REPORT ON 1970 DRILLING
 KIPLING TOWNSHIP, ONTARIO
 KAOLINITIC SILICA SAND DEPOSIT

INDUSMIN LIMITED

$010 c$
MABLE OF CONTENI'S
Page
Summary 1
Introaluction 2
Location and Access 3
History of Exploration 3
General Geology 4
Introduction 4
Recent 7
Pleistocene 7
Cretaceous 8
Introduction 8
Kaolinitic Silica Sand 8
Fireclay 9
Other Clays 10
Lj.gnite 10
Structural Geology 11
Introduction 11
Overburden Thickness 11
Structure of the Cretaceous Units 11
Drilling 12
Introduction 12
Drill Hole Location 14
Equipment Used 15
Pravel on Muskeg 25
Rate of Penetration 16
Comments on Some Drilling Techniquesand problems16
Logging 18
Sampling 19
Introduction 19
Material Sampled 19
Sample Interval 19
Sampling Procedure 20
General Assessment of Drilling Equipment Used in 1970 Program 23
References 25
Table I Table of Formations 5
Table II Thicknesses of Units, Drill Holes l-9, M.R.1-7 6
Table III Drill Hole Depths and Dates of Drilling 6
Appendix I 1970 Drill Hole Logs 26
Appendix II Lists of Samples 40
Appendix III Summary Logs of 1959-60 Drill 54
Holes
Aypendix IV Photographs 57
Appendix V Log of 1970 Drill Hole 10 63
Figure 1 Location of Kipling Tp.Figure 2 Plan of 1959-1960 Drill Holes inKipling Tp. and General GeologyFigure 3 Plan of 1970 Drill HolesFigure 4 Sections Through Holes 2-3-4, 9-1-5,and 8-7-6 Looking North
Figure 5 Sections Through Holes 6-5-4, 7-1-3,and 8-9-2 Looking West
Logging 18
Sampling 19
Introduction 19
Material Sampled 19
Sample Interval 19
Sampling Procedure 20
General Assessment of Drilling Equipment Used in 1970 Program 23
References 25
Table I Table of Formations 5
Table II Thicknesses of Units, Drill Holes l-9, M.R.1-7 6
Table III Drill Hole Depths and Dates of Drilling 6
Appendix I 1970 Drill Hole Logs 26
Appendix II Lists of Samples 40
Appendix III Summary Logs of 1959-60 Drill 54 Holes
Appendix IV Photographs 57Figure 1 Location of Kipling Tp.Figure 2 Plan of 1959-1960 Drill Holes inKipling Tp. and General Geology
Figure 3 Plan of 1970 Drill Holes
Figure 4 Sections Through Holes 2-3-4, 9-1-5,and 8-7-6 Looking North
Figure 5 Sections Through Holes 6-5-4, 7-1-3,and 8-9-2 Looking West

REPORT ON 1970 DRILLING
KIPLING TOWNSHIP, ONTARIO KAOLINITIC SILICA SAND DEPOSIT INDUSMIN LIMITED

SUMMARY

In July and August 1970, 9 vertical holes with a total length of $1,490^{\prime}$ were arilled on the Kipling township property of Indusmin Ltd.

Approximately 8 to 12 tons of Cretaceous kaolinitic silica sand and fireclay were collected for analysis.

Location of the property is illustrated in Figure l, locations of the arill holes are illustrated in Figures 2 and 3. Figures 4 and 5 present cross-sections showing the interpreted structure of the deposit. Logs of the drill holes are presented in Appendix I, lists of samples taken are presented in Appendix II.

The total thickness of overburden, consisting of Recent and Pleistocene deposits overlying the Cretaceous units, varies from 60' to 112'.

The minimum thickness of 60^{\prime} was encountered in

Hole 1: in other holes the overburden thickness ranges from 87' to ll2', and averages 95'.

Previous drilling on this deposit, and on the similar deposit of Algocen Mines Ltd., has been carried out in winter when the frozen top portion of the muskeg permitted travel by heavy vehicles. Experience gained in the 1970 work showed that drilling on the Kipling township deposit is feasible in summer, and is indeed preferable to winter drilling.

INTRODUCTION
During July and August 1970 Indusmin Ltd. drilled 9 holes, with a total depth of $1,490^{\prime}$, on the company's deposit of kaolinitic silica sand and fireclay located in Kipling township, Ontario.

Previous drilling, in 1959-60, had obtained poor sample recovery. A prime objective of the 1970 drill program was to obtain a large volume of silica sand and fireclay for analysis, and in this respect, the program was most successful. The earlier drilling had shown that while overburden lying above the silica sands is commonly more than 100^{\prime} thick, silica sands lie at a depth of 65^{\prime} at the site of Hole M.R.4. The 1970 holes were drilled near M.R.4 to assess the extent of the area of relatively shallow overburden found in this hole.

The writer supervised the drilling and sampling program and logged the holes from July 24 to August 18, 1970.

This report sumarizes geological features of the silica sand deposits, discusses some of the drilling techniques employcd and the sampling procedures, and comments on some drilling and sampling problems.

LOCATION AND ACCESS

Kipling township is in northeastern Ontario, 120 miles northwest of immins. Figure 1 illustrates the location. rhe village of Smoky Falls, a townsite maintained by Spruce Falls Power and paper Co. Ltd., lies 9 miles south of the Indusmin property.

Smoky Falls is accessible from Smooth Rock Falls on Highway 11 by Highway 807 to a point near Abitibi Canyon, and thence by a private road owned by Ontario Hydro. The distance from Smooth Rock F'alls to Smoky Falls is approximately 80 miles.

Roads from Smoky Falls permit a car to be driven to within $11 / 2$ miles of the center of the 1970 drilling operations.

Spruce Falls Power and Paper Co. operates a private railway between Smoky Falls and Kapuskasing, a distance of about 50 miles.

HISTORY OF EXPIORATION

The presence of kaolinitic silica sands and fireclay in this area has been known for many decades.

In the winter of 1959-1960 American Nepheline Limited carried out a drilling program on the company's concession.

Thirteen holes werc drilled in this program, 7 of these being located in Kipling township. The latter holes (numbered M.R.I M.R.7) were arilled to depths ranging from 100' to 221'. Their locations are shown in Figure 2, and abbreviated logs are presented in Appenaix III.

A Joy 22HD core drill, casing and rods ranging in size from $6^{\prime \prime}$ diameter pipes to B rods, diamond and tricone bits were used in drilling, while Shelby and split tubes were used for sample recovcry.

The chief problems encountered were difficulties in penetrating Pleistocene till, caving of the Cretaceous silica sand, and very poor sample recovery.

In the summer of 19602 shallow auger holes (numbers M.R.A. 34 and 35)were drillea in the township. Their locations are illustrated in Figure 2, and summary logs are presented in Appendix III.

GENERAL GEOLOGY

Introduction

The general geology of Kipling township is illustrated in Figure 2.

The southern third of the township is underlain by Precambrian migmatite and diabase.

The northern two-thirds, including the area of current economic incerest which is approximately defined by the drill hole locations shown in Figure 3, is underlain by Cretaccous kaolinitic silica sands, fireclay and other clays, and lignite.

Within the area of present economic interest, the kaolinitic silica sands are overlain by Recent and Pleistocene deposits, collectively referred to hereafter as overburden. Table I presents a table of formations, Table II sumarizes the thicknesses of the units encountered in both the 1970 and carlier drill holes.

Table I
Table of Formations
Recent
Muskeg
pleistocene
Clay, silt, sand, gravel, till.

Cretaceous

Kaolinitic silica sand often containing pebbles and cobbles, fireclay, other clays, lignite.

Table II
Thicknesses of Units, Drill Holes 1-9, M.R.1-7

Hole	Recent	Pleistocene	Overburden (Recent + Pleistocene)	Cretaceous	(minimum)
1	51	55^{\prime}	60^{\prime}	102'	
2	9^{\prime}	103^{\prime}	112'	30^{\prime}	
- 3	10^{\prime}	84^{1}	94^{\prime}	106^{\prime}	
4	5^{\prime}	91'	96^{\prime}	76^{1}	
5	10^{\prime}	80^{\prime}	90^{\prime}	83^{\prime}	
6	10^{\prime}	86^{\prime}	96^{\prime}	36^{\prime}	
7	11.	89^{\prime}	100^{\prime}	102'	
8	1.01	80^{\prime}	90^{\prime}	90^{\prime}	
9	10^{\prime}	77^{\prime}	87^{\prime}	40^{\prime}	
M.R.l	3 5.0'	$193.0{ }^{\prime}$	208.0'	13.51	
M.R. 2	$13.0{ }^{\prime}$	$59.0^{1}+$	$72.0{ }^{1}+$		
M.R. 3	9.51	$85.5{ }^{\prime}$	95.0^{\prime}	106.0^{\prime}	
M.R. 4	11.0^{\prime}	$54.2{ }^{\prime}$	65.2^{\prime}	124.8^{\prime}	
M.R. 5	7.0^{\prime}	93.0^{1+}	$100.0^{\prime}+$		
M.R. 6	$13.0{ }^{\prime}$	$87.0^{\prime}+$	100.0' ${ }^{10}$		
M.R. 7	$12.0{ }^{\prime}$	$88.0^{1}+$	$100.0{ }^{1}+$		

RECENT

Recent deposits consist entirely of muskeg: a mixture of moss, small shrubs, decaying vegetation, and water.
rhe muskeg ranges in thickness from 5^{\prime} to 11^{\prime}, and for the most part is about 10^{\prime} thick.

PLEISTOCRNE

The Pleistocene deposits consist of interbedded, and often interfingering lenses, of clay, silt, sand, gravel, and till. Clay and till predominate. Details of the stratigraphy are presented in the drill hole logs, which comprise Appendix I.

The Pleistocene deposits range in thickness from 55' to 103'. The minimum thickness of 55^{\prime} was encountered in Hole $1:$ clsewhere the thickness ranges from 77' to 103', and averages 86'.

In general these units are well compacted and dry. Many of the clays and tills are quite coherent, and frequently appeared in the sample as pieces of core rather than as loose particles.

The clays are most commonly dark gray to blue-gray in colour, less commonly they are brown. The Pleistocene clays are not plastic.

The silts and sands are brown in colour, and together with the gravels, form a very minor part of the Pleistocene section.

The tills consist of small pebbles, commonly less than 1/4" in diameter, embedded in a matrix of gray clay. Larger pebbles and cobbles occur but are not common. Boulders appear to be rare: only one boulder was encountered in drilling, in Hole 7.

CREMMCJOUS

Introduction

The cretaceous units consist largely of kaolinitic silica sand, lesser amounts of fireclay, very minor amounts of other clays, and a very thin band of lignite which was cncountered in Holc 7.

Details of the Cretaceous stratigraphy are presented in the drill hole logs in Appendix I, and are illustrated on the cross-sections of Figures 4 and 5.

The total thickness of these units is unknown, as no drill hole has yet reached underlying formations. The maximum thickness of Cretaceous units cut in the 1970 drilling was 106', in Hole 3. In previous drilling, Hole M.R.4 cut 124.8^{\prime} of these units.

KAOLINITIC SILICA SAND

The kaolinitic silica sand is a thick, milky-white slurry consisting largely of quartz grains, kaolin particles, and water.

The first few feet of the silica sand inmediately underlying the Pleistocene deposits is commonly rusty or dark gray in colour, but this discolouration rapidly gives way to the normal milky-white colouration.

The quartz grains are sub-angular to sub-rounded, medium to coarse-grained, and are most commonly colourless to milky-white, with a very minor percentage possessing a yellow to yellow-brown surface stain.

Kaolin content of the slurry is difficult to estimate, but in general, kaolin would appear to comprise from 5 to 20\% of the quartz-kaolin mixture. For the most part the
kaolin is whitc, and occurs as tiny particles disperscd throughout the sand. In cortain cases, as noted on the logs and shown on the cross-sections, the kaolin content is noticeably higher than normal, and several of these richer zones appear to comprise beds that can often be correlated from hole to hole. In these richer beds, the colour is commonly pale brown to creambrown, less commonly pale gray. The kaolin content is difficult to estimate, but would appear to be more than 30%. The kaolinrich bands commonly proved difficult to penetrate with the drill. Thicknesses of the kaolin-rich bands ranged from 2' to 6'.

Water content of the slurry is also difficult to estimate: it appears to be of the order of 20% by volume. Pebbles of quartz, clear, milky-white, and yellowstained, are common. Pebbles of diabase, mafic metavolcanics, granite, and limestone are almost ubiquitous in the silica sands, and comprise a very small percentage of the sands.

Although previously unreported from the silica sands, cobbles were encountered in 4 of the 9 holes drilled. In the case of Hole 9 there is a slight suspicion that the cobbles may have come in part from the overlying Pleistocene deposits, but the cobbles encountered in Holes 2,6 , and 7 appear to be constituents of the silica sand. The cobbles are of diabase and granite, and were a great hindrance in drilling.

IIRECLAY

Beds of dense, plastic fireclay, ranging in thickness from 4' to at least 36' were encountered in 5 holes. The greatest thickness, 36^{\prime}, was encountered in Hole 3 where the hole ended in fireclay at a depth of 200^{\prime}.

The fircclay is most commonly red to red-brown in colour, less conmonly it is streaked red and white, or gray, brown to black, gray-white and brown.

In Holes 3 and 7, at depths of 124'-130' and 194'-200' respectively, there appears to be interbedding of fireclay and silica sand on a fine scale. This may be more a result of drilling technique than of actual interbedding, and these intervals may in fact be entirely fireclay. (The drilling techniques used and some associated problems are discussed in a later section).

OTHER CLAYS

Holes 3 and 4 cut beds of clay which appear to form a unit that is correlatable between these holes. The unit is 4' thick in Hole 3, 8' thick in Hole 4.

The clays are only very slightly plastic, are dark brown, dark gray to black in Hole 3, and sandy, gray to yellow brown in Hole 4.

As noted in the logs of Holes 6 and 7, a few lumps of black, presumably carbonaceous, sandy clay were found on the sample discharge pile after drilling. This material was not scen during arilling and sampling due to the large volume of sample material discharged. It may represent thin clay beds correlative with the bands described above.

LIGNITE

A 2'-thick band of lignite and black sandy clay was cut at a depth of 190^{\prime} in Hole 7.

SIRRUCTURAL GIOOJOGY

INPRODUCTION

Interpretations of the structure from drill hole data are presented in the cross-sections of Figures 4 and 5.

It should be noted that the dips of contacts in these figures are somewhat exaggerated as a result of shortening the horizontal spacing of holes in order to depict the holes on a conveniently-sized sheet. The true dips are more nearly horizontal than those shown. The sections do however portray accurately the suggested correlations of units from hole to hole.

OVFRBURDEN THICKNESS

As indicated in rable II, the combined thickness of Recont and pleistocenc deposits ranges from 60' to ll2'. The minimum thickness of 60^{\prime} was encountered in Hole l. Elsewhere, the overburden thickness is quite uniform, ranging from 87' to 112', and averaging 95'.

STRUCTURE OF THE CRETACEOUS UNITS
The relatively shallow overburden in the vicinity of Holes 1 and M.R. 4 was previously interpreted as reflecting a structural dome in the Cretaceous units. The cretaceous beds show no evidence of doming, and the shallow overburden at this site appears to reflect a pre-Pleistocene topographic high.

The interbedded, and recurring nature of the kaolinitic silica sands and fireclays is well illustrated in the cross-sections.

Unlike the fireclays of the similar Algocen Mines Ltd. deposit, which form persistent horizon markers, the fireclay beds of the Kipling township deposit cannot always be correlated from hole to hole. the fireclay beds appear to be lenticular, lensing out between some adjacent holes, and also to grade laterally into kaolin-rich beds of silica sand. An example of the latter is illustrated in Figure 4, Section Through Holes 9-1-5, where a thick fireclay bed in Hole l, overlying silica sand and kaolin-rich silica sand, appears to be represented at a similar elevation in Hole 5 by a bed of kaolin-rich silica sand.

The bed of fireclay cut at the bottom of Holes 3,4, and 7 may well persist throughout the area, and may correlate with fireclay cut at approximately the same depths in Holes M.R.l and M.R. 3.

The correlation of dark-coloured, slightly plastic clays, in Holes 3 and 4, and possibly 6 and 7 , has been noted earlier.

Cobbles in the silica sand tend to occur at approximately the same depths, and may reflect a cobble-rich zone or zones.

The kaolin-rich beas can be correlated from hole to hole in some cases: in others they lens out, or less commonly appear to grade into fireclay.

DRILLING

INTRODUCTION

Becker Drills Ltả., 194 Toryork Drive, Weston, Ontario, carried out the drill program. Initially a 3-man crew consisting of forman, driller, and helper was supplied. The crew was
assisted for most of the program by a supervisor. When this number was found inadequate, a second helper was added. Drilling operations were carricd out on 1 shift per day. Before drilling commenced approximately 2 weeks were spent by the drill crew in moving equipment in, locating cirill sites by compass-and-chain survey, and preparing platforms for the drill rig.

Nine vertical holes were drilled. Each had a planned depth of 200'. Due to drilling difficulties only 2 holes reached this depth. Depths attained ranged from 127' to 202'. Holes were stopped when excessive plugging or other difficulties made further progress too costly to be justified.

Drilling of the first hole started July 23, 1970; drilling of the ninth hole was completed August 18, 1970.

A total of $1,490^{\prime}$ was drilled in 27 days. The average rate of progress over this period was 55.2' per day.

Depths of the holes and their dates of drilling are summarized in Table III.

Pable III
Drill Hole Depths and Dates of Drilling

Hole	Date Started	Date Completed	Days to Drill	Depth
1	July 23	July 31	9	162^{\prime}
2	Aug. 3	nug. 5	2	142^{\prime}
3	Aug. 5	Aug. 9	4	200^{\prime}
4	Aug. 9	Aug. 10	1	172^{\prime}
5	Aug. 10	Aug. 11	1	173^{\prime}
6	Aug. 11	Aug. 12	1	132'
7	Aug. 12	Aug. 16	5	202 ${ }^{\prime}$

nole	Date Started	Date completed	Days to Drill	Depth
8	Aug. 17	nug. 18	2	180^{\prime}
9	Aug. 1	Aug. 3	2	127 '

Total $271,490^{\circ}$

Average progress, July 23 -August $18,=55.2$ feet per day.

Drill Hole Location

The sites of previous holes M.R. 3 and M.R. 4 were located in the field. Using M.R. 4 as a central point, Becker personnel spotted the 9 holes by compass-and-chain survey.

Figure 3 illustrates the arill hole layout. Hole 1 was located 20' east of M.R.4: other holes were located at $1 / 4$ mile ($1,320^{\prime}$) intervals in a square surrounding Hole 1.

Collar elevations of all the holes were assumed to be identical within \pm ''. The assumption is considered valid for the following reasons:
(a) the terrain is flat within the area drilled.
(b) given the spongy nature of the muskeg, a survey to determine elevations within narrow limits is impractical in summer.
(c) during the course of drilling a hole the rig commonly sank l' to 2'.

On completion of a hole its site was marked by a squared pole, 8^{\prime} to 10^{\prime} high, painted fluorescent orange and marked with the hole number. In summer the drill hole sites will also be marked for some time to come by the pile of overflow silica sand at each hole.

Iguipmont uscd

'The drill employed was a Becker Center Sample Rotary drill, mounted on a tracked Flextrac-Nodwell frame. The rig has a gross weight of approximately 25 tons. Photographs of the rig and other vehicles used appear in Appendix IV.

The drill uses a rotating bit and drill stem, the latter consisting of $51 / 2^{\prime \prime} \times 31 / 4 "$ double-walled pipe. Compressed air at pressures of approximately 60 to 100 p.s.i. is blown down the hole between the pipe walls, exits through holes in the bottom of the bit, and returns to surface up the center of the pipe carrying with it the cuttings.

The air-sample mixture is carried by hose from the top of the drill stem to a cyclone mounted on the side of the rig, where the air pressure drops to atmospheric pressure and the sumple drops out the bottom for collection. (see photographs in Appendix IV).

A service truck, also mounted on a Flextrac-Nodwell frame, and weighing about 15 tons, was provided.

A small Bombardier was used for travelling from the end of the car road to and from the drill sites, and for transportation of equipment and samples.

Travel on Muskeg
In general, travel with these vehicles on the muskeg was easy, and few difficulties were encountered.

No trouble was encountered in moving from drill site to site, and the moves were generally accomplished within 15 to 30 minutes.

Repeated travel over a route on the muskeg results in breaking of the thin surface mat of interwoven roots, and the vehicles then are liable to sink in the muskeg. Serious trouble was encountcred only once during the program, when repeated travel by the service truck near Hole 7 led to digging of a deep trench in which the truck sank several feet. In attempts to pull the truck out of its trench, the drill rig also became stuck, and $1 / 2$ days were spent in getting the vehicles out. Rate of Penctration

As noted earlier, the average rate of penetration during drilling of the 9 holes was 55.2^{\prime} per day.

Under ideal conditions, with no delays due to trouble, the maximum observed rate of progress was 1.6^{\prime} per minute, obtained in drilling from 0^{\prime} to 72^{\prime} in overburden.

In drilling silica sand, somewhat similar rates were often achieved over short distances of up to 15'. COMMENTS ON SOME DRILLING TECHNIQUES AND PROBLEMS

In drilling the holes drill pipe in 15 ' lengths was added to the stem until a total of 165^{\prime} was reached: thereafter 10^{\prime} lengths were added.

When a new pipe was added it was necessary to reduce air pressure to zero. At these times the high hydrostatic pressure existing in the silica sands often forced the sand into the bit and drill pipes. Frequently it was impossible to blow or shake this material loose, and in order to clear the stem, it was necessary to pull all the pipe from the hole and clean the pipe and bit at surface.

Densc Pleistocene clays and tills, Cretaceous
fireclay and kaolin-rich beds of silica sand all caused the bit to become plugged with cored pieces of these materials. Such plugs werc often loosened by quickly raising and lowering the stem; while at the same time jerking the stem by alternately starting and stopping rotation of the stem; and alternately raising and lowering the air pressure. If these measures were not successful it was necessary to either raise the stem a few lengths, and with loading poles lowered down the pipe, try to ram the plug loose, or pull the entire stem out and clean the bit at surface.

It was noted earlier that units classed as interbedded fireclay and silica sand might in reality consist entirely of fireclay. This apparent interbedding, as seen by mixed sand and fireclay in the sample, can be caused by raising and lowering of the drill stem in an attempt to free a plug in fireclay. The fluid silica sand moves to the bottom of the hole, and when the stem is raised and the plug comes loose, the fireclay and sand are discharged together from the cyclone.

Cobbles proved very troublesome. They frequently lodged in the u-shaped pipe at the top of the drill stem, as well as at various points in the pipe and in the bit. When lodged in the pipes, they could only be dislodged by hammering with a standard rock-drill rod or a loading pole, frequently a very time-consuming job.

Experience gained in drilling Hole 9 , the second hole drilled on the pre-surveyed grid, influenced decisions on the stopping of Holes 2 and 6 when excessive troubles
were encountered with cobbles.
Hole 9 reached its maximum depth of 127^{\prime} when the hole first plugged with a cobble. After raising the bit to surfacc and cleaning it, the stem was put back down. At a depth of 115^{\prime} it again plugged with a cobble (presumably fallen in from above or pushed up by pressure of the sand). The bit was raised to surface, cleared, and the stem lowered to 103', when it again plugged with a cobble. A full day spent in trying to get past 127^{\prime} resulted in the loss of 24^{\prime} of depth.

The sand-blasting effect of the silica sand quickly wore holes in the original U-shaped hose at the top of the drill stem. The hose was replaced with a heavy pipe, but this also was soon worn through, and required frequent patching.

Cuttings are transported very rapidly from the bit to the cyclone discharge point. In those cases where no plugging occurs, the average travel time between cutting of material at the bit and its appearance at the cyclone appears to be about 5 to 20 seconds.

LOGGING

The drill hole cuttings were most commonly logged as the sample material was discharged from the cyclone. In some cases when penetration of the Cretaceous units was proceeding very rapidly, the writer assisted the drillers in collecting and moving the samples, and the material was logged from the samples at the end of a run of pipe.

The drill pipes were marked at 2' intervals. With these markings and the extremely rapid appearance of cuttings,
the contacts logged are believed to be accurate to within l'. $^{\prime}$

SAMPLING

Introduction

Prime objective of the drilling and sampling program was to obtain as much of the cretaceous kaolinitic silica sand and fireclay as possible for analysis. In this the program was most successful: an estimated 8 to 12 tons of these materials were collected.

Appendix II presents lists of the samples collected from the drill holes.

Material Sampled
From Hole l, samples were taken of the Pleistocene and Recent deposits as well as of the Cretaceous deposits.

Samples of the Cretaceous units only were taken from Holes 2 to 9 inclusive.

Sample Interval

Samples were taken so as to represent a 2^{\prime} interval. Given the often rapid progress of the drill over short intervals; the mixing of the sample material that occurs in the drill stem and cyclone; the difficulty of picking contacts with an accuracy greater than l' $^{\prime}$ it was felt that a 2' sample interval was the minimum interval that would give acceptable accuracy.

The only exceptions to the 2^{\prime} sample interval occur in the case of samples from the upper part of Hole 1 , where the first 21^{\prime} of Pleistocene clays and sands were sampled at irregular intervals, and in the case of the last sample taken from Hole 5, which represents a l' interval.

Samples were caught in $53 / 4$ gallon-capacity
galvanized tubs placed below the cyclone (see Photos, Appendix IV)
As cach 2^{\prime} marker on the pipe entered the ground a now tub was inscrted beneath the cyclone, and the filled tub was dragged asicie for bagging.

To reduce the possibility of plugging due to delays caused by sampling and bagging, it was found best to run a length of pipe down without stopping for bagging. The samples representing the pipe-length were caught and dragged aside in order, a new length of pipe placed in the drill stem as quickly as possible and air circulation restored if possible. The drillers then assisted in bagging and stacking the samples.

By calculation a 2^{\prime} interval of drill pipe displaces about 2.5 gallons of fluid.

Owing to the high hydrostatic pressure existing in the buried silica sands, much more sample was obtained than would be expected from calculation.

In drilling through silica sand a $53 / 4$ gallon tub was usually filled in 10 to 20 seconds, long before the drill stem had progressed 2'.

In these cases, the tub was placed so as to catch a portion of the cyclone discharge, and a nearly full tub was commonly taken for the sample. A tubfull of silica sand slurry had an estimated weight of about 100 lbs.

Samples were poured into heavy plastic bags, which when fillea weighed an average of approximately 50 lbs.

Samples from Hole l, down to and including that representing the interval 122'-124', were put in l bag each, with the exception of the interval 26'-28' which required 2 bags.

Beginning with the sample representing the interval 124'-126', Hole 1 , and thereafter, 2 bags were used to hold each sample. Exceptions to this generality are noted in the Lists of Samples, Appendix II. Each bag was marked with the hole number, footage represented, and as either "l of 2 " or "2 of 2 ".

Because of the method of collecting the samples, the 2 bags representing a 2 ' interval cannot be considered as each representing l^{\prime} of the 2^{\prime} interval. The 2 bags comprising each sample should be composited before analysis, or if analyzed separately, their results should be averaged to obtain the proper analysis of the sample.

Rapia settling of the silica sand occurred in the tubs, while much of the kaolin remained suspended in the water portion of the sample. As a result, the first bag filled, "l of 2" in each case, contains a higher proportion of water and suspended kaolin than does bag " 2 of 2 ".

In drilling the similar Algocen Mines Ltd. deposit, there appeared to be significant loss of kaolin in water overflowing from sample containers (C.I.M. Bulletin, July 1970, p. 802).

The method of sample collection used in the 1970 program, and the bagging of the entire sample are believed to have kept the loss of water-suspended kaolin to a minimum.

When the bagged samples wore allowed to stand for a few hours it was seen that the suspended kaolin separated from the water. It was hoped that the water could be poured from the bags, but it was found that the kaolin flashed into suspension when this was attempted. In future work, providing that manpower and time are available, it might be possible to carefully siphon much of the water from the settled samples. As noted earlier much more silica sand is obtained than would be expected from the size of the hole, owing to its fluid nature and the high hydrostatic pressure obtaining in the buried sands. Given this feature, and the above-noted drilling techniques, when drilling in silica sand there is usually a copious and continuous out-pouring of silica sand from the cyclone. As only a portion is retained for samples a heap of wet sand rapidly builds up to a depth of 2 to 3^{\prime} near the cyclone, as illustrated in several photos of Appendix IV.

With the uncertain footing this caused, and the weight of the filled tubs (about 100 lbs.), sampling and bagging were arduous. It was found that a minimum of 3 men was necessary to collect and bag samples at a rate permitting drilling to proceed efficiently. In order to decrease the time spent bagging samples, and so decrease chances of plugging, 1 or 2 of the other drillers often assisted the 3 men regularly engaged in sampling and bagging.

It was noted earlier that with the drilling equipment used in 1959-60, difficulties were experienced in penetrating the Pleistocene tills, with caving of the holes in silica sand, and that sample recovery was very poor.

The drill used in 1970 had little trouble penetrating the Pleistocene deposits. Difficulties occurred in drilling the silica sands, as discussed earlier, but it is difficult to conceive of a drilling method that would not experience troubles in drilling this material. Sample recovery was excellent.

A direct comparison of sample recoveries from Holes M.R.4 (1959-60) and 1 (1970) illustrates the superiority of sample recovery in the 1970 work.

The \log of Hole M.R. 4 reports Cretaceous sands from 65.2' to 190.0', the end of the hole, with a thin bed of fireclay at 132.0^{\prime}.

Hole 1 , located 20^{\prime} east of M.R.1, cut 17^{\prime} of continuous fireclay from 123'-140', the same bed which from the poor sample recovered in M.R. 4 was reported as a thin bed, presumably less than l^{\prime} in thickness.

A Becker Hanmer Drill was used to drill the Algocen deposit. Considerable trouble was experienced with this drill in penetrating Pleistocene tills and in pulling pipe from the hole. Neither of these troubles were experienced with the Center Sample Rotary rig used in 1970.

The Center Sample Rotary drill has proved to be the most efficient type of drill yet tried for penetrating the silica sand deposits, and if further drilling is planned, it is recommended that this type of drill be used.

Respectfully submitted,

November 30, 1970.
P. E. Giblin.

References

1. Report on the Moose River Project, 1959-60. By V. A. Haw, November 30, 1960, report to American Nepheline Ltd.
2. Silica-kaolin deposits of Algocen Mines Limited. By D. E. Smith and M. K. Murthy, Bulletin C.I.M. July 1970, p. 799-809.

Appendix I

1970 Drill Hole Logs

Hole 1

Location:	20' east of Hole Ni.R. 4.
Llevation:	same as M.R. 4 ± 1 '.
Depth:	162' Dip: -90°.
Started:	July 23, 1970. Completed: July 31, 1970.
	$\underline{\mathrm{LOg}}$
Interval	Description
	Recent
0-5	Muskeg
	Pleistocene
5-60	Gray clay, minor sand interbeds.
	Cretaceous
60-123	Kaolinitic silica sand. 60-68: gray, probably due to contamination from overlying gray clay; thereafter is gray-white.
	96-98: kaolin-rich section.
123-140	Fireclay. Red, dense, plastic.
140-162	Kaolinitic silica sand. Samples from 140-150 are discoloured red due to contamination from overlying fireclay. 142-144: kaolin-rich section.

End.
Note: Black friction tape, used by drillers for temporary repair on chuck sleeve, often appeared in samples down to 124'. Use of tape discontinued thereafter. Tape fragments can probably be screened out of dried samples.

Hole 2

Location:	$1,320^{\prime}$ west of Hole 1.
	$1,320^{\prime}$ north of Hole 1.
Llevation:	same as Hole $1 \pm 1^{\prime}$.
Depth:	142^{\prime}
Started:	Dip: -90°.
	August 3, 1970. Conpleted: August 5, 1970.

LOg

Interval

0-9

9-112

Description
Recent
Muskeg

Pleistocene
Gray clay, silt, sand, gravel, till.
9-18: gravel, cobbles, minor gray clay.
18-40: gray clay.
40-52: gray-brown silt.
52-55: gravel.
55-71: till, small pebbles in dense gray clay matrix.
71-76: silt and sand, wet.
76-78: till, as described above. 78-86: sand.
86-96: gray clay.
96-112: sand and gravel, wet.
Cretaceous
Kaolinitic silica sand.
In general, appears to have lower kaolin content than material from Hole 1.

122-142: numerous cobbles of various rock types occur in the siiica sand.
ind.

Hole 3

Location:	1,320' north of Role 1.
Elevation:	same as nole 1 ± 1.
Deptin:	200'. Dip: -90 .
Started:	August 5, 1970.Completed: August 9, 1970.
	Log
Interval	Description
	Recent
0-10	Muskeg
	Pleistocene
10-94	Gray clay, sand, gravel, till. 10-22: gravel, sand. 22-32: till. 32-94: gray clay, interbedded sand and gravel from 68-72
	Cretaceous
94-124	Kaolinitic silica sand. 98-100: kaolin-rich section.
124-130	Fireclay and silica sand. Fireclay is red and brown; appears to be interbedded with silica sand in this interval; is moderately plastic.
130-158	Kaolinitic silica sand. Gray-white to 156, then is dark gray to brown aue to presence of dark-coloured clay.
158-162	Clay. Brown, dark gray to black, only slightly plastic.
162-164	Kaolinjtic silica sand. This section is relatively rich in kaolin.

Hole 3 continued -

164-200

Fircclay.
plastic. predominantly red; sections characterized by other colours are: 174-178: gray 184-188: gray-brown to black 188-192: gray-white and brown.

End.

iole 4

Location:

Elevation:
Depth:
Started:

Interval

0-5

5-96

96-152

1,320' east of Hole 1. $1,320^{\prime}$ north of Hole 1 .
same as Hole 1 ± 1 '.
172^{\prime}
Dip: -90°.
August 9, 1970. Completed: August 10, 1970.
$\underline{L o g}$
Description

Recent

Muskeg

Pleistocene

Gray clay; silt, gravel
5-42: gray clay, not plastic. 42-70: silt, brown and gray-brown. 70-72: gravel.
72-74: silt.
74-96: gravel.

Cretaceous

Kaolinitic silica sand.
96-106: dark gray in colour, probably due to contamination from overlying material; thereafter is markealy whiter. Also contains 1 to 2% pebbles of various rock types to 106'. 126-128: sample representing this section contains numerous lumps of creambrown kaolin-rich clay. From aggregate thickness of lumps, clay beci is at least 0.5 feet thick, total thickness is less than 2 feet.

Clay.
Yellow-brown, slightly plastic.
Clay.
Gray, very slightly plastic; minor silica sand.

Hole 4 continued -

160-172
Fireclay.
red and white in colour, plastic. Considerable silica sand occurs with the fireclay from 166-172, and probably the two are interbedded in this section.

Lnd.

Mole 5

Location:	$2,320^{\prime}$ east of llole 1.
Lilevation:	same as llole $1+1$.
Depth:	173' \quad Dip: -90°.
Started:	August 10, 1970. Completed: August 11, 1970.
	$\underline{L o g}$
Interval	Description
	Recent
0-10	Muskeg
	Pleistocene
10-90	Gray clay, silt, sand, gravel, till. 10-45: gray clay. 45-52: silt, sand, gravel. 52-58: till, consists mainly of small pebbles in matrix of dense gray clay, contains few large pebbles and cobbles. 58-60: gravel. 60-90: gray clay.
	Cretaceous
90-173	Kaolinitic silica sand. Dry, well cemented with kaolin for first few inches, thereafter unconsolidated and very wet. 118-122: considerable cream-brown kaolin-rich clay.

End.

Hole 6

End.
Note: A few lumps of black, presumably carbonaceous, sandy clay were noted on the sample discharge pile after drilling. T'his material was not seen during drilling and sampling due to the large volume of material discharged from the cyclone. The black clay should be readily detectable in the samples after they have been dried.

Location:
ilevation:

Depth:
Started:

Interval
$0-11$

11-100

1,290' south of Hole 1. same as hole $1 \pm \mathbf{l '}^{\prime}$. 202'. Dip: -90°.

August 12, 1970. Completed: August 16, 1970.

Description

Recent

Muskeg

Pleistocene

Clay, sand, gravel.
ll-15: gray clay.
15-16: gravel
16-30: brown clay
30-48: gravel, sand, boulders: diabase boulder at 32'.
48-54: till, small pebbles in matrix of brown and gray clay.
54-60: gravel.
60-68: sand, gravel.
68-94: clay, gray 68-78; brown 78-94.
94-100: gravel, sand.
Cretaceous
Kaolinitic silica sand
In general appears to contain relatively little kaolin.
118-120: numerous cobbles in sand. Sample l18-120' dark gray, probably due contamination from overlying material incurred during numerous "pull-backs" of drill stem in attempts to get through section 118-120'.
182-188: kaolin-rich section, creambrown and gray-white clays.
188-190: silica sand, minor gray clay lumps.
190-192: Lignite, black clay, sand. 192-194: Fireclay. Brown-red, dense, plastic.
194-200: Fireclay and silica sand.

```
200-202: Fireclay.
    pale brown in colour.
```

End.

Note 1: A few lumps of black, presumably carbonaceous, sandy clay were noted on the sample discharge pile after drilling to 162'. This material was not seen during drilling and sampling due to the large volume of material discharged from the cyclone. It should be readily detectable in the samples when they have been aried.
ivote 2: Due to prohibitive terrain conditions, this hole is located 30^{\prime} north of its intended site, which was $1,320^{\prime}$ south of Nole 1.

Note 3: This hole, and log, are composites of 5 holes drilled at and near the location given at the start of the log. Drilling and terrain conditions made it necessary to drill the hole as follows:
(a) $0^{\prime}-32^{\prime}$, at $1,290^{\prime}$ south of Hole $1 . \operatorname{Dip}-90^{\circ}$. Stopped by boulder, moved to (b).
(b) $0^{\prime}-82^{\prime}$, at above site. Dip -85°; Bearing East. Stopped by excessive plugging; and excessive sinking of rig.
(c) $0^{\prime}-16^{\prime}, 50^{\prime}$ west of above site. $a, b, c, d r i l l e d$ August 12, August 13.
(d) lst attempt to get past 162': hole (c) too badly caved to use, moved 5^{\prime} west of site (c), drilled 0-82', plugged at 82'; service truck got stuck and dug a trench so deep as to make further drilling at this site impossible; in order to complete hole to desired depth of 200^{\prime} moved to site (e).
(e) located l20' west of site (a), hole drilled from 0'-202'; sequence of units same as in earlier holes from 0'-162', sampled from 162'-202'. a and $^{\prime}$ e drilled August 14-16.

Location:

Elcvation:

Dcpth:
Startea:

Interval

0-10

10-90

90-140

140-144

144-180

1,320' west of Hole 1. 1,320' south of Role 1. same as Hole $1 \pm$ l'.
180^{\prime} Dip: -90°.
August 17, 1970. Completed: August 18, 1970.

LOg

Recent

Muskeg
Plcistocene
Clay, sana, gravel.
10-38: gray clay.
38-55: gravel, sand.
55-56: gray clay.
56-58: gravel, sand.
58-90: clay, brown and gray, with sandy lenses.

Cretaceous
Kaolinitic silica sand
100-102: kaolin-rich, cream-brown. 136-140: kaolin-rich, cream-brown and gray. Between 136'138', a cored-piece of kaolin indicates that minimum thickness of kaolin bed is 10 inches.

Fireclay. Red and brown.

Kaolinitic silica sand
rhis section has a relatively high kaolin content.
152-158: kaolinitic silica sand is unusually viscous, suggesting a ingh kaolin content.
170-180: as from 152'-158', with lumps of gray kaolin-rich clay.
178-180: a few small lumps of dark brown, only slightly

> plastic, sandy clay occur in the gray kaolinitic silica sana.

End.

Hole 9

Location:	$1,320^{\prime}$ west of Hole 1.
Rlevation:	same as Hole $1 \pm 1^{\prime}$.
Depth:	$127^{\prime} \quad$ Dip: -90°.
Started:	August $1,1970 . \quad$ Completed: August 3, 1970.

HOg

Interval
Description

Recent
0-10
Muskeg
Pleistocene
10-87

87-127
Kaolinitic silica sand. Contains 1 to 2% of cobbles of a variety of rock types.

End.

Appendix II

Lists of Samples

Hole No.	No. of Samples	NO. of Bags
1	75	94
2	15	30
3	53	106
4	38	76
5	42	83
6	18	36
7	51	102
8	45	90
9	20	39
	Total 357	

Muskeg:
0-5'
Gray clay \& sand: 5-12', 12-14', 14-17', 17-20', 20-24', 24-26', 26-28', (2 bags), 28-30', 30-32', 32-34', 34-36', 36-38', 38-40', 40-42', 42-44', 44-46', 46-48', 48-50', 50-52', 52-54', 54-56', 56-58', 58-60'.

Silica sand, Kaolin: 60-62'

$$
62-641
$$

64-66'

$$
66-68^{\prime}
$$

$$
68-70^{\prime}
$$

$$
70-72^{1}
$$

$$
72-74{ }^{\prime}
$$

$$
74-76^{\prime}
$$

$$
76-78^{\prime}
$$

$$
78-80^{\prime}
$$

$$
80-82 \text { ' }
$$

$$
82-84^{\prime}
$$

$$
84-86^{\prime}
$$

$$
86-88^{\prime}
$$

$$
88-90^{\prime}
$$

90-92'
92-94'
94-96'
96-98'

$$
98-100^{\prime}
$$

$$
100-102 \text {. }
$$

102-104'
104-106'
106-108'

$$
108-110^{\circ}
$$

$$
110-112^{\prime}
$$

$$
112-114^{\prime}
$$

$$
114-116^{\prime}
$$

116-118'

$$
118-120^{\prime}
$$

$$
120-122^{\prime}
$$

Silica sand, Kaolin and fireclay:

Fireclay: 124-126' - Note: beginning with this sample, 126-128' 2 bags were used for each 128-130' sample. See attached notes 130-132' re sampling.
132-134'
134-136'
136-138' - Note: only 1 bag collected for 238-140' this sample.
Silica sand, Kaolin: 140-142'

$$
142-144^{\prime}
$$

$$
144-146^{\prime}
$$

$$
146-148^{\prime}
$$

$$
148-150^{\prime}
$$

$$
150-1521
$$

152-1.54'

$$
154-156^{\prime}
$$

$$
156-158^{\prime}
$$

$$
158-160^{\prime}
$$

160-162'
'lotal number of samples: 75
rotal number of bags: 94
Note: Samples down to and including 122-124' may contain particles of black electric tape which drillers used as temporary filler in árill chuck. This material can probably be screened out.

List of Samples Hole 2

Silica sand, Kaolin: 112-114' 11.4-116" 116-118' 118-120' 120-122' 122-124' 124-126' 126-128' 128-130' 130-132' 132-134. 134-136' 136-138' 138-140' 140-142'

Total number of samples: 15 Total number of bags: 30

Silica sand, Kaolin:	$\begin{array}{r} 94-96^{\prime} \\ 96-98^{\prime} \\ 98-100 \\ 100-102 \\ 102-104 \\ 104-106 \\ 106-108 \\ 108-110 \\ 110-112 \\ 112-114 \\ 114-116 \\ 116-118 \\ 118-120 \\ 120-122 \\ 122-124 \end{array}$
Fireclay \& silica sand	$\begin{aligned} & 124-126 \\ & 126-128 \\ & 128-130 \end{aligned}$
Silica sand, Kaolin	$\begin{aligned} & 130-132 \\ & 132-134 \\ & 134-136 \\ & 136-138 \\ & 138-140 \\ & 140-142 \\ & 142-144 \\ & 146-148 \\ & 148-150 \\ & 150-152 \\ & 152-154 \\ & 154-156 \\ & 156-158 \end{aligned}$
Cl	$\begin{aligned} & 158-160 \\ & 160-162 \end{aligned}$
Silica sand, Ka	162-164
Firecla	$\begin{aligned} & 164-166 \\ & 166-168 \\ & 168-170 \\ & 170-172 \\ & 172-174 \\ & 174-176 \\ & 176-178 \\ & 178-180 \\ & 180-182 \\ & 182-184 \\ & 184-186 \\ & 186-188 \\ & 188-190 \end{aligned}$

Hole 3 continued -
Fireclay (continued) 190-192' 192-194'
194-196'
196-198'
198-200'

Total number of samples: 53
Total number of bags: 106

Silica sand, Kaolin	$\begin{aligned} & 96-98^{\prime} \\ & 98-100^{\prime} \\ & 100-102^{\prime} \\ & 102-104^{\prime} \\ & 104-106^{\prime} \\ & 106-108^{\prime} \\ & 108-110^{\prime} \\ & 110-112^{\prime} 12-114^{\prime} \\ & 114-116^{\prime} \\ & 116-118^{\prime} \\ & 118-12 '^{\prime} \\ & 120-12 '^{\prime} \\ & 122-126^{\prime} \\ & 124-12 '^{\prime} \\ & 126-128^{\prime} \\ & 128-130^{\prime} \\ & 130-132^{\prime} \\ & 132-134^{\prime} \\ & 134-136^{\prime} \\ & 136-138^{\prime} \\ & 138-140^{\prime} \\ & 140-142 \\ & 142-144^{\prime} \\ & 144-14 '^{\prime} \\ & 146-148-150^{\prime} \\ & \hline \end{aligned}$
Clay, yellow brown:	$\begin{aligned} & 152-154^{\prime} \\ & 154-156^{\prime} \end{aligned}$
Clay, gray, \& silica sand:	$\begin{aligned} & 156-158^{\prime} \\ & 158-160^{\prime} \end{aligned}$

Fireclay, red \& white: 160-162' 162-164'
164-166'
Fireclay \& silica sand: 166-168'
168-170'
170-172'

Total number of samples: 38 Total number of bags: 76

Note: Bag "l of 2", 148'-150', appears to have been lost during transport of samples from drill site to storage site.

$$
\text { List of Samples Hole } 5
$$

Silica sand, Kaolin:

$$
\begin{aligned}
& 90-92^{\prime} \\
& 92-94^{\prime} \\
& 94-96^{\prime} \\
& 96-98^{\prime} \\
& 98-100^{\prime} \\
& 100-102^{\prime} \\
& 102-104^{\prime} \\
& 104-106^{\prime} \\
& 106-108^{\prime} \\
& 108-110^{\prime} \\
& 110-112^{\prime} \\
& 112-114^{\prime} \\
& 114-116^{\prime} \\
& 116-118^{\prime} \\
& 118-120^{\prime} \\
& 120-122^{\prime} \\
& 122-124^{\prime} \\
& 124-126^{\prime} \\
& 126-128^{\prime} \\
& 128-130^{\prime} \\
& 130-132^{\prime} \\
& 132-134^{\prime} \\
& 134-136^{\prime} \\
& 136-138^{\prime} \\
& 138-140^{\prime} \\
& 140-142^{\prime} \\
& 142-144^{\prime} \\
& 144-146^{\prime} \\
& 146-148^{\prime} \\
& 148-150^{\prime} \\
& 150-152^{\prime} \\
& 152-154^{\prime} \\
& 154-156^{\prime} \\
& 156-158^{\prime} \\
& 158-160^{\prime} \\
& 160-162^{\prime} \\
& 162-164^{\prime} \\
& 164-166^{\prime} \\
& 166-168^{\prime} \\
& 168-170^{\prime} \\
& 170-172^{\prime} \\
& 172-173^{\prime} \\
& \text { Note: } \\
& \hline
\end{aligned}
$$

List of Samples Hole 6
Silica sand, Kaolin:

$$
\begin{aligned}
& 96-98^{\prime} \\
& 98-100^{\prime} \\
& 100-102^{\prime} \\
& 102-104^{\prime} \\
& 104-106^{\prime} \\
& 106-108^{\prime} \\
& 108-110^{\prime} \\
& 110-112^{\prime} \\
& 112-114^{\prime} \\
& 114-116^{\prime} \\
& 116-118^{\prime} \\
& 118-120^{\prime} \\
& 120-122^{\prime} \\
& 122-124^{\prime} \\
& 124-126^{\prime} \\
& 126-128^{\prime} \\
& 128-130^{\prime}
\end{aligned}
$$

Total number of samples: 18
Total number of bags: 36

Silica sanà, Kaolin:	100-102'
	102-104'
	104-106'
	106-108'
	108-110'
	110-112'
	112-114'
	114-116'
	116-118'
	118-120'
	120-122'
	122-124'
	124-126'
	126-128'
	128-130'
	130-132'
	132-134'
	134-136'
	136-138'
	138-140'
	140-142'
	142-144'
	144-146'
	146-148'
	148-150'
	150-152'
	152-154'
	154-156'
	156-158'
	158-160'
	160-162'
	162-164'
	164-166'
	166-168'
	168-170'
	170-172'
	172-174'
	174-176'
	176-178'
	178-180'
	180-182'
	182-184'
	184-186'
	186-188'
	188-190'

Lignite, black clay, sand: 190-192'
Kaolin-rich clay \& silica sand:192-194'

$$
198-200^{\prime}
$$

$$
200-2021
$$

Total number of samples: 51
rotal number of bags: 102

List of Samples iole 8

Silica sand, Kaolin:	
Fireclay:	$\begin{aligned} & 140-142^{\prime} \\ & 142-144^{\prime} \end{aligned}$
Silica sand, Kaolin:	$\begin{aligned} & 144-146^{\prime} \\ & 146-148^{\prime} \\ & 148-150^{\prime} \\ & 150-152^{\prime} \\ & 152-154^{\prime} \\ & 154-156^{\prime} \\ & 156-158^{\prime} \\ & 158-16 \prime^{\prime} \\ & 160-162^{\prime} \\ & 162-164^{\prime} \\ & 164-166^{\prime} \\ & 166-168^{\prime} \\ & 168-170^{\prime} \\ & 170-172^{\prime} \\ & 172-174^{\prime} \\ & 174-176^{\prime} \\ & 176-178^{\prime} \end{aligned}$

Total number of samples: 45

```
Silica sand, Kaolin: 87-89'
    89-91'
    91-93'
    93-95'
    95-97'
    97-99'
    99-101'
    101-103'
    103-105'
    105-107'
    107-109'
    1.09-111'
    111-113'
    113-115'
    115-117'
    117-119'
    119-121'
    121-123'
    123-125'
    125-127' Note: only l bag collected
                                    for this sample.
```

rotal number of samples: 20
Total number of bags: 39

Appendix III

Summary Logs of 1959-60 Drill Holes

Summary Logs of 1959-60 Drill Holes

Locations of these holes are shown in Figure 2.

0-15.0
15.0-208.0
208.0-218.3
218.3-221.5

End.

0-13.0
13.0-72.0

End.

0-9.5
9.5-95.0
95.0-198.0
198.0-201.0

End.
$0-11.0$
11.0-65.2
65.2-190.0

End.

> M.R.l
> Muskeg, silt, sand
> Pleistocene clay and till
> Cretaceous

Kaolinitic silica sand Fireclay
M.R. 2

Muskeg, silt, sand
Pleistocene till
$\frac{\text { M.R. } 3}{\text { Muskeg, silt, sand }}$
Pleistocene clay and till
Cretaceous
Kaolinitic silica sand
Fireclay
M.R. 4

Muskeg, silt, sand
Pleistocene clay and till
Cretaceous
Kaolinitic silica sand
Thin bed of fireclay at 132.0

0-7.0
7.0-100.0

End.

0-13.0
13.0-100.0

End.

0-12.0
12.0-100.0

End.
Holes M.R. 8 to 13 inclusive were drilled in other townships, and their logs are not summarized here.

0-6
6-48
End.

0-44
End.
M.R.A. 34

Muskeg, silt, sand
Pleistocene clay and till

$$
\text { M.R.A. } 35
$$

Logged as "may be partly Cretaceous."

Appendix V

Hole 10

Location:	$3,960^{\prime}$ south of Hole 1.
Elevation:	same as Hole $1 \pm 1^{\prime}$.
Depth:	202^{\prime}

Started:
August 19, 1970. Completed: August 19, 1970

LOg

Interval
Description
Recent
Muskeg

Pleistocene

Clay and sand.
10-20: sandy clay
20-30: gray clay
30-40: wet glay
40-50: wet clay
50-60: wet clay and sand
60-80: clay
Cretaceous

80-82
82-147

147-150
150-180

180-181
181-202

Fireclay
Kaolinitic silica sand 90-100: minor beds of kaolin 100-120: minor beds of fireclay 140-147: minor beds of fireclay

Fireclay
Kaolinitic silica sand 150-152: silty, gray 162-172: minor beds of kaolin

Fireclay
Kaolinitic silica sand
190-202: minor beds of kaolin

End.

Appendix IV

Photographs

FIGURE 1

Scole 1 inct $=2$ miles

FIGURE 2
PLAN OF 1959-1960 DRILL HOLES
IN KIPLING TP.
AND GENERAL GEOLOGY

- m.r 4 1959-1960 drill hole location and number
$\mathrm{r}^{-7} \quad$ Area of 1970 drilling,
for details see Figure 3

LEGEND
RECENT AND PLEISTOCENE
Muskeg; Clay, silt, sand, gravel, till (not shown)
\square
CRETACEOUS
Kaolinitic silica sand, fireclay, lignite
\square PRECAMBRIAN
Migmatite, diabase

FIGURE 3

PLAN OF 1970 DRILL HOLES

0 1970 drill hole location and number

oM.R.3 1959-1960 drill hole location and number

FIGURE 3

PLAN OF 1970 DRILL HOLES

31970 drill hole location and number

OMR. 3 1959-1960 drill hole location and number

Photo 1
Drill rig and service truck. Hole 1

Photo 2
Drill rig in travelling configuration, bogged down. Hole 7

Side view of rig showing cyclone, tubs for sample collection, and overflow silica sand. Hole l

Photo 7
Cyclone discharging silica sand (moderate rate of discharge). Hole 7

Photo 9
Same scene as in Photo 8, illustrating spread of overflow silica sand.

15,59-

E:

So Ao as

Nowaber 30, 36

 and by pancto tuscrosis.

 wis a : 17 on Dowober.?

anosecs

 coneoston in tho sojech fo：roolen copositus．

T．Wes civand tran the beriming that succuse of tas

 がいこといる。

 nevice to meng youtcoo．

 '/5 porccit ó' tho kolan moticto

 crowdituece aro justifiod on the jecose Eivor piojuct.
$00112 \pi 296$

6x.0.xatus

Trumbouta

Docuryour on concoonda
Zocteicn cu decess
Sojocseng
chorat coology

Bavion Ho:n
Cownacs Turwedgetions
Comencidid Doviogents

Tw ecsudcestic:

Twtion vorron
D.tidery Cantact

Brovisos
(i) Vinucr protion

Suany d Conepsions on Wintes Dunising (2) $5: 000 \mathrm{EPO} \mathrm{sem}$

Sumasy of Sumer progian

Ceolo
Doscingtion of Sedinctiony hatcrials

Soksumo
$0 c: 0020.0: 30$

－s，

 a cowos de e

 OW．

$[\operatorname{tang} 0 \operatorname{cosen} 50$

$$
\text { frcers } \quad \text { ? }
$$

人 \because, co, $\}$

 ar a a no ta,

 स : ond (\%) \because

 ¢ \because -

frangera?


```
%)
#,y,
```



```
BNa,
```

chemerog

 co

 2. O...

 the ッ.

cranoredegto sto

 व人

 No．

 ． 5

(a) the parat on an awno nat on buco.

(b) An aremont by we compen to ayen bloj,000 over tha posco of thoo yous o: the yocen,
 surayo.

 (c) aiso to bo sumattod.
 avalrolo for onmintion by ondenalo of the

ju buncion wo mede for lenoo or lunges on a pax or tho corcoscion anca tor the purpose of developiny a comereal cepositio

Tay condencos

 ?

 coun sexes juch the benctits of the how.

A twip wa mad down the wiscipedbe yun by so Bo
 rown of tho Operatian aiver．

Tho purgoce of tho taip was to imoctisto the

 casé。
wow nowin of coal caook is in liowaca tenachto about

Sho conchatons rencha on the rewher on thes vap
$\therefore \therefore \underbrace{*}$
 of cargacit by boat on beree

 scarctity of lending places.

 sorvicies from the airs an pomit a moro winowa bationg coverese of the conesstion area.

Oher obscivations mide reta to tho torsed ad chay

mponeroy Powes

The pupose of the croloretion procraca tas to find coosits of kolin of sunfeicatly hich quelity and enode to butus tito
 - silica sead and froclays would be produced as bywerducts minen wound bets a propotion of the development and opoating costs. In the searer tow thes hatenals, the planing of the grorran hed to tako amo constecaston the follonse fectors:

Io The lare arce of tha coucession - alnost sot, yane mizes.
2. The vidospread distribution of known Crebecous cujositus on clay and semd dit tho coreossion.

3o tho moten condticns with resulting problens of tacreportation.
 - Onvines tho cloys and send of interest.
 ta conootition and thicmoss of tho clays and oxats consentiving the deposits.

2tas $x+2 \pi$

 clocx thonvis in owce to obern a cleaze pictome of the

Coophsical mothods wo considera berowe the dunting
 way oond be noci it moma be ncosemy to do seme dijung to dotantro

 tho concessen as tha peosed, it was evident the use of ceppresicn?

 nome the aproen has thonofoso abmenod.

Denlengospact

The dringing comanct was let to Joy Ramevinsay

人

 foot, re would heve to meko the marnm povision for the problaname hewads enowntred, with would not be entirely realistic." The
 xatul basis.

Drinuing

The coplonation work was conducted in two stagen: a Whowes dulung wosart, during which thiween holes were cringe to

 whiling wa sepplenented with geological reconnassanco to obetan adtivone imomation on distribution or Cretaceous outcrops ard to Gevemino davowable Jocations for drining

Se Wuscuroest
A projininaty unip was mode early in Novenber of 1939 by V
 surve the guenal grous condithons for operations and to spot the thent
 ind papor Company for theneportation of equipiont and powsonel owe thoir
 at the tian to drive by truck from Snokey falls to the botion on tuen andes, more a campsite is loctiai on the west bank of the kattagem river as this tes the most accessible and conveatent location frea wajch to start the porem, it was decided to esteblish the first camp here fas a goup
 anes the wost bak of the diver, it was necessary to start the cixingeg b buad tan to the west. The first hole was spotted 200 feet wes of the F. duca boundect, which at thes point is two clein lengiths from the

 Wis holo vas locted in thick spmee muskeg just of hich oround to the cut wach strctched over to the river, and also, about onc-ghenton mic movet

Deton retumine fron this prohnimey triy pameston

 cosuan an yomomal the the concession for the bogiming of the
 cuntury oa December 2, 1900.

 wase of pipo, casing, and rads tron sax inch pipe to up rods bith
 tho projet in atticjpation of a varicty of driling conditions crens wace povided to mintain the dxiting on a twerity four howr basis.

Ventures persomel on the job wore ocupied in speiting

 thee cueve during the drill procram wace the general supervicion of Yo ho Ma.:

The Eirst fen holes were started with six jnch pipe as
 diatow cosing and bits were used dom to 2 25/16: The last for holes
 depons heavy mud wes usad ducing this port of the progean, althought costerges used at the same time in most ceses, in an attempt to wrevent caring o" tha holos. Ine intertion vas to ratove sampes at ten foou. jntervale; harever, the obtaining of paper sagyles proved to be very coticut, and so sambing at oreater jntervals was usually the casc. - Soil samping techagues were used with both Shelby and split tubes.

Problems in drilling moved to be metnder peatration of the ginciat tinn, which was extrenely han, and, of course, made more dintult by the contained cobbles and boulcers, and also the continuous cavirt of the poorly consolidated cataceovs silica sards. The lation \%-o who hyaravic pressure and rose 25 feet on more up the hote on the whtaral of the Dit, in spite of the use of the barite lozed mat.
 The till in most cases was very difficult to penetmatc, hatna eithor the Stojy on split tubes. Cavines of the hole, of course, made dinicult the cbiniming of reprosentative smples. Results wero that the toines of Emploz conciated a nuch lareer proportion of tine than was anticipatod, ad ofton, were only represented by a fer cutiongs fron the tricono bit.

rain romsu．

 Wes do：th kepling womshe whero seven holes were drilicd in the west cotral port，as shom on the enclosea majo．

The firse hole drined，ili 2，was stated on Decmber 2，
 Dewele of cach hole axe shom on the accomponying bections．The aitust．
 thoush bowder till，and stoneless clays，interpretce as betey of Wetion late oricino fit 006 foet the first lenses of hish puitity silica sons was observed，and from 203 foct tho holo passed through a horizon on sixice sum with a low kondin content．fit 218 feet the nolo anored
 cres，Fith a mooth，dense，plastic toxume fine hole wes ctoped en 22：jued as consderable trinble hed boen encoustored in keping it onen bacado of caving of the sand．

The second hole mes locatcd one－halif mile north，end

 a－alde becte thyossible pricone bits had been used up until this
 \dot{C} aond whont an further penctration，and so the hole was aberdonde

 $\therefore 100$ aes in mh 3 and continued dom to 200 fect before ouer， 3 colourd Hachay we reachod．Kaolin contents of the sand vere obviowiy lo：
 colow looked pomisingo However，separation of the minus 10 wiono Auction thomen ony 24 percont or it to be present．As in all casos wen dullise the silice send，ceving of the hole up the casing unday byantic pressurs，and before obtaining remesentative sanmles with the sholby twive， move way twoublecme the hole was stomed at 201 fecto the fouth roie，lith，inturectod the silica sands at 65 fect and contimuci on
 Graciay was intersected at 132 feet．Kaolin contents of sand sajpies mas enemaly low－－ 5 to 6 percent，but at 95 and 244 feet samyse jau Deveren 20 asd 21 percent minus 10 nicrons．
the next three holes，in 5； 6 and 7 ware stopped in

 Mr ne comploce.

A this the the decision was mole to stax on the fove

 oundian conide be conductod.

60w rowno
Whth the stat of crinitig in henes tomshop tho ci...?

 .6..

 cher ozesto. servicing ô tho project from outide not becate ubtroy crearen on the wo of aircratio

The Xou holes wore stopped in cleceal till on ctior Fone ctoy was chountoci fon the fiast the in holes la 10 and 11 , tho
 bent wo melon, which was two to row feet in thickness, end to conthme dow to cophs of botwen 50 and 60 foet below tho suxaco wowe it ownly stactat till on clay.

War arombe

Tho neve cen was locetcd ir the centrat naw of

 Ban wowly.

 in licht of the winteris experience.

Sumay and Conolusions on Winter Driving pomat

Thituen bo:e holos were dwilled curing the poriod between Decobor 2, 1959, and Aprill t, 1900. The results of the dalline ane swawede in Table l. Cuetaceous sodinghes wore interscoted in holes W3.3, an $l_{i,}$ at dophs of 20s, 75 , and 65 fect respectively. the

 the cotacoous sedinemts in this pariv of the concession had a insuknoss of
 of manachay ... of post ghacial age, in themesecs of ove so reet in the westom part of heres, and northern jart of deCauslend tomstios, is indicative of even greater thichesses of overounden in chese 20 citions, ard potins to a basin. ike structuro with the eastorn part of tho corcossion on the slope dipping westward.

The Cxetaceous sediments intersected consisted of thickress of well over 100 feet of konlinitice silica sand as shom in holes ia 3 ad lo There is sone indication of a Cretaceoue done vitit the Wish in the viojntty of IR 4 . In contrast, work on the banks of the Fetegens river juet below Long Rayids showed only about ten foet of sition send ovelying 1,5 feet oumo of fircelay. ini 1 also showcia a thechess of only ton feet of sildica sand overlying the fireclay. Sorie of the ailica sends in both in 3 and 1 , were associated with 100 d . coccutrations of kaolin. However, the best samples ran only 2 peremt or lose minus 10 microns, add, of this only about 80 percent proved to be koling as will be roportea later in the section on laboratory watlets.

Work on the rinter progrem was begu on Novome: 25 ,

 Welty returned to the solith During this period $335,900.85$ had beor
 morvisione di was evicient in viom of the rather discouraging results thet a procen of this kind could not be furihor justifice until -vidonce covid be found of better grades of kadin at shallower dopits.

2able 2

\therefore St ryonay

 as ch woda assat in detomining a fume course of acison in con.-
 farownde widence for the occurence of keolin of econonic wece and sambity do justity furcher heavy expenditures as hen been incurad cuary bo peovons vintur.

To do this, a geologtal recomatosance of the concessjon aca bes phemed, to be stopleameded by scac hand augering of holes in

 The decsen was finally made to spend up to wo months on a sumer euger datilis: youren during wich holes of about 50 feet depth could be drilled deports of interest throughout the corcession. Ey drintine aloas stradi dois axi rivor beds adentage could be taken of the natural crocton, thus eljanditing appociable thicknosses of overburciene inis apmoach ultinately moved satisiactory in completing the exploretion procrand the depthsof 50 iect or more which were reached in nany of the augor holos were considered sufricient for the search of comarcial deposjits of kaolin or sand in this aroa.

A veck?s recomaisuance of the concession was madic by atrerate in July by V. ho hev and D. E. Craig. Tnfomation was obtained on sumer ficid coutuions in the ruckeg, and the feasability of lardirg the arcraft in the anjll lakes of the concession and of usting it for transportation in the datlinge Sites for base catips wore selected and a nuaber of holes Wex spotted after a brief survey of physiographic and geologic conditions hed bos: rivele.

A party of five and equipnent vere flom from Reni Letre rear Kawkesing to Coal Creek on tho Kissineibi River on August 10, 1960, to besin the sumar drillinge The parity consisted of V. Ao Haw, G. Ro Guillet, D. Ro Crote; I_{0} Kosy, and To Davis.

The drilling cquipatent used on the project consistwo of a Fi nopo Acouloch uit with a transmission and chuck, all oi wich weignod Bonto pomds. The auger flights were four fect in length ad there incios in denctar, and vore deajgned to fit ono on to another to etvo a. continuons flight of augers as the hole descends. The wit and augers ane Whetrated th photographe at the ead of this section. The cher probleat peciod to be the extraction of the augers from the hole when it was roesrei to renove semples and add additional lengths of augcr. this wis coutually overcome by the fitting of a small drum on the cad of the chuck of: iho mehino which enabled the auger ilights to be hoisted with lititic dixizuliy。

A tondaive progran for the auger driluing was propared for

 thomation in sinto of the axim bina regured for their axinit:"
tho staner drinting is awain described by the tomanips in wen hotes wese loceted. The progen started on the extrene wost side of the conceston in Bucsuall tomship.

Fosent homshin

Four holes wore cirilled in Eurstall tomship, locatud to andore woud in close proxinity to the precembrian contact.
 casce ta dinction of the Precabrian contact fron casturast to a row theny dinoction the hole Midel is located on the bank of the Rissinetibi
 rocon flumal ontgin. The sand constoted of linestone, quarta, icldspar, ad dex colourd grans averaging $1 / 16-1 / 8$ ine in size vith a few cunctitumes vo to ono inch. No further penetration beyond lif fect wes possible oting to a boulder or bed rock at the botton of the hole.
the noxt hole RRA 2 was also drilicd on the river berte close to a tomeve oi pecambritan outcrop, lit was collared in red Certesoous tracelty outcrop ad was drijled through the dane material to 40 foet, wewe rocovery of the augers becano amost inpossible the firecley was iown to bo bitck red, emooin, donse, very plactic, motided with occacionel thin cocan colowed bands. The clay near the bottom of the hole vas much dioce, are in places crubly in texture. A few ocgregations of kaolinitic silica sen wae observed below 32 feet.

Holes ind 3 and t, were drilled on the shore of a small lake, ard on the beak of a chall creck respectively. However, their collew Owations, were probably 100 feet of mo:e higher then the two previous hoios. WA 3 was stoppa at 27 feet of in hard boulder till, and ins 4 in suacless clay of maino or glacial origin at 4δ feet. ftyph

[^0]rasion rowsonn
 onok fan the river, one inded in the centrel part of who wowshiy w a mat sowe valioy, and two along tho baks of the Rissinctut river in dio custuraportion.
fhe first two holes whe 5 ars 6 worc collered in silus
 50 foct and onded in glectal natorials, MRA 5 was drilled about loo yards
 locatiom whe fircelays had been fowd previously (iontronery ad fateon). A. whe was or dubling ro tace on the thechays couta be fowe jn the venito of mat 6 and the hole was coliared at a location belicved to de chose vo the previous discovery. However, the hole passed through nothing but tia ceopt for the top ten feet of sile and sand. Later, as the Fitco loval subsided, some dark clay was found in the bed of the crook bout to foct irm the location of $\operatorname{IRA} 6$ which had the appearace and vature of fjreclays found olsowere, and similar to the material cucoribed by liontemery and Hatson.

The hole fest 6 h vas located 13 miles wistrem on con Creok

 hede bis daticu to dy reet where no further penctration was possible, bocuns oi eithor a bouldor, or bed rock, the hole passed throuch veriecrace adys nom top to botion; exhibiting maing pele blue-greys motiled with whate ant patches of buts, olivengreens, and bromish colourso fron 12 to lite foct it was rediaisa brom in colour. Cherty fracments were abuatat thoughont mosit of the hole ema are believed to cone from thin cherty lenses interspersed in the firectay. A.1.l the clay hed the enooth. donse, and very plastide texture of Cretaccous firechay.

Holes rad 7 and 10 both ended in glacial till. The first kas locatca about one mile up a mall creck south of the Wiscinabi river. It was stopped at 25 foet becuse of difficulties in penetrating a vay bard, conse iecial till, in spite of several attempts at moving the location of the hole in the Lrimediate area. The second hole, 10RA 10 was locricd o: the nowh ornk of the river let miles west of the nouth of the Pivabiska, and awtin the uper few feet of silt encountered nothing but till cown to Mif 2ecto

Hole man 8 was located on the south bank of the Yissinaibi aker ad collared 10 feet above the river in Cretaccous ovterop. coscribcu by crozier (6). At this location silica sands and firectay wace obsonve to occur at hejghts of about 60 fect above wiver level. fiter sescing thoven one foot of mave coloured fircelay the hole entered sition som with a hoit leolin content ard continued through sh foet of thes metusid where it wes stoppod.

36

 bocusse of difiturtice of penctraiton.

15int forahip

Only the one hole was driliced oring to the jnaccessibility
 the townemp ajacent to a mall lake on the west side. The hole yassed though to foot of stonejess cley marine, or glacial leke, and was

May Tonsen
Four holes wore drilled, ind 11, Xh, 3.5, and 29, three of vidch wou locata along the beuts of the lissineibi river, whe one now o Eath lake on the south boundary of the tomehip. AlJ of then vone stoped in gactel materials at dupths of beween 32 and $b 8$ fect. The voper portions of 12 h . 4 and 19 may consist of marine clay down to about 15 . fceb. clthous ir antification was not positive.

moby ounshin

The two holes drilled in the tomship were located at the cads of two narow lekes in line running northest -southeast. The sorimust hole, MA 23, was stopped at 26 feet in heavy bowdior till with nathe clay between 6 and 20 feet. The southeast hole got to 4.5 foet and ves stopped in stoneless clay. Considerable thicknosses of sam and Grave wora intexsected thteraitently in Wh 23 between the coller and om? 1:0 feet: Clay material in parts of this sequence may be of marine origin.

Hog rownsp.
Tro holes wore drinted, Mind 26 and 2ba, in the tomohip near the mouth of the Litile Soweska river at the thissinaibi. The holes we:e drilited into croteceous sillica sands outcrope doscribed by Crozion. The sams occur 25 foct above water level at this losation. We 26 was located 300 teci up the Litute Sowosta fron the Nissinaibi river and hat 25 an the notin bark of the lissinatbs so feet above the nowth of tho littile Swobla. Both holes wore very sirilar in composition. Excejei for the upow

Ghomer fomshin
 bon's on the Hisstnaibi river in the west central, and castexn partse the ono, ma 29 roched lis fection stoneless clay (glacial lake) and the other, mitt 31: got to 1,0 foct and was stopped in a mirture of sand and clay.

Sbint fomshin

The last two holos drilled were located in Kiplina tomstap on the cest beak of tho Kattazani river domstiocin and acrocs from tho pevious rinteris drjiling. the south hole, wh 34, was collared in a wite thiteon foet above the river and penctrated through neaty twont feet of con! stonelese clays of piobeble recont origin - marine and swop ciar, fion pesetne through fifteon feet of tijl it catered a sand composed of
 nowh role, mat 35, was located less than a half mile south of the north bow havy of Kipling tomship. Its location is probably just south about ono quarbe rilo trom shafts and drill holes described by loontowny and Hetson, (5), in which dark coloured firechays were reported to have boen dis. coven. The matural interscoted in mah 35 did not have the characteristies of powionsly doscribed firecleys. It containca fine grained nice geving tiva voy groasy feel, and granitic and limostone inclusions, athough not jn suftecicnt momber to jdentify it as a till. It is sinply describua here as a stoneless elay whout any generic desigation. .

In aditition to the conpary drilling information was recesved fron the RyPombectric Powor Comaission of Ontario through the courvesy of Er, O. E. Johnston, Hydraulic Gencration mgineer, on some shallo: drjiliting completod along hiens Creek near the eastom boundary of Kipling tornchip. A nuben or holes were drilled in a north-south direction com orer the Procabrien escarpment and north to the dattagam river. fro holes were cirined to only about 30 feet and penetrated no deeper than the glacial till. No ovidence was found of Cretaccous sedjnents in any of these holes.

Sywey of Suge Dxiline Pogem

drenty-rive holes were drilled by pover anger during the bumbe wemation proerem which lactud from dugust 10, 1060, to Sobtentar Zotho liost of these holos were dejlica to depths on close to sofow, athough a fov vere stoperd at shaliones dejths because of
 dinlos we sumanzed in Pable 2, and detatss of each hole ane
 ducascect in only five holes ard in cach casc the holes wore collaned sin Critucoses outcrops, or very close by, which wore proviously thomo thooc se located in Ausstall, licbrion, and Habel tornships at bolo locations JRA 2-6t-8-26-26A. The first two were in firaclay contimonsily to the bottora of the holes at $1,0 \%$ ard $4 h^{3}$ thect, the
 at 55: 1,8, and 188 feot. the kachin contents of the sands whe elj totimote to be belon fiftecn percent as a maxiulu, ard for the most pext less that five porcent.

Jittile infomation was obtancel on the depth of overbued ownghes the cretacous surface during the anger drilling. Honeves; it wo ustublichot that overbunton depth exceeded fisty feet in a number of waily disoributed locations in the concession, and, considering tho doles drinled in the croded villeys of streams and rivers, lotal cuith of overbinder is in axcess of 200 or more feat at these loctions.

The sumer progran was tominated on the 26 th of soptcaber, aue to wnevourable weather conditions. About seventymfivo porcent of the program originally planned was completed ard all tomonips hed received some attcntion.
'abze ?

Sumary of Joge for min Scries of holles ,

Rio.
semd

Marino	Glacial
Clay	Till

Ghacial
Lake Crececoous Clay
Sand

Cabecoous pireclay

SOIOCX

On the basis of the drilling completed during the curbe of thes poject, and cranination of river banks up to 200 fect hien, it is
 thll and div acept wexe rivers und shears, by wosjon, have coposel Cretucens outcoyse An examation oit the drill hole sections aiso shows thet thekesses of liarine Clay of Receni hge of up to at lest 66 feet ocevy portions of the contral pari of the concession, and these rest on Plowstocone glacial materials. This indicates a toporraphic dopecsion in this aten of the concession in the post glacial surfacc. This is clagestive of the basin-like structure propoced by Diver for this area.

The man target of the drilling was the Cretaceous torizone tin wich fit wo hoped to find kailin of comancial grades fore early paw of the wintor drilling was jntended to cotablish goologicel thfonetion
 prowna. This provel wasuccessful, partly because of tho high costs jnedarai jn drimbing through the deen overburden, but also due to the fuegula and unyatictable depths at which the Cretacéous was thtorsected. Wxamation of Cretaceouc exposures and drimine in the wostem prt of the concession also showe that maked varjations in depth of the top of tho Cetaccous could be expected whthin linitad horizontal disitucos -.. in one instance a hoje 50 feet deep failed to intersect firced.ey that was exposed in a creck bed 200 sect away.

It aupears cvident, and logicel, that the origimal uppor Cretacons lara surface was greatly modificd by glacial action Dusing the roviachi of the elacier over the Cretacoous surface dinfereatial erosion
: oourred, reflocting variations in atruding action of tho debris comation By the glacion. The result was a highiy irregular gicciated Crobaceote bwiface cheracecrizcd by ridges and valleys wholly unpredictiolo in wient and distribution.

An abbreviated accowit of the drilling has been given in rovious soctions. Further descriptive detail follows on the conposition aci occurrence of each of the sedimentary materidals intersected in the course of the drilling.

Dosempion of Sedrentery ratojels

3 m

i. nokes.

Roota, buass, soil, and ohor oremic materiatse ian dopon it vas roud to vaxy betwen two and wen feet from curiacc.
2. Silis, Sand; mad Gravel

Wine yellow sitt underlay the muskeg for depthe of 30 - 3.58 It wey of the holes beck from the streans Layene of coarser seed sud Grvel we alyo sometines fourd to be present. Holes located on struan bents cowonly passed throwh a few feot of dark brow silt before wacrac wdoriying clays and tills.
3. Novine clay

Whore identificd the marine clay was observed to be derk Wy, wacture es plastic, smooth, and highly celcareous; dingositic fotvec; -... presence of mitite shells and abseace of tine beddinc; or Whew llairmike, trig, and bark inclusions corron, with occasional pobble of eranite or linestone. Greatest depth of marine clay obsorva We: in hole Mr 13 at $66+$ fect.

pTHSOme

ho Guction 2inc
The dills were fourd to be highiy variable in compossition and mpearanoen The matrix is uniformy dense, and calcaneous, athong vajing bowern sility and non-plastic to clayey and highly plastic in toxtwo. Whon moist it is dark groy to oliva groy in colour host of tho constituents are limestone, although up to about 25 percent are cowitie and cuatse A lerge propowion of the till drilled contained mainly constitucats of sand sizo range, with some containing cobbles up to thae inchere in the najozity of holes drillen the flacial till mordey the marin clay, silt, or muskeg of Recent age. Layers of tjin were scyerato by stoncloss clays and sandy clays in a number of holes, indicatirg more then ons pariod of advance and retreat of the glacier. It is a reasoncbie mpocition theit hed all the hojes been drilled to 100 feet or mowe the sato ritmation would have boen encountered. The greatest dopth at which till vas fown occured in hole 1 A 1 at 206 feot.

 sumalde clays, howover, vero vory dank, but motilal in colour, and.

 with chatel condithonso

It wes not alvays possible to delincate betrech the ctonoless

 troosthto to obtaino finelly, como of the somalled stonclese chay a ocicnetci th the drith 70 gs and sections are decidedily sardy in cowowiton contiming thin lenses or beds of almosit pure cew oí hoterognious compositiono These were found nowo comonly in the woper मossecies

CSGGOS

Stica Evad
The silice send is conposed of ossentially dill ownte getne of: a stre ange mainly botwen 10 and 100 mesh. The erains are cieas In collow rad submentular in shapo. In tho uppor portions of the becis ces thantsos woro fowd in tho form of foldspar, hinestone, and carc cosoute constituonts. There the beds occur noar the surface some biom

 comated as much as 25-20 percent. Tho keolin is white in colous and "esily washod free fren the quart\%. It was found to occur in thiobrocoss of vo to 125 acet bolow the overlying elaciol till. The siluce send bets fomed tho upper portion of tho Crataceous stratigraphic secuence of noti of the oocurances investigated.

Nocolo
These exhibit a vorioty of colouns, and nere motilet and stenetel by hews oi red, Ereen, pale ereys, whiee, brown and ofecho they
 thay an cumby in one location they were fowd associctoc with

Smples from the ciniluing vero evaluated in leboratorios of

 suantu:, the kolin fica the sand, ard the investitetion of the baxicer and chatore properios of the sevarated peoducts.
the keolibusand sepentions bowe first stwedion z.

The detominations woro mede on the cley fow compostition,
 betcentations on the serd were mace for chatical compostition and ceding tho reotite of this worl are tabulated as follows:

Mroe 3

Co. $000: 0$
$3 i$
$7 \cdot \varepsilon$
60.
\because Dy arcential thomal chalyis of the -30 micion fractions
Several senples wore seperatod at five microns, cui coupotions of the fractions dercuatinct:
anble 1
Cluy-Sund Soparations, and Compocityons
Sopgotec ad 5 lichons

 cu:ace payontaco:
$3 \sec 2$

	108	Cover
	35-3!	6
10 ! 0 0 3 . 30 microus	33	ber

Hater Hashed
asicteras:

50

$1.6!$	
36.07	
0.36	35.13
23.68	0.17
11.81.	32.93
	13.82

$\%$ In 20% det $50 \% 30$ minutes
 ches tho Mosinaibi rivon bati, which wero padod ad ancyaci 80: noz:

the abow emolos whan ecresned on 100 mesh with the whersityo discardich were reduecd to $.05 \% \mathrm{FO}_{2} \mathrm{O}_{3}$ or loss.

MOOSE RIVER KAOLIN
 BORE HOLE MR 3

7.5 MILES NORTH
8.1 MILES EAST ELEV.-

$$
1^{\prime \prime}=10^{\prime}
$$

$$
-\frac{R E C E N T}{P L E I S T O C E N E}-
$$

AUGER HOLE MRA -II

AMER	TOWNSHIP
O.8 MILES	NORTH
1.0	MILE
ELEV.-	
$1 ":$	10^{\prime}

AUGER HOLE MRA- 13

AUGER HOLE MRA-14

AUGER HOLE MRA-15

in
AMERY TOWNSHIP
2.8 MILES NORTH
4.2 MILES EAST

ElEV.-
$1^{\prime \prime}=10^{\prime}$

SILT

BOULDERS
gravel
$-\frac{R E C E N T}{P L} \frac{T}{S T O C E} \overline{N E}-$

FINE TO 2" INCLUSIONS

MOOSE RIVER KAOLIN
AUGER HOLE MRA.-17

GARDEN TOWNSHIP
7.6 MILES NORTH
6.7 MILES E.!: ELEV.-

$$
\text { SCARCE INCLUSIONS - REECENT }-
$$

MOOSE RIVER KAOLIN
AUGER HOLE MRA-19

AMBRY TOWNSHIP

$$
\begin{aligned}
& \text { A. } 8 \text { : MILES NORTH } \\
& 76 \text { MILES EAST } \\
& \text { ELEV- } \\
& 1^{\prime \prime}=10^{\prime}
\end{aligned}
$$

SCARCE INCLUSIONS TO 1/2"

$$
-\frac{R E C E N T}{\text { PLEISTOCENE }}
$$

AUGER HOLE MRA-23

HAMBLY TOWNSHIP

$$
\begin{aligned}
& 4.9 \text { MILES NORTH } \\
& \text { 3.4 MILES EAST } \\
& \text { ELEV- } \\
& \mathrm{I}^{\prime \prime}=10^{\prime}
\end{aligned}
$$

AUGER HOLE MRA -26A

MABEL TOWNSHIP
1.6 MILES NORTH

36 MILES EAST ELEV. -

- RECENT -

AJGER HOLE MRA-29

MAHONEY TOWNSHIP
3.1 MILES NORTH
3.0 MLLES EAST
ELEV.-
$1^{\prime \prime}=10^{\prime}$

MUOSE RIVER KAOLIN

AUGER HOLE MRA-3I

MAHONEY TOUNSHIP
5.6 MILES NORTH
7.7 MILES EAST

ELEV.-
$1^{\prime \prime}=10^{\prime}$

MOOSE RIVER KAOLIN
 AUGER HOLE MRA-34

AUGER HOLE MRA-35

KIPLING TOWNSHIP

66 MILES NORTH
5.7 MILES EAST ELEV.-
$1^{\prime \prime}=10^{\prime}$

ALL PLEISTOCENE

||||||||||||||||||||||||||||

[^0]: *Poot noto: Every offont was mede to drill to 50 fect in all holese Ho:rever, the gleacial tille proved very difétente to penetrate end holes were often stopped at shallo:ter dopths when drilling progross ceme almost to a sterdstill.

