2.2196

FINAL REPORT DIAMOND DRILLING CLAIMS P1223550, P1223551

MARTISON LAKE PHOSPHATE PROJECT

MCK MINING CORP/BALTIC RESOURCES INC. JOINT VENTURE

PORCUPINE MINING DIVISION SOUTH OF RIDGE LAKE, ON NTS: 42J 6W

prepared by

BCLX CONSULTING LTD.

Garth Pierce, BSc. May 31, 2001

42J06SW2006 2.21966

SOUTH OF RIDGE LAKE

AUG 2 2 ZUUT

GEOSCIENCE ASSESSMENT OFFICE

RECEIVED

TABLE OF CONTENTS

1.	INTRODUCTION 1
2.	LOCATION, ACCESS 1
3.	CLAIMS DATA
4.	EXPLORATION HISTORY3
5.	REGIONAL GEOLOGY 4
6.	PROPERTY GEOLOGY 6
7.	DIAMOND DRILL PROGRAM 6
8.	RECOMMENDATION7
9.	REFERENCES 8
10	STATEMENT OF QUALIFICATIONS 9
LI	ST OF MAPS and FIGURES
Fiş	gure 1 – LOCATION MAP
Fig	gure 2 – <i>AEROMAGNETIC MAP AND CLAIM OUTLINE</i> 4
Aŗ	opendix # 1 – a. 2001 DRILL PLAN b. DRILL SECTIONS WITH P205 ASSAYS
Ap	pendix # 2 - a. DRILL LOGS - Holes B1—B11

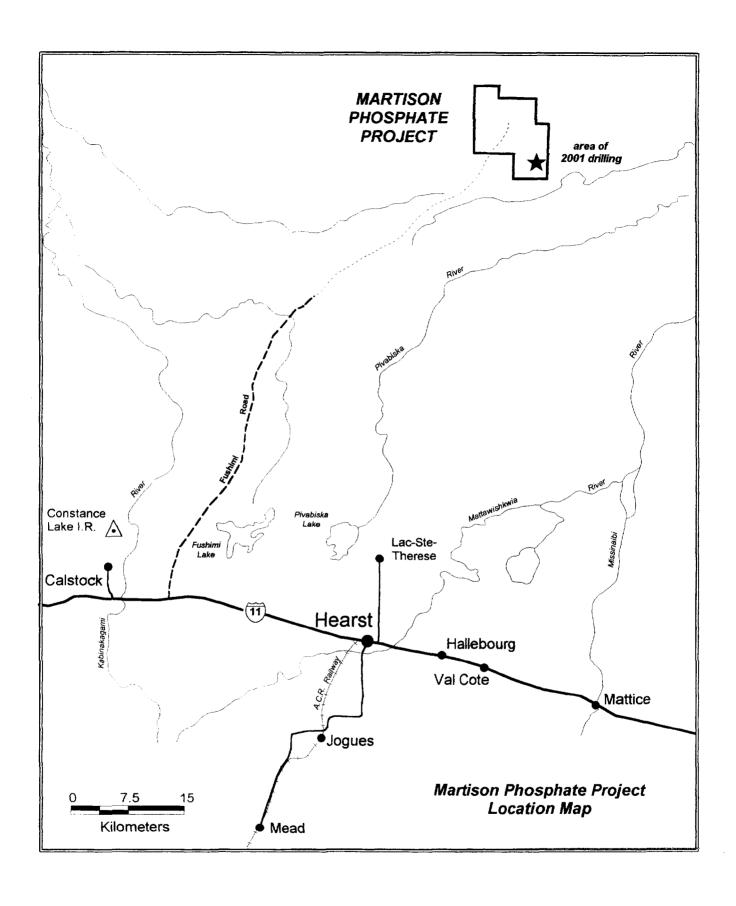
b. ASSAY RECORDS

2. 21966

1. INTRODUCTION

During the period of February through April 6th of 2001, joint venture partners MCK Mining Corporation and Baltic Resources Inc. carried out their second diamond drill program on the Martison Lake phosphate property (Figure 1). The claims are owned by the joint venture and were acquired from Don McKinnon of Timmins, Ontario.

Between 1982 and 1984 first Shell Canada Resources and later Camchib Mines undertook sonic, reverse circulation, churn and NQ diamond drilling on the property. Their data base which comprises 109 holes totaling some 9107 meters of drilling focused principally on the western margin of a strong airborne magnetic positive associated with the apatite-rich portion of the Martison Lake Carbonatite Complex. This work defined the "A Zone" deposit, which was further tested by the joint venture's first drill program in 1999.


This report will describe the results of the 12 holes which tested the B anomaly a second phosphate occurrence five kilometers southeast of the main deposit, the A Zone.

The objectives of the 2001 winter drill program were to follow-up on two 1981 exploration holes, drilled 800 meters apart, which returned ore grade phosphate intercepts from this large isolated magnetic anomaly. To that end a camp was established on the property in early February and 12 HQ triple tube (split tube) diamond drill holes totalling 1289 meters were completed on the property by April 6th, 2001. To meet assessment requirements, an interim report was submitted in late March to report on the first 7 holes of this program. The current report includes this same data but includes results for the final 5 holes in the program as well as assay data for all 12-drill holes.

The author supervised both the current program and the joint ventures 1999 exploration at Martison Lake. Beginning on January 27th this work included preparing the winter trail and camp site, on site supervision of the drill program, locating all drill setups, logging each of the intercepts and selecting intervals for analysis. Mike Leahey of Bayshore Geology assisted with this work from March 5th to April 6thth, the date when DDH-B11, was completed and the drill crew returned to Timmins.

2. LOCATION, ACCESS

The property is located approximately fifty kilometers due north of Hearst. A 90-kilometer route of logging roads and a winter trail provide access to the property. The road to Martison Lake turns north of Highway 11, at a point 24

kilometers west of Hearst and follows the Fushimi logging road north for 48 kilometers. A new bridge had to be constructed on the Fushimi road, at kilometer 45, to make it passable. The original 1982-1985 winter trail constructed by Shell was used to access the property by snowmobile and Muskeg tractor. Three temporary bridges had to be established on creek crossings in order to utilize this 45-km winter trail. To reach the B anomaly a further 5 kilometers of trail were established south of the winter campsite.

A muskeg tractor was used to travel the winter trail and transport heavy supplies to camp. During the program the muskeg was also used to haul fuel and groceries to the site and transport drill core to the trucking access point, at kilometer 48, on the Fushimi road. The drill contractor, Norex Drilling of Timmins, transported all drill equipment to site and provided camp maintenance. Mckinnon Prospecting was retained by Norex to provide the muskeg tand support the drill camp.

3. CLAIM DATA

The property consists of 43 unpatented contiguous claims, which total 526 units, comprising some 8416 hectares (20,796 acres). The claims are registered in the name of MCK Mining Corporation and Baltic Resources Inc. The companies are exploring the claims under the terms of an agreement reached with Mr. Mckinnon in 1997. A complete claim listing is as follows.

P1201625, P1223550 to P1223561, P1226550 to P1226559 P1226562 to P1226569, P1231517 to P1231528

4. EXPLORATION HISTORY

During the early 1940's Shell drilled a number of oil exploration holes in the Hudson Bay Lowlands. Analysis of drill cuttings from a hole on the Martison Carbonatite Complex returned high phosphate values.

In 1979 Selco Mining and Esso Minerals Canada completed an aeromagnetic survey in an area located 50 kilometers north of Hearst. The survey covered a strip some 57 kilometers wide across the edge of the Paleozoic Moose River Basin and totaled about 35,000 km. Of the 130 anomalous responses, drilling tested 45. Thirty-four were alkaline diatremes, seven were carbonatites and four were massive alnoites.

In 1981 Shell Canada Resources Inc. staked the Martison Carbonatite Complex and from 1982 to 1984 first Shell and later Camchib Mining Limited undertook ground geophysical surveys and completed drilling of 9107 meters of drilling in 109 holes. Of this total, 45 holes were reverse circulation holes, 43 were sonic holes, one churn drill hole and 19 diamond drill holes were completed. Analysis of the residuum from these drill programs returned values of 10% to 30% P2O5 over a wide area in intersections ranging from 5 to 70 meters in thickness.

In 1997 MCK Mining Corporation and Baltic Resources Inc. entered an option agreement to earn a 100% interest in the Martison Lake property from Don McKinnon. During 1998 an airborne magnetic survey was flown over the entire claim group. In the winter of 1999 the joint venture completed a 14 hole drill program on the A Zone and results of that work were reported in December of that year. This report covers all 12 holes of the joint venture's second drill program.

5. REGIONAL GEOLOGY

The Martison Lake Carbonatite Complex occurs near the north margin of the Archean craton adjacent to the younger cover rocks of the Hudson Bay Lowlands. The complex is overlain by a thin mantle of Cretaceous sediments and 30 to 45 meters of coarse glacial till. The Carbonatite has a strong magnetic signature that is readily recognizable on regional airborne maps. This Proterozoic intrusive complex, as shown in figure # 2, contains two separate magnetic features. The northern complex covers 20 square kilometers and hosts the A Zone deposit. Five kilometers to the south, a four square kilometer magnetic high described as the B anomaly is the target of the current exploration program.

The Martison Carbonatite Complex is one of a number of alkaline intrusions including carbonatite, kimberlite and alnoite complexes that intrude the Archean shield along a prominent structure that radiates south and southeastward from James Bay. This complex, Proterozoic age crustal break, is described as the Kapuskasing Structure and is clearly shown on regional geophysical surveys as a strong magnetic and gravity feature.

There is no age dating on the Martison Lake Carbonatite Complex but one sample of Selco core from the South of Ridge Lake map sheet, southwest corner returned an age of 180 Ma. This material was composed of alnoite, a Cretaceous age intrusion that is known to intrude the older carbonatites intrusions that host the apatite ores at Martison Lake. The Carbonatites are believed to be Proterozoic in age and subject to lateritic weathering during the Cretaceous period.

MARTISON LAKE PHOSPHATE J.V. MCK MINING INC. - BALTIC RESOURCES LTD. * Anomaly A Anomaly B Legend drill hole property boundary Magnetic Contour Interval: 50 nanoteslas **Kilometers**

6. PROPERTY GEOLOGY

The property encloses a gently rolling terrain dominated by muskeg and black spruce swamp. The deposit does not outcrop. Geology has been determined by rock chips, drill cuttings and diamond drill core. Thirty to fifty meters of coarse glacial till cover the weathered carbonatite intrusion that hosts the residual apatite ores. A thin veneer of Cretaceous sediments is preserved at the base of the overburden over parts of the deposit. Varying from 1 to 25 meters in thickness, this Cretaceous stratigraphy includes vuggy limestone, clay, Kaolin, silica sand, and lignite. Locally the Cretaceous stratigraphy includes reworked reworked sections of the carbonatite residuum. The reworked residuum is hematite and limonite rich interval which often has elevated niobium and titanium values. These units appear to have developed in fissures or other depressions in the surface of the weathered carbonatite.

The A Zone occurs immediately below the Cretaceous sediments and includes both unconsolidated residuum and hard, recemented varieties of apatite ore. The main ore zone grades into fresh carbonatite bedrock through a 10 to 25 meter thick rubble zone developed above the fresh bedrock contact. Phosphate minerals are concentrated in the residuum. The host carbonatite grades from the 3% to 6% P2O5 but intense weathering in the residuum can produce ores which grade up to 38% P2O5; primarily in the form of apatite.

Prior to this drill program the B anomaly had only been tested by two widely spaced drill holes. This data suggested the geological characteristics of that anomaly were identical to that of the A Zone. This preliminary 12 hole drill program seem to confirm that analysis.

Metallurgical testing of the "A zone" residuum at Martison, suggests that ore with grades in excess of 10% P2O5 typically meets treatment specification. Ores of this grade are routinely intersected on the property over true widths varying from 15 to 100 meters.

7. DIAMOND DRILLING

The diamond drill contractor was Norex Drilling Limited of South Porcupine, Ontario. Between early February and April 6th, 2001, 1289 meters of HQ diamond drill core were recovered in the 12 drill holes completed on site. The triple tube coring method, which was employed, proved to be effective in coring

and recovering overburden, both soft and hard residuum, as well as the fresh carbonatite. This method, though slow and more costly to complete then conventional diamond drilling, was a significant improvement over earlier drill programs, which recorded poor core recovery and had other difficulties in testing the deeply weathered carbonatite complex.

This report documents the results for all 12 holes of the winter program including drill holes B1 through B11 and the twelfth hole B-5a, which had to be abandoned in sandy overburden. All core, including overburden, was recovered and transported to the Timmins warehouse where all the material was photographed. The residuum was then logged in detail and laid out for splitting. The author supervised this work and was assisted on site by William Cheechoo a local trapper who helped locate all drill sites and transported core to the drill camp. Once the core reached Timmins, Bruce Maclauglin, a geological technician, photographed all core and split all core which the author had selected for analysis. Samples selected for assay were sent to Swastika Labs, in Swastika, Ontario for whole rock analysis using an ICAP method. Assay results are included with each drill log and these results are included in appendix A.

The location of all holes drilled in the B anomaly were confirmed by a hand held GPS unit. Map # 1 is a drill plan which illustrates these hole collars and also shows the magnetic contours from the 1999 AEM survey together with the relevant claim boundaries. This map can be found in the back pocket of the report.

8. RECOMMENDATIONS / CONCLUSIONS

Fourteen holes have now tested the B anomaly and this work is beginning to outline the extent of the phosphate resource. The geology of the cover rocks and residuum are remarkably similar to that of the A Zone deposit. Both soft and hard-recemented sections of residuum have been intersected over widths of 5 to 60 meters in the first 14 holes drilled. Given the large extent of the B magnetic anomaly these holes have been widely spaced. Unlike testing in the A Zone, where many of the 121 holes completed have been drilled on 50 and 100 meter centers, the B anomaly intercepts are typically 200 meters apart.

Even given the open drill pattern to-date overall results of the B anomaly testing have been encouraging. The B anomaly residuum appears to have good lateral continuity and reach's a thickness in excess of 50 meters in sections which have returned phosphate intercepts grading in excess of 21% P2O5. The two original 1981 drill holes which tested the B anomaly returned encouraging results

and 4 of the 11 holes (B2, B5, B8, and B9) which cored residuum in the 2001 program returned intercepts as strong as many holes within the main "A deposit". A fifth hole B4 stopped in high grade recemented residuum and this area is as a result poorly tested. By comparison it should be recognized that the A zone, despite having an inventory in excess of 75 Mt., is linear in aspect and in places is less than 400 meters wide. Some of the weaker results returned in holes B1,B3,B7 and B10 should therefore be expected in a program using a 200-meter drill spacing. Holes B6 and B11 cored brick red reworked residuum and the phosphate potential adjacent to these collars may still be significant.

No controlling structure for the B anomaly phosphate deposit is apparent from the first 14 holes drilled. Thick sections of brick red reworked residuum such as those intercepted in B6, B11 and probably cored in the top of Shell's hole 81-01 suggest such structure must be present. The importance of these structures in the A Zone is obvious and further testing of the B anomaly should attempt to define the orientation of any features which may control phosphate upgrading.

In summary, results from the first 14 holes on the B anomaly look encouraging and further drilling is warranted. Widely spaced holes should continue to evaluate the full extent of the magnetic anomaly; areas west of B4 and northeast of B6 should be tested next. Finally, the potential of the sand and gravel deposit intercepted at 22 meters depth in holes B5 etc. should be considered as aggregate resources in the area are limited. The size of this sand and gravel resource appears to be considerable and may be required for development of the A deposit. If this aggregate was extracted the pit floor would expose much of the higher-grade residuum so far outlined in the B anomaly.

Jan 1 201

9. REFERENCES

Brumer, J.J., MacFadgen, D.A, and Pegg, C.C, 1992, Discovery of Kimberlites in the Kirkland Lake Area, Northern Ontario, Canada, Part I: Kimberlite Discoveries, Sampling, Diamond Content, Ages and Emplacement Exploration and Mining Geology, Vol 1, No 4, pp 351-370

Fisher, D.F., Summary Report on the Martison Project to June 1982, Shell Canada Resources Limited, Toronto, Ontario June 1982

Hart, Brian R., Mineralogical Investigation of the Weathered Portion of the Martison Carbonatite, Department of Geology, The University of Western Ontario
London, Ontario, May 1993 pp88

Potapoff, P, Camchib Mines Inc., Summary Report, Martison Project – July 1 – December 31, 1983, O.M.E.P Designation OM83-5-C-160

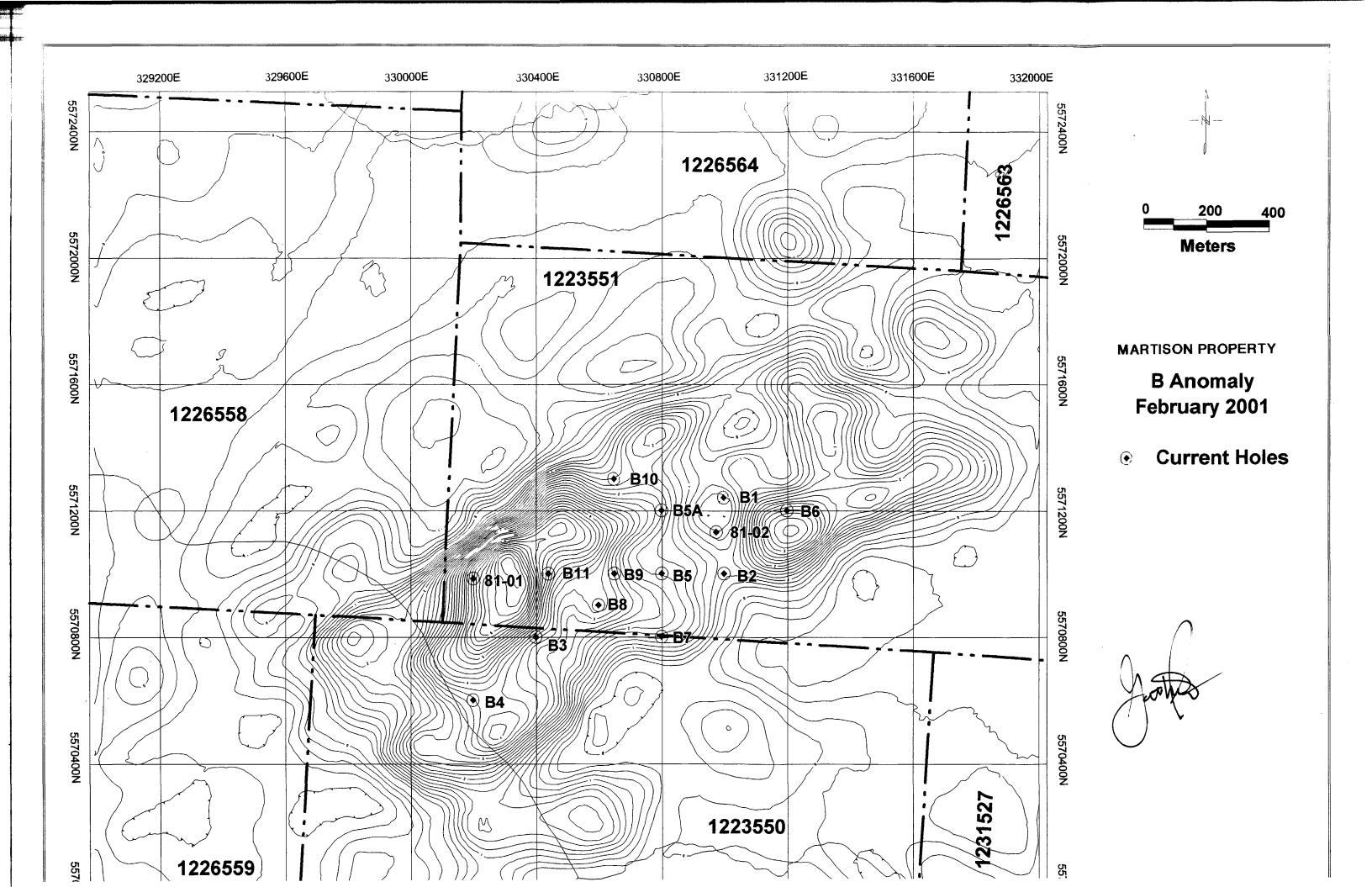
Reedman, J.H., J.H. Reedman & Associates Ltd., Interpretation of SIAL Airborne Magnetometer Survey, Martison Property, Ontario 1999

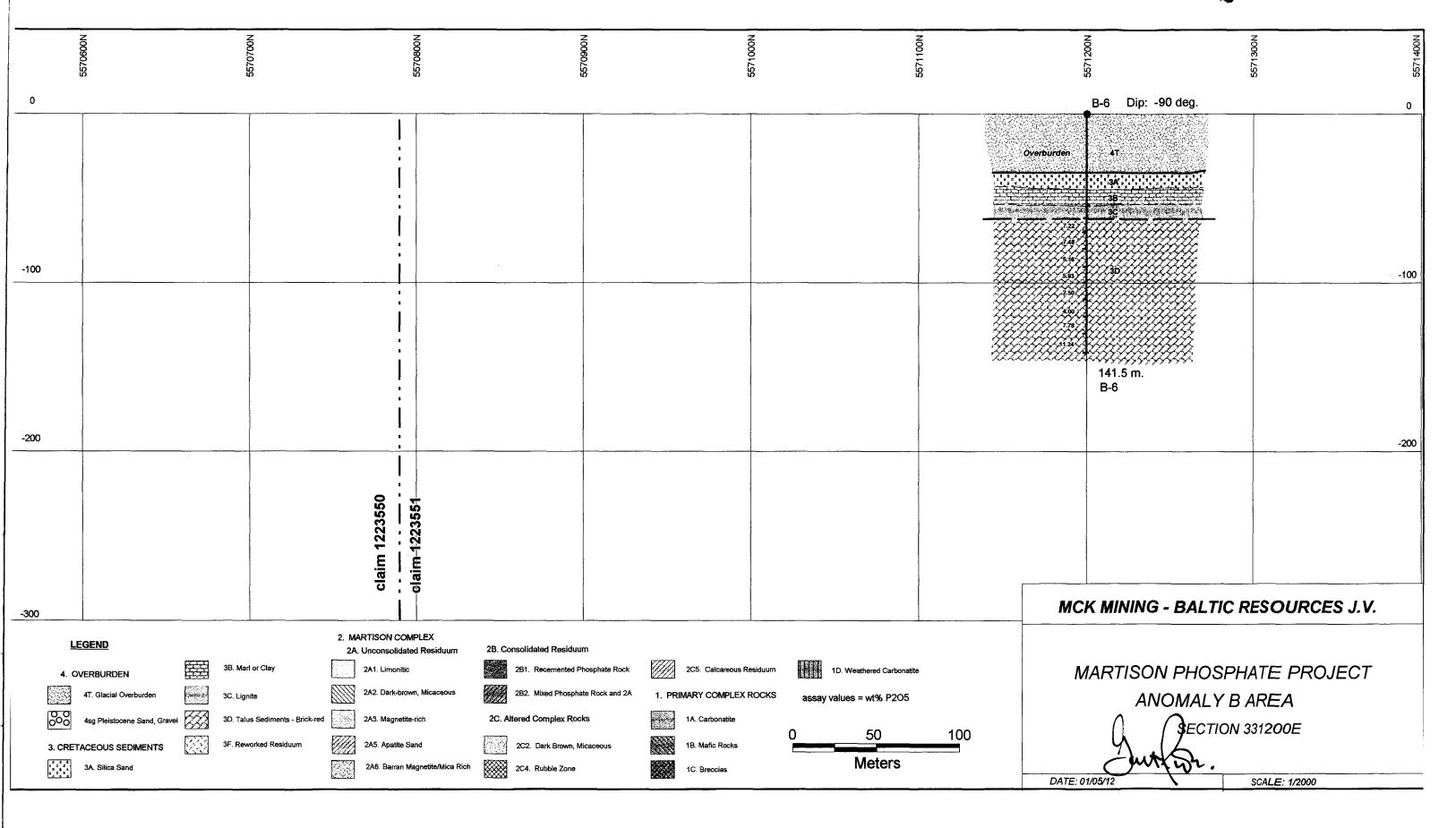
Sage, R.P., Chapter 18 Alkalic Rock, Carbonatite and Kimberlite Complexes of Ontario, Superior Provinces, Ontario Geological Survey, 1991 (a) Geology of Ontario, Vol. 1 Edited by P.C. Thurston, H.P. Williams, R.H. Sutcliffe and G.M. Scott, Ministry of Northern Development and Mines, Ontario Geological Survey, Special Volume 4 pp 683-711

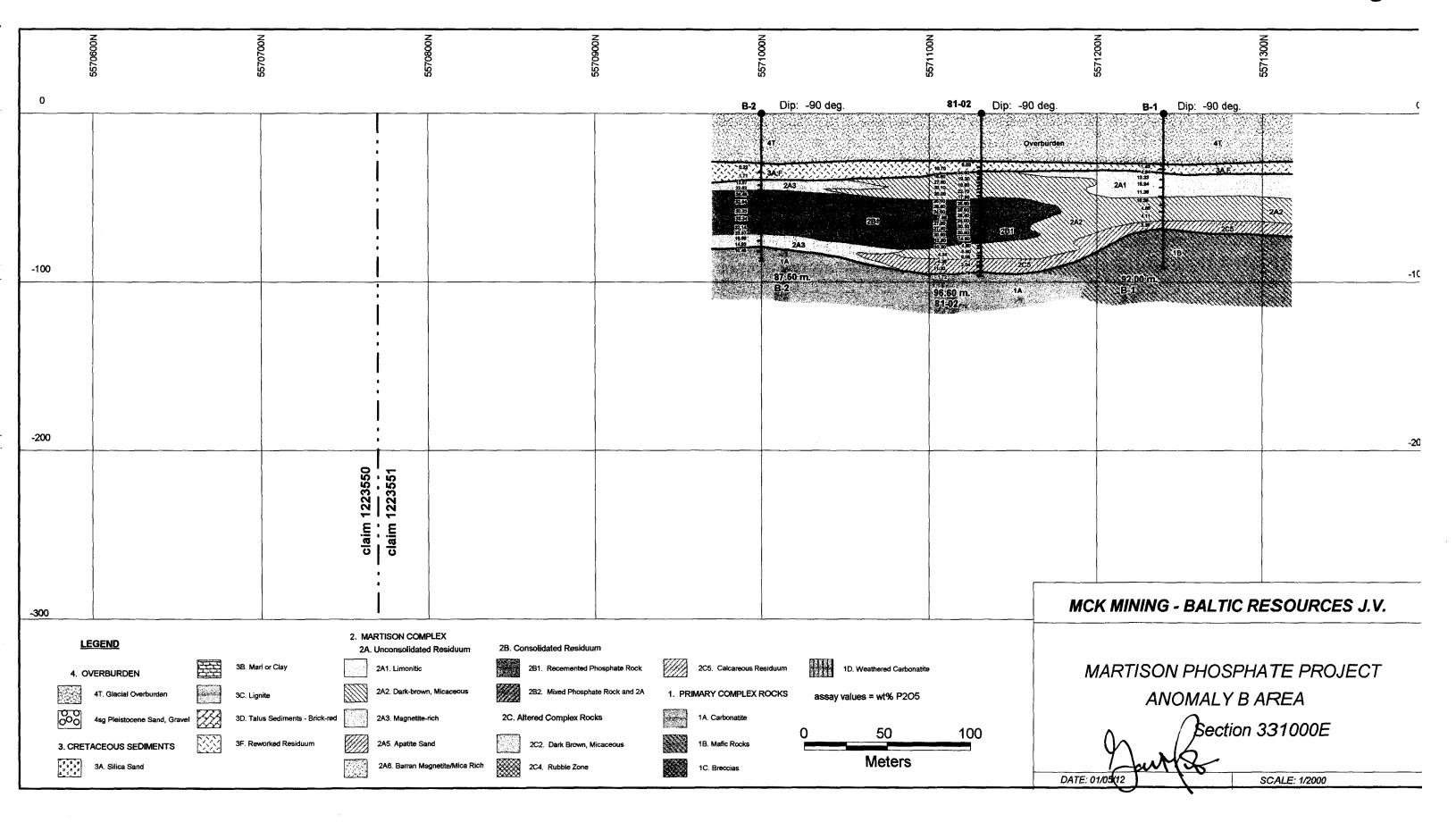
STATEMENT OF QUALIFICATIONS

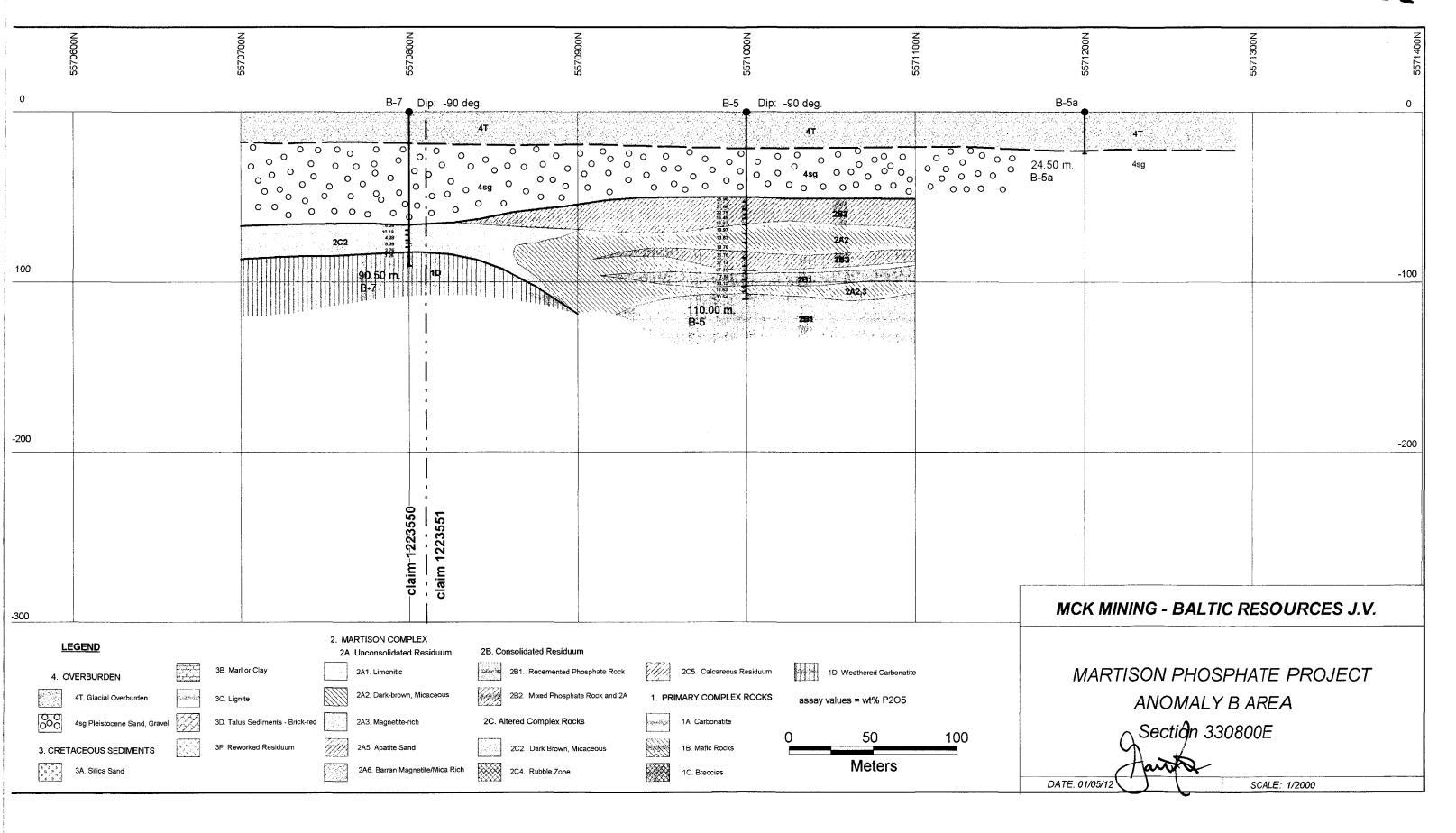
I, GARTH A. PIERCE, hereby certify:

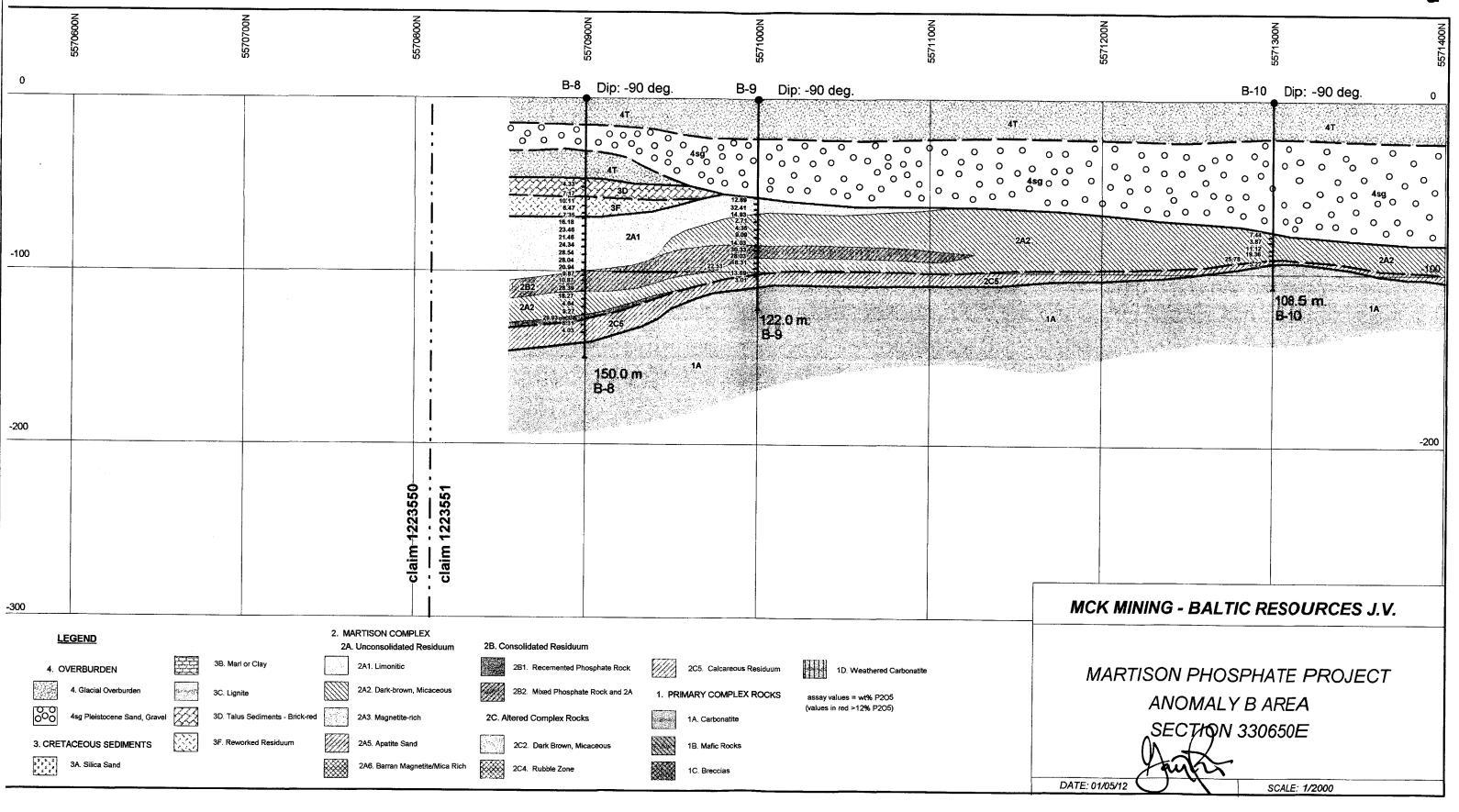
- 1. I am a consulting geologist working for **BCLX Consulting Ltd.**; a private geological consulting business which I own. My business and personal address is 119 Eye Road in Wolfville, Nova Scotia.
- 2. I am a graduate of Mount Allison University, Sackville, New Brunswick with the Degree of Bachelor of Science-Geology Major—1974.
- 3. I have been continually employed as a geologist since 1974; initially (1976) with the New Brunswick government; until 1993 with Noranda Minerals; and since 1993 managing my own consulting firm.
- 4. I am a member of the Prospectors and Developers Association of Canada.
- 5. This report was written on behalf of Mck Mining Corp. and Baltic Resources Inc. BCLX is a shareholder of Baltic Resources Inc.. Through this association my company also received an option on the companies shares; this option was not exercised but is still active.
- 6. This report is based on my personal observations.
- I was retained by the company to complete this program and therefore
 consent to the use of this report by the company for assessment
 submissions.

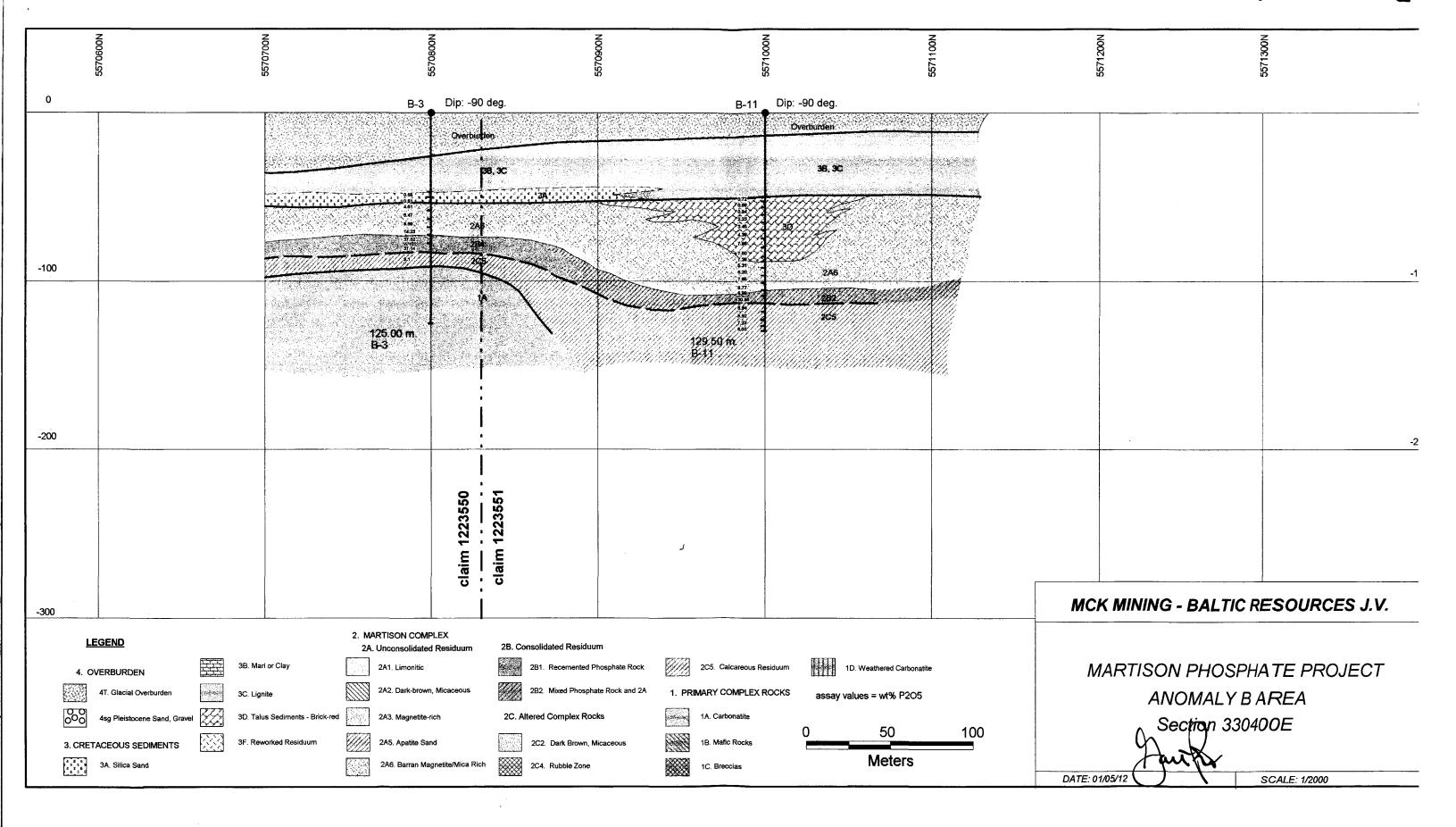

Garth Pier

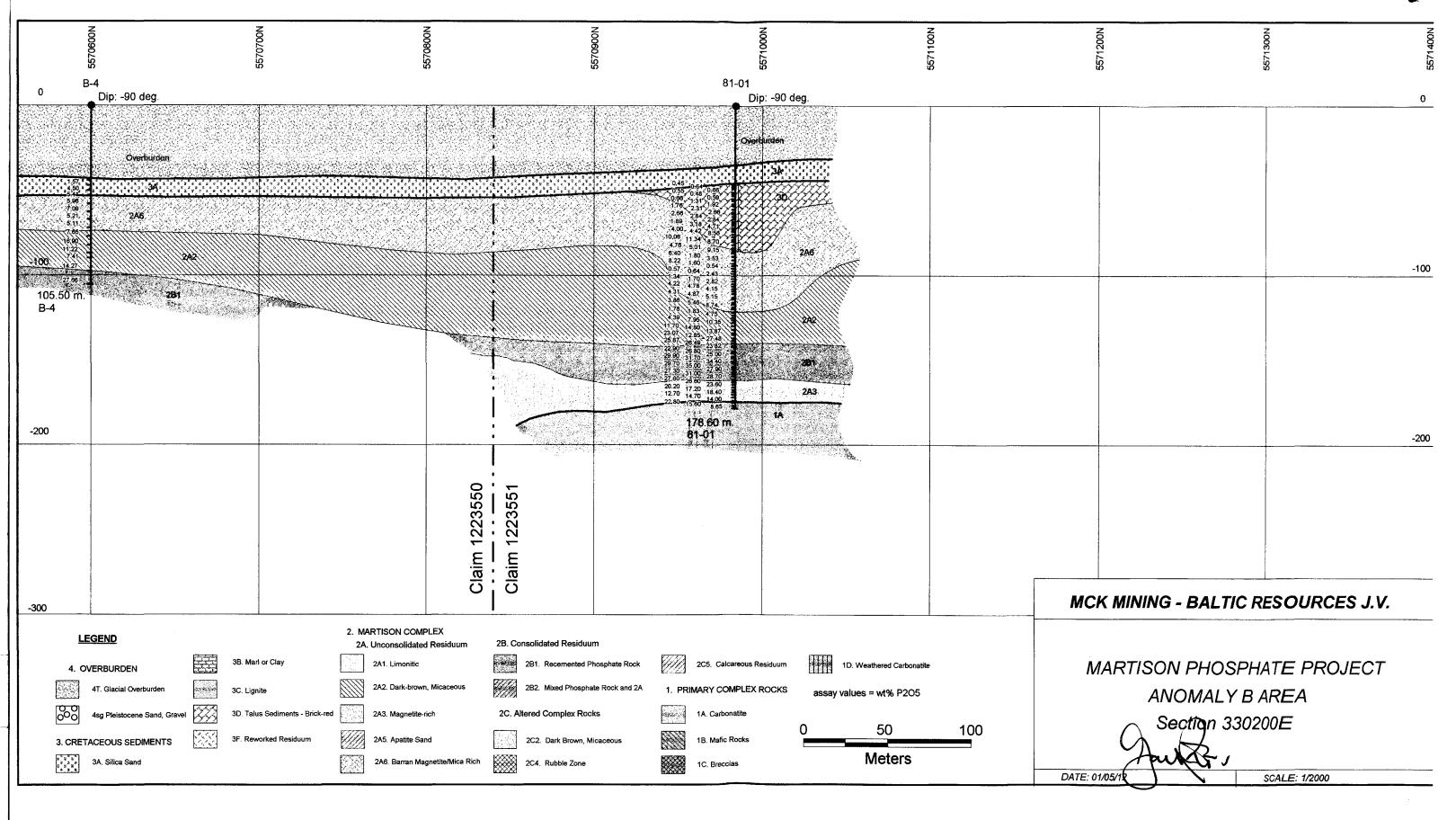

Dated at Timmins, Ontario May 31, 2001


BCLX Consulting Ltd


APPENDIX #1


- a. Diamond Drill Plan Map
- b. Drill Sections with P2O5 assays





APPENDIX # 2

- a. Drill Logs Holes B1 to B11
- b. Assay summary sheet Swastika Labs

Drill Hole Number: B1

Project Name: Project Number: Martison Phosphate Project

Grid Northing (UTM): 5571240N (nad27, zone 17)

Grid Easting UTM): 331000E (nad27, zone 17)

Measure: Drilled By: Meters

Claim Number:

1223551

Elevation:

surface

Start:

Norex Drilling

Claim Map:

South of Ridge Lake

Azimuth:

n/a

Completed:

3/6/01 3/7/01

Dip:

-90

Core Size:

HQ Triple Tube

Length:

92.0m

Date(s) Logged: Logged By:

March, 2001 Garth Pierce

From	То		Rock Description	Sample	From	To	Length	% P2O5	
(m)	(m)	code	Description		(m)	(m)	(m)		
0.00	30.20	4	Overburden						
30.20	35.30		Cretaceous Sediments	B1-1	30.50	33.20	2.7	0.55	
1	1	3A	- 30.2 to 33.2: pale gray quartzite	B1-2	33.20	35.10	1.9	0.61	
		3D	- 33.2 to 35.3: deep red reworked residuum	B1-3	35.10	39.50	4.4	4.51	
				B1-4	39.50	44.00	4.5	6.47	
35.30	68.50	2	Unconsolidated Residuum	B1-5	44.00	49.30	5.3	8.59	
İ		2A1	- 35.3 to 54.5: limonitic, becoming more deep brown to depth;	B1-6	49.30	54.50	5.2	14.23	
			elevated Nb from 44.0 to 54.5m	B1-7	54.50	58.40	3.9	37.52	
1		2C2	- 54.5 to 65.0: dark brown residuum, some calcarious remnants, some mica rich	B1-8	58.40	63.50	5.1	37.14	
			and magnetite rich beds	B1-9	63.50	68.30	4.8	9.1	
İ		2C5	- 65.0 to 68.5: predominantly calcarious residuum						
				Zone	35.10	54.50	19.4	14.2	
8.50	92.00	1B	Carbonatite Complex						
			- mafic phase of carbonatite complex - ijolite		•				
	1		- dark grey to black intrusive with coarse mafic crystals]]				i j	
Ì			- fresh below 68.5m, unit has high MgO values						
	92.00		End Of Hole			1			
ļ	32.00		End of Flore		·				
İ			note: zone leached from 35.1m to 49.3m						
	j								
			2						
			Julion.						
						1	}		
			,						

Drill Hole Number: B2

Project Name:

Martison Phosphate Project

Grid Easting UTM):

331000E (nad27, zone 17)

Measure: Drilled By: Meters

Project Number: Claim Number:

1223351

Elevation:

Grid Northing (UTM): 5571000N (nad27, zone 17) surface

Start:

Norex Drilling 3/3/01

South of Ridge Lake

Azimuth:

n/a

Completed: Core Size:

3/5/01

Claim Map:

Dip:

-90

Date(s) Logged:

HQ Triple Tube March, 2001

Length:

87.5

Logged By:

Garth Pierce

From	То		Rock Description	Sample	From	To	Length	% P2O5	
(m)	(m)	code	Description		(m)	(m)	(m)		
0.00	29.60	4	<u>Overburden</u>						
29.60	39.50	3A,F	Cretaceous Sediments	B2-1	29.60	35.00	5.4	0.22	
			- pale quartzite and light brown clay, with quartz clasts	B2-2	35.00	39.50	4.5	1.71	
			- red, reworked material from 33.0m to 36.0m	B2-3	39.50	42.50	3.0	13.87	
				B2-4	42.50	45.50	3.0	22.62	
39.50	79.00		Residuum Zone	B2-5	45.50	50.00	4.5	34.49	
				B2-6	50.00	55.00	5.0	32.94	
39.50	45.50	2A3	Unconsolidated Residuum	B2-7	55.00	60.00	5.0	30.33	
			- mottled brown in colour, iron >25%	B2-8	60.00	65.00	5.0	33.34	
				B2-9	65.00	70.00	5.0	32.14	
45.50	71.50	2B1	Consolidated Residuum	B2-10	70.00	71.50	1.5	33.57	
	ł		- vuggy, secondary apatite rock	B2-11	71.50	75.50	4.0	18.66	
ł			- botroydal textures, good recovery	B2-12	75.50	79.00	3.5	14.93	
			- unit appears more mafic than some of 2B1 from Anomaly A, but low MgO and Fe2O3 values	B2-13	79.00	82.00	3.0	10.45	
1				Zone	39.50	79.00	39.5	27.5	
71.50	79.00	2A2	Unconsolidated Residuum						
			- magnetite rich zone, only partially decomposed, up to 75% magnetite, with green mica-rich interbeds (high MgO unit)			1			
79.00	87.50	1 A	Carbonatite						
			- fresh carbonatite with unconsolidated material and rubble - Mg rich phase of complex						
	į		mg non phase of complex						
	87.50		End Of Hole						
			Janhar						

Drill Hole Number: B3

Project Name: Project Number: Martison Phosphate Project

Grid Easting UTM):

330400E (nad27, zone 17) Grid Northing (UTM): 5570800N (nad27, zone 17) Measure: Drilled By: Meters

Claim Number:

1223550

Elevation:

surface

Start:

Norex Drilling 2/25/01

Claim Map:

South of Ridge Lake

Azimuth:

n/a

Completed: Core Size:

3/1/01

Dip: Length: -90 125m

Date(s) Logged: Logged By:

HQ Triple Tube March, 2001 Garth Pierce

From	То		Rock Description	Sample	From	To	Length	% P2O5	
(m)	(m)	code	Description		(m)	(m)	(m)		
0.00	29.00	4	Overburden						
29.00	53.80	3	Cretaceous Sediments	B301-1	47.00	50.00	3.0	0.55	
ĺ		3B	- 29.0m to 35.0m: grey clay	B301-2	50.00	53.50	3.5	0.61	
		3C,B	- 35.0m to 44.0m: lignite and organic clay	B301-3	53.50	58.00	4.5	4.51	
		3A	- 44.0m to 53.8m: silica sand	B301-4	58.00	63.00	5.0	6.47	
				B301-5	63.00	68.00	5.0	8.59	
53.80	91.50		Residuum Zone	B301-6	68.00	72.50	4.5	14.23	
				B301-7	72.50	77.50	5.0	37.52	
53.80	72.50	2A6	Unconsolidated residuum	B301-8	77.50	83.00	5.5	37.14	
			- light to dark brown magnetite rich unit	B301-9	83.00	91.50	8.5	9.1	
l			- very low grade apatite in this magnetite unit but still part of 2A3						
- 1	Ĭ		- magnetite very coarse in sections		1				
			- below 68m depth: more apatite but still low grade with banded limonitic and dark brown sections	Zone	68.00	83.00	15.0	30.4	
								j	
72.50	83.00	2B1	Consolidated residuum						
			- recemented, broken rubble zone with colloidal fragments						
83.00	91.50	2C2,5	Unconsolidated residuum (calcareous)						
		,-	- dark brown in colour with carbonatite fragments		1				
•			- transitional into carbonatite						
91.50	125.00	1A	Carbonatite						
01.00	120.00	17	- broken or rubble to 107.0m					1	
1	1		- fresh from 107.0m to end of hole		ļ				
			- carbonatite is mica rich but still leucocratic with low Fe2O3 and high MgO						
			A			j			
	125.00		End Of Hole						
			1 The state of the						
			Java L						

Drill Hole Number: B4

Project Name: Project Number: Martison Phosphate Project

Grid Easting UTM):

330200E (nad27, zone 17) Grid Northing (UTM): 5570600N (nad27, zone 17)

Measure: Drilled By: Meters

Claim Number:

1223550

Elevation:

Length:

Dip:

surface

Start:

Norex Drilling

Claim Map:

South of Ridge Lake

Azimuth:

Completed:

2/17/01 2/20/01

n/a -90

Core Size: Date(s) Logged: HQ Triple Tube Feb. 22, 2001

Core Storage: Timmins Warehouse

105m Logged By: Garth Pierce

From	To		Rock Description	Sample	From	To	Length	% P2O5	
(m)	(m)	code	Description		(m)	(m)	(m)		
0.00	43.00	4	Overburden						
- 1				B4-01-1	44.20	47.00	2.8	1.57	
43.00	53.00	3	Cretaceous Sediments	B4-01-2	47.00	50.00	3.0	4.50	
1		3A	- quartzites, siltstones	B4-01-3	50.00	53.00	3.0	5.41	
1				B4-01-4	53.00	58.00	5.0	5.96	
53.00	105.50		Residuum Zone	B4-01-5	58.00	63.00	5.0	7.09	
Ì				B4-01-6	63.00	67.00	4.0	5.21	
53.00	97.60	2	Unconsolidated Residuum	B4-01-7	67.00	72.20	5.2	5.11	
	j	2A6	- from 53.0 to 77.0: low grade phlogopite rich unit, basically a mica rich phase	B4-01-8	72.20	77.00	4.8	7.65	
			of the complex, very little CaO, may be leached zone	B4-01-9	77.00	82.50	5.5	16.90	
		2A2,3	- from 77.0 to 87.0: dark brown in colour with magnetite rich sections	B4-01-1¢	82.50	87.00	4.5	11.22	
		2A3	- from 87.0 to 89.7: dark brown to black in colour with magnetite rich interbeds	B4-01-11	87.00	89.70	2.7	7.41	
1	1	2A1	- from 89.8 to 97.6: light to dark brown in colour	B4-01-12	89.70	97.60	7.9	14.27	
				B4-01-1	97.60	105.50	7.9	27.66	
	105.50	2B1	Consolidated residuum]	
97.60			- rubble, poor recovery						
1	Ì			Zone	77.00	105.50	28.5	17.4	
	105.50		End Of Hole						
	<u> </u>]	
	İ		note: hole stopped in rubble zone due to the chance of losing rods						
	İ		: hole stopped in high grade recemented material and should be						
1			deepened or area tested						
	1		^ //	1 1				}	
			$V \setminus V$						
			Hat						
1				1 1	1	1		1	
J	J				j	J]	
	1								

Drill Hole Number: B5

Project Name:

Martison Phosphate Project

Grid Northing (UTM): 5571000N (nad27, zone 17)

Grid Easting UTM): 330800E (nad27, zone 17)

Measure: Drilled By: Meters

Project Number: Claim Number:

1223551

Elevation:

surface

Start: Completed:

Norex Drilling 3/15/01 3/18/01

Claim Map:

South of Ridge Lake

Azimuth: Dip: Length:

n/a -90

110.0m

Core Size: Date(s) Logged:

HQ Triple Tube March, 2001

Core Storage: Timmins Warehouse

Logged By: Garth Pierce

From	То		Rock Description	Sample	From	To	Length	% P2O5	
(m)	(m)	code	Description		(m)	(m)	(m)		
0.00	1.70	4	Sphagnum Moss						
1.70	21.50	4T	Overburden	B5-1	50.00	53.00	3.00	26.98	
1			- grey till, gravel beds from 9.5m to 12m	B5-2	53.00	57.50	4.50		
				B5-3	57.50	60.60	3.10		
21.50	50.00	4sg	Pleistocene Sand and Gravel	B5-4	60.60	62.70	2.10	, ,	
			- grey-yellow quartz rich sand (poor recovery)	B5-5	62.70	66.50	3.80		
			- 42.5 to 50.0: boulders in sand, difficult penetration	B5-6	66.50	71.60	5.10		
				B5-7	71.60	77.00	5.40		
50.00	110.00		Residuum zone	B5-8	77.00	82.00	5.00	I .	
				B5-9	82.00	86.00	4.00	31.76	
50.00	60.60	2B2	Recemented Residuum	B5-10	86.00	90.60	4.60	27.14	
			- mixed brown recemented and unconsolidated residuum, >50% recemented frags	B5-11	90.60	95.00	4.40	27.31	
05.00	81.70	2A2	Unconsolidated Residuum - Mica Rich	B5-12	95.00	98.70	3.70	7.58 33.1	
65.30	01.70	ZAZ	- dark brown unconsolidated mica rich residuum	B5-13 B5-14	98.70 102.50	102.50 105.80	3.80 3.30	10.63	
			- occasional clasts of recemented material	B5-14 B5-15	102.50	110.00	4.20	30.54	
			- occasional classs of recemented material	D3-13	105.60	110.00	4.20	30.54	
81.70	93.50	2B2	Recemented Residuum						
			- vuggy, brown in colour, occasional colloidal textures	Zone	50.00	110.00	60.0	21.8	
			33,7 2,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1		33,00				
93.50	95.00	2A2	Unconsolidated Residuum - Mica Rich			1			
			- as above						
95.00	102.50	281	Recemented Residuum						
			- vuggy, pale brown to beige in colour					1	
]	
102.50	107.00	2A2,3	Mixed Dark Green Mica and Magnetite Rich Residuum						
1 1			- some calcareous fragments		ł		f		

Drill Hole Number: B6

Project Name: Project Number: Martison Phosphate Project

Grid Easting UTM);

331200E (nad27, zone 17) Grid Northing (UTM): 5571200N (nad27, zone 17)

Measure: Drilled By: Meters

Claim Number:

1223551

Elevation:

surface n/a

Start:

Norex Drilling

Claim Map:

Azimuth:

Completed:

3/9/01

South of Ridge Lake

Core Size:

3/14/01 HQ Triple Tube

Dip: Length:

-90 141.5m

Date(s) Logged: Logged By:

March, 2001 Garth Pierce

From	То		Rock Description	Sample	From	To	Length	% P2O5	
(m)	(m)	code	Description		(m)	(m)	(m)	L	
0.00	1.50	4	Sphagnum Moss						
1.50	35.00	4T	<u>Overburden</u>			İ			
			- grey till, 10% to 20% limestone and granite clasts in fine clay/silt matrix	B6-1 B6-2	62.00 70.00	70.00 80.00	8.0 10.0	7.22 7.48	
35.00	62.00		Cretaceous Sediments	B6-3	80.00	90.50	10.5	5.16	
33.33	52.55	3A	- 35m to 45m; limonitic quartz rich sand	B6-4	90.50	100.00	9.5	5.93	
1		3B	- 45m to 54.5m: black clay/silt grading to lignite at 54.5m	B6-5	100.00	110.00	10.0	2.50	
l		3C	- 54.5m to 62.0m; lignite	B6-6	110.00	120.00	10.0	4.00	
- 1				B6-7	120.00	130.00	10.0	7.78	
61.80	141.50		Reworked Residuum	B6-8	130.00	141.50	11.5	11.24	
		3D	- 61.8m to 66.5m: pale red brown becoming brick red to depth		İ				
		3D	- 66.5m to 141.5m: brick red in colour, occasional clasts and noticeable white phenocrysts						
	141.50		End Of Hole						
			Note: ore grade residuum may be present but probably below 150.0m, no value at this time to continue : Hole collared in reworked residuum, probably an old fissure						

Drill Hole Number: B5A

Project Name: Project Number: Martison Phosphate Project

Grid Easting UTM):

330800E (nad27, zone 17) Grid Northing (UTM): 5571200N (nad27, zone 17)

Measure: Drilled By: Meters

Claim Number:

1223551

Elevation:

surface n/a

-90

Start:

Norex Drilling

Claim Map:

South of Ridge Lake

Azimuth:

Completed: Core Size:

3/8/01 3/8/01

Dip: Length:

HQ Triple Tube March, 2001

Garth Pierce

Core Storage: Timmins Warehouse

87.5 Date(s) Logged: Logged By:

rom	To		Rock Description	Sample	From	To	Length	% P2O5	
(m)	(m)	code	Description		(m)	(m)	(m)		
0.00	23.00	4	<u>Overburden</u>						
3.00	24.50	3	Cretaceous Sediments - unconsolidated grey silica sand with 5% mafics						
	24.50		End Of Hole						
			note: hole abandoned due to sand caving						
			Townson of the state of the sta						
						:			

Drill Hole Number: B7

Project Name:

Martison Phosphate Project

Grid Easting UTM): Grid Northing (UTM):

330800 (nad27, zone 17) 5570800 (nad27, zone 17)

Measure: Drilled By: Meters

Project Number: Claim Number:

1223550

Elevation:

surface

Start:

Norex Drilling 3/19/01

Claim Map:

South of Ridge Lake

Azimuth:

n/a

Completed:

3/23/01

Dip:

-90

Core Size: Date(s) Logged: **HQ Triple Tube** Mar-O1

Length:

90.5

Logged By:

Garth Pierce

From	То		Rock Description	Sample	From	To	Length	% P2O5	
(m)	(m)	code	Description		(m)	(m)	(m)		
0.00	2.10	4	Muskeg						
2.10	18.50	4 T	Grey Till	B7-1	66.50	69.50	3.00		
40.50	00.50		District and Constant Constant	B7-2	69.50	72.50	3.00		
18.50	66.50	4sg	Pleistocene Sand and Gravel	B7-3	72.50	75.50	3.00	4.28	
			- very poor recovery	B7-4 B7-5	75.50	77.20 79.80	1.70	8.39 2.76	
ľ	İ		- calcareous sand with magnetite and limestone clasts	B7-5 B7-6	77.20 79.80	82.40	2.60 2.60	3.25	
66.50	82.50	2	Residuum Zone	B7-0	79.00	02.40	2.00	3.23	
33.50	02.00	2C2	- 66.5m to 77.5m: dark brown unconsolidated residuim						
		2C5	- 77.5m to 82.5m: dark green calcareous residuim (may be dike)	Zone	69.50	72.50	3.00	10.2	
82.50	90.50	1D	Weathered Carbonatite - white with mafic dike - 85.8m to 87.8m: dark green soft dike						
	90.50		End Of Hole						
			*hole on south margin of phosphate deposit.				ļ		

Drill Hole Number: B8

Project Name:

Martison Phosphate Project

Grid Easting UTM):

330600 (nad27, zone 17)

Measure:

Meters

Project Number: Claim Number:

1223551

Elevation:

Grid Northing (UTM): 5570900 (nad27, zone 17)

Drilled By:

Norex Drilling 3/23/01

Claim Map:

Azimuth:

surface n/a

Start: Completed: Core Size:

3/27/01 HQ Triple Tube

South of Ridge Lake

Dip:

-90

Date(s) Logged:

Mar-O1

Length:

149.0m

Logged By:

Garth Pierce

From	To		Rock Description	Sample	From	To	Length	% P2O5	
(m)	(m)	code	Description		(m)	(m)	(m)		
0.00	3.50		No Recovery						
3.50	15.50	4T	Grey till	B8-1	47.00	51.50	4.50	4.33	
			- clay and silt with limestone clasts	B8-2	51.50	57.00	5.50	7.17	
			,	B8-3	57.00	62.15	5.15	10.11	
15.50	30.50	4sg	Pleistocene Gravel	B8-4	62.15	66.50	4.35	6.47	
			- very poor recovery	B8-5	66.50	69.50	3.00	7.35	
1			- calcareous sand with disseminated magnetite, limestone clasts and boulders	B8-6	69.50	74.00	4.50	16.18	
	i		throughout	B8-7	74.00	78.50	4.50	23.46	
1				B8-8	78.50	82.10	3.60	21.46	
30.50	47.00	4T	Grey Till	B8-9	82.10	86.00	3.90	24.34	
			- as above (sand)	B8-10	86.00	90.50	4.50	28.54	
				B8-11	90.50	95.00	4.50		
47.00	69.50	3	Cretaceous Reworked Residuum	B8-12	95.00	99.50	4.50		
		3D	- 47.0m to 57.0m: brick red fine grained silt	B8-13	99.50	102.50	3.00		
		3F	- 57.0m to 69.5m: pale mustard yellow unit, probobly a version of reworked	B8-14	102.50	105.50	3.00	10.87	
			residuum, magnetite rich	B8-15	105.50	111.50	6.00	28.39	
1	1			B8-16	111.50	116.00	4.50		
69.50	127.80		Residuum Zone	B8-17	116.00	120.50	4.50	4.64	
		2A1	- 69.5m to 95.0m: dark brown, sandy unconsolidated residuum, some limonite	B8-18	120.50	125.00	4.50	1	
	1		with depth	B8-19	125.00	127.80	2.80		
		2A2,2B2		B8-20	127.80	131.00	3.20	6.31	
			fragments; fragments may be recemented material	B8-21	131.00	135.50	4.50	4.03	
		2A2	- 114.5m to 120.5m: unconsolidated residuum - dark green brown in colour but						
Ì			basically the same unit as above					- 1	
		2B1	- 120.5m to 127.8m: recemented residuum, common recemented fragments throughout	Zone	69.50	127.80	58.30	19.90	
127.80	141.40	2C5	<u>Calcareous</u> Residuum						
			- mottled green-black, calcareous, unconsolidated					:	
			- dark brown below 134.0m		1				
					1	1			

From (m)	To (m)	code	Rock Description Description	Sample	From (m)	To (m)	Length (m)	% P2O5	
From (m) 141.50	(m)	1 1D 1A	Rock Description Carbonatite - 141.5m to 143.0m: green, deeply weathered carbonatite - 143.0m to 149.0m: carbonatite - still broken and friable End of Hole	Sample	From (m)	To (m)	Length (m)	% P2O5	

Drill Hole Number: B9

ZIII ZIOIO ITAINIDOI: L

Martison Phosphate Project

Grid Easting UTM); Grid Northing (UTM);

330650 (nad27, zone 17) 5570900 (nad27, zone 17) Measure: Drilled By: Meters

Project Name: Project Number: Claim Number:

1223551

Elevation:

surface

Start: Completed: Norex Drilling 3/27/01

Claim Map:

South of Ridge Lake

Azimuth:

n/a

Completed. Core Size: 3/29/01 HQ Triple Tube

Dip: Length: -90 128.0m

Date(s) Logged: Logged By: Mar-01 Garth Pierce

From	То		Rock Description	Sample	From	To	Length	% P2O5	
(m)	(m) .	code	Description		(m)	(m)	(m)		
0.00	0.80	4	Muskeg						
0.80	22.80	4 T	Grey Till	B9-1	57.30	60.50	3.20	12.69	
			- very poor recovery from 12.0m to 18.5m	B9-2	60.50	63.90	3.40	32.41	
				B9-3	63.90	66.60	2.70		
22.80	57.30	4sg	Pleistocene Sand and Gravel	B9-4	66.60	71.00	4.40		
			- could not recover material	B9-5	71.00	75.50	4.50	4.35	
		!	- hole had to be washed and excessive quick gel used to cross unit	B9-6	75.50	80.00	4.50	1	
i i				B9-7	80.00	84.50	4.50	14.05	
57.30	101.00	2	Residuum Zone	B9-8	84.50	87.50	3.00	30.33	
i		2A3	- 57.3m to 60.5m: dark brown soft residuum	B9-9	87.50	91.40	3.90	26.03	
		2B1	- 60.5m to 63.9m: recemented residuum with some soft residuum interbeds	B9-10	91.40	95.00	3.60	8.3	
		2A2	- 63.9m to 84.5m; dark brown to dark green mica rich soft residuum	B9-11	95.00	98.00	3.00	22.53	
1		2A3	- 84.5m to 87.5m: dark brown, sandy, soft residuum	B9-12	98.00	101.00	3.00	13.62	
1		2B2	- 87.5m to 91.4m: dark brown as above, with recemented section	B9-13	101.00	102.70	1.70	3.01	
		2B2,2A2	- 91.4m to 101.0m: dark green to dark brown mica rich unit with recemented fragments						
ĺ			·	Zone	57.30	101.00	43.7	15.3	
101.00	128.00	1	Carbonatite]])	
	٠	1D	- 101.0m to 108.5m: weathered carbonatite - pale green, partly consolidated						
- 1		,-	residuum, pink coloration in sections, may have some gypsum	1		ļ		}	
	,	1A	- 108.5m to 128.0m: fractured dark grey-black carbonatite - heavily broken,		1	[
			mica rich sections still common, MgO rich unit			İ			
	128.00		Ford Officer					ļ	
1	120.00		End Of Hole						
[ĺ	ĺ	ĺ	[
1	İ		\sim		ł	1		ł	
]	ļ			
1					i	-	[1	
ŀ					İ	j			

Drill Hole Number: B10

Project Name: Project Number: Martison Phosphate Project

Grid Easting UTM):
Grid Northing (UTM):

330650 (nad27, zone 17) 5571300 (nad27, zone 17) Measure: Drilled By: Meters Norex Drilling

Claim Number:

1223551

Elevation:

Start: Completed: 3/30/01 4/1/01

Claim Map:

South of Ridge Lake

Azimuth:

surface n/a -90

Core Size:

HQ Triple Tube

Dip: Length:

-90 108.5

Date(s) Logged: Logged By: Apr-01 Garth Pierce

From	То		Rock Description	Sample	From	To	Length	% P2O5	
(m)	(m)	code	Description Rock Description	- Gample	(m)	(m)	(m)	701200	
0.00	0.35	4	Muskeg						
0.35	21.20	4 T	Grey Till - 0.35m to 1.5m: leached, brown appearance - 4.5m to 8.0m: cobbles in till - 8.0m to 16.5m: typical grey till - unit becomes more sandy from 16.5m	B10-1 B10-2 B10-3 B10-4 B10-5	75.50 78.50 81.50 86.00 88.50	78.50 81.50 86.00 88.50 91.40	3.00 3.00 4.50 2.50 2.90	3.87 11.12 19.36	
21.20	75.50	4sg	Pleistocene Sand and Gravel - very poor recovery - hole washed to get through section	B10-6 Zone	91.40 81.50	93.50 91.40	2.10 8.90	5.22	
75.50	93.50	2 2A1 2C5	Residuum Zone - 75.5m to 91.4m: dark brown, sandy soft residuim; limonitic coloring indicates leaching to 83m - 91.4m to 93.5m: calcareous grey-white residuum						
93.50	108.50	1A	Carbonatite - fresh, white to dark grey-green units						
	108.50		End Of Hole						
			*phosphate zone is weak, runs from 83.0m to 91.4m. Hole near the north edge of anomaly						

Drill Hole Number: B11

Project Name: Project Number: Martison Phosphate Project

Grid Easting UTM): Grid Northing (UTM):

330440 (nad27, zone 17) 5571000 (nad27, zone 17)

Measure: Drilled By: Meters

Claim Number:

1223551

Elevation:

surface

Start: Completed: Norex Drilling 4/1/01

Claim Map:

South of Ridge Lake

Azimuth:

n/a

Core Size:

4/3/01 HQ Triple Tube

Dip:

-90

Date(s) Logged:

Apr-01

Length:

134.5m

Logged By:

Garth Pierce

From	To		Rock Description	Sample	From	To	Length	% P2O5	
(m)	(m)	code	Description		(m)	(m)	(m)		
0.00	1.85		Muskeg						
				B11-1	50.00	52.50	2.5	0.72	
1.85	42.10	4T	Grey Till	B11-2	52.50	56.00	3.5	0.88	
			- 1.85m to 12.5m: typical	B11-3	56.00	60.50	4.5	0.94	
			- 12.5m to 38.0m: fine grained silt and clay, no obvious bedding	B11-4	60.50	65.00	4.5	2.23	
			- 38.0m to 40.8m: sandy till	B11-5	65.00	69.50	4.5	3.45	
			- 40.8m to 42.1m: grey clay	B11-6	69.50	74.50	5.0	4.38	
i 1	- 1			B11-7	74.50	80.00	5.5	7.86	
42.10	50.00	3	Cretaceous Sediments	B11-8	80.00	85.30	5.3	7.5	
	}	3C,B	- 42.1m to 48.5m; organic rich clay to lignite	B11-9	85.30	88.20	2.9	7.36	
1		3 A	- 48.5m to 50.0m: silica sannd	B11-10	88.20	92.00	3.8	5.31	
				B11-11	92.00	96.50	4.5	6.2	
50.00	108.50	3	Reworked Residuum	B11-12	96.50	101.00	4.5	7.65	
		3D	- 50.0m to 88.5m: sandy dark brown to red residuum	B11-13	101.00	105.40	4.4	8.77	
	}	2A6	- 88.5m to 108.5m: magnetite rich unit - very low apatite content, probobly similar	B11-14	105.40	108.50	3.1	6.99	
1			to upper section of 81-01	B11-15	108.50	113.00	4.5	30.95	
,				B11-16	113.00	118.00	5.0	6.94	
108.50	113.00	2B2	Residuum Zone	B11-17	118.00	123.00	5.0	5.92	
			- dark brown, sandy; magnetite rich below 105.2m. Very little visible apatite	B11-18	123.00	126.50	3.5	7.23	
1 1			but some consolidated fragments	B11-19	126.50	129.50	3.0	6.03	
113.00	129.50	2C5	Calcareous Residuum						
i			- occasional carbonatite clasts	Zone	108.50	113.00	4.50	30.95	
			- 50% solid carbonatite below 124.0m		111100		,,,,,		
1				1					
	129.00		End Of Hole		1				
					lu s				
			\wedge . \vee			1			
						Ì			
	1		twitter.						
]		1			1	ļ		
			\bigvee			İ			

To: Stre Case From: Ray Dyork 4 pages

		WRA	WRA	WRA	WRA	W'RA	WRA	WRA	MRA	WRA	WRA	WRA	WRA	WRA	WRA	WFLA	WRA	WRA	WRA	WRA	WFLA	ARW	YIRA	ARW	WRA	WRA	WRA
Carillicate	Semple	SIO2		Fa2O3	ÇaQ	MgO	N920	TIO2	K20	ManO	P2O5	LOI	Ва	Sr	Zr	So	Y	Be	Gσ	CT	Cit	NI	٧	Zn	Rtb	Neb	Total
Number	Name	%	%	%	*	%	%	%	*	%	*	%	ppm	ppm	pgam	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	pph	%
1W0333RL		48.0)	14.01	22.12	0.81	0.47	0.17	2.78	0.71	0.30	1.57	9.71	2890	2130	1040	20	105	15	60	130	70	25	645	160	<100	240	99,43
1W0333RL		21.55	21.63	30.28	1.48	0.16	10.0	4,09	0.02	0.64	4.50	14.04	3820	5120	710	50	195	30	125	10	215	10	770	260	<100	150	99.48
1W0333RL		21.87	22.75	26.47	2.10	0.15	<0.01	1,81	0.06	2,25	5.41	15.21	4290	5210	1040	15	175	30	115	90	280	60	430	590	<100	580	68.69
1W0333RL		8.15		48.56	1.44		<0.01	3.69	<0.01	98.0	5.98	13.31	6370	6740	2660	20	270	40	165	55	350	70	750	440	<100	1250	D9.46
1VICOSSIPE		8,42		45.73	1.72	0.00		9.74	0.02	0.87	7.09	13.39	5000	8720	2500	25	290	45	125	15	34D	35	845	5 55	< 100	1370	99,45
1W0333FiL		15.29	18.64	39.26	1.37	0.16		5.25	0.02	0.59	5.21	12.16	3350	6180	2150	15	155	35	180	රේ	150	10	900	420	<100	490	99,36
1W0333FL		16.19	18.90	38.00	1.34	0.31	-0.01	5.14	40.01	0.69	5.11	12.55	3600	5910	(900	20	225	8 5	130	c5	160	180	850	590	<100	360	99.54
1W0333FL		17.13	16.74	32.28	7.16	D.19	0.01	4,39	0.01	1.49	7.85	11.35	2950	4280	1960	15	145	80	105	10	280	200	740	555	<100	390	99.53
1W0933FL		12.52	8.86	24.87	22.98	0.19	0.05	3.13	0.01	1,13	15.93	7.11	1240	2150	2010	15	140	20	85	10	115	25	690	410	<100	220	99.45
1W0333RL		10.64	B.DO	34.45	13.49	0.27	0.04	1.62	0.01	8.11	11.22	10.47	4880	3110	570	25	215	25	50	20	130	70	670	445	<100	140	99,35
1W0333AL		4.41	2.50	45.62	8.55	0.25	0.01	1.25	<0.01	17.79	7.41	10.39	3770	168D	720	35	270	30	60	50	. 40	20	990	550	<100	400	99.42
1W0333RL		13.07	7.61	29.84	19.67	1.33	0.05	3.41	0.14	1.12	14.27	7.84	1100	2510	2190	20	185	20	120	5	115	15	760	425	<100	450	8E.00
1W0333FL		5.90	2.21	13.01	39.76	0.34	0.07	0.79	<0.01	2.37	27.68	5.63	2600	2870	520	25	150	15	20	10	75	5	405	195	<100	410	89.53
1W0333FL		53.79	18.35	11.52	0.56	0.31	0.18	1,44	1.44	0,07	0.55	10.29	1110	360	780	20	55	5	30	130	50	25	420	75	<100	400	99.84
1W0387RL		69.97	16.70	8.90	0.64	0.55	0.35	1.37	2.00	0.12	0.81	8.23	1360	450	570	15	65	5	30	155	60	25	530	110	<100	280	99.67
1W0387RL		4.99	BA6	62.48	1.45	0.53	0.04	6.23	0.04	1.45	4.51	7.89	6720	3810	2660	55	155	20	145	15	90	10	2250	730	<100	1330	99.62
1W0387RL		3.24	9.61	61.18	1.93	0.51	40.0	5.01	0.04	1.53	6.47	8.21	2700	4310	2880	60	350	25	185	375	165	45	1525	655	<100	1090	89.8
	83-01-666 A	10.50	11.46	28.83	13.43	0.34	0.14	2.52	0.15	5.01	14.23	10.7B	6930	6500	2330	75	600	60	100	50	225	45	790	566	<100	1540	93.69
	B9-01-566 B	2.64	10.94	55.72	2.52	0.44	0.06	3.43	0.04	1.05	8.59	11.52	4720	6 49 3	2810		555	45	125	350	495	30	1170		<100	4950	99.8
1WB987AL		1.01	0.58	5.59	51 <i>.</i> 27	0.09	0.15	0.14	0.05	0.34	97.52	2.72	600	1810	150	20	140	20	10	10	50	15	210		<100	600	99,84
1W0387F4		1.79	0,61	4.70	51.31	0.28	0.14	0.16	0.02	0.36	97.14	2.58	650	1320	140	15	190	10	5	10	20	10	300		<100	167	92.33
1W0397RL		25.17	7.52	11.05	20.23	7,38	0.31	1.24	0.98	1.39	9.10		2160	1980	570	25	130	15	30	30	58	10	320		<100	460	99.44
1W0987RL	B9-01-10	4,56	1.35	3.50	35.57	12.12		0 <i>.2</i> 5	0.36	0,69	3.59		640	3050	110		65	5	10	20	35	<5.	80		<100	369	90.85
1W8420FU	. 82-1	64.50	18.41	8.09	0.28	0.27		0.92	0.23	0.04	0.22	6.61	330	230	430	10	25	5	15	140	చై	15	155		<100	150	99,74
1W0420fil	B2-2	63,63	16.02	4.94	0.60	0.14		1.51	0.27	0.04	1.71	8.79	1490	1700	510	15	75	5	25	145	ح ة 	5	185	-	<100	1110	99.57
1W0420RL	. B2-3	5.00	17.99	38.44	3.98	0.18		3.45	0.02	0.93	13.57	13.54	4070	>10000	1140	45	603	35	170	10	25	30	970		<100	1657	99.53
1W0420RL	. B2-4	9.23			18.50	0.25		1,61	0.09	0.59	22,62		3900	8550	088		335	35	80 30	20 10	5 5	45 10	585 260		<100 <100	2110 2560	98.93 98.59
1W0420FIL		2.36	1.91	10.12		0.21	-0.01	0.40	10.0	0.24		4.17 5.53	1360 6930	3200 3310	180 440	20	145 150	10 20	30	150	<5	20	310		<100	1060	90.38
1W0420RL		1.149	1,06			0.24		1.15	<0.02	0.25 0.35		4.37	3810	2690	58D		130	25	40	20	₹5	5	475		< 100	1030	98.99
1W0420RL		1.38				0.25		0.17	0.03	0.41		5.48	2130	2850	160		210	30	20	15	< 5	15	340		<100	510	99.75
1W0420RL		1.74	0.76		41.93	0.20		0.04	0.04	0.40		5.98	2480	2290	170		255	35	15	5	خ.	40	400		<100	500	28.9
1W0420RL		2.47	1.19			0.20		0.17	0.15	0.33		4.80	2460	3120	130	40	200	25	10	10	ය	- 5	295		<100	620	89.02
1W0420RL		2.68	1.23 3.12			6.55		1.01	0.25	0.75		8.60	1480	2230	360	20	100	20	40	10	<u> </u>	25	520		<100	1980	99.62
1W0420RL		10.76				4.27	0.30	2.25	0.31	1.25		7.82	1340	2190	630	50	85	20	65	5	-3	5	825	-	<100	1490	99,97
1W0420RL		8,60			25.20	3.61	0.30	1.94	0.18	0.90	10.78	10.48	670	1390	860	40	60	15	55	10	c5	10	915		<100	1350	99.47
1W0420RE		10.36			0.65	6.20		2.C7	0.74	• • • •			1530	1710	660	25	90	10	35	220	75	95	320		<100	610	
1WD448RL	. 51 01	52.66	∠ 3.15	7./0	4.03	0.20	Ų. IA		V., ~	U.U4														. ••			

														40000		45			45	435	~~	30	200	ONE	-100	5 0-CA	99.76
1W0448FIL	B1 02	24.95	23.55	27,55	1.24	0.27	0.01	4.60	0.06	0,19	4,54	10.26		>10000	1740	35	290	15	85	205	90	70	920		c100	1860	
1W0448RL	B1 03	8.35	21.38	34.00	4.84	0.15		2.88	0.03		13.33	13.21	2280	7200	1470	4D	325	30	100	20	155	60	700		<100	1770	99,77
1W0448R(.	B1 04	5,88	21.79	30,42	5.89	D.19	<0.01	2.64	0.D4		15.94	14.24	3710	6730	1500	30	370	35	125	<5	285	80	54 5		<100	810	99.44
1W0448F£	B1 05	14,44	2 2.95	27.57	4.30	0.20	0,04	1.49	0.13	0.72	•	14.95	5000	6790	1380	45	270	90	160	-45	190	55	500			4730	99.43
1W0448R_	B1 06	12.47	9.51	25.12	18.37	1.77	0.09	1.79	0.45	2.00	15.35	6 .95	7050	6670	620	55	445	35	185	ල්	333	85	820		<100	9470	99.52
1W0448FL		33,66	1248	11.48	11.19	10.26	0.58	1.55	1.84	1.01	4.80	10,13	3160	1210	470	10	80	20	55	15	5	5	365		<100	760	89.55
1W0448FIL	B1 08	35.35	11.25	11.58	10.68	11.63	0.75	1.80	1.70	0,39	4.11	8.63	4350	970	639	10	60	15	45	5	15	රා	325		<100	860	99.56
1W0445RL		34.21	10.43	10.74	13.62	11.47	0.78	1.74	1.37	0.36	3.35	10,94	1320	630	630	10	50	15	35	5	20	10	320	-	c100	1230	99.58
1W0524RL	B6-1	10.93	28.75	28.74	1.13	80.0	0.08	9,14	0.04	0.24	7.22	17.09	2790	>10000	1360	70	420	3 0	60	B 5	140	40	790	140	c100	3440	99.41
1W0S24FL	_	4.74	21.72	47.37	1.24	0.15	90.0	2.82	0.02	0.20	7 AB	11.75	3270	7080	1600	80	420	35	60	65	90	30	1140	220	<100	4300	99.5 2
1W0524FL		3.78	22.12	49.72	0.79	0.23	0.06	3.40	0.03	0.23	5.16	12.42	2570	6060	1080	60	355	90	70	100	75	40	1340	240	<100	4580	99.67
1W0524FL		2.03	27.08	43.20	0.67	0.06	0,05	2.75	0.02	0.11	5.63	14,67	2940	> 10000	1600	90	375	30	55	100	85	30	1095	140	c100	3920	99.73
1W0524FL		2.59	27.70	46.29	0.49	0.05	30.0	3.43	0.02	0.12	2.50	15.25	1320	3740	1730	65	22)	20	55	120	55	215	1125	140	<100	4020	8.0G
1W0524RL		3.84	29.02	40.81	0.88	0.00	0.10	3.23	0.03	0.10	4.00	16.14	1843	6860	1750	80	265	25	60	125	80	40	1010	155	<100	3990	99.85
1W0524RL	-	10.55		30.63	1.68	0.04	0.07	3.02	0.03	0.07	7.78	15.10	2130	>10000	1830	75	300	25	65	105	65	65	650	170	<100	3100	99.7
1W0524FL		5.08	17.16	44.95	3.37	0.10	0.10	3,59	0.09	0.37	11.24	9.69	5040	>10000	1980	70	360	35	110	95	140	55	1205	380	<100	499)	99.62
1W0533RL	-	1.03	3.75	22.53		0.29	0.14	1.65	0.09	0.56	26.98	4.72	10720	2050	370	10	120	10	60	15	30	20	835	280	<100	750	99,76
1W0533RL		2.60	3.22	33.70	28.28	0.50	0,13	2.24	0.05	0.61	21.68	4.23	7120	1650	630	10	95	10	70	5	40	5	1155	470	<100	930	98,44
1W0593RL		8.81	6.62	20,51		0.48	0.19	1.55	0,06	0.43	22.75	7.53	6190	2360	510	10	155	10	40	15	83	15	705	395	<100	860	99.54
1W0533RL		15,50	9.00	16.46		1.03	0.11	5.41	0.04	0.24	16.45	10.73	5180	1840	550	40	70	15	70	7 56	156	110	405	250	<100	580	99,48
1W0593FL		13.08	7.43	25.15	23.11	2.26	D.13	80.6	0.57	1.07	16.87	6.40	1820	1070	710	5	80	10	70	45	55	35	670	355	<100	990	99.64
1W0698FL	T -	18.15	6.74	19.05	26.47	2.85	0.16	1,58	0.47	0.49	19.07	7.46	5400	1780	900	15	135	15	50	15	105	10	690	345	<100	2940	99.72
1W0533RL		22.17	9.34	17.42	19,58	3.63	0.13	1.01	0.45	0.33	13.67	10.25	4030	1250	550	10	100	15	50	5	65	10	525	225	<100	134D	99.72
1W0533RL	-	15.01	6.92	17.11	25,15	3.66	0.19	1,58	0.67	0.36	18.78	8.50	10420	1650	770	15	145	15	40	5	90	5	400	330	<100	1360	99.75
1W053-8RL		4.69	2.42	7.49	44.12	1.58	0.14	0.61	0.47	0.19	31.76	5.05	6650	1640	380	10	100	10	10	15	30	15	250	260	<100	640	99.41
1W0533RL		9.31	J.BB	9.58	37,69	3.07	0.19	0.93	0.69	0.24	27.14	6,05	3590	1800	450	5	105	10	20	10	40	₹5	260	260	<100	1123	99.54
1990533RL		10.66	3.69	7,88	38.03	3.45	0.22	64.0	0.73	0.15	27.31	5.90	2020	1640	450	5	85	10	15	15	20	10	290		<100	460	09.38
1WD523RL	-	27.68	7.63	18.09	16.38	9.97	0.58	1.38	1,50	0.40	7.58	10.84	2090	1050	220	70	90	10	30	15	55	∢5	300	205	<100	520	99,83
1W0533RL	-	4.52	1.82	4.74	46.71	1.82	0.17	0.27	0.29	0.16	33.10	5.38	1010	1780	240	10	110	10	5	5	50	-6	. 140		<100	580	99,98
1W0639RL		15.97	4.46	9.16	33.00	5.23	0.43	0.60	6.49	0.30	10.63	18.82	1190	1700	270	5	115	10	15	20	35	45	280		<100	430	99.79
1W0533RL		4.86	1.96	9.81	42.18	3.18	0.23	0.42	0.14	0.24	80.54	5.62	670	2220	250	25	185	15	20	10	65	5	320		<100	1150	8.60
1W0555RL		34,48	10.51	12.78	14.00	6.68	D.42	1.17	0.51	0.39	6.28	11.75	240	1050	. 180	15	100	15	40	25	70	55	445	215	100	740	90.43
1W0555RL		26,54	7.62	16.74	17.18	5.68	0.60	1.61	0.43	0.95	10.19	11,30	1050	1720	510	30	200	25	55	115	115	80	645	380	<100	1600	90,6
1W0555RL	B7-9	29.95	10.92	22.50	10.55	3.1B	0.26	1.14	0.45	0.44	4.28	15.11	98 0	750	390	10	60	20	30	35	100	25	475	295	100	2580	99.72
1W0555RL	B7-4	29.83	10,56	11.25	15.70	5.28	0.25	1.05	0.86	0.59	8,39	19,22	2170	2270	990	15	120	60	15	20	400	40	470	295	100	19220	99.52
1W0655RL	-	18.97	4.26	5.15	82.95	7.20	0.35	0.62	0,75	0.62	2.76	28.09	740	3470	240	10	60	10	.10	30	65	20	225		<100	630	99.72
1W0555RL	-	27.33	9.45	7.59	21.10	7.48	0.43	0.42	0.80	0.30	3.25	20.68	930	2660	240	15	55	20	15	15	40	25	250		₹100	570	6,68
1W0555RL		20.25	29.76	21.61	210	0.29	0.09	2.73	0.03	0.06	4,39		2700	>10000	820	45	340	15	40	90	85	45	695		<100	1080	29,8
1W0555RL		5.18	14,17	59,95	2.76	0.45	0.04	4.97	0,01	0.30	7.17	82.6	9700	>10000	1750	30	385	25	120	40	95	30	1175		<100	2830	99.7
1W0555RL		3,99		49,40	3.66	0,32	6,03	4.48	0.01	0.11	10.15	19 <i>.2</i> 7	3669	8300	!770	15	280	25	120	10	135	20	1005	355	د100	500	99.86
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-																								

1W0566RL	RA.A	11.72	17.70	45,10	2.36	0.39	0.05	4.50	0.02	0,51	6.47	10.15	2120	4340	320	10	250	30	:30	20	95	15	850	375	c 100	90	99.87
1W0655FIL		9.41	16.65	47.32	2.40	0.34	e0.0	13.8	0.01	0.74	7.35	10.30	1370	6530	1470	15	335	40	35	tO	290	165	925	495	<100	2660	93,58
1W0555RL		4.97	14.72	33.67	13.32	0.19	0.07	2.90	0.02	0.67	18.18	11.06	2480	7180	2590	95	380	40	160	-5	315	35	750	556	c100	4880	93.73
1W0555RL		1.81	9.33			0.19	0.11	2.32	0.02	0.88	23,46	8.46	2500	7760	850	30	435	20	140	15	110	55	570	556	<109	1320	99.47
1W0555FRL		7.13	7.12	25.86		0.82	0.12	1.67	0.20	0.58	21 AB	6,90	1640	4480	1050	30	370	15	85	5	65	175	730	480	<100	1950	99.68
1990555FiL	_	5.55	5.47			0.78	0.15	1.41	0.21		24.34	5.98	1680	3790	1090	25	300	10	75	10	110	25	690	385	<100	1870	99.76
1990555RL		4.01	325	•	40.55	0.43	0.13	1.05	0.00		28.54	5.36	4000	2820	620	20	225	10	50	25	110	20	480	310	<100	1030	96.6
1W0555RL		5.01	4.38				0.17	0.95	0,19	0.61	28.04	6.15	1910	3840	420	15	235	10	35	5	50	10	480	289	c 100	960	99.78
1W0520RL		14.18	8.53	,	28,56	4.12		0.89	0.76	0.57	20,94	8.02	2300	2300	440	30	160	10	20	20	55	105	315	435	< 100	500	99.44
1W03207L		28.62	13.28	9.10		0.80	0.51		1,30	0.30	9.87	10.21	1130	720	240	40	50	5	20	20	40	చ్	165	285	<100	290	99.48
1W0320AL		24.29	14.24	14.39		6.49	0.16	0.77	0.75	0.61	10.87	11.63	1730	1390	980	40	80	10	25	10	75	5	275	505	<100	390	99.59
		7.98	4.49	B0.01	39.22	1.38	0.17	0.90	0.21	0.28	28.37	5.94	680	2240	570	15	140	5	30	25	45	70	235	345	<100	550	99.53
1W0620RL		17.35	7.62	11.91	26.05	7.75	0.45	1.07	1.18	0.30	18.27	7.28	1230	1460	250	20	120	5	35	25	100	25	236	485	<100	200	99.53
1W0620RL		93.65	11.31	12.36		13.04	0.84	1.27	1.35	0.42	4.69	9.50	1090	840	670	20	55	10	40	45	95	35	280	445	<100	710	99.72
1W0620RL		20,90	7.25	8.93	27.62	5.51	0.77	0.67	0.91	0.29	9.27	16.82	900	2200	290	10	125	5	25	20	110	10	260		د100	190	99.69
1W0620FL		8.71	4.84		41.62	2.09	0.17	0.29	0.37	0.25	29.93	5.89	680	1900	340	20	115	5	10	30	50	270	140		<100	440	99.59
1W0820FIL		32.72	11.52	7.62		9.30	0.57	0.67	1.50	0,92	6.31	12.13	3080	990	230	15	45	5	15	25	45	15	215		<100	320	99,39
1W0820RL			10.86	8.00		11.54	0.76	0.60	1.75	0.29	4.05		1160	1160	350	20	50	5	15	35	25	< 5	210	425	<100	410	99.34
1W0820Fi.		\$1.01 18.37	13.35	22.56		0.76	0.14	1.55	0.16	1.08	12.69	12.68	2750	3000	420	15	200	35	120	45	220	145	485	760	< 100	3B0	99.51
1W0820RL		5.14	3.00	7.68	43.48	0.76	0.11	0.44	0.20	0.16		5.77	1580	1390	460	5	75	10	20	40	85	20	240	510	<100	310	99,65
1W0620RL 1W0820RL		18.83	8.16	19.90		4.37	0.26	1.65	0.45	0.39	14.93	60.0	2680	1250	350	20	85	15	56	20	90	15	495	535	<100	450	99.49
IWW8207E		34.48	10.90	15.26	6.05	13.98	0.63	1.61	0.85	0.41	2.71	10.52	860	420	790	10	35	10	56	15	70	245	360	265	100	890	99.78
1W0620PE		35.46	12.17	12.54		15.11	0.67	1.20	0.99	0.28	4,35		1360	660	240	5	40	10	35	10	45	5	300	270	100	320	80,00
1W0820FIL		24,33	8.63	17.50		10.87	0.42		1.48	0.58	9,09	8.75	1710	1160	680	10	100	10	60	50	110	40	486	365	200	1800	28.29
1W0620FIL		17.64	B.07	19.19		7.39	0.29	1.63	0.78	0.70	14.05	8.62	1420	1710	520	10	140	10	60	35	145	<5	655	475	200	3360	99.81
1W0820RL		5.58	2,30	8.03	42,44	1.85	0.47	0.39	0.23	5.10	\$0.38	. 5.49	2000	3620	210	20	255	15	15	45	216	√5	270	\$25	₹100	7920	69.75
1W0820AL		7.98	2.97	12.5B		1.78	0.31	0.95	0.15	0.35	28.00	5,10	1440	2290	620	15	135	10	45	50	210	245	400	455	<100	1930	99 A
1W0620FL		27.77	10.86	13.95		11.17	0.54	1.57	1.35	0.43	8,31	10.69	1690	1660	740	15	100	16	45	20	95	4 5	370	390	100	1230	99.66
1W0620RL		9.23	4.40	16.65		4.75	0.30	0.74	0.42	0.78	22,53	7.94	2900	3060	440	25	210	15	45	30	130	5	350	660	<100	690	99.73
1W0620FL		22.13	9.65	13.46		6.59	0.47	1.09	0.78	0.38	13.89	10.85	1910	2030	580	15	145	15	30	25	145	<5	\$05	425	<100	790	89.84
1W0620FL		39.26	18.66	7.57	5.65	7. 2 5	0.45	0.44	0.51	0.15	8.04	16.07	930	880	400	5	4 D	10	15	15	45	≪5	185	310	<100	290	99.47
1W0625RL		12.62	18.76	35.32	3.28	0.25	0.07	5.31	0.04	0.57	7.44	14.20	3450	6500	1420	50	260	55	190	445	925	55	650	395	<100	4040	99.63
1W0625RL		22.87	24.95	25.35	1.63	0.29	0.11	4.30	0.19	0,56	3.87	14.45	2500	3390	1210	30	100	50	145	95	395	305	385	295	<100	1320	96.68
1W0625FIL	-	9.74	16.59	92.07	7.91	2.05	0.08	4.73	0.05	2.05	11.12	11.44	5850	7380	(290	60	330	25	175	880	585	815	540	830	100	990	8.66
1W0625AL		9.42	11,49	18,95	23.01	2.45	0.14	2.99	0.10	1.21	18.36	8.47	4780	5030	1590	30	235	B 5	80	470	350	560	440	1115	<100	2770	99.44
1W0625RL		8,50	4.41	11.68	37.03	2.94	0.17	1.17	0.15	0.76	25.78	6.44	2840	8640	810	15	190	45	40	65	180	125	290	545	<100	2240	99,59
1W0625FIL		32.28	10.03	10.83	16.42	19.78	0.70	1.56	1.53	0.50	5.22	9.22	1360	960	590	5	75	20	45	5	40	డ	% 5	160	100	28)	99.48
1W0672FL		25.69	9.58	6.74	18.68	11.25	1.50	0,61	1.14	0.27	6.33	15.24	750	1440	690	20	65	10	10	15	35	ත්	210		<100	410	99.49
1W0672FL		44.25	18.54	5.68	6,08	7.27	0.78	0.48	0.76	0.13	1.94	14.92	9740	560	580	5	30	5	<5	30	25	చ్	250	310	<100	240	99.83
11100.210			•																								

1W0972RL B11-2	50.62	22.11	9.44	0.60	0.56	0.50	1.51	1.27	0.09	0.68	11.19	2210	608	800	20	90	15	20	180	55	c5	415	275	<100	1060	90.54
1W0572FL B11-3	37.53		15.65	0.50	0.22	0.35	1.79	0.71	0.03	0.94	14.07	1680	830	900	30	100	10	25	205	30	<5	639	235	<100	1210	99.77
1W0672RL B11-4	18.64		23.41	0.53	0.07	0.25	2.57	0.05	0.06	2.23	17,89	3120	2630	1150	50	345	15	25	100	115	చ	710	225	∢100	1520	BB. e @
1W0672RL B11-5	14.74		25.44	0.79	0.05	0.24	8.15	0.06	0.06	3.45	17.37	3280	5650	1030	50	340	20	50	95	95	<5	730	220	<100	1900	99.72
1W0672RL B11-8	7.04	28.60	35.82	0.73	0.08	0.25	4.24	0.08	0.13	4.38	16.01	2610	6500	1470	50	393	20	45	100	80	<5	675	250	<100	1770	99.79
	9.35		32.23	1.24	0.05	0.25	4.10	0.07	0.10		15.01		> 10000	890	50	400	20	60	140	75	<5	595	250	<100	1020	09.45
1W0672FL B11-7				2.00	0.55	0.24	5.74	0.10	0.59	7.50	7.33		>10000	1B10	30	205	20	115	85	35	<5	149D	515	<100	1640	99.59
1W0672FL B11-8	4.30		55,10				6.10	0.0B	0.81	7.36	5.57		>10000		45	255	20	145	110	75	<5	1475	655	<100	880	98.57
1W0872FL B11-9"		9,69	60.45	1.99	0.77	0.26								860	85	255	30	170	265	100	ح.	1260	785	<100		62.93
1W0672FL B11-10	~ 1.53	7.75	58,73	1.72	0.53	0.24	6.32	0.07	1.19	5.31	8.24	2630														
1W0872RL B17-11	• 1.71	7.23	59.12	1.09	0.40	0.18	3.39	0.03	1.41	6.20	10.17	2230		1450	100	640	35	215	55	335	45		1060			92.49
1W0672RL B11-12	~ 1.B1	9,75	58.00	2.31	0.50	0.18	4.96	0.02	1.13	7.65	9.76	1920	8820	510	50	345	35	215	45	100	₹5	1165		<100	530	- •
1W0672RL B11-13	1.62	10,33	51,36	2.40	0.35	0.17	3.54	0.02	1.07	8.77	10.85	3550	7700	2080	65	525	40	195	80	240	∢5	1200	820	<100	4830	
1W0672RL B11-14	er 1.52	4.47	44,17	2.22	0.30	0.16	1.53	0,01	13,86	6.59	1218	12030	4830	1210	170	1245	75	135	95	195	95	1115	875	<100		89.6B
1W0672RL B11-15	4,95	2.45	10.08	42.03	0.90	0.25	0.57	0.10	2.04	30.95	4.92	2710	2160	390	35	190	25	20	60	55	<5	330		<100	1450	
1W0672RL B11-16	14.82	4.78	13.46	29,32	5.36	0.42	1.34	0.54	1.26	6.94	20.52	1880	1580	700	25	160	15	40	50	70	ح5	355		<100		99.38
1W0672FL B11-17		4.81	8.16	34.28	4.73	0.67	1.01	0.38	0.36	5.92	22.48	690		460	10	80	10	20	45	135	حة	225	305	<100		9 2.53
1W0572FL B11-18	15. 67	4.95	7.69	32.98	5.89	0.55	0.92	0.70	0.57	7.23	21.74	2170		610	15	8)	10	10	45	50	45	215	280	<100	637	
1W0672FL B11-19	13.01	3.99	5.12	38.29	5.15	0.53	0.58	0.67	0.55	6.03	25.43	1130	1410	410	10	60	10	10	40	75	<5	120	250	<100	540	92.74

Work Report Summary

Transaction No:

W0160.30618

Status: APPROVED

Recording Date:

2001-AUG-22

Work Done from: 2001-MAR-18

Approval Date:

2001-SEP-27

to: 2001-APR-06

Client(s):

304115

MCK MINING CORP.

304124

BALTIC RESOURCES INC.

Survey Type(s):

ASSAY

PDRILL

W	ork Report D	etails:								
Cla	aim#	Perform	Perform Approve	Applied	Applied Approve	Assign	Assign Approve	Reserve	Reserve Approve	Due Date
Р	1223550	\$18,751	\$18,751	\$6,000	\$6,000	\$0	0	\$18,751	\$18,751	2003-APR-01
Ρ	1223551	\$106,257	\$106,257	\$6,000	\$6,000	\$93,600	93,600	\$6,657	\$6,657	2003-APR-01
Ρ	1223552	\$0	\$0	\$2,400	\$2,400	\$0	0	\$0	\$0	2003-APR-01
Р	1223553	\$0	\$0	\$6,000	\$6,000	\$0	0	\$0	\$0	2003-APR-01
P	1223554	\$0	\$0	\$4,800	\$4,800	\$0	0	\$0	\$0	2003-APR-01
Р	1223555	\$0	\$0	\$6,000	\$6,000	\$0	0	\$0	\$0	2003-APR-01
Р	1223556	\$0	\$0	\$6,000	\$6,000	\$0	0	\$0	\$0	2003-APR-01
Ρ	1223557	\$0	\$0	\$6,000	\$6,000	\$0	0	\$0	\$0	2003-APR-01
P	1223558	\$0	\$0	\$4,800	\$4,800	\$0	0	\$0	\$0	2003-APR-01
Ρ	1223559	\$0	\$0	\$3,200	\$3,200	\$0	0	\$0	\$0	2003-APR-01
Ρ	1223560	\$0	\$0	\$4,000	\$4,000	\$0	0	\$0	\$0	2003-APR-01
Ρ	1223561	\$0	\$0	\$6,400	\$6,400	\$0	0	\$0	\$0	2003-APR-01
Р	1226551	\$0	\$0	\$6,400	\$6,400	\$0	0	\$0	\$0	2003-JAN-23
Ρ	1226552	\$0	\$0	\$4,800	\$4,800	\$0	0	\$0	\$0	2003-JAN-23
Р	1226553	\$0	\$0	\$4,800	\$4,800	\$0	0	\$0	\$0	2003-JAN-23
Ρ	1226555	\$0	\$0	\$3,200	\$3,200	\$0	0	\$0	\$0	2003-JAN-23
Ρ	122655 6	\$0	\$0	\$4,000	\$4,000	\$0	0	\$0	\$0	2003-JAN-23
Ρ	1226557	\$0	\$0	\$3,600	\$3,600	\$0	0	\$0	\$0	2003-JAN-23
Р	1226558	\$0	\$0	\$4,800	\$4,800	\$0	0	\$0	\$0	2003-JAN-23
Ρ	1226564	\$0	\$0	\$6,400	\$6,400	\$0	0	\$0	\$0	2003-JAN-23
		\$125,008	\$125,008	\$99,600	\$99,600	\$93,600	\$93,600	\$25,408	\$25,408	

Status of claim is based on information currently on record.

42J06SW2006

2.21966

SOUTH OF RIDGE LAKE

900

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

Date: 2001-OCT-01

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO P3E 6B5

Tel: (888) 415-9845 Fax:(877) 670-1555

MCK MINING CORP.
90 ADELAIDE STREET WEST
SUITE 401
TORONTO, ONTARIO
M5H 3V9 CANADA

Dear Sir or Madam

Submission Number: 2.21966 **Transaction Number(s):** W0160.30618

Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

Assessment credit has been allowed above the Industry Standard due to the unique nature of this program.

If you have any question regarding this correspondence, please contact BRUCE GATES by email at bruce.gates@ndm.gov.on.ca or by phone at (705) 670-5856.

Yours Sincerely,

Ron Gashinski

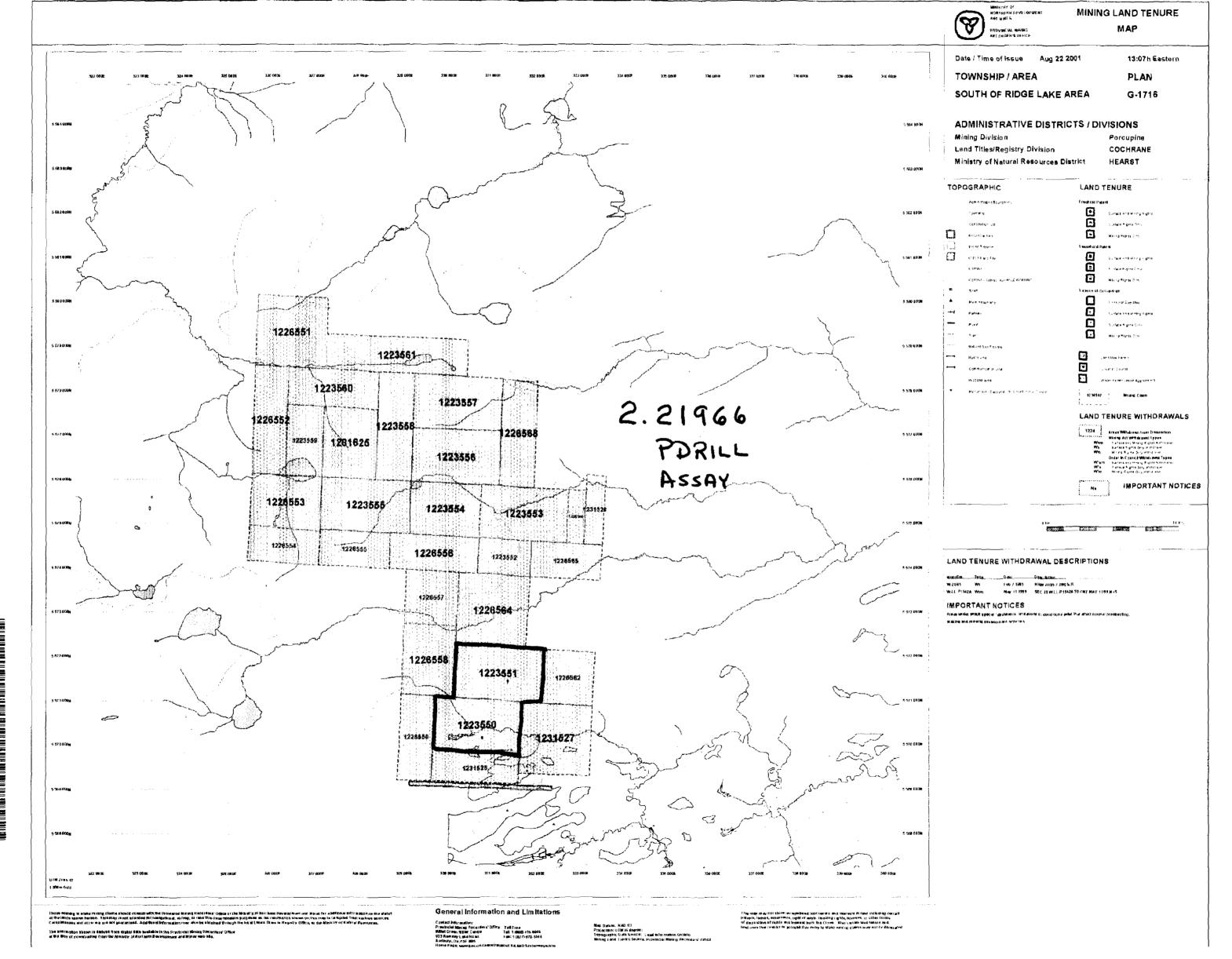
Supervisor, Geoscience Assessment Office

on codal

Cc: Resident Geologist

Mck Mining Corp. (Claim Holder)

Baltic Resources Inc.


(Claim Holder)

Assessment File Library

Mck Mining Corp. (Assessment Office)

Wendy Sims Korba

(Agent)

