

010

CORAL RAPIDS PROJECT

$$
0-16
$$

PROGRESS REPORT AND RECOMMENDATIONS

BASED ON DRILLING PROGRAM FEBRUARY TO MAY 1978

B. C. ASBURY

MAY 1978
KERR ADDISON MINES LIMITED

TABLE OF CONTENTS

Page

1. Background -initial fieldwork -previous work 1
2. Ground Acquisition 1,2
3. Geology -Precambrian basement rocks

- Devonian rocks 2

4. Basement Structures 2,3
5. Drilling Program 3
6. Radiometric Drill Hole Probing 3,4
7. Radiometric Response of Rock Units 4
8. Conclusions 4,5
9. Recommendations 5,6
10. Appendices i,ii

LIST OF FIGURES AND TABLE

Figure 1	Location map, geology, exploratory licence of occupation areas
Figure 2	Facies map of Lower Devonian rocks and regional cross-section
Figure 3	Structural elements of the Kapuskasing Gneiss Belt
Figure 4	Data sheet and schematic diagram.for radiometric down-the-hole probe
Figure 5	Basement contours in Coral Rapids area basement contours of licence areas
Table 1	Summary - Drill Hole Data

CORAL RAPIDS PROJECT

SUMMARY:
Three favourable areas of the Moose River Basin were tested by drilling for the presence of radioactivity in the Lower Devonian Sextant Formation, a continental clastic sedimentary wedge overlying Precambrian basement rocks. An anomalous horizon within the Sextant Formation (20 metres thick with $0.05-0.1 \mathrm{lb} . /$ ton $\mathrm{U}_{3} \mathrm{O}_{8}$) was intersected along the margin of a 10 km wide basinal structure.

BACKGROUND:

A field examination of exposures of the Sextant Formation at Sextant Rapids and Coral Rapids indicated the presence of up to 8 times. background radioactivity in some beds of the reddish and greenish, gritty to conglomeratic Sextant Formation. No other good exposures of Sextant Formation were located. Possible Sextant occurrences to the east in Quebec were briefly visited.

A review of literature provided the following information: The Sextant Formation has been recognized since 1916 from the type localities at Sextant and Coral Rapids, but interest in the Moose River Basin was aimed mostly towards Cretaceous lignite, and Devonian limestone and gypsum deposits as well as the potential for oil and gas.

Several drill holes in the 1930-1950 period by mining companies and the Ontario Department of Mines outlined the basic stratigraphic relationship of the Moose River Basin. In 1967 the Geological Survey of Canada undertook Operation Winisk which included a detailed review and reinterpretation of the Devonian stratigraphy of the Hudson Platform.

In 1973-74 Aquitaine Company of Canada carried out a geophysical and drilling program to profile the granitic basement and test overlying Devonian strata for $\mathrm{Pb}-\mathrm{Zn}$ mineralization in an area between the Mattagami and North French Rivers about 40 km north of Coral Rapids. A high resolution airborne magnetic and ground seismic and resistive surveys were followed by 13 drill holes to basement. Down-the-hole logging included I.P. ${ }^{\text {d }}$ resistivity and velocity methods. Attempts at gamma ray logging failed due to apparent equipment problems. An interpretation of this work included proposed basement faulting and horst structures as well as a facies map of the Sextant Formation.

GROUND ACQUISITION:
A portion of the Moose River Basin (Figure 1) has been withdraw from staking by the Ontario government because of proven and potential lignite:
deposits in the Cretaceous rocks. As a result, significant areas of interest are removed as exploration targets al though the underlying Sextant formation is unrelated to the Cretaceous lignite-bearing horizons.

An exploratory licence of occupation (No. 14879), covering four parts totalling 201,500 acres, was obtained from the Ontario government effective February 23, 1978.

The most promising area is in the vicinity of Sextant Rapids and is covered by two of the four licence areas. The known radioactivity at Sextant Rapids made this area a prime drill target.

Another area near Moose River Crossing lies near the postulated northern limit of the Sextant Formation; however, 1929-39 drill hole data indicated 6.7-10.0 m of "conglomeratic breccia" lying on the Precambrian basement.

A third target area lies north of the Precambrian limit near the Partridge River. Previous drilling had indicated at least 21 m of Sextant Formation within 90 m of surface.

GEOLOGY:

The Precambrian basement rocks in the area are part of the Kapuskasing Gneiss Belt (Figure 2), a structural zone of Archean granulite facies rocks and anorthosite cutting northeasterly across predominantly easterly structural trends. It is characterized by abrupt increases in metamorphic grade, wide mylonitic zones, vertical fault tectonics, a profusion of dyke swarms and localization of mafic intrusions and carbonitite bodies (Gibb, 1978).

During the early Devonian, faulting of the Precambrian basement occurred along the southern margin of the Moose River Basin due to uplift of the Fraserdale Arch (Figure 3) to the south. The resulting highland area extended along the southern margin of the basin as the sea transgressed onto the Hudson Platform. The Sextant Formation, clastic non-marine sandstone, siltstone, shale and conglomerate, was deposited at the foot of the up-faulted Precambrian scarp. To the north, the Sextant Formation intertongued with its marine equivalent, the Stooping River Formation which also transgressively overlapped the Sextant to rest directly upon the Precambrian at some places along the southern limit of the Moose River Basin.

BASEMENT STRUCTURES:

Regional faulting patterns in the Moose River area (Figure 4) outlined by Maclaren et al. (1968) are suppiemented by a more localized and detailed basement contour interpretation by Aquitaine of Canada Ltd. (1974) based on a high resolution airborne magnetometer survey.

The Moose River Crossing licence area lies on a NW-trending anticlined structure and is cut along its western edge by a major northtrending fault.

The Partridge River licence area is cut at its western edge by at least two major NNE-trending parallel faults extending northwards to James Bay and which are related to the Kapuskasing Gneiss Belt. An eastward magnetic anomaly across the northern portion is interpreted as a diabase dyke by MacLaren et al. (1968).

The basement structures in the Coral Rapids licence areas were interpreted in detail by Aquitaine. An ENE fault about 8 km northwest of the area cuts across to intersect the major NNE fault zone to the east. The Coral Rapids area is part of an unfaulted wedge between these two fault zones. Basement contours derived from the high resolution magnetic survey indicate a basinal structure (open to the north) in the northern portion of this licence area (Figure 4).

DRILLING PROGRAM:

From February to May 1978 Bradiey Brothers Drilling Ltd. of Timmins undertook to drill nine holes totalling 1140 meters. Primary access. to the area was provided by the Ontario Northland Railway line from Cochrane to Moosonee as well as a winter road to Otter Rapids maintained by Ontario Hydro to service the hydroelectric generating station there. Helicopter support contracted from Huisson Aviation, Timmins, was used to service and move crews and equipment to locations away from the railway line.

Due to the poorly consolidated nature of the Sextant Formation, most drilling was done with an N tricone bit.

An Exploranium GR-410 gamma ray spectrometer, used with a motorized winch assembly and a 3.81 cm diameter probe, was used to \log the holes for radioactivity (see Figure 5).

RADIOMETRIC DRILL HOLE PROBING:

Upon completion of drilling, B casing was put down the drill hole to prevent blockage or caving during probing. Each hole was measured for total count radioactivity as the probe was descending at about $3 \mathrm{~m} / \mathrm{min}$. If anomalies were encountered, then detalled readings for U, Th or K were later made at about $1 \mathrm{~m} / \mathrm{min}$. probe speed. Calibrations of the probe to correct for temperature or time variations were made once or twice during each run using the barium source in the probe, although fifteen minutes in the hole was sufficient to equilibrate the system and stabilize the readings. Analog readout was continuously recorded on a paper chart recorder-

Approximately $2-3$ hours were required to \log an average hole after which the drillers could pull the casing and continue moving to the next drill site.

No quantitative values have been applied to the radiometric profiles since there has been no core recovery from the loose, pebbly radioactive zones of the Sextant Formation. The only assay value obtained from anomalously radioactive core was in hole CR-78-1 where 0.20 meters of a mylonitic shear zone in basement rocks assayed $0.1 \mathrm{lb} / \mathrm{ton} \mathrm{U}_{3} \mathrm{O}_{8}$. A comparison with the total count peak for this zone is a qualitative guide to the significance of other anomalous areas.

Copies of the drill logs and radiometric charts are included in Appendix 1.

RADIOMETRIC RESPONSE OF ROCK UNITS:

In overburden conditions, swampy and wet ground resulted in a very low, quiet total count response in the first $1-3$ meters of holes 36 . 4, 5, 6 and 7. The other holes, on higher, drier locations, show typical overburden response throughout.

Overburden response was generally uniform, exhibiting moderate local fluctuations. However, holes 5 and 6 showed a definite variation in the overburden radioactivity. Clay-rich overburden had low background radiation, while coarser sandy overburden had higher values.

Sextant Formation showed a characteristic radiometric response easily distinguished in most cases from overburden or limestone. Distinct and repeatable but weak variations occur throughout with a higher average value than other units. Anomalous zones can be correlated to the coarsest, conglomeratic, poorly consolidated zones (which do not make core). Significant anomalous zones occurred in holes CR-78-1 and CR-78-2.

The Moose River, Kwatabohegan and Stooping Formations (predominently limestone, dolomite and gypsum units) show little response due to their very low radioactivity. Only the detrital quartz beds in the lower portion of the Stooping River Formation (hole 8) show any radioactive response.

CONCLUSIONS:

1. The only anomalous zones encountered within the Sextant Formation occur in holes $C R-78-1$ and 2 in the vicinity of Sextant Rapids. Like the riverside outcrop exposures, the anomalous zones appear to be associated with the coarsest arkosic conglomerate zones. No core recovery was possible in these zones due to the poorly lithified nature of these arkosic rocks. Based on comparison with an assay value obtained from anomalous core in the granitic basement in hole CR-78-1, it would appear that the best Sextant intersections would grade about $0.1-0.2 \mathrm{lb} . \mathrm{U}_{3} \mathrm{O}_{8}$ /ton:
2. There was no accumulation of any radioactive materials at the base of the Paleozoic rocks (i.e. Sextant Formation) where they overlay the weathered Precambrian basement. The best anomaly (hole $\mathrm{Cr}-78-2$) is at least 30 m above the basement. Perhaps, coincidently, this was the only hole with a series of lamprophyre sills up to 3.5 m thick lying above the anomalous zones, suggesting the possibility that the dykes acted as an impervious cap to downward percolating meteoric waters.
3. There is not sufficient data to correlate stratigraphic variations of the Sextant Formation in the Moose River Basin. From exposures at Sextant Rapids it is evident that there are many localized sedimentary sequences representing rapid deposition producing immature sediments. There is no relationship between the present thickness of Sextant Formation and the depth to or the elevation above sea level of the Precambrian basement. This comparison included the data from eight Aquitaine holes that intersected Sextant Formation. The environment appears to have been primarily one of oxidation; however, carbonaceous horizons of accumulated plant remains, as seen in the Sextant Rapids exposures, are reducing environments.
4. The symmetrical nature of the anomalies in holes CR-78-1 and CR-78-2 suggest the possibility of a rall-type deposit which has a C-shaped vertical section formed by a solution front of oxidizing ground water that has transported uranium along a favourable bed to the site of deposition.

RECOMMENDATIONS:
A minimum expenditure of $\$ 237,500$ is required prior to January 3, 1980, as well as an annual rent of $\$ 4,000$ (less an amount of approximately
credited from excess expenditures in 1978). A minimum of 10% of each yearly dollar expenditure is required on each licence area. As well, not less than 10% of the land area must be surrendered on or before December 3, 1978.

It is recommended that the Moose River Crossing area (part 3) should be dropped entirely before December 3, 1978. It appears to be unfavourable due to the absence of the continental clastic rocks of the Sextant Formation. The initial interest was based on literature references to "conglomerate breccia" overlying the Precambrian, but apparently this term applied to detrital quartz beds or fossiliferous limestone debris at the hase of the Kwatabohegan Formation. On this basis there is no further interest in the area unless the major fault along the western edge is related to uranitms that has followed the basement fault system and has been redeposited.

The Partridge River licence area (part 4) was examined in a very preliminary fashion. While there is no evidence so far of basinal concentrations.
or fluvial channelways within the Sextant Formation (whose northward extent is unknown), the possibility of their existence remains. Also, the intense fault system extending northwards through the western portion of the area could be a depositional site for secondary uranium deposits resulting from oxidative destruction of enrichment in Sextant horizon and the subsequent redeposition of the uranium in and along these fault zones.

A ground vertical loop EM program would determine the presence of graphitic fault zones (reducing depositional environments for remobilized uranium from the-Sextant Formation).

Since the overburden appears to be only about 20 metres thick overlying the Sextant Formation, it is possible that a lay-out of Track-Etch. detectors could sense uranium enriched channels or zones within the Sextant Formation.

These ground surveys could be carried out before December 3, 1978, at which time a final decision could be made as to whether or not to drop the Partridge River Area. If any of it is retained, it will be subject to a minimum expenditure of $\$ 23,750$ in 1979 . This money could not go very far in a drilling program and would be better spent to adequately drill-test the Coral Rapids area.

In summary, there is no drill target at the present in the Partridge River area and more specific information from ground surveys is required to justify retaining it.

The Sextant-Coral Rapids area remains the main target of interest. The anomalous intersections of holes CR-78-1 and CR-78-2 are in coarse arkosic beds at the SW edge of a basin extending NNW (Figure 6). The apparent absence of faulting of the basement suggests that the original basinal or fluvial features are still preserved. The possibility of a thickening of these favourable horizons towards the basin and downslope concentration of uranium along fluvial channelways must be tested by drilling.

A drilling program to be carried out during the winter of 1978-1979 will involve at least 10 holes of approximately 150 metres each. Initially a fence of holes will cross-section a line between CR-78-1 and CR-78-2 followed by holes across the basinal structure to trace uranium enriched channels originating near hold CR-78-2. Suggested locations are indicated on Figure 6. At a projected cost of $\$ 150$ per metre drilled, a 10 -hole program would fulfil the required expenditure for 1979.

HOLE	TOTAL DEPTH	OVERBURDEN	SEXTANT FORMATION	DEPTH TO PRECAMBRIAN	COMMENTS
CR-78-1	89.3 m	54.0 m	27.0 m	81.0 m	BQ Core 83.8-89.3 m. Noderate anomalous zone in Sextant Formation. Mylonitic shear zone in basement rocks assaying $0.10 \mathrm{lb} /$ ton $\mathrm{U}_{3} \mathrm{O}_{8}$ over 0.20 m .
CR-78-2	103.5 m	24.4 m	78.0 m	102.8 m	82 Core $24.4-60.0 \mathrm{~m}$. Good anomalous zone of radioactivity as well as isolated narrow zones.
CR-78-3a	111.8 m	51.0 m	+37.7 m	not reached	Be Core 74.1-111.8 m. Hole abandoned due to caving in Sextant at 111.8 m . Not probed with spectrometer.
CR-78-3b	128.7 m	50.0 m	0.58 .0 m	126.0 m	Narrow weakly anomalous zone.
CR-78-4	134.5 m	~ 132.0 m	none	~ 132.0 m	Apparentiy all overburden, no Sextant or other Devonian units. No radioactivity above background.
CR-78-5	175.5 m	83.5 m	73.0 m	174.5 m	No anomalles, Typlcal erratic background radioactivity of Sextant Formation.
CR-78-6	149.3 m	68.0 m	20.0 m	145.5 m	No significant anomalles, Typical background values of Sextant Formation,
CR-78-7	90.5 m	20.2 m	32.5 m	87.5 m	No significant anomalles. Typical background values of Sextant Formation.
CR-78-8	157.0 m	40.3 m	none	151.5 m	$N Q$ Core $40.3-104.2 \mathrm{~m}$, $B Q$ Core 104.2 m 157.0 m . Middle and Lower Devonian rocks of the Mosse River, Kwatabohegan and Stooping River Formations, No Sextant Formation.

BIBLIOGRAPHY

1973 and
1974
Aquitaire of Canada Ltd., reports and maps on file at Ontario Dept. of Mines Assessment Files Office.

Dyer, W. S.
1928 Geology and Economic Deposits of the Moose Basin, Ont., Dept. Mines, Annual Report, V.37, Pt. 6.

1965
Geological Survey of Canada, Ontario Department of Mines, airborne magnetic survey, Provisional Map 7117G, Moose River, Ontario, $1^{\prime \prime}=4$ miles.

Gibb, R.A.
1978 A gravity survey of James Bay and its bearing on the Kapuskasing Gneiss Belt, Ontario, Techtonophysics, 45(1978), T7-T13.

Hogg, N., Satterley, J., Wilson, A. E.
1953 Drilling in the James Bay Lowland, PEI - Drilling by the Ontario Department of Mines, Ont., Dept. Mines, Arnual Report, 1952, V.61, Pt. 6.

MacLaren, A. S., Anderson, D. T., Fortescue, J. A. C., Gaucher, E. G., Hornbrook, F. H. W., Skinner, R.

1968 A preliminary study of the Moose River Belt, Northern Ontario, Geological Survey of Canada, Paper 67-38.

Remick, J. H., Gillain, P. R., Durden, C. J.
1963 Preliminary report on the Rupert Bay - Missisicabi River Area, Quebec Dept. of Natural Resources, Preliminary Report No. 498.

Sanford, B. V., Norris, A. W., Bostock, H. H.
1968 Geology of the Hudson Bay Lowlands, Geological Survey of Canada, Paper 67-60.

Sanford, B. V., Norris, A. W.
1975 Devonian Stratigraphy of the Hudson Platform, Pt. I and II, Geological Survey of Canada, Memoir 379.

APPENDIX

Drill Hole Radiometric Data and Logs

Hole Number	
$C R-78-1$	Channel
CR-78-2	total count
$C R-78-2$	total count
$C R-78-2$	potassium
$C R-78-2$	uranium
$C R-78-3 a$	thorium
$C R-78-3 b$	drill log only
$C R-78-4$	total count
$C R-78-5$	total count
$C R-78-6$	total count
$C R-78-7$	total count
$C R-78-8$	total count

DIAMOND DRILL RECORD Logged by b. c. Asbury
Contractor: Bradley Bros. Drilling, Timmins, Ontario
PROPERTY Coral Rapids = Project $0-16$, northeast side of ONR tracks at mile $96,0.3 \mathrm{miles} 5 . E$ of Coral Stn.

LATITUDE _ $50^{\circ} 13^{\prime} \mathrm{N}$	BEARING OF HOLE _---	STARTED Feb. 17/78
DEPARTURE 810 $40^{\prime} 16^{\prime \prime} \mathrm{W}$	DIP OF HOLE vertical	COMPLETED Feb. 21/78
ELEVATION 110m. A.S.L	DIP TESTS 89.3m-vertical	DEPTH 89.3 m .

> Hole logged with gamma ray spectometer
89.3 m - vertical \qquad DEPTH \qquad 89.3 m . \qquad
 D.D.H. No. CR - 78-1 PAGE 1/1

DIAMOND DRILL RECORD Logged by B. c. Asbury
Contractor: Bradley Bros. Ltd., Timmins, Ontario
\qquad \square

PROPERTY Coral Rapids Project $0-16$, northeast side of ONR tracks at mile 95

LATITUDE $50^{\circ} 12^{\prime} 30^{\prime \prime} \mathrm{N}$	BEARING OF HOLE	STARTED Feb. 23/78
DEPARTURE $81^{\circ} 39^{\prime} 6^{\prime \prime} \mathrm{W}$	DIP OF HOLE vertical	COMPLETED Feb. 28/78
ELEVATION 120 m A.S.L.	DIP TESTS _____	DEPTH 103.6 m

 D.D.H. No. CR-78-2 PAG. $1 / 5$
CLAIM No.
NE. CLAIM POST

FOOTAGE		DESCRIPTION	$\begin{gathered} \text { SAMPLE } \\ \text { No. } \end{gathered}$	FOOTAGE		SAMPLE LENGTH	ASSAY			
FROM	TO			FROM	TO					
0	24.4 m	CASING								
						0 SIGNI	FICANT	RADIOAC	IVE	
24.4	29.0 m	DARK RED-BROWN crumbly micaceous siltstone to gritstone with up to 30\%				ZONE IN	CORE RE	COVERED		
		irregular patches of unoxidized grey siltstone with talcy				$(20 \mathrm{cps}$	packgro	und, no	spot values	
		texture. Scattered pebbles (quite weathered and rounded) up			over	$22 \mathrm{cps})$				
		to lcm diameter. Pseudo crystalline concentrations of buff								
		tan carbonate especially in fractures. No fine bedding texture								
		but general variations in texture. -from v. f. silty to gritty								
		conglomeritic textures. 20 cps								
		70\% lost core 24.4-27.4								
29.0	29.4	GRITSTONE - gradational contact into reddish grey (becoming grey down hole)								
		gritstone. 40% sub angular feldspar and qtz frags up to 2 mm								
		in light greenish limy matrix. Terminates sharply at 29.4								
		20 cps								
29.4	29.7	MAFIC DYKE - dark, porphyritic ($<1 \mathrm{~mm} \times \mathrm{tl}$) dyke rock, probably altered								
		lamprophyre. Broken core at upper contact but sharp lower								
		contact at 1 mm carbonate vein at $85^{\circ} \mathrm{t}$.c.a. (tr. pyrite). Scatte	ed fing	white	rbona	e veins	throus	hout.		

DIAMOND DRILL RECORD

\qquad -___-_ PROFERTY \qquad bearing of hole STARTED
LATITUDE

DEPARTURE \qquad DIP OF HOLE \qquad COMPLETED

ELEVATION DIP TESTS \qquad DEPTH \qquad
D.D.H. No._CR - 78-2 PAGE $2 / 5$
$\{$ CLAIM No.
-
dIRECTION AND distance from NE. CLAIM POST

DIAMOND DRILL RECORD

DIAMOND DRILL RECORD

PROPERTY

D.D.H. No. CR - 78-2 PAGI $/ 5$ 4 CLAIM No.
-DIRECTION AND DISTANCE FROM NE. CLAIM POST

DIAMOND DRILL RECORD \qquad

PRROPERTY
latitude
departure
elevation

BEARING OF HOLE STARTED COMPLETED DEPTH \qquad
D.D.H. No. CR - $78-2$ $5 / 5$
Claim No.
-DIRECTION AND dISTANCE FROM NE. CLAIM POST

DIAMOND DRILL RECORD LOGGED BY_ B. C. Asbury

PROPERTY Coral Rapid Project 0-16, James Bay Lowlands, Pitt Township

DIAMOND DRILL RECORD Loges by B. c. Asbury

DIAMOND DRILL RECORD LogGed by ___ B. c. Astury

ITITUDE $50^{\circ} 12^{\prime} \mathrm{N}$ BEARING OF HOLE vertical STARTED \qquad
EPARTURE $\quad 81^{\circ} 45^{\prime} \mathrm{W}$ DIP OF HOLE \qquad vertical COMPLETED April 17, 1978 DEPTH \qquad 149.3 m
-EVATION DIP TESTS
none -

dIRECTION AND DISTANCE FROM

DIAMOND DRIL RECORD LOGGED BY B. .c. Assury

LATITUDE $\quad 50^{\circ} 54^{\prime} \mathrm{N}$

\qquad DIP OF HOLE \qquad STARTED April 26, 1978 COMPLETED Apri1 29, 1978 DEPTH $\quad 90.5 \mathrm{~m}$ ELEVATION_ ~ 60 meters A.S.L. DIP TESTS \qquad none
D.D.H. No. CR - 78-7

dIRECTION AND DISTANCE FROM SCRIPTION
N tricone drilling except for N casing in overburden.
Hole probed with spectrometer (total count channel).

DIAMORD DRILE RECORD LOGGED BY B. C. Asbury

ROPERTY Coral Rapids - Hudson Bay Lowlands - east side of ONR tracks_at about mile_154. 8 ATITUDE $\quad 50^{\circ} 57^{\prime} \mathrm{N}$ BEARING OF HOLE \qquad STARTED _ May $1 / 78$ EPARTURE $81^{\circ} 8^{\prime} \mathrm{W}$ dip OF hole \qquad vertical COMPLETED May $4 / 78$ CLAIM No.
dIRECTION AND DISTANCE FROM LEVATION 30 metres DIP TESTS \qquad ------- \qquad DEPTH \qquad 157 m NE. CLAIM POST
Contractor: Bradley Bros., Timmins, Ontario core: NQ 40.3-104.2 m, B0 104.2-157 m

FOOTAGE			Core stored at Ministry of	SAMPL No.
FROM	TO	DESCRIPTION	Natural Resources, Timmins	

0	40.3 m	CASING - overburden conditions

40.3 m	57.8	PREDOMINANTLY GYPSUM AND SELENITE - sugary to crystalline, light greyish; and

L massive, scattered veins at 90° t.c.a. up to 1 cm of selenite crystallized parallel to core axis. 15% zones of buff tan v.f.gr. dolomitic siltstone. contorted fine bedding often slumped and broken. Unfossiliferous.

- no porosity visible

57.8	75.7

DOLOMITIC SILTSTONE - very finely bedded (contorted) buff tan yery dolomitic rock, unfossiliferous, some rare wormy mottled textures where massive and unbedded. 15% selenite (crystalline veins up to 2 cm) and zones up.to

15 cm of sugary gypsum.

- no visible porosity
75.7
$75.7 \quad 81.5$
AS ABOVE but no selenite or gypsum, zone of fossil debris with 5% porosity as_isolated_cavities in breccia ($79.86-80.92 \mathrm{~m}$)
- ERTY \qquad

D.D.H. No. CR - 78-8 \qquad .ATITUDE

BEARING OF HOLE
STARTED \qquad COMPLETED CLAIM No.
-DIRECTION AND DISTANCE FROM
DEPARTURE
DIP OF HOLE \qquad DEPTH \qquad NE. CLAIM POST
DIP TESTS \qquad

AAMOND DRILL RECORD Logeso by b. c. assory

LATITUDE	BEARING OF HOLE	STARTED
DEPARTURE	DIP OF HOLE	COMPLETED
ELEYATION	DIP TESTS	DEPTH

(FOR INTER-OFFICE:

To \qquad From
\qquad Dale
\qquad

Three drill holes, sponsored by Dentist son Mines, have been completed since October 14, in the vicinity of Sextant Rapids. The purpose was to obtain samples for assay of anomalous Sextant Formation. A dual tube reverse circulation drill (N -size rods) returned almost 100% of the chips and fines. Attempts to probe two of the holes with the radiometric probe failed due to caving of overburden. One complete radiometric profile was obtained for hole CR-78-10. Samples for all holes are being submitted for U and Th. assay.

HOLE

CR -78-9

CR -78-10 $\quad 80.8 \mathrm{~m}$

CR-78-11
73.2
51.8-70.1 to good anomalous zones compared to best previous hole CR-78-2.

- apparent radiometric anomaly immediately overlying basement.
- no lamprophyre sills.
- hole caved near top of Sextant Formation so radiometric probing incomplete.
- no lamprophyre sills.

NUTE: ALl DRILL CORE LOCATED AT TIMMINS, ONTARIO.

AAMOND DRILL RECORD

LOGGED BY B. C. Asbury
Coral Rapids Project 0-16

AMOND DRILL RECORD

PROPERTY _ Coral Rapids Project 0-16
Latitude BEARING OF HOLE \qquad STARTED
\qquad D.D.H. No. $C R-78-9$ PAGE 2

DEPARTURE \qquad DIP OF HOLE \qquad COMPLETED \qquad DIRECTION AND DISTANCE FROM
Eleyation \qquad DIP TESTS \qquad DEPTH \qquad NE. CLAIM POST

IAMOND DRILL RECORD Logeed by_ B. C. Asbury

DIAMOND DRILL RECORD LOGGED BY B. C. Asbury
Coral Rapids Project 0-16
Latitude
\qquad BEARING OF HOLE Vertical STARTED October 17, 1978
DEPARTURE \qquad DIP OF HOLE \qquad Vertical COMPLETED October 18, 1978

ELEVATION

\qquad DIP TESTS \qquad DEPTH $80.8 \mathrm{~m}(265 \mathrm{ft})$ D.D.H. No. CR-78-10 PAGE
STARTED October 17, 1978

DIAMOND DRILL RECORD LogGed by $\frac{\text { B. C. Asbury }}{\text { B. Mckay }}$ B. Mckay

ROPERTY

 Coral Rapids Project 0-16 D.H. No. CR-78-10 PAGE 2
ATITUDE

bearing of hole
STARTED \qquad
EParture
DIP OF HOLE \qquad COMPLETED DEPTH
\longrightarrow

N CLAIM No.
DIRECTION AND DISTANCE FROM NE. CLAIM POST

ME TERS		DESCRIPTION	SAMPLE No.	FOOTAGE		SAMPLE LENGTH		ASSAY				
FROM	10			FROM	TO							
51.5	52.5	Arkose with siltstone rich zone at 52.3 m										
52.5	53.6	siltstone, grey										
53.6	56.4	Arkose										
56.4	58.8	Mudstone, very black to grey, scattered arkose from 57.5-58.6										
58.8	60.7	Arkose, $<10 \%$ fine matrix except for grey siltstone $60-60.4 \mathrm{~m}$										
60.7	60.8	Mudstone - jet black										
60.8	63.4	Gritstone										
63.4	65.8	Mudstone, black and grey 15 cm arkose at 65.2 m										
65.8	66.6	Arkose										
66.6	68.0	Mudstone, dark coloured										
68.0	70.7	Alternating siltstone and arkose										
70.7	73.9	Arkose										
73.9	77.4	Gritstone and siltstone, reddish										
77.4	80.8	Altered gneissic basement rock										
	80.8	END OF HOLF										

SLOGE SAMPLE ANALYSIS

DIAMOND DRILL RECORD
LOGGED BY_B._C.Asbury

Figure 2

LEGEND
KGB Kapuskasing Gneiss Belt
\qquad faults
_diabase dykes
-..- Precambrian-Paleozoic Boundary
-..-..- Paleozoic-Mesozoic Boundary
-.......- Ontario - Quebec Boundary carbonatites

Bouguer Anomaly
\because less than -60 meal.
4) greater than -40 mgal .

Kapuskasing Gneiss Belt

FIGURE 3 a Facies ond thikness of tower Deyonion rocks of southen Husion Platiorm (by B. Y. Sanfoid ons A. W. Norris).

Figure. 3b
Cross-section of Phonerozoic rocks of gouthern Hudson Platform by s. V. Sanford and A. W. Norris).

\# 9
QGe SAMPLE ANALYSLS - HOLE CR.78-9

	$\left.U_{\text {ppm }}\right)$	Th(ppm)
$110-115$	3	17
$115-120$	2	16
$120-125$	x	21
$125-130$	1	43
$130-135$	x	90
$135-140$	3	99
$140-145$	2	78
$145-150$	2	86
$150-155$	3	28
$155-160$	1	12
$160-165$	5	16
$165-120$	2	17
$170-125$	3	14
$175-160$	3	14
$180-185$	1	19
$185-190$	2	13
$190-195$	1	35
$195-200$	2	16
$200-205$	x	16
$205-210$	x	23
$210-215$	2	29
$215-220$	x	22
$220-225$	x	44
$225-230$	x	22
$230-235$	x	27
$235-240$	2	13
$240-245$	x	13
$245-250$	x	11
$250-255$	1	13
$255-260$	x	32
$260-265$	x	16

$\left.\stackrel{c}{c} \frac{\pi}{7} \right\rvert\, 1$

November 23, 1978.

Mr. Al Stewart, District Manager, Ministry of Natural Resources, Box 190, Moosonee, Ontarlo. POL IYO

Dear Sir:
During the period October 14 to October 20, 1978, 234.8 meters (770.0 ft.) of reverse circulation drilling was performed along the rallroad tracks near Coral Raplds.

This completes the 1978 programme.
Yours very truly,
KERR ADDISON MINES LIMITED
 Chief Geologist, Exploration.
DMH:ces

Ministry of Natural

Your file:
19790109
Our file: 192501 7583.7
83.1-127

MEMORANDUM TO: Assessment Research Office

Enclosed is a copy of a report from Kerr Addison Mines Ltd. of Diamond Drilling performed during 1978 on Exploratory Licence of Occupation 14879 in the Hudson Bay Lowlands.

A duplicate of this report has been sent to Dr. E. G. Pye for his perusal and subsequent forwarding to the Regional Geologist.
J. R. Morton

Acting Director
Lands Administration Branch
FWM/ms
enc.
mehorandum to: G. D. Spry
Executive Co-ordinator Finance \& Addainistration
Attention: F. Morrell
Exploratory Licence of Occupation 14879 has been voluntarily surrendered by the licensee, Kerr Addison Mines Litd. effective November 28, 1978. All of the terins and conditions of the 1icence have been met. You are hereby authorized to return Irrevocable Letter of Credit No. 78/48/2 issued by the Canadian Imperial Bank of Comarce on January 3, 1978 for $\$ 150,000.00$.
J. R. Morton

Acting Director
Lands Administration Branch

FWM/ms

\qquad
\qquad Project Corol RApios REGION \qquad BUDGET

PROJECT NO. Q-16 name:Coral RAPIOS
\qquad DATE TERMINATED \qquad project Coral Rapios

$$
=1
$$

$$
\begin{aligned}
& \text { cixide } \\
& \text { pan } \\
& \text { thatitict }
\end{aligned}
$$

$$
\begin{aligned}
& 230
\end{aligned}
$$

三

