

421 16NW0006 83. 1-127 CENTRE PT SOUTHBI

010

CORAL RAPIDS PROJECT

0-16

PROGRESS REPORT AND RECOMMENDATIONS

BASED ON DRILLING PROGRAM FEBRUARY TO MAY 1978

B. C. ASBURY MAY 1978 KERR ADDISON MINES LIMITED

NOTE: ALL DRILL CORE LOCATED AT TIMMINS, ONTARIO.

Ø10C

TABLE OF CONTENTS

s,

- States

٩.

1.	Background	rag -initial fieldwork -previous work l	
2.	Ground Acquisition		2
3.	Geology	-Precambrian basement rocks -Devonian rocks 2	
4.	Basement Structures		3
5.	Drilling Program		
6.	Radiometric Drill Hole Pr	obing	4
7.	Radiometric Response of R	ock Units 4	
8.	Conclusions	4,	5
9.	Recommendations		6
10.	Appendices		11

LIST OF FIGURES AND TABLE

Figure 1	Location map, geology, exploratory licence of occupation areas
Figure 2	Facies map of Lower Devonian rocks and regional cross-section
Figure 3	Structural elements of the Kapuskasing Gneiss Belt
Figure 4	Structures and basement contours of licence areas
Figure 5	Data sheet and schematic diagram for radiometric down-the-hole probe
Figure 6	Basement contours in Coral Rapids area
Table 1	Summary - Drill Hole Data

CORAL RAPIDS PROJECT

SUMMARY:

Three favourable areas of the Moose River Basin were tested by drilling for the presence of radioactivity in the Lower Devonian Sextant Formation, a continental clastic sedimentary wedge overlying Precambrian basement rocks. An anomalous horizon within the Sextant Formation (20 metres thick with 0.05 - 0.1 lb./ton U_30_8) was intersected along the margin of a 10 km wide basinal structure.

BACKGROUND:

A field examination of exposures of the Sextant Formation at Sextant Rapids and Coral Rapids indicated the presence of up to 8 times background radioactivity in some beds of the reddish and greenish, gritty to conglomeratic Sextant Formation. No other good exposures of Sextant Formation were located. Possible Sextant occurrences to the east in Quebec were briefly visited.

A review of literature provided the following information: The Sextant Formation has been recognized since 1916 from the type localities at Sextant and Coral Rapids, but interest in the Moose River Basin was aimed mostly towards Cretaceous lignite, and Devonian limestone and gypsum deposits as well as the potential for oil and gas.

Several drill holes in the 1930-1950 period by mining companies and the Ontario Department of Mines outlined the basic stratigraphic relationship of the Moose River Basin. In 1967 the Geological Survey of Canada undertook Operation Winisk which included a detailed review and reinterpretation of the Devonian stratigraphy of the Hudson Platform.

In 1973-74 Aquitaine Company of Canada carried out a geophysical and drilling program to profile the granitic basement and test overlying Devonian strata for Pb-Zn mineralization in an area between the Mattagami and North French Rivers about 40 km north of Coral Rapids. A high resolution airborne magnetic and ground seismic and resistive surveys were followed by 13 drill holes to basement. Down-the-hole logging included I.P., resistivity and velocity methods. Attempts at gamma ray logging failed due to apparent equipment problems. An interpretation of this work included proposed basement faulting and horst structures as well as a facies map of the Sextant Formation.

GROUND ACQUISITION:

A portion of the Moose River Basin (Figure 1) has been withdrawn from staking by the Ontario government because of proven and potential lignite

deposits in the Cretaceous rocks. As a result, significant areas of interest are removed as exploration targets although the underlying Sextant Formation is unrelated to the Cretaceous lignite-bearing horizons.

An exploratory licence of occupation (No. 14879), covering four parts totalling 201,500 acres, was obtained from the Ontario government effective February 23, 1978.

The most promising area is in the vicinity of Sextant Rapids and is covered by two of the four licence areas. The known radioactivity at Sextant Rapids made this area a prime drill target.

Another area near Moose River Crossing lies near the postulated northern limit of the Sextant Formation; however, 1929-39 drill hole data indicated 6.7-10.0 m of "conglomeratic breccia" lying on the Precambrian basement.

A third target area lies north of the Precambrian limit near the Partridge River. Previous drilling had indicated at least 21 m of Sextant Formation within 90 m of surface.

GEOLOGY:

The Precambrian basement rocks in the area are part of the Kapuskasing Gneiss Belt (Figure 2), a structural zone of Archean granulite facies rocks and anorthosite cutting northeasterly across predominantly easterly structural trends. It is characterized by abrupt increases in metamorphic grade, wide mylonitic zones, vertical fault tectonics, a profusion of dyke swarms and localization of mafic intrusions and carbonitite bodies (Gibb, 1978).

During the early Devonian, faulting of the Precambrian basement occurred along the southern margin of the Moose River Basin due to uplift of the Fraserdale Arch (Figure 3) to the south. The resulting highland area extended along the southern margin of the basin as the sea transgressed onto the Hudson Platform. The Sextant Formation, clastic non-marine sandstone, siltstone, shale and conglomerate, was deposited at the foot of the up-faulted Precambrian scarp. To the north, the Sextant Formation intertongued with its marine equivalent, the Stooping River Formation which also transgressively overlapped the Sextant to rest directly upon the Precambrian at some places along the southern limit of the Moose River Basin.

BASEMENT STRUCTURES:

Regional faulting patterns in the Moose River area (Figure 4) outlined by MacLaren et al. (1968) are supplemented by a more localized and detailed basement contour interpretation by Aquitaine of Canada Ltd. (1974) based on a high resolution airborne magnetometer survey. The Moose River Crossing licence area lies on a NW-trending anticlined structure and is cut along its western edge by a major northtrending fault.

The Partridge River licence area is cut at its western edge by at least two major NNE-trending parallel faults extending northwards to James Bay and which are related to the Kapuskasing Gneiss Belt. An eastward magnetic anomaly across the northern portion is interpreted as a diabase dyke by MacLaren et al. (1968).

The basement structures in the Coral Rapids licence areas were interpreted in detail by Aquitaine. An ENE fault about 8 km northwest of the area cuts across to intersect the major NNE fault zone to the east. The Coral Rapids area is part of an unfaulted wedge between these two fault zones. Basement contours derived from the high resolution magnetic survey indicate a basinal structure (open to the north) in the northern portion of this licence area (Figure 4).

DRILLING PROGRAM:

From February to May 1978 Bradley Brothers Drilling Ltd. of Timmins undertook to drill nine holes totalling L140 meters. Primary access to the area was provided by the Ontario Northland Railway line from Cochrane to Moosonee as well as a winter road to Otter Rapids maintained by Ontario Hydro to service the hydroelectric generating station there. Helicopter support contracted from Huisson Aviation, Timmins, was used to service and move crews and equipment to locations away from the railway line.

Due to the poorly consolidated nature of the Sextant Formation, most drilling was done with an N tricone bit.

An Exploranium GR-410 gamma ray spectrometer, used with a motorized winch assembly and a 3.81 cm diameter probe, was used to log the holes for radioactivity (see Figure 5).

RADIOMETRIC DRILL HOLE PROBING:

ž.

Upon completion of drilling, B casing was put down the drill hole to prevent blockage or caving during probing. Each hole was measured for total count radioactivity as the probe was descending at about 3 m/min. If anomalies were encountered, then detailed readings for U, Th or K were later made at about 1 m/min. probe speed. Calibrations of the probe to correct for temperature or time variations were made once or twice during each run using the barium source in the probe, although fifteen minutes in the hole was sufficient to equilibrate the system and stabilize the readings. Analog readout was continuously recorded on a paper chart recorder.

Approximately 2-3 hours were required to log an average hole after which the drillers could pull the casing and continue moving to the next drill site.

No quantitative values have been applied to the radiometric profiles since there has been no core recovery from the loose, pebbly radioactive zones of the Sextant Formation. The only assay value obtained from anomalously radioactive core was in hole CR-78-1 where 0.20 meters of a mylonitic shear zone in basement rocks assayed 0.1 lb/ton U_30_8 . A comparison with the total count peak for this zone is a qualitative guide to the significance of other anomalous areas.

Copies of the drill logs and radiometric charts are included in Appendix 1.

RADIOMETRIC RESPONSE OF ROCK UNITS:

In overburden conditions, swampy and wet ground resulted in a very low, quiet total count response in the first 1-3 meters of holes 3b, 4, 5, 6 and 7. The other holes, on higher, drier locations, show typical overburden response throughout.

Overburden response was generally uniform, exhibiting moderate local fluctuations. However, holes 5 and 6 showed a definite variation in the overburden radioactivity. Clay-rich overburden had low background radiation, while coarser sandy overburden had higher values.

Sextant Formation showed a characteristic radiometric response easily distinguished in most cases from overburden or limestone. Distinct and repeatable but weak variations occur throughout with a higher average value than other units. Anomalous zones can be correlated to the coarsest, conglomeratic, poorly consolidated zones (which do not make core). Significant anomalous zones occurred in holes CR-78-1 and CR-78-2.

The Moose River, Kwatabohegan and Stooping Formations (predominantly limestone, dolomite and gypsum units) show little response due to their very low radioactivity. Only the detrital quartz beds in the lower portion of the Stooping River Formation (hole 8) show any radioactive response.

CONCLUSIONS:

1. The only anomalous zones encountered within the Sextant Formation occur in holes CR-78-1 and 2 in the vicinity of Sextant Rapids. Like the riverside outcrop exposures, the anomalous zones appear to be associated with the coarsest arkosic conglomerate zones. No core recovery was possible in these zones due to the poorly lithified nature of these arkosic rocks. Based on comparison with an assay value obtained from anomalous core in the granitic basement in hole CR-78-1, it would appear that the best Sextant intersections would grade about 0.1-0.2 lb. U_30g/ton . - 5 -

2. There was no accumulation of any radioactive materials at the base of the Paleozoic rocks (i.e. Sextant Formation) where they overlay the weathered Precambrian basement. The best anomaly (hole Cr-78-2) is at least 30 m above the basement. Perhaps, coincidently, this was the only hole with a series of lamprophyre sills up to 3.5 m thick lying above the anomalous zones, suggesting the possibility that the dykes acted as an impervious cap to downward percolating meteoric waters.

3. There is not sufficient data to correlate stratigraphic variations of the Sextant Formation in the Moose River Basin. From exposures at Sextant Rapids it is evident that there are many localized sedimentary sequences representing rapid deposition producing immature sediments. There is no relationship between the present thickness of Sextant Formation and the depth to or the elevation above sea level of the Precambrian basement. This comparison included the data from eight Aquitaine holes that intersected Sextant Formation. The environment appears to have been primarily one of oxidation; however, carbonaceous horizons of accumulated plant remains, as seen in the Sextant Rapids exposures, are reducing environments.

4. The symmetrical nature of the anomalies in holes CR-78-1 and CR-78-2 suggest the possibility of a roll-type deposit which has a C-shaped vertical section formed by a solution front of oxidizing ground water that has transported uranium along a favourable bed to the site of deposition.

RECOMMENDATIONS:

à.

ŝ.

A minimum expenditure of \$237,500 is required prior to January 3, 1980, as well as an annual rent of \$4,000 (less an amount of approximately

credited from excess expenditures in 1978). A minimum of 10% of each yearly dollar expenditure is required on each licence area. As well, not less than 10% of the land area must be surrendered on or before December 3, 1978.

It is recommended that the Moose River Crossing area (part 3) should be dropped entirely before December 3, 1978. It appears to be unfavourable due to the absence of the continental clastic rocks of the Sextant Formation. The initial interest was based on literature references to "conglomerate breccia" overlying the Precambrian, but apparently this term applied to detrital quartz beds or fossiliferous limestone debris at the base of the Kwatabohegan Formation. On this basis there is no further interest in the area unless the major fault along the western edge is related to uranium that has followed the basement fault system and has been redeposited.

The Partridge River licence area (part 4) was examined in a very preliminary fashion. While there is no evidence so far of basinal concentrations

or fluvial channelways within the Sextant Formation (whose northward extent is unknown), the possibility of their existence remains. Also, the intense fault system extending northwards through the western portion of the area could be a depositional site for secondary uranium deposits resulting from oxidative destruction of enrichment in Sextant horizon and the subsequent redeposition of the uranium in and along these fault zones.

A ground vertical loop EN program would determine the presence of graphitic fault zones (reducing depositional environments for remobilized uranium from the Sextant Formation).

Since the overburden appears to be only about 20 metres thick overlying the Sextant Formation, it is possible that a lay-out of Track-Etch detectors could sense uranium enriched channels or zones within the Sextant Formation.

These ground surveys could be carried out before December 3, 1978, at which time a final decision could be made as to whether or not to drop the Partridge River Area. If any of it is retained, it will be subject to a minimum expenditure of \$23,750 in 1979. This money could not go very far in a drilling program and would be better spent to adequately drill-test the Coral Rapids area.

In summary, there is no drill target at the present in the Partridge River area and more specific information from ground surveys is required to justify retaining it.

The Sextant-Coral Rapids area remains the main target of interest. The anomalous intersections of holes CR-78-1 and CR-78-2 are in coarse arkosic beds at the SW edge of a basin extending NNW (Figure 6). The apparent absence of faulting of the basement suggests that the original basinal or fluvial features are still preserved. The possibility of a thickening of these favourable horizons towards the basin and downslope concentration of uranium along fluvial channelways must be tested by drilling.

A drilling program to be carried out during the winter of 1978-1979 will involve at least 10 holes of approximately 150 metres each. Initially a fence of holes will cross-section a line between CR-78-1 and CR-78-2 followed by holes across the basinal structure to trace uranium enriched channels originating near hold CR-78-2. Suggested locations are indicated on Figure 6. At a projected cost of \$150 per metre drilled, a 10-hole program would fulfil the required expenditure for 1979. TABLE 1

SUMMARY - DRILL HOLE . DATA

, -----

HOLE	TOTAL DEPTH	OVERBURDEN	SEXTANT FORMATION	DEPTH TO PRECAMBRIAN	COMMENTS
CR-78-1	89.3 m	54.0 m	27.0 m	81.0 m	BQ Core 83.8-89.3 m. Moderate anomalous zone in Sextant Formation. Mylonitic shear zone in basement rocks assaying 0.10 lb/ton U ₃ 0 ₈ over 0.20 m.
CR-78-2	103.6 m	24.4 m	78.0 m	102.8 m	BQ Core 24.4-60.0 m. Good anomalous zone of radioactivity as well as isolated narrow zones.
CR-78-3a	111.8 m	51.0 m	+37.7 m	not reached	BQ Core 74.1-111.8 m. Hole abandoned due to caving in Sextant at 111.8 m. Not probed with spectrometer.
CR-78-36	128.7 m	50.0 m	~58.0 m	126.0 m	Narrow weakly anomalous zone.
CR-78-4	134.5 m	~132.0 m	none	∞132.0 m	Apparently all overburden, no Sextant or other Devonian units. No radioactivity above background.
CR-78-5	175.5 m	83.5 m	73.0 m	174.5 m	No anomalles. Typical erratic background radioactivity of Sextant Formation.
CR-78-6	149.3 m	68.0 m	20.0 m	145.5 m	No significant anomalles. Typical background values of Sextant Formation,
CR-78-7	90.5 m	20.2 m	32,5 m	· 87.5 m	No significant anomalles. Typical background values of Sextant Formation.
CR-78-8	157.0 m	40.3 m	none	151.5 m	NQ Core 40.3-104.2 m, BQ Core 104.2-157.0 m. Middle and Lower Devonian rocks of the Moose River, Kwatabohegan and Stooping River Formations, No Sextant Formation,

BIBLIOGRAPHY

1 -

1973 and

1974 Aquitaine of Canada Ltd., reports and maps on file at Ontario Dept. of Mines Assessment Files Office.

Dyer, W. S.

1928 Geology and Economic Deposits of the Moose Basin, Ont., Dept. Mines, Annual Report, V.37, Pt. 6.

1965

j,

Geological Survey of Canada, Ontario Department of Mines, airborne magnetic survey, Provisional Map 7117G, Moose River, Ontario, 1'' = 4 miles.

Gibb, R.A.

1978 A gravity survey of James Bay and its bearing on the Kapuskasing Gneiss Belt, Ontario, Techtonophysics, 45(1978), T7-T13.

Hogg, N., Satterley, J., Wilson, A. E.

1953 Drilling in the James Bay Lowland, PEL - Drilling by the Ontario Department of Mines, Ont., Dept. Mines, Annual Report, 1952, V.61, Pt. 6.

MacLaren, A. S., Anderson, D. T., Fortescue, J. A. C., Gaucher, E. G., Hornbrook, F. H. W., Skinner, R.

1968 A preliminary study of the Moose River Belt, Northern Ontario, Geological Survey of Canada, Paper 67-38.

Remick, J. H., Gillain, P. R., Durden, C. J.

1963 Preliminary report on the Rupert Bay - Missisicabl River Area, Quebec Dept. of Natural Resources, Preliminary Report No. 498.

Sanford, B. V., Norris, A. W., Bostock, H. H. 1968 Geology of the Hudson Bay Lowlands, Geological Survey of Canada, Paper 67-60.

Sanford, B. V., Norris, A. W.

1975 Devonian Stratigraphy of the Hudson Platform, Pt. I and II, Geological Survey of Canada, Memoir 379.

APPENDIX

Drill Hole Radiometric Data and Logs

Hole Number	Channe 1
CR-78-1	total count
CR-78-2	total count
CR-78-2	potassium
CR-78-2	uranium
CR-78-2	thorium
CR-78-3a	drill log only
CR-78-3b	total count
CR-78-4	total count
CR-78-5	total count
CR-78-6	total count
CR-78-7	total count
CR-78-8	total count

DIAMOND DRILL RECORD LogoED BY B. C. Asbury Contractor: Bradley Bros. Drilling, Timmins, Onterio PROPERTY Coral Rapids - Project 0-16, northeast side of ONR tracks at mile 96, 0.3 miles S.t. of Coral Stn. D.D.H. No. CR - 78 - 1 PAGE 1/1 LATITUDE S0 ⁰ 13 ^M BEARING OF HOLE							· · · ·			
LATITUDE _ 50 ⁰ 13'N BEARING OF HOLE STARTED _ Feb. 17/78 Image: Claim No DIP OF HOLE _ vertical _ COMPLETED Feb. 21/78 DEPARTURE 81°40'16'N DIP OF HOLE _ vertical _ DEPTH _ 89.3 m DIP TESTS _ 89.3 m - vertical _ DEPTH _ 89.3 m DIP TESTS _ 69.40'16'N _ DIP OF HOLE _ vertical _ DEPTH _ 89.3 m E. CLAIM No DIRECTION AND DISTANCE FROM NE. CLAIM POST _ GRS401 Scint. background 18 cos PROM TO Core: BQ, stored at Otter _ DESCRIPTION _ SAMPLE _ METRES _ SAMPLE _ ASSAY _ DIP TESTS _ Bailds _ DESCRIPTION _ SAMPLE _ METRES _ ASSAY _ DIP TESTS _ D	DIA		OND DRILL RECORD LOGGED BY B. C. Asbury	<u> </u>	Contract	or: Br				
DEPARTURE 81940'16'W DIP OF HOLE vertical COMPLETED Feb. 21/78 IN DIRECTION AND DISTANCE FROM ELEVATION 110m. A.S.L. DIP TESTS 89.3 m - vertical DEPTH 89.3 m. No. CGR401 Scint. background 18 cps Mole logged with gamma ray spectometer Core: 80, stored at Otter DESCRIPTION SAMPLE INTES SAMPLE No. CGR401 Scint. background 18 cps 0 ~81.1m N CASING - overburden conditions, probably Sextant Formation, 54 - 81.1m No. INTES SAMPLE ASSAY 81.1m 83.8 GRAVITIC BASEMENT - drilled with tricone bit, granite chips Ib/ton Ib/ton Uggg 83.8 66.7m GRANITIC PEGNATITE - pink, c. gr., quite massive, no foliation, 2% mafics, 4801 83.80 84.45 0.65m ni1 - - - - Ib/ton 11 Ib/ton Ib/ton - - - - - Ib/ton 11 Ib/ton Ib		-			Stn.		i 👗			
ELEVATION 110m. A.S.L. DIP TESTS 89.3 m vertical DEPTH 89.3 m. NE. CLAIM POST Hole logged with gamma ray spectometer GRS401 Scint. background 18 cps GRS401 Scint. background 18 cps PROM TO Core: 80, stored at Otter DESCRIPTION SAMPLE NE. CLAIM POST 0 ~81.1m N CASING - overburden conditions, probably Sextant Formation, 54 - 81.1m TO Ib/ton Im/diamon 81.1m 83.8 GRAVITIC PEGMATITE - drilled with tricone bit, granite chips Ib/ton Ib/ton Im/diamon 83.8 66.7m GRANITIC PEGMATITE - pink, c. gr., quite massive, no foliation, 2% mafics, 4801 83.80 84.45 0.65m nil - - - - 4801 83.80 84.45 0.65m nil -							I NJ			
METRES Core: BQ, stored at Otter Babids DESCRIPTION SAMPLE No. METRES FROM SAMPLE FROM METRES FROM SAMPLE FROM MARTES SAMPLE LENGTH ASSAY 0 ~81.1m N CASING - overburden conditions, probably Sextant Formation, 54 - 81.1m	ELEVATION	<u>110m.</u>	A.S.L. DIP TESTS <u>89.3 m - vertical</u> DEPTH <u>89.3 m</u> .				-			
NomNoNomNoNomNoNomNoN		ES		SAMPLE	MET	RES			_	cps
81.1m 83.8 GRAMITIC BASEMENT - drilled with tricone bit, granite chips 1b/ton U_3O_8 83.8 66.7m GRANITIC PEGMATITE - pink, c. gr., quite massive, no foliation, 2% mafics, -25% mottled quartz, -25% mottled quartz, - at 84.5m, 20cm of light greenish veins (total 15% of - at 84.5m, 20cm of - at 84.5m, 20cm of light greenish veins (total 15% of - at 84.5m, 20cm of - at 84.5m, 20cm of light greenish veins (total 15% of - at 84.5m, 20cm of - a			Rapids	No.	FROM	то	LENGTH			
83.8 86.7m GRANITIC PEGMATITE - pink, c. gr., quite massive, no foliation, 2% mafics, 4801 83.80 84.45 0.65m nil ~25% mottled quartz, 4802 84.45 84.65 0.20m nil - at 84.5m, 20cm of light greenish veins (total 15% of 4893 84.65 85.10 0.45m nil - at 84.5m, 20cm of light greenish veins (total 15% of 4893 84.65 85.10 0.45m nil - at 84.5m, 20cm of light greenish veins (total 15% of 4893 84.65 85.10 0.45m nil - at 84.5m, 20cm of light greenish veins (total 15% of 4893 84.65 85.10 0.45m nil - at 84.5m, 20cm of light greenish veins (total 15% of 4893 84.65 85.10 0.45m nil - at 84.5m, 20cm of light greenish veins (total 15% of 4893 84.65 85.10 0.45m nil - at 84.5m, 20cm of light greenish veins (total 15% of 4893 84.65 85.10 0.45m nil - at 84.5m, 20cm of light greenish veins (total 15% of 4893 84.65 85.10 0.45m nil - at 84.5m, 20cm of 150 cm of 50cm of very fine grained 4804 86.60 86.90 0.30m nil - at 84.5m, 20cm of 1										
83.8 86.7m GRANITIC PEGMATITE - pink, c. gr., quite massive, no foliation, 2% mafics, 4801 83.80 84.45 0.65m nil ~25% mottled quartz, 4802 84.45 84.65 0.20m nil - at 84.5m, 20cm of light greenish veins (total 15% of very file) 4803 84.65 85.10 0.45m nil - at 84.5m, 20cm of light greenish veins (total 15% of very file) 4803 84.65 85.10 0.45m nil - at 84.5m, 20cm of light greenish veins (total 15% of very file) 4803 84.65 85.10 0.45m nil - rock, up to 0.5cm thick) at 40° t.c.a. 20 cps - - - - - 86.7 87.3m SHEAR ZONE WITH MYLONITIC BRECCIA on either side of 20cm of very fine grained 4804 86.60 86.90 0.30m nil - - - - - - - - - 86.7 87.3m SHEAR ZONE WITH MYLONITIC BRECCIA on either side of 20cm of very fine grained 4804 86.60 86.90 0.30m nil - - - - - - - - - <t< td=""><td>81.1m</td><td>83.8</td><td>GRANITIC BASEMENT - drilled with tricone bit, granite chips</td><td></td><td></td><td></td><td></td><td>1 1</td><td></td><td></td></t<>	81.1m	83.8	GRANITIC BASEMENT - drilled with tricone bit, granite chips					1 1		
- at 84.5m, 20cm of light greenish veins (total 15% of 4803 84.65 85.10 0.45m nil	83.8	86.7m	GRANITIC PEGMATITE - pink, c. gr., quite massive, no foliation, 2% mafics,	4801	83.80	84.45	0.65m			
rock, up to 0.5cm thick) at 40° t.c.a. 20 cps			∼25% mottled quartz,	4802	84.45	84.65	0.20m	nil		
86.7 87.3m SHEAR ZONE WITH MYLONITIC BRECCIA on either side of 20cm of very fine grained 4804 86.60 86.90 0.30m nil 61sic-intermediate dyke material. Up to 45 cps at 87m associated with 4805 86.90 87.10 0.20 0.1 61sic-intermediate dyke material. Up to 45 cps at 87m associated with 4805 86.90 87.10 0.20 0.1 61sic-intermediate dyke material. Up to 45 cps at 87m associated with 4805 86.90 87.10 0.20 0.1 61sic-intermediate dyke material. Up to 45 cps at 87m associated with 4805 86.90 87.10 0.20 0.1 61sic-intermediate dyke material. Up to 45 cps at 87m associated with 4805 86.90 87.10 0.20 0.1 61sic-intermediate dyke material. Up to 45 cps at 87m associated with 4806 87.10 87.60 0.50 nil 61sic-intermediate dyke. near its lower contact with the mylonitic zone. 30 cps 1 1 1 1			- at 84.5m, 20cm of light greenish veins (total 15% of	4803	84.65	85.10	0.45m	nil		
felsic-intermediate dyke material. Up to 45 cps at 87m associated with 4805 86.90 87.10 0.20 0.1 brecciated dyke material (reddish stained fsp matrix and 1/4" carbonate- 4806 87.10 87.60 0.50 ni1 rich dyke) near its lower contact with the mylonitic zone. 30 cps 0 0 0 0 0			rock, up to 0.5cm thick) at 40 ⁰ t.c.a. 20 cps							
brecciated dyke material (reddish stained fsp matrix and 1/4" carbonate- 4806 87.10 87.60 0.50 nil rich dyke) near its lower contact with the mylonitic zone. 30 cps	86.7	87.3m	SHEAR ZONE WITH MYLONITIC BRECCIA on either side of 20cm of very fine grained	4804	86.60	86.90	0.30m	nil		
rich dyke) near its lower contact with the mylonitic zone. 30 cps			felsic-intermediate dyke material. Up to 45 cps at 87m associated with	4805	86.90	87.10	0.20	0.1		
			brecciated dyke material (reddish stained fsp matrix and 1/4" carbonate-	4806	87.10	87.60	0.50	nil		
87.3 89.3m BIOTITE - GARNET GNEISS - dioritic composition, 25-30% total mafics (biotite			rich dyke) near its lower contact with the mylonitic zone. 30 cps							
	87.3	89.3m	BIOTITE - GARNET GNEISS - dioritic composition, 25-30% total mafics (biotite							
<pre>t hb with 1-2% purple garnets), irregular c. gr.</pre>			<pre>t hb with 1-2% purple garnets), irregular c. gr.</pre>							
textures and localized pegmatitic concentrations,			textures and localized pegmatitic concentrations,							
weak foliation at 70-80° t.c.a. 19-20 cps			weak foliation at 70-80° t.c.a. 19-20 cps							

r											
DI	AMC	OND DRILL RECORD LOGGED BY B. C. Asbury		Contrac	tor: E	Iradley [Bros. Li	td., Tim	mins, O	ntario	
PROPERTY	Cora	l Rapids Project 0-16, northeast side of ONR tracks at mile 95			·······	D.D.H	No. CF	R - 78 -	2 P		/5
	50 ⁰ 1:	BEARING OF HOLE STARTED Feb. 23/78 9'6''W DIP OF HOLE vertical COMPLETED Feb. 28/7		-		A c	LAIM N	0		_	
DEPARTUR	E	0'6'W DIP OF HOLE vertical COMPLETED Feb. 28/7	8		~			DN AND			
		A.S.L. DIP TESTS DEPTH DEPTH 103.6m				N	IE. CLA	IM POST	<u>.</u>		
BQ co	re whe	re possible, otherwise N size tricone		500	1.05		·				
FOOTA	TO	DESCRIPTION	SAMPLE No.	FOO	TO	SAMPLE LENGTH			ASSAY		
0	24.4m	CASING			. <u> </u>						
					<u>u</u>	NO SIGNI	FICANT	RADIOAC	TIVE		
24.4	29.0m	SEXIANT FEEMATION DARK RED-BROWN crumbly micaceous siltstone to gritstone with up to 30%				ZONE IN	CORE RE	COVERED			·
	-	irregular patches of unoxidized grey siltstone with talcy				(20 cps	þackgro	und, no	spot va	lues	
		texture. Scattered pebbles (quite weathered and rounded) up			over	22 cps)					
		to lcm diameter. Pseudo crystalline concentrations of buff									
		tan carbonate especially in fractures. No fine bedding texture	2								
		but general variations in texturefrom v. f. silty to gritty	6								
		conglomeritic textures. 20 cps									
		70% lost core 24.4 - 27.4									
29.0	29.4	GRITSTONE - gradational contact into reddish grey (becoming grey down hole)									
		gritstone. 40% sub angular feldspar and qtz frags up to 2mm									
		in light greenish limy matrix. Terminates sharply at 29.4									
		20 cps									
29.4	29.7	MAFIC DYKE - dark, porphyritic (<1mm xtls) dyke rock, probably altered									<u></u>
		lamprophyre. Broken core at upper contact but sharp lower									
		contact at Imm carbonate vein at 85 ⁰ t.c.a. (tr. pyrite). Scatte	red fin	e white	carbona	te vein	s throu	ahout.			
`~	·		• • · · · · · · · · · · · · · · ·	<u>ل_ محمد ما ما</u>		A	·	<u> </u>			

and a second sec

n general state with the second state of the second state of the second state of the second state of the second

DIAMOND	DRILL RECORD	LOGGED BY	
PROFERTY			D.D.H. No. <u>CR - 78 - 2</u> PAGE 2/5
ATITUDE	BEARING OF HOLE	STARTED	CLAIM No
DEPARTURE	DIP OF HOLE	COMPLETED	DIRECTION AND DISTANCE FROM
	DIP TESTS	DEPTH	NE. CLAIM POST

1997 - 1997 - **1**997 - 1997

FOOT	TAGE		SAMPLE	FOOT		SAMPLE	 ASSAY		
FROM	то	DESCRIPTION		FROM	то	LENGTH			
_29.7	29.9	MAFIC DYKE - altered phase of lamprophyre dyke described below			- <u></u>		 		
29.9	30.6	MICROCONGLOMERATE - light buff coloured conglomerate - 35% - 40%					 		
		sub-angular fsp and qtz in limy calcareous matrix.					 		
		- frags up to lcm, maximum size at 30.4, weak banding					 		
		in finer portions. Sharp lower contact at dyke.					 		
30.6	32.77	MAFIC DYKE - dark porphyritic (<1mm) 1amprophyre dyke (as above)			······································				
		- somewhat softer and greyer in altered zone 31.61 - 32.03					 		
		with scattered concentrations of calcite up to 2cm.					 		
32.77	33.19m	GRITSTONE - qtz and fsp sub-angular frags (<2mm) in limy matrix.					 		
		- overall light brown colour					 	<u> </u>	
		- slight increase in frag size downhole, but otherwise no beddir	ng				 		
		or sorting					 		

DÌ	AMO	ND DRILL RECORD LOGGED BY B. C. Asbury							
	Y			· .		D.D.H. No	CR - 78 -	2 P	AG 3/5
ATITUDE	.	BEARING OF HOLESTARTED							
EPARTU	RE	DIP OF HOLE COMPLETED			<		TION AND	DISTAN	CE FROM
		DIP TESTS DEPTH				NE. CL	AIM POST	г	
FOOTAGE FROM TO		DESCRIPTION		FOOTAGE FROM TO		SAMPLE LENGTH	ASSAY		
33.19	36.48	MAFIC LAMPROPHYRE DYKE - scattered carbonate veinlets at ~80°t.c.a. in							
		lower 1m.							
		- brown altered segment 34.02-35.39 with 5cm of							
		gritstone at 34.66							
36.48	37.34	RED MICACEOUS SILTSTONE - graded from silty micaceous texture to gritty							
		texture from 36.48-37.00, silty micaceous textu	ine						
		37.00-37.34, a few green patches - possibly fra							
		or unaltered patches - in coarsest zones							
37.34	38.37	ALTERED MAFIC LAMPROPHYRE DYKE - soft, altered, dark brown-grey Tr. cpy							
		at lower contact							
38.37	38.83	MELANGE of altered dyke material at gritstone.							
38.83	39.01	MUDSTONE - light tan, aphanitic, metamorphosed to micaceous texture							
39.01	40.24	LOST CORE							

OPERT	ſ				r		D.D.H. No.	<u>CR - 78</u>	<u>3 - 2</u> P	AGI	
FITUDE		BEARING OF HOLE	BEARING OF HOLESTARTED					M No	· · · · · · · · · · · · · · · · · · ·		
		DIP OF HOLE	DIP OF HOLE COMPLETED			V		CTION AN	ID DISTAN	CE FR	
νάτια	N	DIP TESTS	DEPTH				NE.	CLAIM PC)ST		
FOOT	AGE TO	DESCRIPTION	DESCRIPTION		FOOTAGE		SAMPLE LENGTH	2A		ASSAY	
.23	44.68m	RED LIMONITIC SILTSTONE to Feldspathic micro	o conglomerate in several								
		indistinctly defined graded so	equences								
		43.28 - 43.62 - grey mudstone metamorpho	sed to talcy, soft rock with								
		some discrete 1mm fsp fra	ags in upper section			···					
.68	49.07	GRADED BEDS OF GREY MUDSTONE	c micro conglomerate								
		- change to the coarsest (1-10	Omm frags) micro conglomerate								
		- usually quite distinct and s	sharp								
		44.81-44.91, 45.42-45.62, 46.15-46.65, 46.2	3-46.73, 46.79-49.07 - all								
		micro conglomeratic zones with limy matrix									
07	58.98	LOST CORE - a few pebbles and broken pieces	of qtz and fsp rocks as well as								
		bits of gritstone									
98	59.13	GRITSTONE - grey feldspathic gritstone, grad	led bed								

	Y		BYB. C. Asbury				D.D.H. No	<u> </u>	<u>- 2</u> F	'A5	/5_
ATITUDI	E	BEARING OF HOLE STARTED						M No			
EPARTU	RE	DIP OF HOLE	COMPLETED					CTION AN	D DISTAN	NCE FR	ЭМ
		DIP TESTS DEPTH					NE.	CLAIM PO	UM POST		
F00 FROM	TAGE TO	DESCRIPTION		SAMPLE No.	FOO FROM	TAGE TO	SAMPLE LENGTH		ASSAY		
59.13	59.77m	GREY MUDSTONE - talcy feeling, dark carbon	aceous (plant fragments) filled	· · · ·						_	
		partings									
		- 7cm of matted plant stems a	at 59.19								
59.77	60.05	MICROCONGLOMERATE - feldspathic, sub rounde	ed frags up to 2mm (rarely lcm)								
		quite cleanly washed ,	almost no fine matrix								+
		END OF CORE RECOVERY									
60.05	99.97	SEXTANT FORMATION continuing, no core reco	very, sludge samples taken every 5 feet	/						<u>+</u>	<u>}</u>
99.97	103.63	GRANITIC BASEMENT									
		103.6m END OF HOLE									

с. на Ад 1. година 1. година 1. година		eren al la companya en la companya de la companya d La companya de la comp	. S		· · · · ·			्रा स्टब्स् स्टब्स् विद्यालय के विद्यालय के विद्यालय के स्टब्स् इन्द्र					
DI	AMC	DND DRILL RECORD LOGGED BY B. C. Asbury	(Contract	or: B	radley Bi	ros Ltd.,	Timmins					
		1 Rapids Project 0 - 16, James Bay Lowlands, Valentine Township		6		D.D.H.	No. <u>CR -</u>	<u>78 - 3a</u> PAGE	of_2				
	50 ⁰ 1	7' N BEARING OF HOLE Vertical STARTEDMarch 1, 19	78			↓ c	LAIM No.	78 - 3a PAGE					
		9'30''W DIP OF HOLE Vertical COMPLETED March 5,		1 NI									
		36.71											
LEVATIO	N9	5 feet A.S.L. DIP TESTS none DEPTH 111.8m, abando 9 meters A.S.L. due to tighter	oned ning				E. CLAIM	POST					
FOOT	AGE TO	BQ Core (stored at Otter Rapids)ESCRIPTION	SAMPLE No.	FOOT	AGE TO	SAMPLE	···	ASSAY					
	168'		1102	TROM									
0	51.2m 176'	CASING	_										
51.2	53.6m	BUFF LIMESTONE - light buff tan colour, fizzes well, about 15% spheroidal	-										
		fossils up to lcm diameter, scattered vuggy and porous											
	107 1	zones ~10% lost core											
176' 53.6	196.3 59.8m	FOSSILIFEROUS LIMESTONE - 60% buff coloured fossils and fossil debris			•								
		(rugose corals, wormy burrows, etc.) in moderately											
		bedded fine grey debris. Individual corals up to											
		9cm diameter but typically 1 - 2 cm, fizzes well,											
		100% core recovery											
196.3' 59.8	243.1 74.1m	LIMESTONE - buff tan, very fine - grained and finely bedded texture, fossils											
		very rare, several gritty grey zones up to 8 cm (some reddish			8 -								
		beds near bottom). Variable fizz - poor to good.											
		Lower 45cm is quartz - feldspar sand to pebbly gritstone in											
		carbonate matrix.											
			_										
									6				
									0				
	ł		- i i	-		_ <u></u>		lllll					

				Duedley Dee	- 1 + J + 7	
	OND DRILL RECORD LOGGED BY B. C. Asbury	-	contractor:	<u></u>	s Ltd., Timmins	
ATITUDE 50°1	Rapids Project 0 - 16, James Bay Lowlands, Valentine Township ' N BEARING OF HOLE Vertical STARTED March 1, 1978 ' N Vertical Vertical Started March 1, 1978	79			<u>CR - 78 - 3a</u> P 1 No	
ELEVATION	'30'' W DIP OF HOLE Vertical COMPLETED March 14, 197 5 feet A.S.L. DIP TESTS none 367' 9 meters A.S.L. DIP TESTS due to tightening	ed	<		CTION AND DISTAN	NCE FROM
FOOTAGE FROM TO	NECTOTOTION (MPLE	FOOTAGE FROM TO	SAMPLE LENGTH	ASSAY	
243.1 367' 74.1 111.8m	REDBEDS - fine to gritty micaceous redbeds, structureless except for					
	gradational variation from clay texture to gritty texture.					
	Scattered grey clots and blobs.					
	260 - 262.7' 79.3 - 80.1m - Grey mudstone, slightly graded bed mudstone → gritstone					
	308 1 - 313.1' 93.9 - 95.4m - Arkose - very crumbly, pink - white angular fragments up to	_				
	2m (40%) in greenish grey fine matrix (no fizz HCl)					
	327 - 337' 99.7 - 102.7m - Arkose 80% sandy uniform fragments. 3m lost core					
	Hole abandoned at 111.8 meters Hole CR - 78 - 3b drilled about 60m to south					
······································						

1		OND DRILL RECORD LOGGED BY B. C. Asbury		Contractor: B		
JEPARTU	E5 JRE8	oral Rapids Project 0-16, James Bay Lowlands, Valentine Township 0°17'N BEARING OF HOLE vertical STARTED March 6, 1°39'30'W DIP OF HOLE vertical COMPLETED March ~99m A.S.L. DIP TESTS none DEPTH 128.7m			N DIRECT	No
F00 FROM	TAGE TO	DESCRIPTION	SAMPLE No.	FOOTAGE FROM TO	SAMPLE LENGTH	ASSAY
		N tricone drilling except for N casing in overburden. Hole probed with spectrometer (total count channel).				
					· · · · · · · · · · · · · · · · · · ·	
		Interpreted Geology				
0 50	50m 68m	Overburden Limestone				
68 126	126m 128.7	Sextant Formation m Precambrian basement				
		- -				
` <u></u>						

D	AM	OND DRILL RECORD LOGGED BY B. C. Asbur	у		Contrac	tor: B	radley B	ros., Timmi	ns, Ontari	0	
PROPER	TY <u>Co</u>	al Rapid Project 0-16, James Bay Lowlands, Pitt Township					D.D.H.	No. CR - 7	<u>8 - 4</u> F	AG	
LATITUD	E50	BEARING OF HOLE STARTED	March 15	5, 1978			A c N	No. <u>CR - 7</u> LAIM No	•		
DEPART	URE819	232'W DIP OF HOLE vertical COMPLETE	D <u>March 20</u>	1978		<		IRECTION A	ND DISTA	NCE FR	MO
ELEVAT	ION~	L40m A.S.L. DIP TESTS DODE DEPTH	134.5m			•	N	E. CLAIM F	POST		
FROM	TAGE	DESCRIPTION		SAMPLE No.	FOO	TAGE TO	SAMPLE		ASSAY		
				110.	FROM						+
		N tricone drilling except for N casing in overburden.									
		Hole probed with spectrometer (total count channel).	-								
			· · · · · · · · · · · · · · · · · · ·								
		Interpreted Geology									
0	132m	Overburden									
132	134.5m	Precambrian basement									
		· · · · · · · · · · · · · · · · · · ·									
					{						
											<u> </u>
L										-	

						os. Ltd., Timmins, O	
•		OND DRILL RECORD LOGGED BY B. C. Asbury oral Rapids Project 0-16, James Bay Lowlands, Valentine Township			<u> </u>	o. <u>CR - 78 - 5</u> PA	
LATITUD	E50°1	18'NBEARING OF HOLEverticalSTARTEDMarch 30.	1978		1 1	NIM No	
		32'W DIP OF HOLE vertical COMPLETED April 9, DOm A.S.L. DIP TESTS DODE DEPTH 175.5m		-		ECTION AND DISTANC	CE FROM
FOO	TAGE TO	DESCRIPTION	SAMPLE No.	FOOTAGE	SAMPLE LENGTH	ASSAY	
			110.			<u></u>	
		N tricone drilling except for N casing in overburden.					
		Hole probed with spectrometer (total count channel).					
		Interpreted Geology					
0	83.5m	Overburden - clay and sand 33-60m, coarser sand 60-83.5m					
83.5	101m	Limestone					
101m	174.5m	Sextant Formation					
174.5	175.5m	Precambrian basement					
		·					
I							

	OND DRILL RECORD LOGGED BYB. oral Rapids Project 0-16, James Bay Lowlands, Hamlet Township	. C. Asbury		Contractor	: Bradley Bros.	<u>, Timmins, Onta</u> R - 78 - 6 P	
	D ⁰ 12'N BEARING OF HOLE vertical ST.					No	
	DIP TESTS DE	-				AIM POST	
FOOTAGE M TO	DESCRIPTION		SAMPLE No.	FOOTAGE	SAMPLE LENGTH	ASSAY	
м то							
	N tricone drilling except for N casing in overburden.						
	Hole probed with spectrometer (total count channel).						
	Interpreted Geology						
) 68m	Overburden						
125.5	Limestone						
5 145.5	Sextant formation						
5 149.3	Precambrian basement						
						-	
						_	

		OND DRI		b LOGGED BY	B. C. Asbury	, 		Contra	tor:	D.D.H	No. CR	- 78 -	7 P	AGE	
				E vertical vertical				-		CLAIM No.					
					DEPTH 90.5m		-	NE. CLAIM POST						9111	
FOOTAGE	E TO		[DESCRIPTION			SAMPLE No.	F00 FROM	TAGE TO	SAMPLE LENGTH			ASSAY		
		N tricone dr	illing except for	N casing in overburden	•										
		Hole probed	with spectrometer	(total count channel).									······.		
0 2	2 0. 2m	Overburden	Interpreted Geolo	<u>gy</u>											
	5m 7.5m	Limestone Sextant_Form	nation						1 				<u> </u>		
87.5 9															
															<u> </u>
										-					

and the second	na na kana na na kana kana kana na na na na kana k Na na kana kana kana kana kana kana kana	۲۰ (۲۰۰۰) ۱۹۹۰ - ۲۰۰۰ ۱۹۹۰ - ۲۰۰۰	n ang at t	en la compe			an Brader Carac	·	en e	e de terre de la companya de la comp
AMC	OND DRILL RECORD LOGGED BY B. C. Asbury									[
			·	<u></u>	D.D.H.	No. <u>CR</u>	- 78 -	<u>8</u> P		3
<u>50°57</u>	V BEARING OF HOLE vertical STARTED May 1/78				CL	AIM No.	•			
RE <u>81°8'</u>	W DIP OF HOLE Vertical COMPLETED May 4/78		,	<		RECTIO	N AND	DISTAN	CE FRO	м
N <u>30</u> me	tresDIP TESTS DEPTH DEPTH				NE	E. CLAH	M POST	-		
tractor:	Bradley Bros., Timmins, Ontario core: NQ 40.3 - 104.2 m, BQ 104.2 - 157									
TAGE TO	DESCRIPTION Core stored at Ministry of Natural Resources, Timmins	SAMPLE No.	F00T FROM	AGE TO	SAMPLE LENGTH			ASSAY		
40.3m	CASING - overburden conditions									
57.8	PREDOMINANTLY GYPSUM AND SELENITE - sugary to crystalline, light greyish; and									
	massive, scattered veins at 90° t.c.a. up to 1cm of selenite crystallized									
	contorted fine bedding often slumped and broken. Unfossiliferous.									
	- no porosity visible									
75.7	DOLOMITIC SILTSTONE - very finely bedded (contorted) buff tan very dolomitic									
	rock, unfossiliferous, some rare wormy mottled textures where massive and									
· .	unbedded. 15% selenite (crystalline veins up to 2cm) and zones up to									
	15cm of sugary gypsum.									
	- no visible porosity							-		1
81.5	AS ABOVE but no selenite or gypsum, zone of fossil debris with 5% porosity									
	as isolated cavities in breccia (79.86 - 80.92m)									
										- -
	A MC Y <u>Cora</u> E <u>50°57</u> RE <u>81°8</u> IT AGE TO 40.3m 57.8 75.7	AMOND DRILL RECORD LOGGED BY _B. C. Asbury Y Coral Rapids - Hudson Bay Lowlands - east side of ONR tracks at about mile 154.8 = 50°57' N BEARING OF HOLE vertical STARTED May 1/78 RE 81°8' W DIP OF HOLE vertical COMPLETED May 4/78 DN 30 metres DIP TESTS	AMOND DRILL RECORD LOGGED BY _B. C. Asbury	AMOND DRILL RECORD LOGGED BYB. C. Asbury YGoral Rapids - Hudson Bay Lowlands - east side of ONR tracks at about mile 154.8 E50°57' N BEARING OF HOLEverticalSTARTEDMay 1/78 RE_B1°8! w DIP OF HOLEverticalCOMPLETED May 4/78 DN 30 metres DIP TESTS	AMOND DRILL RECORD LOGGED BY _B. C. Asbury Y _ Coral Rapids - Hudson Bay Lowlands - east side of ONR tracks at about mile 154.8 E _ 50°57'.N BEARING OF HOLE	AMOND DRILL RECORD LOGGED BY _B. C. Asbury Y _Coral Rapids - Hudson Bay Lowlands - east side of ONR tracks at about mile 156.8 D.D.H. y _Coral Rapids - Hudson Bay Lowlands - east side of ONR tracks at about mile 156.8 D.D.H. so ⁰ 57' N BEARING OF HOLE vertical STARTED May 1/78 a so ⁰ 57' N DEPAH Log May 1/78 Not tracks at about mile 156.8 so ⁰ 57' N BEARING OF HOLE vertical COMPLETED May 4/78 DN 30 metres DIP OF HOLE core: NQ 40.3 - 104.2 - 157 m Not track or importance of the track of at Ministry of Natural Resources, Timmins Not track or importance or NQ 40.3 - 104.2 - 157 m TABE DESCRIPTION Core stored at Ministry of Natural Resources, Timmins Not track or importance or NQ 40.3 - 104.2 - 157 m TABE DESCRIPTION Core stored at Ministry of Natural Resources, Timmins Not track or importance or NQ 40.3 - 104.2 - 157 m TABE DESCRIPTION Core stored at Ministry of Natural Resources, Timmins Not track or importance or Natural Resources, Timmins Not track or importance or Natural Resources, Timmins 40.3m CASING - overburden conditions DESCRIPTION Sample importance or Natural Resources, Timmins Not importance or Natural Resources, Timmins 57.8 PREDONINANTLY GYPSUM AND SELENITE - sugary to crystalline, light greyishi and mass	AMOND DRILL RECORD LOGGED BY _B. C. Asbury Y _Coral Rapids - Hudson Bay Lowiands - east side of ONB. tracks at about mile 154.8 D.D.H.Notracks at about mile 154.8 SD ^O 57' N BEARING OF HOLE	AMOND DRILL RECORD LOGGED BY B. C. Asbury Y Coral Rapids - Hudson Bay Lowlands - east side of ONR tracks at about mile 154.8 D.D.H.No. CR - 78 - S0 ⁰ 57 ¹ M BEARING OF HOLE vertical STARTED May 1728 RE 81 ⁰ 8 ¹ W DIP OF HOLE vertical COMPLETED May 4/78 DIP COF HOLE N J0 metres DIP OF HOLE vertical COMPLETED May 4/78 DIPECTION AND N J0 metres DIP TESTS DEPTH 157 m DIPECTION NO Teactor: Bradley Bros., Timmins, Ontario Core stored at Ministry of NAMELE SAMPLE 40.3m CASING - overburden conditions Ne. FROM TO ENOTACE 57.8 PREDOMINANTLY GYPSUM AND SELENITE - sugary to crystalline, light greyish; and massive, stattered veins at 90 ^o t.c.a. up to lom of selenite crystallized Dipection is information in the selenite crystallized 97.18 PREDOMINANTLY GYPSUM AND SELENITE - sugary to crystalline, light greyish; and massive, stattered veins at 90 ^o t.c.a. up to lom of selenite crystallized Dipection is information in the selenite crystallized 97.5.7 DOLOWITIC SILTSTONE - very finely bedded (contorted) buff tan very dolomitic Dipection is information in the selenite crystalline veins up to 2cm) and zones up to Dipection is information in the selenite is information in the selenite crystalline veins up to 2cm) and zones up to 75.7 <td< td=""><td>AMOND DRILL RECORD LOGGED BY _B. C. Asbury Y _ Coral Rapids - Hudson Bay Lowlands - east side of OIR tracks at about mile 154.8 D.D.H.Na CR 78 - 8 _ P. Startes DIP OF HOLE</td><td>AMOND DRILL RECORD LOGGED BYS. C. Asbury Y Coral Bapids - Hudson Bay Lowlands - east side of ONA tracks at about mile 154.8 D.D.H. No., CR 78 - 8, PAGE</td></td<>	AMOND DRILL RECORD LOGGED BY _B. C. Asbury Y _ Coral Rapids - Hudson Bay Lowlands - east side of OIR tracks at about mile 154.8 D.D.H.Na CR 78 - 8 _ P. Startes DIP OF HOLE	AMOND DRILL RECORD LOGGED BYS. C. Asbury Y Coral Bapids - Hudson Bay Lowlands - east side of ONA tracks at about mile 154.8 D.D.H. No., CR 78 - 8, PAGE

British	AMC	OND DRILL RECORD LOGGED BY B. C. Asbury									
					V. 101811-18-18-18-18-18-18-18-18-18-18-18-18	D.D.H.	No. CR - 78	8 - 8	PAGE_	2/3	
ATITUDE	I	BEARING OF HOLESTARTED				CL	No. <u>CR - 78</u> .AIM No				
DEPARTU	RE	DIP OF HOLE COMPLETED			<	<u> </u>	RECTION AN	ND DISTA	NCE FI	ROM	
ELEVATIO	אכ	DIP TESTS DEPTH			NE. CLAIM POST						
FOOT	TAGE TO	DESCRIPTION	SAMPLE No.	FOOT FROM	AGE	SAMPLE LENGTH		ASSAY			
	115.7	DOLOMITIC LIMESTONE - massive, brown, vague bedding, some vuggy porous zones									
		with brecciated appearance									
		105.8 - 115.7m - even darker brown with 5% lighter brown patches, possible									
		fragments,			· · · · · · · · · · · · · · · · · · ·						
-	- quite a distinct slumped and brecciated texture although bedding not										
		definite									
		- generally not porous except on a very fine scale. Scattered vuggy									
		cavities									
4		- few definite fossils except for pervasive hints of fossil debris									
115.7	140.6	FOSSILIFEROUS LIMESTONE - light tan, finely bedded with fossils (20%) up to 10cm, quite intact and generally unbroken corals									
									_		
140.6	151.5	DETRITAL QUARTZ BEDS - grey, uniformly 0.1mm - 1mm sub angular particles, no bedding, very weak sorting. Scattered zones of fossil debris in upper		· · · · · · · · · · · · · · · · · · ·	··						
		sections - no fossils below 145.6m, fine carbonate matrix throughout.							+		

•	ND DRILL RECORD LOGGED BY B. C. Asbury				D.D.H.	No. <u>CR - 7</u>	8-8 F	A 📻 3
ITUDE	BEARING OF HOLE STARTED							
ARTURE	DIP OF HOLE COMPLETED			<	I NI		AND DISTAN	
VATION	DIP TESTS DEPTH					E. CLAIM F	POST	
FOOTAGE ROM TO	DESCRIPTION	SAMPLE No.	F00 FROM	TAGE TO	SAMPLE LENGTH		ASSAY	1
151.5 157.0m	GRANITIC BASEMENT - gry to pink medium grained granitic rock (10% quartz) wit	h						
	5 - 10% hornblende. Feldspars very altered. (up to 20% in lower part) homplende							
	157.0m END OF HOLE							<u> </u>
	· · · · · · · · · · · · · · · · · · ·			· · ·				
					++			
					1			

Three drill holes, sponsered by Denvison Mines, have been completed since October 14, in the vicinity of Sextant Rapids. The purpose was to obtain samples for assay of anomalous Sextant Formation. A dual tube reverse circulation drill (N-size rods) returned almost 100% of the chips and fines. Attempts to probe two of the holes with the radiometric probe failed due to caving of overburden. One complete radiometric profile was obtained for hole CR-78-10. Samples for all holes are being submitted for U and Th. assay.

HOLE	DEPTH	SEXTANT FORMATION	COMMENTS
CR-78-9	80.8 m	21.9 (?) - 79.2 m	 hole caved when rods pulled so it was not probed. abundant lamprophyre sills.
CR-78-10	80.8 m	24.1 - 77.4 m	 hole probed, moderate to good anomalous zones compared to best previous hole CR-78-2. apparent radiometric adomaly immediately overlying basement. no lamprophyre sills.
CR-78-11	73.2	51.8 - 70.1	 hole caved near top of Sextant Formation so radiometric probing incomplete. no lamprophyre sills.

BCA.

NOTE: ALL DRILL CORE LOCATED AT TIMMINS, ONTARIO.

			 Stars and the stars of the star	na na mananana na manananana na mananana na mananana na mananana manananan
	DRILL RECORD pids Project 0-16	LOGGED E	B. C. Asbury B. McKay	D.D.H. No. <u>CR-78-9</u> PAGE
LATITUDE	BEARING OF HOLE	Vertical	STARTED October 14, 1978	CLAIM No.
DEPARTURE	DIP OF HOLE	Vertical	COMPLETED October 15, 1978	DIRECTION AND DISTANCE FROM
ELEVATION	DIP TESTS		DEPTH 80.8m (265 ft)	NE. CLAIM POST

MFT	TERS		SAMPLE	FOOT	AGE	SAMPLE	 ASSAY		
FROM	TO	DESCRIPTION	No.	FROM	то	LENGTH			
		Drilled by reverse circulation. Logs based on chip sample returns. Accurate					 		
		\pm 0.5 meter. Hole size: N. Samples accumulated and bagged every 1.52m (5.0 ft)					 		
0	4.6	Gravel - Pleistocene gravel							
4.6	21.9	Pleistocene clay - some gravel portions near end (gritty Sextant?)			·····	_	 		
21.9	33.2	Lamprophyre sill - often quite greenish, scattered selenite xtls.					 		•
		- narrow zone of grey siltstone at 25m					 		
		- narrow zone of arkose at 26.5m					 		
33.2	39.8	Siltstone and gritty to pebbly arkose horizons.					 		
39.8	40.5	Arkose, pinkish coarse pebbles up to 4mm diameter.					 		
40.5	40.8	Lamprophyre					 	-	
40.8	41.9	Arkose, often coarse grained, pebbles up to 4mm			_		 	_	
		- light green alteration up to 30% at 40.8m					 		
<u>. </u>		- 5-15% reddish alteration staining					 		
		- isolated siltstone layers					 		
41.9	42.1	Lamprophyre sill					 		

		DND DRILL RECORD LOGGED BY B. C. Asbury B. McKay B. McKay	r		D.D.H. No PAGE						
ATITUD	TITUDE BEARING OF HOLE STARTED						1 No				
PARTURE DIP OF HOLE COMPLETED				~		TION AND	DISTANCE	FROM			
LEVATI	ION	DIP TESTS DEPTH		NE. CLAIM POST							
ME FROM	TERS TO	DESCRIPTION	SAMPLE No.	FOO FROM	TAGE TO	SAMPLE LENGTH		ASSAY			
42.1	43.9	Arkose									
43.9	44.1	Lamprophyre sill			-						
4.1	44.2	Arkose, grey									
4.2	44.3	Lamprophyre sill									
4.3	45.7	Arkose									
+5.7	45.8	Lamprophyre sill									
15.8	46.9	Arkose, green alteration, silty matrix									
16.9	56.0	Lamprophyre, 15% mottled white patches up to 1mm at 46.9m									
		- thin zone arkose at 47.2									
		-10% vaggy calcite with tr. py, sp from 48.8 to 49.2									
		- often a general emerald greenish tinge to Lamprophyre									
		- scattered tr. of py, cpy, calcite at 54.4-54.9									
		- fibrous gypsum vein at 56.0m									
56.0	60.7	Grey mudstone and siltstone with some gritty and pebbly horizons			····						
0.7	64.9	Arkose, medium grained with 15% silty matrix									
54.9	66.0	Arkose, pebbly, no silty matrix, blue qtz, K-fsp grains									
66.0	72.2	Siltstone - traces of grit, brown to reddish in colour - isolated sections									

JIAMOND	DRILL RECORD	GGED BY B. C. Asbury B. McKay	
PROPERTYCoral_	Rapids Project 0-16		D.D.H. No CR-78-9 PAG 3
LATITUDE	BEARING OF HOLE	STARTED	CLAIM No
DEPARTURE	DIP OF HOLE	COMPLETED	DIRECTION AND DISTANCE FROM
	DIP TESTS	DEPTH	NE. CLAIM POST

and the second second

METERS		DESCRIPTION	SAMPLE	FOOTAGE		SAMPLE	ASSAY				
FROM	то	DESCRIPTION	No.	FROM	то	LENGTH					
72.2	73.6	Arkose, reddish									
73.6	74.4	Siltstone, brownish colour									
74.4	76.1	Lamprophyre sill, light green, isolated siltstone horizons									
76.1	76.3	Arkose - red, med. to coarse grained									
76.3	76.8	Lamprophyre									
76.8	77.1	Siltstone, brown									,
77.1	77.3	Arkose									
77.3	78.9	Lamprophyre (?) isolated thin zones arkose, siltstone									
78.9	79.2	Arkose, pebbly, 79.1m - thin red gritstone bed									
79.2	80.8	Gneissic basement rock, 10% mafics, med. grained, altered									
		- rich in pink fsp. xtls, fresher texture by 79.9									
	80.0	END OF HOLE						L			

	کر الایود در والد منطق می الدی از در ا		ي در دو روسونو وروسو در در در در دوسوند است. در دو روسونو روسونو وروسونو است. در دو روسونو روسونو روسونو روسونو در دولو روسونو روسونو روسونو روسونو روسونو روسونو روسونو روسونو روسونو روسو
DIAMOND DRILL RECORD	LOGGED BY	B. C. Asbury	
PROPERTY Coral Rapids Project 0-16		B. McKay	D.D.H. No. CR-78-10 PAGE 1
LATITUDE BEARING OF HOLE	Vertical	STARTED October 17, 1978	CLÁIM No.
DEPARTURE DIP OF HOLE	Vertical	COMPLETED October 18, 1978	DIRECTION AND DISTANCE FROM
ELEVATION DIP TESTS	·	DEPTH 80.8m (265 ft)	NE. CLAIM POST

MET	ERS		SAMPLE	F001	AGE	SAMPLE			ASSAY	<u></u>	
FROM	ТО	DESCRIPTION	No.	FROM	то	LENGTH	· · · · · · · · · · · · · · · · · · ·				
		Drilled by reverse circulation. Logs based on chip sample returns. Accurate	1								
		± 0.5 meter. Hole size: N. Samples accumulated and bagged every 1.52m (5.0 f	"t)				<u> </u>		. 		
0	27.4	Pleistocene overburden, grey clay becoming gritty clay by 24.1m									
		Sextant contact uncertain, likely at 24.1m									
27.4	28.3	Gritty clay with gravelly sections									
28.3	29.4	Red clay and arkose (Sextant Formation) becoming red siltstone by 28.7m									
29.4	30.3	Alternating 0.3m zones brown gritstone and black mudstone									
30.3	31.2	Arkose - red and greenish with some black mudstone									
31.2	35.4	Gritstone, reddish and greenish									
35.4	36	Mudstone, grey to black									
36	37.8	Arkose, 10cm mudstone at 36.6m									
37.8	41.5	Siltstone, mostly red-brown, some red-green mottled textures					-	-			
41.5	41.9	Arkose									
41.9	46.3	Siltstone, dark grey with some reddish									
46.3	49.8	Arkose									
٦.8	51.5	Siltstone, variable grey to brown, often gritty									

		ND DRILL RECORD LOGGED BY Coral Rapids Project 0-16		D.D.H. No	78-10 P	AGE 2		
TITUDE		BEARING OF HOLE	STARTED			CLAIM No.		
PARTU	RE	DIP OF HOLE	COMPLETED		<		N AND DISTAN	CE FROM
ΕγΑτιο	DN N	DIP TESTS	DEPTH			NE. CLAIN	I POST	
METE	RS TO	DESCRIPTION		SAMPLE No.	FOOTAGE FROM TO	SAMPLE LENGTH	ASSAY	
51.5	52.5	Arkose with siltstone rich zone at 52.3m						
52.5	53.6	Siltstone, grey						
53.6	56.4	Arkose	·					
56.4	58.8	Mudstone, very black to grey, scattered arkose fr	om 57.5-58.6					
58.8	60.7	Arkose, <10% fine matrix except for grey siltston	ne 60-60.4m					
60.7	60.8	Mudstone – jet black						
60.8	63.4	Gritstone						
63.4	65.8	Mudstone, black and grey 15cm arkose at 65.2m	·					
65.8	66.6	Arkose						
66.6	68.0	Mudstone, dark coloured						
68.0 70.7	70.7	Alternating siltstone and arkose Arkose						
73.9	77.4	Gritstone and siltstone, reddish	, , , , , , , , , , , , , , , , , , ,					
77.4	80.8	Altered gneissic basement rock						
	80,8	END OF HOLE	· · · · · · · · · · · · · · · · · · ·					

CR78 #10 10 Lneutron activation] SAMPLE ANALYSIS GE Uppm Thlppm) U(ppm) 1 Mppm) × 28 90-95 240-245 X 95-100 245-250 4 330 36 X 100-105 14 15 250-255 X I 105-110 [8] 255-200 X う 大 260-265 в 110-115 100 14 X 115-120 4) 3 32 120-125 15 125-130 11 130-135 135-140 14 140-145 20 2 145-150 メ 17 (150-155 38 Х 39 155-160 160-165 Z 39 39 165-170 1 46 170-175 1 175-180 38 ک 180-185 20 2 185-190 21 ک 190-195 X 20 195-200 X 23 200-205 3 12 19 205-210 Х 210-215 5 27 2 18 215-220 3 13 220-225 225-230 18 230-235 ኦ 27 235-240 2) X

•	DRILL RECORD		BY <u>B. C. Asbury</u> B. McKay	
LATITUDE	s_Project_0-16 BEARING OF HOLE		STARTED	D.D.H. No PAGE
DEPARTURE	DIP OF HOLE	Vertical	COMPLETED October 20, 1978	DIRECTION AND DISTANCE FROM
ELEVATION	DIP TESTS	نہ جہ عن 	DEPTH73.2m (240 ft)	NE. CLAIM POST

The second secon

· · ·

Contractor and the

the sub-strike in the second

ME	TERS		SAMPLE	F00	TAGE	SAMPLE			
FROM	TO	DESCRIPTION	No.	FROM	то	LENGTH			
		Drilled by reverse circulation. Logs based on chip sample returns. Accurate			_				
		± 0.5 meter. Hole size: N. Samples accumulated and bagged every 1.52m (5.0 f	t)						
0	51.8	Gray clay - Pleistocene overburden. Sextant contact uncertain, likely at 51.8r	.						
51.8	56.4	Arkose							
56.4	66.0	Red gritstones and siltstones							
		- granitic(?) boulders 62.2-62.5m and 63.7-63.8m							
66.0	66.1	Siltstone, gray							
66.1	66.8	Arkose							
66.8	69.5	Siltstone, gray, minor grit, (?) granite boulder at 68.6m							
69.5	70.1	Red siltstone							
70.1	73.2	<u> Altered biotite - amphibole gneissic basement, medium fine grained.</u>							,
		- 25% rusty alteration							
	73.2	END OF HOLE							

FIGURE 3 & Facies and thickness of Lower Devonian rocks of southern Hudson Platform (by B. V. Sanford and A. W. Norris).

	CR 78		
	#9		,
SUBGE	SAMPLE ANALYSIS -		
•	U(ppm)	Th(ppm) Ine	ution activation]
110 - 115	3	17	
115-120	2	18	
120-125	x	21	
125-130	1	43	
130-135	×	90	
135-140	3	99	
140-145	2	78	
145-150	2	86	
150-155	3	28	
155-160	1	12	
160-165	5	16	
165-170	2	17	
170-175	3	14	
175-100	3	14	
180-185	1	19	
185-190	2	13	
190-195-	1	35	
195-200	2	16	
200-205	×	16	
205-210	X	23	
210-215	2	29	
215-220	×	22	
220-225	× ×	44	
225-230	×	22	
230-235	\checkmark	27	
235-240	ک	13	
240-245	×	13	
245-250	×	11	
250-255	l	13	
255-260	×	32	
260-265	×	16	

.

- Arte and the

CR-78 1 SLUDGE SAMPLE ANALYSIS - HOLE CR. 78.1) Uppm Th(ppm) Encutron activation] 65-170' 2 B 170-175 10 175-180 メ)4 180-185 7 X 185-190 12 X 190-195 4 6 195-200 9 Х 200.205 ł 12 205-210 14 1 210-215 12 215-220 רו 220-225 13 225-230 30 Х 230-235 12 240 12

KERR ADDISON MINES LIMITED P.O. BOX 91 MERCE COURT WEST CONTO, ONTARIO M5L 1C7

新たい日に

06 83.1-127 CENTRE PT SOUTHBLUFF

900

November 23, 1978.

Hr. Al Stewart, District Manager, Ministry of Natural Resources, Box 190, Moosonee, Ontario. POL 1Y0

Dear Sir:

During the period October 14 to October 20, 1978, 234.8 meters (770.0 ft.) of reverse circulation drilling was performed along the railroad tracks near Coral Rapids.

This completes the 1978 programme.

Yours very truly,

KERR ADDISON MINES LIMITED

D. M. Hendrick, Chief Geologist, Exploration.

DMH:ces

語言にないと言語

The second share an an and the second second second

Ministry of Natural Resources

83.1-127

Your file:

1979 01 09	Our file	192501
		7583.7
		83.1-127
MEMORANDUM TO: Assessment Research Office		

Enclosed is a copy of a report from Kerr Addison Mines Ltd. of

Diamond Drilling performed during 1978 on Exploratory Licence of Occupation 14879 in the Hudson Bay Lowlands.

A duplicate of this report has been sent to Dr. E. G. Pye for his perusal and subsequent forwarding to the Regional Geologist.

J. R. Morton Acting Director Lands Administration Branch

Juin FWM/ms

enc.

1979 01 09

192501 7583.7 V 83.1-127

MEMORANDUM TO: G. D. Spry Executive Co-ordinator Finance & Addministration

Attention: F. Morrell

Exploratory Licence of Occupation 14879 has been voluntarily surrendered by the licensee, Kerr Addison Mines Ltd. effective November 28, 1978. All of the terms and conditions of the licence have been met. You are hereby authorized to return Irrevocable Letter of Credit No. 78/48/2 issued by the Canadian Imperial Bank of Commerce on January 3, 1978 for \$150,000.00.

J. R. Morton Acting Director Lands Administration Branch

FWM/ma

~	n ga gont konstructiv i na sekara. Na sekara		EXPLORATION C	COSTS FOR TH	VEARS HE MONTH OF	1977 + 19	978 19	9	•			•.
L	E STARTED DA	ATE TERMINATED _	F	roject <u>C</u>	ORAL RA	PIDS.	REGION			BUDGET		
		GENERAL	PROPERTY EXAMINATION	GEOLOGY, S) PROSPECTING (GEOPHYSICAL ଅ	ееоснем I сАГ ()	LINE CUTTING	CLAIM STAKE m PROPERTY ACQUISITION	DIAMOND DRILLING (1)	CAMP & ROAD O CONSTRUCTION	TOTAL \$ MONTH	COST \$ YEAR TO DATE
; ; 		B	EX	P G B R	<u> </u>	B		AC PC		<u> </u>		
	Field office overhead Salaries, Wages	64.10		755.20	1,122.88				7,428.65			9370.8:
	Meals, Accommodations Shipping, Tel. & Tel.	169.80		306.34	<u> </u>				1,121.75	<u></u>		1711.3
	Ground Transportation Air Transportation	1,000.31 46.45		109.80			++	······	1,706.52			2816.6
	Assaying Equip., Mtce. & Repair			· · · · ·					778 50			778.5
	Supplies, Provisions Equipment Rentals	58.00		40.11	19.58		++		147.23			<u> </u>
	Option Pay'ts, Finders Fe									**************************************		
	Record, Transfer, Taxes Contract /Consulting	8,001.54							98,667.01	······		<u> </u>
	Legal Sundry			25.75					40.01			- 65.
	TOTAL MONTH YEAR	9342.78		3,59670	1,475.88	· <u>· · · · · · · · · · · · · · · · · · </u>			166.73230			181.147.6
· .	PRIOR YEARS' COST \$		ss Participatio		·····				NET COS	% c 		
	WORK PERFORMANCE DATA (INDICATE: no. Feet, Mile	es)	MONTH YEAR PRIOR	·						·	PROJECT NAME: Co RAPI	

でいい	n an Shaan ta'n alle siya a sagar 1 yayaan ee alaa ahaa ahaa ahaa ahaa ahaa ahaa a	garan na tana ang kang kang kang kang kang kang ka		KLRR	ADDISON MINE: YEAR F MONTH OF	LIMILU	19. (1997) (1997) (1997) 		en gran an an tha ann an Anna Anna An	an ang ang ang ang ang ang ang ang ang a	git i se ten ag e s	
LE.	STARTED DATE	TERMINATED			• .			Srta	rio	BUDGET		
			z	(A) 5 2	(B) 4	(2) Hr	CUTT ING	(E) NO	(F)	(G) OV I ON	TOTAL	COST
		GENERAL	PROPERTY EXAMINATION	GEOLOGY, PROSPECTING	GEOPHYSI CAL	GEOCHEMI CAL	LINE CUTT	CLAIM STAKE PROPERTY ACQUISITION	DIAMOND DRILLING	CAMP & ROAD D CONSTRUCTION	\$ Month	\$ YEAR TO DATE
	Fleld office overhead											
	Salaries, Wages			627.00					923.00			1,55000
	Meals, Accommodations			267.16					205.09		<u> </u>	472.25
_	Shipping, Tel. & Tel.	a 58							82.95			85.53
-	Ground Transportation	24.00		109.80			<u> </u>		770.65		ļ	904.45
	Air Transportation			1,807.80	-				1,797.10		<u> </u>	3604.90
	Assaying											
	Equip., Mtce. & Repair			0.70								
_	Supplies, Provisions	58.00		18.75			· <u> </u> -		22.10		<u> </u>	98.85
	Equipment Rentals	·		<u> </u>								·
	Option Pay'ts, Finders Fee Record, Transfer, Taxes	4,001.54					-					4001.54
	Contract /Consulting	- 4,001.01										900.31
	Legal			· ·								
	Sundry			2575			+					25.75
	TOTAL MONTH											
	YEAR	4,086.12.		2856.26					3800.89			10743:27
-	PRIOR YEARS' COST \$	Les	s Participat	Ion by:					NET CO	% ST		
	WORK PERFORMANCE DATA		MONTH	1		9	1				PROIECT	NO. 0-16
	(INDICATE: no. Feet, Miles)		YEAR									
	Therefore, no, reet, filles/	,	PRIOR			·····					NAME:CO RAPID	C C
			1 1/1 / 1	L		يدين براجوية إذارة في براند الدين الم					I THEID	

් <u>පි</u> . ර	y a an an ann an an an an an an an an an				ADDISON HINES						n na standarda y N	
	STARTED DAT	TE TERMINATED								BUDGET		
		GENERAL	PROPERTY EXAMINATION	GEOLOGY, S	GEOPHYS1CAL (G	GEOCHEMICAL	LINE CUTTING	CLAIM STAKE M PROPERTY ACQUISITION	DI AMOND DRILLING (E)	CAMP & ROAD O CONSTRUCTION	TOTAL \$ MONTH	COST \$ YEAR TO DATE
s	Field office overhead Salaries, Wages Meals, Accommodations	64.10		128.20 39,18	1,122.88	· · · · · · · · · · · · · · · · · · ·			6505.65 916.66			7820 ⁸³ 1,239.06
S G A	Shipping, Tel. & Tel. Ground Transportation Air Transportation	976 <u>31</u> 46.45		551.70	16.00				5.02 935.87 54,283,97			21.0: 1,912.// 55,086/:
5	Assaying Equip., Mtce. & Repair Supplies, Provisions			2136	19.58	·			778.50 673.59 125.13			778.50 673.59 166.07
C F	Equipment Rentals Option Pay'ts, Finders Fee Record, Transfer, Taxes Contract /Consulting	ee 4.000.00							98.667.01			4.0000/1 98,667.01
I	Legal Sundry								40.01			40,0
	TOTAL MONTH YEAR PRIOR YEARS'	5,256.66 Lcs	ss Participati	740,44	1,475.88				162931.41	%		170,404.39
	COST \$ WORK PERFORMANCE DATA (INDICATE: no, Feet, Miles		MONTH YEAR PRIOR						NET COS		PROJECT NAME:Co RAPI	

Ĵ	jana J	{			8		1	1	I	1	Ĵ)		Ĵ	Ĵ	}		Ĵ			į	ĺ) (ij	ļ	14					į	Î		ĺ									ŝ) (1	Ĵ				l		١			ļ		Ü		Ĵ.	l	ľ			l
ł	<i>.</i>		 -				+-		4			ł		70	, ,	*****	4 -	****			+			- 	 -+) 	- -		-	-4				·· · · · · · · · · · · · · · · · · · ·		61))		- [- -	****		<u>.</u>		+		 .	(·	~~ {~		4	****			** **			4		.5z	 2		•- -		. 			┍┷╀╼╸		Ч	16
															·] · · ·												D	<u>}</u>			: }	<u> </u>			· · · ·		••••		÷	C	1						•									T		:													
																									 										1									••••												· · · · · ·															
																		,1 j 		1							ľ	****** * 						• • • • •			• •					· · · · ·	•		 															• • • • • • •			В	1 	A	-		•			
																													·		, , , , , , , , , , , , , , , , , , ,		 				•																										- 		,						
																			N.							- 1 - 1						· · · ·					: :									· · · · · · · · · · · · · · · · · · ·			λ.			1							•												
N	• •	<u>л</u> т	 <u>_</u>	444	人 	μ μ	17.9.3 		<u></u>	50	AL A	444 	4	ب ر	h l	111				{ 		111	<u>η</u>	<u>NI</u>	V				ψų	L.	jμı	ł		ų ∣			Юļ		Ŋ.						łł	JI		Ņ				 }				<u> </u>	Ņł	M		μľ	hμ		h	ĮN.	h.	ιλ _ι ή	μh	ru)		μh	
																														· · · ·														••••														• · · ·													
																		 							 نا. 	 	 	}							· · · ·				:-:	-	-								••••• •••	 	- . -	- 1-11 - 1-1-		- : ·	· .	• • •	 						· · · · · · · · · · · · · · · · · · ·	 						' '	
																																						···· ·	••••••••••••••••••••••••••••••••••••••												-			•		 							· · · ·	 	· · · · · · · · · · · · · · · · · · ·						
	-														-										 			}					::: . 					-																····		 	ا	-							-						
										-19 <u>4</u> 0																							1020			· · · ·																				1220			·												
																																	<u> </u>			i i i		: ۱ بر ـــ																					:-					L		-					

100
weight a should a should all and the share and a should all all and a should all and a should all and a should all all and a should all and a should all all all and a should all all all all all all all all all a

· · · · ·

in the second for the s

70	60		50 m	% x
	D			
Allora Martana har	White Manus Marine	1 MANAR MAN	Will of Marin min with the parties	marran - han
18				

 \mathbf{v}

