

ON THE
COPPER JMA GOUP OF CLADRS
SECTION

O'SULLTVAN LAES AREA, OMTARIO

Introduction

In August 1971, geological mpping survey on acale of 1 Inch to 400 feet was completed on the $25-\mathrm{clai}$ aproperty of Amax Exploration, Inc., in the O^{\prime} Sullivan Lake Area in the Thunder Bay MinImg Division, Ontario. A more detalled survey on 1 inch to 100 feet scale vas carried out on three clains containing the main Copper Jim copper-ailver showing, and on ope clain with a gold showing.

The seological mapping folloved a sround MM arvey completed In March, 1971. The object of the survey was to correlate the EM conductors found in the previous aurvey with the geology and alphide -ineralisation and to conider the feasibility of arillimg progran.

Reconnendatione

Because of the presence of aignificant pyrrhotite-chalcopyrite-pyrite-malachite mimeralization coincident with conductive area " A " of the report on the geophysical eurvey conducted by E. H. Basinet, and dated March 20,1971 , a diamond drilling progran is fully warranted to test these sM conductive areas.

It is therefore recommended that (a) 2760 feet of dianond drilliag of the conductive areas "A" and "B" on the Copper Jic showing be immediately preceeded with.

The following diamond drill holes are suggested:

To test conductive area "A":

1. Coller: LL $0+00,20^{\circ}$ t of PL 00 at $2+204$

Eeariag: $520^{\circ} \mathrm{s} ;$ Dip: -60°
Lench: 400'
This hele will cut ecress trench 7
2. Cellar: BL $0+00$, PL $3 H$ at $3+20 \mathrm{H}$

Bearing: $550^{\circ} \mathrm{E}$; Dip: -45°
Leagth: 500'
3. Collar: BL $0+00$, PL IE at $3+60 \pi$

Bearing: $550^{\circ} \mathrm{E}$; Dip: -45°
Langth: 500'
4. Collar: DL $0+00$, PL 4r at 4

Bearing: $550^{\circ} \mathrm{E}$; DIP: -45°
Leagth: 570'
5. To tent Zone 2:

Cellar: BL 0+00, FL 2R at $2+50 \mathrm{~s}$
Bearing: $350^{\circ} \mathrm{E}$; Dip: -45°
Lemgth: 220'
and 6. To test conductive Area "B"
Collar: DL 30+00N, PL 4s at 500 feet mouth Seariag: $550^{\circ} \mathrm{B}$; Dip: -45°
Length: 575'
It is also reconmended that:
(b) a uitable type of magmetomater survey with che object of more detailed contours be carried out on the Copper Jin showing clains and: (c) a aitable type of induced pelarisation survey be executed on the property in which disseminated sulphides are prevalent in order to get better definition of the conductiva areas.

Preperty
The property conalst of twonty-five (25) contiguous umpatented claime in the O'sullivan Lake Area, Thunder Bay Minien Diviaion, Onterio, coverime approximataly 1000 acres. They are all regiatered with the Ontario Department of Mines an follows, and are show on the accompanying Eap:

299530	300970
299531	300971
299772	307405
299773	307406
293535	307407
293536	307589
293537	307607
300964	307608
300965	307609
300966	307610
300967	307611
300968	307612
300969	

Locatlon and Access

The clain group is situated on the morth shore of the mortheat arm of O'Sullivan Lake, approximately twenty milea morthmest of Nakian, a diviaional point on the Ca Mainlime and aloat plame base.

A graval read rung morth fren Cavell, alag stetion fifteen niles west of likisa, and pasan cloae te the west shore of O'Sulifvan Lake. From there it is about 7 miles east to the preperty. Previeus Mork

A considerable anount of dianond drilling preceded by trenchiag and a ground EM and a megetometer aurvey, were done on the Cepper Jin clatimeroup in 1955.

In 1946 and 1947 , merk was alse dome on the gold ohooing $3 / 4$ mile eset of Pelangie Peint. It included stripping, trenching and dianomd drill1影。

Several seological and geophyincal reperts and legs of the diamond drill holes are available in the asesenent files of the ontario Department of Mines.

Toporraph and Dralane

There is adequate reck expesure. Relief is generally lese than 100 faet above lake level. Cedar meap and muses are intarapersed vith 1ew hilis. Drainage is semerally good.

General Ceolery

The 25 -clain property consists minly of rocks of velcanie orisim domimatg by pillew and maseive lavas of variable composition and which form the oldest recke in the aree. These older volcanica are intruded by quartz 'eye' and quarts-feldepar perphyry. Cxanite, metadiorite and metadiabase occur as miner intrusives inte the velcanic recks.

There is significant pyrrhotite-chalcopyrite-pyrite mimeralisation with geed copper-silver values ataeciated with zomes of altered pillew lavas and pyrite mimalisation with low gold valuen in the schistose quartz 'eye' and quartz-feldspar porphyrien.

Sparsely dissemimated pyrite is comon in all volcanic rocks of this area.

Most of the velcanica and porphyriea in the area have been sheared.

A stront shear is located on point $3 / 4$ bile eat of Pelangio Point, in the southwet cormar of the group of claite.

The bedreck of Precenbrian age is overlain generaliy by thin Pleistocene glacial fill and recent manp depesita. On the southweat border of the claine, the accumulatien of drift is thicker where ft flans the Pelangio Point esker.

The following table of formations covers the rock types mapped in the trea:

1. Basic and Internadiate Volcanic Rocks
(a) Pillow lava - andesitic
(b) Pillow lava - undifferentiated
(c) Andesite, porphyritic or masive lava
(d) Andesite, carbonated, shistese or silicified

2. Acid Volcanic Rock:

(a) Pillow lava - dacitic
(b) Dacite, maseive lava
(c) Dacite, carbonated or aheared
(d) Whyolite, massive lava, tuff, sheared, carbonated
3. Porphyry
(a) Quartz 'eye' porphyry and quartz-feldspar porphyry
(b) Sheared quartz 'eye' or quartz-feldspar poprhyry, carbonated, schistose
4. (a) Metadiorite
(b) Metadiabsee or "diorite"
5. (a) Granite, quarte monsonite and granodiorite

A detailed megascopic description of the above rock types follows:
(1a) Pillow lave - adentic, ia a fine-grained to aphanitic rock, pale buff and apotted pale green on the weathered aurface, and pale green to dark grey on the fresh.

The pillows are usually either deformed or obscured by close jointing. They are variable in size, ranging on an average from about 6 inches loag to 4-5 feet maximm. The mall pillowa are unually ovold to balloon-ahapad and the larger ones tead to be allipsoidal or loaf-shaped. Top determinations mede from the pillows were found to be inconsistent and unreliable.

Although asdeaitic pillow lava outcrops in all parts of the mapped area, their frequency of occurrence is much less than that of the dacitic pillow lavas.
(1b) Pillow lava, undifferentiated, ia ack type which has recogaigable pillow structure but the composition is difficult to deteraine in hand specinen.

On the whole, contacts between pillow lavas and other volcanic rock are very obscure and can only be delimeated approximately fn outcrop.
(1c) Andesite, porphyritic or masive lava is distinguished by its lack of pillow atructure.

In porphyritic asdesite, the dominant phenocryata are bornblende or feldepar. Flow texture is clearly noticeable in many outcrops of porphyritic and masaive andesite lava. Both typea are well jointed as a rule.
(1d) Andesite, carboated, schistose or silicified is well altered phase of amdesitic plliow or mesive lava. It is usually found in the well mineralised zones.
(2a) Pillow lava - dacitic is the most common of the pillow lavas in the clain group. It is gemerally more siliceous and has less mafic content thea the adeaitic lavas.
(2b) Dacite, massive lava, is usually structureldes except for jointing and occura in almoat equal proportion to the dacitic pillov lava. (2c) Dacite, carbonated or sheared, is confined to certain vell mineralised areas of the volcanic sequence.
(2d) Rhyolite, massive lava, tuff or sheared and carbonated is much less In its frequency of outerop than aither the dacitic or amdeaitic rocks.

The rhyolite is usually buff-meathered and pale grey on the
fresh surface. In some cases, it is carbonated and sheared.
Two outcrope of rhyolitic tuff vere observed and these are both In therp contact with dacitic pillow and manive lava. One contact ia gradational and the tuff itself consista of layers up to 5 feet wide with fragmeats of quarts $1 / 16^{\prime \prime}$ to $1 / 8^{\prime \prime}$ alternating with carbonate-quartz-chiorite
sehist, 10 -foot vide layers which etrike $135^{\circ}{ }^{\circ}$ and dip $85^{\circ} \mathrm{ss}$.
The other contact is sharp and the tuff is cut b' quarts 'eye faldepar porphyry and ia interlayered with dacitic pillow lava. Tae tuff is composed of $1^{\prime \prime}-2^{\prime \prime}$ layers of echist rith masive carbonated rhyolite in $2^{\prime \prime}-4^{n \prime}$ layers.

The rhyolite is often associated with concentretion of pyrrhotite - pyrite mineralisation.
(3a) Quarts 'eye' porphyry and quarts-feldepar porphyry is Mdespread throughout the clain group and range in gize from emil marrew dikes only a few feet wide to large dikes and irregular bodies, 100 to 300 feet wide.

The quarts 'eye' porphyry usually consiste of clear glasy quarts phemocryats, $1 / 32^{\prime \prime}$ to $1 / 8^{\prime \prime}$ in diameter, forming 107 to 25% of a felsic matrix.

The quarts-feldepar porphyry has feldaper phemocryats predominant over quartz. All the porphyries are in sharp intrusive contect with the volcanies. They are unally light buff on the manthered surface and light grey on the fresh.
(3b) Sheared quartz 'eye' or quarts-feldopar porphyry, schistose, carbonated, is sheared variety of (3a). It is usually well carbonated, schistose and pyritiferous. The pyrite is usually in cubes. Peudomorphe of quarta after pyrite are prevalent in some outcrops.
(4a) Metadiorite occurs sporadically throughout the volcanic flows. It is difficult in sone outcropa to differentiate the fine-grained metadiorite from coarser-grained phase of andesftic maseive lava.
(4b) Metadiabase or "diorite" occurs ad dikes in the ast corner of the group of ciales there it intrudes carbonated pillow lava.
(5a) Granite, quartz monsonite or granodiorite outerops as all stock at baselime $0+00$, picket 1ine 00 , between 20 n and 25 M .

The granite is masive, usually medium-grained and buffcoloured on the weathered surface. The contact is sharp and intensive into andesitic pillom and masive lava.

Poldien

All volcanic rocks in the area dip ateeply and therefore indicate the effect of etrong folding.

The gemeral strike of the layering of the pillow laves is 050° to 070° and the dipa average $80^{\circ} \mathrm{m}$ to vertical. Schistosity is about 075° strike and $70^{\circ} \mathrm{mm}$ dip.

There is a vell developed fracture pattera in the volcanics asd particularly in the pillom and masive lavas. Five proninent joint sets are fousd. The treade are thus:

$$
\begin{aligned}
& 515^{\circ} \mathrm{E}+10^{\circ} \\
& 845^{\circ} \mathrm{E} \pm 5^{\circ} \\
& \text { due Eact } \pm 5^{\circ} \\
& \text { due Worth }+10^{\circ} \\
& \text { and Wi0 } \pm 15^{\circ}
\end{aligned}
$$

A more detalled amalyais of the fracture pattern may prove usaful aince alphide mimeralisation is concentrated in closely jointed plllow lavas.
shearing
There is intease sheariag both in the pillow lavas and in the quartz 'eye' and quarta-faldapar porphyries.
shearing in the lavas uaually atrike about 040° to 050°. shears measured at two outcrops of sheared porphyry strike 110° mear the last edge of the clain group, and almoat 180° at the southmest coraer of the group on the pyrite - gold showing.

All the mineralized porphyries are intencely sheared.

Mineralization

In general the sulphide mineralization is of three types. The firet type is disseninated pyrrhotite-pyrite-chalcopyrite which Yield good copper-silver asaays and is ugully found ia carbonated, shenred or silicified pillow lavas of andeaite, dacite or rhyolfte composition but especially of the second type.

The main modes of occurrence are:
(a) Mineralisation is concentrated in fractures in the selvages of closely jointed pillows of the lavas. The alphides decrease in concentration away from the actial foints. Many of the foints are quartz or carbonate fllled.
(b) in small veins varying in with from lass than one foot to a maximum of five feet
(c) In shears of carbonate-sericite achist in sheared pillow or masuive leva
and (d) in dissewinationa of lov perceatage in the matrix of the altered lavas

The second type is well discennated pyrrhotite-pyritechalcopyrite in sheared, often carbonated quartz 'eye' or quartsfeldspar porphyry schist.

The third type is pyrite-carbonate wineralisation which assay: low gold values and is fornd in sheared, schtstose, carbonated quarte 'eye' norphyries.

Trenches, rist weathered sones and well winernlfzed nitcropa of the first and second types of mineralization shom good corralation with the ground BM condictive area "i" delineated in F. W. Basinet's map and report dated March 20, 1971.

A large outcrop of ruat weathered pillow lava (andesite and undiffereatiated), contains well disacminated pyrrhotite and pyrite near intruaive granite contacts. It lies only 200 feet eouthvest from unaxposed conductive area "B" of the above-mentioned report.

Two well mineralized zones of sulphides outcrop on the Copper Jia showing clains.

The firat called Zone 1, is about 400 feet wide and 700 feet along atrike and is concentrated from baseline $0+00$ to 650 feet north of it between picket Iines 4 W and 1 E .

There are six large trenches, several pits and gossans in thit sone.

A contact was delineated on picket line 4 W on the showing 5月 to 8R, between the sheared carbonated pillow lava wick is well mineralized with disseanated pyrrhotite-chalcopyrite-pyrite and the porphyritic and masaive lava which has cubes of pyrite oprinkled aparsely through its matrix.

The second called Zone 2, 1ies south of baseline $0+00$ between pleket lines $3 W$ and $3 E$ and is at least 150 feet wide where exposed. There are three large trenches and several pits in the sone.

A brief detailed description follows of the nine old trenches on the Copper Jiv showing and on one old trench on the gold showing 3/4 - ile ast of Pelangio Point.

In addition, a sall shear just off the east boundary of our claim group is deseribed.

zome	Irench	Lecation	Asimuth	3180	Phagralisation	Vade of Oceurremee
1	8	$\begin{aligned} & 3 L \text { O+00 } \\ & 10^{\prime} \mathrm{w} \mathrm{of} \\ & \text { FL 18 } \\ & 2+20 \mathrm{M} \text { to } \\ & 2+35 \mathrm{~m} \end{aligned}$	230°	$\begin{aligned} & \mathrm{L}-20^{\prime} \\ & \mathrm{W}-10^{\prime} \\ & \mathrm{D}-11^{\prime} \text { to } \\ & 10^{\prime} \end{aligned}$	Coll disceminated Po-Cp-Py-malechite	Well diseeninated Po-Py-Cp-malachite occure in a vein in a shear of carbonate schist. Vein is 1^{\prime} to 6^{\prime} vide from engt to wegt. Footwall of the vein atrikes 050° and dips $65^{\circ} \mathrm{m}$. Laces and striagers of pyrite aleo occur in quartz-filled jointe.
2	4	$\begin{aligned} & \text { BL } 0+00 \\ & \text { PL 2W } \\ & 3+608 \text { to } \\ & 3+808 \end{aligned}$	324°	$\begin{aligned} & \mathrm{L}-20^{\circ} \\ & W-10^{\circ} \\ & D-4^{\circ} \end{aligned}$	Py - dieseminated and in cubas	Fisely disecainated py minily in cubes in a sheared, schistose quartz 'eye' porphyry.
2	6	$\begin{aligned} & \text { BL } 0+00 \\ & 5^{\circ} \mathrm{W} \text { of } \\ & \text { PL iW } \\ & 3+308 \text { to } \\ & 3+405 \end{aligned}$	310°	$\begin{aligned} & L-15^{\prime} \\ & W-5^{\prime} \\ & D-4^{\prime} \end{aligned}$	Py - eparsely disseminated and in cubee	Py mainly in cubes, oparsely dieseminated in aheared schistose quartz 'eye' porphyry
2	9	$\begin{aligned} & \text { BL O+00 } \\ & \text { PL 2E } \\ & 3+508 \text { to } \\ & 3+808 \end{aligned}$	335°	$\begin{aligned} & \mathrm{L}-30^{\prime} \\ & \mathrm{W}-2.5^{\prime} \\ & \mathrm{D}-2.5^{\prime} \end{aligned}$	Py-Cp - poorly diaceninated	Poorly disecolnated Py-Cp in andesitic to rhyolitic pillow lava, uchistose and slightly carbonated; also partly alliceous Schistosity han $175^{\circ} \mathrm{E}$ strike and $70^{\circ} \mathrm{m} \mathrm{dip}$
-	10	$\begin{aligned} & \text { BL O+00 } \\ & 80 \mathrm{H} \text { of } \\ & \text { PL 20W } \\ & 8+15 \mathrm{~K} \text { to } \\ & 8+30 \mathrm{~N} \end{aligned}$	335°	$\begin{aligned} & L-20^{\prime} \\ & W-6^{\prime} \\ & D-3^{\prime} \end{aligned}$	Py - mainly in cubes and alishty disseminated	slightly disceminated pyrite mainly in cubes in talc-carbonate-quart:-sericite-chlorite schist, with quarts pseudomorphs after pyrite. Mineralisation is confined to ahear etriking $\mathrm{N} 25^{\circ} \mathrm{W}$ in a 150^{\prime} wide toosan in severely sheared and highly creaulated quarte 'eye' and quartz-feldapar porphyry. Sehistosity atrikes $860^{\circ} \mathrm{W}$ and dips $76{ }^{\circ} \%$. Quarts veinlete with ifnation of 085° to 110° and $70^{\circ} \mathrm{m} \mathrm{dip}$ cut across the achistoaity.

$\dot{\square}$

tronch	Locestion	1.0	11.0 tion	dede of oceurrenee
shoer	Clain 307590 EL 1A 401 of PL 18 W $4+501$ to Lakenho $4+40 N$	coaran 40 20		Disestinated Po-Cp-Py is matnly 1. jointe in a acared seniscose quarts and filled with quarts-feldepar- carboante-atricite achiat diaplaced dip: 70 mH
		$\begin{aligned} & \mathrm{nL} \\ & \mathrm{n} \end{aligned}$		
		1.		
		".	deth	
		D-		
		po	rrbotite	
		7 -	rtte	
		.	elcopyrte	

Concluatione
Twere are two zopec of well disceninated pyrrhotite-chalco-pyrite-pyrite miencalisation with eignificant copper-silver values ia the Coppor Jin shouring. There is cofacidence of Zome 1, north of Bacelise $0+00$, with condectiva area " $A^{\prime \prime}$ In the map and report on the geophysical survey, by E.W. Masimet, dated March 20, 1971.

This mimeralisation is waully comentrated in (a) sheared, carboanted and wall jointed pillow lavaa which are maimly dacitic and (b) schiste derived from intomee shearing of guarts 'eye' porphyry and quarts-feldapar porphyry.

Coodnctive area "B" of the same report ilies in muntan but 200 feet southmast along atrike, there in a large outcrop area of andesitic and undifferaciated plliow lavas which are heavily ruatwathored in places and contaia moll disconianted pyryotite and prite, The mimaralisation is close to intrusive greaite contacte.

Thunder Eny (P), Oatario, September 9, 1971.

ASSESSMENT WORK DETAILS

Type of Survey Geological Township or Area_o'sullivan Lake

Chief Line Cutter or Contractor

A separate form is required for each type

SUBMISSION OF GEOLOGICAL, GEOPHYSICAL AND GEOCHEMICAL SURVEYS

AS ASSESSMENT WORK

In order to simplify the filing of geological, geochemical and ground geophysical surveys for assessment work, the Minister has approved the following procedure under Section 84 (8a) of the Ontario Mining Act. This special provision does not apply to airborne geophysical surveys.

If, in the opinion of the Minister, a ground geophysical survey meets the requirements prescribed for such a survey, including:
(a) substantial and systematic coverage of each claim
(b) line spacing not exceeding 400 foot intervals
(c) stations not exceeding 100 foot intervals or
(d) the average number of readings per claim not less than 40 readings
it will qualify for a credit of 40 assessment work days for each claim so covered. It will not be necessary for the applicant to furnish any data or breakdown concerning the persons employed in the survey except for the names and addresses of those in charge of the various phases (linecutting contractor, etc.). It will be assumed that the required number of man days were spent in producing the survey to qualify for the specified credit.

Each additional ground geophysical survey using the same grid system and otherwise meeting these requirements will qualify for an assessment work credit of 20 days.

A geological survey using the same grid system, and meeting the requirements for submission of geological surveys for maximum credits will qualify for an assessment work credit of 20 days. If line cutting has not previously been reported with any other survey and is reported in conjunction with the geological survey a credit of 40 days per claim will be allowed for the survey.

Similarly, a geochemical survey using the same grid system with the average number of collected samples per claim being not less than 40 samples, and meeting the requirements for the submission of geochemical surveys for maximum credits, will qualify for an assessment work credit of 20 days. If line cutting has not previously been reported with any other survey and is reported in conjunction with the geochemical survey a credit of 40 days per claim will be allowed for the survey.

Credits for partial coverage or for surveys not meeting requirements for full credit will be granted on a pro-rata basis.

If the credits are reduced for any reason, a fifteen day Notice of Intent will be issued. During this period, the applicant may apply to the Mining Commissioner for relief if his claims are jeopardized for lack of work or, if he wishes, may file with the Department, normal assessment work breakdowns listing the names of the employees and the dates of work. The survey would then be re-assessed to determine if higher credits may be allowed under the provisions of subsections 8 and 9 of section 84 of the Mining Act.

If new breakdowns are not submitted, the Performance and Coverage credits are confirmed to the Mining Recorder at the end of the fifteen days.

ASSESSMENT WORK DETAILS

Geological field mapping by _owen Younge,

COVERING DATES

Line Cutting
Field August 3-23, 1971

Instrument work, geological mapping, sampling etc.
Office

INSTRUMENT DATA

Make, Model and Type \qquad
Scale Constant or Sensitivity \qquad
Or provide copy of instrument data from Manufacturer's brochure.
Radiometric Background Count
Number of Stations Within Claim Group
Number of Readings Within Claim Group
Number of Miles of Line cut Within Claim Group \qquad
Number of Samples Collected Within Claim Group \qquad

CREDITS REQUESTED	$\frac{20 \text { DAYS }}{\text { per claim }}$	$\frac{40 \text { DAYS }}{\text { per claim }}$	- Includes (Line cutting)
Geological Survey	\%	\square	
Geophysical Survey	\square		$\begin{aligned} & \text { Show } \\ & \text { check, } \end{aligned}$
reochemical Survey DATE Oct. 5, 1971	\square	5	

In order to simplify the filing of geological, geochemical and ground geophysical surveys for assessment work, the Minister has approved the following procedure under Section 84 (8a) of the Ontario Mining Act. This special provision does not apply to airborne geophysical surveys.

If, in the opinion of the Minister, a ground geophysical survey meets the requirements prescribed for such a survey, including:
(a) substantial and systematic coverage of each claim
(b) line spacing not exceeding 400 foot intervals
(c) stations not exceeding 100 foot intervals or
(d) the average number of readings per claim not less than 40 readings
it will qualify for a credit of 40 assessment work days for each claim so covered. It will not be necessary for the applicant to furnish any data or breakdown concerning the persons employed in the survey except for the names and addresses of those in charge of the various phases (linecutting contractor, etc.). It will be assumed that the required number of man days were spent in producing the survey to qualify for the specified credit.

Each additional ground geophysical survey using the same grid system and otherwise meeting these requirements will qualify for an assessment work credit of 20 days.

A geological survey using the same grid system, and meeting the requirements for submission of geological surveys for maximum credits will qualify for an assessment work credit of 20 days. If line cutting has not previously been reported with any other survey and is reported in conjunction with the geological survey a credit of 40 days per claim will be allowed for the survey.

Similarly, a geochemical survey using the same grid system with the average number of collected samples per claim being not less than 40 samples, and meeting the requirements for the submission of geochemical surveys for maximum credits, will qualify for an assessment work credit of 20 days. If line cutting has not previously been reported with any other survey and is reported in conjunction with the geochemical survey a credit of 40 days per claim will be allowed for the survey.

Credits for partial coverage or for surveys not meeting requirements for full credit will be granted on a pro-rata basis.

If the credits are reduced for any reason, a fifteen day Notice of Intent will be issued. During this period, the applicant may apply to the Mining Commissioner for relief if his claims are jeopardized for lack of work or, if he wishes, may file with the Department, normal assessment work breakdowns listing the names of the employees and the dates of work. The survey would then be re-assessed to determine if higher credits may be allowed under the provisions of subsections 8 and 9 of section 84 of the Mining Act.

If new breakdowns are not submitted, the Performance and Coverage credits are confirmed to the Mining Recorder at the end of the fifteen days.

