephone Number
	Fax Number

Type of work performed: Check () and report on only ONE of the following groups for this declaration. 2.

Geotechnical: prospecting, s assays and work under secti	•	Physical: drilling strippin trenching and associate	•
Work Type			Office Use
Diamond Drilling - 18 Holes - 2880.55	i m		Commodity
]		Total \$ Value of 7 186.751
	97 To 30 Year Day	Oct 98 Month Year	NTS Reference
Global Positioning System Data (if available)	Township/Area Hobson, Hogg	1	Mining Division fragme
	M or G-Plan Number G-3514, G-3515		Resident Geologist

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

- provide proper notice to surface rights holders before starting work;

- complete and attach a Statement of Costs, form 0212;

- provide a map showing contiguous mining lands that are linked for assigning work;
- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

Exploration (705) 267-1188 Fax Number (705) 267-8874 Telephone Number (705) 267-8874
(705) 267-8874 Telephone Number
Telephone Number
ED Fax Number
O q.m.
99 Telephone Number
1

Certification by Recorded Holder or Agent 4.

___, do hereby certify that I have personal knowledge of the facts set forth in Michael S. Collison ١. (Print Name) this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its

Completion and, to the best of my knowledge, the annexed rep	ort is true.
Signature of Recorded Holder or Agent	Date 07/30/99
Agent's Address	Telephone Number
P.O. Box 1140, Timmins Ontario, P4N 7H9	(705) 267-4 168
0241 (03/97) Deaned or June 28/99	MAR SO 1999

Northern Development

Statement of Costs for Assessment Credit

Transaction Number (office use) 0433 X9966.

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Work Type	hours/day w	Units of work on the type of work, list the numi vorked, metres of drilling, kilomet mber of samples, etc.	ber of Cost Per Unit tres of Of work	Total Cost		
1997 Diamond Drilling Bradley Brothers Limited	Prepare 11	drill sites, Drill 11 DDH - 1221.5	5m \$148.22/m	\$181,058		
1997 Helicopter Gateway Helicopters Limted	110.9 Hours	3	\$700/hr plus tax	\$83,064		
1998 Diamond Drilling Major Dominik Drilling	Prepare 7 d	rill sites. Drill 7 DDH – 1659m	\$ 75.10/m	\$124,596		
1998 Helicopter Abitibi Helicopters Ltd.	65.1 Hours		\$725/hr plus tax	\$50,501		
Supervision and core logging Falconbridge Limited	60 man day	\$	\$200 / day	\$12,000		
Associated Costs (e.g. s	upplies, mobiliza	ation and demobilization				
1997 Mob and Demob costs Bradley Brothers Limited			\$14000 Mob + tax \$ 4000 Demob + tax	\$19,260		
1998 Mob and Demob costs Major Dominik Drilling Limited			\$ 3620 Mob + tax \$ 3020 Demob + tax	\$ 6,620		
Tı	ransportation Co	sts				
Truck rental and gas			1000 /month	\$2,000		
Foc	od and Lodging C	Costs				
1997 – Room and Board	\$60/man/day	\$4,408				
1997 - Meals	DECEIVED					
		MAR 3 1 1999	otal Value of Assessment Work	\$486,751		
Calculations of Filing Discour	nte:	GEOSCIENCE ASSESSMENT				

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.

2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK	x 0.50 =	Total \$ value of worked claimed.
TOTAL VALUE OF ASSESSMENT WORK	X 0.30 -	Total & value of worked claimed.

Note:

0212 (03/9

Work older than 5 years is not eligible for credit.

A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

5. $\underline{Colusol}$, do hereby certify, that the amounts shown are as accurate as may reasonably MICHARL 1. (please print full name)

be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying

Declaration of Work form as <u>AGENT - PROJECT GEOLOGIST</u> I am authorized to make this certification. (recorded holder, agent, or state company position with signing authority)

RECEIVED	Signature	Date 03/30/99
MAR 30 1999 3: 15 PM 4		
PORCUPINE MINING DIVISION		

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

work was mining lar column the	alm Number. Or if done on other eligible nd, show in this e location number on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568	2	\$ 8,892	\$ 4,000	0	\$4,892
1	1212863	16	\$16,700	\$12,800	-	\$3,900
2	1212864	16	\$17,858	\$12,800		\$5,058
3	1212867	16	\$ 50,196	\$12,800		\$37,396
4	1212868	16	\$10,136	\$ 6,400		\$3,736
5	1212869	16	\$42,473	\$12,800		\$29,673
6	1212872	16	\$117,525	\$12,800		\$104,725
7	1212874	16	\$39,903	\$12,800		\$27,103
8	1216623	16	\$31,936	\$12,800		\$19,136
9	1216627	16	\$32,514	\$12,800		\$19,714
10	1216637	16	\$59,011	\$12,800	\$12,800	\$33,411
11	1216638	12	\$0	\$ 9,600		\$0
12	1216654	12	\$2 1,175	\$9,600		\$ 11,575
13	1216655	16	\$26,382	\$12,800		\$13,582
14	1216656	12	\$20,943	\$ 9,600		\$11,343
15	1219692	4	\$0	\$3,200		\$0
	Column Totals	216	\$486,751	\$166,400	\$12,800	\$320,351

I, MICHAEL S. COLLISON, do hereby certify that the above work credits are eligible under

subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

Signature of Recorded Holder or Agent Anthonized in Writing Date

6. Instruction for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

2. Credits are to be cut back starting with the claims listed last, working backwards; or

3. Credits are to be cut back equally over all claims listed in this declaration; or

□ 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

Received Stamp	Deemed Approved Date	Date Notification Sent
	Date Approved	Total Value of Credit Approved
241 (03/97)	Approved for Recording by Mi	ning Recorder (Signature)
THE REAL PROPERTY IN THE REAL PROPERTY INTO THE R		
MAR 30 1999	RECEIVE	2.19247
	MAP C 1 (00	
3: UTA PORCUPINE MINING DIVIS	GEOSUIENU	••••

Ministry of Northern Development and Mines

April 23, 1998

Mike Collison FALCONBRIDGE LIMITED P.O. BOX 1140 TIMMINS, ONTARIO P4N 7H9 Ministère du Développement du Nord et des Mines

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9846 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Dear Sir or Madam:

Submission Number: 2.19347

Status

Subject: Transaction Number(s):

W9960.00133 Deemed Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

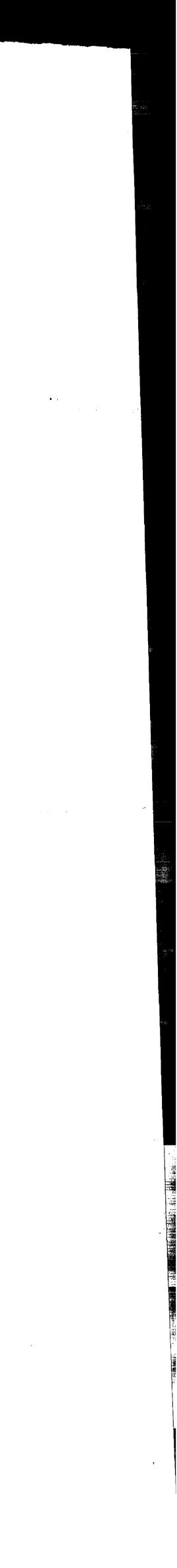
Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Steve Beneteau by e-mail at steve.beneteau@ndm.gov.on.ca or by telephone at (705) 670-5855.

Yours sincerely,

110

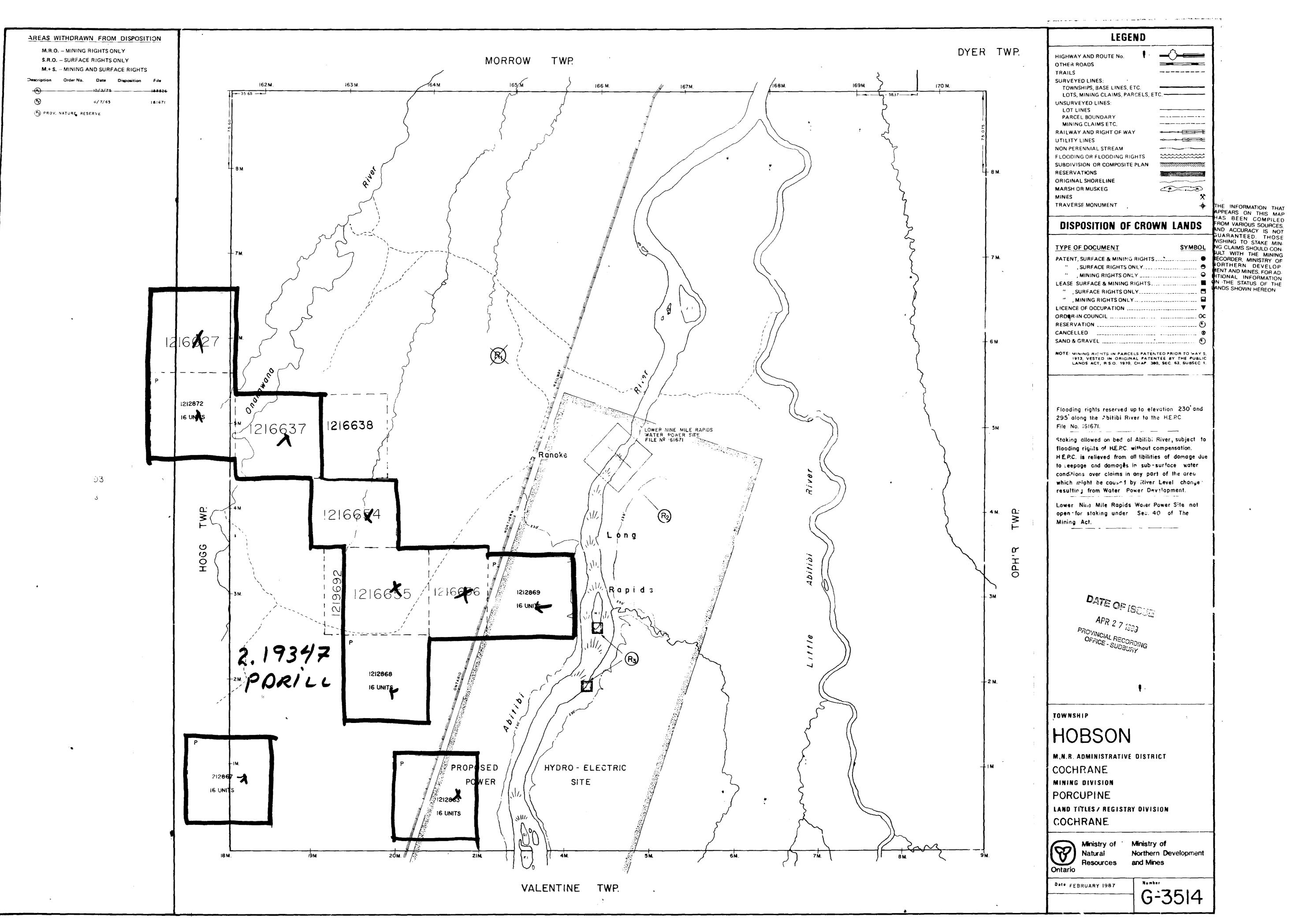
ORIGINAL SIGNED BY Blair Kite Supervisor, Geoscience Assessment Office Mining Lands Section


Correspondence ID: 13669 Copy for: Assessment Library

Work Report Assessment Results

Date Correspondence Sent: April 23, 1998			Assessor:Steve Beneteau		in the second second	
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	······	
W9960.00133	1212863	HOBSON, HOGG	Deemed Approval	April 14, 1999	· • •	
Section: 16 Drilling PDRILL	-					
Correspondence	to:		Recorded Holder(s)	and/or Agent(s):		
Resident Geologis	st		Mike Collison			
South Porcupine, ON			FALCONBRIDGE LI TIMMINS, ONTARIC			
Assessment Files	Library					
Sudbury, ON						

1

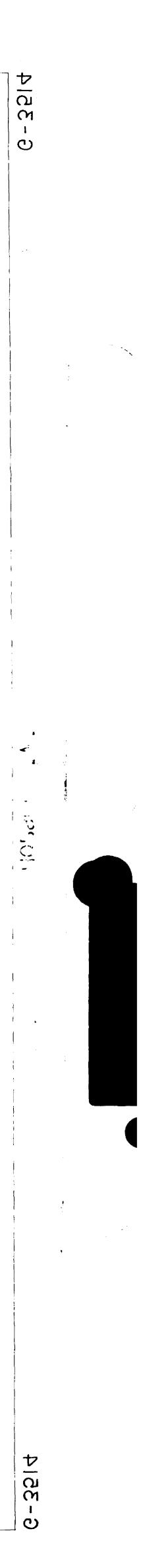


14

HOBSON

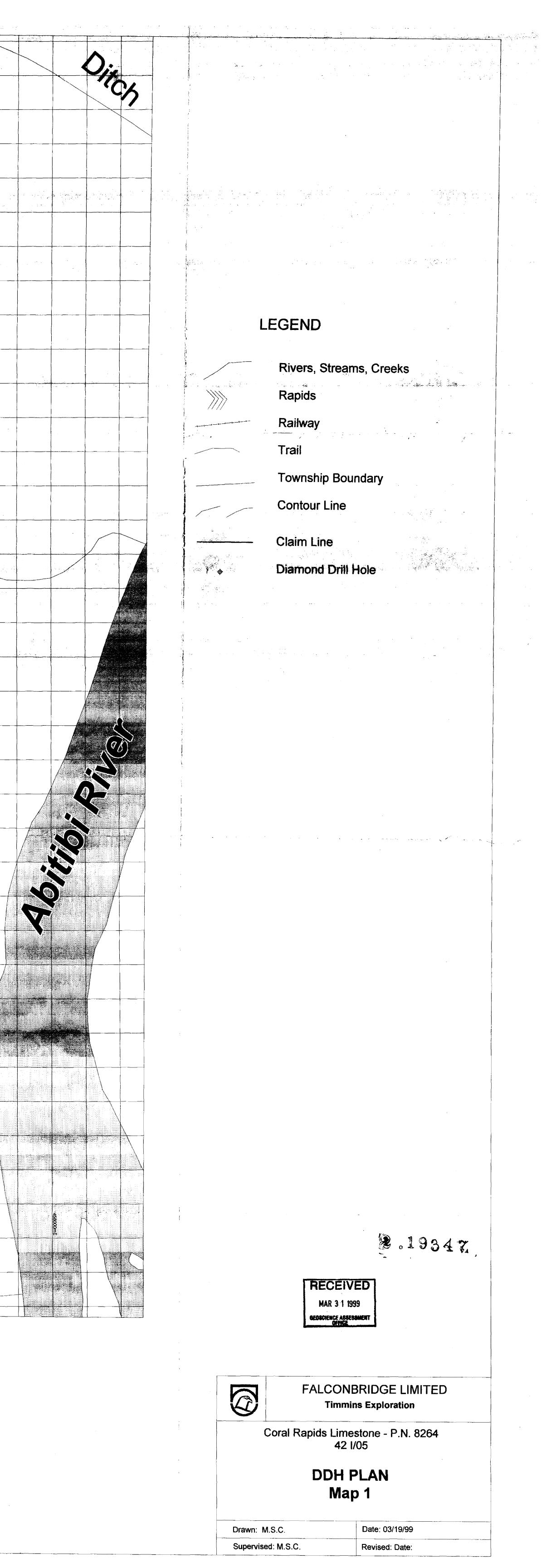
210

42105NB2001 2.19347

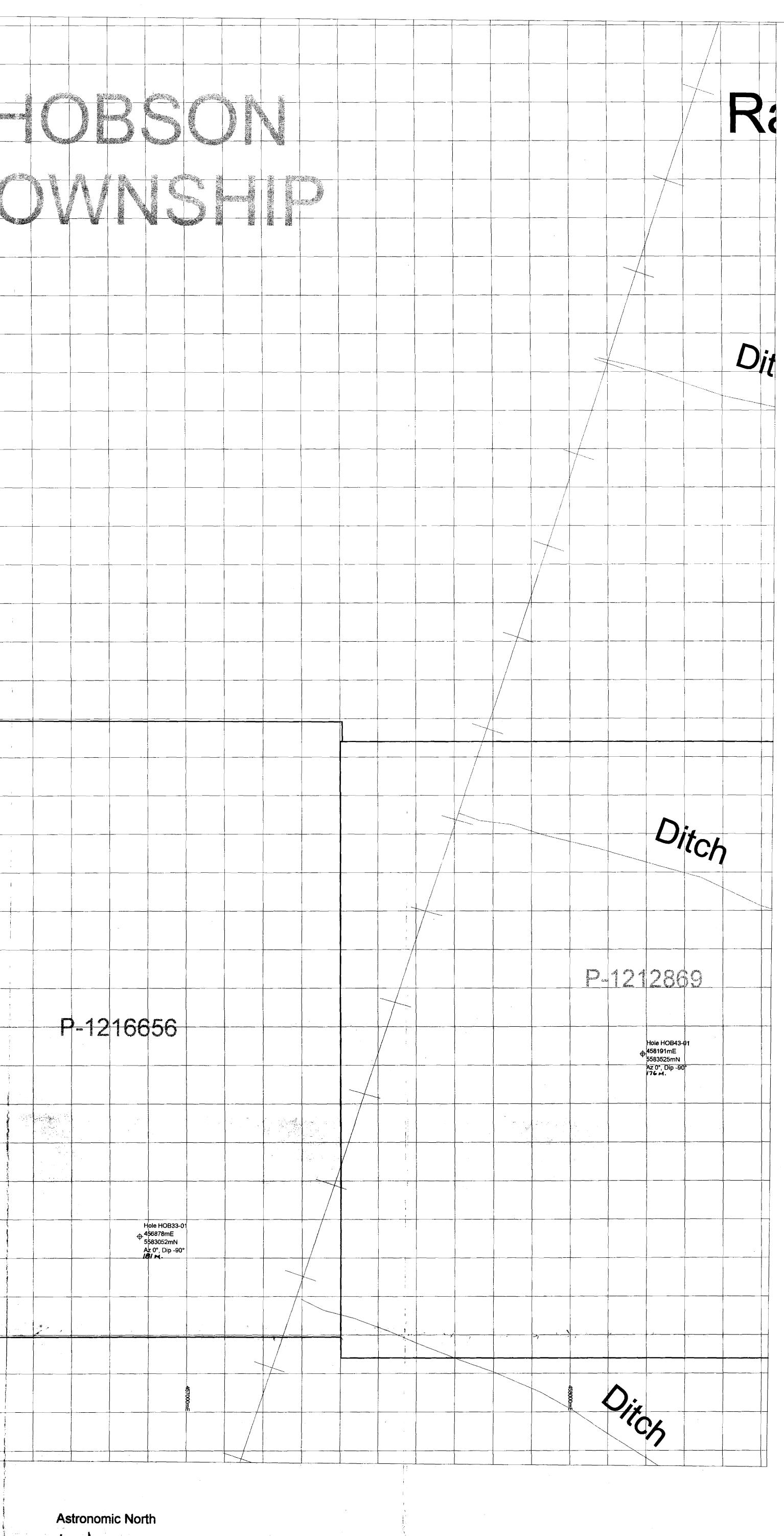

$\overline{}$ HOBSOV

3214

ତ


ч. **н**

Mb.



	Scale 1: 5000	
0	0.2	0.4
	Kilometers	

559600mn Hole HOB25.01 \$558600mn \$558600mn \$5586000mn \$558600mn </th <th></th> <th></th> <th></th> <th></th> <th></th>					
		Hole HOB24-01 \$454949mE \$584757mN Az 0° Dip -90° (83 - 1)			
	2-1219692		P-1216655	Hole HOB34-01 455901mE 5583852mN Az 0°, Dip -90° 218 ml.	
42105же2001 2.19347 жовном 230					

etic North

Map oriented astronomic north. Projection Universal Transverse Mercator North American Datum 1927 Zone 17

Magnetic Declination 11° 39' W in 1998

Scale 1: 5000

0.2

Kilometers

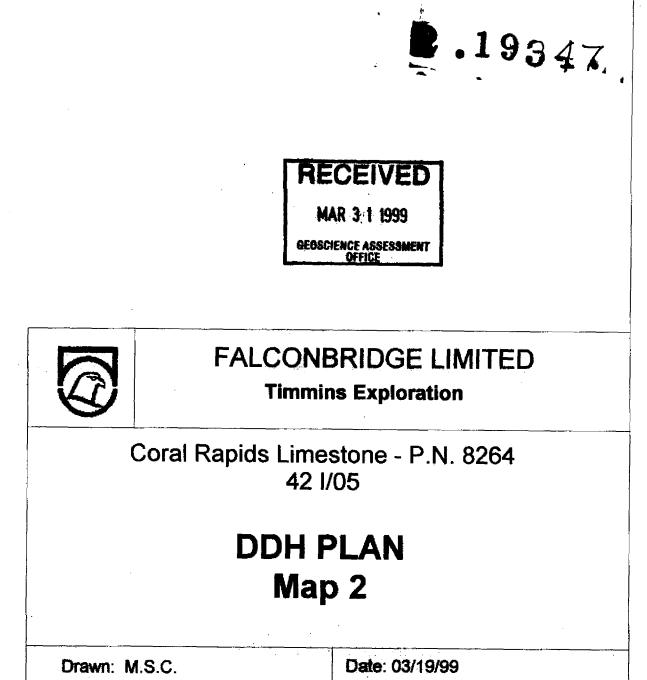
0.4

1111 the the terms of terms of term _____ _____

ф

1

Х С - -



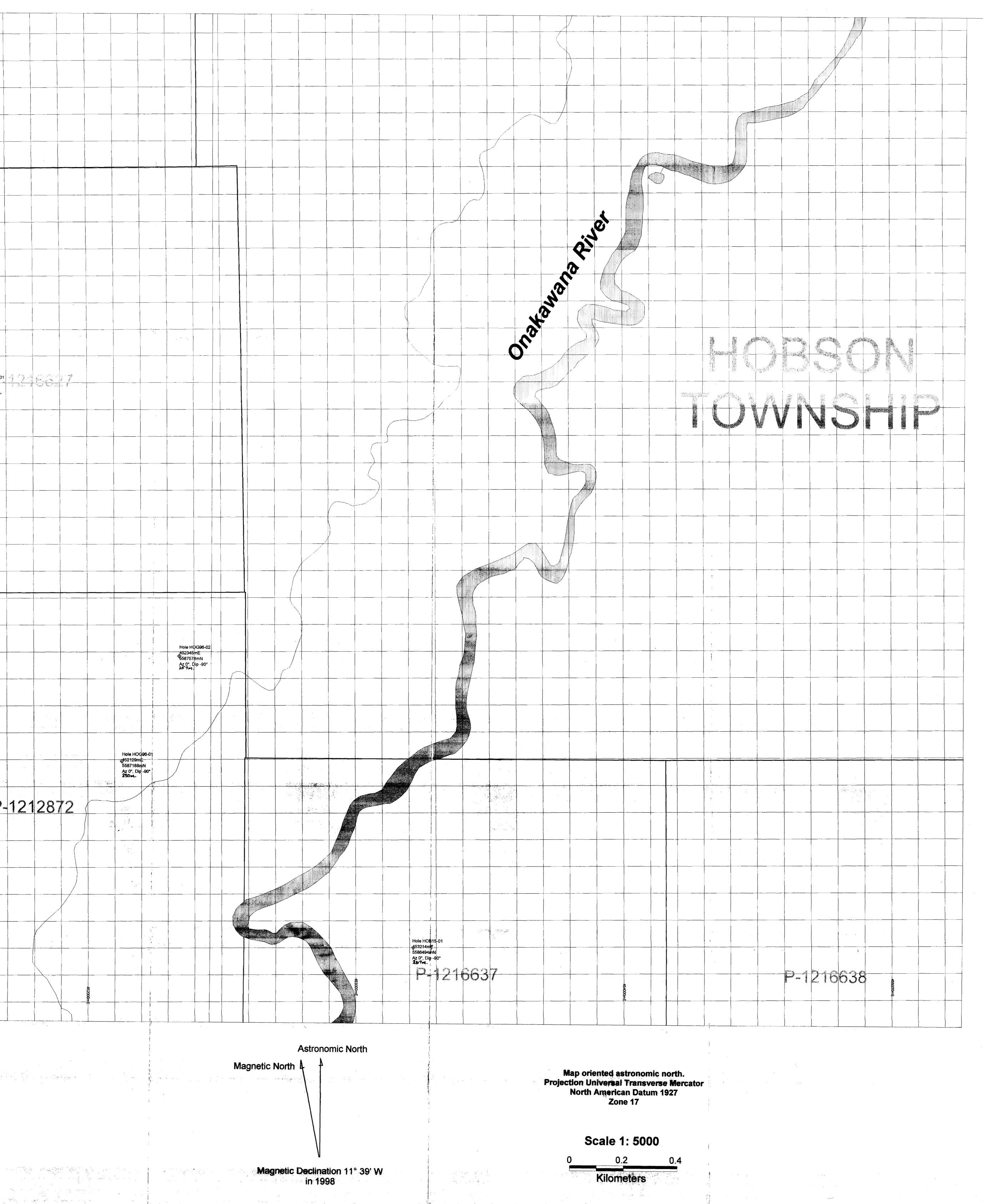
Rivers, Streams, Creeks Rapids Railway Trail Township Boundary Contour Line

•

.

Claim Line Diamond Drill Hole

Revised: Date:


Supervised: M.S.C.

									4512 5589 Az 0 2,76	HOG97-(57mE 1827mN - Dip-90' 	>			
	558900												e HOG97+01 573mE 8589mN 0°, Dip -90° 1 M .	
	5588000			-										
	5587000						451009mE							

na se en estas. La populación de la constante de la constante de la constante de la constante de la constante d

2105NE2001 2.19347 HOBSON

240

LEGEND

_____ [∛] **⊕**

1

Rivers, Streams, Creeks . **:** . Rapids Railway Trail Township Boundary Contour Line

*****• ,

Claim Line Diamond Drill Hole

.19347

RECEIVED MAR 3 1 1999 GEOSCIENCE ASSESSMENT OFFICE

FALCONBRIDGE LIMITED Timmins Exploration

Coral Rapids Limestone - P.N. 8264 42 I/05

DDH PLAN Map 3

Drawn: M.S.C. Supervised: M.S.C.

Date: 03/19/99 Revised: Date:

		P-1212874	
		Hole HOG88-01 449938mE 5590653mN Az 0°, Dip90° 32, 35 H.	
		P-1216623	
5590000mN			
		Hole HOG97-02 451257mE 5589827mN	
5589000mN			
		Holé HOG97-01 451573mE 5588689mN Az 0° Dip -90° 38' M	
	449000		

Magnetic Declination 11° 39' W in 1998

Astronomic North

Magnetic North

Map oriented astronomic north. Projection Universal Transverse Mercator North American Datum 1927 Zone 17

	Scale 1: 5000	
0	0.2	0.4
	Kilometers	

LEGEND

and a second second second second second second second second second second second second second second second

.....

.

1

		Rivers, Streams, Creeks
		Rapids a trade of the second
		Railway
		Trail
ļ	• <u>•••</u> ••••••••••••••••••••••••••••••••	Township Boundary
		Contour Line
		Claim Line
		Diamond Drill Hole

.

-

.

٩.

· •·

2.19347

RECEIVED MAR 3 1 1999

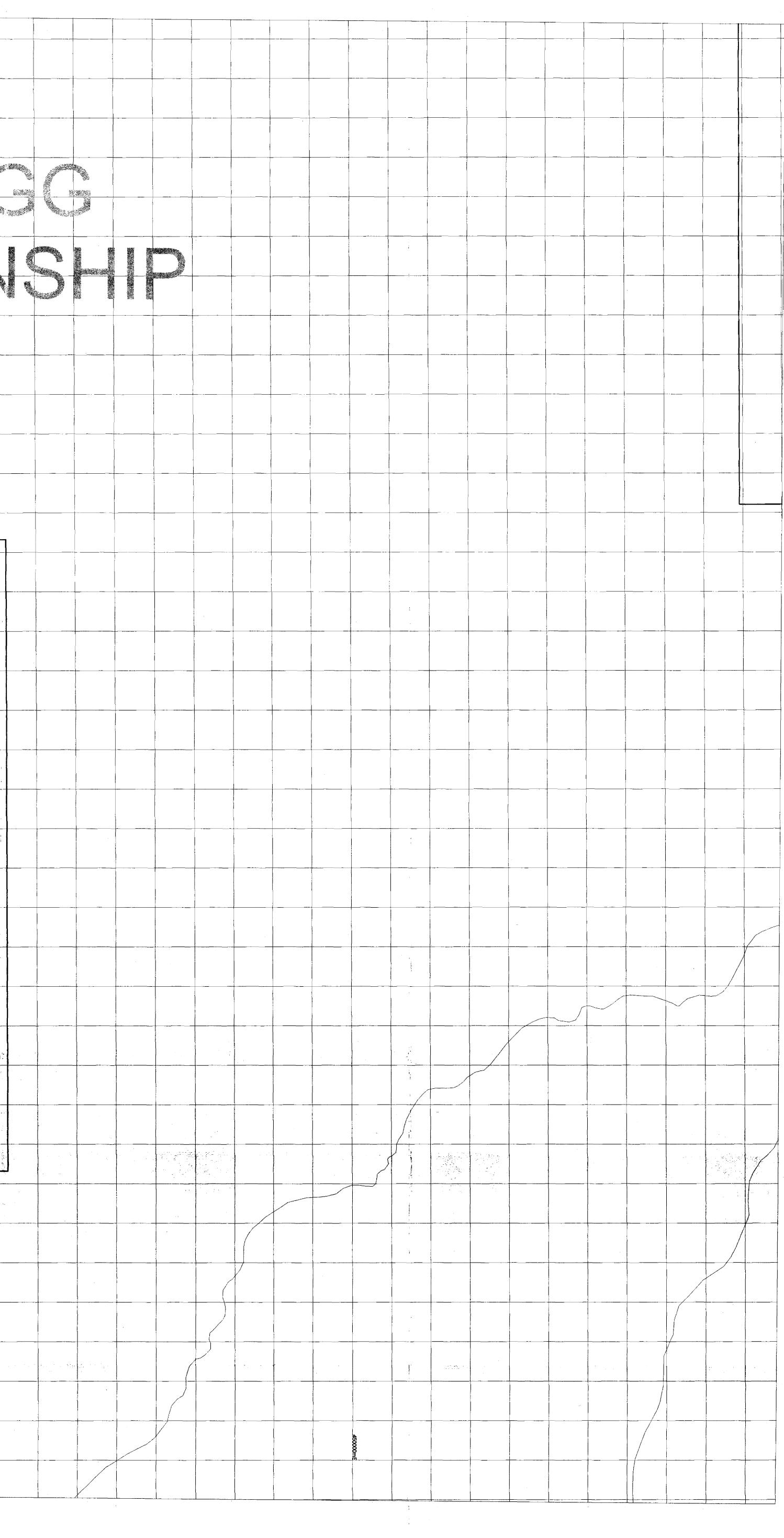
GEOSCIENCE ASSESSMENT

FALCONBRIDGE LIMITED Timmins Exploration Coral Rapids Limestone - P.N. 8264 42 I/05

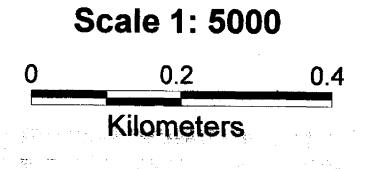
DDH PLAN Map 4

Drawn: M.S.C. Supervised: M.S.C. Date: 03/19/99 Revised: Date:

-5587000mN			
5586000mN-			
			le HOG75-01 3345mE 35329mN 0°,-Dip90° M.
5585000mN			
5584000mN			
		Ma	Astronomic North


42105NE2001 2.19347 HOBSON

260


والمحادثة والمرجر المحاد

and the second second

Magnetic Declination 11° 39' W in 1998

Map oriented astronomic north. Projection Universal Transverse Mercator North American Datum 1927 Zone 17

------......

.....

L j.

}

1

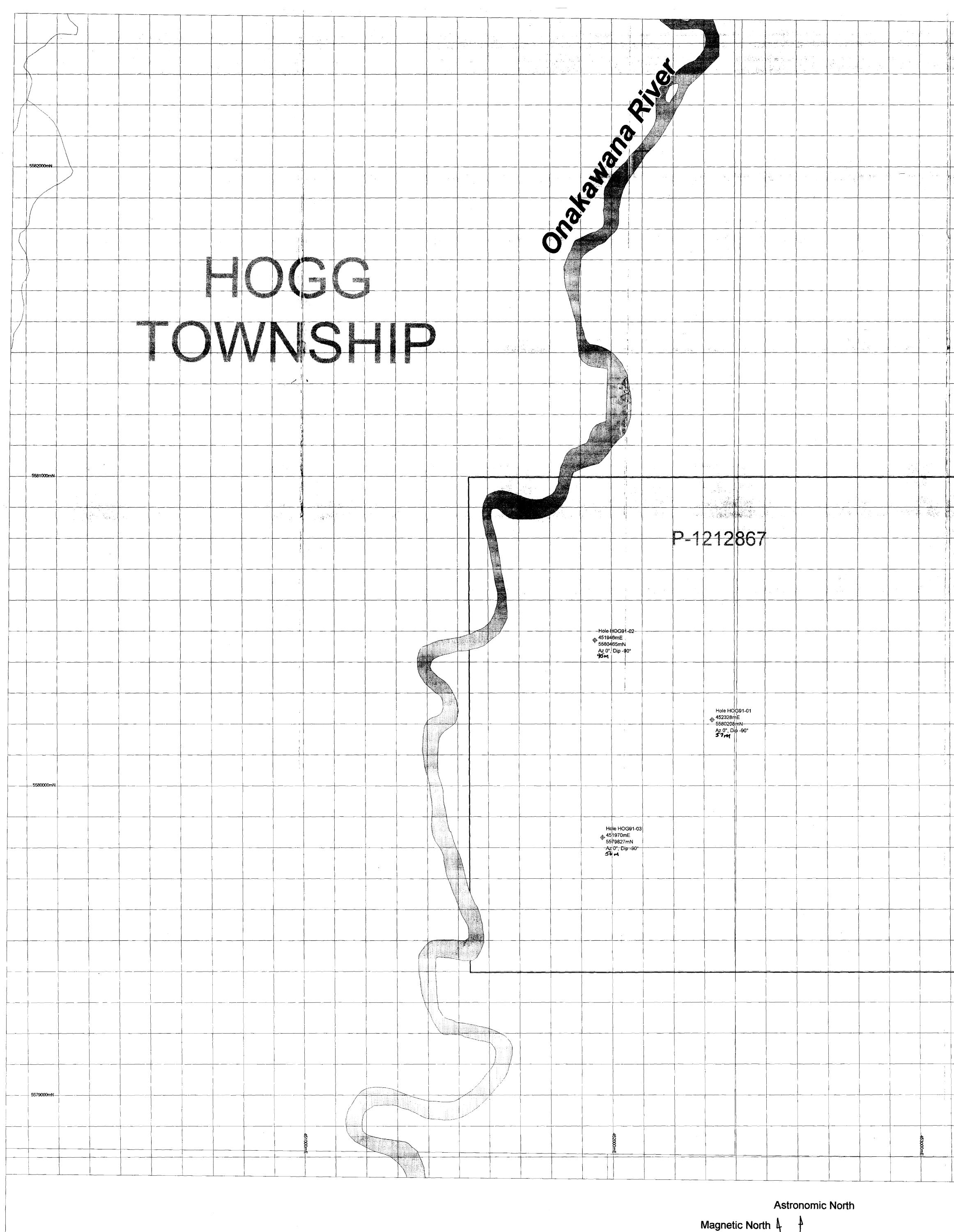
١

LEGEND

Rivers, Streams, Creeks Rapids Railway Trail Township Boundary Contour Line Claim Line

Diamond Drill Hole

•



2.19347 RECEIVED MAR 3 1 1999 GEOSCIENCE ASSESSMENT OFFICE FALCONBRIDGE LIMITED **Timmins Exploration**

Coral Rapids Limestone - P.N. 8264 42 I/05

DDH PLAN Map 5

Date: 03/19/99 Drawn: M.S.C. Supervised: M.S.C. Revised: Date:

42105NE2001 2.19347 HOBSON

270

}

Magnetic Declination 11° 39' W in 1998

-

	in second		n an an an an an an an an an an an an an		T	an gata a sana	an ann								
							<u>}</u>		<u>.</u>		<u> </u>				•
1									1993 - 1995 - 19						
						·			;						
												1			
						n Second Second Second Second							n an an an an an an an an an an an an an		
) - ' · - [-] -] -]			 			
		 	· · ·				· · · · · · · ·				en en en en en				
		 										~			
 				200 - 200 		$ \rightarrow $									
					Α							* <u>1</u> * 1		· · · · · · · · · · · · · · · · · · ·	· · · · ·
									• - : - : - :				- - -	-	
مر المرکن العالمي مورکن الم مرکز العالمي مورکن الم									۱ ۱					N.	
a jai jaan							· · · ·			-		: ::. :			
and a second second second second second second second second second second second second second second second												· · · · ·			
											:				
1							·								
-								 							
1													·		
							 		i						
		· ·			 				;			-		· · ·	
		 	·												
;															
,															
	<u> </u>						F,,, _,								
i															
1							 		· · · · · · · · · · · · · · · · · · ·						
:															
								 4540							
 ;															

Map oriented astronomic north. Projection Universal Transverse Mercator North American Datum 1927 Zone 17

-

	Scale 1: 5000	
0	0.2	0.4
L		

		ang ng sa sa sa sa sa sa sa sa sa sa sa sa sa	2		2	2 2				in a deserva esta deserva deservadores de servadores de servadores de servadores de servadores de servadores d Referencia	
•											
1											
	·									والمعارفة المراجع	
								in a fa an Si si		n an 19 Mar an bhainn an an an an an an an an an an an an a	
-				1							
					~	м. •					
							5 .				
		 						LE	GEND		
					1						
						· ·			Rivers, Streams, Cr	eeks	
									Rapids		
							///		Railway		
		·				+					
					د. در ا				Trail	,	
									Township Boundary	n an sharan an	
			 						Contour Line		
					et est		/	2			
									Claim Line	en en gerennen en state film of en state Transformen en state film of en state state Transformen en state state state state state state state state state state state state state state state state	
						دينة الي. الحي المتحدة	•		Diamond Drill Hole		
					4. 						
								• .			
							• • •				
									• •		
					;						
	1										
						• • •					
-	·										
			•			2 - 1 - 5		.	والمرجع المسجور ومصحات معتدم والمتعارية	n - Al Star	
1											
I											
1											
_											
									1	100AP	
										, 19347	
-				155000mE		-				RECEIVED MAR 3 1 1999	
) }				BEDSCIENCE ASSESSMENT OFFICE	
		_									
						: } }					
						1					
						}]	FALCONBRIDO	GE LIMITED	
						ı	Q)	Timmins Exp	loration	
						1 1		C	oral Rapids Limestone	- P.N. 8264	
									42 1/05		
									DDH PLA	N	
									Map 6		
							Drawn	n: M.S	S.C. Date:	03/19/99	
		·	····				Super	rvised	: M.S.C. Revis	ed: Date:	