

NAREX ORE SEARCH CONSULTANTS INC. ELECTROMAGNETIC SURVEY

HAGEY TOWNSHIP

RECEIVED
MAY 251984
MINING LANDS SECTION

Thunder Bay Mining Division District of Thunder Bay

010c

TABLE OF CONTENTS

Page
A. INTRODUCTION 2
B. LOCATION AND ACCESS 2
C. SURVEY AND INSTRUMENT DATA 2

1. Electromagnetic Survey 3
D. INTERPRETATION OF RESULTS 4
2. Electromagnetic Survey (Drawing \#3) 4
E. CONCLUSIONS AND RECOMMENDATIONS 5

Accompanying Maps
Drawing \#3 - Electromagnetic (EM-16) Survey

A. INTRODUCTION

The Shebandowan-Hagey property consists of twelve (12) contiguous claims in Hagey Township, Thunder Bay Mining Division, District of Thunder Bay, Ontario. These claims which are held in the name of Narex Ore Search Consultants Inc. on behalf of Onitap Resources Inc. are TB645696, TB645697, TB645698, TB645699, TB645700, TB646001, TB646002, TB646024, TB646025, TB646026, TB646027 and TB646136.

During June 1983 a grid was cut over the property and subsequent magnetometer and electromagnetic (EM-16) surveys were conducted by Narex Ore Search Consultants Inc.

B. LOCATION AND ACCESS

The property is located about 65 miles west of Thunder Bay. The claim group is located in north-central Hagey Township, north of Highway 11, west of the village of Shebandowan, Ontario. Shafton Lake is partly located within the boundaries of the claim block. Both Mathe Lake and Pistol Lake are near the southern boundary.

Access to the property from Highway 11 is by means of a forestry access road which cuts across the southern part of the claim block.

C. SURVEY AND INSTRUMENT DATA

The surveys were conducted over previously-cut north-south lines which are spaced at 400 foot intervals across the property. A total of 10.5 miles of grid and base lines were cut and picketed
every 100 feet. The main baseline which is oriented east-west has a length approximately of 6000 feet across the middle of the property.

1. Electromagnetic Survey

The electromagnetic survey was carried out using a "Geonics" EM-16 unit. The EM-16 is a sensitive receiver covering the frequency of the V.L.F. (very low frequency) transmitting stations, with a means of measuring the vertical field components. The VLF transmitting stations operating for communication with submarines have a vertical antenna. The antenna current is thus vertical, creating a concentric horizontal magnetic field around them. When these magnetic fields meet conductive bodies in the ground, secondary fields are set up radiating from these bodies. The EM-16 equipment measures the vertical component of these secondary fields.

The receiver has two inputs with two receiving coils built into the instrument. One coil has a normally vertical axis and the other, a horizontal one. Secondary fields caused by conductive bodies are, therefore, measured by the EM-16 by the angle of dip on the instrument and by measured percentage of the quadrature component (out of phase component) to give a null signal. Any deviation from the zero null position is indicative of a secondary field and, therefore, of a possible conductive body. The transmitting station used for this survey was station NAA (17.8 kHz) Cutler, Maine, U.S.A. Readings were taken every

50 feet along the picketed lines for a total of 1004 readings from 502 stations.

D. INTERPRETATION OF RESULTS

1. Electromagnetic Survey (Drawing \#3)

The areas of extreme interference with off-scale readings, no nulls etc. correspond, directly to hydro transmission lines across the middle of the property (baseline) and telegraph wires beside the railway along the southern shore of Shafton Lake. This has resulted in the huge cross-over and power-line conductor which is evident for 200-300 feet on either side of the baseline (hydro line).

In addition to the power-line conductor, a few other east-west trending EM-16 conductors were detected by the survey.

Conductor A is a weak east-west trending conductor traceable over 400 feet in Claim TB645699 on LI2E and L16E. The quadrature component shows both a broad sympathetic relationship with the in-phase curve on Ll6E. These in-phase curves generally show a broad weak inflection indicating a weak, difuse, overburden, drainage or surficial type conductor. On LI2E, the in-phase component indicates an equal and opposite configuration to the quadrature which would suggest a bedrock conductor. The location of Conductor A coincides largely with a low-lying area to the east. Conductor B is a weak east-west trending conductor traceable over 1600 feet on lines LO to 16 E in Claims TB645697, 645700 and 646136. The conductor generally shows a weak quadrature inflection
accompanied by a weak or moderate in-phase inflection. The cumulative effect of the strong nearby power-line conductor has resulted in profiles with sharp in-phase inflections which have been displaced by about 40% in the positive direction from the respective lines ($L 0$ and L4E). Therefore, these cross-overs do not occur at the zero point in each line. The location of Conductor B largely corresponds to a low-lying, swampy area. This, together with the nature and relationships between in-phase and quadrature components, suggests that Conductor B represents a surficial effect not a bedrock source. This could be either an overburden, drainage or surficial type conductor.

E. CONCLUSIONS AND RECOMMENDATIONS

Results from both the magnetometer and electromagnetic (EM-16) surveys show several significant anomalies and conductors over the Shebandowan-Hagey property which consists of 12 contiguous claims.

Results from the magnetometer survey show a general flat magnetic gradient except for several high magnetic anomalies which largely correspond to areas underlain by gabbro. The general overall magnetic pattern is in an east-west direction corresponding with the regional strike of the geology which consists mostly of andesites and rhyolites.

Results from the EM-16 survey outlined several power-line conductors in addition to conductors A and B which are probably due to conductive overburden, drainage etc. However, there is some doubt since the EM-16 survey was not entirely reliable due to
large areas of interference and off-scale readings caused by a major hydro transmission line along the baseline, etc. It is, ' however, interesting that both Conductors A and B are underlain by rhyolite rock types which could easily contain some sulphides of a conductive nature.

There is no apparent correlation of EM-16 conductors to areas of magnetic high values or low anomalous regions.

Considering the restrictions and limitations placed by the hydro lines, it is, therefore, recommended that a program consisting of either a Self-Potential (S.P.) or Induced Polarization (I.P.) survey should be carried out over the entire property with particular emphasis on the areas underlain by rhyolites and both Conductors A and B .

TYPE OF SURVEY

MINING LANDS COMMENTS:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad


```
1984 05 31
Your File: 208
    Our File: 2.6786
Mrs. Audrey Hayes
Mining Recorder
Ministry of Natural Resources
P.O. Box }500
Ihunder Bay, Ontario
P7C 5G6
Dear Madam:
We have received reports and maps for a Geophysical (Electromagnetic) Survey submitted under Special Provisions (credit for Performance and Coverage) on Mining Claims I'B 645696 et al in the Township of Hagey.
This material will be examined and assessed and a statement of assessment work credits will be issued.
Yours sincerely,
S.E. Yundt
Director
Land Management Branch
```

```
Whitney Rlock, Room 6643
```

Whitney Rlock, Room 6643
Queen's Park
Queen's Park
Toronto, Ontario
Toronto, Ontario
M7A 2W3
M7A 2W3
Phone: (416) 965-6918
Phone: (416) 965-6918
A. Barr:sc:
Cc: Narex Ore Search Consultants Inc 208 - 4900 Sheppard Avenue East Scarborough, ont MlS 4A7
cc: Peter Born
265 Frederick street Bradford, Ontaerb 1.3\% $\quad \mathrm{Kl}$

```
\(\qquad\)

\section*{GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL} TECHNICAL DATA STATEMENT

\section*{TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.}

Type of Survey (s) Geophysical - Electromagnetic Township or Area __ Hagey Township Claim Holder(s)_Narex Ore Search Consultants Inc.

Survey Company Narex Ore Search Consultants Inc. Author of Report _-Peter Born Address of Author 165 Frederick Street, Bradford, ont. 1 K 1 Covering Dates of Survey June \(\frac{1983 \text { - April } 1984}{\text { (linecutting to office) }}\)
Total Miles of Line Cut
10.5


AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)


Res. Geol.
Qualifications \(\qquad\) Previous Surveys



\section*{GEOPHYSICAL TECHNICAL DATA}

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations _ 502 Number of Readings 1004
Station interval 50 feet
Line spacing _ 400 feet
Profile scale__ 1 inch to \(40 \%\)
Contour interval \(\qquad\)
y Instrument
Accuracy - Scale constant
Diurnal correction method
Base Station check-in interval (hours)
Base Station location and value \(\qquad\)

Instrument Geonics EM-16
Coil configuration 2coils perpendicular to each other
Coil separation
Accuracy \(\quad \pm .1 \%\)
\begin{tabular}{lccc} 
Method: \(\quad \square\) Fixed transmitter \(\quad \square\) Shoot back & \(\square\) In line & \(\square\) Parallel line \\
Frequency \(\quad\) NAA -17.8 KHZ & \\
\hline
\end{tabular}

Instrument \(\qquad\)
Scale constant \(\qquad\)
Corrections made \(\qquad\)

Base station value and location \(\qquad\)
\(\qquad\)
Elevation accuracy

Instrument \(\qquad\)
Method \(\square\) Time Domain
Frequency Domain
Parameters - On time Frequency \(\qquad\)
- Off time___ Range \(\qquad\)
- Delay time__
- Integration time \(\qquad\)
Power
Electrode array
Electrode spacing
Type of electrode \(\qquad\)

\section*{SELF POTENTIAL}


Corrections made \(\qquad\)

\section*{RADIOMETRIC}

Instrument \(\qquad\)
Values measured
Energy windows (levels) \(\qquad\)
Height of instrument Background Count \(\qquad\)
Size of detector \(\qquad\)
Overburden \(\qquad\)
(type, depth - include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey
Instrument \(\qquad\)
Accuracy
Parameters measured

Additional information (for understanding results)

\section*{AIRBORNE SURVEYS}

Type of survey(s)
Instrument(s) (specify for each type of survey)

Accuracy

> (specify for each type of survey)

Aircraft used \(\qquad\)
Sensor altitude
Navigation and flight path recovery method \(\qquad\)

Aircraft altitude Line Spacing
Miles flown over total area Over claims only

\section*{GEOCHEMICAL SURVEY - PROCEDURE RECORD}

Numbers of claims from which samples taken.

Total Number of Samples____
Type of Sample__ (Nature of Material)
Average Sample Weight__
Method of Collection__
Method of Collection_______
Soil Horizon Sampled.
Horizon Development \(\qquad\)
Sample Depth \(\qquad\)
Tcrrain

Drainage Development
Estimated Range of Overburden Thickness
\(\qquad\)

SAMPLE PREPARATION
(Includes drying, screening, crushing, ashing)
Mesh size of fraction used for analysis \(\qquad\)
\(\qquad\)

\section*{General}
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\) \(\longrightarrow\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
General
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) ——_
```

Ministry of Natural Resources
Land Management Branch
Whitney Block, Room 6643
Queen's Park
TORONTO, Ont.
M7A 1W3

```

Dear Sirs:

\section*{PROJECT 21-15 Shebandowan}

Please find enclosed Geophysical Technical Data Statement referring to Claims TB645696 et al in Hagey Township, together with Narex' Geophysical Report and map, in duplicate.


PB:SG
RECEIVED
Encls.
MAY 251984
Mllivita Lands Section
```

