010

RECEIVED

$$
\begin{aligned}
& \text { APR I Y } 975 \\
& \text { PROJECTS UNIT }
\end{aligned}
$$

REPORT ON THE
OPTION AGREEMENT EXPLORATION PROGRAM
CARRIED OUI BY CANADIAN NICKEL COMPANY
LIMITED ON THE BELACOMA MINES LIMITED
PROPERTY, HALKIRK TOWNSHIP, KENORA
MINING DIVISION, N.T.S. 52CllE

E. Debicki

September, 1974

SUMMARY

An option agreement was signed by the Canadian Nickel Company Limited and Belacoma Mines Limited on September 15, 1973 after a property examination in April 1973 indicated the possibility of finding economic Cu-Ni mineralization. The Belacoma Mines property consists of 21 contiguous claims located in Halkirk Township, Kenora Mining Division. Fort Frances, Ontario is located approximately 15 miles to the west.

Exploration by Canadian Nickel included cutting a grid over the claim block and carrying out an electromagnetic, magnetic and geological survey. Three diamond drili holes, totalling 986 feet, were completed.

Results of the exploration program indicate that the rock types from west to east consist of a northeast trending sequence of metasediments, highly magnetic tuffs, intermediate to mafic volcanics and a gabbro sill. Mineralization consisting of small pockets of stringer and disseminated pyrrhotite, pyrite and chalcopyrite was found mainly in the tuffs and gabbro. A total of 18 electromagnetic conductors were located. The magnetic survey indicated that the tuffs are highly magnetic while the volcanics and gabbro contain small isolated highs. Results of diamond drilling that undercut surface mineralization and tested electromagnetic conductors combined with surface sampling and geophysics, indicate there is no mineralization of economic significance in the areas tested.

The option agreement was terminated in July, 1974.

INTRODUCTION

The Belacoma Mines Limited Option area is comprised of a block of 21 contiguous claims, located in Halkirk Township, Kenora Mining Division. A property examination by Canadian Nickel Company Limited in April, 1973 indicated the possibility of finding an extension of economic Cu - mineralization discovered by Noranda approximately two miles southwest and along strike from the Belacoma ground. An option agreement between Belacoma Mines Limited and Canadian Nickel Company Limited, was signed on September 15, 1973. Subsequent evaluation of the option block by Canadian Nickel consisted of electromagnetic, magnetic and geological surveys and diamond drilling. Results of this evaluation were not economically encouraging and the option agreement was terminated in July, 1974.

LOCATION AND ACCESS

The property is located in Lots 8,9 and 10 of Concessions IV and V, Halkirk Township, M2081 Rainy River District, Kenora Mining Division. The N.T.S. Reference is 52CllE. Access to the area is by Highway ll which cuts through the southwest corner of the claim block. Ft. Frances, Ontario is located approximately 15 miles to the west. The C.N.R. also passes immediately south of the property.

PROPERTY STATUS

The Belacoma Mines Option consists of 21 contiguous claims, all in good standing. The claim numbers are K 241990-99, K 242276-79, K 273760-64, K 315571 and K 364543, which are wholly owned by Belacoma Mines Limited. All ground around the Belacoma property is staked.

PREVIOUS GEOLOGICAL WORK

The property is part of a larger area mapped in 1969 by F. R. Harris of the Ontario Department of Mines. Mapping was done at a scale of 1 " $=1 / 4$ mile and reported on ODM Preliminary Map 586. No other geological work by government agencies pertains directly to the claim area.

HISTORY AND DEVELOPMENT

Foreign Work

Extensive foreign work has been done on the ground presently owned by Belacoma Mines Limited.

Prior to 1967, Noranda Mines held most of the ground in the area. In 1966, they carried out an EM survey over the eastern 13 claims of the present claim block. This work was done as part of a ground follow-up program to evaluate an airborne survey. Six zones of conductivity were found and these were tested by drilling five holes, four vertical and one inclined, located at approximately

1)	$42+70 \mathrm{~N} ;$	$6+80 \mathrm{E}$	vertical
2)	$42+00 \mathrm{~N} ;$	$22+40 \mathrm{E}$	vertical
3)	$45+00 \mathrm{~N} ;$	$10+90 \mathrm{E}$	vertical
4)	$45+00 \mathrm{~N} ;$	$18+00 \mathrm{E}$	vertical
5)	$55+00 \mathrm{~N} ;$	$13+00 \mathrm{E}$	Azimuth 090 degrees

There are no logs available for these holes and they were all drilled in gabbro.
In 1967, the ground was acquired by S. Lakatos, who optioned the block to North 60 Explorers Itd. They had an I.P. survey conducted by Sulmac Exploration Services Ltd. which outlined four areas of potential interest. From March 1967 to May 1967, North 60 Explorers drilled 3 holes located at

| 1) $12+00 \mathrm{~N}, 0+00$ | -45 degrees West | 608 feet |
| :--- | :--- | :--- | :--- |
| 2) $12+00 \mathrm{~N} ; 0+00$ | -65 degrees West | 691 feet |
| 3) $40+00 \mathrm{~N} ; 0+00$ | -45 degrees West | 609 feet |

Minor po and $c p$ was encountered in rock types logged as agglomerate, tuff and intermediate volcanic, in the drill holes located at $12+00 \mathrm{~N}$. In the drill hole located at $40+00 \mathrm{~N}, \mathrm{po}, \mathrm{cp}$ and py stringers and disseminations were intersected in gabbro, diorite, and peridotite. Assays reported were not encouraging. Much of the core is stored at $26+00 \mathrm{~N}, 5+00 \mathrm{E}$. In May, 1967, Cliffs of Canada conducted a magnetometer survey over the I.P. grid.

In October, 1970, Kerr Addison Mines Limited drilled a hole located at $40+17 \mathrm{~N}, 3+00 \mathrm{E}$ at -45 degrees, bearing $565^{\circ} \mathrm{E}$ to a depth of 170.5 feet. Minor po, py and cp were intersected in rock types logged as sediment, gabbro, rhyolite, granodiorite and intermediate volcanics. Assays were negative.

Hudson Bay Exploration and Development Company conducted an EM-I7 survey over part of claim K 273761 from 6 S to 00 during May, 1972. Very weak conductivity is associated with mineralization consisting of po and cp found in several pits.

Belacoma Mines drilled two holes in March, 1973. The first hole, located
at $18+00 \mathrm{~N}, 4+50 \mathrm{E}$, was drilled to a depth of 318 feet at -45 degrees on a bearing of 295 degrees. It intersected basalt with minor po, py and traces of cp. The second hole, located at $52+00 \mathrm{~N}, 6+50 \mathrm{E}$, was drilled to a depth of 283 feet at -45 degrees south. The hole intersected gabbro and hornblende feldspar schist with minor po, cp and py.

In addition, a large number of pits and trenches are located on the claim block. These are mostly in volcanics and gabbro. Part of this trenching has been done by S. Lakatos.

Canico Work

The property was first visited on April 30, 1973 by J. J. Hannila and P. Coutu of Canadian Nickel, who were accompanied by S. Lakatos, Vice-President, Belacoma Mines Limited. The area visited was a series of pits (Pit l to Pit 5) blasted in a newly discovered mineralized zone. These pits are located in the approximate vicinity of $10+00 \mathrm{~N}$ and $5+00 \mathrm{~W}$. As a result of encouraging results obtained during the property examination, Canadian Nickel and Belacoma Mines Limited entered into an option agreement on September 15, 1973. During September and October 1973, a grid previously established from $6+00 \mathrm{~s}$ to $52+00 \mathrm{~N}$, with the base line trending at 045 degrees, was re-established and extended to $72+00 \mathrm{~N}$. Cross-lines are spaced 400 feet apart. The total miles of line cutting was l3.1. From September 23 to October 31, an electromagnetic, magnetic and geological survey was carried out over the grid. In addition, two diamond drill holes for a total footage of 691 feet were drilled on the property from September 29 to October 9, 1973. The first hole (BH 48596), located at $11+00 \mathrm{~N}, 7+35 \mathrm{~W}$ was drilled to a depth of 305 feet at -50 degrees and at a bearing of 315 degrees. The second hole (BH 48597), located at $36+00 \mathrm{~N}, 3+55 \mathrm{E}$, was drilled to a depth of 386 feet at -50 degrees and at a bearing of 315 degrees. The drilling was done by Canico, utilizing a Longyear 24 drill.

In May 1974, a third diamond drill hole (B.H. 49276) was drilled at $16+00 \mathrm{~N}$ and $6+95 \mathrm{~W}$. It went to a depth of 295 feet at -45 degrees and an azimuth of 270 degrees (grid) or bearing of 315 degrees. The drilling was done by Canico using a Morissette Mini-Drill. A limited amount of sample collecting was carried out by E. L. Hoffman on claim K 242777, during the later part of May 1974.

The option agreement was terminated in July 1974.

GENERAL GEOLOGY

The general geology of the area is outlined by ODM Map P586. A Precambrian volcanic - sedimentary sequence striking approximately east - west, has been intruded by gabbro sills. To the north granite gneisses and migmatites have been intruded by granites.

Structural deformation has folded the entire sequence into a series of northeast trending anticlines and synclines. Minor faults and shears occur throughout the area. Diabase dikes cut all of the above formations.

GEOLOGY OF THE CLATM BLOCK

The geology of the claim block was mapped by J. J. Hannila and assistants during September and October, 1973. Mapping outlined four main rock types on the property.

1) Metasediments
2) Tuff - lapilli tuff
3) Intermediate - mafic volcanic
4) Gabbro

This assemblage is part of a northeast trending sequence of rocks occurring on the south limb of an anticline. The nose of this anticline is located approximately one half mile northeast of the northern boundary of the property. Top determinations indicate that the metasediments are lower most in the sequence and occur on the western boundary of the claim block. Going from west to east, the metasediments are overlain by a tuff-lapilli tuff, followed by an intermediate to mafic volcanic. A gabbro sill has intruded the volcanics and occurs along the eastern portion of the property.

Metasediments

The sedimentary rocks have been altered to quartz-biotite schist, with local garnetiferous sections. There are some beds with remnant feldspar clasts, rounded to angular in shape. The rocks are probably an altered greywacke.

Tuff-Lapilli Tuff

The pyroclastics consist of a tuff-lapilli tuff of basaltic composition which overlies the metasediment. The contact is interpretated to be sharp and conformable (?).

The tuff is greenish to grey in colour and very fine grained. It is strongly schisted and highly magnetic.

The lapilli tuff has a grey, fine grained matrix with fragments rounded to angular. They range in size from $1 / 4$ inch to 2 inches in size and are more felsic than the matrix. Some of the fragments appear cherty. This unit is highly magnetic containing l0-15 \% magnetite. There is a definite gradation in fragment size from coarse to fine, indicating tops to the southeast. This is well exhibited at $10+00 \mathrm{~N}, 2+00 \mathrm{~W}$. The lapilli tuff grades into a fine tuff.

A non-magnetic tuff occurs only in a few spots and is differentiated from the remainder of the sequence by only its non-magnetism.

Intermediate - Mafic Volcanic

The volcanics are of intermediate to mafic composition. They are fine to medium grained, massive, partly chloritic and partly gabbroic where they are in contact with the gabbro. A fine grained hornblende - feldspar schist at the base of the unit is a metamorphosed equivalent of the basic volcanic. Interfingering between the tuff and mafic volcanic was observed in B.H. 49276 but this feature is not apparent on outcrop exposures.

Gabbro
The gabbro consists of a sill intruded into the mafic volcanic sequence. It comprises the largest area of all the units. Many textural and compositional variations are found. The sill has been differentiated from a mafic gabbro along its base in the west upwards into an anorthositic gabbro in the east.

The most common variety is a medium to coarse grained hornblende gabbro. There are also some pegmatitic phases. This gabbro has a "normal" granitic texture and appears to be unaltered. The hornblende is black and the feldspar white to grey.

Bordering the mafic volcanic is a highly altered coarse grained hornblende gabbro. It grades west from the hornblende gabbro and is up to 500 feet wide between 36 N and 72 N . This gabbro shows concentrations of feldspar and hornblende locally and is often lineated. The hornblende is greenish - black and fibrous.

One variety of the hornblende gabbro shows lathy fractured grey - white feldspar. The feldspar is often lineated and the mafics have been altered to chlorite and fibrous amphibole. It occurs east of the unaltered hornblende gabbro.

The anorthositic gabbro is probably a phase differentiate of the hornblende gabbro and only scattered outcrops were located. A grey to brown, medium to coarse grained feldspar becomes dominant in this gabbro. It is slightly altered.

Farthest to the east occurs a mafic gabbro with some garnetiferous sections. It is composed of mainly medium grained black amphibole. Garnets are not well developed.

Gabbro dikes intrude the tuffaceous volcanics in the southern part of the grid.

Minor dikes of granitic composition occur in the gabbro and volcanics.
A list of thin sections is attached in the Appendix.

STRUCTURE

The rock units of the claim block lie on the south limb of an anticline, near its nose. The main structural feature of the property is the schistosity. It occurs in the sediments, tuffs and volcanics. The general trend is in a northeast direction. Dips are generally steeply southeast in the volcanics and sediments to vertical in the gabbro. The sediments show an abrupt change in the direction of schistosity around 40 N . It changes from $040^{\circ}-050^{\circ}$ to 320° as the nose of the anticline is approached. Variations elsewhere represent shearing in the area. Many of the conductors follow contacts and the trace of the schistosity.

Lineation is characteristic of the highly altered hornblende gabbro. It is more apparent in the northern parts and here the conductors strike along the lineation. There are also minor faults and fractures associated with the lineation.

Shearing and faulting on a local scale is evident in the gabbro. Some large shears and faults are probably present in the gabbros from 52 N to 72 N as there are long lineations with sharp scarp walls. The contacts of the tuff sediments and volcanic - tuff are partially sheared and have conductors following them. Shearing is probably responsible for some of the conductors in the gabbro. A north - northwest trending fault cutting through 20 N and 00 has displaced the eastern block approximately 600 feet to the north.

ECONOMIC GEOLOGY

Interest in the area was activated in the late 1950's and early 1960's by a discovery of Cu - mineralization in gabbro, later proven to amount to approximately 300,000 tons grading $3 \% \mathrm{Cu}$. This deposit was discovered by Noranda and later optioned to North Rock Mines and Seemar Mines. The deposit is a probable sulphide precipitate, occurring at the base of a magmatically differentiated gabbro sill. It occurs approximately 2 miles southwest of the Belacoma ground. Since this gabbro sill, with a lowermost mineralized contact, strikes northeast onto the Belacoma property, the possibility arises of finding a continuation of this mineralization.

On the Belacoma ground, the gabbro contains the major proportion of the mineralization. It is disseminated pyrrhotite, chalcopyrite and pyrite up to 5%. Often the mineralization is exposed in pits and is associated with the unaltered hornblende gabbro. However, no economic concentrations were found.

The tuffs are strongly magnetic due to magnetite amounting to $10-15 \%$. Minor disseminated chalcopyrite, pyrrhotite and pyrite also occur throughout the rock unit. Small concentrations of this sulphide mineralization have been exposed in several pits. During the initial property examination, J.J. Hannila sampled Pits 1 to 5 located in the vicinity of $10 \mathrm{~N}, 10 \mathrm{~W}$ and occurring within the tuffaceous unit. This mineralization was a new zone discovered in early 1973.

The mineralization was found to be mostly pyrrhotite with varying amounts of chalcopyrite occurring as disseminated blebs or massive bands. Sulphide content varied from $3-4 \%$ to 40% in the pits. The zone along the pits is about 700 feet long. Due to the scarp nature of the contact, no reliable estimate of the width of the zone could be made but it appears to be 3-4 feet wide on surface, dipping southeast. Drilling (BH 48596 and BH 49276) to undercut this mineralization indicated the zone was limited to the surface. Surface sampling of Pit l-5 (Field Number L-1 to L-9) returned a high value of $1.27 \% \mathrm{Cu}$ and $1.20 \% \mathrm{Ni}$ in Pit 1.

The volcanics and sediments contain no primary mineralization. Secondary pyrrhotite, pyrite and minor chalcopyrite replacement along fracture surfaces and schistosity planes is common.

The mineralization on the property is spotty and no economic concentrations were found.

A list of surface sample assays is attached in the Appendix. All samples were assayed in the company laboratory.

DRILL RESULTS

Borehole 48596
This borehole was drilled to undercut surface mineralization in Pits 1 to 5 and to test a strong electromagnetic conductor associated with the mineralization. Schistose magnetic lapilli tuff and crystal tuff were intersected containing stringers and disseminations of pyrrhotite, pyrite and chalcopyrite up to 8%. Assays were negative. The hole bottomed in metasediments.

Borehole 48597

This borehole was drilled to test a strong eledtromagnetic conductor located along the contact of a gabbro pod and hornblende - feldspar schist. Gabbro, volcanic and gabbroic volcanic were intersected. Disseminated and stringer pyrrhotite, pyrite and chalcopyrite returned a best assay of 0.45% Cu and $0.12 \% \mathrm{Ni}$ over 1.7 feet.

Borehole 49276

This borehole was drilled 500 feet east of Borehole 48596 as a second attempt to determine if surface mineralization found in Pit 1 to Pit 5 continued at depth. A strong electromagnetic conductor was also tested. An intercalated sequence of magnetic tuff, lapilli tuff and basalt was drilled. Disseminated and stringer pyrrhotite, pyrite and chaicopyrite generally less than $2-3 \%$ was encountered throughout the hole. The conductor was explained by
a mineralized shear zone. Assays were negative. The hole bottomed in metasediments.

GEOPHYSICS

Magnetometer Survey

A MF-1 Fluxgate magnetometer was used to conduct a magnetic survey over the claim block. The magnetic trend follows closely the schistosity of the rock units. The magnetite bearing tuff are highly magnetic but the other units are relatively low. Isolated highs within the volcanics and gabbro are due to local concentrations of pyrrhotite mineralization. The sediments are flat, magnetically.

Electromagnetic Survey

The electromagnetic survey was carried out using the Inco SCR, Mark III, Mark IV and Mark V Vertical Loop systems. A total of 18 conductors were traced out in all of the four rock units. They are variable in strike, length and strength. They follow the schistosity of the rock units and are cut off by faulting and shearing. Faults and shears, mineralize faults and shears, rock contacts and the numerous concentrations of sulphide mineralization, are the cause for these conductors.

CONCLUSIONS

Mineralization on the Belacoma property was found to be spotty throughout the gabbroic and tuffaceous horizons. Extensive surface sampling, geology, geophysics and drilling by Canadian Nickel combined with previous foreign work indicates there is little possibility of discovering any mineralization of significant proportions to be economic. Therefore, the Belacoma Mines Limited Canadian Nickel Company Limited Option Agreement was terminated in July 1974.
E. Debicki/sn

September 17, 1974

REFERRENCES
F. R. Harris, 1970; Rainy Lake Area (West Part), District of Rainy River; Ontario Dept. of Mines Preliminary Map P 586, Scale: $1^{\prime \prime}=1 / 4$ mile.
F. R. Harris, 1970; Geology of the Rainy Lake Area, District of Rainy River; Ontario Dept. of Mines Open File Report 5053.
F. R. Harris, 1974; Geology of the Rainy Lake Area, District of Rainy River; Ontario Department of Mines, Geological Report 115.
F. R. Harris, 1974; Rice Bay, Rainy Lake, Rainy River District; Ontario Dept. of Mines Map 2278, Scale: $I^{\prime \prime}=1 / 2$ mile.

APPENDIX

Thin Sections

Thin Section No.	Field No.	Location	Rock Type
C-73-2378	L-1	Pit 5	Para-amphibolite
C-73-2379	L-5	Pit 1	Para-amphibolite
C-73-2380	L-10	Pit 3	Argillaceous, micaseous feldspathic, gritty quartzite
C-73-2381	L-13	Belacoma BH-l at 140 feet	Ortho-amphibolite
C-73-2382	L-14	Belacoma BH-I at 216-3 feet	Meta-basalt
C-73-2383	L-15	Belacoma BH-1 at 249-5 feet	Amphibolite
C-74-0129	B-49	44+20N/20E	Anorthosite
C-74-0130	B-54	52N/15+50W	Metamafic Schist
C-74-0131	B-57	68N/22+20E	Hornblende-tremolite metamafic

Assays

Assay No.	Field No.	Assays					
		Cu	Ni	Zn	Co	S	Fe
G 48075	L-1	ND	ND	0.2	. 007	2.4	8.8
76	L-2	ND	. 15	0.2	. 021	2.6	14.5
77	L-3	1.26	. 59	0.2	. 085	8.5	13.5
78	L-4	. 63	. 36	0.2	. 050	6.2	16.2
79	L-5	ND	ND	0.2	. 009	ND	9.4
80	L-6	. 29	1.23	-	. 174	13.5	13.5
81	L-7	ND	. 17	-	. 021	2.5	20.8
82	L-8	ND	IV	-	. 014	ND	19.8
83	L-9	ND	. 12	0.2	. 013	ND	12.6
84	I-10	ND	IND	-	ND	ND	6.0
85	I-11	. 86	. 09	-	. 023	2.9	17.2
86	I-12	. 06	. 07	0.2	. 017	1.4	14.9
87	L-13	ND	ND	0.2	. 009	ND	8.9
88	L-14	ND	ND	0.2	. 015	0.6	11.6
G 50160	B-18	-	. 13	0.2	. 016	-	13.3
61	B-20	. 21	. 12	0.2	. 034	4.5	14.7
62	B-21	. 84	. 09	0.2	. 025	3.7	12.2
63	B-28	-	. 11	0.2	. 011	-	11.7

Assays

Assay No.	Field No.	Assays					
		Cu	Ni	Zn	Co	S	Fe
G 50164	B-29	. 45	. 09	0.2	. 023	3.4	16.0
65	B-30	. 22	. 17	0.2	. 037	5.9	23.4
66	B-31	-	. 11	0.2	. 026	1.2	16.6
67	B-34	. 13	. 10	0.2	. 012	1-3	9.8
68	B-35	-	-	-	. 01	1-2	2.9
G 51504	B-39	. 32	. 08	0.2	. 044	9.7	19.7
05	B-44	. 43	. 13	0.2	. 012	1.6	10.4
06	B-45	. 16	. 09	0.2	. 013	1.7	9.9
07	B-47	. 20	ND	0.2	. 003	ND	10.5
08	B-54	ND	. 09	0.2	. 012	ND	NA
		PPM	PPM	PPM	Co	S	Fe
		Cu	Ni	Zn			
G 51613	B-3	120	160	55	-	-	7.9
14	B-4	30	785	85	. 009	-	9.0
15	B-5	25	570	145	. 007	-	7.1
16	B-6	75	120	60	-	-	5.2
17	B-7	565	160	80	. 006	-	8.1
18	B-10	195	160	85	. 006	-	9.0
19	B-14	90	710	55	. 011	-	11.4
20	B-16	235	530	90	. 010	-	11.6
21	B-17	20	325	85	. 009	-	10.2
22	B-22	20	70	50	. 007	-	10.1
23	B-23	40	905	65	. 012	-	NA
24	B-24	35	70	65	. 007	-	10.5
25	B-25	165	1010	130	. 015	-	12.1
26	B-27	110	160	90	. 008	-	8.2
27	B-29	-	930	90	. 023	2.1	14.8
28	B-32	75	90	65	. 011	-	11.1
29	B-33	20	530	125	. 008	-	8.6
30	B-37	50	60	25	-	-	3.3
31	B-38	25	55	60	. 009	-	10.7
32	B-39	300	135	55	. 008	0.7	7.7
33	B-40	130	165	60	-	-	6.3
34	B-41	120	230	85	. 007	-	7.8
35	B-42	55	180	70	. 007	-	7.0
36	B-43	185	405	75	. 006	-	5.4
37	B-46	315	315	20	-	0.8	NA
38	B-46B	10	700	85	. 007	-	6.9
39	B-47	680	645	20	. 01	1.4	NA
40	B-48	100	70	20	-	-	2.8
41	B-50	15	70	40	-	-	5.2
42	B-51	50	95	45	-	-	5.9
43	B-52	35	75	30	-	-	3.6
44	B-53	45	80	60	-	-	8.8
45	B-56	70	80	25	-	-	2.6
46	B-58	45	120	105	. 007	-	8.4

Assay No.	Field No,	Assays					
		PPM	PPM	PPM	Co	S	Fe
		Cu	Ni	Zn			
G 52604	12H74	100	780	80	. 010	. 6	13.0
05	2EH74	55	1110	70	. 014	ND	14.6
06	3EH74	110	1100	95	. 014	ND	10.8
07	$4 \mathrm{EH7} 4$	75	990	100	. 013	ND	14.0
08	5 EH 74	165	1745	85	. 022	1.7	29.1
09	6 EH 74	80	820	110	. 011	. 6	10.3
10	7 EH 74	40	1030	70	. 013	ND	13.9

BELACOMA PROPERTY
LOCATION MAP

SCALE: $1^{\prime \prime}=4 \mathrm{MI}$.

This seatevey 2.126 多 is convener ely

GEOPHYSICAL－GEOLOGIc
 TECHNICAL DATA

52C11NE0048 2． 1763 HALKIRK \＆FARRINGTON
900

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION，CONCLUSIONS ETC．

Type of Survey Geological，Magnetometer，Electromagnetic

Township or Area Halkirk
Claim holder（s）Belacoma Mines Limited
Survey Co．Canadian Nickel Co．Ltd．

AIRBORNE CREDITS（Special provision credits do not apply to airborne surveys） Magnetometer \qquad Electromagnetic \qquad Radiometric （enter days per claim） \qquad
DATE：Oct．15／75 SIGNATURE：$\frac{\text { AUthor of Report or Agent }}{\text { Ot h }}$ PROJECTS SECTION LD
Res．Geol． Qualifications \qquad
Previous Surveys \qquad

Checked by \qquad date \qquad

GEOLOGICAL BRANCH \qquad

Approved by \qquad date \qquad

GEOLOGICAL BRANCH \qquad

[^0]\qquad date

$\left.\begin{array}{|c|}\hline \text { MINING CLAIMS TRAVERSED } \\ \text { List numerically }\end{array}\right]$.
obikoea lake m. 2126

Area covered by Mag survey

OBROBA LAKE M.2VG

Area covered by EM. Survey

[^0]: Approved by

