

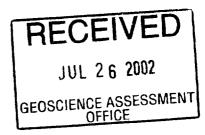
3B13SW2009 2.23977

BMA 527 834

De Beers

ASSESSMENT REPORT ON THE

WINTER 2001-2002


AIRBORNE GEOPHYSICAL AND DRILL PROGRAMME

ON CLAIMS

P 1246074 and P 120957 to P 1240964

LOCATED WEST OF VICTOR KIMBERLITE PIPE

2.23977

Scott Boyce

May, 2002

DE BEERS CANADA EXPLORATION INC. ONE WILLIAM MORGAN DRIVE TORONTO ONTARIO CANADA M4H 1N6

TEL (416) 423 5811 FAX (416) 423 9944

010

TABLE OF CONTENTS

	1
LOCATION, ACCESS AND LOGISTICS	1
Location	1
Access	2
Logistics	3
PERMITTING AND CLAIM TENURE	3
Permitting	3
Claim Tenure	3
GENERAL GEOLOGY AND TECTONIC SETTING	4
PREVIOUS WORK	5
Early Reconnaissance	5
Discovery of the Attawapiskat Kimberlites	6
Re-Evaluation of the Attawapiskat Kimberlites	7
2001-2002 AIRBORNE GEOPHYSICAL AND DRILL PROGRAMME	8
Personnel	8
Geophysical Programme GEOPHYSICAL RESULTS	8 9
Drill Programme SURVEYING DRILLING RESULTS	
EXPLORATION EXPENDITURES	11
CONCLUSIONS	13

APPENDICES:

- 1. AIRBORNE GEOPHYSICAL SPECIFICATIONS
- 2. WESTERN BLOCK ANOMALY AND DRILL HOLE SUMMARY
- 3. CME 75 DRILL LOGS
- 4. WESTERN BLOCK EXPENDITURE DETAILS
- 5. LIST OF PERSONNEL

MAPS:

- 1. AIR PHOTO BASE MAP
- 2. TOTAL MAGNETIC FIELD
- 3. APPARENT RESISTIVITY 6200 Hz COPLANAR

INTRODUCTION

An airborne magnetic and EM survey and follow-up drill programme were carried out during the winter of 2001-2002 over a claim block located just over 2 km west of the Victor Kimberlite Pipe. This was part of a more extensive programme in the Victor area. The programme was conducted with a view to identifying any previously undiscovered kimberlitic bodies. Improved geophysical techniques were employed so as to highlight more subtle anomalies that could potentially be kimberlite. The airborne work was performed in late November 2001; the follow-up work drilling was conducted in March 2002.

LOCATION, ACCESS AND LOGISTICS

Location

The Attawapiskat Kimberlite Province is located approximately 90 km west of the community of Attawapiskat, and 100 km west of the James Bay coast, in Ontario, Canada (Figure 1). This area is within the Attawapiskat River basin, which comprises part of the James Bay Lowlands.

Figure 1: Location map of the Western Claim Block, Victor Pipe and Victor Camp

The Lowlands are a vast expanse of flat, muskeg terrain, developed on marine clays of the former Tyrell Sea. The majority of the land is occupied by a mosaic of fen and bog (or muskeg), characterized by perennially wet conditions, and by scattered, stunted tree cover of black spruce and tamarack. Well-developed forest communities are confined to narrow ribbons of land which border the region's rivers and major creeks.

Access

The Victor Camp was used as the operational base for this programme; it was serviced by fixed-wing aircraft and helicopter, and by winter road.

was used to shuttle people and supplies between the project site and the community of Attawapiskat. The helicopter was stationed in camp for the duration of the programme. (The airborne survey was flown by Questral Heicopters Ltd.).

A winter road from Moosonee to Victor Camp via Attawapiskat was open between February 17 and March 29, 2002. The CME 75 drill rig was transported to and from the work site by this road.

Access to the drill sites was by temporary winter trails that had been cleared using a bulldozer. Efforts were made to stay away from treed areas, and on small lakes as much as possible. No creek or rivers were crossed. Daily access to the work site was by snowmobile.

Logistics

Victor Camp was used to house the work crew. The airborne geophysical and follow-up drill programme on the western claim block were only two of several programmes conducted out of Victor during the winter of 2001-2002. Most of these programmes were part of the on-going Victor pre-feasibility study.

PERMITTING AND CLAIM TENURE

Permitting

No permits were required for the work performed in this programme. No drainages were crossed in the making of the temporary winter trails.

Claim Tenure

De Beers Canada Exploration holds 9 claims in this block. The total area of the block is 20.0 square kilometers. The claims are listed below:

P 1240957	P 1240958	P 1240959
P 1240960	P 1240961	P 1240962
P 1240963	P 1240964	P 1246074

GENERAL GEOLOGY AND TECTONIC SETTING

The Attawapiskat Kimberlite Province lies within the Western Superior Structural Province of the Canadian Shield. The Archean units of the Western Superior are overlain by Lower Paleozoic carbonate formations, which are part of the Hudson Bay Basin. The kimberlites are located on the south-east flank of the Cape Henrietta Maria arch which divides the Hudson Bay platform rocks into two basins, the Hudson Bay Basin to the northwest and the Moose River Basin to the southeast. This arch is the northeastern extension of the Transcontinental Arch. The stratigraphy of the Moose River Basin is described in depth by Sandford B.V. (1987) and Suchy and Stearn (1993), and is summarised in Figure 2. The area of interest is underlain by four sedimentary sequences of Lower Silurian Formations unconformably overlying an Upper Ordovician sequence, which rests on basement rocks. The basement rocks are found at a depth of 273 m near the Victor Kimberlite.

Series	Stage	Formation	Rock Type	
	de a	Kenogami	Evaporitic dolostones,	
	Wenlockia and young	River	gypsum, anhydrite,	
SILURIAN	Wen	Formation	dolomitic mudstones	
R		Attawapiskat	Patch reefs,	
N	S	Formation	inter-reef carbonates	
	- 4	veria	Ewan River Formation	Fossiliferous limestone
OWER	landov	Sever	Alternating fossiliferous	
	Га	River	limestone and	
		Formation	evaporitic dolostones	
ORD.	ASH.	Red Head Rapids Fm.	Limestones, dolostones, evaporites, sandstones	

Figure 2 : Palaeozoic stratigraphy of the sedimentary sequence in the area of the Victor kimberlite. After Suchy and Steam (1993)

PREVIOUS WORK

Early Reconnaissance

Reconnaissance sediment sampling was conducted in the Attawapiskat River area as early as 1962, when two-person teams canoed down major rivers, such as the Albany and the Attawapiskat, collecting stream sediment samples. The samples were processed on site by manual gravitation methods. This firstpass exploration identified several sites with kimberlitic indicator minerals (garnets and ilmenites) downstream of the kimberlite cluster.

Further reconnaissance stream sediment sampling was done in 1963 to cover smaller tributaries in the area. One diamond, approximately 0.005 carat,

was found in a stream sediment sample east-southeast of the kimberlite cluster.

In 1970, follow-up work consisted of the collection of large (one to ten cubic yards) stream sediment samples taken at anomalous kimberlitic indicator mineral sites, for the purpose of finding diamonds. No diamonds were found, and the area was abandoned.

Further reconnaissance work during the mid-1980's used modern exploration techniques and defined a large kimberlitic indicator mineral glacial dispersal train leading to the Attawapiskat River.

Discovery of the Attawapiskat Kimberlites

During follow-up sediment sampling on the Attawapiskat River area, kimberlite boulders were discovered on the bank of the river in the summer of 1987.

This discovery, in addition to competitor activity in the area, prompted the flying of a total field aeromagnetic and gradiometer survey over the apex of the indicator mineral dispersal train. The survey detected several intrusive type magnetic anomalies. Due to ideal geological conditions in the area of interest, where the basement cover rocks consisted of several hundred metres of Paleozoic nonmagnetic carbonate rocks, the magnetic anomalies were classic, discrete bulls-eye features. These anomalies were therefore staked immediately as BP Selco were also actively prospecting for diamonds in the area.

Drilling in the winter of 1988 confirmed the kimberlitic nature of the magnetic anomalies. Core samples were taken and submitted for microdiamond assay, kimberlitic indicator mineral analyses and petrographic work. The petrographic studies identified the kimberlites as hypabyssal macrocrystic kimberlites (Scott-Smith, 1995). Micro-diamond abundance was very low and kimberlitic indicator mineral compositions indicated that the pipes were of moderate interest only.

Re-Evaluation of the Attawapiskat Kimberlites

Work was abandoned in the area until 1995, when the lapsing date for the claims was approaching. It was decided to re-examine the data before making a final decision to drop the claims. As a large amount of core was archived after the initial exploration programme was completed, it was decided to relog the core and to update the previous analytical work. Additional micro-diamond analyses were done to increase the total mass treated for each body to a minimum of 200 kilograms, wherever possible.

During the reassessment of the project additional petrographic work was done and some of the kimberlites were re-interpreted as being crater-facies (Scott-Smith, 1995). The current interpretation is that most of the pipes in the Attawapiskat cluster are actually crater-facies pyroclastic rocks with lesser hypabyssal units.

The re-interpretation of the micro-diamond (MiDA) data using the additional mass treated indicated that the micro-diamond distribution was unusual in these kimberlites and that they may be low micro-diamond producers. The limited number of micro-diamonds recovered showed a distribution which was skewed toward the larger micro-diamond size fractions which, it is considered, relate to the coarse nature of the pyroclastics from where the samples originate. In 1995 all remaining core from the Attawapiskat kimberlites was processed for the recovery of macro-diamonds and two were recovered. This confirmed the coarse size frequency distribution that was suggested from the micro-diamond analysis and justified a renewed interest in this kimberlite province.

Since 1999 a large amount of drilling and bulk-sampling has been conducted on known kimberlites in the area. The large majority of the work has focussed on the Victor Kimberlite. The Victor Project is now in the pre-feasibility stage; as a consequence, adjacent claims, including the western claim block, which is the subject of this report, have come under more intense scrutiny. No kimberlites have been discovered on the western claim block to date. No drilling was performed on the western claim block prior to 2002.

2001-2002 AIRBORNE GEOPHYSICAL AND DRILL PROGRAMME

Personnel

De Beers permanent staff, De Beers contractors, and personnel from Fugro Airborne Surveys, AMEC Earth and Environmental, Boart Longyear, Attawapiskat Technical Services, and Moosonee Transportation (MTL) were directly involved in this programme. The personnel totalled 20; names are listed in Appendix 5.

Geophysical Programme

Fugro Airborne Surveys Inc. were contracted for the geophysical survey. The objective of the survey was primarily to ensure that there were no other likely kimberlitic targets in the vicinity of the Victor mine plan area. The western portion of the claim block discussed in this report was not flown. This claim block comprised only a part of the total area investigated during this survey. The area surveyed within the western claim was flown from November 29-30, 2001.

Geophysical instrument specifications are listed in Appendix 1. The electromagnetic system used was the Dighem Resolve recently designed by

Fugro. The system comprises five coplanar coils and one coaxial coil and covers a frequency range of 300 Hz to 100 kHz. This configuration allows for conductive overburden mapping (in this geological setting) as well as discrimination of deeper bedrock targets.

Survey details are summarized below:

Flightline Spacing	50m
Flightline Direction	N-S
Tieline Spacing	500m
Tieline Direction	E-W
Terrain Clearance	20m
Total Line-km for Claim Block	266.4

GEOPHYSICAL RESULTS

A total of 21 weak and small anomalies were identified within the claim block. The majority of these were magnetic but there were also six EM anomalies identified.

Drill Programme

Follow-up drilling commenced on March 9, 2002 and was completed on March 23. Temporary winter trail construction and site preparation commenced on March 5. Because of a heavy snowstorm on March 8-9, much of the preparatory work had to be completed twice. A portion of the drill programme (four drill holes) was carried out in conjunction with a civil engineering programme which was involved in determining the overburden stratigraphy and bedrock characteristics for potential infrastructure planning should mine development take place at nearby Victor. AMEC Earth and Environmental was the contractor for this work. These holes were logged in detail by AMEC soils engineers. Two small drill rigs, both mounted on Boart Longyear Nodwells, were utilised. A Boart Longyear auger rig with rock coring capability, known as the CME 75, drilled four of the holes. Augers were 8-inch hollow stem and drill rods NQ. Overburden stratigraphy was determined through the use of splitspoons and Shelby tubes. The hollow stems served as casing for the NQ rods. Water for coring was supplied from a 500-gallon tank mounted on a sled, which was dragged behind a dozer. This rig was operated on a 24-hour basis for the majority of the programme.

The remaining holes were drilled by De Beers-owned RC-100 rig, which had been used in the past for reverse circulation drilling. The rig was modified so that it was capable of drilling short lengths of core using air, eliminating the need to bring water to the rig (Figure 3). Augers used were 4 ½-inch solid stem. As no hollow stems were available for this rig it was necessary to case the holes with NQ casing before coring. Using solid stem augers also meant it was difficult to make a proper log of the overburden. The RC-100 was operated on a day-shift basis only.

Figure 3. The RC-100 rig core-drilling with air.

Approximately three metres of bedrock were cored on each hole. This was deemed sufficient, as the targets were all shallow. All drill holes were vertical.

SURVEYING

In the majority of cases drill holes were initially spotted using a Trimble Pro XRS Real Time GPS (without a local base station), and then picked up upon completion of the hole with a Trimble 4800 GPS with a base station and postprocessing software; the latter provided sub-centimetre accuracy.

DRILLING RESULTS

A total of 13 holes were drilled on this claim block. Eleven anomalies were evaluated by drilling. Two other holes were also drilled as part of the Victor civil engineering programme; these provided useful additional overburden thickness and bedrock information. All holes intersected Attawapiskat Formation limestone. Two additional anomalies were not drilled but otherwise ground-truthed; hand-augering at one of these turned up limestone chips, and the other was an elevated wooded area that was most likely a bioherm (common in this region). In all, 13 of the 21 geophysical anomalies were investigated.

Overburden thickness varied from 4.6m to 22.0m. Overburden was generally marine clay or silt overlying till or in some cases sand.

Anomaly and drilling data are summarised in Appendix 2. CME 75 drill logs can be found in Appendix 3.

EXPLORATION EXPENDITURES

Costs for the programme (both airborne geophysics and drilling) are summarised below, and detailed in Appendix 4:

Camp Costs	\$32,970
Permanent Staff	\$1,650
Temporary Staff	\$35,315
Fuel	\$16,748
Equipment Rental	\$9,727
Drilling Boart Longyear	\$16,058
Drilling Consumables	\$1,200
Airborne Geophysics (Fugro)	\$21,870
GRAND TOTAL	\$135,537

CONCLUSIONS

None of the geophysical targets evaluated were kimberlitic; due to the subtle nature of these anomalies it is unlikely that the remaining uninvestigated anomalies are due to kimberlite either. The bedrock intersected in all cases was Attawapiskat Formation limestone.

APPENDIX 1

Airborne Geophysical Specifications

INTRODUCTION

A DIGHEM^{RESOLVE} electromagnetic/resistivity/magnetic survey was flown for De Beers Canada Exploration Inc., from November 23 to December 11, 2001, over a survey block located near Attawapiskat, Ontario. The survey area can be located on NTS map sheets 43B/13 (Figure 1).

Survey coverage consisted of approximately 1666.7 line-km, including tie lines. Flight lines were flown in an azimuthal direction of $0^{\circ}/180^{\circ}$ with a line separation of 50 metres.

The survey employed the DIGHEM^{RESOLVE} electromagnetic system. Ancillary equipment consisted of a magnetometer, radar, barometric and laser altimeter, video camera, analog and digital recorders, and an electronic navigation system. The instrumentation was installed in an AS350B2 turbine helicopter (Registration C-FZTA) which was provided by Questral Helicopters Ltd. The helicopter flew at an average airspeed of 121 km/h with an average EM sensor height of 21 metres.

Section 2 provides details on the survey equipment, the data channels, their respective sensitivities, and the navigation/flight path recovery procedure. Noise levels of less than 2 ppm are generally maintained for wind speeds up to 35 km/h. Higher winds may cause the system to be grounded because excessive bird swinging produces difficulties in flying the helicopter. The swinging results from the 5 m^2 of area which is presented by the bird to broadside gusts.

Due to the presence of cultural features in the survey area, any interpreted conductors which occur in close proximity to cultural sources, should be confirmed as bedrock conductors prior to drilling.

SURVEY EQUIPMENT

This section provides a brief description of the geophysical instruments used to acquire the survey data and the calibration procedures employed.

Electromagnetic System

Model: DIGHEMRESOLVE

<u>Type:</u> Towed bird, symmetric dipole configuration operated at a nominal survey altitude of 21 metres. Coil separation is 7.9 metres for 400 Hz, 1500 Hz, 6200 Hz, 25,000 Hz and 100,000 Hz and 9.0 metres for the 3300 Hz coil-pair.

Coil orientations/frequ	encies: orier	<u>ntation</u>	<u>nominal</u>	actual
	coplanar	1	400 Hz 3	40 Hz
	coplanar	1	1,500 Hz	1,524 Hz
	coaxial	1	3,300 Hz	3,314 Hz
	coplanar	1	6,200 Hz	6,255 Hz
	coplanar	1	25,000 Hz	27,213 Hz
	coplanar	1	100,000 Hz	106,280 Hz
Channels recorded:	6 in-phase cl	hannels		

Channels recorded:	6 in-phase channels 6 quadrature channels		
	2 monitor cha	nnels	
<u>Sensitivity:</u>	0.13 ppm at	400 Hz Cp	
	0.12 ppm at	1,500 Hz Cp	
	0.06 ppm at	3,300 Hz Cx	
	0.24 ppm at	6,200 Hz Cp	
	0.44 ppm at	25,000 Hz Cp	
	0.44 ppm at	100,000 Hz Cp	

Sample rate: 10 per second, equivalent to 1 sample every 3m, at a survey speed of 110 km/h.

Page 2

The electromagnetic system utilizes a multi-coil coaxial/coplanar technique to energize conductors in different directions. The coaxial coil is vertical with its axis in the flight direction. The coplanar coils are horizontal. The secondary fields are sensed simultaneously by means of receiver coils which are maximally coupled to their respective transmitter coils. The system yields an in-phase and a quadrature channel from each transmitter-receiver coil-pair.

Calibration of the system during the survey will use the Fugro AutoCal automatic, internal calibration process. At the beginning and end of each flight, and at intervals during the flight, the system will be flown up to high altitude to remove it from any "ground effect" (response from the earth). Any remaining signal from the receiver coils (base level) will be measured as the zero level, and removed from the data collected until the time of the next calibration. Following the zero level setting, internal calibration coils, for which the response phase and amplitude have been determined at the factory, are automatically triggered – one for each frequency. The on-time of the coils is sufficient to determine an accurate response through any ambient noise. The receiver response to each calibration coil "event" is compared to the expected response (from the factory calibration) for both phase angle and amplitude, and the applied phase and gain corrections adjusted to bring the data to the correct value.

In addition, the output of the transmitter coils are continuously monitored during the survey, and the applied gains adjusted to correct for any change in transmitter output (due to heating, etc.)

Because the internal calibration coils are calibrated at the factory (on a resistive halfspace) ground calibrations using external calibration coils on-site are not necessary for system calibration. A check calibration may be carried out on-site to ensure all systems are working correctly. All system calibrations will carried out in the air, at sufficient altitude that there will be no measurable response from the ground.

The internal calibration coils are rigidly positioned and mounted in the system relative to the transmitter and receiver coils. In addition, when the internal calibration coils are calibrated at the factory, a rigid jig is employed to ensure accurate response from the external coils.

Using real time Fast Fourier Transforms and the calibration procedures outlined above, the data will be processed in real time from measured total field at a high sampling rate to in-phase and quadrature values at 10 samples per second.

Magnetometer

Model: Fugro AM10	2 processor with Geometrics G822 sensor
-------------------	---

<u>Type:</u> Optically pumped cesium vapour

Sensitivity: 0.01 nT

Sample rate: 10 per second

The magnetometer sensor is housed in the EM bird, 29 m below the helicopter.

Magnetic Base Station

Primary

<u>Model:</u>	Fugro CF1 base stati	on	
<u>Sensor type:</u>	Geometrics G822A sensor		
Counter specific	cations: Accuracy:	±0.1 nT	
	Resolution:	0.01 nT	
	Sample rate	1 Hz	
GPS specification	o <u>ns:</u> Mode	el: Ashtech Z-Surveyor	

Type: Code and carrier tracking of L1 band, 12-channel, dual-frequency C/A code at 1575.42MHz, and L2 P-code at 1227 MHzSensitivity:1.0 second updateAccuracy:Manufacturer's stated accuracy for differential corrected GPS is better than 1 metre

Environmental

Monitor specifications: Temperature: Accuracy: ±1.5°C max Resolution: 0.0305°C Sample rate: 1 Hz Range: -40°C to +75°C Barometric pressure:

Model: Motorola MPXA4115A Accuracy: ±3.0° kPa max (-20°C to 105°C temp. ranges) Resolution: 0.013 kPa Sample rate: 1 Hz Range: 55 kPa to 108 kPa

Secondary

<u>Model:</u>	GEM Systems GSM-19T
<u>Type:</u>	Digital recording proton precession
Sensitivity:	0.10 nT
Sample rate:	0.2 per second

A digital recorder is operated in conjunction with the base station magnetometer to record the diurnal variations of the earth's magnetic field. The clock of the base station is synchronized with that of the airborne system to permit subsequent removal of diurnal drift. The Fugro CF1 was the primary base station. It was located at 306386.21, 585395.26 (NAD27, Zone 17). The GSM-19T base station was used as a backup unit and was located at 306386.21, 5853958.25 (NAD27, Zone 17).

Radar Altimeter

Manufacturer:SperryModel:RT220Type:Short pulse modulation, 4.3 GHzSensitivity:0.3 m

The radar altimeter measures the vertical distance between the helicopter and the ground. This information is used in the processing algorithm which determines conductor depth.

Laser Altimeter

<u>Manufacturer:</u>	Optech
Model:	G150
<u>Туре:</u>	Fixed pulse repetition rate of 2 kHz
Sensitivity:	±5 cm from 10°C to 30°C
	±10 cm from -20°C to +50°C

The laser altimeter is housed in the EM bird and measures the vertical distance between the EM bird and the ground.

Barometric Pressure and Temperature Sensors

Model:	DIGHEM D 13	00
<u>Type:</u>	Motorola MPX4115AP analog pressure sensor	
	AD592AN hig	n-impedance remote temperature sensors
<u>Sensitivity:</u>	Pressure :	150 mV/kPa
	Temperature :	100 mV/°C or 10 mV/°C (selectable)
Sample_rate:	10 per second	

The D1300 circuit is used in conjunction with one barometric sensor and up to three temperature sensors. Two sensors (baro and temp) are installed in the EM console in the aircraft, to monitor pressure and internal operating temperatures.

Analog Recorder

<u>Manufacturer:</u>	RMS Instruments
<u>Type:</u>	DGR33 dot-matrix graphics recorder
Resolution:	4x4 dots/mm
Speed:	1.5 mm/sec

The analog profiles are recorded on chart paper in the aircraft during the survey. Table 2-1 lists the geophysical data channels and the vertical scale of each profile.

TABLE 2-1. THE ANALOG PROFILES

Channel Name	Parameter	Scale units/mm
400I	coaxial in-phase (400 Hz)	2.5 ppm
400Q	coaxial quad (400 Hz)	2.5 ppm
1500I	coplanar in-phase (1500 Hz)	2.5 ppm
1500Q	coplanar quad (1500 Hz)	2.5 ppm
6K2I	coplanar in-phase (6200 Hz)	5 ppm
6K2Q	coplanar quad (6200 Hz)	5 ppm
1X8I	coaxial in-phase (3300 Hz)	5 ppm
1X8Q	coaxial quad (3300 Hz)	5 ppm
25KI	coplanar in-phase (25000 Hz)	10 ppm
25KQ	coplanar quad (256000 Hz)	10 ppm
100KI	coplanar in-phase (100000 Hz)	10 ppm
100KQ	coplanar quad (100000 Hz)	10 ppm
ALTR	altimeter (radar)	3 m
MAGC	magnetics, coarse	20 nT
MAGF	magnetics, fine	2.0 nT
2SP	coplanar sferics monitor	
2PL	coplanar powerline monitor	
IKPA	altimeter (barometric)	30 m
2TDC	internal (console) temperature	1° C
3TDC	external temperature	1° C

Digital Data Acquisition System

Manufacturer: RMS Instruments Model: DGR 33

Page 7

<u>Recorder:</u> Scan disk compact flash card

The data are stored on a scan disk compact flash card and are downloaded to the field workstation PC at the survey base for verification, backup and preparation of in-field products.

Video Flight Path Recording System

<u>Type:</u> Panasonic VHS Colour Video Camera (NTSC) <u>Model:</u> AG 720/VW-CL322

Fiducial numbers are recorded continuously and are displayed on the margin of each image. This procedure ensures accurate correlation of analog and digital data with respect to visible features on the ground.

Navigation (Global Positioning System)

Airborne Receiver

<u>Model:</u>	Ashtech Glonass GG24
<u>Type:</u>	SPS (L1 band), 24-channel, C/A code at 1575.42 MHz,
	S code at 0.5625 MHz, Real-time differential.
Sensitivity:	-132 dBm, 0.5 second update
<u>Accuracy:</u>	Manufacturer's stated accuracy is better than 10 metres
	real-time

Base Station

<u>Model :</u>	Ashtech Z-Surveyor
<u>Type:</u>	Code and carrier tracking of L1 band,12-channel,
	dual-frequency C/A code at 1575.42 MHz, and L2 P-code
	at 1227 MHz
Sensitivity:	1.0 second update
<u>Accuracy :</u>	Manufacturer's stated accuracy for differential corrected
	GPS is better than 1 metre

The Ashtech GG24 is a line of sight, satellite navigation system which utilizes time-coded signals from at least four of forty-eight available satellites. Both Russian GLONASS and American NAVSTAR satellite constellations are used to calculate the position and to provide real time guidance to the helicopter. The Ashtech system can be combined with a RACAL or similar GPS receiver which further improves the accuracy of the flying and subsequent flight path recovery to better than 5 metres. The differential corrections, which are obtained from a network of virtual reference stations, are transmitted to the helicopter via a spot-beam satellite. This eliminates the need for a local GPS base station. However, the Ashtech Z-surveyor was used as a backup to provide post-survey differential corrections.

The Ashtech Z-surveyor was operated as a base station and utilizes time-coded signals from at least four of the twenty-four NAVSTAR satellites. The base station raw XYZ data are recorded, thereby permitting post-survey processing for theoretical accuracies of better than 5 metres.

The Ashtech GG24 receiver is coupled with a PNAV navigation system for real-time guidance.

Although the base station receiver is able to calculate its own latitude and longitude, a higher degree of accuracy can be obtained if the reference unit is established on a known benchmark or triangulation point. For this survey, the GPS station was located at latitude 52°48'10.85916N, longitude 83°52'25.75719W at an elevation of 86.7 a.m.s.l. The GPS records data relative to the WGS84 ellipsoid, which is the basis of the revised North American Datum (NAD83). Conversion software is used to transform the WGS84 coordinates to the NAD27 system displayed on the base maps.

Field Workstation

A PC is used at the survey base to verify data quality and completeness. Flight data are transferred to the PC hard drive to permit the creation of a database using a proprietary software package (typhoon-version 19.00.02). This process allows the field geophysicists to display both the positional (flight path) and geophysical data on a screen or printer.

PROCESSING TECHNIQUES

Base Maps

Base maps of the survey area have been produced from published topographic maps. These provide a relatively accurate, distortion-free base which facilitates correlation of the navigation data to the UTM grid. The original topographic maps are scanned to a bitmap format and combined with geophysical data for plotting the final maps. The survey results are presented on nine separate map sheets for each parameter at a scale of 1:5,000. All maps are created using the following parameters:

Projection Description:

NAD27 (Canada Mean)
Clarke 1866
UTM (Zone: 17)
n: 81°
0
500000
0.9996
I Conversion: Molodensky
DX: 10 DY: -158 DZ: -187
r :

Electromagnetic Data

EM data are processed at the recorded sample rate of 10 samples/second. Spheric rejection median and Hanning filters were applied to reduce noise to acceptable levels. The multi-channel profiles are used in conjunction with the resistivity maps and images to determine if and where levelling adjustments are required.

Apparent Resistivity

The apparent resistivity in ohm-m were generated from the in-phase and quadrature EM components for all six frequencies, using a pseudo-layer half-space model. A resistivity map portrays all the EM information for that frequency over the entire survey area. This contrasts with the electromagnetic anomaly map which provides information only over interpreted conductors. The large dynamic range makes the resistivity parameter an excellent mapping tool. The preliminary resistivity maps and images were carefully inspected to locate any lines or line segments which required levelling adjustments. Subtle changes between in-flight calibrations of the system can result in line to line differences, particularly in resistive (low signal amplitude) areas. Manual levelling was carried out to eliminate or minimize resistivity differences which can be caused by changes in operating temperatures. These levelling adjustments were very subtle, and do not result in the degradation of anomalies from valid bedrock sources.

After the manual levelling process is complete, revised resistivity grids are created. The resulting grids were subjected to a microlevelling filter in order to smooth the data for contouring.

The calculated resistivities for the five coplanar frequencies and the one coaxial frequency are included in the XYZ and grid archives. Values are in ohm-metres on all final products.

Total Magnetic Field

The aeromagnetic data are corrected for diurnal variation using the magnetic base station data. The data were then levelled using the tie and traverse line intercepts. Manual adjustments were applied to any lines that require levelling, as indicated by shadowed images of the gridded magnetic data. After the manual levelling process is complete, the magnetic grids were subjected to a microlevelling filter.

Calculated Vertical Magnetic Gradient

The diurnally-corrected, levelled total magnetic field data are subjected to a processing algorithm which enhances the response of magnetic bodies in the upper 500 m and attenuates the response of deeper bodies. The resulting vertical gradient data is included in the XYZ archived.

Contour, Colour and Shadow Map Displays

The geophysical data are interpolated onto a regular grid using a modified Akima spline technique. The resulting grid is suitable for generating contour maps of excellent quality. The grid cell size was 12.5 metres or 25% of the line interval.

Colour maps are produced by interpolating the grid down to the pixel size. The parameter is then incremented with respect to specific amplitude ranges to provide colour "contour" maps. Colour maps of the total magnetic field are particularly useful in defining the lithology of the survey area.

Digital Terrain

The radar altimeter values (ALTR - aircraft to ground clearance) were subtracted from the differentially corrected de-spiked GPS-Z values, which were transformed to the local datum, to produce profiles of the height above mean sea level along the survey lines. These values were gridded to produce contour maps showing approximate elevations within the survey blocks. The calculated digital terrain data were then tie-line levelled. Any remaining subtle line-to-line discrepancies were manually removed. After the manual corrections were applied, the digital terrain data were filtered with a microlevelling algorithm. All of these corrections were used to adjust the GPS-Z data. The radar altimeter values were subtracted from the new corrected GPS-Z data to produce the final digital terrain data.

The accuracy of the elevation calculation is directly dependent on the accuracy of the two input parameters, ALTR and GPS-Z. The ALTR value may be erroneous in areas of heavy tree cover, where the altimeter reflects the distance to the tree canopy rather than the ground. The GPS-Z value is primarily dependent on the number of available satellites. Although post-processing of GPS data will yield X and Y accuracies in the order of 5 metres, the accuracy of the Z value is usually much less, sometimes in the ± 20 metre range. Further inaccuracies may be introduced during the interpolation and gridding process.

Because of the inherent inaccuracies of this method, no guarantee is made or implied that the information displayed is a true representation of the height above sea level. Although this product may be of some use as a general reference, THIS PRODUCT MUST NOT BE USED FOR NAVIGATION PURPOSES.

APPENDIX 2

Western Block Anomaly and Drill Hole Summary

Drill Hole ID	Anomaly ID	Anomaly Type	Northing	Easting	Claim ID	Drill Hole Start Date	Drill Hole Finish Date	Drilled By	End of Hole (m)	Bedrock Contact (m)	Bedrock Type
V-02-225E	ATT_0067	Mag	5855222	301791	P 1240963	9-Mar-02	12-Mar-02	CME 75	21.5	17.7	Limestone
V-02-226E	N/A	N/A	5854149	301460	P 1240962	12-Mar-02	12-Mar-02	CME 75	21.65	16.3	Limestone
V-02-227E	N/A	N/A	5856225	300683	P 1240961	15-Mar-02	16-Mar-02	CME 75	12.8	9.3	Limestone
V-02-228E	ATT_0077	Mag	5857800	302558	P 1240959	16-Mar-02	17-Mar-02	CME 75	14.2	10.4	Limestone
V-02-235E	ATT_0066	Mag	5854354	301477	P 1240963	14-Mar-02	14-Mar-02	RC-100	11	9.8	Limestone
V-02-237E	ATT_0073	EM	5857158	301948	P 1240960	14-Mar-02	15-Mar-02	RC-100	7	4.6	Limestone
V-02-239E	ATT_0075	Mag	5857021	301539	P 1240961	15-Mar-02	16-Mar-02	RC-100	18.2	15.2	Limestone
V-02-241E	ATT_0074	Mag	5857338	302019	P 1240959	16-Mar-02	17-Mar-02	RC-100	27.8	22	Limestone
V-02-242E	ATT_0080	Mag	5858302	303062	P 1240959	17-Mar-02	18-Mar-02	RC-100	18.8	15.6	Limestone
V-02-243E	ATT_0082	EM	5858168	302706	P 1240959	18-Mar-02	19-Mar-02	RC-100	25.75	21.5	Limestone
V-02-244E	ATT_0068	Mag	5855897	301816	P 1240960	19-Mar-02	21-Mar-02	RC-100	15.5	12.3	Limestone
V-02-245E	ATT_0069	Mag	5856121	302703	P 1240960	21-Mar-02	22-Mar-02	RC-100	16.15	12.3	Limestone
V-02-246E	ATT_0076	N/A	5856319	301801	P 1240960	22-Mar-02	23-Mar-02	RC-100	16.6	12.3	Limestone
Not drilled	ATT_0061	Mag	5853098	303032	P 1240964						
Not drilled	ATT 0063	Mag	5853559	303454	P 1240964						
Not drilled	ATT 0064	Mag	5853396	302594	P 1240964						
Not drilled	ATT 0065	Mag	5853834	302165	P 1240964						
N/A	ATT_0070	EM	5855965	302403	P 1240960			Hand-augered			Limestone subcrop
Not drilled	ATT_0071	ЕM	5853286	302426	P 1240964						
Not drilled	ATT_0072	EM	5854021	301892	P 1240963						
Not drilled	ATT_0078	Mag	5858808	302540	P 1246074						
Not drilled	ATT_0079	Mag	5858576	302505	P 1246074						
Not drilled	ATT_0081	EM	5859465	301729	P 1240957						Probable limestone

APPENDIX 3

Drill Logs

ł	me	Ø _J											R	ECC	ORE) OF	BC	DRE	HO			V02-225E PAGE 1 OF 3
	ROJECT	Victor Diamond Projec													A 64 -			0 511 11		-	GINEEI	
		O. TC19417-1003 De Beers Canada				N Po		ngyear PKD P											Q COL	-	GGED	BY <u>D.B./P.M.</u> DBY <u>D.M.L.</u>
					ORD.			_									End		ar 02	-		
5	AMPLE TY	PES R	C Roci S Split	k Core	ABBREVIATIONS P.L. Point Load Strength Inde boon P.P. Pocket Penetrometer RQD Rock Quality Designation									ex (150)	с	Consolidation						
	U Bulk S Piston S	ampler V	W Thin /S Was	Walle h Sar	əd Op mple	en (She	lby)					Standar	d Proci	tor Test		(P	ermeab		very		DS GS	Direct Shear Grain Size Analysis
		SOIL PROFILE				SAMPL			ETER		Ê	R	ESIST/	CONE	LOT	—×		PLAST		TURAL	LIQUID	
DE (.EV PTH m) 88.2 Exist	DESCRIPTION		STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO	VANE TACT EMOUI AINED		NIL ▲ ↓ ▲ ↓	CON V NTACT REMOU	ANE	w _P ↓ WA [*]	CO TER C	NTENT W -0 ONTEN	UMIT 	REMARKS
	0.0 MUS Dark			مہ 7 77	1	ss	33	15			88											
				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	ss	50	1		1 1	87_											
	86.0			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3	55	42	1		2	86_										550	Organic content≍50.6%
	Grey	YEY SILT clayey slit, trace sand, fibr nics, stiff, low plasticity, we	ous t		4	ss	67	9		3	-								F	1		P.P.=140 kPa GS Pneum. piezo
											85											S/N: #27C0226 installed at 2.9 m by push-in method Attempted MTO vane but exceeded limits Attempted MTO
	Dark to ha	grey silty clay layers, very rd	stiff		5	ss	67	26		4	84_							-		 		vane but exceeded limits
					6	55	67	26		5	83_											
30 FM		and the faction of the			7	55	75	33		6	-									-1		GS
01.7 2002/01/0	increa	ased clay fraction, stiff			8	ss	0	10		-	82											
GPJ Date: 0										7	81_											Attempted MTO vane but exceeded limits Attempted MTO vane but exceeded
0 FIRE 10 1341.					9	TW	88			8	80_1					 						vane but exceeded limits Shelby tube very stiff to push
TOTHAL AMEC GEO MWS THE ICTIVATION DAGE USIS/2002 2:10:30 PM	79.1 9.1 SILTY	/ SAND								_9	79_											
		silty sand (medium to fine									-								•			·
		Continued on Next Page																				

an	nec®									RECORD OF BOREHOLE No. V02-225
PROJ	JECT Victor Diamond Project - Geo	<u>otechn</u>	iical li	nvestig	ation	Progra	m (Wint	ter 20	02)	ENGINEER A.Z.
PRO.	JECT NO. TC19417-1003	DRIL	LER.	Bo	art Lo	ngyear	(CME)	75)	B	ORING METHOD 4.5" HST Auger / 2.5" HQ Coring LOGGED BY D.B./P.
CLIEN	NT De Beers Canada	LOC	ATIC	ж <u>Ро</u>	tential	PKDF	acility (AME	<u>С ВН С</u>	COMPILED BY COMPILED BY
ELEV	/ATION 88.2 m	coc	RD.	<u>N</u> :	5,855,	222 E	301,79	1	8	ORING DATE _Start: 9 Mar 02 End: 12 Mar 02 CHECKED BY _N.S.V.
AU / BU I	PLE TYPES RC Roc Auger SS Spil Bulk TW Thin Piston Sampler WS Wa	it Spoo n Walle	n Id Ope	en (She	iby)				P.P. U.W.	REVIATIONS P.L. Point Load Strength Index (I ₅₀) Pocket Penetrometer RQD Rock Quality Designation C Consolidation Vet Unit Weight SCR Solid Core Recovery DS Direct Shear standard Proctor Test k Permeebility GS Grain Size Anal
	SOIL PROFILE	T		AMPL	ES		Ш Ш			DYNAMIC CONE PENETRATION
ELEV DEPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	түре	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	RESISTANCE PLOT ★ PLASTIC NATURAL MOSTURE LAQUID LAMIT 20 40 60 80 100 INMIT CONTENT LAQUID MTO VANE NILCON VANE wp w vL REMARKS INTACT △ INTACT ↓ · · · REMARKS INTACT △ INTACT ↓ · · · · · REMARKS UNDRAINED SHEAR STRENGTH (kPa) WATER CONTENT (%) 20 40 60 80 100 10 20 30
	grained), trace gravel, wet	17	10	ss N	100	0	>			
	(questionable SPT "N" values due to sand heaving in hole)			55	17	0		_10	78	Prieum. piezo. SrN: #27C0043 installed at 10.1 by augering Soil heaved into augers Soil heaved into augers Soil heaved into augers betweed
			11		11			_ • •	77	7.6m and 11.7n
<u>76.5</u> 11.7	SAND AND GRAVEL Grey gravelly sand (medium to coarse; angular to sub-angular), some silt, very dense, wet	0000						_12	76	High resistance augering betwee 11.7 m and 18.3
		000	12	ss	42	96		10	-	
		00 C					-	_13	75_	
	Dark brown silty sand, some gravel (sub-rounded to sub-angular), fine,	0000	13	ss	55	50/0.13		_14		
73.6	wet	000							74	
14.6	SANDY SILT TILL (PROBABLY) Reddish brown sandy silt, some clay and gravel (sub-rounded to sub-angular), inclusions of black (coal-like) nodules & salt crystals						-	_15	73_	
	(probablý), hard, low plasticity, wet		14	ss	91	50/0.13				H i GS
								16	72	
			15	55 N	100	90/0.21		.17		
									71_	
70.5 17.7 69.9	ASSUMED COMPLETELY WEATHERED LIMESTONE Gravely medium to coarse sand with silt, very dense	HHH	10		100	5010.05		_18	70_	Auger refusal at 18.3m Switched to HQ
69.9 18.3	LIMESTONE Light brown limestone, micro-karstification Jointing: bedding and cross joints;		16 17	SS N RC	100 82	5 <u>0/0.05</u> 0				SCR=0%

Continued on Next Page

an	nec [©]										RI	ECC	RD	OF	BC	RE	HOI	LEN	No.	V02-225E PAGE 3 OF 3
PRO.	JECT Victor Dian	nond Project - Geotect	hnical I	nvestig	ation F	rogra	n (Wir	nter 20	02)									ENG	SINEEF	R <u>A.Z.</u>
PRO.	JECT NO. TC19417-1	003 DF	RILLER	Bo	art Lor	ngyear	(CME	75)	B	ORING	3 MET		4. <u>5</u> " ⊦	IST AL	iger / 2	2.5" HC	Corir	ng LOG	GED	BY <u>D.B./P.M.</u>
CLIEI	NT <u>De Beers C</u>	anada LC														DBY <u>D.M.L.</u>				
ELEV	/ATION <u>88.2 m</u>	co	COORD. <u>N 5,855,222 E 301,791</u> BORING DATE <u>Start: 9 Mar 02 End: 12 Mar 02</u> CHECKED E													BY <u>N.S.V.</u>				
AU BU	PLE TYPES Auger Bulk Piston Sampler	RC Rock Co SS Split Sp TW Thin Wa WS Wash S	Spoon P.P. Pocket Penetrometer RQD Rock Quality Designation C Waled Open (Shelby) U.W. Wet Unit Weight SCR Solid Core Recovery DS													Consolidation Direct Shear Grain Size Analysis				
	SOIL PRO	FILE	s	ampli	ES		rer 1					CONE					C NAT	URAL		
ELEV DEPTH (m)	DESCRIF		NUMBER	түре	RECOVERY (%)	SPT "N" VALUES or ROD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ R UNDR	VANE ITACT EMOUL	DED SHEAF	0 8 NILO ▲ I ▲ F	ON VACT NTACT REMOU	ANE LDED I (kPa)	w _₽ ⊷ ₩A1		ONTEN		REMARKS
	flat, dipping and veri close to very close s undulating surfaces; surfaces with silt fillin Fractured zone betw 20.4m Strength: low to mec	pacing; rough oxidized ngs een 19.9m and	18	RC	и 95	o SF	M	20	69_		20 4	0 6		0 10	20			20 3	80	SCR=0%
			19	RC	67	0			68_											SCR=0%
			20	RC	100	16		21	67											SCR=18%
66.7 21.5	END OF BOREHOL	E																		(21.1 to21.4m segment)
	END OF BOREHOL Water levels (b.g.s.) Pneum. Piezo #27C At 2.4m, 11-Mar-02 At -1.8m, 29-Mar-02 Pneum. Piezo #27C At 9.5m, 11-Mar-02 At 1m, 12-Mar-02 At 1m, 12-Mar-02 At -0.8m, 29-Mar-02	: 0226 12:00 10:00 0043 12:00																		

Format AMEC GEO MWS File: TC19417.GPJ Date: 05/15/2002 2:10:35 PM

	me	Ø ₃								<u> </u>			F	REC	ORI	D OF	FBC	RE	но	LEI	No.	V02-226E PAGE 1 OF 3
F	ROJECT	Victor Diamond Project																		-	GINEE	
		O. <u>TC19417-1003</u>												THOD	4.5"	HST A	uger / 2	2.5" HC	2 Cori			
		De Beers Canada					otential													-		D BY <u>D.M.L.</u>
	LEVATION			coc	DRD.	N	5,854,	149 E	301,4	<u>60</u>	E	ORIN	IG DA	TE <u>S</u>	tart: 12	2 Mar C	02 En	<u>d: 12 N</u>	/lar 02	CH) BY <u>N.S.V.</u>
Ē	AMPLE TY U Auger U Bulk S Piston S	SS	C Rock S Split W Thin /S Was	Spoo Walle	n ∋diOp	en (She	alby)				P.P. U.W.	Pockei Wet U	nit Wei	rometer		RQD R SCR S	loint Loa lock Qua lolid Con lermeabi	ality Des e Recov	ignatio	ex (l ₅₀) n	C DS GS	
		SOIL PROFILE			5	SAMPL	ES		Щ.			D	YNAM	IC CON TANCE 40	E PEN		ION	PLASTI		URAL	LIQUID	
DE	.EV PTH m)	DESCRIPTION		STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	T "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)		O VAN NTAC REMO	E T JLDED D SHE/		CON V	/ANE T ULDED H (kPa)	w _₽ +	CON ER CO	VTENT W -0 ONTEN	LIMIT WL 	
		ing ground surface KEG		17		K		SPT	3	<u> </u>			20	40	60	80 1	100	1	0	20	30	
	Dark	brown peat, fibrous, wet en to 0.3 m		4 X X	1	ss	67	37			87_											
				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	55	8	3		[[_1 [
Ĺ	85.7			<u></u>		[<u>[</u>			ł		86_			1	1	ĺ	1		[1		
	1.6 CLA Grey ordar	YEY SILT clayey silt, trace sand, trac nics, stiff to very stiff, low icity, wet	æ		3	ss	75	8		_2	-											Nilcon Vane cannot determine remould strength
_		sional dark grey silty clay						ł	1		85_		•									
		s, increasing with depth			4	ss	92	5								$\left \right $				ĥ		
					_	N				[_3	-		$ \rangle$									P.P.=96 k/Pa
					5	ss	100	3			84_		$\left \right\rangle$	·			146					
										- 4		•										
											83_		•		F	[+		Soil fell out of TW at surface; it was retrieved and
	Trace soft	e shell fragments below 4.5	óm,		6	τw	50			- - 5	-								⊩	1 0		bagged as TW6 sample GS
										È	82											
					7	τw	0				-											TW7 had no recovery; pushed split spoon to retrieve sample
										_6		4									ļ	and labelled as TW7 Nikcon Vane
										-	81_	╞			-	-				$\left \right $		cannot determine remould strength
											-											MTO Vane sank 0.3m while turning for remould MTO Vane very
										7 -	80_	■ Ψ ■ Φ										easy to torque
					-					-	-		•									
					8	ss	100	o		- 8												
						L					79_		8									
										_9		• •										
											78_											Shelby very easy to push but had no
		Continued on Next Page																				

ar	nec	9											R	ECC	DRE) OF	F BC	DRE	НО	LEI	No.	V02-226E PAGE 2 OF 3
PRO.	JECT	Victor Diamond Project -	- Geot	lechr	nical	Investi	gation	Progra	m (Wi	nter 20)02)									EN	GINEEI	R <u>A.Z.</u>
PRO.	JECT NO.	TC19417-1003		DRI	LEF	R <u>B</u>	oart Lo	ngyear	(CME	75)	8	ORINO	G MET	THOD	4.5" I	HST A	uger / :	2. <u>5</u> " H0	a Cori	ng LOC	GGED	BY <u>D.B.</u>
CLIE	NT	De Beers Canada		LOC	ATIC	2N <u>P</u>	<u>otential</u>	PKD	acility	(AME	C BH	CV02-	31)	0						co	MPILEI	DBY <u>DML</u>
ELEV	ATION	87.3 m		cod	ORD.	<u>N</u>	<u>5,854</u> ,	149 E	301,4	60	E	ORING	g dat	E <u>Sta</u>	art: 12	Mar 0	2 En	d: 12	Mar 02		ECKEE) BY <u>N.S.V.</u>
AU BU	PLE TYPE Auger Bulk Piston Samp	SS TW		Spoo Wa i k	in ad Op	en (She	ilby)				P.P. U.W.	REVIA Pocket Net Un Standai	Penetri it Weig	ometer		RQD R SCR S	oint Loa ock Qua olid Cor ormeabi	ality Des e Recov	signatic	lex (l ₅₀) >n	C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE			ę	SAMPL	ES		Ϋ́Ξ,					C CONE				DIAGT	. NA	TURAL		
ELEV DEPTH (m)		DESCRIPTION		STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIIN R UNDR	VANE ITACT EMOU	40 E LDED SHEA	io i NIL ▲ I R STR	<u>30</u> 1 CON V INTACI REMOU ENGTH	00 ANE JLDED		COR TER CO		Liquid Limit 1 IT (%) 30	REMARKS
<u>77.7</u> 9.7	Brown s gravel (s	SILT TILL andy silt, some clay and subangular to subroundeo m, low plasticity, wet	d),		9	TW R	0			10	-									/		recovery; pushed split spoon to retrieve sample and labelled as TW9
					10	ss		4		- - - - -	77_											
					10			4			76_											GS
										12	75_											
					11	55	67	7		13												
										-	74_									+		
					12	ss	42	3		14									0			Split spoon sank 0.3m under hammer weight
						L `					73_											
W4 20115					13	55	100	8			72_											Spiit spoon sank 0.15m under hammer weight
71.0		ED COMPLETELY TO		H						16	71_											
	LIMEST Light bro	wn sand with some silt a ubangular to subrounded	nd i),	봆봆끉끉끉끉	14	ss	100	50/0.13		17												0.15 m of soil heaved into auger
											70_											
Format AMEC GEO MWS FIRE. I C19417.GFJ UBIE. 05152.002 211102 PM 1.81 1.81 1.81 1.81 1.81	moderate micro-ka Jointing:	wn to beige limestone, aly weathered, slightly		НННЖ	15	RC	67	0			69_											Auger refusal at 18.1m Switched to HQ coring SCR=0%

Continued on Next Page

an	nec	0											R	ECO	ORE	O OF	BC	RE	НО	LEI	No.	V02-226E PAGE 3 OF 3
PROJ	IECT	Victor Diamond Pro	ect - Geot	echr	ical	investi	gation	Progra	m (Wi	nter 20)02)									EN	GINEE	R <u>A.Z.</u>
		TC19417-1003		DRI	LLER	₹ <u></u> Β	oart Lo	ngyear	(CME	75)	8	BORIN	g met	HOD	4.5"	HST A	uger / :	2.5" H(Q Corii	ng LOC	GGED	BY <u>D.B.</u>
		De Beers Canada				_	otential							. .						•		DBY <u>D.M.L.</u>
		87.3 m			ORD.	<u>N</u>	5,854,	149 E	301,4	60												DBY <u>N.S.V.</u>
AU A			RC Rock SS Split TW Thin WS Was	Spoc Walk	on ed Op	en (She	alby)		_	_	P.P. U.W.	Pockel Wet Ui Standa	TIONS Penetro nit Weig rd Proc	ometer ht tor Test	t	P.L. P RQD R SCR S k P	ock Qua olid Cor ermeab	ality Des e Recov	signatio		C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE				SAMPI	ES	.	A TER		6	F	YNAMK RESIST/	ANCE I	PLOT	—×	_	PLAST	IC NAT	URAL	LIQUID	
ELEV DEPTH (m)		DESCRIPTION		STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)		20 VANE NTACT REMOUI RAINED 20	LDED SHEA	NIL A A NR STR			₩ _P ₩-	CON TER CO	NTENT W O ONTEN	UMIT WL	REMARKS
		ing surfaces; oxidized s with silt filling h: low	I		16	RC	67	0			68_											SCR=12%
		ick silty clay and grav actured limestone zo			17	RC	79	11		20	67_											SCR=11% P.L.=3.41 MPa (19.95 to 20.02m
	gravel s	m, 0.15m thick silty cla size limestone over hig dark brown limestone	gĥly		18	RC	75	8	-	- - - - -												segment) SCR=8%
65.7		ed zone of dark browr wel size limestone	n sand				10				66_											
21.6	END O	FBOREHOLE									t						1					

a	nec	9											R	ECC	ORD) OF	BC	DRE	HO	LE	No.	V02-227E PAGE 1 OF 2
	JECT	Victor Diamond Proj	ect - Geot																	-	GINEEI	
		TC19417-1003		DRI			oart Lo							HOD	4.5" H	HST AL	iger / 2	2.5" H(Q Cor	ing LO		
CLIE		De Beers Canada					otentia							F 01		M 0	0			-		DBY <u>D.M.L.</u>
		90.5 m		cod		. <u>N</u>	5,856,	225 E	300,68	53	1										ECKEL	DBY <u>N.S.V.</u>
AU BU	IPLE TYPE Auger Bulk Piston Samp		RC Roci SS Split TW Thin WS Was	Spoo Walk	on ad Op	xen (Sh	elby)				P.P. U.W.	REVIA Pocket Wet Un Standa	Penetro it Weig	meter	l	P.L. Po RQD Ro SCR So k Pe	ock Qua	ality De: e Reco	signatio	iex (I ₅₀) on	C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE				SAMP	LES		Z ER		ê	l R	ESIST/	CONE	LOT	—×		PLAST	IC NA	TURAL	LIQUID	
ELEV DEPTH (m)		DESCRIPTION		STRAT PLOT	NUMBER	түрЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTC	VANE NTACT EMOU RAINED		NILO ▲ I ▲ F		LDED		TERC		LIMIT WL	
90.5 0.0	Brown p wet	eat, woody, coarse fil o 0.15 m	brous,	<u>2</u> 2	1	ss	50	2	-		90_											
				<u>6 8</u>	E					E												Shelby tube easy
				<u>24</u> 22 24 24 24	2	TW	42															to push
				<u>6 8</u>							89_										+	
<u>88.3</u> 2.2				<u></u>	3	ss	44	3		_2											181	o Organic content=21.6%
	Brown-g	rey clayey silt, trace s , low plasticity, wet	sand,		4	TW	89				88_					-						
					5	ss	75	24		_3 									-	+1		GS
					6	ss	75	27		4	87_											Split spoon
86.0	SANDY	SILT TILL			7	ss	25	33			86											pushed on stone at 4.1m
	Brown sa	andy silt, some clay, t rm to stiff, low plastic	trace ity, wet		8	ss	75	18		5	-	Ţ							P	4		GS
					9	ss	75	4			85_	$\langle -$	\leq									
										_6	-											Shelby tube easy
7 7007001					10	TW	92				- 84_											to push
										_7	-											
							ļ			-	83_											
					11	ss	75	4		_8	-											GS
										-	82_											
81.2						N				9	-											
9.4	.	Continued on Next Page		γ							81											

A PROJ	nec	Victor Diamond Pro	iert - Gro	tach	nical	nuceti	nation	Drogro	m 04/	nter 2			R	ECO	ORE) OF	BC	DRE	НО			V02-227E PAGE 2 OF 2 R A.Z.
		TC19417-1003					oart Lo			_		ORIN	G MET	THOD	4.5"	IST A	uger / :	2.5" H	Corir			
CLIEN		De Beers Canada																				DBY D.M.L.
ELEV	ATION	90.5 m			ORD.	_	5,856,															BY N.S.V.
AU A	PLE TYPE Auger Bulk Piston Samp		RC Roc SS Spli TW Thir WS Was	t Spoc n Walk	on ad Op	en (Sh	elby)				P.P. U.W.	Pocket Wet Ur	nit Weig	ometer		RQD R SCR S	oint Loa ock Qua olid Con ermeabi	ality De: e Reco	signatio	əx (l ₅₀) n	C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE			5	SAMPI	LES		TER N		ê	R	RESIST	C CONI	LOT			PLAST	IC NAT	URAL	LIQUID	
ELEV DEPTH (m)		DESCRIPTION		STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)		VANE NTACT REMOU RAINEE	LDED	NIL ▲ ▲ R STR	CON V INTACI REMOU	ANE	₩ _P ₩	CON TER CO	ITENT W O DNTEN	LIMIT W _L	REMARKS
80.8		ERED LIMESTONE	and	Æ	12	ss	88	78/0.25		E												
9.8	LIMEST Light gre limeston Jointing flat, dipp very clos undulati	ONE ay to light yellowish b le, slightly weathered bedding and cross joing and vertical orier se to close spacing; r ng surfaces; silt filling	rown I oints; ntations; rough		13	RC	69	0			80_											Auger refusal at 9.8m Switched to HQ coring SCR=6%
	Strength	n: medium to low	-		14	RC	0	0			79_											SCR=0%
					15	RC	92	0			79											PL=0.56 MPa (11.4 to 11.5m segment) PL=2.96 MPa (11.7 to 11.8m segment) SCR=37% PL=1.72 MPa (12.0 to 12.3m segment)
12.8	END OF	HOLE																				

an	nec	9									RE	COI	RD C	OF BC	ORE	HO			V02-228E PAGE 1 OF 2
PRO.		Victor Diamond Project - Geo													0.511.14			SINEE	-
CLIEN		TC19417-1003 De Beers Canada						CME 75)	·			JU <u>4</u>	.5" HS I	Auger /	2.5 H		-		BY <u>R.K.</u> DBY D.M.L.
		87.2 m		ORD				302,558				Start	: 16 Ma	r02 Er	nd: 17	Mar 02			DBY <u>D.W.E.</u> DBY N.S.V.
	PLE TYPE					-			<u></u>	REVIAT				Point Loa					
AU / BU I	Auger	SS Spli TW Thir	it Spoo n Walk	on ed Op	əən (Sh	elby)			P.P. U.W.	Pocket F Wet Unit Standard	Penetrome t Weight d Proctor	Test	RQI SCF k	Rock Qu Solid Col Permeab	ality De: re Reco	signatio	n	C DS GS	Consolidation Direct Shear Grain Size Analysi
		SOIL PROFILE		1	SAMP	T	1.00	E N	Ê		NAMIC C SISTANO 0 40	CE PLC			PLAST		URAL	LIQUID	
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	түре	RECOVERY (%)	of "N" VALUES	WELL / PIEZOMETER INSTALLATION DEPTH (m)	ELEVATION (m)		VANE TACT MOULDE AINED SH	ED HEAR (N VANE ACT MOULDED GTH (kPa)	w _₽		ITENT w o ONTEN	• •	REMARKS
87.2 0.0 87.0	Existing ICE to 0	ground surface .2m		-		Ē	TqS	I§ I II		20	0 40	60	80	100		10 2	20 :	30	
87.0 0.2	MUSKE Brown p wet	G eat, woody, coarse fibrous,		1	ss	58	19		87_										
	Frozen	to U.3 m	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	τw	21			86										Shelby tube easy to push Very low recovery; tube discarded
			4 X XV																
85.1 2.1	CLAYEY	ŚILT		3	ss	25	20		85_										
	Grey cla	yey silt, traces of sand, nd organics, stiff, wet		4	τw	25				•			A				Ĵ		Shelby tube encountered resistance (stone); low recovery; bagged sample
	Increase silt seam plasticity	d clay content (silt and clay), is and nodules, hard, low , moist		5	ss	17	56		84_										Split spoon bouncing on rock Pneum.
				6	ss	75	18		83_			_		18	Å	F		-1	Piezometer S/N: #27C0227 installed at 3.5m Nilcon Vane cannot determine remould strength GS
81.9				7	ss	75	33		82					17					Nikon Vane cannot determine remould strength
5.3		' SILT TILL ayey silt, some sand and tiff, wet		8	ss	50	14												GS
				9	TW	92			81										Shelby tube easy to push
									80_	•									
				10	ss	25	8	8	79_										Shelby tube pushing on large pleces of gravel (subangular)
								9											
									78_										Shelby tube easy to push

Continued on Next Page

an	nec®									RECORD OF BOREHOLE No. V02-228 PAGE 2 OF
PROJ		techr	nical I	nvestig	gation	Progra	im (Wir	nter 20)02)	ENGINEER A.Z.
PROJ	ECT NO. <u>TC19417-1003</u>	DRIL	LER	<u>Bo</u>	part Lo	ngyear	(CME	75)	E	BORING METHOD 4.5" HST Auger / 2.5" HQ Coring LOGGED BY R.K.
CLIEM	T De Beers Canada	LOC	ATIC)N <u>Po</u>	otential	PKD	acility	(AME	CBH	CV02-36) COMPILED BY D.M.L.
ELEV	ATION 87.2 m	coc	ORD.	N	5,857,	800 E	302,58	58	E	BORING DATE Start: 16 Mar 02 End: 17 Mar 02 CHECKED BY N.S.V.
AU A		it Spoc n Walle	on ad Op	en (She	alby)				P.P. U.W.	REVIATIONS P.L. Point Load Strength Index (I ₅₀) Pocket Penetrometer RQD Rock Quality Designation C Consolidation Wel Unit Weight SCR Solid Core Recovery DS Direct Shear Standard Proctor Test k Permeability GS Grain Size Analy
	SOIL PROFILE	Τ	S	SAMPL	ES		ER ,			
ELEV EPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	түре	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEРTH (m)	ELEVATION (m)	RESISTANCE PLOT X PLASTIC NATURAL MOSTURE LIQUID 20 40 60 80 100 LIMIT MOSTURE LIMIT MTO VANE NILCON VANE UMIT CONTENT LIMIT INTACT A INTACT A NATURAL LIMIT REMOULDED A REMOULDED WATER CONTENT (%) VATER CONTENT (%) 20 40 60 80 100 10 20 30
76.8 10.4	SHATTERED LIMESTONE	H	11	™ [92			10	77_	
76.1	Grey sandy gravel (angular to subangular), some silt and clay, very dense	14,14	12	ss	75	68/0.28		11		
11.1	LIMESTONE Light brown limestone, slightly weathered to unweathered Jointing: bedding and cross joints; flat, dipping and vertical orientations; very close to moderate spacing; rough undulating surfaces; sand and silt fillings Strength: medium to high		13	RC	100	61	Banganna Analana Analana Analana Analana Analana Analana Analana Analan	12	76_	SCR=68%
73.0			14	RC	100	92		13	74	Piezomeler SN: #27C0042 installed at 12.7n P.L=4.36 MPa (13.1to 13.5m segment) SCR=97%
14.2	END OF HOLE			1					13	
	Water levels (b.g.s.): Pneum. Piezo #27C0227 At -1.6m, 29-Mar-02 Pneum. Piezo #27C0042 At -1.0m, 29-Mar-02									

Format: AMEC GEO MWS File: TC19417.GPJ Date: 05/15/2002 2:11:38 PM

HOLE ID:	V-02-239E
RIG ID:	RC-100
CORE SIZE:	NQ
NORTHING:	5857021.1
EASTING:	301539.2
DATUM:	NAD 27 Zone 17
DATE STARTED:	15-Mar-02
DATE FINISHED:	16-Mar-02
LOGGED BY:	SCOTT BOYCE

From (m)	To (m)	LITHOLOGY	COMMENTS
0	15.2	OVERBURDEN	Below muskeg and above approximately 10m clay- probably marine but no shells observed. Brown; sticky; trace pebbles. Below 10m probable till- clay with minor sand and pebbles.
15.2	18.2	LIMESTONE	Poor recovery (weathered limestone).
18.2	18.2	EOH	

RIG ID: RC-100 CORE SIZE: NQ
CORE SIZE: NO
NORTHING: 5857158.154
EASTING: 301947.765
DATUM: NAD 27 Zone 17
DATE STARTED: 14-Mar-02
DATE FINISHED: 15-Mar-02
LOGGED BY: SCOTT BOYCE

From (m)	To (m)	LITHOLOGY
0	4.6	OVERBURDEN
4.6	7	LIMESTONE
7	7	EOH

HOLE ID:	V-02-235E
RIG ID:	RC-100
CORE SIZE:	NQ
NORTHING:	5854354.0
EASTING:	301477.4
DATUM:	NAD 27 Zone 17
DATE STARTED:	14-Mar-02
DATE FINISHED:	14-Mar-02
LOGGED BY:	SCOTT BOYCE

From (m)	To (m)	LITHOLOGY	COMMENTS
0	9.8	OVERBURDEN	Predominantly brown clay with trace angular to subangular limestone pebbles (dropstones?). Probable marine clay.
9.8	11	LIMESTONE	
11	11	EOH	

HOLE ID:	V-02-243E
RIG ID:	RC-100
CORE SIZE:	NQ
NORTHING:	5858168.4
EASTING:	302706.2
DATUM:	NAD 27 Zone 17
DATE STARTED:	18-Mar-02
DATE FINISHED:	19-Mar-02
LOGGED BY:	SCOTT BOYCE

From (m)	To (m)	LITHOLOGY	COMMENTS
0	21.5	OVERBURDEN	Upper part of hole definite marine clay; poor and contaminated recovery at lower depths. Auger refusal at 21.5m but possible weathered overburden starting from approximately 19m (harder augering).
21.5	25.75	LIMESTONE	Moderate to poor recovery (due to weathering?) but some solid lengths of limestone
25.75	25.75	EOH	

HOLE ID:	V-02-242E
RIG ID:	RC-100
CORE SIZE:	NQ
NORTHING:	5858302.2
EASTING:	303062.4
DATUM:	NAD 27 Zone 17
DATE STARTED:	17-Mar-02
DATE FINISHED:	18-Mar-02
LOGGED BY:	SCOTT BOYCE

From (m)	To (m)	LITHOLOGY	COMMENTS	
0	0.6	ICE		
0.6	3.3	ORGANICS		
3.3	11.3	CLAY	Grey marine clay; with shells. Minor sand silt and gravel decreasing to trace downhole.	
11.3	15.2	OVERBURDEN	Indeterminate material (no return; augering to refusal). Possibly till.	
15.2	15.6	OVERBURDEN	Probable till with cobbles and boulders- mostly N limestone but one piece of granite.	
15.6	18.8	LIMESTONE	Blocky; weathered (poor recovery).	
18.8	18.8	EOH		

HOLE ID:	V-02-241E
RIG ID:	RC-100
CORE SIZE:	NQ
NORTHING:	5857338.5
EASTING:	302018.7
DATUM:	NAD 27 Zone 17
DATE STARTED:	16-Mar-02
DATE FINISHED:	17-Mar-02
LOGGED BY:	SCOTT BOYCE

From (m)	To (m)	LITHOLOGY	COMMENTS
0	22	OVERBURDEN	
			Bedrock contact approximate. Auger refusal at 22m; but possible weathered bedrock from 20m.
22	27.8	LIMESTONE	Poor recovery until approximately 26.5m.
27.8	27.8	EOH	

HOLE ID:	V-02-246E
RIG ID:	RC-100
CORE SIZE:	NQ
NORTHING:	5856318.6
EASTING:	301800.9
DATUM:	NAD 27 Zone 17
DATE STARTED:	22-Mar-02
DATE FINISHED:	23-Mar-02
LOGGED BY:	SCOTT BOYCE

From (m)	To (m)	LITHOLOGY
0	12.3	OVERBURDEN
12.3	16.6	LIMESTONE
16.6	16.6	EOH

HOLE ID:	V-02-245E
RIG ID:	RC-100
CORE SIZE:	NQ
NORTHING:	5856120.9
EASTING:	302703.1
DATUM:	NAD 27 Zone 17
DATE STARTED:	21-Mar-02
DATE FINISHED:	22-Mar-02
LOGGED BY:	SCOTT BOYCE

From (m)	To (m)	LITHOLOGY
0	12.3	OVERBURDEN
12.3	16.15	LIMESTONE
16.15	16.15	EOH

HOLE ID:	V-02-244E
RIG ID:	RC-100
CORE SIZE:	NQ
NORTHING:	5855897.2
EASTING:	301816.0
DATUM:	NAD 27 Zone 17
DATE STARTED:	19-Mar
DATE FINISHED:	21-Mar
LOGGED BY:	SCOTT BOYCE

From (m)	To (m)	LITHOLOGY	COMMENTS
0	12.3	OVERBURDEN	Predominantly clay
12.3	15.5	LIMESTONE	Auger refusal at 12.3m
15.5	15.5	EOH	

APPENDIX 4

Western Block Expenditure Details

ITEM	TIME/UNITS CHARGE RATE		TOTAL COST	COMMENTS		
Camp Costs						
(groceries, camp supplies, and travel)						
Drill programme	122	man-days	250	day	30,500	
Airborne programme	1				2,470	
	1				32,970	
Permanent Staff	1					
Victor Project Manager	3	days	550	day	1,650	
Temporary Staff	1					
D4 Dozer Dayshift Operator	180	hrs	30	hr	5,400	March 4 - 18
D4 Dozer Nightshift Operator	108	hrs	30	hr	3,240	March 9 - 17
CME 75 Supervising Geologist	6	days	520	day	3,120	75% of days spent drilling
CME 75 DS Geologist	9	days	408	day	3,672	March 9 - 17
CME 75 NS Geologist	9	days	408	day	3,672	March 9 - 17
RC-100 Geologist	20	days	350	day	7,000	March 4 - 23
Assistant Geologist	5	days	350	day	1,750	Supervised road construction, spotted holes, etc
RC-100 Driller	108	hrs	42	hr	4,536	March 15 - 23
RC-100 Drill Helper	9	days	325	day	2,925	
					35,315	
Fuel						
RC-100	9	days	205	drum	3,690	
CME-75	10	days	205	drum	4,100	
D4 dozer	21	days	205	drum	6,458	
Airborne programme (Helicopter)					2,500	
					16,748	
Equipment Rental						
D4	15	days	5600	month	2,710	trail construction and drill support (March 4 to March 18)
GPS	6	days	8500	month	1,645	
Diesel Generator	9	days	1240	month	372	
Bombardier	1	month	5000	month	5,000	mount for RC-100
					9,727	
Drilling Boart Longyear						
CME 75	111.5	hrs	165	hr	16,058	includes 36 hrs of standby due to standby @ \$100/hr; does not include vane tests
Drill Consumables						
Hole plug and grout					1,200	
Geophysics						
Fugro	266.4	line-km	82	line km	21,870	excluding camp cost and fuel

GRAND TOTAL

\$135,537

APPENDIX 5

List of Personnel

PERSONNEL INVOLVED IN AIRBORNE PROGRAMME:

De Beers Canada Exploration

Position

Gary Hodgkinson

Project Geophysicist

Fugro Airborne Surveys Inc.

Doug Robinson	Field Processor
Darcy Blouin	Operator
Luke Kukovica	Pilot

PERSONNEL INVOLVED IN DRILL PROGRAMME:

De Beers Canada Exploration	Position		
Scott Boyce	On-site Supervising Geologist		
Becky Chouinard	Geologist		
Brad Wood	Project Manager		

AMEC Earth and Environmental Inc.

Robert Lachance	On-site Supervising Engineer
Randy Knudsen	Soils Engineer
David Brown	Soils Engineer

Boart Longyear

Ed Legault	Foreman
Brian Leonard	Driller RC-100
Steve Corey	Driller CME 75
Jamie Goddard	Drillers Helper CME 75

Tim	Boo	ne
Edm	und	LeBlanc

Driller CME 75 Drillers Helper CME 75

Attawapiskat First Nation Technical Services

Bernard Hookimaw John Wheesk John-Paul Martin Drillers Helper Equipment Operator Equipment Operator

Moosonee Transportation Ltd.

Oliver Rickard

Equipment Operator

Work Report Summary

Transaction No:	W0260.01244	Status:	APPROVED
Recording Date:	2002-JUL-26	Work Done from:	2001-NOV-21
Approval Date:	2002-AUG-07	to:	2002-MAR-23

Client(s):

171748 DE BEERS CANADA EXPLORATION INC.

AMAG

Survey Type(s):

Cla	aim#	Perform	Perform Approve	Applied	Applied Approve	Assign	Assign Approve	Reserve	Reserve Approve	Due Date
Ρ	1240957	\$3,003	\$3,003	\$15,883	\$15,883	\$0	0	\$0	\$0	2005-JAN-11
Р	1240958	\$375	\$375	\$16,942	\$16,942	\$0	0	\$0	\$0	2005-JAN-11
Р	1240959	\$39,451	\$39,451	\$16,942	\$16,942	\$22,509	22,509	\$0	\$0	2005-JAN-11
Р	1240960	\$39,451	\$39,451	\$16,942	\$16,942	\$22,509	22,509	\$0	\$0	2005-JAN-11
Р	1240961	\$17,098	\$17,098	\$16,942	\$16,942	\$156	156	\$0	\$0	2005-JAN-11
Р	1240962	\$8,737	\$8,737	\$16,942	\$16,942	\$0	0	\$0	\$0	2005-JAN-11
Р	1240963	\$22,729	\$22,729	\$16,942	\$16,942	\$ 5,78 7	5,787	\$0	\$0	2005-JAN-11
Р	1240964	\$4,317	\$4,317	\$16,942	\$16,942	\$0	0	\$0	\$0	2005-JAN-11
Ρ	1246074	\$375	\$375	\$1,059	\$1,059	\$0	0	\$0	\$0	2005-JAN-11
		\$135,536	\$135,536	\$135,536	\$135,536	\$50,961	\$50,961	\$0	\$0	-

PBORE

External	Credits:
----------	----------

Reserve:

\$0 Reserve of Work Report#: W0260.01244

\$0

\$0

Total Remaining

Status of claim is based on information currently on record.

BMA 527 834

43B13SW2009 2.23977

900

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mínes

Date: 2002-AUG-19

TORONTO, ONTARIO

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO P3E 6B5

Tel: (888) 415-9845 Fax:(877) 670-1555

Submission Number: 2.23977 Transaction Number(s): W0260.01244

Dear Sir or Madam

M4H 1N6

Subject: Approval of Assessment Work

DE BEERS CANADA EXPLORATION INC.

ONE WILLIAM MORGAN DRIVE

CANADA

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

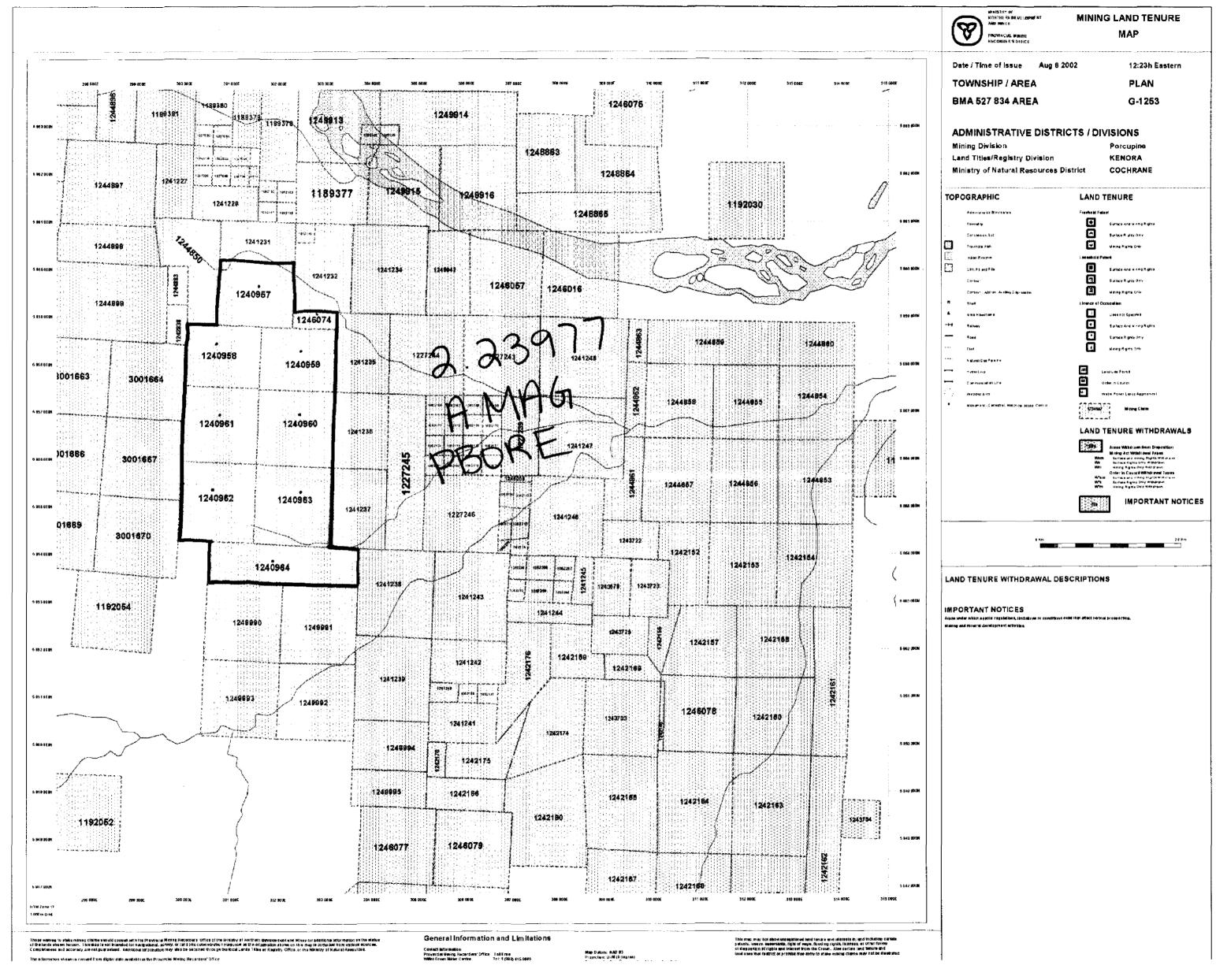
At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

If you have any question regarding this correspondence, please contact STEVEN BENETEAU by email at steve.beneteau@ndm.gov.on.ca or by phone at (705) 670-5855.

Yours Sincerely,

6

Sheila Lessard Acting Senior Manager, Mining Lands Section


Cc: Resident Geologist

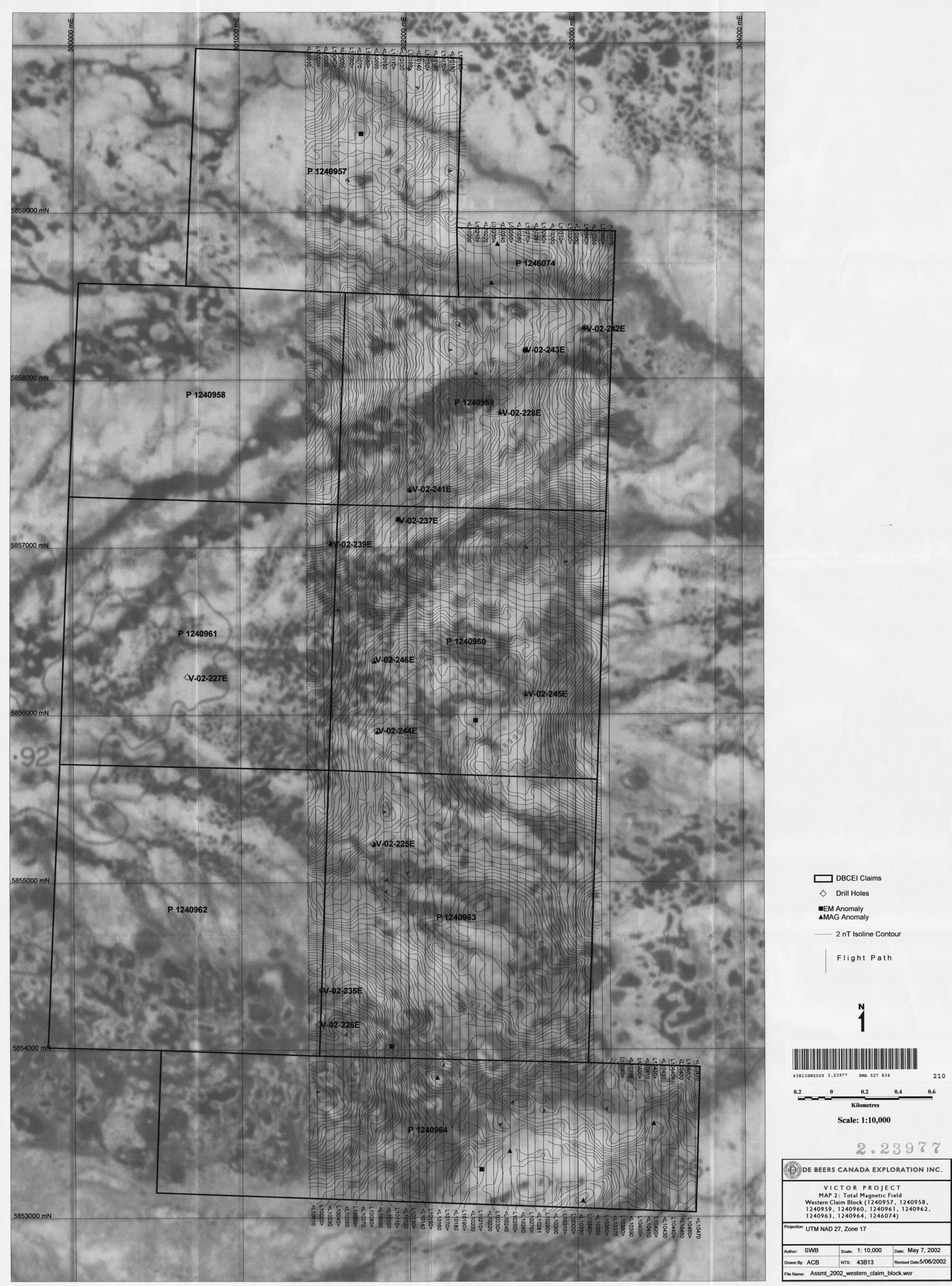
Donald R. Boucher (Agent)

De Beers Canada Exploration Inc. (Assessment Office)

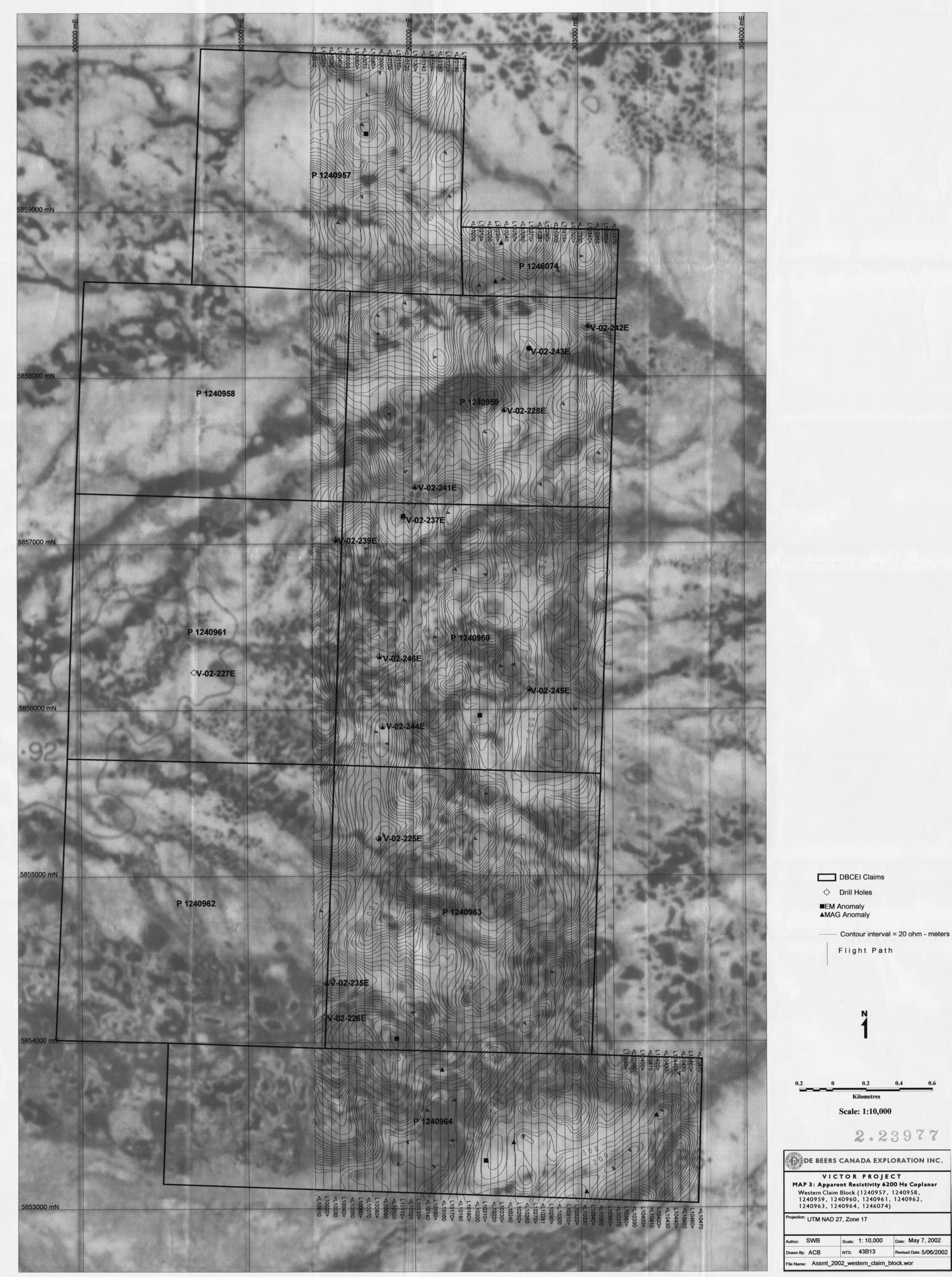
Assessment File Library

De Beers Canada Exploration Inc. (Claim Holder)

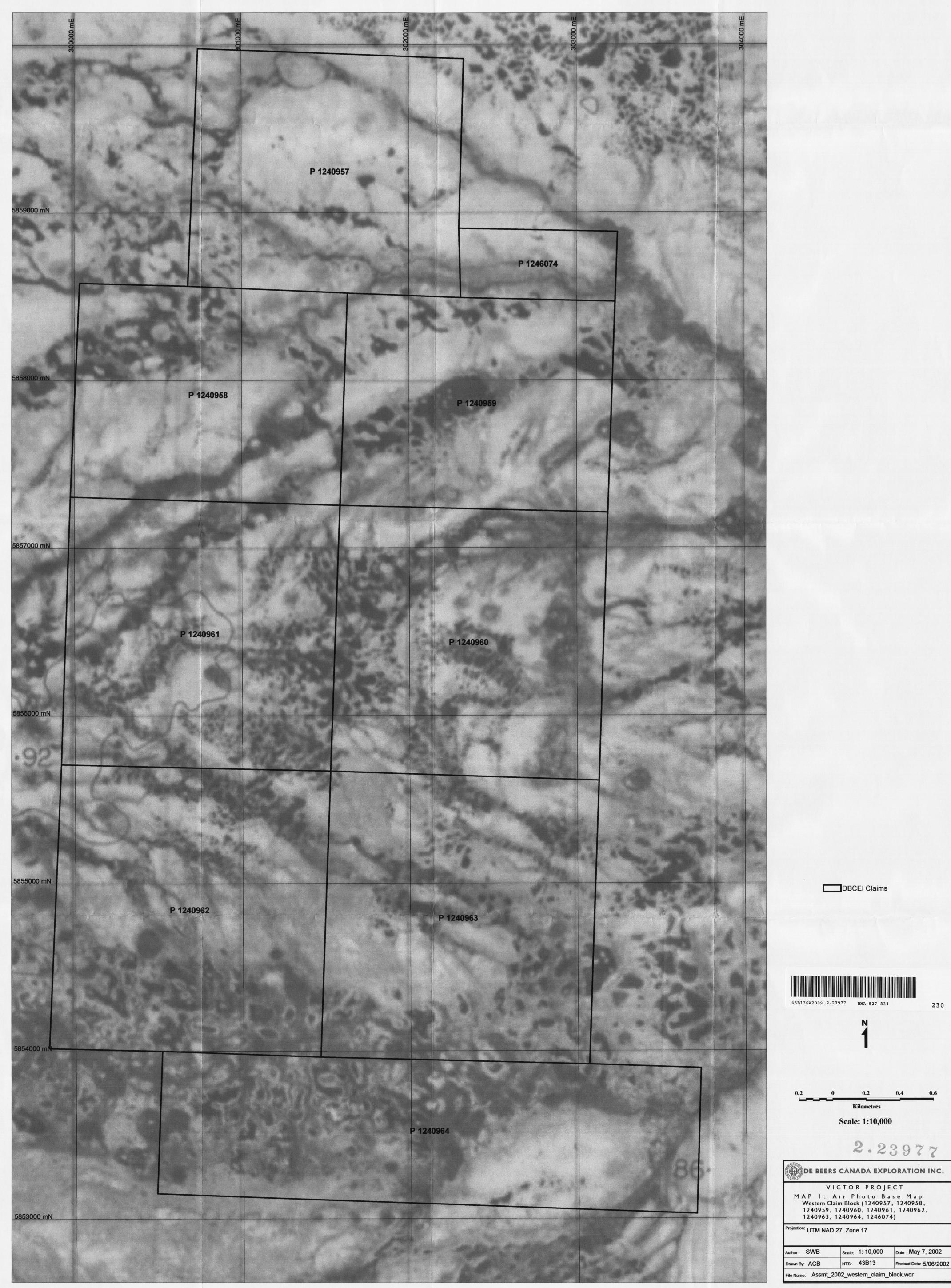
,


B135W2009 2.23977

BMA


527

834


200

43B13SW2009 2.23977 2.23977 вма 527 834 Date: May 7, 2002 Revised Date: 5/06/2002 220

