

52013NW8305 2.15022 MENARY

010

WESTERN TROY CAPITAL RESOURCES INC.

EXPLORATION PROGRAMME ON THE MENARY TOWNSHIP PROPERTY MENARY TOWNSHIP DISTRICT OF KENORA ONTARIO

2.15022

Qual. No. 2.13017.

Christopher A. Wagg Wayne E. Holmstead

December 15, 1991

W. E. HOLMSTEAD AND ASSOCIATES INC.

52013NW8305 2.15022 MENARY

Ø10C

TABLE OF CONTENTS

Introductionl
Property Description2
Previous Work
Geology
Present Exploration Programme8
Results
Discussion
Conclusions
Recommendations
Bibliography24
Certificates

APPENDICES

Appendix 1: Sample Descriptions and Assays Appendix 2: Photos of Veins at Wagg Showing

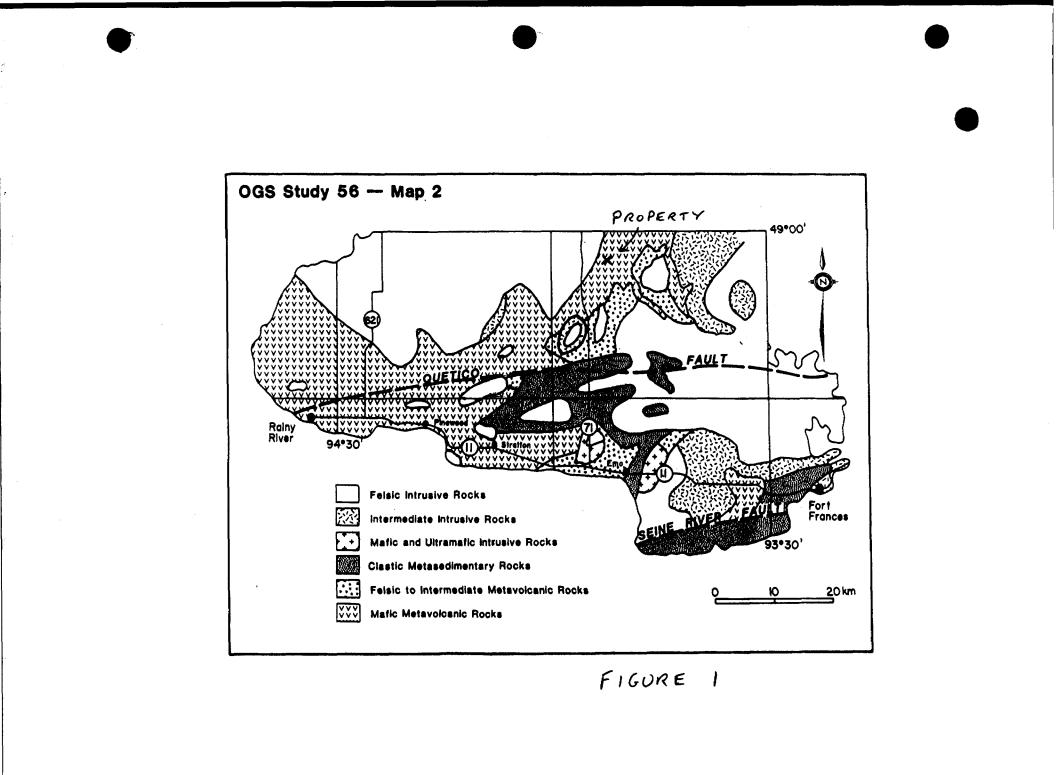
FIGURES

Figure	1:	Property Location and Regional Geology
Figure	2:	Past Exploration Work
Figure	3:	Geophysical Compilation
Figure	4:	Regional Geology
Figure	5:	Agassiz Gold Showing
Figure	6:	Agassiz Gold Showing, South Exposure
Figure	7:	Vein Locations, Wagg Showing
-		Veins A and B, Wagg Showing,
		Veins C and D, Wagg Showing
Figure	10:	Veins E and F, south portion, Wagg Showing
Figure	11:	Vein F, north portion, Wagg Showing
Figure	12:	Agassiz Gold Showing, New Discovery

MAPS

Map 1: Gold Showings, Topography and Claim Locations Map 2: Property Compilation, North Sheet Map 3: Property Compilation, South Sheet

INTRODUCTION


The Menary Township property was acquired in the spring of 1989 for its potential to host base metal and gold mineralization. It was optioned by the principals of Western Troy Capital Resources from Richard Roy and Joseph Lariviere of Thunder Bay, Ontario.

The property is situated along the western margin of a greenstone belt in the Off-Burditt Lake geological area. The claims are readily accessible via logging road 404, which extends to the east from Highway 71 between the town of Nestor Falls and the village of Finland, approximately half way along the route from Fort Frances to Kenora. (See Figure 1)

At the time of acquisition the property consisted of nine contiguous mining claims. The claims were known to host a gold showing (Agassiz Showing) which had been discovered during a base metal exploration programme carried out in the area by Agassiz Resources Ltd. between 1983 and 1985. The showing consisted of a 2.5 metre wide shear zone within mafic metavolcanics, which had been exposed by stripping for a length of 12 metres. The zone contained stringers and lenses of quartz, and exhibited strong chlorite and moderate to strong calcite alteration. Chip samples had assayed from 0.01 to 0.16 ounces per ton gold across widths of 2.1 to 3.0 metres (Clark, 1989).

The property has been enlarged several times and presently consists of 132 contiguous, forty acre units (See Map 1). There have been two periods of work on the property by its present owners, both under the supervision of programme management consultant W. E. Holmstead and Associates Inc. of Kingston. Line-cutting, geological, magnetometer, VLF-EM, surveys were completed over 30 of the claims in 1989 by Oval Bay Geological Services Inc. of Thunder Bay. At that time, two locations along a tuffaceous metasedimentary horizon hosting base metal mineralization, and the known gold showing, were mechanically stripped and chip sampled. In addition, a test induced polarization survey was completed at the gold showing and over a portion of the largest tuffaceous horizon.

The second period of work in was done in 1991 and consisted of investigating geophysical anomalies, prospecting, hand and mechanical sampling, beep mat survey and abundant sampling. New, low grade, zinc and copper bearing zones were found within tuffaceous metasediments, and several zones of native gold bearing quartz veins were discovered. Subsequently, additional claims were staked.

PROPERTY DESCRIPTION

The Menary Township property consists of 132 contiguous mining claims. Claim locations are shown on Map 1 which depicts the claim group and the primary logging roads crossing the property. The roads are in good shape, and gravel deposits on claims 1092636, 1092637, and 1092641 contain sufficient material to maintain or expand the road system.

Timber harvesting operations were completed over most of the property within the past fifteen years. The regrowth is primarily natural, with jackpine being commonest in areas of frequent outcrop, and poplar and lesser birch becoming abundant where soil depths increase. Red and white pines are found almost exclusively within a few small planted areas. Spruce and cedar are infrequent and largely restricted to damp or swampy areas.

Outcrop exposure is good to excellent except along the northwestern margin of the claim group, where swamps or gravel deposits commonly.overlie the contact between metavolcanics to the southeast and the poorly exposed granitic rocks to the northwest. The remainder of the property is dominated by gentle slopes, with areas between outcrops covered by gravelly glacial deposits rarely exceeding a few metres thickness. Several linear swamps, creek valleys, and northwesterly facing cliffs, which parallel the northeasterly trend of rock units, provide topographic relief of up to twenty five metres in places.

PREVIOUS WORK

In the Off-Burditt Lake area, the first documented exploration work was undertaken in the 1930's. Most work has taken place a considerable distance to the east of the property, within an intermixed mafic to felsic volcanic cycle which is younger than the predominantly mafic cycle (Blackburn, 1976) within which the property is situated. Most of the recent efforts have been initiated by major mining companies seeking base metal deposits.

The only significant exploration to have taken place around the Menary Township property occurred in the early 1970's and again in the early 1980's.

In 1974, Hudson Bay Exploration and Development Company Ltd. drilled two holes totalling 509 feet near the northeast corner of the current property, as shown in Figure 2. The holes intersected an intermediate to felsic, tuffaceous horizon mineralized with pyrrhotite, pyrite, minor sphalerite and chalcopyrite.

Between 1983 and 1985, Agassiz Resources Ltd. held claims covering much of the original property. Magnetometer, VLF-EM, geological, and lithogeochemical surveys were completed in search of base metal deposits. Some horizontal loop (EM) work and stripping was completed in areas exhibiting the greatest potential to host base metal sulphides. The gold showing located at L 15+15 N, 12+60 E on the present grid, was discovered during this time.

A 1976 report by C.E. Blackburn, currently the Kenora District Resident Geologist with the Ministry of Northern Development and Mines, contains the most recent government geology map to include Menary Township at a scale appropriate for the purposes of exploration.

A reconnaissance till sampling report by A.F. Bajc, published in 1988 by the Untario Geological Survey, identified an area in the south-central part of the claim group where high numbers of gold grains occur within till. The approximate position of a sample containing ten abraded gold grains is shown in Figure 3.

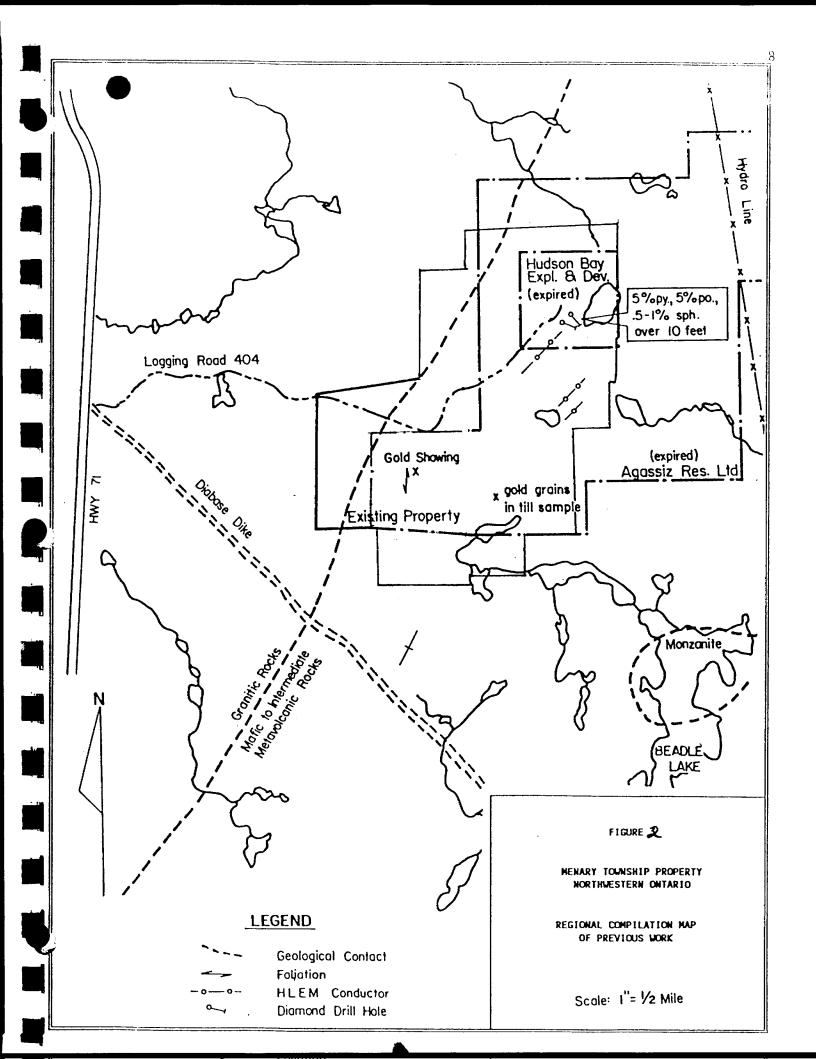
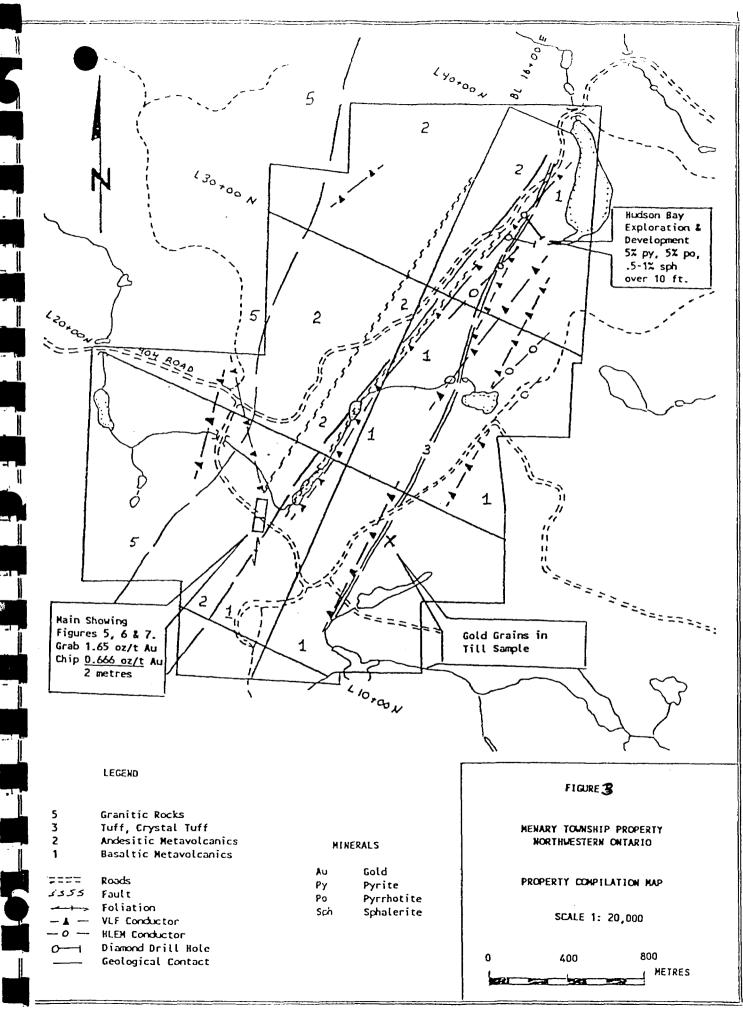
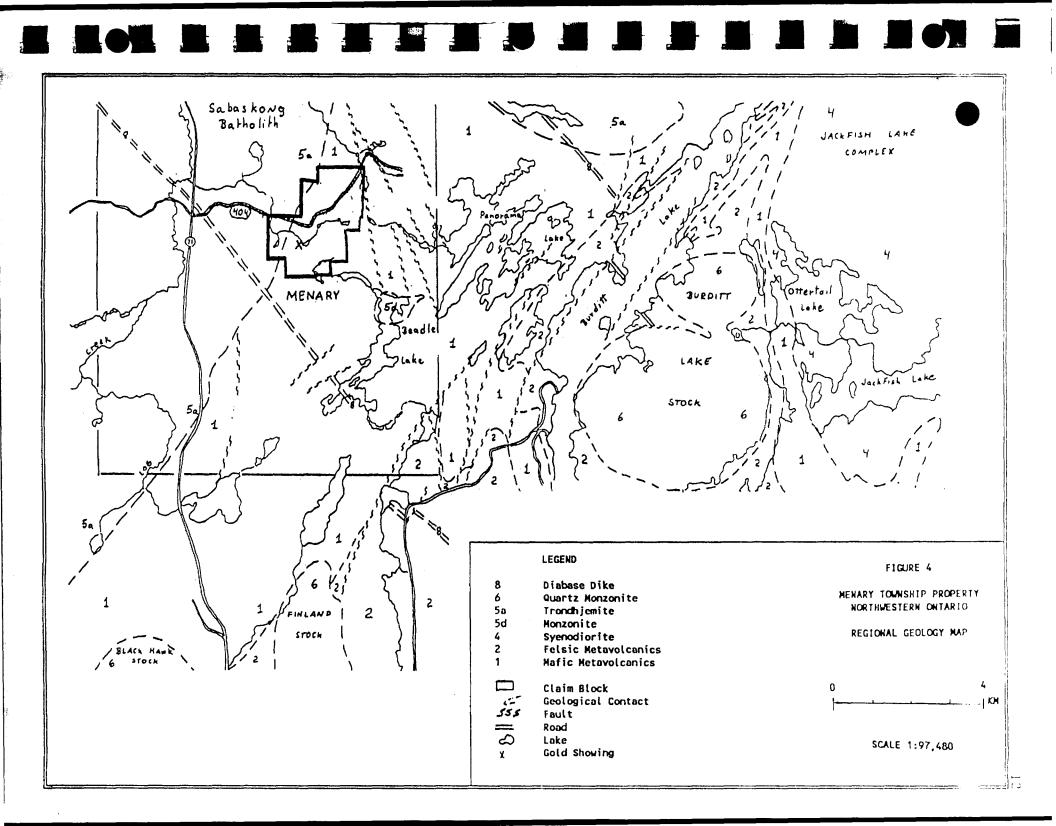



Figure 3 is a compilation of the work completed on the property up to the end of 1989. It was prepared by Oval Bay Geological Services Inc., and is included in a report on the exploration potential of the Menary Township property (Clark, 1989b). The report includes more thorough sections on previous work and regional geology than does this report, and also contains complete discussions of the geological, magnetometer, and VLF surveys completed in 1989.

A test induced polarization survey and some stripping was completed during 1989, over both the gold showing and a stratigraphic unit known to host base metal mineralization. The induced polarization survey did not detect an anomaly at the gold showing, and revealed a very weak conductive zone around the base metal mineralization. The results of the stripping and sampling programme did not warrant immediate drill testing of either target.

An airborne magnetometer and VLF-EM survey, which covers portions of the topographic map sheets 52C/13 and 52F/4, includes most of the property within the boundaries of Map 81507. The survey was flown for the Ontario Geological Survey, and the maps released late in 1990. Several VLF anomalies are shown as occurring within the claim group. Of the anomalies on the original property, all but one have been investigated to some degree by previous operators and the current property owners. The untested anomaly is plotted on Figure 3. It has a strike length exceeding two hundred metres, and exhibits the strongest (airborne) response of any of the anomalies on the property. The anomaly parallels a northeasterly striking lineament, and is coincident at its western end with a swamp through which lines were not cut because of standing water. At its eastern end a weak response to ground VLF was previously dismissed as being due to conductive overburden within the lineament.

GEOLOGY


The claim group is situated along the northwestern margin of a greenstone belt of Early Precambrian age (See Figures 1 and 4). The belt strikes northeast-southwest in the area of Menary Township, and is about eight kilometres wide. Blackburn (1976) has observed two distinct sequences of metavolcanic rocks in the surrounding region. An upper sequence of mafic to felsic metavolcanics overlies a lower sequence of massive, porphyritic , and pillowed mafic flows intruded by numerous guartz-feldspar porphyry dykes. Each sequence has been subdivided into a number of zones based upon the predominant type of rock in the area. The present property encompasses the lower mafic sequence and includes a portion of each of the five zones (Blackburn, 1976). The metavolcanics young to the southeast and appear not to have been disrupted by any major folding.

Several periods of intermediate to felsic intrusive activity have been interpreted to be concurrent with deformation and regional metamorphism (Blackburn, 1976). Metamorphic grade varies from lower greenschist throughout most of the greenstone, increasing to lower amphibolite around the intrusives and the margins of the belt. Northwesterly trending diabase dykes postdate regional metamorphism.

Figures 1 and 4 illustrate the location of the property and the distribution of major rock types in the region. The claim group covers a portion of the oldest metavolcanic rocks in the area, along the contact with the Sabaskong Batholith of trondhjemitic composition.

A considerable distance to the north along the volcanicintrusive contact, near the northeastern termination of the batholith, there is a gold showing which displays characteristics similar to one of the new showings on the Menary Township property. The Bethune Occurrence appears on Map 2430 (Edwards, 1981) and is described as a quartz vein in mafic metavolcanics near the contact with a gabbroic intrusive.

A report by Clark (1989b) describes in some detail the rock types, textures, and structures encountered on the property. The accompanying map is accurate, and the author of this report suggests only one significant modification. The distinction between the rocks mapped as andesitic and those mapped as basaltic is likely due to a subtle alteration of plagioclase to albite and epidote (+/- guartz), in proximity to the margin of the batholith; and probably does not reflect any initial difference in bulk chemistry prior to the emplacement of the batholith.

A brief summary of the property's geological characteristics, from northwest to southeast, is as follows. The contact between the fairly massive rocks of the Sabaskong Batholith and the well foliated metavolcanics strikes 40 to 50 degrees, dipping sub-vertically to 70 degrees to the east. Adjacent to the batholith, there is a package of massive to pillowed metabasalts exposed for a thickness of about 400 metres in the southwest part of the property, which increases to around 1000 metres thick along the northern claim line. The pillowed flows occasionally exhibit a poorly developed variolitic texture.

Granitic dykes and numerous small bodies of feldspar and quartz-feldspar porphyry have been emplaced subparallel to the northeasterly trend of individual flows and foliation. Shear zones up to two and a half metres wide, displaying varying degrees of chloritization, calcite alteration, pyrite mineralization, and quartz veining or silicification, are not uncommon. The shears are commonest and best developed immediately adjacent to porphyries.

Overlying the package of metabasalts described above, is a series of flows containing a number of tuffaceous to chemical metasedimentary horizons. The flows range from gabbroic textured to pillowed, with porphyritic varieties occurring in places along the eastern property boundary. Altered shear zones are present in the lower section of this upper package of metabasalts, but were not seen further to the southeast.

tuffaceous Α number of horizons are present in the They range from maficsoutheastern third of the property. intermediate, through to intermediate-felsic in composition, or chemical and contain some clastic sedimentary all component. The tuffs strike approximately 30 degrees and dip on average 75 degrees to the east. All of the tuffaceous sheared to some extent, but exhibit no horizons are significant alteration. Only one non-tuffaceous shear zone was found within this portion of the property, suggesting that altered and quartz veined shear zones will be largely confined to the older series of flows to the northwest, where permeability along developing shears appears to have been sufficient for large scale fluid migration during deformation.

One pyritic alteration zone with guartz stringers was found near the northeastern corner of the property, however, in contrast to the previously described zones, a strong and pervasive iron carbonate alteration had occurred, without shearing or chloritization accompanying it. The zone was found close to the edge of a sizeable body of guartz-feldspar porphyry, and likely bears some genetic relationship to it. The margins of this large body of porphyry do not appear to have been a particularly favourable site for guartz veins or gold mineralization to have developed.

PRESENT EXPLORATION PROGRAMME

The 1991 exploration programme commenced in May with three weeks of fieldwork by Chris Wagg, assisted by Mel Galbraith of Emo, Ontario. During this period, the known gold and base metal showings were re-examined briefly, all areas exhibiting anomalous geophysical responses were prospected, and a relatively thorough search for new zones of mineralization was carried out over the entire property.

Beepmats manufactured by Instrumentation GDD Inc. were used to localize conductive zones detected by geophysical surveys, and for much of the prospecting. Beepmats are electromagnetic instruments capable of detecting sufficiently conductive or magnetic material through up to five feet of overburden. Although the beepmats did not pick up every mineralized portion of the tuffaceous horizons, they were useful in discriminating mineralization worthy of sampling from weaker mineralization containing very low base metal values.

A total of 93 rock samples were collected from the property during May. Sample locations appear either on the large maps accompanying this report, the detail map of the northern gold showing, or on the trench plans of the Wagg gold showing. Sample results are presented in Appendix 1 which also contains descriptions of the samples. Sample analyses were performed by Bondar-Clegg and Company Ltd. of Ottawa. Eight samples in which the presence of native gold was known or suspected were subjected to a pulp metallics (sieve) analysis. The remainder were analyzed for gold and 29 other elements with the ICP (geochemical) method.

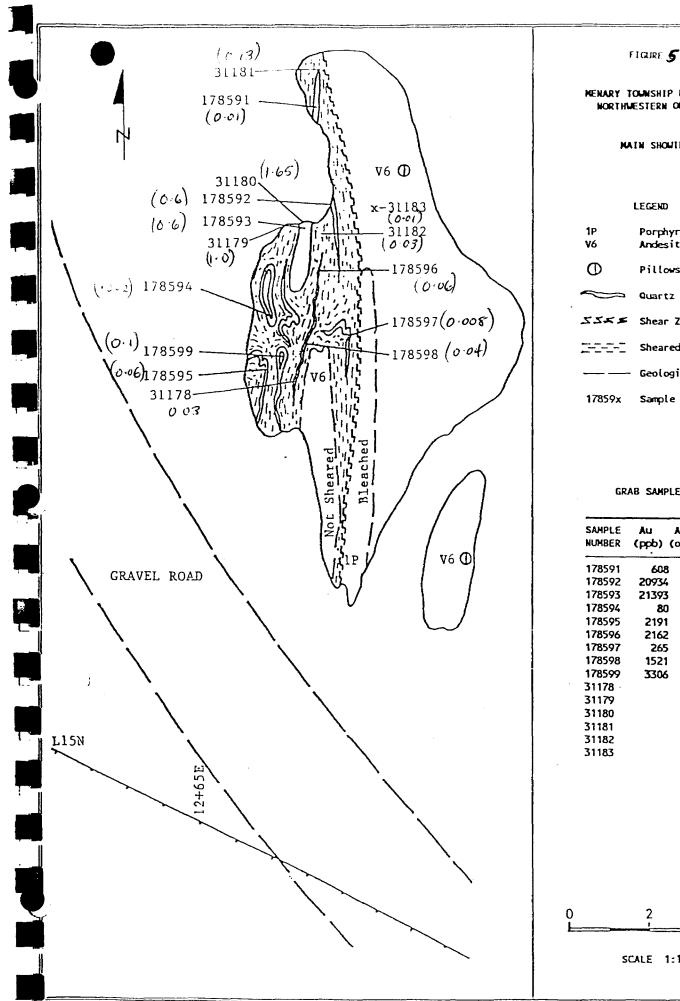
A second period of fieldwork was completed between mid July and late August. Chris Wagg was assisted during this time by Mel Galbraith of Emo, Ontario, and Robert Dillman of London, Ontario. The programme consisted of intensive prospecting of the metabasalts adjacent to the contact with the batholith. A programme of overburden trenching, using explosives and a pressure pump, was completed at the Wagg gold showing. Systematic chip and channel sampling was carried out, and the immediate vicinity of the showing was mapped at a scale of 1:500. The results of the mapping appear as Figures 7-11.

A total of ninety samples were collected from the property and the surrounding area. Forty samples were obtained from stripped quartz veins at the Wagg showing. Another eleven were collected nearby. The remaining samples were collected during prospecting, and virtually all were from quartz veins.

All samples were analyzed by Accurassay Laboratories, a division of Barringer Laboratories Limited. All of the samples from stripped areas, and a few of those obtained during prospecting were analyzed using the cyanide leach method. The remainder were fire assayed. The leach method involves crushing the sample submitted to "reject" size, randomizing, and the splitting off of a 300 gram to 1500 gram sub-sample. The sub-sample is then crushed to 98 percent -150 mesh, and about 80 percent of the pulp is tumbled in a hot cyanide solution for several hours. The cyanide solution is then analyzed for gold content, and the pulp residue fire assayed. The total gold content, and the percentage of gold recovered by cyanidation was then calculated. This method provides more statistically reliable analyses of rocks containing free gold than do either conventional fire assays or pulp metallics assays. The primary advantage of the leach method over others, is that a much larger percentage of the sample submitted is subjected to analysis. This is especially important for samples containing a sizeable grains rather than many small particles of gold.

RESULTS

The initial work on the property was focused on the sulphide bearing tuffaceous units and the results of geophysical surveys done in 1989. Samples from tuffaceous metasedimentary units typically returned gold values well below 100 ppb. Excluding one grab sample result of 1.18 percent copper, and a sample from a glacially transported boulder of 4.03 percent zinc, all copper values were below 0.4 percent, and all zinc values were below 0.6 percent.


An Ontario government airborne geophysical survey released in 1990 shows a strong conductor occurring within a swampy area in the southeastern part of the property (see Map 1). Ground geophysical surveys in 1989 did not cover the area because of the standing water and ground follow-up was not successful due to heavy overburden cover.

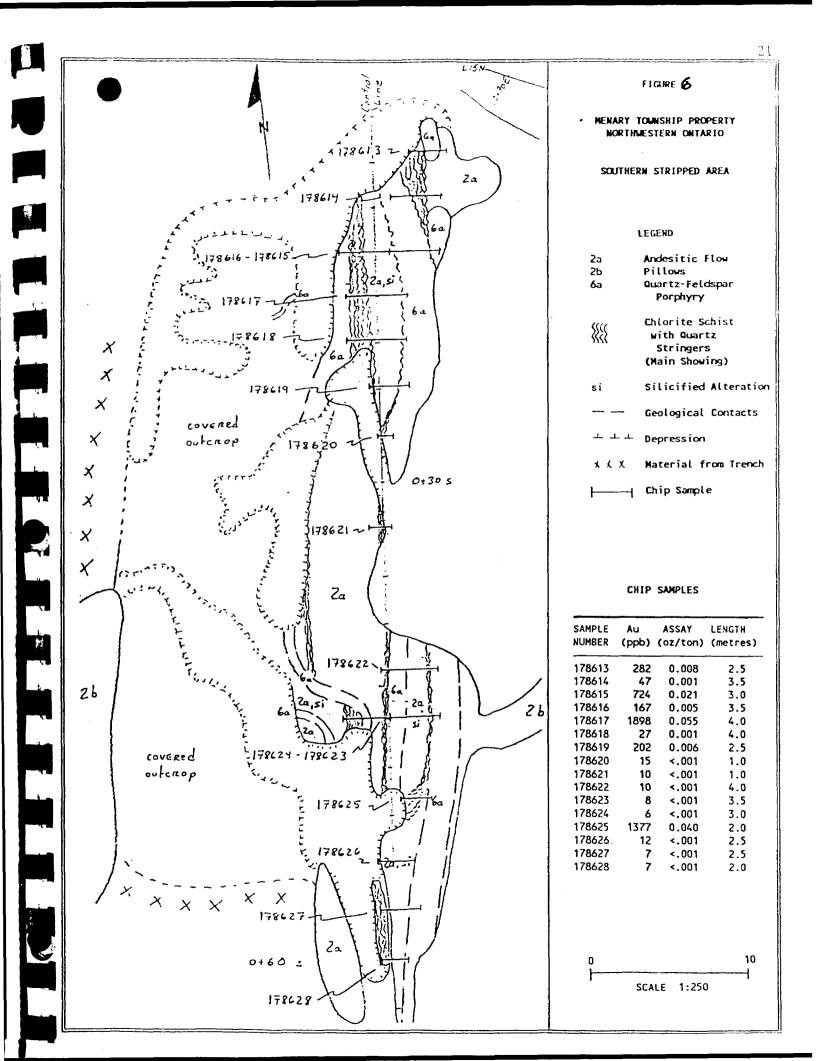
Several new areas of gold mineralization were discovered during prospecting and each of these are described below.

Agassiz Gold Showings

At the original gold showing, discovered by Agassiz Resources Ltd., deformed quartz lenses and stringers occur within a north-south striking, discontinuous, chloritized and calcite altered shear zone mineralized with minor pyrite (See Figures 5 and 6). The shear is up to 3.0 metres wide in places, dips sub-vertically, and is associated with the margins of irregularly shaped quartz-feldspar dykes. Grab samples of quartz lenses have returned gold values up to 1.65 oz./ton, and chip samples have returned up to 0.666 oz./ton across two metres (0.427 oz./ton across 4.0 metres) (Larouche, 1990) from an area at L 15+52 N, 12+55 E located just north of the road crossing the showing. The zone could not be traced further to the north, but it appears to be curving to the west somewhat at its northern end. The zone has been traced by stripping for about sixty metres to the south. South of the road, most chip samples have assayed only trace levels of gold. A few samples have returned values up to 0.055 oz./ton gold.

This zone was not stripped or re-sampled in 1991. Assays suggest the presence of native gold within quartz lenses and stringers, however, the sheared rock appears to carry little if any gold.

MENARY TOWNSHIP PROPERTY NORTHWESTERN ONTARIO MAIN SHOUTING LEGEND Porphyry Andesite Pillows Quartz Veins Shear Zone Contact Sheared Volcanics Geological Contacts Sample Number


20

GRAB SAMPLES

_		
SAMPLE	Au /	ASSAY
NUMBER	(ppb) (oz/ton)
178591	608	0.018
178592	20934	0.609
178593	21393	0.623
178594	80	0.002
178595	2191	0.064
178596	2162	0.063
178597	265	0.008
178598	1521	0.044
178599	3306	0.096
31178		0.028
31179		1.05
31180		1.65
31181		0.13
31182		0.026
31183		0.01

SCALE 1:100

4 m

About 100 metres to the west of the original showing, (L15+50N, 11+50E) a new gold showing was discovered during the present work programme (see Figure 12). Grab samples from quartz lenses have assayed 0.376, 0.987 (1.129 check), and 2.548 ounces per ton gold. Several closely spaced quartz lenses strike 10 to 20 degrees and dip sub-vertically to about 60 degrees westerly. The stripped area and sample locations are depicted in Figure 6. The lenses measure about ten centimetres wide by two to three metres long, and appear to fill dilation/fracture zones within well foliated to weakly sheared mafic metavolcanics. The guartz is sugary and iron stained, and contains several percent fine pyrite and a similar amount of chlorite disseminated as flakes. There is no noticeable alteration to wallrocks. The stripping could not be continued to the north or west due to increasing depth of the gravelly overburden. No evidence of veining was observed immediately across the road to the south.

About 100 metres across strike to the west from the latter showing, a poorly exposed zone of silicification and veining was grab sampled in three locations near L15+50N, 10+50E (See Map 3). The samples returned gold values of 1467 ppb (0.043 oz./ton), 49 ppb, and 75 ppb. No mineralization was observed within any of the samples. The zone approaches 2.5 metres in width where exposed, strikes north-south, and dips about 75 degrees to the west. The silicious zone outcrops again about 25 metres to the south, but was not sampled at this point.

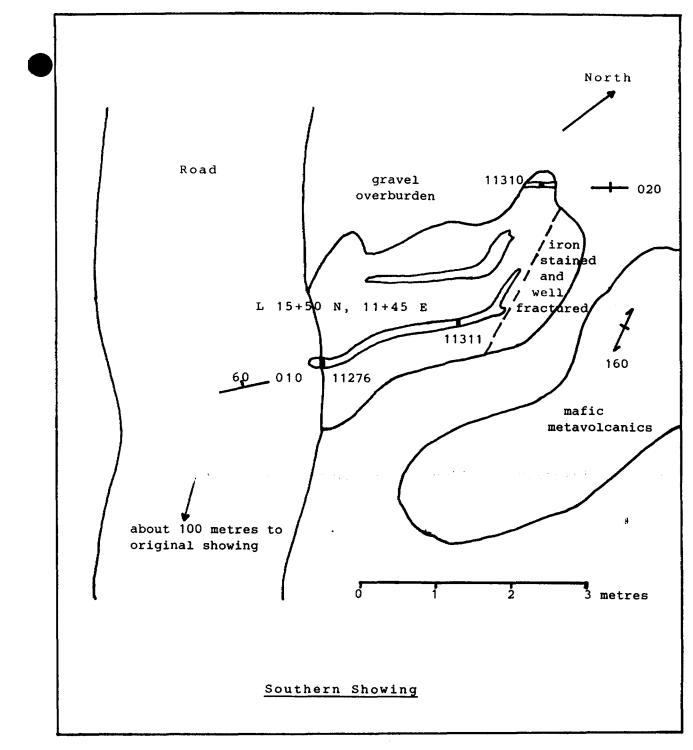
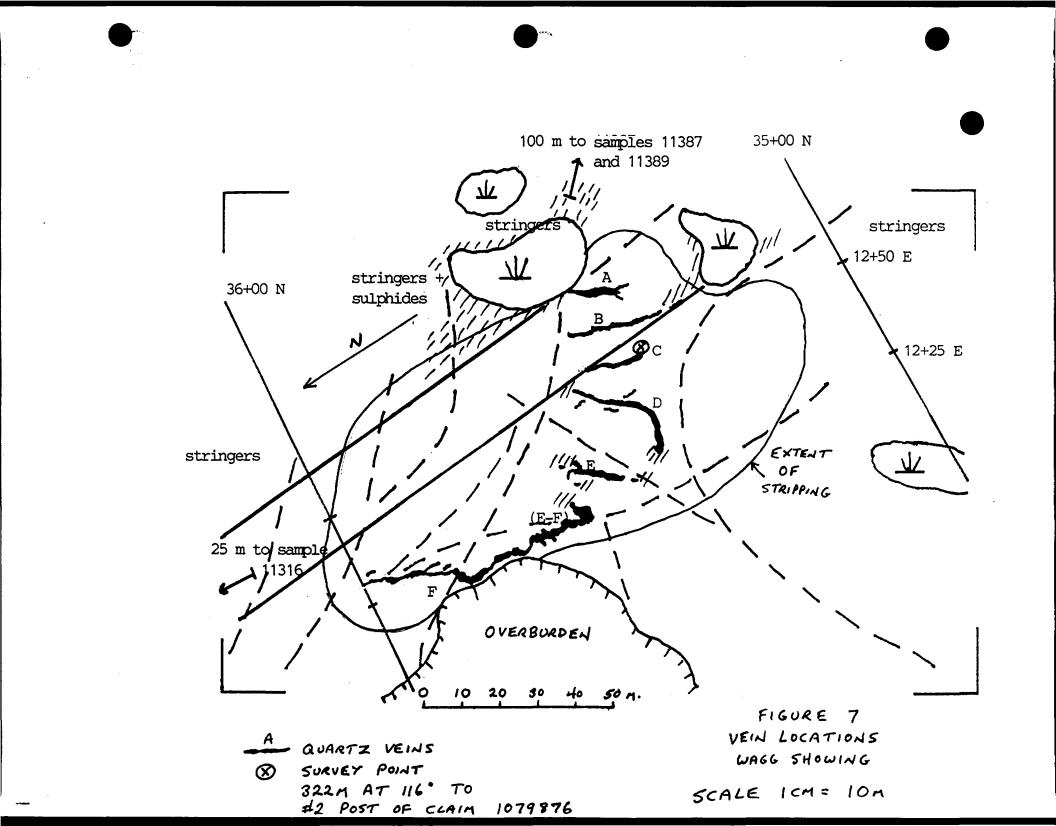


FIGURE 12

••••

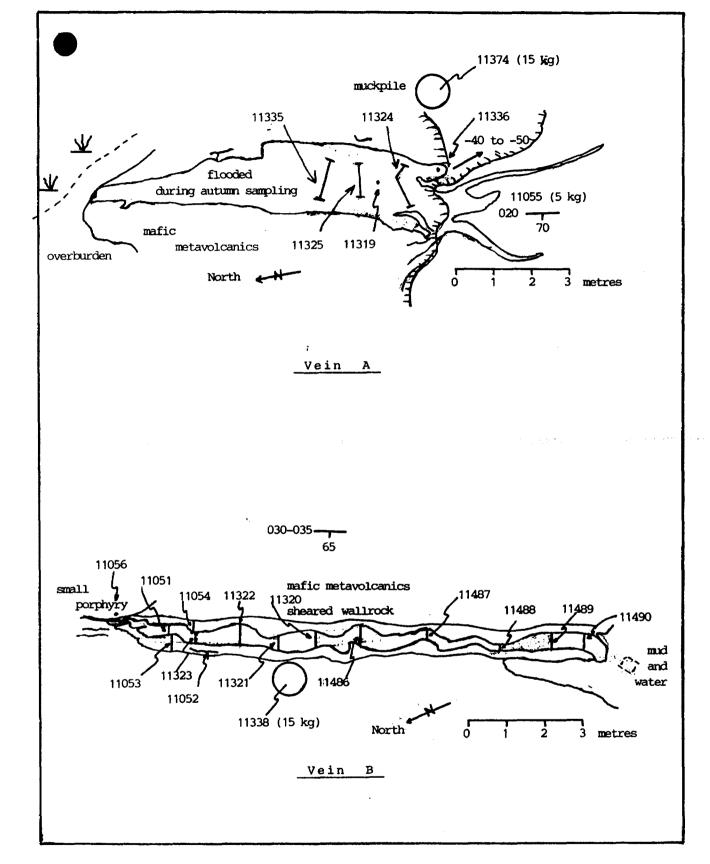

Wagg Gold Showings

During the summer stripping and sampling programme, the area around the Wagg Showing was mapped at a scale of 1:500. Following a mechanical stripping programme completed in September, new exposures of quartz were sampled. Figure 7 shows the position of each of the main veins that were sampled. This figure was derived from a photo taken from above from a helicopter and this slightly oblique view was used as a key map for photos of individual veins in Appendix 2.

Figures 8-11 show all samples taken from the major veins at the Wagg Showing. Additional samples numbered 11432 to 11461 were collected every 15 to 25 meters, beginning at the granitic contact and extending in an easterly direction to cross the area of the Wagg showing. The samples were analyzed for gold and 29 other elements by the ICP method in order to determine if there is an identifiable alteration halo, trace element enrichment or depletion in the country rocks in the vicinity of the gold mineralized quartz veins.

Figure 7 shows how the distribution of the major quartz lenses that have been stripped suggests that they are folded boudins resulting from several periods of deformation which affected a single continuous quartz vein. The quartz lenses commonly display bifurcations and irregular offshoots. Evidence of both brittle and ductile deformation can be recognized in the veins and the surrounding country rock. The lenses pinch and swell, and frequently exhibit tight minor folds which plunge moderately to steeply, primarily to the south. Walls of the major quartz lenses vary from curvilinear to jointing controlled, and smaller more planar veins frequently jump irregularly along joints while maintaining a relatively constant north to northeasterly strike.

The quartz lenses which have been exposed by stripping average from 0.5 to 2.0 metres in width, and most dip steeply to the west. "Vein D", which trends roughly east-west at the south end, dips to the north.

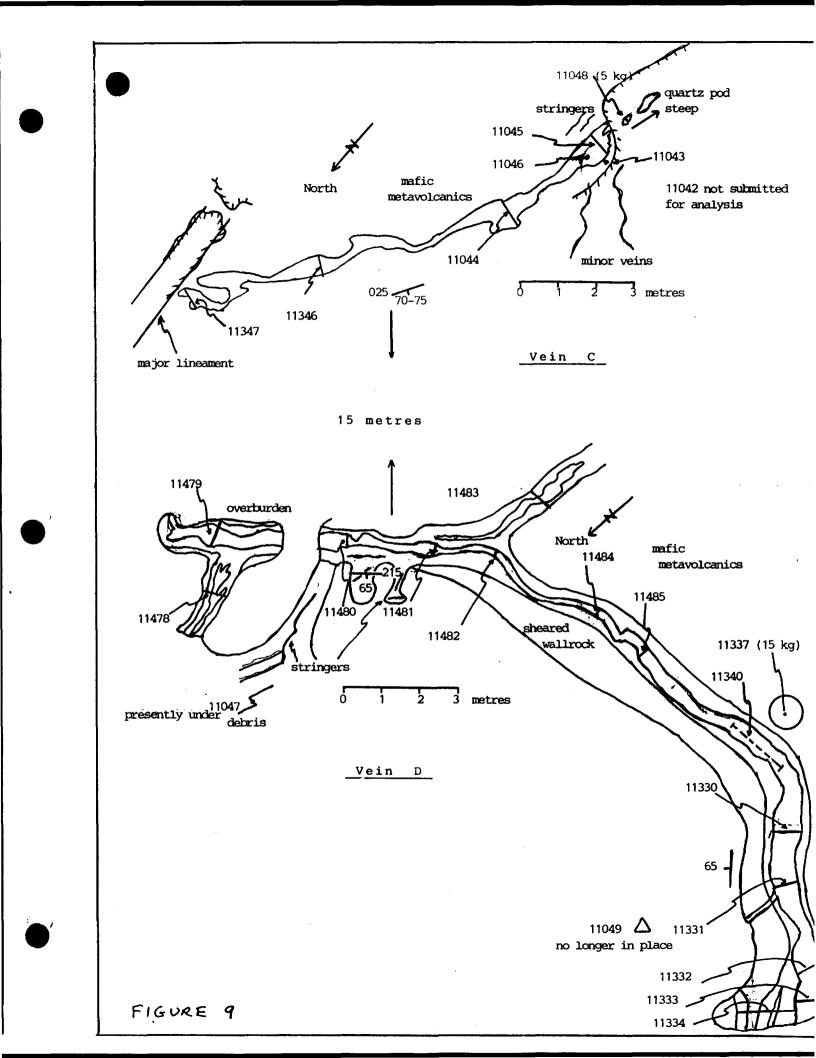

Vein A is located at the most easterly point of the zone (See Figure 8). Here a 0.5 to 1.75 meter wide vein was uncovered for a length of about 13 meters. At the south end the vein terminates into quartz stringers and at the north end the vein runs into a swamp. A 10 kilogram, representative, composite sample from this vein averaged 0.939 ounces per ton gold. The arithmetic average of 7 samples taken in the quartz vein was 2.932 oz/ton. The following samples were taken from this vein;

	Sample	Туре	Gold(oz/ton)	Comment
P	11055	grab	0.064	quartz
P	11319	grab	3.171	quartz
P	11324	channel(1.0 m)	2.848	quartz
P	11325	channel(0.85 m)	0.765	quartz
	11335	chip(1.0 m)	0.778	quartz
¢	11336	grab	11.96	quartz

Further sampling of this vein was not possible due to flooding at the north end.

Vein B was located about 10 meters west of Vein A (See Figure 8). The vein here averages 0.5 meters in width and was traced for about 13 meters. At the north end the vein is cut by a porphyry intrusive and at the south end the vein runs into an area that was covered with mud and water. A 10 kg, composite sample of the vein assayed 1.046 oz/ton gold. The arithmetic average of eleven samples taken in the quartz was 1.251 oz/ton. The following are the samples taken on this vein;

	Sample	Туре	Gold(oz/ton)	Comment
P	11051	chip(0.3 m)	0.215	guartz
M	11052	grab	108 ppb	mafic
M	11053	chip	61 ppb	mafic
m	11054	chip	48 ppb	mafic
n	11056	grab	20 ppb	porphyry
ρ	11320	channel(0.6m)	0.425	quartz
P	11321	channel(0.45 m)	0.074	quartz
P.	11322	channel(0.7 m)	0.166	quartz
P	11323	channel(0.35 m)	0.080	guartz
A	11486	chip(0.6 m)	3.576	guartz
A	11487	chip(0.4 m)	0.082	quartz
A	11488	chip(0.2 m)	1.475	guartz
P	11489	chip(0.5 m)	6.495	quartz
ρ	11490	chip(0.3 m)	0.127	guartz

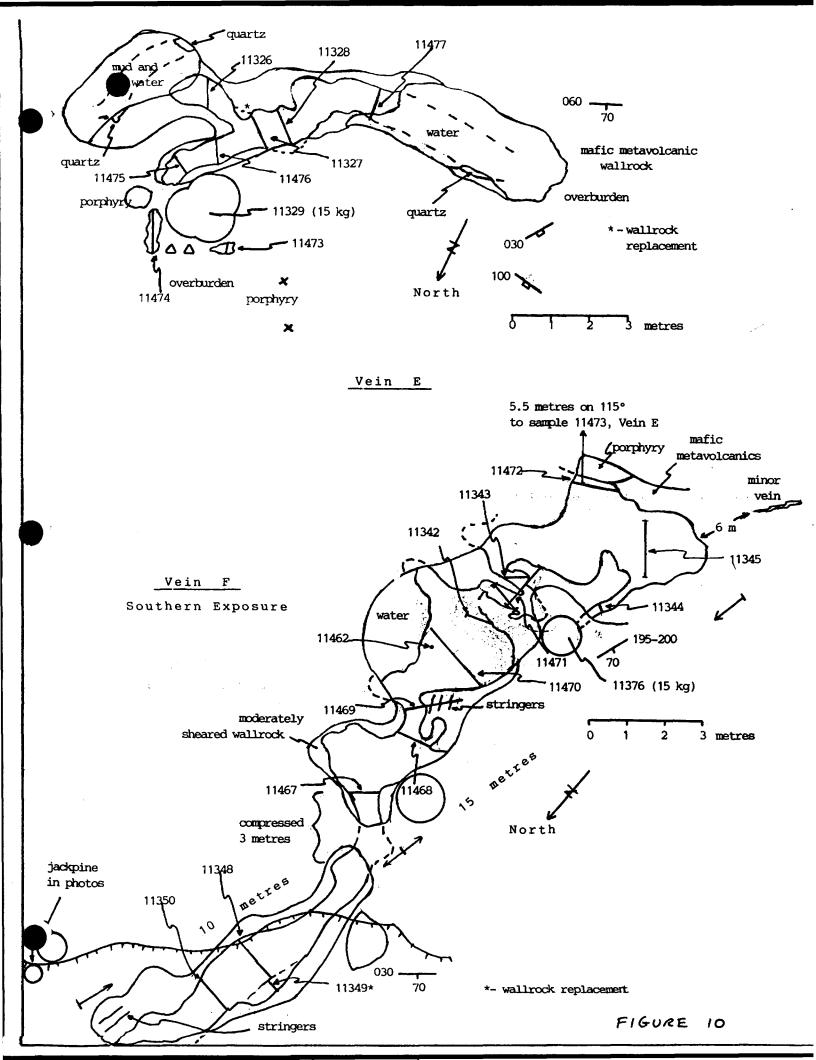

FIGURE 8

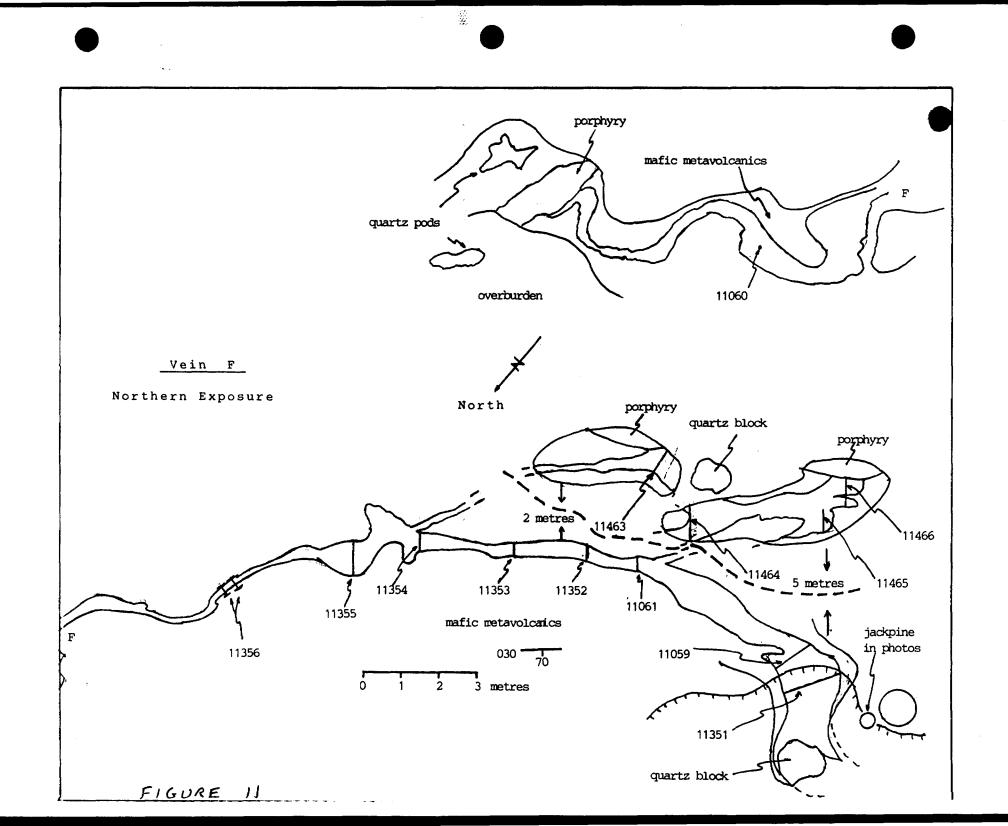
Vein C was located about 20 meters west of Vein B (See figure 9). The vein averaged 0.45 to 0.75 meters wide and was traced for a length of 12 meters. At the north end the vein appears to be terminated by a bedrock lineament and at the south end the vein appears to terminate at the end of the outcrop. The arithmetic average of six samples taken in the quartz was 1.912 oz/ton. The following samples were taken from this vein;

~	Sample	Туре	Gold(oz/ton)	Comment
P	11043	grab	0.033	wallrock
P	11044	chip(0.6m)	9.149	guartz
P	11045	chip(0.7m)	0.259	guartz
-150-150	11046	grab	1.435	guartz
11	11048	grab	0.017	quartz
Ŷ	11346	chip(0.45m)	0.607	quartz
12	11347	chip(0.75m)	0.005	quartz

In Vein D, located about 15 meters west of Vein C, the vein was 0.7 to 0.85 meters wide and was traced for about 24 meters (See figure 9). The vein appears to be open at both ends. A 10 kg composite sample from this vein averaged 1.406 oz/ton gold. At the east end of the trench a composite sample was made from 5 in-situ blocks of quartz covering a length of about 1.75 meters and this sample assayed 0.345 oz/ton gold. The arithmetic average of sixteen samples taken in the quartz was 0.786 oz/ton. The samples from the Vein D are as follows;

0	Sample	Туре	Gold(oz/ton)	Comment
P.	11330	chip(0.85 m)	1.598	guartz
P	11331	chip(0.75 m)	0.449	guartz
P	11332	chip(0.7 m)	0.411	quartz
ŕ	11333	chip(0.7 m)	0.311	guartz
-i²	11334	chip(0.65 m)	0.010	mafic and
.^				qtz
P	11340	chip(1.75 m)	0.345	gtz, along
				strike
Fi	11478	chip(0.5 m)	0.310	quartz
,				offshoot
P	11479	chip(0.5 m)	0.194	quartz and
-				wallrock
p	11480	chip(0.4 m)	2.292	guartz
P	11481	chip(0.3 m)	0.404	quartz
P	11482	chip(0.2 m)	0.228	quartz
	11483	chip(0.5 m)	0.477	quartz
•		••••		offshoot
P	11484	chip(0.25 m)	0.475	quartz
P		chip(0.5 m)	0.089	guartz
$-\dot{\vec{\nu}}$	11486	chip(0.6 m)	3.576	quartz
				-




Vein E was located about 10 meters north of the south end of Vein D and the quartz vein here varied from 0.8 to 0.9 meters in width and was traced for a length of about 11 meters (See Figure 10). The vein appears to be open at both ends. A 10 kg composite sample from this vein averaged 2.045 oz/ton gold. The arithmetic average of ten samples taken from the quartz was 1.274 oz/ton. The following samples were taken from this vein;

Sample	Туре	Gold(oz/ton)	Comment
11326	chip(0.8 m)	0.092	quartz
11327	chip(0.9 m)	1.766	guartz
11328	chip(0.85 m)	2.517	guartz
11329	grab	4.086	quartz
11473	chip(0.3 m)	0.094	quartz
11474	chip(l.l m)	0.354	qtz, along strike
11475	chip(0.5 m)	0.889	guartz
11476	chip(0.7 m)	0.714	quartz
11477	chip(0.9 m)	0.183	quartz

Vein F starts at about 20 meters north of Vein E and extends for about 46 meters north (See Figure 10 and 11). The vein varies from 0.3 to 2.0 meters wide and possibly connects with Vein E to the south and terminates at a porphyry intrusive to the north. A secondary offshoot vein parallels Vein F about 2 to 5 meters southeast of Vein F. Assays from the offshoot vein were considerably lower than those from Vein F. A 10 kg composite sample from Vein F assayed 0.850 og/ton. The arithmetic average of twenty three samples taken from the quartz was 1.137 og/ton. The following samples were taken from this vein;

Sample	Туре	Gold(oz/ton)	Comment
11059	chip(1.0m)	1.479	quartz
11060	grab	0.002	quartz
11061	chip(0.3m)	0.151	quartz
11341	chip(0.7m)	3.054	quartz
11342	chip(0.85m)	2.135	quartz
11343	chip(0.6m)	1.966	quartz
11344	chip(0.3m)	0.890	quartz
11345	chip(1.5m)	0.044	guartz
11348	chip(1.3m)	1.383	quartz
11349	grab	7.453	silicified
			zone
11350	chip(1.1m)	0.260	guartz
11351	chip(1.35m)	0.460	quartz
11352	chip(0.5m)	0.096	quartz
11353	chip(0.4m)	0.040	quartz
11354	chip(0.5m)	0.074	quartz
11355	chip(0.9m)	0.093	quartz
11356	chip(0.25m)	0.085	quartz
~			

11462 11463	grab chip(0.45 m)	7.007 162 ppb	guartz offshoot
11464	chip(0.6 m)	192 ppb	quartz offshoot quartz
11465	chip(0.6 m)	15 ppb	offshoot guartz
11466	chip(0.8 m)	47 ppb	offshoot quartz
11467 11468	chip(0.75 m) chip(1.0 m)	1.318 1.068	guart z guartz
11469	chip(1.5 m)	0.033	quartz and wall
11470	chip(2.0 m)	2.329	guartz
11471	chip(1.5 m)	0.815	quartz and wall
11472	chip(1.5 m)	0.082	quartz

The veins are composed of fine to medium grained sugary quartz, and vary in colour from white to light brown to dark red. The veins tend to be fairly porous throughout, and vuggy sections are common.

Mineralization consists of fine to occasionally coarse native gold, one to two percent fine pyrite, lesser chalcopyrite often coated by covellite, and minute quantities of bornite, molybdenite and native copper. Hematite and limonite amount to one to two percent of the veins as stain and vug coatings. Black hematite crystals were observed at one location and traces of tourmaline have been observed within float vein A pinkish-white mineral that may be either a material. weathering product or a species of potassium feldspar was encountered with some regularity along fractures and the walls of sealed fissures. Gold is most abundant near and along vein walls, in and around vuggy portions of the veins, and in areas exhibiting some degree of structural complexity or strong iron There appears to be little if any correlation staining. between local sulphide abundance and gold content.

Country rock is essentially unaltered adjacent to most veins, and contacts are generally sharp. This appears to indicate that the veins were emplaced along dilation zones controlled by fracturing and jointing. Immediately adjacent to some veins, the rock is more strongly foliated than in the surrounding outcrops. In these areas the rock commonly contains one to 2 percent pyrite, pyrrhotite, or chalcopyrite, subtle chloritization, and exhibits and possibly Along the margins of Veins B and D for up tourmalinization. to 0.5 metres on either side, a sheared, silicified zone with quartz stringers is mineralized with several percent pyrite. Sampling of this zone did not yield appreciable gold values to date.

As can be seen on Figure 7, the zone of veining can be described as an arcuate zone about 125 metres in length and up to 25 metres in width. It extends from about L 36+00 N, 12+15 around to L 35+40 N, 12+85 E. E Several promising assays have been returned by samples taken along strike from either end of the zone of veining. Sample 11316 from L 36+43 N, 12+22 E, where a large number of quartz blocks were discovered, returned 0.238 oz./ton gold. Limited explosive stripping at this location failed to uncover any quartz vein, but given the number of pieces of quartz and the southeasterly direction of ice advance, it is assumed that a source vein is located nearby. At the south end of Vein A, around L 35+00N, 13+75E, a number of veins up to 0.2 metres wide were discovered. Two were observed to contain native gold. Grab samples 11387 and 11389 returned 1.820 and 0.287 oz./ton gold The results from the three samples indicate respectively. that there is potential for additional veining to be discovered in the vicinity of the showing through additional stripping or diamond drilling.

Galbraith Gold Showings

While prospecting in September, Mel Galbraith collected samples from several zones of quartz veining where visible gold was noted. (See Map 1)

At the Galbraith A showing, the original sample was obtained from a poorly exposed 5 to 10 cm wide vein similar in colour and texture to those at the Wagg showing. A poorly exposed vein ranging from 0.5 to 1.5 meters wide, was located about 30 meters north of the first vein. A grab sample taken from this vein assayed 2418 ppb gold. When the showing was revisited a grab sample of the most reddish quartz from the vein was taken and assayed 3.038 oz/ton gold. A grab sample taken from a vein about 20 meters to the west returned 0.002 oz/ton.

At the Galbraith B showing, the initial sample was collected from rubble adjacent to a metavolcanic outcrop. Subsequent hand stripping uncovered several red, sugary quartz stringers, less than 10 cm wide, occurring within a meter of a small porphyry dike. Two grab samples consisting of quartz and lesser volcanic wallrock assayed 2.859 and 1.868 oz/ton gold. Visible gold was observed in the latter sample. A grab sample of porphyry assayed 0.011 oz/ton gold.

A large number of quartz veins occur in the surrounding area, some of which were sampled. About 40 meters north of the Galbraith B occurrence, three grab samples returned 0.023, 0.008, and 0.017 oz/ton gold. A further 25 meters west a quartz pod measuring 0.3-1.0 wide by 10, meters long and open at both ends assayed 0.005 oz/ton in a grab sample and 0.076 (check 0.103) oz/ton in a 0.3 meter chip sample. Two additional veins in the area returned 0.004 and 0.010 oz/ton gold from grab samples.

Other Gold Showings

A large number of additional quartz veins and shear zones were sampled for their potential to host gold mineralization. Samples from four areas of the property returned gold values worthy of mention. (See Maps 2 and 3)

The area around L 29+00 N, 13+25 E was expected to return values comparable to those obtained from the original gold showing. A 2.4 metre wide, chloritized and calcite altered, pyritic, shear zone in mafic volcanics contains a 0.15 metre wide hematite stained, sugary vein of guartz. The zone occurs adjacent to a sheared and altered guartz-feldspar porphyry, containing narrow guartz stringers and carrying several percent pyrite. Although the zone did not return any appreciable gold values, its presence is an encouraging sign. Further work in the immediate area may reveal additional structures or mineralization.

A grab sample taken from a 0.2 to 0.5 metre wide quartz vein exposed for about 20 metres near L 27+55 N, 21+00 E returned a value of 851 ppb gold, and slightly elevated values of chromium, silver, tellurium, lead and bismuth. No further work has been done at this location since the sample was taken.

A grab sample of loose angular vein guartz returned 2059 ppb, 1253 ppb and 2064 ppb gold (average 0.052 oz./ton) from L 21+15 N, 13+10 E, near the major fault striking subparallel to the metavolcanics in the central part of the property. When this area was revisited in August, traces of native gold were observed in the loose piece of rock from which the initial sample was taken. It remains uncertain if the piece sampled is of local origin. Veins exposed in the immediate vicinity have a slightly different texture, and appear to be too narrow to be the source of the loose rock. A grab sample of a narrow quartz vein with sheared wallrocks returned a value of 267 ppb The presence of guartz veining and gold (0.008 oz./ton). several small bodies of porphyry adjacent to a major lineament, and the presence of a 0.5 metre wide quartz vein about 175 metres to the north, suggests that there is some potential for gold mineralization associated with the fault.

DISCUSSION

Several companies have in the past examined various parts of the property in search of base metal mineralization. Results suggest that both the grade and tonnage of the mineralized horizons are too low to constitute an economic deposit in the However, previous work has missed the foreseeable future. strongest airborne VLF anomaly that occurs within the claim An Ontario government airborne geophysical survey aroup. released in 1990 shows a strong conductor occurring within a swampy area in the southeastern part of the property. Ground geophysical surveys did not cover the area because of the standing water. The conductor should be evaluated further as it may be due to better base metal mineralization than any yet encountered on the property. Other sulphide mineralization located on the property did not appear to respond to the airborne geophysical survey.

Gold mineralization has been discovered in several areas of the property during the present investigation. Gold values seem to be restricted to quartz veins within mafic metavolcanics, with the better values being obtained from veins in the older series of mafic flows along the contact Porphyry and felsic dykes are common. with the batholith. within this part of the metavolcanic stratigraphy. Shear zones occurring around porphyry intrusions occasionally host gold bearing quartz veins, and it is likely that both the porphyry melts, and the gold bearing fluids responsible for the quartz veining, were generated by the same fundamental processes in the course of regional metamorphism and felsic intrusive activity.

Several new gold showings have been discovered on the property during the present work programme. One of these was exposed immediately next to a road, only about a hundred metres from the Agassiz showing. The Wagg showing, located two kilometres to the north, contains abundant visible gold, and was well enough exposed that it should have been discovered by past work. This indicates that surface prospecting for gold in the vicinity of the property has been of a cursory nature in the past and should be included in all future exploration programmes.

On a regional scale, the contact between the batholith and the metavolcanics may be an excellent exploration target. The similar stratigraphic positioning of other gold occurrences in relation to the batholith contact would seem to imply this. Access to the batholith margin northeast of the property is quite poor, and in all likelihood this area has seen only very limited prospecting. Within the claim group, quartz veins at the Agassiz showings contain ore-grade gold mineralization, but are narrow and discontinuous. The gold occurs with chlorite and minor pyrite in two different types of quartz veining. The original showing is lenses and pods of cracked and sealed, fairly massive and fine grained, white guartz within sheared volcanics. The shear zone occurs alongside a folded quartzfeldspar porphyry and appears to cross the dyke in places. The newer showing is stringers or small lenses of brownish, medium grained, sugary guartz filling fractures in relatively unsheared volcanics. The style of veining and its high grade bear more resemblance to the Wagg showing than to the Agassiz showing nearby. Additional closely spaced, high grade lenses, or a larger vein may be found nearby. Much of the surrounding bedrock is covered by a layer of gravel at least a half metre There is a possibility of encountering quartz veins thick. mineralized with gold of either type in this area through additional stripping and diamond drilling.

At the Wagg showing a significant occurrence of gold is in the early stages of evaluation. A number of guartz lenses crosscut or truncated by small pods of porphyry have been exposed by stripping and found to contain ore grade concentrations of native gold and trace quantities of sulphide minerals. Many small veins and stringers are present around and between the larger lenses. Although the lenses appear to be boudins attributable to polyphase deformation of a single large vein, many features observed suggest the existence of a fracture controlled vein system.

The Wagg showing is best described as an arcuate zone of veining measuring about 125 metres long and up to 25 metres wide. A concentration of quartz blocks along strike to the north, and the presence of native gold in two narrow veins along strike to the southeast suggest that further work will extend the zone of veining along strike in both directions. As the showing has not yet been drilled, the vertical extent of the larger quartz lenses and of the zone as a whole is uncertain.

Sampling to date has concentrated on determining the average grade of the larger lenses/veins. Assay results suggest grades likely in excess of 1.0 oz./ton gold for most of the larger lenses. Because of the way native gold is distributed, smaller veins and stringer zones can best be sampled by trenching or drilling.

CONCLUSIONS

There appears to be little potential for the discovery of a base metal deposit on the property, however, one strong airborne VLF anomaly merits further investigation.

There are several zones of vein hosted gold mineralization worthy of further work on the Menary Township property. At least one (Wagg showing) may be of sufficient size and grade to be a potentially economic deposit. A considerable amount of surface work, diamond drilling, and bulk sampling will need to be completed before the significance of the showings can be properly be assessed.

RECOMMENDATIONS

1) Detailed prospecting should be done on all of the newly acquired claims. To date this has been the most effective method for finding new gold showings.

2) The known gold showings should be investigated to see if there is a geophysical or geochemical signature associated with the gold mineralization. If a signature could be found this would aid in the exploration of ground covered in overburden.

3) Recently discovered gold showings should be stripped and sampled in detail, especially the Galbraith A and B gold showings.

4) The conductor detected by the airborne survey should be covered by cut lines and surveyed by magnetic and electromagnetic instruments. Basal till sampling may aid in identifying the source of the conductor.

5) A bulk sample should be taken at the Wagg Showing to see if the gold may be extracted with a small scale mining set-up.

6) The Wagg Showing should be drilled to determine the depth extent of the gold mineralization.

Chris Wagg here topke

Wayne E. Holmstead

RECOMMENDATIONS

1) Detailed prospecting should be done on all of the newly acquired claims. To date this has been the most effective method for finding new gold showings.

2) The known gold showings should be investigated to see if there is a geophysical or geochemical signature associated with the gold mineralization. If a signature could be found this would aid in the exploration of ground covered in overburden.

3) Recently discovered gold showings should be stripped and sampled in detail, especially the Galbraith A and B gold showings.

4) The conductor detected by the airborne survey should be covered by cut lines and surveyed by magnetic and electromagnetic instruments. Basal till sampling may aid in identifying the source of the conductor.

5) A bulk sample should be taken at the Wagg Showing to see if the gold may be extracted with a small scale mining set-up.

6) The Wagg Showing should be drilled to determine the depth extent of the gold mineralization.

Chris Wagg

Wayne E. Holmstead

BIBLIOGRAPHY

Bajc, A.F. 1988: Reconnaissance Till Sampling in the Fort Frances-Rainy River District, in Summary of Field Work and Other Activities 1988, Ontario Geological Survey Miscellaneous Paper 141, pp. 417-420.

Blackburn, C.E. 1976: Geology of the Off-Burditt Lake Area, District of Rainy River, Ontario Department of Mines Geological Report 140, Map 2325, 1 inch = 1 mile.

Clark, J.G. 1989: Evaluation of the Exploration Potential on the Menary Township Property, District of Kenora, for Western Troy Capital Resources Inc., 20 p.

Larouche, C. 1990: Results of Trenching, Menary Township Property, for Western Troy Capital Resources Inc., 20 p.

Ontario Geological Survey, 1990 Airborne Electromagnetic and Total Intensity Magnetic Survey, Rainy River Area.

CERTIFICATION

I, Christopher Anthony Wagg, residing at R.R.#1, village cf Denbigh, Ontario, KOH 1LO, do hereby certify that:

- 1... I hold a Bachelor of Science degree (Honours Geology) received at the University of Western Ontario in 1989.
- 2... I have been employed as a consulting geologist since 1987, and have been practicing my profession continuously since 1989.
- 3... My report on the Menary Township Property of Western Troy Capital Resources Inc., is based upon a review of published and unpublished information concerning the property and the surrounding area, and upon personal knowledge of the property's geology obtained over the course of approximately three months of fieldwork completed between April and November of 1991.
- 4... My report on the Menary Township Property has been written entirely, and in all respects, fas an independent consultant.
- 5... I hold no interest, direct or indirect, in the properties or securities of Western Troy Capital Resources Inc., or in any adjacent properties, nor do I intend to acquire any such interest.

Dated this 10th day of December, 1991,

Christopher A., Wagg

Prop. Lot 17/Exploration reg'd.

Wagg Mineral Exploration and Consulting Inc. (1991)

CERTIFICATE

I, Wayne E. Holmstead, of the City of Kingston in the Province of Ontario, DO HEREBY CERTIFY THAT:

1. I am a Consulting Geologist with address at 1074 Dillingham Street, Kingston, Ontario, Canada.

2. I graduated from the University of Toronto with a Bachelor of Science in Geology in 1976 and have been practising my profession since.

3. I am a Director of Western Troy Capital Resources Inc. and I hold a 1% Net Smelter Return on the property that is the subject of this report.

4. This report is based upon the sources listed in the Bibliography and from my personal experience on the property as Managing Consultant for the exploration programme.

Dated at Kingston, Ontario, this 15th day of December, 1991.

Wayne E. Holmstead, B.Sc.

· . `

APPENDIX 1

ź

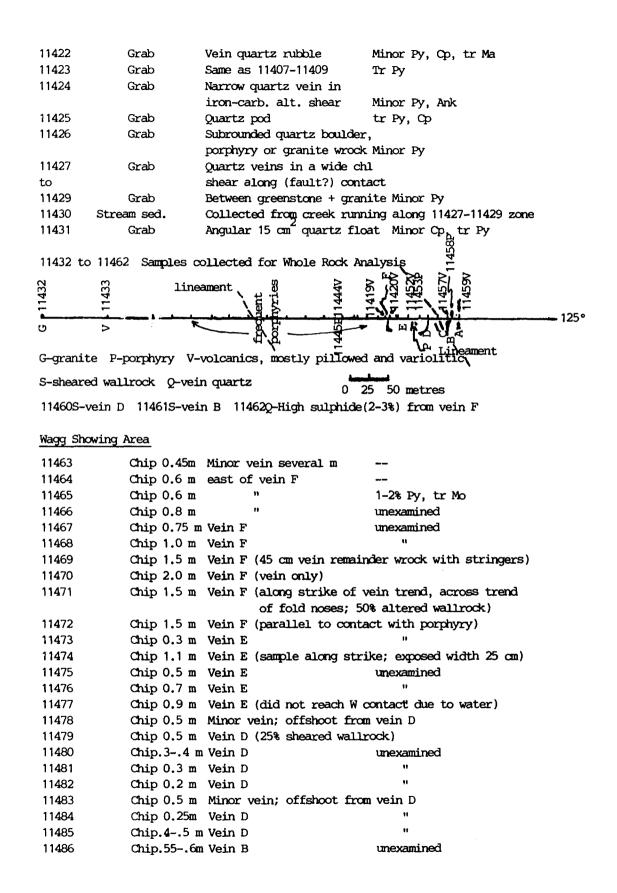
SAMPLE DESCRIPTIONS AND ASSAYS

Abbreviated Descriptions of All Samples Collected from the Menary Township Property and Vicinity by C.A. Wagg during 1991.

Sample	Туре	<u>Material</u>	Mineralization
11226	Grab	Tuffaceous horizon	Minor Py and Po
11227	Grab	Agglomeratic tuff	Minor Py, tr Cp
11228	Grab	Felsic-Int. tuff	5% Py and Po, tr Cp
11229	Grab	Sheared tuff, quartz	, , ,
		and porphyry stringers	
11230	Grab	Tuffaceous horizon	Minor Py
11231	Grab	Quartz vein	Minor Chl, tr Py and Ma
11232	Grab	Same vein as 11231	Tr Py
11233	Chip	20 cm shear in	
		Pillowed Volcanics	
11234	Grab	Tuffaceous horizon	Minor Po and Py
11235	Grab	Sheared agglomeratic	
		tuff, quartz stringers	Minor Py
11236	Chip 2.4 m	Sheared volcanics with	-
		quartz stringers	Minor Py
11237	Chip 1.0 m	Sheared Volcanics	Minor Py
11238	Grab	Quartz pod in tuff	Minor Chl, tr Py
11239	Grab	Angular quartz rubble	5% Py
11240	Grab	Tuffaceous horizon	Minor Py, tr Po and Cp
11241	Grab	Tuffaceous horizon	5-10% Py, tr Po and Cp
11242	Grab	Quartz vein in tuff	5% Py, tr Po and Cp
11243	Grab	Tuffaceous horizon	5% Py, minor Po, tr Cp
11244	Grab	Angular vein quartz	Tr Cp and Py
11245	chip 2.0 m	Sheared, calcite alt.	
		volcanics	Minor quartz stringers, tr Py
11246	Grab	Narrow quartz vein	4m - 100
11247	Chip 1.0 m	Quartz stringers in	
		felsic dyke	Minor Chl, tr Py
11248	Grab	Quartz stringers and	
		pods in sheared volc.	Minor Py
11249A	Grab	Silicified volcanics	5-10% Py
11249B	Grab	Epidote rich felsic	
		intrusive	Minor Py
11250	Grab	Iron carbonate alt.	
		volc., quartz stringer	sMinor Py
11251	Grab	Sheared and altered	
		volcanics	10% Py
11252	Grab	Sheared, iron-carb.	
		volcanics	Minor Py and Chl +/- Fuch
11253	Grab	Sheared porphyry	Tr Py
11254	Grab		Minor Chl, Py, tr Tourm, Calcite
11255	Grab	Intermediate volcanics	5% Py

44056	a 1	10.45	
11256	Grab	10-15 cm quartz vein	
11257	Grab	Loose vein quartz	
11258	Chip 1.7 m	Iron-carb. alt. porphy	-
14050	a .)	with quartz stringers	-
11259	Grab	Stringer rich porphyry	Minor Py
11260	Chip 2.4 m	• • • • •	
	_	volcanics	Minor Py
11261	Grab	10-15 cm quartz vein	
		hosted within 11260	
11262	-	Tuffaceous horizon	5-10% Py, tr Cp
11263	-	Tuffacouus hprizon	5-10% Py
11264	Grab	10-15 cm quartz vein	Minor Py
11265	Grab	Silicified volcanics	
		with quartz stringers	Minor Py, tr Po and Cp
11266	Grab	Loose vein quartz	Minor Chl, tr Py
11267	Grab	Sheared volcanics	5% Py, minor Po
11268	Chip 0.8 m	Sheared, silicified	
		tuffaceous horizon	5% Py and Po, Minor Cp and Sp
11269	Grab	Silicified material	2-3% Sp
11270	Grab	Loose quartz vein	Tr Py, Po, Chl
11271	Grab	Silicified wallrock	Minor Py, Po, tr Cp, Sp
11272	Grab	Silicified volcanics	5% Py
11273	Grab	Tuffaceous horizon	Minor Py, Po, tr Cp
11274	Grab	Tuffaceous horizon	Minor Py, Po tr Cp
11275	Grab	Tuffacoues horizon	Minor Py, Po
11276	Grab	15 cm qtz vein	Minor Py and Chl
11277	Grab	Silicified tuff	5% Py, tr Sp
11278	Grab	Subangular float,	
		silicified tuff	Minor Py, Sp, tr Cp
11279	Grab	Wallrock to 11277	Tr Py
11280	Grab	Silicified volcanics	Tr Py
11281	Grab	Tuffaceous horizon	Minor Py, Po, tr Cp
11282	Grab	Quartz vein to 1.0 m	Minor Py, Po, Chl, tr Cp, Cu
11283	Grab	Tuffaceous horizon	5% Py, Po, tr Cp
11284	Grab	45 cm wide quartz vein	Tr Py, Te
11285	Grab	Tuffaceous horizno	Rep. explosives sample
11286	Grab	Tuffaceous horizon	Rep. explosives sample
11287	Grab	Tuffaceous horizon	Minor Po
11288	Grab	Tuffaceous horizon	Minor Po, tr Cp
11289	Grab	Tuffaceous horizon	5% Po, tr Cp
11290	Chip 1.0 m	Sheared volcanics	Minor Po
11291	Grab	Silicified volcanics	Minor Py
11292		Carpenters farm, Suthe	erland Twp.
11293		Hick's field, Senn Twp).
11294		Off Lake Area	
11295		Off Lake Area	
11296		Off Lake Area	
11297		Off Lake Area	
11298		Off Lake Area	
11299		Off Lake Area	
11300	Grab	Tuffaceous horizon	5-7% Po, Py, Minor Cp, tr Sp

11026	Grab	Tuffaceous horizon	Minor Py, trCp
11027	Grab	Tuffaceous horizon	Minor Py, Po, tr Cp
11028	Grab	Tuffaceous horizon	Minor Pc, Py, tr Cp
11029	Grab	Tuffaceous horizon	Minor Po, tr Cp
11030		Porphyry with quartz	
11050		stringers	Minor Py
11031	Grab	Quartz stringers	Tr Py
11032	Grab	Sheared volcanics	
11052	GLUD	with qtz. stringers	Minor Py
11033	Grab	Sheared volcanics	Tr Py
11034	Crab	Tuffaceous horizon	
			Minor Py, Po
11035	Grab	Tuffaceous horizon10-1	
11036	Grab	Quartz vein	
11037	Grab	Quartz vein	
11038	Grab	Porphyry and sil. volc	Minor Py
11039	Grab	Tuffaceous horizon	15% Po, tr Cp
11040	Grab	Tuffaceous horizon	Minor Po, Py, tr Cp
11041	Grab	Quartz vein	10% Chl, tr Po
11042 no s	sample submitte	d	
Wagg Showir	ng Area		
11043	Grab	Unremarkable wallrock	
		to vein C	2-3% fine Po and Py, tr Cp
11044	Chip 0.6 m		tr-1% Py, native Au
11045	Chip 0.7 m	Vein C	unexamined
11046	Grab	Vein C, barren looking	3
		with native gold (1 sp	eck) removed
11047	Grab	Minor vein between	
		D and E	
11048	Grab	Vein C, loose block	
		weighing about 5 kg	unexamined
11049	Grab	Loose quartz (vein D?)	Tr Py, Cp, Tourm
11050	Grab	15 cm wide vein about	
		10 m east of 11387	Tr cp, Ma, Py
11051	Chip 0.25m	Channel, north end of	
		vein B	unexamined
11052	Grab	10 cm wide minor vein	
		in hanging wall of B	
11053	Chip 0.45m	Sheared hanging wall	
	_	of vein B	3-5% Py, tr-1% Cp
11054	Chip 0.3 m	Sheared footwall of	
		vein B	2-3% Py, 5-10% stringers
11055	Grab	7 kg; rep. of original	
11055	GLab	exposure of vein A	Tr Py
11056	Grab	Porphyry pod at north	II FY
11050	Grab	end of vein B	19 Dr
11057	Crash		18 Py
11057	Grab	0.5 to 1.0 m diameter	
11050		quartz boulders 150 m	-
11058	Grab	Quartz porphyry	Tr Py
11059	Chip 1.0 m		unexamined
11060	Grab	Centre of N end of	
		vein F	White and barren of mineralization
11061	Chip 0.3 m	Vein F and wallrock/	
		inclusions	unexamined

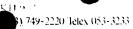

11301	Grab	1.0 by 0.15 m quartz lens	
11302	Grab	Alt. zone with quartz	
		stringers	2-3% Ру
11303	Grab	Quartz stringers	Tr Py
11304	Grab	Sheared volcanics	Minor Py, Po
11305	Grab	Quartz veins and quartz	
		porphyry	
11306	Grab	Quartz stringers in	
		porphyry	
11307	Grab	Quartz and Porphyry	Tr Py
11308	Chip 0.6 m	Quartz stringers in	
		hybrid grante or porphyry	Minor Py
11309	Chip 0.3 m	Alt., magnetic volcanics	Minor Py
11310	Grab	5 cm wide quartz vein	
		Southern stripped area	Tr Py
11311	Grab	10-15 cm wide quartz vein	
		Southern stripped area	Tr Py, Chl
11312	Grab	Quartz stringers in	
		volcanics	Tr Py
11313	Grab	30 cm wide quartz vein	Tr Py
11314	Grab	Loose vein quartz	Tr Py
11315	Grab	Quartz pod	
11316	Grab	Large sample of vein	
		quartz rubble	
11317	Grab	Silicious porphyry with	
		stringers	1% Py
11318	Grab	Quartz vein to 20 cm wide	
	wing Area		
11319	Grab	Centre of Vein A; rep of	
		high grade pocket	Native Au, tr Py, Cp
11320	Channel 0.6 m		unexamined
11321	Channel 0.45m		
11322	Channel 0.7 m		
11323	Channel 0.35m		
11324	Channel 1.0 m		
11325	Channel 0.85m		
11326	Chip 0.8 m	Vein E	
11327	Chip 0.9 m		
11328	Chip 0.85m		
11329	Grab	Vein E; rep. of high	unexamined
11220		grade pocket	native Au
		11.1 D	
11330	Chip 0.85m	Vein D	unexamined
11331	Chip 0.75m	Vein D	unexamined
11331 11332	Chip 0.75m Chip 0.7 m	Vein D	unexamined
11331 11332 11333	Chip 0.75m Chip 0.7 m Chip 0.7 m		unexamined
11331 11332	Chip 0.75m Chip 0.7 m	Vein D; wallrock and	unexamined
11331 11332 11333 11334	Chip 0.75m Chip 0.7 m Chip 0.7 m Chip 0.65m	Vein D; wallrock and stringers	unexamined
11331 11332 11333 11334 11335	Chip 0.75m Chip 0.7 m Chip 0.7 m Chip 0.65m Chip 1.0 m	Vein D; wallrock and stringers Vein A	
11331 11332 11333 11334	Chip 0.75m Chip 0.7 m Chip 0.7 m Chip 0.65m	Vein D; wallrock and stringers Vein A Vein A; high grade pocket	
11331 11332 11333 11334 11335	Chip 0.75m Chip 0.7 m Chip 0.7 m Chip 0.65m Chip 1.0 m	Vein D; wallrock and stringers Vein A	

Wagg Showing Area

11337	Bulk	Vein D; 15 kg of small pie	eces unexamined
11338	Bulk	Vein B	unexamined
11340	Chip 1.75m	Vein D; non-continuous ch	ip
	•	along strike of vein	- 11
11341	Chip 0.65m	•	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11
11342	Chip 0.85m		n
11343	Chip 0.6 m		11
11344	Chip 0.3 m		91
11345	Chip 1.2 m	Vein F	10
11346	Chip 0.45m	Vein C	11
11347	Chip 0.75m	Vein C, north end	11
11348	Chip 1.3 m	Vein F	unexamined
11349	Chip 0.3 m	Vein F, hanging wall	native Au
	-	Silicification and string	ers
11350	Chip 1.1 m	Vein F	unexamined
11351	Chip 1.35m	Vein F	11
11352	Chip 0.5 m	Vein F	н
11353	Chip 0.4 m	Vein F	n
11354	Chip 0.5 m	Vein F	11
11355	Chip 0.9 m	Vein F	11
11356	Chip 0.25m	Vein F	unexamined
11339	Grab	Quartz pod	Tr Py
11357	Grab	Quartz stringers to 10 cm	1
		wide in 1 m wide shear	
11358	Grab	Quartz vein to 50 cm wide	Minor Chl, tr Py
11359	Grab	Quartz vein to 45 cm wide)
11360	Grab	Quartz vein to 60 cm wide	
11361	Grab	5 cm wide vein in porphyr	yMinor Py
11362	Grab	Sheared volcanics adjacen	t
		to porphyry	Minor Py
11363	Grab	Quartz pod	
11364	Grab	Quartz vein	Minor sericite, Chl, Py
11365	Grab	Quartz stringers in volc.	
11366	Grab	Quartz vein to 30 cm wide	5% Chl, 2-3% Fe-carb, tr Py
11367	Grab	Quartz stringers	Tr Py
11368	Grab	Subrounded vein qtz. floa	tMinor Py, tr Cp
11369	Grab	Tuffaceous horizon	Minor Po
11370	Grab	30 cm wide stringer zone	
		in 1 m wide shear in volc	c.Tr Py, Cp
11371	Grab	Tuffaceous horizon	Minor Po, tr Cp
11372	Grab	Quartz stringers in tuff	
11373	Grab	10-30 cm wide quartz veir	
Wagg Showing	Area		property
11374	Bulk	Vein A	unexamined
11375	Bulk	Vein E	
11376	Bulk	Vein E-F (Vein F, south e	and) "
		······································	

11377	Off Lake Are	a	
to	Off Lake Are	a	
11385	Off Lake Are	a	
11386	Grab	Angular vein quartz	
11387	Grab	10-20 cm wide quartz	Native Au
		vein located about 100 m S	
11388	Grab	Quartz vein to 50 cm wide	
		exposed for 8 m	2-3% Chl, 1% Py, 1-2% Hm, tr Ser
11389	Grab	8-15 cm wide quartz vein	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0100	exposed for 2 m	Native Au, 1% Py, Po
11390	Grab	Quartz stringer zone	Tr Py
11391	Grab	Quartz pod	Minor Chl
11392	Grab	Stringer-silalt	Sample 30% stringers to 1 cm
		sulphide zone 25 m NW of v	
11393	Grab	Stringer zone in alt.	Chl vs. Gnt-Biot banding
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ci di	volcanics	Minor Chl, tr Cp
11394	Grab	10 cm by 2.5 m quartz pod	, .
11395	Grab	15 cm wide stringer zone	
11396	Grab	Small quartz vein	 1% Cp
11397	Grab	20 cm wide quartz vein	Ser along contacts
11398	Grab	Porphyry dyke with quartz	Set along contacts
11550	Grab	stringers in and around it	-
11399	Grab	Quartz stringer in loose	
11333	Grab	angular volcanics	
11400	No Sample Su	-	
11401	Grab	20-30 cm by 10 m vein	1% Chl, Py, tr Cp
11402	Grab	Quartz vein to 1.5 m wide	
11302	Grab	next to a porphyry dyke	Some volcanic inclusions
11403	Grab	Narrow vein filling joint	
11404	Grab	Quartz pods in porphyry	Minor Chl
11405	Grab		STr Py, Chl alt. inclusions
11406	Grab	Narrow quartz pods	18 Py, tr Mo
11407	Grab	Quartz viens/stringers	1019, 2212
to	GLab	along the contact between	
11409	Grab	greenstone and granite	Minor Py
11410	Grab	•	MIRI FY
11410	Grab	Quartz vein avg. 45 cm in a stringer zone	ም
11/11	Croh	5	Tr Py Minor Chl. tr Dr
11411 11412	Grab Grab	Sev. pods to 25 cm by 6 m Same as 11411 but 3 m	MIRCE CHE, LE PY
11412	GLab	awaw across strike	Minor coarse Py
11413	Grab	Quartz stringers less that	-
11.10		10 cm wide occurring near	
		a small porphyry dyke	18 Py
11414	Grab	Same as 11413	Native Au, 1% Py
11415	Grab	Porphyry of 11413, 11414	· · ·
11416	Grab		11 Fy
to	GLAD	Quartz vein to 30 cm by	
11418	Grab	15 m occurring 25 m NW of	
		11413-11415	1-2% Py, tr Cp
11419	Grab	30-100 cm by 10 m vein in	
and	C urch ¹	3 m wide stringer zone;	Marine Chill And 10 Day
11420	Grab	25 m W of 11416-11418	Minor Chl, tr-1% Py
11421	Grab	30-40 cm wide quartz vein	Minor Chi, tr Cp, Py

Wagg Showing Area


11487	chip.354m	ı Vein B	une	examined
11488	Chip 0.2 m	Vein B		
11489	Chip 0.5 m	Vein B		"
11490	Chip 0.3 m	Vein B		••
11491	Grab	Quartz stringers	in Chl	
		and calcite alt.	volc. float	tr Py
11492	Grab	Quartz stringers	in Chl and	
		iron-carb. alt.	volc. float	Minor Chl, Py, tr Fuch

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario K13 962 (613) 749-2220 Telex 053-3233

REPORT: 091-41694.0 (COMPLETE)							P	PAGE 1A	PAGE 1A			
SAMPLE NUMBER	ELEMENT UNITS	A1 Pct	Fe Tot PCT	Mn PPM	Mg PCT	Ca PCT	Na PCT	K PCT	V PPM	Cr PPM	Co PPM	Ni PPM
11226		0.73	2.14	200	0.30	1.62	0.02	0.14	42	132	21	57
11227		1.48	5.39	400	1.20	1.19	0.04	0.42	67	184	51	67
11228		1.44	>10.00	800	0.48	2.05	0.01	0.09	32	95	162	161
11229		0.72	1.91	200	0.41	1.10	0.04	0.24	35	135	18	43
11230		1,05	3.58	200	0.33	1.88	0.03	0.08	51	137	30	70
11231		2.98	4.68	600	3.22	0.86	<0.01	0.05	78	410	32	87
11232		1.12	2.21	300	1.08	0.83	0.02	0.05	37	239	15	42
11233		5.38	7.70	1100	5.85	1.78	<0.01	0.02	193	543	49	140
11234		0.88	2.84	200	0.48	1.35	0.02	0.07	39	180	31	105
11235		0.95	3.03	300	0.85	0.95	<0.01	0.07	45	150	13	35
11236		2.68	5.89	600	2.15	2.84	0.03	0.11	115	141	38	111
11237		5.01	6.08	900	5.35	3.39	0.01	0.04	115	291	46	163
11238		0.86	1.81	200	0.57	0.65	0.05	0.04	24	166	18	37
11239		1.93	6.06	300	1.55	1.33	0.02	0.41	76	132	99	112
11240		1.72	5.13	300	1.23	1.01	0.01	0.22	63	92	66	116
11241		2.08	5.32	400	1.68	1.09	0.02	0.38	89	111	73	99
11242		0.49	3.82	200	0.48	0.86	<0.01	0.24	27	158	80	60
11243		2.80	6.07	500	2.30	1.48	0.03	1.65	121	171	55	82
11244		0.31	0.98	100	0.12	0.56	<0.01	0.03	14	153	7	30
11245	· · · · · · · · · · · · · · · · · · ·	4.40	7.42	1200	3.54	6.42	0.02	0.04	235	167	38	97
11246		0.92	1.82	400	0.53	0.93	0.01	<0.01	26	238	12	43
11247		0.52	1.21	200	0.36	0.42	0.06	0.08	14	158	5	11
11248		0.94	3.59	300	0.81	1.17	0.03	0.27	37	151	60	65
11249A		1.81	8.05	500	1.31	0.93	0.04	0.09	50	162	59	78
112498		1.20	1.53	200	0.21	3.58	0.02	0.01	47	111	17	35
11250		0.17	2.44	400	0.45	1.91	0.02	0.10	11	181	11	26
11251		1.32	5.91	1400	2.92	>10.00	0.02	0.65	76	59	48	73
11252		0.65	5,95	1200	2.04	9.31	0.02	0.28	37	102	56	93
11253		1.03	1.39	200	0.58	0.77	0.05	0.13	15	51	8	10
11254		0.05	1.30	100	0.07	0.07	<0.01	<0.01	4	222	2	7
11255		0.48	3.78	400	0.32	5.17	0.03	0.26	61	234	54	62
11256		0.12	1.70	200	0.05	0.14	0.02	0.06	7	161	7	14
11257		<0.01	0.70	<1	<0.01	0.02	<0.01	0.01	2	217	1	4
11258		0.58	1.42	300	0.22	0.69	0.06	0.24	8	80	7	11
11259		0.26	1.04	200	0.03	0.10	0.09	0.10	4	104	6	10
11260		4.27	6.96	1500	3.77	8.08	<0.01	0.33	148	208	44	88
11261		0.44	2.04	200	0.43	0.09	<0.01	0.10	20	225	8	22
11262		1.13	6.79	200	0.59	0.73	0.01	0.16	42	89	98	141
11263		0.92	4.94	100	0.46	0.60	0.01	0.17	22	84	63	84
11264		0.83	1.37	200	0.33	2.18	0.02	0.02	48	222	9	13

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario

REPORT:	091-41694.0 (COM	PLETE)							ED: 7-JUN Estern tro		PAGE 18	
SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	Zn PPM	As PPM	Sr PPM	Y PPM	Mo PPM	Ag PPM	Cd PPN	Sn PPM	Sb PPM	Te PPM
11226		381	22	<5	19	5	10	<0.2	<0.2	<20	<5	<10
11227		714	39	<5	14	7	б	<0.2	<0.2	<20	<5	<10
11228		2343	2602	<5	7	6	5	<0.2	3.6	<20	<5	<10
11229		268	101	10	14	4	30	<0.2	<0.2	<20	<5	<10
11230		827	50	11	23		4	0.3	<0.2	<20	5	<10
11231		245	70	17	5	3	2	<0.2	<0.2	<20	14	13
11232		65	29	<5	7	3	2	<0.2	<0.2	<20	<5	<10
11233		40	93	13	10	8	<1	<0.2	<0.2	<20	<5	<10
11234		411	23	<5	10	5	<1	<0.2	<0.2	<20	<5	<10
11235		97	36	9	5	4	11	<0.2	<0.2	<20	<5	<10
11236		216	103	26	24	10	12	<0.2	<0.2	<20	<5	<10
11237		70	68	34	12	6	5	<0.2	<0.2	<20	12	13
11238		159	22	б	8	5	2	0.2	<0.2	<20	<5	<10
11239		373	44	7	14	9	274	<0.2	<0.2	<20	<5	<10
11240		543	34	16	13	8	34	<0.2	<0.2	<20	6	<10
11241		324	47	б	11	8	98	<0.2	<0.2	<20	<5	<10
11242		696	18	<5	2	2	5	<0.2	<0.2	<20	<5	<10
11243		431	71	16	11	8	52	<0.2	<0.2	<20	<5	11
11244		175	7	<5	5	2	2	<0.2	<0.2	<20	<5	<10
11245		110	91	12	27	13	10	<0.2	<0.2	<20	<5	<10
11246	· · · · · · · · · · · · · · · · · · ·	47	19	9	8	2	3	<0.2	<0.2	<20	6	<10
11247		21	19	7	13	2	2	<0.2	<0.2	<20	<5	<10
11248		57	20	<5	15	5	<1	<0.2	<0.2	<20	<5	<10
11249		643	194	15	15	4	4	<0.2	<0.2	<20	8	<10
11249		73	55	9	48	8	1	<0.2	<0.2	<20	<5	<10
11250	_ <u></u>	58	17	<5	28	2	2	<0.2	<0.2	<20	5	<10
11251		371	.61	12	160	5	2	<0.2	<0.2	<20	б	11
11252		171	48	9	142	4	5	<0.2	<0.2	<20	<5	15
11253		16	34	<5	43	3	<1	<0.2	<0.2	<20	<5	<10
11254		9	2	<5	1	<1	2	0.6	<0.2	<20	<5	22
11255		272	8	<5	56	3	<1	1.3	<0.2	<20	5	10
11256		49	10	<5	4	2	<1	0.2	<0.2	<20	<5	<10
11257		5	1	<5	<1	<1	<1	<0.2	<0.2	<20	<5	<10
11258		30	29	5	22	2	<1	0.2	<0.2	<20	5	<10
11259		8	8	<5	7	3	<1	<0.2	<0.2	<20	<5	<10
11260	······································	125	79	28	51	9	2	<0.2	<0.2	<20	10	11
11261		16	15	9	7	2	7	<0.2	0.5	<20	5	<10
11262		775	2418	6	16	8	ŕ	<0.2	5.0	<20	<5	<10
11263		716	2091	20	18	8	8	0.4	4.5	<20	ĩ	11
11264		293	26	<5	7	3	2	0.2	<0.2	<20	<5	<10

Bondar-Clegg & Company 1 (d. 5420 Canotek Road Ottawa, Ontario K13.963 (613) 749-2220 Jelex 053-3233

REPORT: 091	-41694.0 (COMP	PLETE)							D: 7-JUN Estern Tro		PAGE	10	
SAMPLE NUMBER	ELEMENT UNITS	Ba PPM	La PPM	W PPM	РЬ РРМ	Bi PPM	Hg PPB	Au PP8	AUR1 PP8	AUR2 PPB			
11226		21	2	<20	7	<5	7	5					
11227		19	<1	<20	3	<5	<5	<5					
11228		13	3	<20	10	9	6	132					
11229		17	3	<20	4	7	<5	<5					
11239	·····	12	2	<20	5	11	< 5	<5					
11231		9	<1	<20	. 8	10	7	<5	<u>.</u>				
11232		11	<1	<20	<2	<5	8	<5					i
11233		13	<1	<20	4	<5	10	<5					
11234		8	<1	<20	4	5	6	<5					
11235		14	<1	<20	4	8	<5	<5					
11236	· · · · · · · · · · · · · · · · · · ·	43	11	<20	17	11	<5	<5					
11236		45 15	2	<20	17	11	<5 <5	<5 <5					
11237		15	6	<20	13	7	<5	<5 <5					
11238		15			2	8	<5	<5 <5					
11239		15	1 1	<20 <20	נ ר	12	<5 <5	<5					
	·····		1	×20	/	12	13	N					
11241		13	<1	<20	4	6	<5	<5					
11242		7	<1	<20	3	8	<5	<5					
11243		44	<1	<20	8	12	<5	<5					
11244		3	<1	<20	<2	<5	<5	<5					
11245		19	8	<20	13	6	<5	<5	· · · · ·				
11246		5	1	<20	4	6	<5	<5					
11247		30	4	<20	5	<5	<5	47					
11248		30	<1	<20	3	<5	<5	<5					
11249A		14	1	<20	10	14	14	12					
112498		15	3	<20	3	7	14	<5					
11.250		17	<1	<20	3	<5	8	36					
11250 11251		52	<1	<20	10	15	6	19					
11251		38	<1	<20	8	12	<5	50					
11252		59	6	<20	3	<5	<5	,5					
11253		<2	<1	<20	7	50	<5	<5 <5					
11255		57	6	23	7	14	<5 . F	75					
11256		13	2	<20	3	7	<5	10					
11257		3	<1	<20	<2	<5	<5 15	5					
11258		56	11	<20	4	<u><5</u>	<5 (5	<5 (5					
11259		27	14	<20	<2	<5	<5	<5	<u> </u>				
11260		42	2	<20	12	15	<5	<5					
11261		27	6	<20	9	14	7	8					
11262		32	6	<20	9	10	8	69					
11263		26	8	<20	12	11	10	80					
11264		13	<1	<20	<2	<5	<5	134					
			·····				n*an				·····		

Bondar-Clegg & Company 14d. 5420 Canotek Read Ottawa, Ontari 1330. (613) 749-2220 Jelex 053-3253

								<u> </u>	DATE PRINT	ED:_7-JUN	1-91			
L	REPORT: 091-	-41694.0 (COM	PLETE)					<u> </u>	PROJECT: WE	ESTERN TRO)Y	PAGE 2A		
	SAMPLE	ELEMENT	A1	Fe Tot	Mn	Mg	Ca	Na	ĸ	٧	Cr	Co	Ni	
·	NUMBER	UNITS	PCT	PCT	PPM	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	
1	11265	teather day at the black	1.23	2.03	300	0.65	1.77	0.08	0.05	62	152	12	21	
	11266		0.09	0.57	<1	0.05	0.07	<0.01	<0.01	6	200	2	4	
	11267		2.21	6.91	500	1.84	0.91	0.07	0.03	31	80	60	83	
	11268		1.32	8.14	300	0.93	0.70	0.04	0.04	33	98	70	93	
	11269		0.98	6.83	200	0.82	0.34	0.04	0.04	26	150	80	102	
	11270		0.08	0.86	<1	0.06	0.09	<0.01	<0.01	5	169	6	10	<u></u>
	11271		0.32	2.06	100	0.27	0.21	0.02	<0.01	18	208	22	27	
	11272		2.02	4.80	500	1.96	0.59	0.07	0.01	76	117	28	88	
	11273		0.78	8.01	200	0.41	0.71	0.03	0.05	24	84	41	58	
	11274		0.17	1.88	<1	0.03	0.08	0.02	0.07	3	195	24	15	
	11275		0.69	1.36	100	0.16	0.33	0.05	0.20	12	115	7	6	·
	11276		0.30	2.21	200	0.19	0.58	0.01	<0.01	11	177	9	10	
	11277		0.25	8.31	100	0.15	0.14	0.02	<0.01	14	140	101	142	
	11278		0.23	>10.00	200	0.08	0.07	<0.01	<0.01	7	135	120	147	
-	11279	Here and the second	1.88	4.49	600	1.31	1.62	0.10	0.04	98	107	33	93	
	11280		1.70	4.28	600	1.20	2.17	0.06	0.05	75	96	38	89	
	11281		1.39	8.29	400	0.95	0.79	0.04	0.04	43	81	79	98	
	11282		0.29	1.79	200	0.23	0.05	<0.01	0.03	11	193	22	21	
	11283		2.90	7.87	1300	2.05	0.72	0.03	0.05	76	130	69	105	
	8207		0.44	>10.00	200	0.21	0.60	0.05	0.04	13	52	22	34	
	8208		1.56	>10.00	300	0.92	1.75	0.17	0.09	28	85	7	12	
	8209		0.55	7.47	200	0.40	0.74	0.05	0.02	14	150	160	19	
	8210		0.78	3.85	300	0.87	1.03	0.06	0.48	65	148	18	16	
	8211		0.22	1.11	100	0.09	0.26	0.04	0.14	19	130	8	7	
	8212		1.33	4.42	300	0.50	0.29	0.10	0.67	31	110	35	9	
	8213		0.28	2.17	100	0.19	0.20	0.02	0.03	20	221	24	74	

REPORT: 091-4	11694.0 (COMPLET						I ED: 7-JU Vestern tr		PAGE 28			
SAMPLE NUMBER		CU Z PM PP		Sr PPM	Y PPM	Mo PPM	Åg PPM	Cd PPM	Sn PPM	Sb PPM	Te PPM	
11265		45 5		8	5	3	<0.2	<0.2	<20	<5	<10	
11266		-	3 <5	<1	<1	2	0.3	<0.2	<20	<5	<10	
11267	15			10	3	4	0.3	1.1	<20	<5	11	
11268	19			9	6	7	<0.2	13.9	<20	<5	<10	
11269	ذ	48 812	<u>6</u> 7	5	4	1	<0.2	25.7	<20	<5	<10	<u> </u>
11270	1	75 5	6 <5	2	<1	6	0.3	<0.2	<20	<5	<10	
11271		24 13		. 4	2	9	0.4	0.2	<20	6	<10	
11272		10 16		4	4	<1	<0.2	<0.2	<20	<5	<10	
11273	29			7	5	6	0.4	20.1	<20	6	14	
11274	4	42 8	3 <5	2	<1	<1	<0.2	<0.2	<20	<5	<10	
11275	1	96 6	3 <5	8	2	<1	<0.2	<0.2	<20	<5	<10	
11276		68 1		5	2	3	2.9	<0.2	<20	<5	<10	
11277		76 590		1	2	8	<0.2	37.4	<20	<5	<10	
11278		78 >2000		1	2	19	<0.2	126.5	<20	14	21	
11279		17 81		14	7	5	<0.2	2.5	<20	<5	<10	
11280	3	43 17	5 8	13	7	1	<0.2	<0.2	<20	<5	<10	
11281		19 42		13	, 3	3	<0.2	<0.2	<20	<5	<10	
11282		68 4		1	1	2	<0.2	<0.2	<20	<5	<10	
11283		09 44		6	5	2	<0.2	<0.2	<20	<5	<10	
8207			3 <5	5	4	2	<0.2	<0.2	<20	<5	<10	
8208		54 4	9 <5	3	5	1	<0.2	<0.2	<20	<5	<10	
8209		41 2		2	2	2	<0.2	<0.2	<20	<5	<10	
8210		13 5		20	8	3	<0.2	<0.2	<20	<5	<10	
8211			6 <5	15	2	13	<0.2	<0.2	<20	<5	<10	
8212			5 <5	19	8	5	<0.2	<0.2	<20	<5	<10	
8213		83	4 <5	4	2	2	<0.2	<0.2	<20	<5	<10	

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontari K (1 - C.) (613) 749-2220 Telex 053-3233

REPORT: 091-	41694.0 (COMF	PLETE)							I ED: 7+JI Vestern ti		PAGE	20	
SAMPLE NUMBER	ELEMENT UNITS	Ba PPM	La PPM	W PPM	Pb PPM	8i PPM	Hg PPB	Au PPB	AUR1 PPB	AUR2 PPB			
11265 11266	<u> </u>	22 4	1 <1	<20 <20	<2 <2	<5 <5	<5 <5	109 2059	1253	2064			
11267 11268 11269		6 17 21	4 8 6	<20 <20 <20	5 11 13	13 12 11	18 18 23	23 39 18					
11270		<2	<1	<20	<2	<5	7	21					
11271 11272 11273		3 4 23	<1 <1 6	<20 <20 <20	3 <2 10	8 <5 20	<5 5 16	12 12 30					
11273		16	<1	<20	<2	20 <5 	<5	23	<u>.</u>				
11275 11276		56 5	2 <1	<20 <20	<2 3	5 9	<5 10	22 >10000	>10000	>10000			
11277 11278 11279		3 3 9	<1 <1 4	<20 <20 <20	7 31 6	10 26 8	23 49 8	140 60 14					
11280		29	3	<20	4	6	5	31					
11281 11282 11283		13 13 14	<1 <1 2	<20 <20 <20	5 <2 5	6 <5 9	5 <5 5	109 28 18					
8207		7	4	<20	10	12	5	96		<u>.</u>			
8208 8209		16 3	<1 <1	<20 <20	10 6	11 11	5 <5	25 86					
8210 8211 8212		53 31 87	3 2 34	<20 <20 <20	11 17 11	6 <5 <5	<5 <5 <5	9 <5 77					
8213		6	2	<20	3	<5	<5	19					

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontaria 8.33 9.62 643) 749-2220 Telex 053-3233

	REPORT: 091-	41753.0 (COM	MPLETE)						ATE PRINTE ROJECT: WE			PAGE 1A	
	SAMPLE	ELEMENT	Al	Fe lot	Mn	Mg	Ça	Na	K	V	Cr	Co	Ni
	NUMBER	UNITS	PCT	PCT	PPM	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM
	8214		2.78	>10.00	800	1.64	0.11	<0.01	0.06	35	57	96	20
	8215		1.06	9.59	300	0.17	2.09	0.02	0.02	34	64	109	153
	8216		0.16	2.26	300	0.14	4.13	<0.01	0.02	9	223	42	48
	11026		0.20	2.55	100	0.19	0.16	<0.01	0.01	8	267	33	39
	11027		0,99	7.81	300	0.43	0.82	0.01	0.09	21	151	118	124
	11028		1.37	8.77	400	0.89	0.99	0.02	0.08	34	89	129	141
	11029		0.83	8.97	300	0.32	0.78	0.02	0.11	21	90	168	167
	11030		1.59	3.27	400	1.08	2.64	0.02	0.05	72	193	24	52
	11030		0.86	1.59	300	0.55	1.85	0.02	0.03	38	313	20	76
	11031		1.91	3.62	800	1.44	1.16	0.06	0.24	73	201	27	43
	11033	······································	4.39	7.24	1100	3.93	1.10	0.02	0.02	172	173	47	64
	11033		1.07	6.33	400	0.78	0.84	0.02	0.02	68	140	67	119
	11035		0.71	8.06	200	0.45	0.43	0.02	0.04	20	193	81	121
	11036		0.15	1.64	100	0.12	0.37	<0.01	<0.01	7	213	12	20
	11030		<0.01	0.63	<1	0.01	0.05	<0.01	<0.01	3	314	1	6
	11038		2.39	6.43	700	1.49	1.52	0.13	0.38	88	174	30	70
,	11039		0.47	9.57	100	0.13	0.73	0.04	0.03	16	52	172	221
	11040		1.40	4.77	500	1.28	2.11	0.08	0.64	71	221	101	109
	11041		0.15	0.84	100	0.12	0.37	<0.01	0.02	13	173	7	11
	11041		2.98	4.95	600	2.80	1.29	0.05	0.02	88	175	38	67
	11046		0.06	0.64	<1	0.09	0.08	<0.01	<0.01	6	233	2	б
	11049		0.05	0.50	100	0.07	0.12	<0.01	<0.01	5	268	1	5
	11050		0.37	0.91	100	0.19	0.72	0.01	<0.01	15	235	6	11
	11052		0.91	2.93	300	0.72	0.27	0.02	0.14	35	295	19	28
	11053		2.67	5.41	900	2.45	2.00	0.01	0.31	103	229	34	73
	11054		2.15	4.75	700	1.93	2.56	0.02	0.48	96	175	40	56
	11056		1.06	1.69	200	0.62	0.53	0.06	0.36	26	122	8	11
	11057		0.05	0.34	<1	0.06	0.08	<0.01	0.03	3	223	2	5
	11058		0.18	0.42	<1	0.03	0.15	0.07	0.04	3	147	2	4
	11060		0.09	0.73	<1	0.08	0.03	<0.01	<0.01	12	239	5	10
	11284		0.04	0.90	<1	0.03	0.04	0.03	0.02	4	222	2	5
	11285		0.74	6.42	200	0.19	0.62	0.05	0.02	24	206	74	95
	11286		1.69	7.03	300	1.41	0.41	0.02	0.07	29	95	83	113
	11287		0.85	1.39	200	0.36	0.80	0.05	0.16	9	148	6	6
	11288		0.91	9.41	400	0.38	1.04	0.03	0.05	28	93	130	117
	11289		0.78	8.14	300	0.37	1.16	0.02	0.04	19	139	108	116
	11290		0.57	1.83	100	0.28	0.85	0.03	0.14	21	81	26	51
/	11291		1.83	>10.00	300	1.22	0.02	<0.01	0.17	49	115	65	57
	11292		1.62	6.42	1400	0.76	1.91	0.19	0.10	70	215	35	117
	11293		1.07	4.93	700	0.66	0.11	0.02	0.06	16	129	18	24

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa: Ontario K41900 1013) 749-220 refex 055-5255

 REPORT: 091-	41753.0 (CO	IMPLETE)							ED: 14-JUN Estern tro		PAGE 18	
 SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	Zn PPM	As PPM	Sr PPM	Y PPM	Mo PPM	Ag PPM	C d PPM	Sn PPM	SD PPM	Te PPM
 8214		>20000	159	<5	<1	4	3	16.1	<1.0	26	<5	<10
8215		6200	885	<5	31	б	4	2.3	<1.0	<20	<5	<10
8216		15139	16	8	12	2	<1	38.1	4.9	<20	<5	<10
11026		350	73	<5	1	1	3	<0.2	<1.0	<20	<5	<10
 11027		3798	504	<i>~</i> 5	9	6	7	0.5	<1.0	<20	<5	<10
 11028		965	1679	<5	10	6	4	<0.2	1.1	<20	<5	<10
11029		1805	2848	<5	1	6	5	<0.2	4.6	<20	<5	<10
11030		121	69	<5 (5	31	6	5	<0.2	<1.0	<20	<5 (5	<10
11031		62	55	<5 (5	28	4	3	<0.2	<1.0	<20	<5 <5	<10
 11032		160	298	<5	14	ų		<0.2	<1.0	<20		<10
11033		229	362	<5	8	6	3	<0.2	<1.0	<20	<5	<10
11034		559	3931	<5	4	7	4	<0.2	10.9	<20	<5	<10
11035		11891	988	<5	5	4	5	3.5	1.4	<20	<5	<10
11036		1142	79	<5	2	1	4	0.4	<1.0	<20	<5	<10
11037		28	110	<5	<1	<1	<1	<0.2	<1.0	<20	<5	<10
 11038		301	71	<5	17	б	180	<0.2	<1.0	<20	<5	<10
11039		939	5129	<5	8	7	7	<0.2	25.6	<20	<5	<10
11040		434	89	<5	11	6	2	<0.2	<1.0	<20	<5	<10
11041		94	13	<5	3	2	7	<0.2	<1.0	<20	<5	<10
 11043		620	54	<5	8	4	2	<0.2	<1.0	<20	<5	<10
11046		27	4	<5	<1	<1	<1	3.1	<1.0	<20	<5	<10
11049		47	5	<5 .5	<1	<1	<1	<0.2	<1.0	<20	<5 (5	<10
11050		342	18	<5	10	2	<1	0.5	<1.0	<20	<5	<10
11052		174	17	<5 (5	9, 15	3 7	2	<0.2	<1.0	<20 <20	<5 <5	<10
11053		369	55	<5	15		4	<0.2	<1.0	<20	< <u>></u>	<10
 11054		109	41	<5	24	6	2	<0.2	<1.0	<20	<5	<10
11056		34	46	<5	28	3	<1	<0.2	<1.0	<20	<5	<10
11057		5	4	<5	2	<1	<1	<0.2	<1.0	<20	<5	<10
11058		32	7	<5	3	2	1	<0.2	<1.0	<20	<5	<10
 11060		60	4	<5	2	1	3	<0.2	<1.0	<20	<5	<10
 11284		18	2	<5	1	<1	<1	15.1	<1.0	<20	<5	70
11285		1205	3534	<5	10	5	5	<0.2	9.8	<20	<5	<10
11286		1647	2459	<5	7	5	12	<0.2	6.4	<20	<5 (5	<10
11287		72	86	<5 (5	13	3	<1	<0.2	<1.0	<20	<5 /5	<10
 11288		1446	137	<5	12	5	4	<0.2	<1.0	<20	<5	<10
 11289	***	505	174	<5	11	4	5	<0.2	<1.0	<20	<5	<10
11290		186	49	<5	9	3	3	<0.2	<1.0	<20	<5 (5	<10
11291		1564	149	11	2	3	4	1.7	<1.0	<20 <20	<5	<10
11292		230	31	<5	11	5	<1	<0.2	<1.0	<20 <20	<5 <5	<10 <10
11293		179	189	15	4	2	1	<0.2	<1.0	<20	5	10

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontan K (1967) (613) 749-2220 Telex 053-3233

REPORT: 091	41753.0 (COMF	PLETE)							TED: 14-JUN-91 NESTERN TROY	PAGE 1C	
SAMPLE	ELEMENT	8a	La	¥	РЪ	Bi	Hg	Au	RASAWT		
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPB	PP8	kg		
8214	<u></u>	10	1	<20	18	73	100	89			
8215		8	12	<20	16	14	<5	49			
8216		6	<1	<20	92	27	35	44			
11026		4	<1	<20	3	<5	6	179			
11027		16	5	~20	5	11	6	72			
11028		19	4	<20	8	9	<5	27			
11029		24	3	<20	10	10	<5	45			
11030		20	2	<20	4	6	<5	37			
11031		15	<1	<20	3	<5	<5	86			
11032		50	<1	<20	53	6	<5	14			
11033 1 1034		22 13	1 3	<20	102 14	9 7	<5 <5	12 19			
			2	<20 <20	7		<5 <5	24			
11035		10		<20		21					
11036		3	<1	<20 <20	<2	<5 /5	<5 0	13 7			
11037		<2	<1	<20	2	<5	9			· • ····	
11038		76	<1	<20	5	7	<5	15			
11039		10	9	<20	14	9	42	12			
11040		13	<1	<20	4	б	<5	16			
11041		4	<1	<20	<2	<5	<5	10			
11043		11	1	<20	4	7	<5	1131	2.28		
11046		<2	<1	<20	<2	<5	7	>10000	0.92		
11049		2	<1	<20	<2	<5	<5	1105	1.67		
11050		<2	<1	<20	3	<5	<5	72	2.90		
11052		41	<1	<20	2	5	<5	108	2.45		
11053		60	<1	<20	6	8	<5	61	1.33		
11054		103	1	<20	5	6	<5	48	0.61		
11054		75	11	<20	4	<5	<5	20	0.94		
11057		6	<1	<20	2	<5 <5	<5	24	2.49		
11058		8	2	<20	7	<5 <5	<5	29	1.48		
11050		4	1	<20	<2	<5 <5	<5	51	4.28		
11284		3	<1	<20	16	57	<5	851			
11285		6	6	<20	13	9	10	20			
11286		28	7	<20	15	11	7	132			
11287		45	3	<20	<2	<5	<5	18			
11288		16	4	<20	8	7	<5	74			
11289		13	4	<20	7	<5	<5	27			
11290		19	2	<20	4	<5	<5	45			
11291		21	<1	<20	19	13	<5	241			
11292		32	<1	<20	5	6	<5	34			
11293		21	1	<20	33	5	8	37			

Bondar-Clegg & Company Etd. 5420 Canotek Road Ottawa, Ontario 4.11 ··· (613) 749-2220 Telex 055-3235

REPORT: 091-	-41753.0 (COM	IPLETE)						ATE PRINTE ROJECT: WE			PAGE 2A	
SAMPLE NUMBER	ELEMENT UNITS	A1 PCT	Fe Tot PCT	Mn PPN	M9 PCT	Ca PCT ·	Na PCT	K PCT	V PPM	Cr PPM	Co PPM	Ni PPM
11294		2.07	9.98	1700	1.35	4.09	0.01	0.09	98	58	49	10
11295		3.98	>10.00	900	2.20	0.03	<0.01	<0.01	120	54	66	33
11296		0.98	7.33	2200	0.55	1.36	<0.01	<0.01	43	185	23	19
11297		1.95	>10.00	300	1.00	<0.01	<0.01	<0.01	75	43	77	103
11298		0.60	>10.00	300	0.27	0.04	<0.01	<0.01	24	188	43	20-
11299		4.10	>10.00	3500	1.76	0.07	<0.01	<0.01	101	35	60	3
11300		1.08	>10.00	400	0.55	0.64	0.01	0.11	18	65	194	22

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa. Ontario K.1.1962 (613) 749-2220 recx 053-5255

REPORT: 091	-41753.0 (COM	PLETE)							ED: 14-JUN ESTERN TRO		PAGE 28	
SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	Zn PPM	As PPM	Sr PPM	Y PPM	Mo PPM	Ag PPM	Cd PPM	Sn PPM	Sb PPM	Te PPM
11294		106	91	<5	47	5	2	<0.2	<1.0	<20	<5	<10
11295		75	206	<5	<1	3	<1	<0.2	<1.0	<20	<5	<10
11296		800	74	<5	9	2	<1	<0.2	<1.0	<20	<5	<10
11297		86	177	<5 .5	<1	4	1	<0.2	<1.0	<20	<5	<10
11298		007	37	<5		3	1	-0.2	~1.0	~20	~ <u>5</u>	<10
11299		640	255	<5	3	4	3	<0.2	<1.0	<20	<5	<10
11300		1238	3619	<5	9	6	12	<0.2	6.0	<20	<5	<10
							<u></u>					
							·					
							<u>.</u>					

Bondar-Clegg & Company 1 td. 5420 Canotek Road Ottawa, Ontaro k 19 (x 1613) 749-2220 etcx (053-3253

	REPORT: 091-	41753.0 (COM	PLETE)							<u>TED: 14-JUN-91</u> Western Troy	PAGE	2C
	SAMPLE NUMBER	ELEMENT UNITS	Ba PPM	La PPM	W PPM	РЪ РРМ	Bi PPM	Hg PPB	Au PPB	RASAWT kg		
	11294		39	<1	<20	8	8	<5	3006			
	11295		<2	<1	<20	21	16	13	57			
	11296		<2	<1	<20	9	6	<5 (F	17			
	11297 11208		<2 3	<1 3	<20 <20	29 5	23 5	<5 <5	68 32			
	11299		<2	<1	<20	15	17	<5	14			
	11300		16	8	<20	13	23	7	262			
					····.							
	· · · · · · · · · · · · · · · · · · ·											
					·							
		······································										
•												

BOX 420 KIRKLAND LAKE, ONTARIO, CANADA P2N 3J1 TEL.: (705) 567-3361

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

42944 Certificate of Analysis

Wayne Holmstead Geocom Consulting Ltd. August 14 1074 Dillingham Street Kingston, Ontario K7P-2P4 Work Order # : T910555 Project : 1991-02 SAMPLE NUMBERS Gold Gold ppb 0z/T Accurassay Customer 548916 <0.001 11301 11 548917 11302 6 <0.001 548918 11303 65 0.002 548919 11304 0.002 56 548920 11305 1467 0.043 548921 0.001 11306 49 8922 75 11307 0.002 48923 11308 <5 <0.001 548924 11309 <5 (0.001 548925 11310 33907 0.987 548925 11310 38808 1.129 Check 548926 12927 11311 0.376 548927 11312 77 0.002 548928 11313 13 <0.001 548929 11314 19 0.001 548930 11315 <5 <0.001 548931 11317 11 (0.001 548932 11318 14 <0.001 548932 11318 6 (0.001 Check

1 91

Page:

BOX 426

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J1

TEL.: (705) 567-3361

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

42993 Certificate of Analysis

Wayne Holmstead Geocom Consulting Ltd. 1074 Dillingham Street KINGSTON, ON K7P 2P4 Page #1

August 15, 1991

WORK ORDER: T910556 PROJECT: RE: CHRIS WAGG

SAMPLE ACCURASSAY	NUMBERS CUSTOMER	WEIGHT PULP (g)	GOLD Oz/T	RESIDUE Oz/T	TOTAL ASSAY Oz/T	PERCENT RECOVERY
548933	11316	491.0 g	0.234	0.0032	0.238	99
548934	11319	376.0 g	3.119	0.0518	3.171	98
548935	11320	440.0 g	0.419	0.0060	0.425	99
548936	11321	456.0 g	0.073	0.0011	0.074	98
548937	11322	431.0 g	0.164	0.0016	0.166	9 9
548938	11323	448.0 g	0.078	0.0014	0.080	98
548939	11324	422.0 g	2.779	0.0693	2.848	98
548940	11325	450.0 g	0.751	0.0148	0.765	98
548941	11326	384.0 g	0.090	0.0018	0.092	98
548942	11327	527.0 g	1.727	0.0395	1.766	98
548943	11328	297.0 g	2.504	0.0129	2.517	99
548944	11329	357.0 g	4.045	0.0414	4.086	99
548945	11330	424.0 g	1.569	0.0292	1.598	98
548946	11331	413.0 g	0.444	0.0052	0.449	99
548947	11332	382.0 g	0.405	0.0059	0.411	99
548948	11333	416.0 g	0.306	0.0045	0.311	99
548949	11334	429.0 g	0.010	0.0004	0.010	96
548950	11335	476.0 g	0.776	0.0025	0.778	100
548951	11336	446.0 g	11.851	0.1092	11.960	99
548952	11337	1391.0 g	1.258	0.0843	1.343	94
548953	11338	1423.0 g	1.009	0.0751	1.084	93

Dr.

BOX 426 KIRKLAND LAKE, ONTARIO, CANADA P2N 3J1 TEL.: (705) 567-3361

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

41448 Certificate of Analysis

Page: 1 Wayne Holmstead Geocom Consulting Ltd. August 21 1074 Dillingham Street Kingston, Ontario K7P-2P4 Work Order # : T910569 Project : Chris Wagg SAMPLE NUMBERS Gold Gold Accurassay ppb Oz/T Customer 549204 267 0.008 11357 549205 11358 <5 (0.001 549206 <0.001 11359 8 549207 11360 <5 <0.001 549208 11 <0.001 11361 549209 11362 7 <0.001 9210 11363 21 0.001 49211 11364 <0.001 8 549212 11365 5 <0.001 549213 11366 9 <0.001 549213 11366 10 <0.001 Check 549214 12 <0.001 11367 543218 11368 <0.001 14 11369 9 <0.001 549217 11370 45 0.001 549218 11371 12 <0.001 549219 11372 10 <0.001 549220 11373 12 <0.001 549220 11373 <0.001 14 Check

CCURASSAY LABORATORIES A

A DIVISION OF BARRINGER LABORATORIES LIMITED, REXDALE, ONTARIO

BOX 426 KIRKLAND LAKE, ONTARIO, CANADA P2N 3J1 TEL.: (705) 567-3361

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis 41430

Geo 107	vne Holmstead bcom Consulting 74 Dillingham St	f	nugust 21	1 490-	
	ngston, Ontario 2-2P4		Work Orde Project	er # : T910 : Chri)569 İs Wagg
SAMPLE NU	JMBERS	Silver	Copper	Lead	Zinc
Accurassay	Customer	PPM	2	ppm	ppm
549216	11369	<1	0.013	2	23
549218	11371	2	0.051	2	100

Same

Page:

1

91

ACCURASSAY LABORATORI

A DIVISION OF BARRINGER LABORATORIES LIMITED, REXDALE, ONTARIO

BOX 426

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J1

TEL.: (705) 567-3361

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

41558 Certificate of Analysis

Geocom Consulting Ltd. 1074 Dillingham Street KINGSTON, ON K7P 2P4

August 23, 1991

WORK ORDER: T910570 PROJECT: RE: CHRIS WAGG

SAMPLE ACCURASSAY	NUMBERS CUSTOMER	WEIGHT	GOLD	RESIDUE	TOTAL ASSAY	PERCENT
HUCUKHSSHI	CUSTUMER	PULP (g)	Oz/T	Oz/T	Oz/T	RECOVERY
549221	11339	1173.0 g	<0.004	0.0008	(0.004	
549222	11340	594.0 g	0.340	0.0047	0.345	99
549223	11341	331.0 g	3.014	0.0401	3.054	99
549224	11342	518.0 g	2.112	0.0228	2.135	99
549225	11343	440.0 g	1.929	0.0365	1.966	98
549226	11344	489.0 g	0.877	0.0131	0.890	99
549227	11345	702.0 g	0.041	0.0027	0.044	94
549228	11346	1135.0 g	0.574	0.0322	0.607	95
549229	11347	1095.0 g	0.004	0.0014	0.005	72
549230	11348	1174.0 g	1.219	0.1640	1.383	88
549231	11349	1014.0 g	7.129	0.3246	7.453	96
549232	11350	1160.0 g	0.238	0.0219	0.260	92
549233	11351	843.0 g	0.446	0.0140	0.460	97
549234	11352	482.0 g	0.094	0.0019	0.096	98
54923 5	11353	800.0 g	0.039	0.0014	0.040	96
549236	11354	499.0 g	0.072	0.0023	0.074	97
549237	11355	1100.0 g	0.085	0.0081	0.093	91
549238	11356	1216.0 g	0.079	0.0061	0.085	93
549239 A	a 11374	1200.0 g	0.809	0.0718	0.881	92
549239 B	b 11374	1201.0 g	0.896	0.1744	1.071	84
549239 C	c 11374	1229.0 g	0.819	0.0461	0.865	95
549240 A	a 11375	1223.0 g	2.082	0.1033	2.185	95
549240 B	b 11375	1264.0 g	1.939	0.1352	2.074	93
549240 C	c 11375	1264.0 g	1.786	0.0913	1.877	95
549241 A	a 11376	1292.0 g	0.745	0.0608	0.806	92
549241 B	b 11376	1227.0 g	0.774	0.0336	0,807	96
549241 C	c 11376	1273.0 g	0.925	0.0136	0.938	99
From W.O.#	T910556					
548952 A	a 11337	1311.0 g	1.308	0.0419	1.350	97
548952 B	b 11337	1247.0 g	1.418	0.0435	1.461	97
5489 53 A	a 11338	1309.0 g	1.025	0.0138	1.039	9 9
548953 B	b 11338	1303.0 g	1.030	0.0227	1.052	98
-						

Per:

LF-30

BOX 426 KIRKLAND LAKE, ONTARIO, CANADA P2N 3J1 TEL.: (705) 567-3361

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

41559 Certificate of Analysis

Page: 1

					ra	ye.
	Wayne Holmstead Geocom Consulting L 1074 Dillingham Str Kingston, Ontario			August	26	
	K7P-2P4		Work O	rder # :	T910606	
			Projec		C. Wagg	
			110300		0	
SAMPL	E NUMBERS	Gold	Gold			
Accurassay	Customer	ppb	Oz/T			
549800	11377	23	0.001			
549801	11378	19	0.001			
549802	11379	543	0.016			
			0.001			
549803	11380	30				
549804	11381	29	0.001			
£ 19805	11382	34	0.001			
, •980 6	11383	8	<0.001			
-549807	11384	245	0.007			
549808	11385	25	0.001			
549809	11394	176	0.005			
549809	11394	193	0.006	Check		
549810	11395	26	0.001			
549811	11396	68	0.002			
549812	11398	6	<0.001			
549813	11399	64	0.002			
549813	11399	50	0.001	Check		

Blume 1

A DIVISION OF BARRINGER LABORATORIES LIMITED, REXDALE, ONTARIO

ACCURASSAY LABORATOR

BOX 426

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J1

TEL.: (705) 567-3361

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

41589 Certificate of Analysis

Page #1

Wayne Holmstead Geocom Consulting Ltd. 1074 Dillingham Street KINGSTON, ON K7P 2P4

August 28, 1991

IES

WORK ORDER: T910605 PROJECT: RE: CHRIS WAGG

SAMPLE ACCURASSAY	NUMBERS CUSTOMER	WEIGHT PULP (g)	GOLD Oz/T	RESIDUE Oz/T	TOTAL ASSAY Oz/T	PERCENT RECOVERY
549791	11386	1004.0 g	<0.004	0.0002	<0.004	
549792	11387	1002.0 g	1.764	0.0560	1.820	97
5 49 793	11388	1000.0 g	<0.004	(0.0002	<0.004	
549794	11389	1014.0 g	0.272	0.0150	0.287	95
549795	11390	976.0 g	<0.004	<0.0002	<0.004	
549796	11391	1022.0 g	0.004	0.0004	0.004	91
549797	11392	1034.0 g	<0.004	0.0002	<0.004	
549798	11393	1036.0 g	<0.004	0.0011	<0.004	
549799	11397	1016.0 g	<0.004	0.0022	<0.004	

-10-22-01 · C.ALAN THEFT

JRASSAV A DIVISION OF BARRINGER LABORATORIES LIMITED. REXDALE, ONTARIO BOX 426

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J1 TEL.: (705) 567-3361

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D. C. Chein (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

41688

Page #1

Warne Holmstead G ... Consulting Ltd. 1074 Dillingham Street KINGSTON, ON K7P 2P4

September 05, 1991

ATORIES

T910639 WORK ORDER: BONDAR-CLEGG REJECTS PROJECT: RE:

SAMPLE NUMB	ERS WEIGHT	GOLD	RESIDUE	TOTAL ASS	PERCENT
	JSTOMER PULP (g)	Oz/T	Oz/T	Oz/T	RECOVERY
550268 1 550269 1 550270 550271 A 550271 B 550271 C 550272 A 550272 B	110431494.09110441336.09110451077.09110481513.09110481490.09110481457.09110511483.09110511514.09110511529.0911053872.09110551500.09110551527.09110591513.09	0.032 9.013 0.176 0.011 0.012 0.195 0.183 0.185 0.006 0.131 0.113 0.090 1.805	0.0113 0.3431 0.0046 0.0009 0.0005 0.0078 0.0053 0.0111 0.0071 0.0005 0.0055 0.0031 0.0032 0.1170	0.136 0.116 0.093	97

LF-30

د.)

ACCURASSAY LABORATORIES

A DIVISION OF BARRINGER LABORATORIES LIMITED. REXDALE, ONTARIO

BOX 426 KIRKLAND LAKE, ONTARIO, CANADA P2N 3J1

TEL.: (705) 567-3361

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

42807 Certificate of Analysis

Page #1

August 02, 1991

1074 Dillingham Street KINGSTON, ON K7P 2P4

Wayne Holmstead

Geocom Consulting Ltd.

WORK ORDER: T910517 PROJECT: RE: CHRIS WAGG

SAMPLE ACCURASSAY	NUMBERS CUSTOMER	WEIGHT PULP (g)	GOLD Oz/T	RESIDUE Oz/T	TOTAL ASSAY Oz/T	PERCENT
548101	11043	343.0 g	0.034	0.0015	0.036	96
548102	11053	282.0 g	<0.004	0.0003	<0.004	
548103	11044	333.0 g	3.009	0.0468	3.056	98
548104	11045	316.0 g	0.119	0.0044	0.123	96
548105	11048	296.0 g	0.013	0.0005	0.014	96
548106	11051	323.0 g	0.069	0.0032	0.072	96
548107	11055	326.0 g	0.024	0.0003	0.024	99
548108	11059	225.0 g	0.966	0.0103	0.977	99

Bli.

	and the Area area the Area t	n . '				10 M 10 M 10	R-CLEGG		Certificate 8 Augusto da
)	REPORT: 091-4	1753.5 (00	OMPLETE)				SPE SATSIN	DATE PRINTED: 19-JUN-91 PROJECT: WESTERN TROY	PAGE 1
	SAMPLE NUMBER	ELEMENT UNITS		OPT	Au Ave OPT	-150WT gms	+150WT gms	·	
	11046		0.480	12.899	1.435	516.3	43.01		
		· · ·			· · · · · · · · · · · · · · · · · · ·				
						_			
	••••								
)	••••••••••								
	······								
	• • • •								
	· · · ·								
	· · · ·								

. . .

Jbe German, Chief Assaver

Negel (Stranger Stranger) a

Certificate

NOTE THE INFORMATING SERVICES DATE PRINTED: 10-JUN-91

REPORT: 091-	41753.4 (CC	IMPLETE)						PROJECT: WESTERN TROY	PAGE	1
SAMPLE NUMBER	ELEMENT UNITS	Au-150 OPT	Au+150 OPT	Au Ave Opt	-150WT 9ms	+150WT gms	RASAWT kg			
11044		3.488	172.629	9.149	367.6	12.73	1.87			
11045		0.120	2.837	0.259	347.2	18.68	1.65			
11047		0.005	0.010	0.005	297.1	20.11	0.75			
11048		0.015	0.071	0.017	358.1	13.64	5.51			
1102		j, <u>j</u> %4		9>	3561		ે.94			
11055		0.020	0.849	0.064	358.7	19.96	6.97			
11059		1.024	8.644	1.479	256.4	16.29	2.50			
11061		0.131	0.491	0.151	303.6	18.30	2.87			

•

.....

·····

Joe German. Chief Assaver

.

EVEN IN THE APERNER CHONIX TESTING SERVICES DATE PRINTED: 19-JUN-91

REPORT: 091-	41694.5 (00	IMPLETE)					PROJECT: WESTERN TROY	PAGE	1
SÅMPLE NUMBER	ELEMENT UNITS	Au-150 OPT	Au+150 OPT	OPT	gms	+150WT gms			
11276		1.952	14.398	2.548	518.1				

.....

D)					
	Joe	German,	Chief	Assayer	

^ ′	•			001						
	RFPORT: 091	-41694.4 (COM	MPLFTF)		:	DAIE	PRINTED: 14 ECT: WESTERN 1	<u>1UN-91</u>		 44 ×
	SAMPLE NUMBER	ELEMENT	Zn PCT							
	11278		4.03							
					· ···· · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
-	. .		- · · · -							
	. <u>-</u>	••• · · · · · ·								
(_ ;										 -
		、				·····				
						X	Joe	German, Ch	ief Assaver	

Bondar-Clegg & Company 14d. 5420 Canotek Road Ottawa Ontario K (1960) (613) 749-2220 x 053-3233

Certificate of Analysis

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

		DATE PRINTED: 15-NOV-S1
<u></u>	43019.4 (CCMPLETE)	PROJECT: NONE PAGE 1
SAMPLE	ELEMEN AU	
NUMBER	UNITS OPT	
11401	0.302	
11402	3.038	
11403	0.010	
11404	0.007	
	•	
11406	0.004	
11407	0.001	
11408	0.004	
11409	0.004	
11410	0.005	
	5. 001	
11411	0.001	
11412	0.016	
11413	2.859	
11414	1.868	
11415	0.011	
11416	0.023	
11417	0.008	
11418	0.017	
11419	0.005	
11420	0.076	
11421	0.004	
11422	0.010	
11 42 3	0.001	
11424	0.008	
** **	2.000	

Bondar-Clegg & Company Ltd. 5420 Canotek Rosa Ottawa, Ontario

7170

1.00

Fax: (613) 74

Geochemical Lab Report

DATE PRINTED: 29-NOV-91 PAGE 1 REPORT: 091-43285.1 (COMPLETE) PROJECT: NONE SAMPLE ELEMENT AUR1 AUR2 Au NUMBER UNITS PP8 PP8 **PP8** 11425 11 11426 7 11427 <5 11428 <5 11429 16 11431 28 11448 6 >10000 11462 >10000 >10000 162 11463 11464 192 11465 15 11466 47

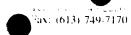
Geochemical Lab Report

ax (613) 749-7170

WESTERN TROY

REPORT: 091-	43285.2 (COM	PLETE)					P	ATE PRINTE ROJECT: NO	INE		PAGE 1A	
SAMPLE NUMBER	ELEMENT UNITS	PCT	Fe Tot PCT	Mn PPM	Mg PCT	Ca PCT	Na PCT	K PCT	Sc PPM	V PPM	Cr PPM	Co PPM
11462		0.15	1.31	65	0.19	0.04	0.06	0.06	5	13	217	22

.....



Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontary

Geochemical Lah Ronart


SAMPLE	CI CNCNT								INE		1102 10	
NUMBER	ELEMENT	Ni PPM	Cu PPM	Zn PPM	Ás PPM	Sr PPM	Y PPM	Mo PPM	Åg PPM	Cđ PPM	Sn PPM	Sb PPM
11462		38	370	6	11	3	<1	3	6.2	1.1	<20	<5

Ł

Bondar-Clegg & Company Ltd. 5420 Cateotek Kond Onawa Object

ax: (613) 749-7170

Geochemical

PATE PRINTED: 10-DEC-91 PROJECT: NONE PAGE 1C REPORT: 091-43285.2 (COMPLETE) SAMPLE ELEMENT Te Ba La ¥ РЬ Bi Hg PPM PPM PPM PPM PPM PPB NUMBER UNITS PPM <1 5 5 11462 18 <20 24 14

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ditawa, Ontario K11 + 1 613) 749-2220	BUNDAR-GLEG		Certificate of Analysis
WESTERN TROY	A DIVISION OF INCHCAPE INSPECTION & T	ESTING SERVICES	0.
REPORT: 091-13285.4 - 00%/USTE (POJECT: NONE	PAGE 1
1,46? 1,107			
)			
· · · · · · · · · · · · · · · · · · ·			
		X	
		\mathcal{O}	

Bonzlar-Clegg & Company 11d. 5420 Canotek Road Ottave: October s

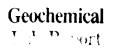
an in

10101 44-222

Certificate

BUNUAR-CLEDD

		ADDISION OF TSCHEAPT IS	SPECTION & TESTING SERVICES <u>0477 - PRIMEORES</u> -SEDEC	- 9
879097 011	-23289.2 (10+D(F1F)		PROJECT: NONE	PAGE 1
BARRIE				
	Nity Sal			
 2				
÷0;;				
11470	2.329			
11472	0.082			
.1473	0.094			
11474	0.354			
11475	0.889			
_1478	6.714			
11478	0.310			
11470 11480	0.194			
11480	2.292			
11481	0.404			
11,481	0.228			
11433	0.477			
.1-6-	0.475			
	0.089			
0493	\. <u>\$</u> 78			
11487	0.082			
11488	1.475			
1489	<u>5.495</u>			
<u>)1490</u>	0.127			



.

Tel: (615) (612) Jax: (613) 749-7170

REPORT: 091-	-43300.0 (COM	PLETE)			PATE PRINTED: 28 PROJECT: NONE	-NUV-91	PAGE 1	
	and the second s		, <u></u>					
SAMPLE NUMBER	ELEMENT	Au PP8						
11491		5		•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·			
11491 11492		18						
	1 100 01 8 100 8 80 11 1 1 0 10 10 10				 ·····	· · · · · · · · · · ·		
		······			 			
		·			 			

Bondar-Clegg & Company Ltd. 5420 Canotek Road Off was 1997

Tel: (613) 549 2220 Tax: (613) 749-7170

Geochemical

Tak Danat

WESTERN TRUT

SAMPLE	ELEMENT	Au-150	Au+150	Au Av	TestWt	-150Wt	+150Wt	
NUMBER	UNITS	PPM	PPM	PPM	9#S	gns	gns.	
11430	· ··· ····	<0.01	0.05	<0.01	30.00		11.11	

F

Bondar-Olegg & Company Ltd. 5420 Classific Robot Ottavis Contario

.170

av inter a

Geochemical Lah Report

.

,

							n	ATE-PRINTE		R TR	207	
REPORT: 091-	-43285.0 (COM	(PLETE)						ROJECT: NO		-	PAGE 1A	
SAMPLE NUMBER	ELEMENT UNITS	A1 PCT	Fe Tot PCT	Mn PPM	Mg PCT	Ca PCT	Na PCT	K PCT	Sc PPN	V PPM	Cr PPM	Co PPM
11432		0.95	1.19	243	1.23	0.43	0.11	0.25	<5	17	106	13
11433		1.27	2.57	404	2.20	0.99	0.10	0.24	8	56	112	23
11434		1.16	2.19	339	2.04	0.79	0.10	0.13	6	47	98	21
11435		0.68	1.04	463	0.77	1.09	0.03	0.04	<5	34	59	14
11436		1.47	2.55	474	2.66	0.75	0.09	0.08	<5	55	105	25
11437		0.57	0.81	197	0.60	1.05	0.03	0.03	<5	29	58	13
11438		1.83		569	3.06	1.03	0.10	0.05	5	63	114	32
11439		1.68	3.19	533	2.90	1.27	0.14	0.09	5	63	108	26
11440		1.27	2.32	422	2.24	1.31	0.15	0.08	5	53	90	20
11441		1.03		307	1.64	1.43	0.07	0.06	<5	48	85	18
11442		2.03		649	3.42	1.20	0.13	0.58	6	75	154	31
11443		1.43		518	2.44	1.28	0.17	0.15	б	60	93	25
11444		1.44	2.45	459	2.19	1.43	0.18	0.07	б	55	94	19
11445		0.38	0.46	86	0.17	0.25	0.21	0.07	<5	6	79	8
11446		1.23	2.03	388	1.96	1.19	0.18	0.07	5	49	83	20
11447		1.79	4.07	514	2.82	1.21	0.20	0.10	6	72	126	32
11448		1.05		295	1.86	1.09	0.14	0.09	<5	44	98	22
11449		1.44	2.58	424	2.33	1.41	0.16	0.28	б	60	98	26
11450		0.98		296	1.35	1.07	0.05	0.10	<5	46	110	46
11451		1.22		369	1.85	1.19	0.09	0.21	<5	52	96	46
11452		1.25	2.18	510	1.88	1.05	0.05	0.09	<5	47	81	22
11453		0.31	0.46	192	0.16	0.10	0.12	0.04	<5	5	76	8
11454		1.00		390	1.47	1.25	0.07	0.06	<5	40	70	18
11455		1.64	2.95	509	2.84	0.95	0.09	0.09	<5	57	95	27
11456	····-	1.28	2.18	433	1.98	1.30	0.12	0.07	<5	47	93	23
11457		1.06	1.60	355	1.20	1.27	0.08	0.05	<5	38	93	21
11458		1.05	1.86	283	1.58	0.47	0.09	0.16	<5	30	82	14
11459		0.66		134	0.71	0.81	0.03	0.04	<5	21	84	13
11460		3.37		1276	5.20	0.59	0.05	0.31	13	152	296	46
11461		2.34		885	4.04	1.19	0.05	0.18	8	90	156	55

Bondar-Clegg & Company 1 td. 8420 - Universe Roma Other Company and

Geochemical

ax (643) 747 7470

REPORT: 091-	-43285.0 (COMP	'LETE)						TE PRINTE			PAGE 1B	
SAMPLE NUMBER	ELEMENT UNITS	Ni PP N	Cu PPM	Zn PPM	As PPM	Sr PPM	Y PPN	Mo PPM	Ag PPM	Cd PPN	Sn PPM	Sb PPN
11432		16	8	58	18	43	3	2	1.1	1.2	<20	б
11433		47	94	38	14	11	4	2	1.0	<0.2	<20	<5
11434		37	85	34	12	12	3	1	0.8	0.6	<20	6
11435		21	35	32	14	8	5	3	0.8	<0.2	<20	<5
11436		47	29	41	14	11	2	2	1.1	0.6	<20	8
11437		19	112	16	20	9	6	1	1.0	0.6	<20	<5
11438		66	112	56	13	14	4	2	1.1	<0.2	<20	12
11439		47	52	49	20	21	4	2	0.9	<0.2	<20	12
11440		35	55	40	9	12	4	2	0.9	0.3	<20	7
11441		33	134	28	6	9	6	3	1.0	<0.2	<20	7
11442		66	32	81	16	23	4	1	1.0	<0.2	<20	15
11443		49	107	43	15	9	5	2	1.1	<0.2	<20	10
11444		32	62	32	11	12	4	1	0.9	0.6	<20	8
11445		8	45	10	14	б	2	2	0.8	0.8	<20	<5
11446		37	93	29	9	7	4	2	0.9	0.5	<20	<5
11447		63	231	42	29	14	4	3	1.2	<0.2	<20	13
11448		52	152	28	8	26	4	2	1.2	<0.2	<20	<5
11449		50	218	42	20	10	5	1	1.3	0.3	<20	9
11450		105	425	29	11	20	5	3	1.3	1.3	<20	6
11451		106	303	32	17	15	5	3	1.1	<0.2	<20	8
11452		38	65	36	18	11	4	3	0.9	<0.2	<20	<5
11453		7	32	9	11	6	6	2	0.8	0.7	<20	<5
11454		32	23	30	20	11	5	2	1.1	<0.2	<20	<5
11455		44	59	38	18	28	3	2	0.9	<0.2	<20	10
11456		50	78	33	12	14	4	5	1.1	<0.2	<20	7
11457		44	43	52	19	11	5	3	0.9	0.7	<20	<5
11458		17	27	64	13	24	2	1	0.7	0.2	<20	<5
11459		27	35	14	15	13	3	11	0.7	<0.2	<20	<5
11460		81	524	99	12	8	5	10	2.0	<0.2	<20	18
11461		88	381	59	24	16	5	9	1.5	0.7	<20	13

.....

F

Bondar-Clegg & Company Ltd. 5420 Camiles Residence Ongeneration

ax: (613) 249 7170

Geochemical

The Report

BUNNAK LELE

DEDODT. 001	42205 0 / 008							DATE PRINTED : 5-DEC	
KEPUKI: 091-	43285.0 (COM	PLEIE)						PROJECT: NONE	PAGE 1C
SAMPLE NUMBER	ELEMENT UNITS	Te PPM	Ba PPM	La PPM	₩ PPM	Pb Ppm	Bi PPM		
11432		10	64	13	<20	11	<5		
11433		17	27	<1	<20	4	7		
11434		17	20	<1	<20	5	6		
11435		14	33	2	<20	<2	<5		
11436		12	17	<1	<20	5	7		
11437		<10	22	1	<20	3	<5		
11438		25	20	<1	<20	9	14		
11439		31	33	<1	<20	13	10		
11440		19	17	2	<20	7	8		
11441		17	14	3	<20	7	6		
11442		24	61	<1	<20	6	13		·····
11443		26	30	<1	<20	8	9		
11444		16	11	1	<20	4	<5		
11445		<10	13	3	<20	16	<5		
11446		16	12	2	<20	6	8		
11447		25	9	1	<20	17	9		
11448		12	10	2	<20	3	5		
11449		21	114	2	<20	б	8		
11450		14	39	2	<20	7	8		
11451	······	18	48	2	<20	3	8		
11452		13	22	2	<20	4	6		
11453		<10	14	4	<20	7	<5		
11454		11	14	3	<20	3	<5		
11455		19	28	1	<20	4	7		
11456		14	15	2	<20	3	8		·
11457		12	15	2	<20	2	<5		
11458		10	43	11	<20	3	<5		
11459		<10	14	2	<20	3	<5		
11460		48	65	1	<20	10	18		
11461		33	52	1	<20	6	13		

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario KU 8X5 (613) 749-2220 x 053-3233

Geochemical Lab Report

	REPORT: 091-43	1397.0 (COM	PLETE)]			D P	ATE PRINTE Roject: We	ED: 24-DEC STERN TRO	-91 Y	PAGE 1A		
·	SAMPLE NUMBER	ELEMENT UNITS	A1 PCT	Fe Tot PCT	₩n PPM	Mg PCT	Ca PCT	Na PCT	K PCT	Sc PPM	V PPM	Cr PPM	Co PPM	
	8275 8276 8277		0.22 0.09 0.35	0.91 0.40 1.15	41 37 23	0.12 0.07 0.42	0.05 0.03 0.07	0.12 0.05 0.14	0.02 <0.01 0.04	<5 <5 <5	4 2 7	113 131 106	2 <1 <1	
											. <u></u> ,			
·														

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Onta 11 8N5 (613) 749-2220 Telex 053-3233

Geochemical Lab Report

REPORT: 091	-43397.0 (COM	PLETE)					DA PE	NTE PRINT ROJECT: W	<u>ED: 24-DEC</u> ESTERN TRI		PAGE 18	
SAMPLE NUMBER	ELEMENT UNITS	Ni PPM	Cu PPM	Zn PP M	As PPM	St PPM	Y PPM	Mo PPM	A9 PPM	Cd PPM	Sti PPM	Sb PPM
8275 8276 8277		5 2 4	5 3 3	5 3 13	<5 <5 <5	8 3 10	<1 <1 <1	<1 <1 18	10.8 2.3 14.8	<0.2 <0.2 <0.2	<20 <20 <20	<5 <5 <5
<u></u>												
											<u> </u>	
								.*				
						<u></u>						

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontari KUSNY (613) 749-2220 Nex 053-3233

Geochemical Lab Report

REPORT: 091-	43397.0 (COM	PLETE)					DA PR	<u>TE PRINTE</u> OJECT: WE	D: 24-DEC-91 STERN TROY	PAGE	10	,
SAMPLE NUMBER	ELEMENT UNITS	Te PPM	8a PPM	La PPM	W PPM	РЬ РРМ	3i PPM	Hg PPB	Au PPB			
8275 8276 8277		<10 <10 <10	6 6 14	4 2 10	<20 <20 <20	5 <2 19	7 <5 6	8 6 10	9 45 <5			
								<u> </u>				
					<u> </u>							
										6 ages		

900

Ministry of Northern Development and Mines

Ministère du Développement du Nord et des Mines Geoscience Approvals Section 933 Ramsey Lake Rd., 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (705) 670-5853 Fax: (705) 670-5863

Our File: 2.15022 Transaction #: W9310.00036

October 12, 1993

Mining Recorder Ministry of Northern Development and Mines 808 Robertson Street Kenora, Ontario P9N 3K9

Dear Sir:

RE: APPROVAL OF ASSESSMENT WORK ON MINING CLAIMS K 1092633 ET AL. IN MENARY TOWNSHIP.

The Assessment Credits for GEOLOGY and PROSPECTING, sections 12 and 9 of the Mining Act Regulations, as listed on the above report of work, have been approved as of SEPTEMBER 20, 1993.

Please indicate this approval on the claim record sheets.

If you have any questions please call Clive Stephenson at (705) 670-5856.

Yours sincerely

In carling.

Ron C. Gashinski Senior Manager, Mining Lands Section Maning and Land Management Branch Mines and Minerals Division

cc: Assessment Files Office V Toronto, Ontario

Resident Geologist Kenora, Ontario

	ansaction Number			
and Mines	opment After	Recording Claim	L	W9310.00036
Ontario		Mining Act		W9310.00036 MINING LANDS
Personal Internation collecte this collectic pould be dire Sudbury, One c. P3E 6A5,	icted to the Provincial Mana	er the authority of the Mining Act. 7 ger, Mining Lands, Ministry of Nor	This information will be rthern Development a	used for correspondence. Questions about nd Mines, Fourth Floor, 159 Cedar Street, 15022
- Refer Recor - A sep	der. arate copy of this form		ts of filing assess h Work Group.	ment work or consult the Mining
		the work is assigned to, n		his form.
Recorded Holder(s) WESTERN T	ROY CAPITAL	RESOURCES INC	-	Client No. 20'7 8 8 1
Address				Telephone No.
Mining Division	ICHMOND WES	Township/Area	······	416 361 - 0737 M or G Plan No.
KENORA Dates		MENARY TWP		G 3819
Work From: Performed	MAY 1, 1991	. Ti	o: DEC 31,	1991
Work Performed (Che	ck One Work Group O	nly)		
Work Group		7	RECEIV	25 1
Geotechnical Survey	GEOLOGY,	, PROSPECTING	I NEUEIV	
Physical Work, Including Drilling			MAY 1 8 19	993
Rehabilitation				BRANCH
Other Authorized Work	· · · · · · · · · · · · · · · · · · ·			
Assays		· · · · · · · · · · · · · · · · · · ·	···· ··· ··· · ··· .	
Assignment from				
Reserve			s 97,	
Na	me	ned the Work (Give Name	Address	Author of Report) ドルムムSTON, ドアアユアイ
	ASSOCIATES INC	SAME AS A		<u> </u>
WATTWE HOL				
CIRIS WA	6-6	GENERAL DELIVER	27, DENBIGH	I, ONTARIO KOHILO
(attach a schedule if ne	cessary)	L		· · ·
Certification of Benef	icial Interest * See N	lote No. 1 on reverse side		
-	work was performed, the cla current holder's name or held u older.		L 26/93	ded Holder or Agentalionatife)
Certification of Work	Report			2 5
its completion and annexe	d report is true.	set forth in this Work report, havir	ng performed the work	c or witnessed same during and/or after
Name and Address of Person	Certifying	DILLINGHAM ST	KINGOTA	ONTARIO KTP2PJ
$\frac{\omega_{A7}}{\text{Telepone No.}}$ $\frac{(613)}{384-8}$	1944 APRIL =	26 93 Certified	By (Signature)	W, ONTARIO, KTP2Py
For Office Use Only	······	···· /		
Total Value Cr. Recorded	Date Recorded	Mining Recorder	- BO	KENORA
*	MAY 11/95 Deemed Approval Date	Date Approved	ma	
797 761	Au6 9/93	Sent		MAY 11 1993
		- Go m		7891011 121 23 456
241 (03/91)				-

5 [_____

2.15022

and the second se

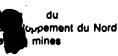
Mar. 7--

	WORK REPT. #	CLAIM NUMB.	# CLAIM UNITS	WORK DONE	VALUE APPLIED	VALUE Assigned	RESERVE		
	** ** ** ** ** ** ** *	1092633 1092634	1	\$3,259 \$3,259 \$3,259	\$2,400 \$2,400	1898 \$0 '' \$0	\$971 \$971	1473	
		1092635	1	\$3,259	\$2,400	··· \$0	\$971	4	
		1092636 1092637	1	\$3,259 \$3,259	\$2,400 \$2,400	11 \$0 11 \$0	\$971 \$971		
		1092638	ī	\$3,259	\$2,400	n \$0	\$971		
		1092639 1092640	1	\$3,259	\$2,400	11 \$0	\$971		
		1092641	1	\$3,259 \$3,259	\$2,400 \$2,400	·· \$0 ·· \$0	\$971 \$971		
		1120258	1	\$3,259	\$2,400	1938 \$0	\$971	1433	
		1120259 1120260	1 1	\$3,259 \$3,259	\$2,400 \$2,400	'' \$0 '' \$0	\$971 \$971	41 <u> </u>	
		1120261	i	\$3,259	\$2,400		\$971		
		1120262	1	\$3,259	\$2,400	в \$0	\$971		
		1120263 1120264	1	\$3,259 \$3,259	\$2,400 \$2,400		\$971 \$971		
		1120265	i	\$3,259	\$2,400		\$971		
		1120266	1	\$3,259	\$2,400		\$971		
		1079868 1079869	1 1	\$3,259 \$3,259	\$2,400 \$2,400		\$971 \$971	11-53	
		1079870	1	\$3,259	40,400		\$971	11	
		1079871	1	\$3,258	\$2,400	· · · ·	\$971	1433	
		1079872 1079873	1	\$3,258 \$3,258	\$2,400 \$2,400	1787 \$0 \$0	\$971 \$971	1584	
		1079874	1	\$3,258	\$2,400	1938 \$0	\$971	1433	
		1079875	1	\$3,258	\$2,400	¹¹ \$0	\$971	• 1	
		1079876 107 9877	1 1	\$3,258 \$3, 258	\$0 \$2,400	\$3,258 "\$0	\$0 \$9 71	1.	
		1079878	1	\$3,258	\$2,400	ы \$0	\$972	11	
		1079879	1	\$3,258	\$2,400	ų \$0	\$972	٤.	
						RECEI	/ED		
						MAY18	1993		
						MINING LANDS	BRANCH		
	TOTALS	30 # CLAIMS	30 # CLAIM	\$97,761 WORK	\$69,600 VALUE	\$3,258 Value	\$28,161		
			UNITS	DONE	APPLIED	ASSIGNED	RESERVE		
						· .			
nich clain	ns you wish to	priorize the del	etion of credits	. Please mark () one of the f	-	eletions, please	indicate fro	
 Credits are to be cut back starting with the claim listed last, working backwards. Credits are to be cut back equally over all claims contained in this report of work. Credits are to be cut back as priorized on the attached appendix. 									
		cut back as pric				lemented.			
				· · · ·		memorandum of	agreements. etc	c., with res	
to t	he mining cla	lms.			•	1			
92: If w	ork has been	performed on	patented or le	ased land, plea	ise complete t	he following:			

Signature

1

2


Date

MAY 11

93

I certify that the recorded holder had a beneficial interest in the patented or leased land at the time the work was performed.

Ministry of Northern Development and Mines

Statement of Costs for Assessment Credit

Etat des coûts aux fins du crédit d'évaluation

Mining Act/Loi sur les mines

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claim(s). Questions about this collection should

W9310. 00036

Transaction No./Nº de transaction

2. 0

be directed to the Provincial Manager, Minings Lands, Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, telephone (705) 670-7264.

1. Direct Costs/Coûts directs

Туре	Description	Amount Montant	Totals Total giobal
Wages Salaires	Labour Main-d'oeuvre	6206	
	Field Supervision Supervision sur le terrain		
Contractor's and Consultant's	GEOLOGY PROSPECIAL	63,377	
Fees Droits de l'entrepreneur	ASSAY	8237	
et de l'expert- conseil			and the second sec
Supplies Used Fournitures utilisées	Type EXPLOSIVES	1025	
Equipment Rental Location de matériel	Type GEUPHYSICAL	2622	
(7 .2 .77)			
	Total Di Total des col	rect Costs Dis directs	81467

Note: The recorded holder will be required to verify expenditures claimed in this statement of costs within 30 days of a request for verification. If verification is not made, the Minister may reject for assessment work all or part of the assessment work submitted.

Filing Discounts

- Work filed within two years of completion is claimed at 100% of 1. the above Total Value of Assessment Credit.
- 2. Work filed three, four or five years after completion is claimed at 50% of the above Total Value of Assessment Credit. See calculations below:

Total Value of Assessment Credit **Total Assessment Claimed** × 0.50 =

Certification Verifying Statement of Costs

hereby certify:

hat the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.

 (Recorded Holder, Agent, Position is Company) 	am authorized	Et qu'à titre de	, représentant, poste oc	je suis autorise cupé dans la compagnie)
		à faire cette attestatio	m.) `
MAY 11 1993		Signature	A	APRIL 26 93
212 (0 37,89101112123456	Nota : Dans cett	e formule, iorequ'il désigne c	les personnes, le crai	sculin est utilisé au sens neutre

Les renseignements personnels contenus dans la présente formule sont recueillis en vertu de la Loi sur les mines et serviront à tenir à jour un registre des concessions minières. Adresser toute quesiton sur la collece de ces renseignements su chef provincial des terrains miniers, ministère du Développement du Nord et des Mines, 159, rue Cedar, 4[®] étage, Sudbury (Ontario) P3E 6A5, téléphone (705) 670-7264.

2. Indirect Costs/Coûts Indirects

** Note: When claiming Rehabilitation work Indirect costs are not allowable as assessment work. Pour le remboursement des travaux de réhabilitation, les

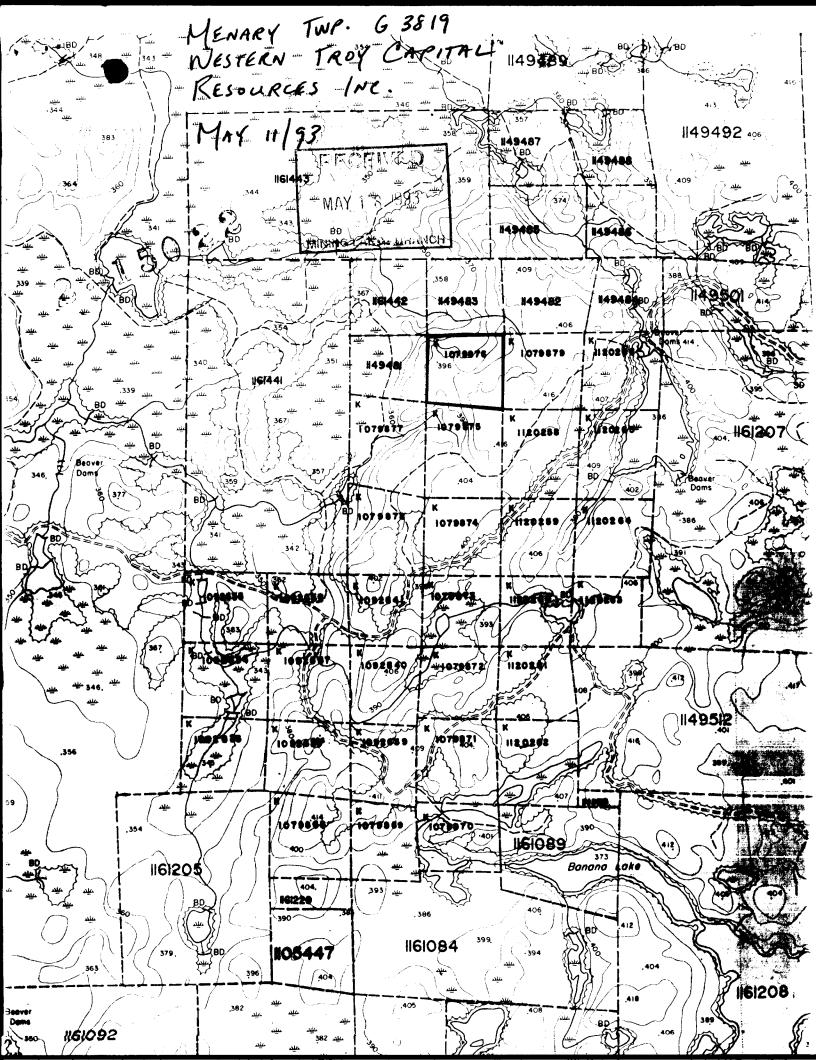
coûts indirects ne sont pas admissibles en tant que travaux d'évaluation.

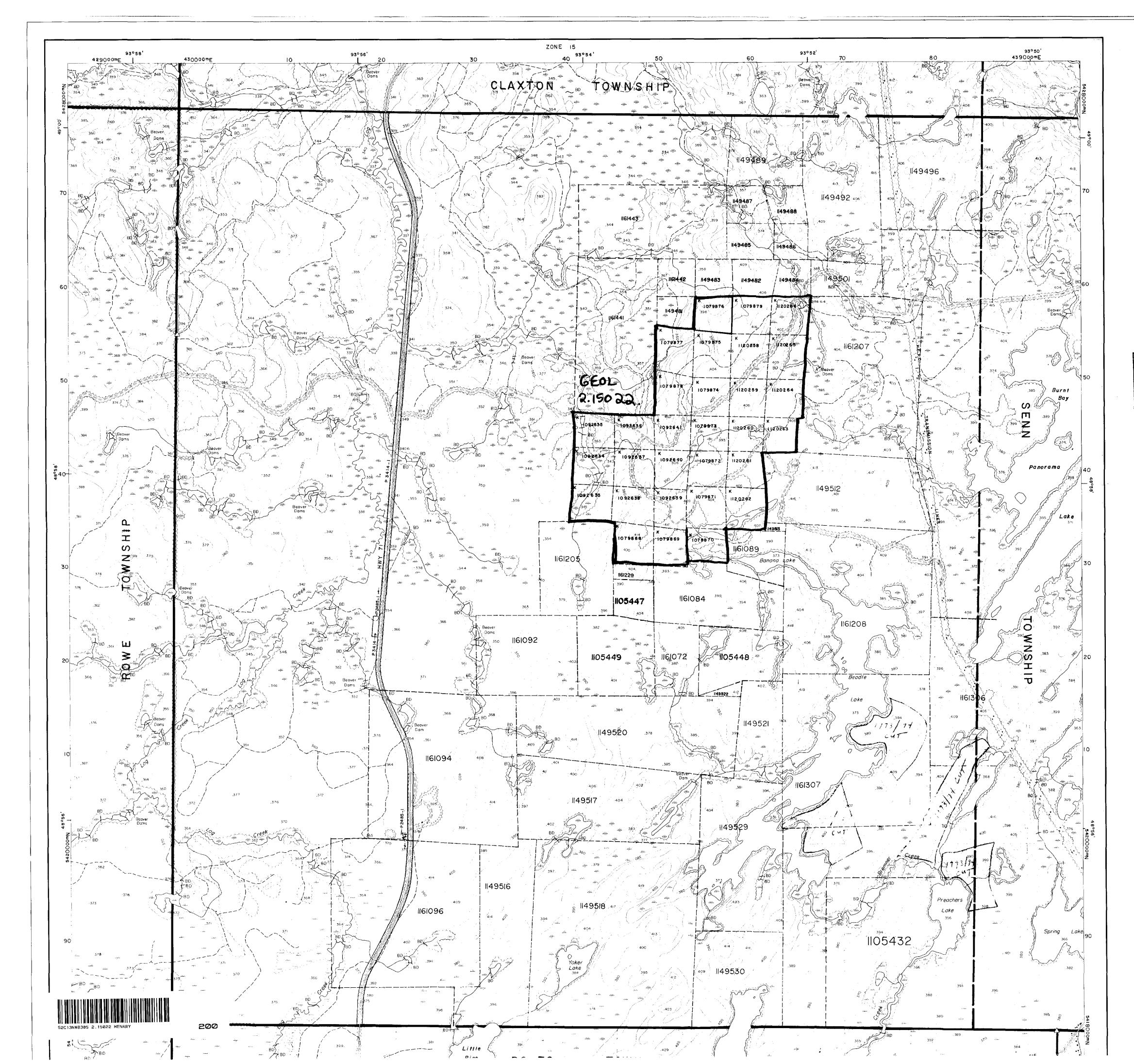
Туре	m			
Transportation Transport	TRUCK	9639		
	RECEIVED	1		
	MAY 1 8 1993			
Food and L Lodging Nourriture et hébergement	MINING LANDS DHANC	13,905		
Mobilization and Demobilization Mobilisation et démobilisation				
.	Sub Total of Indi Total partiel des coût		23544	
	(not greater than 20% of Di) (n'excédant pas 20 % des		16294	
Total Value of Asso (Total of Direct and a Indirect costs)	Allowable d'évaluati	oùts directs	97761	

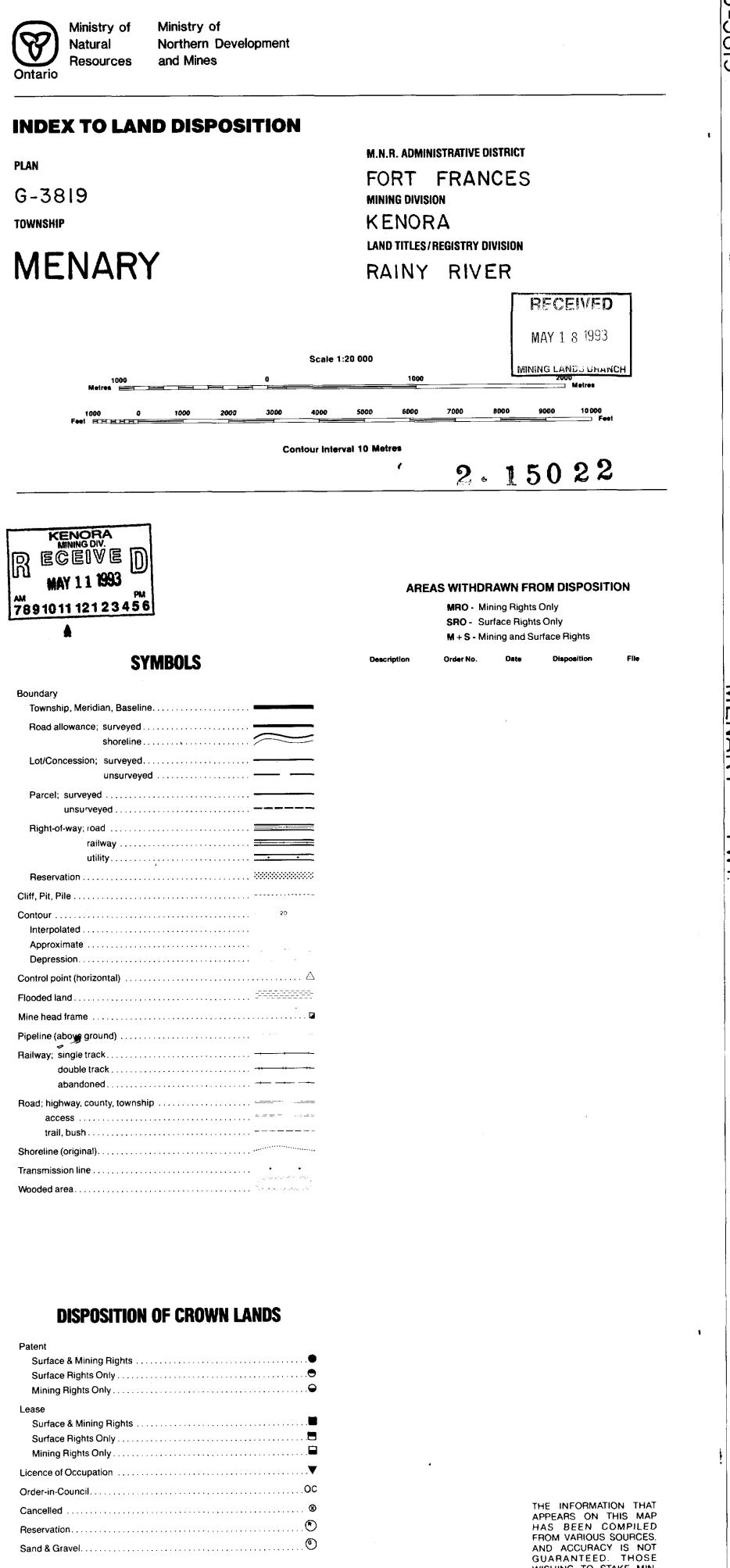
Note : Le titulaire enregistré sera tenu de vérifier les dépenses demandées dans le présent état des coûts dans les 30 jours suivant une demande à cet effet. Si la vérification n'est pas effectuée, le ministre peut rejeter tout ou une partie des travaux d'évaluation présentés.

Remises pour dépôt

- 1. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à 100 % de la valeur totale susmentionnée du crédit d'évaluation.
- 2. Les travaux déposés trois, quatre ou cinq ans après leur achèvement sont remboursés à 50 % de la valeur totale du crédit d'évaluation susmentioané. Voir les calculs ci-dessous.


Valeur totale du crédit d'évaluation	Evaluation totale demandée
×	0,50 =

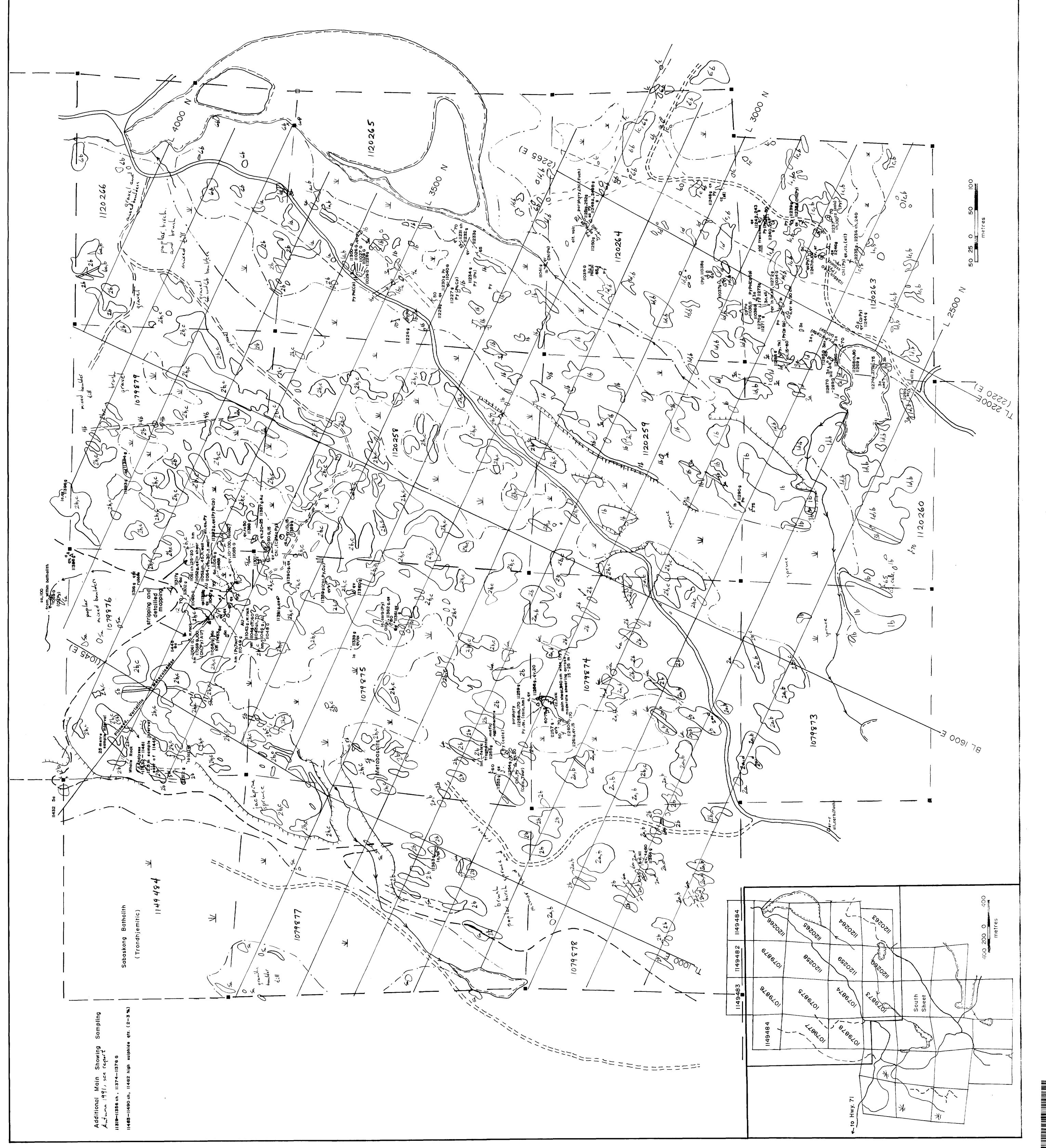

Attestation de l'état des coûts


J'atteste par la présente :

que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'évaluation sur les terrains indiqués dans la formule de rapport de travail cl-joint.

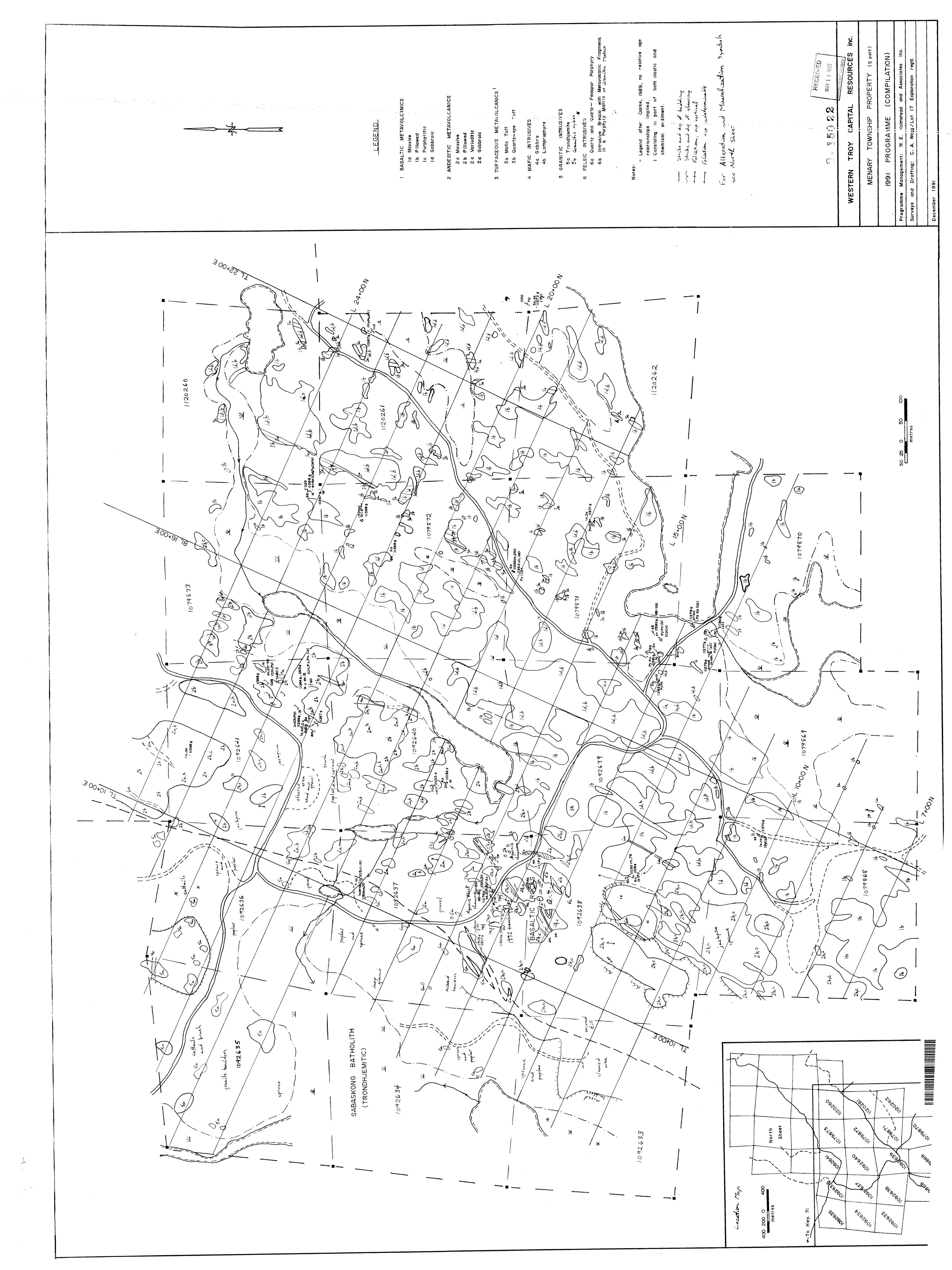
Et qu'à titre de	ie suis autoris	é
(titulaire enregistré, représentan	je suis autoria , poste occupé dans la compagnie)	
à faire cette attestation.	<i>h</i>	

EFFECTIVE _____


HOM VAHIOUS SOURCES, AND ACCURACY IS NOT GUARANTEED. THOSE WISHING TO STAKE MIN-ING CLAIMS SHOULD CON-SULT WITH THE MINING RECORDER, MINISTRY OF NORTHERN DEVELOP-MENT AND MINES, FOR AD-DITIONAL INFORMATION ON THE STATUS OF THE

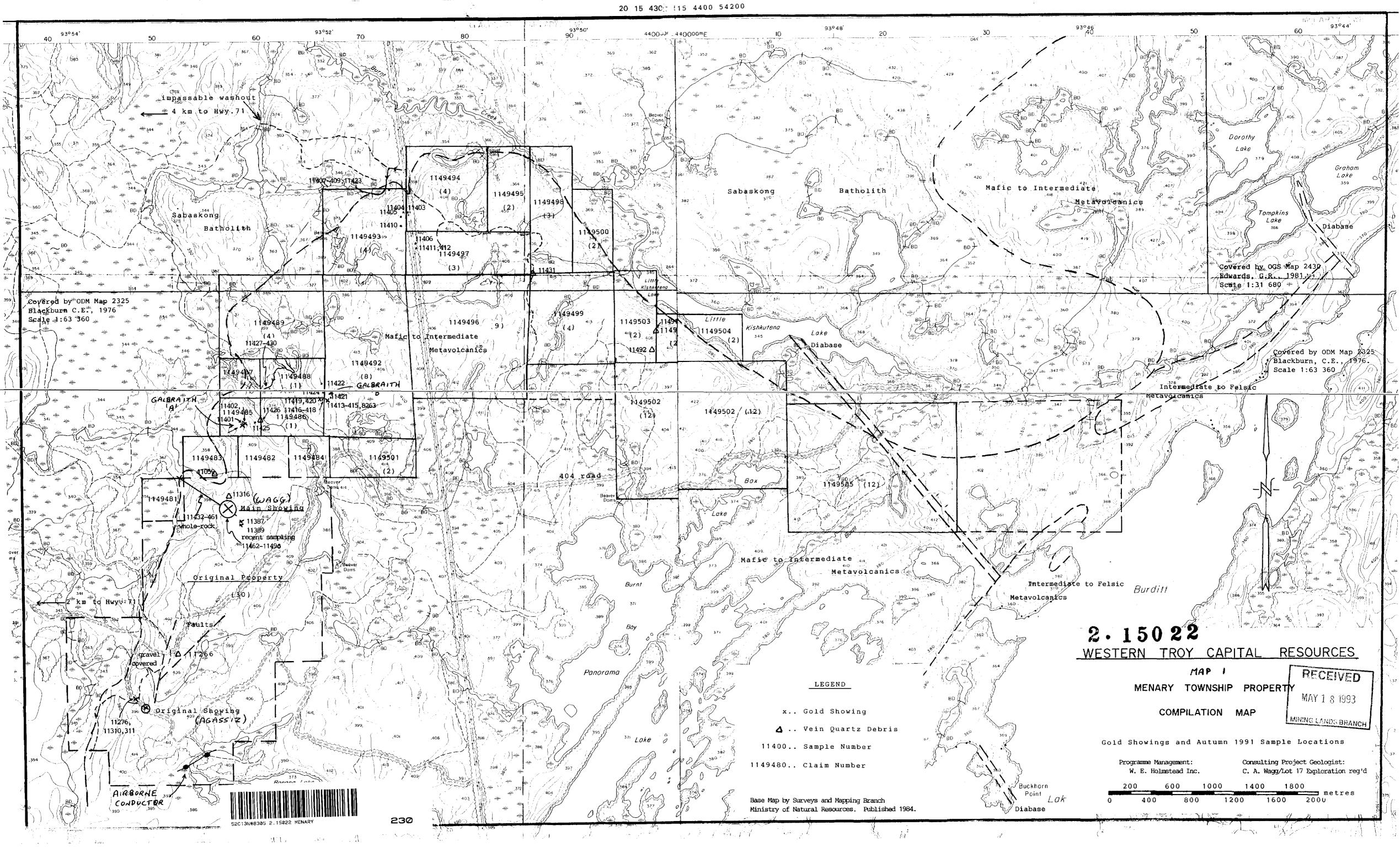
LANDS SHOWN HEREON.

LEGEND CEOLOGY AND SYMBOLS See underloy by Clarke, 1989. or South SymBols or South SymBols See underloy by Clarke, 1989. See underloy by Clarke, 1989. or South SymBols See underloy by Clarke, 1989. Crob Representative chip rs Sown channel ch Sown channel Sown channel	Tour Tourmaline a' Quartz stringers or small lenses or veinlets () Minor constituent Minor shear Eault Fault CC Chloritisation calc CC Chloritisation C Minor shear Fault C C Chloritisation C C C Chloritisation C C C C C C C C C C C C C	Control Contro


. . .

· · · ·

<u>5</u>


supplications and a second second

-

× + 4,4

