Report of Diamond Drilling

on the Turtle Tank Property, Mine Centre Area, Ontario

for Nuinsco Resources Ltd.

NTS 52 C/10, 52 C/15

District of Rainy River

October, 1996

2.17320

WAGG Mineral Exploration and Consulting Inc. October 31, 1996.

,

010

TABLE OF CONTENTS

			Page
1.0	SUMM	ARY	1
2.0	LOCAT	TION AND ACCESS	1
3.0	PROPE	RTY DESCRIPTION	1
4.0	EXPLO	PRATION HISTORY	2
5.0	REGIO	NAL GEOLOGY	5
6.0	PROPE	RTY GEOLOGY	6
	6.1	MINERALIZATION	6
7.0	EXPLO	RATION PROGRAMME	7
	7.1	PROPERTY RECONNAISSANCE	8
		7.11 B Zone Area	8
		7.12 A Zone Area	8
		7.13 Base Metals Zones	11
	7.2	DIAMOND DRILLING	12
		7.21 B Zone Diamond Drilling	13
		7.22 A Zone Diamond Drilling	16
8.0	INTERI	PRETATION	19
9.0	CONCL	USIONS AND RECOMMENDATIONS	19
10.0	REFER	ENCES	21
11.0	CERTIF	FICATION	22
		APPENDICES	
Appendi	x 1.	Surface Sampling Assay Certificates	pp. 23-
Appendi	x 2.	Diamond Drill Core Assay Certificates	pp.
Appendi	x 3.	Statement of Exploration Programme Expenditures for	or 1996 pp.
Appendi	x A .	A Zone Diamond Drill Logs and Sections NTT96-06, NTT96-09	Attached
Appendi	x B .	B Zone Diamond Drill Logs and Sections	Attached
		111190-01 (0111190-03, and 111190-07, 14	1190-08
		FIGURES	Scale
Figure 1.		Property Location Map	1: 250 000 p.3
Figure 2.		Claim Boundary Location Map	1:50.000 p.4
Figure 3.		Geological Sketch Map and Plans of Drilling, B Zone	1: 2 500 p.14,15
Figure 4.		Sample Location Map and Plansof Drilling, A Zone	1: 2 500 p.17,18
		MAPS AND TABLES	
Table 1.		Analytical Results of Surface Sampling	p.9,10
Map 1.		Property Compilation Map	Attached

1

010C

.

1.0 SUMMARY

The Turtle Tank property was optioned from Mssrs. Bradley Cousineau, Edward Cousineau, Louis Cousineau, Raymond Cousineau, and Ken Desjardins, by Nuinsco Resources Ltd. in December of 1995, for its potential to host gold and/or base metal mineralization. The acquisition of the contiguous 185 claim property followed the termination of a previous option agreement between INCO Exploration and Technical Services (IETS) and Mssrs. Cousineau et. al. on Nov. 1, 1993, which was initially executed in August of 1990. Several patented mining claims situated within the claim block were also optioned by Nuinsco within the first quarter of 1996.

A considerable amount of geological, geophysical information, as well as both soil and rock geochemical data was gathered during the three year period during which IETS evaluated the property. As well, three diamond drill holes were put down during 1993 to test a felsic volcanic horizon which is host to a number of zinc-rich base metal occurrences.

Since the data collected by IETS was made available to Nuinsco by the Cousineau's, only a limited amount of surface work was performed by Nuinsco personnel prior to drill testing the two gold showings interpreted to have the potential to contain significant tonnage at economic grades.

A total of nine diamond drill holes totaling 1349.71 metres were put down by Ultramobile Diamond Drilling of Surrey, B.C., between May and August of 1996. Analyses of the core, however, did not reproduce reasonably high grade results obtained from samples collected during a period of due diligence, prior to execution of the option agreement. Consequently, it is unlikely that any further work will be undertaken on the property.

2.0 LOCATION AND ACCESS

The Turtle Tank property is located six kilometres east of the village of Mine Centre, Ontario, near the eastern limit of the Kenora Mining Division. The area is situated approximately 70 km east-northeast of the town of Fort Frances, which is the nearest major centre and the most convenient source of equipment and supplies. Although the property is located within the Rainy River District, for the purposes of work permit applications, the area is subject to M.N.R. administration out of the Atikokan office.

As shown in Figure 1, provincial Hwy. 11, the C.N.R. railway, and an abandoned hydro-electric power clearance provide excellent access to much of the property. A network of unmaintained gravel roads, and winter skid trails, constructed for logging and aggregate extraction, allow access to virtually all parts of the property.

3.0 PROPERTY DESCRIPTION

The claim block consists of 185 contiguous unpatented mining claims (Cousineau Option), as well as 6 patented claims known collectively as the "Pidgeon Option", all held under option by Nuinsco Resources Limited, with corporate offices at 908 The East Mall, Etobicoke, Ontario, M9B 6K2. Claim numbers are as follows:

K 896503-506	K 1050332-333
K 968129-133	K 1050563-566
K 970247-251	K 1050574
K 970302-307	K 1050577-578
K 1018554-557	K 1050580-581
K 1018559-560	K 1050642-643

K 1018576-580	K 1050812-816
K 1018601-613	K 1051135-137
K 1024616-619	K 1079977-999
K 1024911-913	K 1084000-025
K 1024915	K 1084027-029
K 1024927-929	K 1084031-032
K 1025126-131	K 1084034-045
K 1050200-205	K 1084048-049
K 1050211-217	K 1104630-634
K 1050223-227	K 1104655-658
K 1050234-237	K 1108978
K 1050328-329	K 1105410

The patented claims are numbered K 298, K 300, K 301, K 304, K 309, and K 683.

Much of the property has been logged during the past ten years or so, and subsequently replanted with jackpine. Mature stands of mixed jackpine, red pine, spruce, with lesser birch and poplar are largely restricted to areas along the northern and eastern margins of the property.

Overburden cover is extensive over most of the property. Several large pits have been excavated between the highway and the CNR line in order to extract sand and gravel. In places, depths of about 30 metres have been reached without exposing bedrock. The best "continuous" exposure of bedrock is found along a ridge extending southwesterly from the highway for about 1.5 km from the vicinity of claim K 300.

4.0 EXPLORATION HISTORY

Exploration in the Mine Centre area dates from the 1880's, when prospectors first entered the area, in part as a result of gold discoveries along the southern shore of Rainy Lake within Minnesota. Numerous gold occurrences were found in the area, and a multitude of claims were patented during this period, however, almost all have now reverted to the crown, and only three past producing vein deposits are deemed worthy of mention by most writers. They are the Foley, Golden Star, and Olive Mines.

The author is personally familiar with only one of these. The Olive Mine exploited a narrow (generally <15cm) stratiform vein, hosted by banded intermediate to felsic metavolcanics, that contains less than ten percent pyrite, minor chalcopyrite, and considerable fine to coarse free-milling gold.

Base metals were found to occur in the area by the early explorers, but they received relatively little attention until the mid 1950's, after which a succession of companies have intermittently carried out exploration programmes for copper-rich or polymetallic base metal deposits. No substantial massive sulphide bodies have been identified to the author's knowledge, however limited production has resulted from the mining of vein deposits, primarily for gold and silver, some of which contained appreciable copper, zinc, and lead sulphides.

On the Turtle Tank property itself, the earliest well documented work was undertaken in 1969 by Kerr Addison Mines on patent K304. The work consisted of six diamond drill holes totaling 204.8m targeting a felsic horizon mineralized with pyrite, sphalerite and lesser chalcopyrite, galena.

In 1970, following a comprehensive regional programme of geology, geophysics and geochemistry, Northgate Explorations Limited drilled 4 holes near the western boundary of the claimgroup, testing pyritechalcopyrite mineralization associated with a contact between mafic metavolcanics and rhyolite.

Over the period 1975-1976, Hanna Mines conducted geological mapping and various geophysical surveys over much of the property. Three holes were drilled in search of base metals. Two tested portions of rhyolitic horizons in the northeastern corner of the property, and one hole located in the southern part of the property was apparently collared in matic metavolcanics, possibly to test a conductor subsequently identified by an EM-37 survey undertaken by IETS in 1991-'92. 0.8% Zn was reported over 0.76m.

In 1989, George Armstrong of Fort Frances, Ontario, optioned part of the southern portion of the property, and drilled three diamond drill holes a short distance further southwest of previous drilling, for a total length of 340.16m. A 2.26m interval reportedly assayed 1.18% Zn, 0.13% Pb, and 0.07% Cu.

In 1989, Goldfields Canadian Mining Limited optioned the property and flew an airborne magnetometer and VLF-EM survey. Stripping and channel sampling were completed on the A zone gold showing at that time. Shortly thereafter the option was terminated without filing the work for assessment.

Between 1990 and 1993, IETS carried out a comprehensive exploration programme targeting both gold only and base metals deposits. In 1990, Questor Surveys was contracted to fly airborne magnetometer and electromagnetic surveys totaling about 370 line km. As well, linecutting totaling 24.2 km of baselines and 204 km of grid lines was completed, and an IP survey carried out over 15 line km in the northwestern part of the property.

During 1991, geological mapping and lithogeochemical sampling were completed over the entire property. Two gold showings, seven zinc showings, and two copper showings were located. As well, trial soil surveys, and stripping and trenching of the gold zones was undertaken, followed by 1:2500 scale mapping of some of the showings. Ground magnetometer and EM-37 surveys commenced late in the year over felsic horizons which lithogeochemistry indicated were favourable hosts for base metal deposits.

In 1992, two diamond drill holes totaling 727m were put down to test geophysical anomalies, and the holes subsequently probed by pulse EM. And during 1993, additional IP work, and a horizontal loop electromagnetic survey (HLEM) were completed, and three diamond drill holes totaling 1127.7m were drilled to test geophysical and lithogeochemical (alteration) anomalies. The holes were tested by downhole pulse EM, but no new targets were identified. IETS relinquished their option on the property on November 1, 1993, and the property reverted to its current owners.

5.0 **REGIONAL GEOLOGY**

The area lies within a greenstone belt situated in the Wabigoon geological sub-province of the Superior structural province of the Precambrian Shield. Around Mine Centre, two regional east-westerly structures divide the region into three geologically distinct domains. To the north of the Quetico Fault migmatized intrusive rocks predominate, with intermediate to felsic varieties by far the commonest type. To the south of the Seine River Fault, waterlain sandstones and arenites are greatly predominant. The Turtle Tank property itself is situated between the two structures, within a geologically complex area composed of intercalated mafic to felsic metavolcanics intruded by mafic to ultramafic and granitic intrusives, all overlain unconformably by pebble conglomerates and sandstones of the Seine River Series, (Wood, J. et. al., 1980).

The central wedge between the two faults is tightly folded into a series of antiforms and synforms which plunge gently to the southwest. Although isoclinal minor folds complicate the stratigraphy, tops and younging direction appear to be generally to the south. A regional foliation is developed subparallel to the limbs of the folded metavolcanic and metasedimentary rocks. The foliation trends N70E with dips typically steep to the southeast.

6.0 **PROPERTY GEOLOGY**

The property is situated between the Quetico and Seine River Faults, and is cut by a southwesterly trending, sub-parallel splay off the Quetico structure. This splay divides the property into a northern block, which possesses an east-westerly trending foliation, and a southern block within which foliation trends about 070 degrees.

The northern block is underlain by mixed mafic to felsic flows and tuffs, which are tightly folded in places, cut by numerous zones of shearing, and are often strongly calcite or iron-carbonate altered. Rare, thin beds of chemical sediments are occasionally associated with massive mafic flows. The sediments include both iron formation and chert, as individual beds commonly under 1 metre thick. Overlying the metavolcanic package, unconformably, to the south and southwest, is a broad zone underlain by the Seine polymictic conglomerates, with a grey-green volcanic derived matrix and minor interbedded arenaceous sediment. A granitic intrusive occurs in the extreme northwestern corner of the property, ringed by a relatively thin rind of gabbroic rock.

The southern block is bordered along much of the fault splay in the northwest, and along its southeastern margin, by narrow units of Seine conglomerate. The remainder of the block is primarily rhyolitic, with two interbedded mafic metavolcanic horizons. One rarely exceeds 50m in thickness, while the other varies from around 500 to 1700m thick. The thicker mafic unit has been interpreted to underlie most of the large spruce swamp which is found a short distance to the southeast of the string of zinc-rich base metal occurrences.

Since no comprehensive geological mapping was undertaken over the property by Nuinsco, maps and reports produced by IETS were utilized as a geological database (refer to Map Sheet 1, Property Compilation, in back pocket). Three areas which were investigated in limited detail and the units there encountered, are described in Sections 7.11 to 7.13 under the heading Prospecting/Reconnaissance.

6.1 PROPERTY MINERALIZATION

Several types of metallic mineralization are found on the property. The pyrite-chalcopyrite occurrences previously examined by Northgate Exploration were not reinvestigated by Nuinsco. They have been described as disseminations to podiform lenses of py-cpy in variably sericitized felsic volcanics and quartz crystal tuffs, (IETS, 1992).

Gold is known to occur at two locations to the north of Hwy. 11. At the "A" Zone a broad zone of sheared and strongly altered rock is weakly mineralized with pyrite and exhibits local silicification and quartzcarbonate veining. Assays of up to 63.9 g/t Au have been reported from grab samples, and up to 5.06 g/t Au over 3.5m from chip samples.

The "B" Zone consists of quartz and quartz-carbonate veinlets filling strongly fractured to brecciated rock, apparently localized at a fold nose or along a fold crest. Pyrite and chalcopyrite occur within the veinlets as disseminations, fracture fillings, and as small pods up to about 10cm by 30cm. Gold values up to 24.07 g/t Au have been reported from grab sampling, and values of 13.2 g/t and 11.6 g/t Au have come from chip samples over 2.5 and 2.0 metres respectively, both containing about 2% cpy.

The 1991 IETS annual report on the Cousineau Option states that 1991 channel sampling failed to duplicate these high grade values, and suggests "that the gold mineralization has a strong nugget effect", (IETS, 1991,

p.7), i.e. that the presence of native gold, possibly intimately associated with the sulphides, results in the erratic high-grade values. The highest value returned by the 1991 channel sampling was 4.32 g/t Au over 1.5m from the B Zone.

The property hosts a number of zinc-rich base metal occurrences within altered felsic metavolcanics. They will be discussed as a group, because of common mineralogical characteristics, and because the primary mineralized trend occurs just above a contact between quartz crystal tuffs and mafic metavolcanics (to the southeast). Both the contact and sporadic base metals mineralization have been traced by previous operators for a distance of about 2.5 km, extending from L 113+00 E, at 79+00 N (south of patent K304) northeasterly to L 133+00 E, at 89+00 N, near the southwest corner of patent K301.

Rocks in the vicinity of the showings display strong sericite alteration and carry disseminated pyrite at levels from several percent up to 15-20% locally. Sphalerite occurs disseminated and as narrow streaks and lenses, usually <5cm thick, associated with zones of local quartz flooding and with sub-cm, foliation parallel quartz stringers. Minor galena and chalcopyrite occur in places, generally within stringers or along with massive sphalerite. Results from IETS grab sampling have returned values up to 1.94 g/t Au, 130 g/t Ag, and 14.0% Zn from separate samples, however, chip sampling and previous drill intersections have returned much lower average grades. IETS work also revealed a widespread sodium depletion anomaly across the unit hosting the base metals.

Blasted pits and trenches have been excavated at all of the known zinc occurrences, and many smaller pits can be found elsewhere through the unit, usually in areas exhibiting strong reddish to black staining and usually carrying disseminated pyrite.

7.0 EXPLORATION PROGRAMME

The 1996 program by Nuinsco was primarily focused on drill testing known gold showings previously identified by IETS and other previous operators, which for various reasons, were never tested by drilling. Consequently, only a limited amount of reconnaissance work/prospecting and minor detailed mapping was completed by the author.

Nuinsco's acquisition of the Turtle Tank property was motivated primarily by the gold values obtained from the A and B zones. Both areas, which were drill tested during 1996, appeared to offer the potential to host a substantial deposit of gold bearing mineralization. Definition of either a small and relatively high-grade body, as anticipated at the B Zone area, or a larger relatively low-grade body of "gold only" mineralization, as anticipated at the A Zone, was the objective of the programme; in order to complement proven gold reserves on the company's Cameron Lake property located midway between Fort Frances and Kenora.

A limited amount of detailed mapping and surface sampling was undertaken in the vicinity of the two showings tested by drilling, and minor prospecting/reconnaissance work was completed over the felsic horizon hosting the base metal showings, where future drilling was under consideration.

A cursory examination of the felsic stratigraphy hosting the zinc occurrences between K304 and K301 focused on locating and examining known showings, primarily in order to assess the likelihood of continuity between those situated close to the mafic-felsic contact, and to determine whether stripping or trenching in overburden covered areas might extend the strike length of the known zones or result in new discoveries. An additional objective was to test the hypothesis that the zinc showings could represent podiform "high-grade" concentrations of mineralization of entirely epigenetic origin, lying within a sheared and altered envelope of weakly (or locally) mineralized rock, which when considered as a whole, might contain from one to several grams per tonne gold, (including gold equivalent from silver and base metals). As such the target deposit type could be described as a large tonnage relatively low-grade polymetallic deposit--a situation somewhat analogous to the company's ongoing Richardson Twp. exploration project.

A portion of the IETS grid was recut and the stations rechained in relation to the original baseline. The area covered extends north from a line trending about 040 degrees between L 110+00 E, 70+00 N, and L 118+00 E, 75+00 N. The lines each extend to the north to about 87+00 N, and cover an aggregate distance of 11.8 line km. In addition, a drilling grid, with 25m line spacing, was cut over the B Zone area. The lines cut are 115+00 E to 118+00 E from 93+00 N to 97+00 N, totalling an additional 5.2 line km. The linecutting was completed by Mr. Donald MacEachern, and Mr. Charlie Walsh of Fort Frances, Ontario, over a period of 15 days between May 20 and June 10, 1996.

7.1 **PROPERTY RECONNAISSANCE**

Geological reconnaissance of selected parts of the property commenced on the 4th of May, 1996, with a property visit to the B zone gold showing in the company of senior project geologist Mr. Paul Jones, who also assisted in the 1: 500 scale mapping of the zone on May 8. An initial visit to the "K", "E", and "C" Zone zinc showings was made, and preliminary grab samples collected on May 15th, accompanied by Mr. Ray Cousineau and Mr. G.F. Archibald, Nuinsco's V.P. Exploration. Throughout the fieldwork phase of the programme, the author was assisted by Damien Englebrecht, a "co-op" geological engineering student enrolled at the University of Waterloo

In all, a total of 14 days were spent on property reconnaissance, and 44 samples were collected for Au, +/-Cu, Pb, Zn, Ag analyses. Sample preparation consisted of pulverization with a chrome steel ring mill to better than 90% minus 150 mesh. Gold determinations were made utilizing classical fire assay procedures, followed by an atomic absorption (AA) finish. Silver and base metal determinations were made utilizing an aqua regia (HNO3) leach technique, followed by an AA finish. Four samples from the vicinity of the A zone were analyzed for major oxides and trace elements (Wholerock Geochemistry) by traditional X-ray diffraction methods (XRD). All analyses were performed by Chemex Labs Ltd. of North Vancouver, B.C., with the samples submitted to their sample preparation lab in Thunder Bay, Ontario. Sample locations appear on the Property Compilation Map, and assay results are shown in Table 1 (on the next page), along with brief sample descriptions. Assay Certificates are included in Appendix C.

7.11 B Zone Area

The stripped area which measures about 30m by 40m, and scattered bedrock exposures to the north and northwest were mapped primarily for the purposes of planning drillhole collar locations. Observations suggest asymmetric folding of the mafic tuff unit which hosts the bulk of the quartz-carbonate veining and mineralization, (See Figure 3. Section 7.21). Larger veins and many of the stringers parallel foliation, and are associated with narrow subparallel zones of shearing, developed adjacent to the long limbs of parasitic (drag) folds along the contact between mafic tuff and rhyolite.

Two surface samples were collected from trenches located north of the stripped area. The trenches expose 10cm to 50cm wide veins containing 2-3% cpy and up to 5% py in places, hosted within strongly sheared and sericite altered felsic rocks. Both samples returned values of <100 ppb Au.

Drill holes shown on Figure 3 have been projected vertically. The inferred location of the northern contact of the mafic unit in which many of the holes bottomed is very approximate, as the area updip is completely overburden covered.

NUI	NSCO RESOURCES L	TD	IPLE REC	ORD	alternative - Fair was less at	FIELDWOR	K.
Sample #	Location	Comment	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm
71801	0E, 4S	A Zone	<5			1	
71802	0E, 7S	WRA*	(wholerock	(analyses)*			
71803	0E, 18S	WRA					
71804	20E, 4N	A Zone	<5	Coordinates	for A Zone	samples ar	θ
71805	30E, 8N	WRA		relative to	o a local da	tum point.	
71806	30E, 6N	A Zone	175				
71807	43E, 4N	WRA					
71808	43E, 4N	A Zone	80			, 	
71809	38E, 2N	A Zone	23410	1			
71810	1+67E, 0 to 5S	A Zone	40				
71811	N Trench	C Zone	90	220	4400	3.2	470
71812	S Trench	C Zone	20	20	185	0.8	162
71813	C Zone		<5	24	65	<5	23
71814	C Zone		<5	8	183	<5	7
71815	C Zone		<5	77	1400	0.6	11
71816	N Trench		1850	1950	41400	33	15000
71817	Shaft	P claim	<5				<0.2
71818	Shaft	P claim	40				4.6
71819	Shaft	P claim	1340	1			1.2
71820		Angular Float	15	24	1350	1.4	360
71821	Iron Emtn?	9	<5				<0.2
71822	Shaft #2	Alice A	105	193	240	1.4	450
71823 T	rench between Shafts	Alice A	1040	116	28	<0.2	45
71824 R	ubble same loc as 823		3150	16	75	5	230
71825	W side #2	Alice A	1670	152	400	0.6	220
71826	#2 Shaft	Alice A	745	780	2900	88	4200
71827	Shaft #1	Alice A	9410	170	5800	32	560
71828	Shaft #2	Alice A	2890	700	3 37%	48	4 38%
71829	Same as 828		2920	96	1 72%	11.8	1 28%
71830	Same as 828		25	100	123	<0.2	176
71831	Same as 828	Alice A	280	430	2300	10.2	7000
71832		Alice A	290	14	177	<0.2	188
71833	Pigeon Patent	N of Hwy	140	24	75	0.6	83
71834	(Zn showing)	N of Hwy	55	135	1.58%	2.4	230
71835	13345E, 8880N	N of Hwy	35	171	6 18%	22	330
71836	Same as previous	N of Hwy	50	185	2800	2	117
71837	Pigeon Patent	N of Hwy	135	3600	3.95%	28	1.18%
71838	Pigeon Patent	N of Hwy	115	630	4700	7	580
71839	Pit	H Zone	50	35	1150	1.6	300
71840	Same as previous		135	250	1 32%	48	197
71841	Same as previous		60	335	2600	6.6	90
71842	Grab	H Zone	80	630	3.02%	84	340
71843	Grab	H Zone	65	1050	4 76%	4 4	220
71844	HG Grab	K Zone	70	2550	10.91%	27	600
71845	Trench Av Grah	K Zone	45	1800	1.30%	12.6	57
71846	Sph seam 5cm wide	F Zone	315	6200	6.69%	25	500
71847 5	Sph seam 20cm wide	F Zone	685	4250	15 29%	<u>25</u> <u>46</u>	1450
71848 T	rench Av. Composite	E Zone	10	65	960	06	40

.

Sample #	Location	Comment	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm
71849	Unit SE of mineralization	E Zone	135	550	1.04%	12.4	3200
71850	2.35m Chip	C Zone	70	154	2200	2.2	500
71851	Grab, same as 816	C Zone	1260	2350	3.26%	26	2500
71852	S Pit, 85cm Chip	C Zone	340	680	1.74%	12	3000
71853	113+75E, 80+35N	rusty fels_tuff	20	15	290	0.8	137
71854	N side of Trench	D Zone	40	280	5500	7.4	810
71855	S side of Trench	D Zone	100	420	7500	7.6	840
71856	HG Grab, rubble	D Zone	440	2400	9.13%	64	7700
71857	Sph seam, 10-15cm wide	D Zone	210	2400	6.66%	59	3800

.,

7.12 A Zone Area

A brief examination of the A zone and vicinity was completed May 12th. A east westerly trending line was chained over the 200 metre length along which the shear zone has been traced. Mappable features and sample locations appear on Figure 4., Section 7.22. Intense shearing and iron-carbonate alteration occur across a width of 7 to 8 metres, locally up to 12 metres. Pyrite mineralization is sparse, and largely restricted to a few narrow alteration "horizons", well exposed only on the outcrop beneath which drillholes NTT 96-06 and NTT 96-09 tested.

Quartz veining is also uncommon in general within the A Zone, and those present appear to contain little other than minor crystalline iron-carbonate and a few percent pyrite from place to place. Only a few (<5cm to 10-15cm wide) veinlets exhibit extensive strike lengths, mostly through the central portion of the zone. A few sizable quartz pods occur toward the eastern end of the zone's exposure, and one small area of intense silicification and quartz flooding was observed, measuring about 30cm by 1.5 to 2.0m, around sample 71804.

Of the six surface samples collected for Au analysis, only one returned a significant assay value. Sample 71809, a grab sample of a 5cm wide semi-massive pyrite seam associated with a 10 cm thick bed of cherty material (possibly very fine grained veining), obtained from the main trench along L 127+00 E, at 98+30 N assayed 23.4 g/t gold. The sample contained 30-40% pyrite, and the high-grade assay likely indicates the presence of native gold within the sulphide seam. A cherty unit was noted at the extreme western end of the zone, directly along strike, but contained little if any sulphide at this point, and was not sampled.

The shear crosscuts the geological contacts observed in the vicinity at a very low angle. Several narrow structures which are parallel to (or splays from) the main structure, were observed 5 to 10 metres to the north of the main shear, on the large outcrop at the eastern end of the zone. Deformation appeared to have occurred preferentially within mafic units, along the contacts with more competent lithologies including rhyolitic tuff and thin beds of nodular chert.

7.13 Base Metal Zones

A total of six days were spent examining the corridor of strongly altered felsic volcanic rock which extends southwestward from patented claim K301, for a distance of about 2km, to just southwest of patents K304 and K683. The work was completed between May 15 and May 27. In addition, 3 days in total were spent prospecting patented claims K 301, K300, and K298 (for which little exploration data exists), and the area around patents K304 and K683, south to approximately 70+00 N, and westerly to L 110+00 E. This reconnaissance work was conducted concurrently with gridline re-establishment, with the intention of mapping patents K304 and K683 once the linecutting was completed. A few minor additions and revisions of geological contacts have been made to portions of the Property Compilation Map in areas shown on main IETS sheets D6, E6, E7, F5, and F6.

Twenty six samples were collected from the area examined, and analyzed for Au, Ag, Cu, Pb, Zn by Aqua Regia methods. The results are presented in Table 1, and assay certificates are included in Appendix 1. Sample locations are shown on the Property Compilation Map.

Only 2 samples returned gold values in excess of 500 ppb (0.5 g/t). Sample 71847, a grab from a 20cm wide semi-massive sphalerite seam from the E Zone contained: 685 ppb Au, 0.425% Cu, 15.29% Zn, 46 g/t Ag, and 0.145% Pb; and sample 71816, a grab from the extreme northern end of trenching at the C Zone contained: 1850 ppb Au, 0.195% Cu, 4.14% Zn, 33 g/t Ag, and 1.5% Pb.

Several pits were selectively chip sampled in an effort to obtain an approximate average grade for the exposure. At the H Zone, a 1.80m aggregate length averaged 82 ppb Au, 0.02% Cu, 0.56% Zn, 4.3 g/t Ag, and 0.19% Pb. Grab samples analyzed up to 4.76% Zn and 0.1% Cu, but gold content was typically <100ppb.

At the D Zone, a 1.90m aggregate length chip sample averaged 78 ppb Au, 0.037% Cu, 0.676% Zn, 7.5 g/t Ag, and 0.083% Pb. At the same location, two grab samples contained: 440 and 210 ppb Au, 0.24% and 0.24% Cu, 9.13% and 6.66% Zn, 64.0 and 59.0 g/t Ag, and 0.77% and 0.38% Pb, respectively. The first set of values came from high-grade blasted trench rubble, while the second set are representative of a 10-15cm wide semi-massive sphalerite seam. And At the Northern end of the C Zone a 2.25m representative chip sample returned 70 ppb Au, 154 ppm Cu, 0.22% Zn, 2.2 g/t Ag, and 500 ppm(0.05%) Pb

Examination of the vicinity of the I Zone, located near the southwestern corner of patent K301, revealed strong widespread sericite alteration and bleaching of well foliated to weakly sheared felsic quartz crystal tuffs. Sphalerite, increased levels of pyrite, and lesser chalcopyrite and galena occur associated with relatively narrow conformable zones of silicification and cm-wide quartz stringers. The zinc mineralization is exposed intermittently over 25-30m by small pits and shallow trenches, and appears nearly identical to that exposed at the E, F, and H zones. The highest zinc value returned by samples from the area was 6.18%, and sample 71837 (rep. across 10cm wide sil./vein) near the eastern limit of bedrock exposure contained: 35 ppb Au, 0.36% Cu, 3.95% Zn, 28 g/t Ag, and 1.18% Pb. These values are comparable to the numbers obtained from sampling similar material at the extensively drill tested showings along the trend between the C and F zones.

Samples which meet one or more of the following criteria: Au >500 ppb, Cu >1000 ppm(0.1%), Zn >1%, Pb >1000 ppm, or Ag >10 ppm(10g/t), have assay results shown on the Property Compilation Map.

Few observations were made on the geology of the areas examined, however, south of the C Zone it was noted that at least one unit of mafic to intermediate crystal tuff occurs between the mafic-felsic contact and the base metals mineralization. A more pertinent observation perhaps, is that the depth of weathering and the degree of oxidation of the intensely altered felsic country rock significantly hinders surface exploration. At several pits, particularly the E and H zones, sulphide mineralization is oxidized and in most places substantially leached to a depth of 30-60cm, due to the slightly porous nature of the weathered exposures. Around the old pits and trenches, hematitic staining and the presence of quartz stringers are often the only indications of potential base metals mineralization which can be seen, without expending considerable effort on hammer and chisel work.

7.2 DIAMOND DRILLING

The drilling equipment was moved onto the property May 9, 1996, and the first hole of the programme commenced the next day at the B Zone. Drilling was halted temporarily June 25 after completing 5 holes at the B Zone gold showing, and drilling an initial hole at the A Zone gold showing. The halt was called in part in order to allow the assayer to clear a backlog of samples, and also to allow company personnel time to evaluate the results of the initial holes. Concurrent with work on the Turtle Tank property, both company personnel and the drilling contractor were engaged in an ongoing drill programme in Richardson Twp. Drilling recommenced July 16 with a further two holes planned at the B Zone. The work concluded July 31 with the completion of drillhole NTT 96-09 at the A Zone.

A JKS Boyles Hydra-core drill and BDBGM (BQ thinwall) drill rods were utilized, producing a core measuring 41 mm in diameter. Drill moves were accomplished by towing the drill with a skidder along existing haul roads between the two stripped areas tested. The work was planned and supervised by Mr. G F. Archibald, P.Geo., and Mr. Paul Jones, B.Sc., the company's Senior Project Geologist. The author of the report was responsible for marking chosen collar locations, monitoring drilling progress, and examination and sampling of the core. Core handling, cutting and shipping were performed capably by Mr. Oscar Burnell, of the village of Finland, Ontario, located to the north of the town of Emo, with postal code POW 1E0; close to the company's permanently established core shack and storage facility located within part of Lot 6, Conc. III, Richardson Township, in the Municipality of Chapple.

All samples were analyzed for gold and copper, or the suite of gold, silver, copper, lead, and zinc. Samples were taken with the foreknowledge that any gold present might occur as grains of native metal, and sample lengths were consequently often fairly short, in order to ensure that a relatively large proportion of the material submitted was physically subjected to analysis. The samples were analyzed by the assayer and methods detailed earlier.

Plan Maps of the two zones drilled are included in the following sections as Figures 3 and 4. Analytical results appear printed on the drill logs, which are included as Appendices A and B for the A Zone and B Zone respectively, along with drill sections depicting gold values in a bar graph format.

Neither of the zones returned sufficiently encouraging gold values to prompt further investigation of the property.

7.21 B Zone Diamond Drilling

The collar location data, final depths and dates drilled for drillholes NTT 96-01 to NTT 96-05, as well as NTT 96-07 and NTT96-08 appear below:

Hole No.	Easting	Northing	Az./Incl	Final Depth	Dates Drilled
NTT9601	116+37E	95+20N	180/-40	76.20m	10/05/96-12/05/96
NTT9602	116+25E	95+19N	180/-40	76.20m	12/05/96-15/05/96
NTT9603	116+00E	95+25N	180/-40	76.20m	16/05/96 -18/05/96
NTT9604	116+25E	95+50N	180/-50	85.34m	18/05/96-20/05/96
NTT9605	116+37E	95+45N	180/-45	83.84m	21/05/96-23/05/96
NTT9607	116+37E	95+75N	180/-50	121.00m	23/07/96-25/07/96
NTT9608	116+75E	95+75N	180/-50	106.00m	26/07/96-28/07/96

The holes encountered a series of mafic tuffs and intermediate to felsic flows and tuffs. The units varied considerably in thickness from hole to hole due to being drilled from north to south across the fold nose hosting the veining and mineralization. Consequently, although contacts could occasionally be interpreted between adjacent holes, it is difficult to interpret structural data from holes drilled peripheral to the showing, since good bedrock exposure is limited to the small stripped area immediately to the south of holes NTT 96-01 and 1996-02.

Although the entire area is strongly altered and sheared to varying extent, veining over substantial core lengths was largely restricted to holes NTT 96-01 and NTT 96-05. Holes NTT 96-02, 96-03, and 96-08 encountered intermittent veining over 10-15m core lengths. Stringers and veinlets of quartz, with subequal to lesser iron-carbonate, trace to a few percent pyrite, and sometimes trace chalcopyrite, and occasional larger veins up to 25-50cm in thickness-rarely to 1.0-1.5m were observed primarily near and along maficfelsic contacts. Veining was also present associated with strongly folded? contacts between or within intermediate to felsic sections of contrasting ductility, i.e. prone to fracturing vs. prone to shearing. Overall, both veining and mineralization are best developed where rapid variations in the foliation orientation, and short rapidly alternating mafic-felsic sequences are presumably indicative of drag folding along the same contacts exposed at surface by stripping.

I the second second

	11525E	11550E	11575E	11600E	11625E		11650E	11675E		11700E	
	9575N				N	TT9607		NTT9608,			9575N
-	9550N				NTT9604	•					9550N
					N	TT9605					
-	9525N			NT 19603	NTT9602			····-			9525N
-					Ň	TT9601	Þ		-		
	9500N								NTT9608		9500N
					-	NTT9604	NTT9607				
	9475N						NTT9605				9475N
				-	NTT9603	NTT9602	NTT9601			11700E	
-	9450N								9450N	NUINSCO Hesou	rces Limited
-	1.4						1.4			IURTIE IAN Diamond Dr Bizo	Y Property
	9425 1	11550E	11575E	11600E	11625E		11650E	11675E	9425N	WIT: 07/07/22	SC41 51 4 (4000

In, general the drilling encountered less veining and much less sulphide mineralization than was anticipated. Only a few short intervals returned gold values in excess of 1000 ppb. They are:

Hole No.	Au ppb	Interval	Depth at End of Sample
NTT 96-05	1550	0.46m	14.82m
NTT 96-07	2830	0.06m	35.90m
NTT 96-08.	6%Cu, 900, 11.6g/tAg	0.26m	43.20m
NTT 96-08	2480	0.22m	50.06m
NTT 96-08	1765	0.32m	99,59m

Hole NTT 96-01 included a 0.98m interval averaging 374 ppb Au and 1.19% Cu, from 4.12-5.1m. Rare relatively high copper analyses were also recorded scattered through hole NTT 96-05, ranging from about 0.1% to 0.53% Cu over lengths up to 1.0m, but without associated elevated gold values.

7.22 A Zone Diamond Drilling

The collar location data, final depths and dates drilled for drillholes NTT 96-06, and NTT 96-09 appear below:

 Hole No.	Easting	Northing	Az/Incl	Final Depth	Dates Drilled
NTT9606	127+00E	98+75N	180/-45	95,43m	10/05/96-12/05/96
NTT9609	126+00E	98+75N	180/-50	107.00m	29/07/96-30/07/96

The holes intersected a series of mafic units, ranging from fine grained massive and pillowed flows, to strongly sheared tuffaceous beds, and thin units of grey-white chert. Pervasive silicification and/or iron-carbonate replacement were noted locally over brief intervals within well sheared portions of the holes, as were occasional small veinlets and stringers of quartz or quartz-carbonate.

The initial hole returned weakly anomalous gold and copper values from the start of continuous sampling at 27.94m to 49.74m. Sample lengths ranged from 0.3m to 1.27m across the zone. The weighted average of the intersection is 280 ppb gold and 708 ppm copper over a 21.8m core length. Peak gold analyses of 1500 ppb and 1180 ppb were returned, over intervals of 1.12m and 0.62m respectively. Two prominent spikes in the distribution of copper values, 0.245% and 0.53% were recorded over intervals of 0.89m and 0.84m.

The second hole encountered a similar zone from 48.26m to approximately 66.25m, followed by a 5.68m interval of intermediate to felsic altered rock. The hole was drilled and samples taken during the authors absence. It was not sampled continuously over any sizable interval, and the maximum assay result received to date is a value of 815 ppb Au over a 0.39m core length. Four analyses are pending from the hole: samples 254185 to 254188 which were collected during the logging of the hole by the author during early October.

The drilling demonstrated that a zone of weakly anomalous gold and copper values exists across a true width approximating 10-12m. The drill indicated values, however, are considered too low to justify an extensive programme of further diamond drilling.

12550E	12575E	12600E	12625E	12650E	12675E	12700E	12725E	12750E	
9900N									9900N
9875N		NTT9609				NTT9606	•		9875N
9850N									9850N
9825N									9825N
		-	-						
9800N			NTT9609			·	NTT9606		9800N
							12725E	12750E	
9775N							9775N Nu i	<u>nsco Resour</u>	ces Limited
								Turtle Tank Diamond Dri	Property 11 Plan
0750	75E	DE D	25E	Ŭ Ŭ	75E) OE	0750N	A Zan	
1000	1257	1260	1262	1265	1267	127(DATE:	97/07/23 SC	ALE: 1/1000

•

-

8.0 INTERPRETATION

At the A Zone, anomalous enrichment of copper and gold exists throughout the strongly sheared and altered core portion of an extensive deformation zone. Rare ore grade gold assays have been reported by previous workers, and confirmed by the present programme, however, regardless of any nugget effect potentially skewing analytical results, the negligible volume of well mineralized rock occurring in the vicinity of the drilling precludes the existence of any substantial economic deposit in the immediate area.

The pocket of gold bearing mineralization exposed by stripping at the B Zone appears to be of limited lateral and vertical extent. The reasonably tightly spaced pattern of drilling is unlikely to have missed any high grade "shoots" or "linear" structures of sufficient dimensions so as to be extractable.

The folded metavolcanic stratigraphy encountered during the drilling was more complex than was anticipated. It may be that poorly exposed, partially preserved "pinched off" fold limbs, and/or an axial plane of folding running oblique to the shearing and foliation orientations, are responsible for the difficulty in correlating contacts from hole to hole with certainty.

The reconnaissance work on the base metals zones hosted by felsic rocks failed to demonstrate continuity of the mineralization, and revealed only very low gold grades. Nonetheless, the character of the alteration and mineralization, and the grades of the principal metals present at each showing are very similar. While this does not necessarily indicate continuity of the mineralization between showings, the observed pattern of alteration, and the distribution of weathered and oxide stained rock along the length of the trend, is suggestive of low grade mineralization much more widespread than simply restricted to the present exposures at historical pits. The lack of appreciable gold values however, limits the attractiveness of this type of mineralization for further exploration.

As well, in almost all places where base metals mineralization was observed, it was confined to stringers, veinlets, and small lenses of quartz. This would appear to indicate that the introduction of the mineralization occurred as a consequence of alteration and the movement of vein forming hydrothermal fluids, either during or after a period of at least minor deformation. And this it would seem, at least to the author, suggests that a post-diagenetic mineralizing event, rather than a synvolcanic exhalitave process was responsible for the deposition of the sulphides. By extension therefore, this particular horizon of felsic metavolcanics is interpreted to more than likely stratigraphically underlie any units on the property which might have high potential for hosting a base metal rich VMS deposit

9.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the drill results at the A and B zones, and surface examination of the known zinc occurrences, there appears to be little potential for the discovery of an economic gold deposit among the areas of the known showings. Consequently, no further work is recommended for the property at present.

Any further work undertaken on the base metals horizon should be limited to blasting fresh exposures along strike from known zones of mineralization, and/or extending existing pits and trenches across strike. Some stripping or backhoe trenching might be worthwhile along strike to the east from the I Zone, on patent K 301, where zinc and lead grades comparable to the C Zone were encountered, in an area which has never been tested by drilling.

Recent discoveries made a short distance to the east of the property by the Cousineau brothers have been brought to the author's attention, and a brief property visit was made on November 9, 1996. The showing(s) lie just outside a 2-claim area of influence around the Turtle Tank property, and may be a westerly extension of the gold bearing "Alice A" structure which was visited and quickly sampled by the author in early June. As has been noted in places on the northerly portions of the Turtle Tank property, the veins at the new discovery are hosted by sheared and fractured felsic rocks. Veins parallel the trend of foliation, and are often wider and have longer strike lengths than those developed elsewhere within sheared mafic volcanics. Brittle behaviour, and the presence of lead, zinc, and lesser copper sulphides within veins and stringers, are characteristics common to all of the nearby rhyolite-hosted native gold occurrences.

Pending receipt of the analyses of the samples collected during the property visit, and perhaps pending a detailed examination of the area in the Spring, termination of the option agreement should be postponed. Should the new discoveries return multi-ounce assays, or prove to be continuous with the veining at the Alice A gold occurrence, then the northern portion of the property should be re-investigated on foot, traversing the rhyolitic units in detail one by one.

REFERENCES

Wood, J., Dekker, J., Jansen, J.G., Keay, J.P., and Panagapko, D.

1980: Mine Centre Area (Eastern Half), District of Rainy River; Ontario Geological Survey Preliminary Map P. 2201, Geological Series. Scale 1:15 840. Geology 1976, 1977.

INCO Exploration and Technical Services, Unaccredited internal company report (used with permission).

1992: 1991 Annual Report, Cousineau Option, Mine Centre Area, Ontario, NTS 52 C/10, C/15.

8p., 3 Figures, 20 Maps at various scales.

INCO Exploration and Technical Services, Bell, R.C., and Lloyd, T.R., eds.

1993: 1992 Annual Report, Cousineau Option, Mine Centre Area, Ontario, NTS 52 C/10,C/15.
11p., 3 Figures, 18 Maps at various scales.
Assessment Files Research Office, Thunder Bay.

CERTIFICATION

I, Christopher A. Wagg, residing at R.R. #1, in the village of Denbigh, Ontario K0H 1L0, do hereby certify that:

- 1. I hold a Bachelor of Science Degree in Honours Geology, conferred in May of 1989 at the University of Western Ontario, in London, Ontario, Canada.
- 2. I have been self-employed as a geological consultant since 1987, and have been practicing my profession continuously since 1989.
- 3. My Report on the Turtle Tank Property is based upon a review of published and unpublished information concerning the property, as well as previous experience in the Atikokan, Dryden, Mine Centre, and Fort Frances areas totalling about 40 to 48 months of fieldwork and drill projects, and upon personal knowledge of the geology of the property gained over the course of approximately 40 days of fieldwork and core examination.
- 4. My report on the Turtle Tank Property has been written in every respect as an independent consultant.
- 5. I presently hold 1 000 shares of Nuinsco Resources Limited within a SDRRSP account, purchased in June of 1996 for their medium to long term appreciation potential, but have no direct interest in the Turtle Tank Property itself, or in any other properties in close proximity.

Dated this 15th of November, 1996, at Emo, Ontario. Christopher A. Wagg, B.Sc.

President, WAGG Mineral Exploration and Consulting Inc.

Sheet1

	Nuinsco Resources Limited Turtle Tank Property - Cousineau Option Program Expenditures 1996 Exploration Program	'n
Program Supervision:	P.L.Jones C.A.Wagg D.M.Engelbrecht	3,088.43 6,830.96 1,009.11
Diamond Drilling	Ultra Mobile Diamond Drilling	54,000.76
Linecutting	D.MacEachern	4,547.50
Geochemistry	473 samples @ \$30/sample	14,190.00

Total

83,666.76

.

10 A.

Analytical Procedures

All core produced from the Rainy River Project drilling program is processed at the Nuinsco Resources Limited core building in Richardson Township. All core is stored in core-racks at this facility.

Following sample selection and interval marking, samples are collected from the core by means of a hydraulic core splitter or diamond saw.

Samples obtained from the core are forwarded to the Chemex Labratories in Thunder Bay, Ontario. In Thunder Bay the samples go through a two stage crushing; first through a primary jaw crusher producing approximately 1cm fragments followed by a roll crusher or "Rhino" crusher to 2mm size (>60% to -10mesh) The sample is repeatedly passed through a rifle splitter until a representative 200-250g sample remains, this portion then passes through a ring mill to produce a sample of approximately 100 micron size (>95% to -150 mesh). This material is forwarded by air to the Chemex Tab in Mississauga, Ontario, for further preperation and analyses.

At the Chemex Laboratories, Mississauga location, analyses for Au, Ag, Cu, Zn, and Pb, are routinely performed on all metavolcanic rocks. When samples are collected from maficultramafic rocks in the 34 Zone area. Ni analysis is routinely added, and when sulphide content is sufficiently high to warrent it Pt, Pd and Co are also included in the suite of analyses. Analytical procedures used and detection limits are as outlined below.

Element	Description	Method	Detection Limits
Au ppb	30g (assay ton) HNO ₃ -Aqua Regia	FA -AAS	5ррь - 10000ррь
Au g/t	30g (assay ton) HNO ₃ -Aqua Regia	FA - gravimetric	0.07 g/t - 1000 g/t
Cu ppm	HNO ₃ -Aqua Regia	AAS	1ppb - 10, 000ppb
Cu %	Conc. Nitric -HCI Digestion	AAS	0.01% - 100%
Zn ppm	HNO ₃ - Aqua Regia	AAS	1ppb - 10, 000ppb
Zn %	Conc. Nitric -HCI Digestion	AAS	0.01% - 100%
Ag ppm	HNO ₃ - Aqua Regia	AAS	0.2ppm - 100ppm
Ag g/t	Conc. Nitric -HCI Digestion	AAS	0.3ppm - 350ppm
Pb ppm	HNO₃ - Aqua Regia	AAS	1ppm - 10, 000ppm
Pb %	Conc. Nitric -HCI Digestion	AAS	0.01% - 100%
Ni ppm	HNO ₃ - Aqua Regia	AAS	1ppm - 10, 000ppm
Ni %	HCIO ₄ - HNO ₃ Digestion	AAS	0.01% - 100%
Со ррт	HNO₃ - Aqua Regia	AAS	1ppm - 10, 000ppm
Co %	$HCIO_4$ - HNO_3 Digestion	AAS	0.001% - 100%
Pt ppb	ICP -Fluorescence	FA-ICP-AFS	5ppm - 10, 000ppb
Pt g/t	Part. Cupel. FA+ICP	FA-ICP-Array	0.07g/t - 500 g/t
Pd ppb	ICP -Fluroescence	FA-ICP-AFS	5ppb - 10, 000ppb
Pd g/t	Part. Cupel. FA+ICP	FA-ICP-Array	0.07g/t - 500g/t

.

-

-

. •

and the second						
	9600N					
	1	İ			11	637E
						0
	amah	ļ	Lege	nd		
	ampin asp		arsenopyri	te		j
	Au		gold			
	baa		breccia			
	chi-biot		chlorite-bio	tite		1
	contam		chalcopyril	(e)		
	def		deformed			
	fg		fine graine	d		
	foi		foliated			
	FZ		fault zone			
	gal Gar		galena			
	hem		hematite			
	int		intermedia	te		
	k ait		potassic a	teration		
	kom		komatiite mafic			
	mag		magnetite			
	mg-cg MUM		medium-c mafic-ultra	carse grair mafic	160	
	OVB		overburde	n		
	porph		possibly			
	Py		pyrite	honata uni	~	
	QFP		quartz-fek	ispar prop	hyry	
	QID		quartz eye	dacite		
	rhy		rhyolite	n		
	sap		saprolite	n/		:
	ser		sericite	y		
	sil		siliceous			
	tour		tourmaline	•		
	tr Voi		trace			
	xl		crystal			
	0	5	10	15	20	25m
						<u>_</u>
	Nuir	ISCO	Resou	inces	.Lim	ited
		Turt 1	e Tan	k Pro	pertv	
	1			116	375	
		JEL	I TON	TIO		
	C)ip -45,	Azimuth :	180, Cla	im 10508	15
	DATE: 5	7/07/23		SCALE:	1/500	

. ،

 Z]			
9625				
·	11637E			
 	0			
<u>_</u>	Legend			
amph asp	arsenopytite			
Au bdd	gold bedded			
bx chl-biot	breccia chlorite-biotite			
contam cpy	contaminated chalcopyrite			
 def	deformed felsic			
tg	fine grained			
fsp	feldspar			
gai	galena			
gar hem	gamet hematite			
int intrus	intermediate			
k alt	potessic alteration			
maf	mafic			
mag mg-cg	medium-coarse grained			
OVB	matic-ultramatic overburden			
 porph poss	porphyritic possibly			
PY QCV	pyrite guartz-carbonate vein			
	quartz-feldspar prophyry quartz eve decite			
av	quartz vein			
sap	saprolite			
sed ser	sedimentary sericite			
sil sph	siliceous sphalerite			
tour tr	tourmaline trace			
vol xi	volcanic crystal			
0 5	10 15 20 25m			
ļ				
Nuinsco	Resources Limited			
Turt	le Tank Property			
SE	CTION 11637E			
Dip -50,	Azimuth 180, Cleim 1050815			
 DATE: 97/07/23	SCALE 1/500			

<u></u>	9925N	,				
					120	500E
<u>, , , , , , , , , , , , , , , , , , , </u>						
						0
	amph	I	Legen amphibole	d		
	asp Au bdd bx chl-biot contam cpy		arsenopyrite gold beddød breccia chlorite-biotit contaminated chalcopyrite	e i		
	def fel		deformed felsic			
	fel fg fol fsp FZ gal par hem int intrus k at kom mag mg-cg MUM OVB porph poss py QCV QFP QID QV gFP QID QV mhy sap sed ser ser si		felsic fine grained foliated foliated foliated foliated foliated falspar fault zone galena garnet intrusive potassic alte komatite mafic medium-coa mafic-ultram overburden porphyritic possibly pyrite quartz-felds quartz-telds quartz vein rhyolite saprolite sedimentary sericite silicoous	ration afic afic anate vein par prophy acite	d ry	
	sph		sphaierite			
	tr vol xl		trace volcanic crystal			
	0	5	10	15	20	25m
	Nuins	co f	Resour	rces	<u>Lim</u> :	ited
	т	urt] SEC	e Tank TION	Prop 1260	erty 0E	
	Dip	-50, /	Azimuth 18	0, Clai	n 105057	5
	DATE: 97/	07/23	S	CALE: 1/	/500	i

2.17320

PROPERTY: Turtle Tank HOLE No.: NTT9601 Collar Eastings: 11637.00 Collar Northings: 9520.00 Collar Elevation: 0.00 Grid: Stored at Nuinsco Resources core shack located

LITHOLOGICAL DESCRIPTION

Py conversation was R.C. GASHINSKI JULY 24/97 ADVICED THAT C.D. WAEG NO Nuinsco Resources Limited honce with company but the Project was sugar used by DIAMOND DRILL LOG P.Gev Logged by: C.A. Wagg V.P. RXIN Collar Inclination: -40.00 Grid Bearing: 180.00 Date: 14/05/96 Final Depth: 76.20 metres Down-hole Survey: Acid Test Ultra Mobile Diamond Drilling Ltd. BO Core, Claim Number 1050815 in Richardson Township - Lot 6 Conc. III NOINS LO Res ASSAYS FROM WIDTH Zn ppm Ag ppm Pb ppm Co ppm Ni ppm Pt ppb TO Au ppb Cu ppm 1.20 NTL NIL NIL NIL NIL 1.45 0.25 20 NIL G.F. ARCHIBALD CONFIRMS THAT THR FOLLOWING HOLES WEAR DRilled AND THAT THESE ARP Representive hoes 1.45 1.60 0.15 NIL 1.60 2.14 0.54 NIL NIL NIL NIL NIL NIL 0.26 NIL NIL NIL NIL NIL NIL NIL 2.14 2.40 NIL

0 1.2 OVERBURDEN (OVB) -

FROM

TO

1.2 1.45 VEIN QTZ (Vein Qtz) - N diameter core from casing. Four pieces, aggregate length 25cm. Includes 1-2% sheared inclusions of rhyolite wallrock.

> ALTERATION: Contains approximately 5% deeply weathered Fe-carbonate, as fine to coarse crystals and along fractures. 1-2% muscovite/sericite tr Py.

STRUCTURE: Lower contact broken.

COMMENTS: Entire N diameter qtz intersection submitted for analysis. N diameter rhyolite submitted for Au+WRA. Identical to top 10-20cm of B diameter rhyolite.

2.40

3.28

3.28

3.65

0.88

0.37

60

NIL

NIL

NIL

NIL

NIL

0.8

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

1.45 4.15 RHYOLITE (Rhyolite) - very pale grey-green to beige. Aphanitic to very fine grained. Weakly sericitized, with locally abundant hairline fracturing/weak brecciation. Millimetre wide qtz and/or partially weathered Fe-carbonate fillings reseal fractures. Fillings range from foliation parallel

HOLE No: NTT9601
.

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9601

-

-

Page 2

								AS	SSAYS				
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
		to crosscutting and from planar to ptygmatically folded.	3.65	4.12	0.47	NIL							
		Interval includes two qtz veins of 24 and 20cm core lengths											
		at 2.05 and 3.68m respectively, but only a few cm wide qtz-											
		Fe-carbonate stringers.											
		ALTERATION: Weak Fe-carbonate alteration adjacent to											
		many, but not all hairline fractures. Traces of Py and Cp											
		appear to be restricted to fractures, rather than disseminated											
		within the unit.											
		Veins contain: 7-8% fine fracture filling Fe carbonate, with											
		minor fine to coarse creamy white, crystalline. Fe-carbonate											
		intergrown with qtz. 2-3% fine muscovite/sericite also largely											
		along fractures, as well as tr Py.											
		STRUCTURE: Well foliated at 60-65 to CA, rarely to 70.											
		Lower contact coincident with broad zone of veining described											
		below. Last rhyolite wallrock inclusion at 6.3-6.35.											
		Actual vein-mafic contact within zone of broken core.											
		Vein at 3.68 has a crosscutting upper contact, somewhat											
		folded, averaging 50 to CA.											
		•											
		COMMENTS: Vein developed along rhyolite-matic contact,											
		apparently primarily within rhyolite at this point.											
4.15	6.75	VEIN QTZ (Vein Qtz) ~ with 3-4% small, well altered rhvolite	4.12	4.62	0.50	605	7500	NIL	9.8	NIL	NIL	NIL	NIL
		inclusions. Vein is white to red, generally fine grained,	4.62	5.10	0.48	135	0	NIL	15.8	NIL	NIL	NIL	NIL
		but well fractured. Inclusions are typically 1-10cm in length,	5.10	5.70	0.60	20	345	NIL	0.6	NIL	NIL	NIL	NIL
								. –	-				

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9601

-

-

Page 3

										•			
								A	SSAYS				
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
		strongly sericitized, some with minor chlorite, and well	5.70	6.20	0.50	NIL	NIL	NIL	0.2	NIL	NIL	NIL	NIL
		foliated conformable with foliation in the country rock.											
		ALTERATION: 3-5% fine to coarse creamy white Fe-carbonate											
		siderite, partially oxidized in places. 1% medcoarse grained											
		red-brown Fe-carb. ankerite-intergrown with siderite											
		and minor chlorite, adjacent to inclusions at 4.25 and 5.50.											
		1% muscovite, along late fractures. Tr Py primarily in											
		and around inclusions from 4.45-5.15. 1-2% Cp, 1% Py,											
		1-2% Ag-sulphide?-possibly chalcocite as disseminations											
		and mm to cm wide seams intergrown with partially weathered											
		siderite along several fractures. 1-2% native Ag? over 5cm at											
		5.1m.											
		COMMENTS: Sulphide textures suggest open space filling along											
		open fractures Ag? before Cp. Re unidentified mineral which											
		rims, Cp. Hematite is present in places along the fracture.											
		This mineral however appears non crystalline, similar to											
		Cp, and is brittle to splintery with a shiny grey, blackish streak.											
6.75	41.20	ALTERED MAFIC METAVOLCANICS	6.20	6.80	0.60	NIL							
		(Altered Mafic Metavolcanics) - light to med. green. Fine	6.80	7.40	0.60	10	NIL	NIL	NÍL	NIL	NIL	NIL	NIL
		grained and well foliated. Cut by 3-5% white to pinkish qtz	7.40	7.98	0.58	NIL							
		and Fe-carbonate stringers usually <2cm wide -veins >10cm	7.98	8.68	0.70	NIL							
		in width mentioned separately. Strongly Fe-carb. altered, so	8.68	10.24	1.56	NIL							
		that present composition is 40%, very fine Fe-carb.	10.24	11.71	1.47	NIL	NIL	NIĹ	NIL	NIL	NIL	NIL	NIL
		crystals. Remainder 10-30% dark green acicular amphibole	11.71	12.64	0.93	NIL							

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9601

1

-

								AS	SSAYS				
FROM	то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
		porphyroblasts generally <3mm in length. Groundmass is	12.64	13.35	0.71	NIL							
		very fine mixture of amphibole-chlorite-qtz.	13.35	14.33	0.98	NIL							
		Core broken and carbonates oxidized at contact with vein.	14.33	15.27	0.94	NIL							
		Probable mafic inclusion at 6.60m.	15.27	15.82	0.55	NIL							
			15.82	16.54	0.72	NIL							
		ALTERATION: Negligible additional alteration of wallrock	16.54	17.24	0.70	10	NIL						
		next to cm scale stringers. Weak bleaching over a few cm	17.24	18.62	1.38	20	NIL						
		adjacent to larger veins. Trace to <1% Py occurs along foliation	18.62	19.75	1.13	15	NIL						
		parallel to subconcordant fractures with mm wide fillings of	19.75	20.65	0.90	NIL							
		qtz-carbChl. Py also occasionally present at levels	20.65	21.17	0.52	10	NIL						
		of 1-2% over 10-30cm intervals as med. sized disseminated	21.17	21.82	0.65	30	NIL						
		aggregates, eg. 13.70-14.0.	21.82	22.68	0.86	10	NIL	NIL	NIL	NIL	NIL	NIL	NÍL
			22.68	23.54	0.86	NIL							
		STRUCTURE: Strongly foliated at 65 to CA, rarely to 60.	23.54	24.56	1.02	NIL	NIL	NÍL	NIL	NIL	NIL	NIL	NIL
		Most stringers subconcordant. Crosscutting stringers are	24.56	25.96	1.40	NIL	NIL.						
		largely contorted to some degree.	25.96	26.24	0.28	NIL							
			26.24	27.29	1.05	NIL							
		COMMENTS: Although mafic unit is obviously altered,	27.29	27.62	0.33	50	NIL						
		and riddled with often contorted fracture filling stringers, it	27.62	28.67	1.05	140	NIL						
		appears merely well foliated as opposed to sheared/intensely	28.67	29.69	1.02	20	NIL						
		deformed. Numerous annealed fractures may be interpreted	29.69	30.99	1.30	10	NIL						
		however, from common mm to cm scale offsets of narrow	30.99	31.74	0.75	25	NIL						
		stringers.	31.74	32.45	0.71	75	NIL						
			32.45	33.00	0.55	10	NIL						
		7.38 to 7.49: Foliation parallel to subconcordant qtz +Fe-carb.	33.00	34.40	1.40	NIL							
		vein.	34.40	35.06	0.66	NIL							
			35.06	35.73	0.67	75	NIL						
		ALTERATION: Tr Py, tourmaline.	35.73	36.53	0.80	15	NIL						

Page 4

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9601

-

-

Page 5

_

							AS	SSAYS					
TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
		36.53	36.86	0.33	NIL								
	11.85 to 12.00: Subconcordant qtz-Fe-carb. vein.	36.86	37.32	0.46	NIL								
		37.32	38.10	0.78	30	NIL							
	ALTERATION: Tr Py, Cp, tourmaline. Sheared wallrock	38.10	39.30	1.20	NIL								
	inclusion weakly chloritized.	39.30	39.90	0.60	15	NIL							
	11.0 to 12.66: Medium grained interval resembling an												
	amphibolitized gabbro.												
	ALTERATION: Tr-1% Py, disseminated.												
	12.66 to 13.07: Apparently fragmental interval. <1 to 5cm thick												
	lapilli? separated by a network of 1-5mm thick Chl and Fe-carb.												
	laminae. Fabric possibly from anastomosing brittle shear.												
	ALTERATION: Tr-1% Py, concentrated within matrix.												
	•												
	STRUCTURE: Foliation 60 to CA.												
	•												
	13.07 to 13.13: Fine grained, dark green. <30% Fe-carb. crystals.												
	Probably a fine crystal tuff.												
	ALTERATION: Tr Py.												
	STRUCTURE: Foliation 65 to CA.												
	14.95 to 16.35: Zone of strong deformation, alteration and qtz+												
	Fe-carb. stringer development. Bleached and chloritized to a												

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE NO.: NTT9601 Page 6 ASSAYS FROM TO LITHOLOGICAL DESCRIPTION FROM TO WIDTH Auppb Cuppm Znppm Agppm Pbppm Coppm Nippm Ptppb greater degree than the unit in general. Elevated gtz +Fe-carb. as 7-8% fracture filling stringers and veinlets above 17.70m. ALTERATION: Approximately 10% <6mm wide foliation parallel Fe-carb. +/- qtz stringers. Approximately 7-8% crosscutting 1-2cm wide qtz-Fe-carb. +/- chlorite veinlets with tr Py, Cp. Veinlets are folded, two have "T" to "Y" like bifurcations at 15.65 and 15.9m. Tr-1% Py. STRUCTURE: Shearing 50-55 to CA. 20.38 to 20.57: Concordant gtz vein. ALTERATION: 5-10% siderite, 1-2% fine tourmaline along fractures tr muscovite. STRUCTURE: Foliation 65 to CA. 22.66 to 23.46: Bleached section similar to interval from 14.95-16.35, but without the elevated stringer and veinlet content. ALTERATION: Strong pervasive Fe-carb. alteration. Amphiboles pseudomorphed by chlorite. STRUCTURE: Foliation 65 to CA. Below 23.50: Unit becomes reasonably uniformly fine grained and stringers under 1cm in width become rare.

DIAMOND DRILL LOG

PROPE HOLE	RTY: No.:	Turtle Tank NTT9601												Pa	age	7
									ASSAYS							
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb			
		- ALTERATION: 2-3% qtz stringers 1-3cm wide, primarily														
		crosscutting. Some have bleached haloes for 10cm total														
		width, containing 10% disseminated Py.														
		STRUCTURE: Foliation 65-75 to CA.														
		26.27 to 26.35: Crosscutting 5cm wide qtz vein.														
		ALTERATION: Tr Py. 2-3% siderite, 3-4% fine tourmaline														
		along contact parallel "crack and seal" fractures.														
		STRUCTURE: Contacts approximately 30 to CA.														
		COMMENTS: Somewhat similar vein zoning observed in														
		2cm wide foliation parallel veinlet at 24.85. From contact														
		inward; Fe-carb., qtz. with Fe-carb., qtz with tourmaline on fractures														
		at centre.														
		•														
		26.5: 15cm wide breccia-like zone of interconnected cm-wide														
		stringers with intensely Fe-carbonatized wallrock over 15-20cm.														
		·														
		ALTERATION: 2-3% disseminated Py.														
		·														
		faliation														
		• 32.52 to 32.92: Mafic ash tuff or mafic derived interflow sediment.														

-

-

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9601 ASSAYS WIDTH Au ppb Cu ppm Zn ppm Ag ppm Pb ppm Co ppm Ni ppm Pt ppb FROM TO LITHOLOGICAL DESCRIPTION FROM то Appears weakly sheared. ALTERATION: Strongly chloritized, with 40-50% Fe-carb. and qtz stringers paralleling foliation. 1% disseminated Py. . STRUCTURE: Foliation 65 to CA. 35.25 to 35.45: Strong bleaching and Py adjacent to irregular walled 5-10cm wide gtz stringer. . ALTERATION: 3-4% disseminated med. grained Py over interval from wallrock. . 36.50 to 37.20: Vein qtz. . ALTERATION: 8-10% siderite, <1% sericite, <1% tourmaline, tr Py, hematite, chlorite. . STRUCTURE: Foliation 70 to CA at upper contact, 60 to CA at lower contact. 39.20 to 39.95: 10-12% qtz from four veinlets each <5cm wide. ALTERATION: 1-2% Py, from wallrock, trace hematite within a stringer.

40.80 to 41.20: Interval intermediate composition of paler grey progressing downhole. Amygdaloidal in places.

.

HOLE No: NTT9601

Page 8

DIAMOND DRILL LOG

								A	SSAYS					
IOM T	0	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
		• ALTERATION: 1-2% med. grained disseminated Py. Intermediate												
		volcanics strongly sericitized for lowermost 5-10cm adjacent to												
		rhyolite. Amygdules lined with chlorite, filled with calcite up to												
		2mm in diameter.												
20 52	.08	INTERMEDIATE TO FELSIC METAVOLCANICS	39.90	41.40	1.50	NIL								
		RHYOLITE DOMINATED (Int. to Fels. Metavol. Rhyolite Dom.) -	41.45	42.27	0.82	NIL								
		fine ash tuff, fine to coarse crystal tuff, amygdaloidal flow.	42.94	43.84	0.90	NIL								
		Pale pinkish beige to medium grey package of thin, predominantly	44.82	45.92	1.10	NIL								
		felsic, individual units.	47.06	48.00	0.94	NIL								
			50.29	51.06	0.77	NIL								
		ALTERATION: Relatively strong Fe-carb. alteration throughout	51.06	51.82	0.76	NIL								
		all members of the sequence, except extrusive? qtz-feldspar												
		porphyry. Imparts a pinkish hue to rhyolite and fills												
		amygdules within rhyodacites. 1-2% qtz and Fe-carb. stringers												
		from 49.10-49.70, and 51.10-51.85, most <1cm wide and												
		subparallel to foliation. Tr-1% Py throughout interval, generally												
		highest within fine dark coloured dacitic members.												
		•												
		STRUCTURE: Uppermost contact slightly irregular -wavy to undulatory												
		75 to CA, crosscutting foliation. Foliation 65-70 to CA at												
		contact.												
		•												
		41.20 to 42.22: Rhyolite, fine grained to aphanitic, well foliated												
		at 70-80 to CA. 1% mm wide qtz fillings along hairline fractures												
		most subparallel to foliation. 2-3% Py over 20cm at lower contact.												

-

-

DIAMOND DRILL LOG

PROPERTY: HOLE No.:	Turtle Tank NTT9601												Page 10
							 A						
FROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
	42.22 to 43.10: Amygdaloidal? rhyodacite. Pale grey, qtz-Fsp rich												
	very fine groundmass, with 10-15% <2m chlorite +/- amphibole lined												
	amygdules? filled with Fe-carb.												
	STRUCTURE: Rhyolite -rhyodacite contact slightly folded.												
	Averages 60 to CA -45 off from foliation at 70 to CA. Foliation												
	at 43m, 70 to CA.												
	COMMENTS: Probably close to a fold nose, closing to the west												
	-downhole.												
	•												
	43.10 to 43.83: Rhyolite. Similar to interval from 41.20-42.22.												
	at 70 to 60. Lower contact possibly low angle close than 30												
	degrees offset and transposed by fracturing to largely foliation												
	narallel												
	43.83 to 44.71: Rhyodacite. Similar to interval from 42.22-43.10												
	but guite fine grained and lacking amygdules below 44.5. Fine												
	dacitic crystal tuff. Apparently two discrete flows both fining/												
	graded downward to 2cm of ash? material resembling rhyolite.												
	44.71 to 45.63: Rhyolite. Pinkish from Fe-carbonate weathering												
	for top 40cm.												
	ALTERATION: Strongly fractured to shattered below 45.1m, with												

DIAMOND DRILL LOG

PROPERTY: HOLE No.:	Turtle Tank NTT9601												Page 11
								ASSAYS					
FROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
	3-4% mm-wide gtz +/- Py fillings. 1-3% fine disseminated Py over												
	SOcm.												
	STRUCTURE: Internal contacts between 44.5 and 45.8m are												
	foliation parallel. Foliation 70 to CA above 45.8, 60-65 to												
	CA at 45.8 and below.												
	45.63 to 46.37: Rhyodacite crystal tuff. 10-15% fine clustered												
	Chl +/- amphibole. Similar to interval from 44.5 to 44.71,												
	but without grading.												
	ALTERATION: Work Forcarb altoration												
	ALIMATION, Weak Fe-Calb. atteration.												
	• STRUCTURE: Contact rhyolite to rhyodacite at 45.63 is												
	foliation parallel at 65 to CA.												
	46.37 to 47.06: Feldspar porphyry flow? 60-70% fine-med.												
	grained, white to pale grey subhedral feldspar. Trace qtz eyes												
	to 2mm. 10-15% very fine amphibole +/- chlorite.												
	Remainder pale grey groundmass.												
	ALTERATION: Tr-1% very fine disseminated Py.												
	STRUCTURE :Weak chilling at both contacts, both crosscut												
	foliation. Top 50 to CA, bottom 50 to CA.												
	COMMENTS: Includes a "wedge" of rhyodacite at 46.5m over a												
	maximum core length of 9cm on one side, minimum of 4cm												
													HOLE NO. NTT9601
													HOLE NO. NIIJOUI
	· ·												

~

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9601

-

Page 12

								A	SSAYS					
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
		on the other side of core. Rhyodacite wedge top 40 to CA,												
		bottom foliation parallel at 65 to CA. Foliation variable												
		from 70 to CA to 60 to CA, at bottom of interval. Appears												
		to indicate complex asymmetric -tight? folding, rather than												
		an intrusive origin for Fsp porphyry.												
		47.06 to 47.47: Fine dacitic crystal tuff. Similar to rhyodacite												
		intervals but approaching light grey green in colour. Trace												
		qtz eyes to 2mm, and up to 30% fine mafic silicates in places.												
		ALTERATION: 4-5% fine-med. grained disseminated Py.												
		STRUCTURE: Contact at 44.7, foliation parallel at 75-80 to												
		CA.												
		44.47 to 44.87: Rhyolite. Similar to previous rhyolite intervals												
		but only weak carbonate alteration, 1% disseminated Py and												
		no significant fracturing.												
		•												
		44.87-54.3: Fine intermediate to felsic crystal ash tuff. May include												
		thin mafic-intermediate amygdaloidal flows at around 50.70m.												
		Well bedded in places, with foliation crosscutting folded bedding												
		particularly prominent from 50.2-52.10.												
		54.3-54.55: Mafic metavolcanics with minor infolded? rhyolite.												
		Fine-med.grained. Dark green. Spotted with 15-35% fine												
		crystals of Fe-carbonate. Primarily fine crystal and ash tuffs, likely												
		including some thin massive flows and minor lapilli tuff.												

DIAMOND DE	RILL	LOG
------------	------	-----

PROPERTY: HOLE No.:	Turtle Tank NTT9601												Page 13
								ASSAYS					
FROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
	• ALTERATION: Strongly chloritized and Fe-carbonatized throughout.												
	Tr-1% Py on average.												
	STRUCTURE: Top contact foliation parallel at 65 to CA.												
	- ALTERATION: 4-5% fine-med. euhedral												
	disseminated Py. Either in small calcite filled amygdules,												
	or with calcite commonly present in pressure shadows of Py.												
	STRUCTURE: Well foliated at 70-75 to CA above 55m.												
	55.15 to 55.50: Pinkish rhyolite. Similar to previous rhyolite												
	intervals, but spotted with fine carbonate similar to adjacent												
	mafic volcanics. Banding and non-parallel contacts both												
	crosscut foliation.												
	ALTERATION: Enclosing volcanics metasomatically altered to												
	rhyolitic appearance for several cm adjacent to contact.												
	STRUCTURE: Contact at 55.15m, 45 to CA. Contact												
	at 55.5m at 70-75 to CA.												
	56.77 to 57.70: Contorted folding, 5% vein qtz-most from around												
	57.30m, minor shearing and contorted beds of chert from												
	57.40-57.60.												
	ALTERATION: 56.40, 3-4% very fine to medium grained												

-

-

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9601

~

Page 14

							~						
								A	SSAYS				
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
		disseminated Py. Strongly Fe-carbonate altered.											
		STRUCTURE: Foliation at 57.7, 60-65 to CA. Bedding/											
		chert -mafic contact approximately 45 to CA.											
		Broken to contorted blue-grey chert beds present from											
		62.65-62.70, 62.95-63.20, 63.87-64.50, with chert fragments											
		present between 65.50 and 65.90.											
		ALTERATION: 1-2% Py within broken, contorted intervals.											
		STRUCTURE: Foliation 70-75 to CA, bedding foliation parallel?											
		at this point.											
		COMMENTS: Volcanics well foliated but do not appear											
		folded.											
		67.78 to 68.8: Rhyolite, pinkish. Similar to previous intervals											
		but possibly fragmental below 68.48.											
		ALTERATION: Tr-1% Py, strong pervasive Fe-Carb. alteration.											
		STRUCTURE: Foliation at 6/m, 65 to CA. Bedding Contorted,											
		80-90 to CA.											
		·											
		10.9 to 11.22: Possibly a tragmental interval with 2mm to 10m											
		unick strongry flattened lapiti. Arternatively, possibly a											
		wear anastomosing snear.											

DIAMOND DRILL LOG

PROPERTY: HOLE No.:	Turtle Tank NTT9601									Page 15
		FROM	 		 8 7n maga n.2	AG DOW	 naga co	Ni ppm	Pt ppb	
	ALTERATION: Below 68.8, mafic metavolcanics, strongly carbonate altered, generally as 20-40% fine crystals, pervasive within the fine massive or ash tuff intervals. Also modstrongly chloritized. Tr-1% fine disseminated Py. STRUCTURE: Top contact extremely contorted on mm to cm scale. Top 30cm apparently on a fold nose with mafic volcanics on the concave side of the contact. Lower contact foliation parallel at 65 to CA. Foliation at 71m, 75 to CA. Foliation 65-75 to CA from 71.5-76.2m. 72.30 to 72.80: 10% fracture controlled qtz Fe-carbonate stringers <3cm wide. 75.1: Gash filling Fe-carbonate and qtz veinlet at <20 degrees to CA.			or here		9 12				
	DOWN-HOLE SURVEY DATA									
	DEPTH INCLINATION BEARING 76.20 -35.50 180.00									

-

2.17320

hh-hld J. Eeu

Per C. X. WAGG

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9602 Collar Eastings: 11625.00 Collar Northings: 9519.00 Collar Elevation: 0.00 Grid: Stored at Nuinsco Resources core shack located

Collar Inclination: -40.00 Grid Bearing: 180.00 Final Depth: 76.20 metres Ultra Mobile Diamond Drilling Ltd. in Richardson Township - Lot 6 Conc. III Logged by: C.A. Wagg Date: 15/05/96 Down-hole Survey: Acid Test BQ Core, Claim Number 1050815

								A	SSAYS				
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
0	0.65	OVERBURDEN (OVB) -											
0.65	3 96	MARIC METAVOLCANICS (Mafic Metavolcanics) - fine	0 70	1 40	0 70	20	NITT.	NTL	NTT.	NTT.	NTT.	NTT.	NTT.
		grained Medium to light green Strongly Fe-carbonate	1 40	2 50	1 10	NTT	NTL.	NTI	NTL.	NTL.	NTT.	NTT.	NTT.
		altered as up to 30-40% fine crystals (1mm Crosscutting ata	2 50	2.20	0 20	NITT	NTT	NTT	NTT	NTT	NTI	NTT	NTT.
		arcered, as up to $50-40\%$ time crystals (must crossedetting qtz	2.50	3.30 7 66	0.00	NTL	NTT	NTT	0.6	NTL	NTT	NTI	NTT
		from 2 42 2 51 and along goptagt from 2 90 2 95 with the Ch	3.30	3.00	0.30	145	1150	NIL	1.0	NTT	NTL	NTT	NTT
		iiom 3.42-3.00 and along contact from 3.60-3.90 with th th	3-00	2.90	0.30	140	1150	NTP	1.2	NTD	NTD	MIL	1115
		ALTERATION: 1-2% subconcordant to crosscutting gtz and											
		Fe-carbonate stringers. Tr-1% very fine Py.											
		· · · · · · · · · · · · · · · · · · ·											
		STRUCTURE: Well foliated at 65-70 to CA. Lower contact											
		coincident with a gtz-carbonate vein. Contact appears to											
		be folded, and to crosscut foliation. Foliation 65 to Ch											
		at contact											
3.96	5.57	RHYOLITE (Rhyolite) - pale grey-green to beige, very fine	3.96	4.44	0.48	15	NIL	NIL	0.4	NIL	NIL	NIL	NIL
		grained. Top 20cm of unit cut by numerous strongly folded	4.44	4.84	0.40	15	NIL	NIL	0.2	NIL	NIL	NIL	NIL
		Fe-carbonate stringers <5cm wide, generally with tr tourmaline,	4.84	5.17	0.33	605	7500	NIL	9.8	NIL	NIL	NIL	NIL
		Py +/- Cp.	5.17	5.50	0.33	135	0	NIL	15.8	NIL	NIL	NIL	NIL

DIAMOND DRILL LOG

PROF HOLE	ERTY: No.:	Turtle Tank NTT9602												Page 2
								A	SSAYS					
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
		ALTERATION: Tr-1% Py, tr Cp. 1-2% hairline fracture fillings. Weak-moderate pervasive Fe-carbonate alteration.												
		STRUCTURE: Foliation 65 to CA at top of unit, 45-50 to CA in middle and 70 to CA at lower contact. Top contact folded, contorted/crosscutting, oblique to foliation, orientation												
		uncertain -core cut and shipped prior to detailed logging. Lower contact 75-80 to CA, subparallel to foliation.												
5.57	6.19	MAFIC METAVOLCANICS (Mafic Metavolcanics) ~ medium grey-green. Fine grained. Similar to interval from .65-3.96 but possibly andesitic to dacitic in composition. Apparently a fine crystal tuff with 10-15% medium green acicular amphiboles <2mm in length. ALTERATION: Strong pervasive Fe-carbonate +/- calcite	5.50	5.88	0.38	5	345	NIL	0.6	NIL	NIL	NIL	NIL	
		alteration. 10-15% qtz and Fe-carbonate stringers, most <1cm wide, one to 5cm wide, most subparallel to foliation.												
		STRUCTURE: Foliation 65 to CA for most of the unit. 70-75 to CA at lower contact. Contact 75-80 to CA.												
6.19	8.25	RHYOLITE (Rhyolite) - greenish beige. Similar to interval from	5.88	6.31	0.43	NIL	NIL	NIL	0.2	NIL	NIL	NIL	NIL	
		3.96-5.57 but qtz-carbonate stringers <1cm wide are rare.	6.31 6.71	6.71 7.02	0.40 0.31	NIL 10	NIL NIL							

_

-

-

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9602

-

Page 3

								A	SSAYS				
FROM T	FO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
		ALTERATION: 1-2% 1-2mm wide, often contorted qtz +/-	7.02	7.69	0.67	5	NIL						
		Py fracture fillings. 1% disseminated Py overall.											
		STRUCTURE: Well foliated.											
		6.23 to 7.07: Qtz and Fe-carbonate vein with numerous											
		sheared to complexly folded rhyolite inclusions.											
		ALTERATION: Tr Py, Cp, chlorite, tourmaline, sericite.											
		6.96 to 7.1: Qtz and Fe-carbonate vein, similar to previous											
		vein.											
		ALTERATION: Tr tourmaline, sericite, Py.											
.25 8.7	78	MAFIC METAVOLCANICS (Mafic Metavolcanics) - similar	7.69	8.41	0.72	60	NIL						
		to interval from 5.57-6.19, but slightly more mafic/less altered?											
		fine crystal tuff. Tr-1% fine disseminated Py throughout.											
		ALTERATION: 2-3cm wide foliation parallel veinlet at 8.45.											
		15cm brecciated mafic volcanics with 70-80% vein qtz and											
		2-3% Py, tr Cp at lower contact.											
		STRUCTURE: Foliation 70-75 to CA. Lower contact contorted,											
		tightly folded for 15cm core length.											

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9602

-

.

								A	SSAYS				
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
8.78	9.62	RHYOLITE (Rhyolite) - similar to interval from 6.19-8.25,	8.41	9.14	0.73	115	NIL						
		but with relatively weak Fe-carbonate alteration.											
		ALTERATION: Barren of significant veining above 9.15.											
		9.15-9.62, 50% vein qtz. Interconnected subconcordant to											
		crosscutting stringers, and a 5-10cm wide folded? vein at											
		9.5. Tr-1% Py, tr Cp, sericite.											
		STRUCTURE: Lower contact 55 to CA, foliation 65 to CA.											
9.62	22,90	MARIC METAVOLCANICS (Mafic Metavolcanics) - similar	9.14	9.64	0.50	135	NTT.	NTT.	0.4	NTT.	NTT.	NIL	NTT.
		to previous mafic metavolcanic intervals. Well foliated, but	9.64	10.22	0.58	30	NTL.	NTL.	0.4	NTL.	NTT.	NTT.	NTT.
		not obviously strongly deformed, except for the presence of	10.72	10.65	0.43	15	NTL.	NTT.	0.2	NTT.	NTL.	NTL.	NTT.
		contorted gtz stringers and non-parallel vein contacts crosscutting	10.65	11.13	0 48	35	NTT.	NTL.	0.4	NTL.	NTT.	NTL.	NTL
		foliation.	12.34	12.84	0.50	40	NIL	NTL.	NTL	NTL	NIL	NIL	NIL
			12.84	13.63	0.79	NIL							
		ALTERATION: Tr-1% fine disseminated Py with rare med.	14.93	15.62	0.69	NIL							
		grained Py at flow contacts? -over 5-10cm intervals. <2%	16.05	16.58	0.53	40	NIL						
		qt2-carbonate stringers <2cm wide.	16.58	17.07	0.49	35	NIL						
			17.07	17.37	0.30	30	NIL						
		STRUCTURE: Foliation generally 65~70 to CA rarely to 60	17.37	17.84	0.47	20	NIL						
		or 75 degrees.	17.84	18.29	0.45	15	NIL						
		g. 75 degrees a few places from 15-16m.	18.29	18.72	0.43	30	NIL						
			18.72	19.20	0.48	20	NIL	NIL	0.4	NIL	NIL	NIL	NIL
		14.40: 2-3cm wide crosscutting qtz-carbonate veinlet	19.20	19.77	0.57	NIL							
		folded across CA over 15cm core length.	19.77	20.65	0.88	50	NIL						
			20.65	21.52	0.87	140	NIL						

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9602

.

-

-

Page 5

								A	SSAYS					
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
		ALTERATION: Tr Py.	21.52	22.15	0.63	25	NIL							
			22.15	22.76	0.61	35	NIL							
		16.1 to 16.57: 75-85% vein and stringer material.												
		ALTERATION: Tr Py, sericite, Cp, chlorite.												
		STRUCTURE: Top contact is foliation parallel to subparallel.												
		Lower contact crosscutting, folded, near perpendicular to												
		foliation at 65 to CA.												
		16.88 to 17.06: Qtz-carbonate veinlet with subconcordant,												
		non-parallel contacts.												
		ALTERATION: Tr Py.												
		17.20 to 17.30: Red qtz-carbonate veinlet, 5-6cm wide.												
		ALTERATION: Tr Py, Chl.												
		STRUCTURE: Contacts "crennulated" on cm scale, average												
		40 to CA. Foliation 65-70 to CA.												
		17.42 to 19.75: 50% vein qtz + Fe-carbonate. Individual												
		veins to 15-20cm wide. Much breccia-like fracture fillings,												
		with 5mm to 2cm individual veinlets, often folded. Includes												
		1.37m interval of rhyolitic hostrock, shattered and strongly folded												
		from 18.38-19.75.												

DIAMOND DRILL LOG

PROP HOLE	ERTY: No.:	Turtle Tank NTT9602												Page 6
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	ТО	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
		ALTERATION: Tr-1% Py, tr Cp, tourmaline, chlorite, sericite.												
		Strong Fe-carbonate and chlorite alteration.												
		STRUCTURE: Foliation and lower contact 70-75 to CA.												
		Foliation indistinct/disrupted in close proximity to veining.												
		19.75 to 21.72: Fine-med. grained mafic metavolcanics, possibly												
		pillowed. Very pale green, spotted with 30-50% sub-mm to												
		2mm amphibole and chlorite clusters.												
		·												
		ALTERATION: Strong Fe-carbonate alteration. 3-5% qtz												
		stringers <3cm wide, most parallel to subparallel to foliation,												
		above 21.20m. A rew prygmatically folded chlorite and Fe-												
		Carbonate-Py Veinlets, <td></td>												
		20cm of unit. Intense re-carbonate replacement												
		over 25cm core length around a line carbonate and nematite?												
		filled 4cm wide fracture.												
		SIRUCIURE: Moderatery initiated at 60-75 to tA.												
		22.18 to 22.65: Strongly brecciated into cm and smaller fragments												
		with intense Fe-carbonate replacement -interval <20% recognizable												
		mafic fragments -resembles rhyolite in colour.												
		STRUCTURE: Contact at 21.72, foliation parallel at 70 to CA.												
22.90	43.96	INTERMEDIATE TO FELSIC METAVOLCANICS	22.76	23.54	0.78	75	NIL							

-

-

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9602

.

.

.

.

Page 7

			ASSAYS										
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
		(Int. to Felsic Metavolcanics) - consisting primarily of	23.54	24.74	1.20	25	NIL						
		pinkish beige rhyolite, similar to previous rhyolite intervals,	24.74	25.70	0.96	75	NIL						
		and pale grey dacitic to rhyodacitic crystal tuffs.	25.75	26.75	1.00	10	NIL						
			26.75	27.25	0.50	NIL							
		22.90 to 25.32: Rhyolite, <1% disseminated Py. One	27.25	27.64	0.39	5	NIL						
		to two <1cm wide qtz stringers per metre.	27.64	28.19	0.55	10	NIL						
			28.19	28.87	0.68	10	NIL						
		ALTERATION: Strong hairline fracturing over top 1-1.5m	28,90	29.87	0.97	NIL							
		of unit. 2-3% qtz +/- carbonate +/- chlorite, Py.	29.87	30.30	0.43	75	NIL						
			30.30	31.08	0.78	15	NIL						
		STRUCTURE: Foliation 70 to CA at top of interval. 75 to	31.08	31.79	0.71	NIL							
		CA at 24m, foliation 60-65 to CA within dacitic interval.	31.79	32.54	0.75	NIL							
			34.03	34.89	0.86	30	NIL						
		25.32 to 27.19: Fine-med. grey dacitic crystal tuff. 30% fine	34.89	35.67	0.78	NIL							
		amphibole +/- chlorite. Includes 10-15cm wide, strongly											

ALTERATION: Moderate Fe-carbonate alteration. 2-3% fine-med. grained disseminated Py.

carbonatized rhyolite dyke? at 26.0m.

STRUCTURE: Dyke at 26.0m has non-parallel contacts both 70 to CA. Top contact foliation parallel.

27.19 to 30.96: Rhyolite, similar but much less fractured than interval from 22.9-25.32. Includes 7cm of dacitic tuff at 30.45 conformable to foliation.

ALTERATION: Mod. to strongly Fe-carbonate altered. 7-8%

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9602 Page 8 ASSAYS WIDTH Au ppb Cu ppm Zn ppm Ag ppm Pb ppm Co ppm Ni ppm Pt ppb FROM то LITHOLOGICAL DESCRIPTION FROM TO disseminated Py from 27.19-28.90 as foliation parallel bleb-like segregations and along discontinuous hairline fractures and tension gashes with gtz. 2-3% Py overall below 28.9m. STRUCTURE: Foliation 65-70 to CA in rhyolite. COMMENTS: Somewhat colour banded, well foliated. Some med. grained Py overgrowing foliation. Presumably sheared and substantially recrystallized after deformation had largely ceased. . 30.96 to 32.80: Fine dacite crystal tuff. Similar to previous dacite intervals. ALTERATION: <1% fine disseminated Py. . STRUCTURE: Foliation 75 to CA, contact 80-85 subparallel to foliation. . 32.80 to 35.65: Rhyolite, similar to previous rhyolite interval, but much less strongly fractured and banded. STRUCTURE: 35.65, foliation parallel contact 60-65 to CA. 35.65 to 43.96: Series of dacitic crystal tuffs progressing toward horizons possibly andesitic-basaltic in original composition from 41.5-43.06. Includes weakly sheared felsicrhyodacitic? crystal tuff from 43.06-43.50.

DIAMOND I	DRILL	LOG
-----------	-------	-----

PROPERTY: HOLE No.:	Turtle Tank NTT9602				-								Page 9
							 A						
FROM TO	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
	 ALTERATION: 1% fine disseminated Py. Moderately to strongly Fe-carbonate altered throughout. Rhyolite at 43.90, weakly hematite or k-spar altered adjacent to mafic metavolcanics. 43.50 to 43.63: 10-15cm of folded cherty metasediment, and a 15-18cm of pink rhyolite. STRUCTURE: Cherty bedding cuts CA at 30-40 degrees, nearly perpendicular to foliation at 70 to CA. 												
43.96 76 2	ALTEDED MARTE TO INTERMEDIATE METAVOLCANICS	43 14	43 99	0.85	NTT	NTT	NITI	0.4	NTT	NTT	NTT.	NTL	
10100 ,012	(Alt Maf to Int Metavolcanics) - light to medium green	47 82	43.55	0.05	20	NTL	NTI	NTT.	NTT.	NTL.	NTI.	NIL.	
	Fine to medium grained. Similar to previous mafic intervals	48.28	49.02	0.74	20	NTL	NTT.	NTL.	NTL.	NTL	NIL	NIL	
	in degree of Fe-carbonate alteration, but essentially devoid	68.55	68.95	0.40	NIL								
	of significant veining, stringer zones, or elevated sulphide	68.95	69.90	0.95	NIL								
	content.	69.90	70.80	0.90	NIL								
		71.62	72.56	0.94	NIL								
	ALTERATION: Strong pervasive Fe-carbonate alteration/	73.57	74.25	0.68	NIL								
	replacement of non-mafic silicates? Strong pervasive	74.25	75.15	0.90	NIL								
	chloritization. Tr-2% fine disseminated Py. 43.96 to 47.77: Series of fine grained mafic crystal tuffs somewhat	75.15	76.20	1.05	NIL								

sheared, well banded overall, with a few small pillows or mafic fragments with qtz-carbonate-epidote filled amygdules over top 20cm of interval.

,

-

- .

.

.

-

.

PROP HOLE	ERTY: No.:	Turtle Tank NTT9602												Page 10
									ASSAYS					
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
		ALTERATION: <1% qtz stringers, tr-1% fine Py.												
		STRUCTURE: Foliaiton 70-80 to CA above 45m, 65-70												
		to CA from 45-47.75m.												
		47.77 to 63.45: Series of thoroughly recrystallized massive												
		to amygdaloidal flows. Unbanded. Up to 5% qtz-carbonate												
		filled amygdules from 51.0-54.60.												
		ALTERATION: Tr-1% Py. Coarse crystalline Fe-carbonate												
		constitutes up to 45-50% of medium grained intervals.												
		STRUCTURE: Contact foliation parallel. Foliation 60-65 to												
		CA throughout interval.												
		63.45 to 76.2: Fine grained mafic crystal tuffs. Similar to												
		interval from 43.96-47.77.												
		STRUCTURE: Foliation 65-75 to CA.												
		68.20 to 76.2: Fine mafic crystal tuff. Very well foliated/well												
		sheared with common 5-30cm wide foliation parallel zones												
		of strong potassium feldspar alteration, with some silicification												
		and sericitization. Entire interval well fractured to shattered												
		with 3-4% Fe-carbonate as <5mm wide fracture fillings.												
		Tr qtz stringers <1cm wide, foliation parallel. K-spar												
		alteration ceases abruptly at 72.50.												

|--|

PROPERTY: HOLE No.:	Turtle Tank NTT9602								Page 11
FROM TO	LITHOLOGICAL DESCRIPTION ATERATION: Below 66.4, fine crystalline carf no longer present. Pervasive Ca and Fe?-car remains moderately strong. 60-75% pinkish f 72.50 due to strong k-spar alteration. 1-29 Py. STRUCTURE: Shearing/foliation 65-75 to CA. to parallel bedding except at 76.0, where be CA, can be seen subparallel to foliation at DOWN-HOLE SURVEY DATA	FROM bonate is cbaonate alteration nued rock above a fine disseminated Foliation appears adding at 65-70 to 75 to CA.	TO WIDTH	Au ppb Cu ppm	ASSAYS Zn ppm Ag	ppm Pb ppm	Co ppm Ni pp	m Ptppb	
	DEPTH INCLINATION BEARING								
	20.00 -39.00 180.00								
	76.20 -37.00								

-

-

2.17320

DIAMOND DRILL LOG

GJ Anhold P.Geo

Per C.A. WARG

Logged by: C.A. Wagg Date: Down-hole Survey: Acid Test BQ Core, Claim Number 1050815

PROPERTY: Turtle Tank HOLE No.: NTT9603 Collar Eastings: 11600.00 Collar Northings: 9525.00 Collar Elevation: 0.00 Grid: Stored at Nuinsco Resources core shack located in Richardson Township - Lot 6 Conc. III

Collar Inclination: -40.00 Grid Bearing: 180.00 Final Depth: 76.20 metres Ultra Mobile Diamond Drilling Ltd.

FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
0	0.8	OVERBURDEN (OVB) -											
0.8	35.5	INTERMEDIATE TO FELSIC METAVOLCANICS	0.62	1.42	0.80	20	NIL	NIL	0.2	NIL	NIL	NIL	NIL
		(Int. to Felsic Metavolcanics) - light grey to very pale	1.42	2.42	1.00	50	NIL	NIL	4.6	NIL	NIL	NIL	NIL
		grey-green. Fine grained to aphanitic. Generally well	2.42	3.09	0.67	5	NIL						
		foliated. Members include massive rhyolite flows, fine	3.09	3.86	0.77	NIL	NIL	NIL	0.6	NIL	NIL	NIL	NIL
		dacitic to rhyodacitic ash tuffs -similar in appearance to	3.86	4.50	0.64	145	1150	NIL	1.2	NIL	NIL	NIL	NIL
		rhyolite, and a few metres of thick intervals of intermediate	4.50	5.33	0.83	15	NIL	NIL	0.2	NIL	NIL	NIL	NIL
		andesitic to dacitic-crystal tuff, light to med. green in colour,	7.49	8.48	0.99	15	NIL	NIL	0.4	NIL	NIL	NIL	NIL
		and fine to med. grained. The intermediate crystal tuffs contain	8.48	9.30	0.82	605	7500	NIL	0.4	NIL	NIL	NIL	NIL
		15-50% amphibole +/- chlorite as clusters to 1mm diameter,	9.30	9.71	0.41	135	0	NIL	15.8	NIL	NIL	NIL	NIL
		up to 20-25% fine crystalline Fe-carbonate, with the remainder	9.71	10.74	1.03	5	345	NIL	0.6	NIL	NIL	NIL	NIL
		aphanitic pale grey groundmass.	10.74	11.27	0.53	10	NIL	NIL	0.2	NIL	NIL	NIL	NIL
			11.27	11.66	0.39	NIL							
		ALTERATION: Weak pervasive Fe-carbonate alteration throughout,	11.66	12.22	0.56	10	NIL						
		moderate to strong carbonization within and below the zone	12.22	12.55	0.33	50	NIL	NIL	0.8	NIL	NIL	NIL	NIL
		of stringers and veining which extends from about 10.47-20.25m.	12.55	12.86	0.31	60	NIL						
		Approximately 15% qtz over the 10m interval. Hairline fractures	12.86	13.53	0.67	115	NIL						
		sealed by qtz +/- Fe-carbonate +/- tr Py are best developed	13.53	13.99	0.46	135	NIL	NIL	0.4	NIL	NIL	NIL	NIL
		within rhyolites at levels from 1-2% throughout, to up to 7-8%	13.99	14.75	0.76	30	NIL	NIL	0.4	NIL	NIL	NIL	NIL
		where shattered to weakly brecciated within the zone of veining.	14.75	15.47	0.72	15	NIL	NIL	0.2	NIL	NIL	NIL	NIL
			15.47	15.95	0.48	35	NIL	NIL	0.4	NIL	NIL	NIL	NIL

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9603

.

.

•

Page 2

			ASSAYS												
FROM	то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb		
		STRUCTURE: Foliation variable from 65-80 to CA, rarely to	15.95	16.34	0.39	40	NIL								
		60. Internal contacts all appear to be foliation parallel, or	16.34	16.70	0.36	NIL									
		nearly so.	16.70	17.29	0.59	NIL									
			17.29	18.01	0.72	40	NIL								
		COMMENTS: Concordant foliation and contacts suggests	18.01	18.58	0.57	35	NIL								
		that the felsic interval within this hole is either tightly	18.58	19.17	0.59	30	NIL								
		isoclinally folded, or alternatively, was obtained primarily	19.17	19.75	0.58	20	NIL								
		from one limb of the fold, presumably the southern one.	19.75	20.20	0.45	15	NIL								
			26.00	26.84	0.84	30	NIL								
		0.8 to 2.1: Rhyolite. Core broken, some ground, over uppermost	28.45	29.10	0.65	20	NIL	NIL	0.4	NIL	NIL	NIL	NIL		
		20-30cm. Pale grey relatively unaltered and weakly fractured.													

ALTERATION: Tr fine Py, very weak sericite alteration. 1-2cm wide fracture at 2.0m, foliation parallel at 65-70 to CA with minor Py, Cp, Ma and partly oxidized Fe-carbonate filling.

STRUCTURE: Foliation 65 to CA throughout. Lower contact 65 to CA.

2.1 to 6.42: Fine rhyolitic to rhyodacitic ash tuff. Very weakly banded in places. Very fine grained, with trace qtz eyes <2mm in diameter. Contains several 10-20cm intervals, which are likely massive rhyolite flows at 2.8, 3.1, 4.0, 4.4 metres.

ALTERATION: 4-5% fine Py over 7-8cm at 2.8m as, <1mm wide fractures within thin shattered rhyolite. 3-5% disseminated fine-med. grained Py over 20cm at 3.45m. 2-3%

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9603 Page 3 ASSAYS WIDTH Au ppb Cu ppm Zn ppm Ag ppm Pb ppm Co ppm Ni ppm Pt ppb FROM то LITHOLOGICAL DESCRIPTION FROM TO disseminated Py and Po along fractures with qtz and Fe-carbonate over 30cm at 4.2m. STRUCTURE: Foliation 65 to CA except at 6.0m where foliation is 70degrees to CAand at 6.7 and 8.8m where foliation is 60 to CA. 6.42 to 10.50: Rhyolite. Similar to interval from .8-2.1m. Includes 30cm bed of fine rhyodacitic crystal to ash tuff at 7.0m. 2-3cm wide, foliation parallel qtz-carbonate veinlets at 8.05, 8.34 and 9.06, no sulphides observed. 10cm thick bed of crystal to ash tuff at 9.8m, similar to the one at 7.0m. . ALTERATION: 3-4% fine-med. grained disseminated Py from 8.5-9.35. Occurs in clusters to 2mm with qtz and Fe-carbonate, and as small euhedral crystals overgrowing foliation. STRUCTURE: Tuff contacts at 7.0m, 65 to CA, foliation parallel. Tuff contacts at 9.8m, 75 to CA, foliation parallel. Foliation at 9.8m. 70 to CA. . 10.50 to 11.4: Bleached, moderately Fe-carbonate altered rhyolite. Well fractured, particularly near lower contact where some gtz-carbonate-Py fillings are ptygmatically folded, and several 1-2cm wide stringers are present. ALTERATION: 3-5% qtz and Fe-carbonate +/- Py veinlets, stringers and hairline fillings. 1-2% fine Py, disseminated and from HOLE No: NTT9603

DIAMOND DRILL LOG

.

-

PROPE HOLE	RTY: No.:	Turtle Tank NTT9603												Page 4
					•				ASSAYS		~ ~			
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
		fillings. Moderate Fe-carbonate alteration and weak silicification.												
		STRUCTURE: Well foliated. 65 to CA at 10.5m, increasing to 70-75												
		to Ca at 11.4.												
		•												
		COMMENTS: Upper limit of zone of qtz and Fe-carbonate veining,												
		and modstrong alteration.												
		11.4 to 12.4: Andesitic to dacitic crystal tuff. Medium green.												
		Laminated and very well foliated above 12.05m -possibly due to												
		shearing with relatively common foliation parallel stringers up												
		to 1cm wide and two subconcordant to crosscutting veinlets												
		5-10cm wide. Below 12.05m, unit is moderately foliated,												
		medium grained. Possibly a massive flow protolith.												
		ALTERATION: 20% qtz and Fe-carbonate stringers and veinlets.												
		Strong Fe-carbonate, and chlorite alteration above 12.05m, weak to												
		moderate below. Tr-1% fine Py mostly from stringers.												
		•												
		STRUCTURE: Upper contact weakly folded, coincident with												
		veinlet with non-parallel contact. Foliation/shearing 60-65												
		to CA. "Contact" at 12.05 sharp, planar 60 to CA marking												
		an abrupt change in the intensity of foliation.												
		12.4 to 13.02: Rhyolite similar to interval from 10.5-11.4 but												
		more strongly altered, and with more veining and sulphides.												
		ALTERATION: 20-25% qtz and Fe-carbonate including a												

	DIAMOND	DRILL	LOG
--	---------	-------	-----

PROPERTY: Turtle Tank HOLE No.: NTT9603 ASSAYS FROM TO LITHOLOGICAL DESCRIPTION FROM TO WIDTH Auppb Cuppm Znppm Agppm Pbppm Coppm Nippm Ptppb vein at lower contact. Moderate-strongly Fe-carbonate and, sericite and silicification. 3-4% fine disseminated Py, tr Cp from stringers and veinlets. STRUCTURE: Top contact foliation parallel at 60 to CA. Foliation distorted by veining, somewhat overprinted by alteration, 65-70 to CA. Lower contact coincident with an irregular folded, fracture filling? gtz and Fe-carbonate veinlet. . 13.02 to 13.79: Andesitic to dacitic crystal tuff. Similar to interval from 12.05-12.4, but slightly more altered and with two foliation parallel qtz-carbonate stringers <2cm wide. ALTERATION: 2-3% fine-med. grained disseminated Py. 3-4% gtz-carbonate and tr Cp from stringers. STRUCTURE: Foliation 65-70 to CA. Lower contact foliation parallel. . 13.79 to 18.75: Rhyolite similar to previous intervals of this unit. Strongly bleached, shattered to brecciated. Includes two intervals of dacitic crystal tuff from 16.34-17.03 and from 18.50-18.75. Significant veins from: 13.84-14.11; 15-15.19; Folded -unknown width. 50% of core volume from 15.54-15.7; 16.18-16.46 -contorted; 16.65-16.84 -within sheared brecciated intermediate tuff and containing a few pieces of blue-grey

HOLE No: NTT9603

Page 5

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9603

Page 6

			ASSAYS											
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
		chert; and from 17.6-17.0 open folded -width unknown,												
		but >core diameter, single contact cuts core twice at an average												
		angle of 15 to CA.												
		•												
		ALTERATION: 20% qtz and Fe-carbonate veins. Approximately												
		5% hairline fracture fillings. <1% fine disseminated Py tr Cp in												
		a few of the veins. Stringers vary from foliation parallel to												
		crosscutting and contorted. Vein system probably interconnected												
		on a large scale similar to the small scale hairline fracturing.												
		Essentially brecciated on a microscopic to megascopic scale, with												
		qtz and Fe-carbonate resealing fractures. Veins contain "on average"												
		10-15% fine to coarse Fe-carbonate, <1% Py and traces of												
		muscovite Cp and tourmaline locally.												
		STRUCTURE: All sub-unit contacts are foliation parallel or												
		within 5 degrees. Lower contact of the interval at 18.75 is 45 to CA,												
		nearly perpendicular to foliation at 50 to CA. Foliation is 70 to												
		CA at top of interval, 60-65 to CA throughout the middle. 75 to												
		CA at 18.25. Two fabrics evident at lower contact, foliation 65												
		to CA, bedding 45.												
		COMMENTS: Although fracture filling veins predominate,												
		some developed at geological contacts appear to fill non-												
		rracture controlled dilation zones apparently developed												
		during shearing as a result of contrasting strain ductility												
		contrasts between adjacent rock types.												
		•												

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9603 Page 7 _____ ASSAYS WIDTH Auppb Cuppm Znppm Agppm Pbppm Coppm Nippm Ptppb FROM TO LITHOLOGICAL DESCRIPTION FROM то to rhyodacitic from 20.47-23.94 including 28cm of rhyolite at 23m, and also from 25.81-26.28. Remainder andesitic to dacitic crystal tuff, with the lower of the two intervals most mafic, or perhaps least altered, over its central metre or so. . ALTERATION: 30-40% qtz Fe-carbonate over 35-40cm, from a contorted branching stringer at 20.15. Minor chlorite, 1% muscovite, tr-1% tourmaline, tr Py. . STRUCTURE: Foliation 65-70 to CA above 23.0m. Foliation 70 to CA, occasionally to 75 from 23-35.5m. 26.28 to 33.29: Rhyolite, Similar to interval from 10.5-11.4m. Sections intercalated with fine dacitic crystal tuffs may be rhyolitic ash within which any bedding/banding has been obscured by deformation and alteration. Interval includes dacite crystal tuffs from: 27.33-27.44, 31.44-31.58, and 32.09-32.33 with foliation parallel contacts. . 33.53 to 35.5: Fine dacite crystal tuff. Similar to interval from 20.47-27.93, banded in places. ALTERATION: Tr-1% fine disseminated Py. STRUCTURE: Upper contact 80 to CA, foliation 70 to CA. NIL NIL NIL 35.5 76.2 ALTERED MAFIC TO INTERMEDIATE METAVOLCANICS 61.40 62.70 1.30 NIL NIL NIL 0.4 NIL

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9603

.

Page 8

FROM TO LITHOLOGICAL DESCRIPTION

(Alt. Maf. to Int. Metavolcanics) - light green. Fine grained, spotted with 20-40% Fe-carbonate crystals, and up to 10-15% qtz and Fe-carbonate filled amygdules in places. 35-55% fine, medium green amphibole and chlorite. Apparently a series of amygdaloidal flows. Unit possibly pillowed from about 52.5-53.5 metres, tuffaceous and grading into a polylithic fragmental with mafic crystal groundmass below that.

ALTERATION: Strongly chlorite, calcite, and Fe-carbonate altered throughout. Well banded, possibly due primarily to deformation. Partially oxidized Fe-carbonate +/- hematite zone from 62.25-62.9, some ground core present. A minor fault or fracture zone.

STRUCTURE: Foliation 65-70 to CA at upper contact. 70-80 to CA from about 44-49m. Foliation 60-65 to CA from about 50-53m. Foliation 65-70 to CA from 55m to 76.2m.

53.5 to 76.2: Strongly chlorite, and calcite +/- Fe-carbonate altered. Very well foliated, uniformly moderately to strongly sheared. Fine-med. grained mafic crystal tuff above about 72m. Below 72m, rare felsic and chert fragments present generally under 1cm x 3cm. 1-2% <1mm diameter qtz eyes. Mafic to intermediate fragments present are essentially homogenized with and indistinguishable from the groundmass due to deformation and alteration.

ALTERATION: 1% very fine disseminated Py. 3-5%, often

	ASSAIS														
FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb					
66.71	67.72	1.01	10	NIL											
70.44	71.17	0.73	5	NIL											
72.62	73.13	0.51	10	NIL											

100110

DIAMOND DRILL LOG

,

.

PROPEF HOLE N	RTY: 10.:	Turtle Ta NTT9603	ank			 										Page	9
FROM	то То		OLOGICAL DESCRIPT	TION		 то	WIDTH	Au ppb	Cu ppm	A: Zn ppm	SSAYS Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	 	
		bondinaged, fol <1cm wide. STRUCTURE: Foli DO DEPTH 38.00 75.00	iation parallel q ation at 76.2, 65 WN-HOLE SURVEY DA INCLINATION -38.00 -36.00	utz and Fe-carbon 5 to CA. MTA BEARING	ate stringers									pp	2.0 FFC		
		76.20	-36.00														

2.17320

PROPERTY: Turtle Tank HOLE No.: NTT9604 Collar Eastings: 11625.00 Collar Northings: 9550,00 Collar Elevation: 0.00 Grid: Stored at Nuinsco Resources core shack located

FROM

1.62

Ω

ΤO

.

1.62

Nuinsco Resources Limited

DIAMOND DRILL LOG

Collar Inclination: -50.00 Grid Bearing: 180.00 Final Depth: 85.34 metres Ultra Mobile Diamond Drilling Ltd. in Richardson Township - Lot 6 Conc. III

47 Fuchilold P.Geo

Dy C.A. WAGG

Logged by: C.A. Wagg Date: 17/05/96 Down-hole Survey: Acid Test BO Core, Claim Number 1050815

ASSAYS LITHOLOGICAL DESCRIPTION WIDTH Au ppb Cu ppm Zn ppm Ag ppm Pb ppm Co ppm Ni ppm Pt ppb FROM TO OVERBURDEN (OVB) -27.47 FELSIC AND MINOR INTERMEDIATE METAVOLCANICS 1.62 2.12 0.50 20 NIL NIL 0.2 NIL NIL NIL NIL (Fels. and Minor Int. Metavolcanics) - fine grained, beige 2.12 2.60 0.48 50 NIL NIL 4.6 NIL NIL NIL NIL NIL NIL to white, with a few intervals of fine, medium grey, dacitic 2.60 3.47 5 NIL NIL NIL NIL 0.87 NIL crystal tuff. Felsic rocks consist of rhyolitic flows and weakly 4.57 5.28 0.71 NIL NIL NIL 0.6 NIL NIL NIL NIL banded fine crystal and ash tuffs. NIL 0.6 NIL NIL NIL NIL 20.65 145 1150 20.13 0.52 NIL NIL NIL 20.95 21.62 0.67 20 NIL 0.6 NIL NIL ALTERATION: Moderate to strong pervasive Fe-carbonate 24.38 25.31 0.93 10 NIL NIL 0.4 NIL NIL NIL NIL 26.70 7500 NIL 1.2 NIL NIL NIL NIL alteration. Less than or equal to 1% gtz and Fe-carbonate 26.40 0.30 20 stringers, generally foliation parallel and <2cm wide. . STRUCTURE: Foliation 60-65 to CA. Generally strongly

fractured to weakly brecciated, with mm-wide qtz and Fe-carbonate fillings.

1.62 to 2.92: Massive rhyolite flow with a few percent Py and tr Cp over 10-15cm at 2.45m. Carbonate partially oxidized due to near surface weathering.

ALTERATION: Contains three 1-2cm gtz stringers, foliation parallel.

PROPERTY: HOLE No.:	Turtle Tank NTT9604				-								Page	2
							 A	SSAYS						
FROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb		
	2.92 to 4.20: Mafic to intermediate crystal tuff.													
	Fine grained, med. to light green.													
	ALTERATION: 30-35% qtz and Fe-carbonate stringers to													
	2cm wide above 2.4m. Strong chlorite carbonate alteration													
	throughout. Trace Py.													
	STRUCTURE: Upper contact subconcordant, coincident with													
	a cm wide qtz stringer. Lower similar, crosscutting at 35 to													
	CA. Foliation 50-60 to CA.													
	4.2 to 24.47: Primarily massive rhyolitic flows and rhydacitic													
	ash and fine crystal tuffs, banded on cm scale. Includes 15-20cm													
	wide qtz-carbonate vein at 5.05m, essentially barren of sulphide,													
	10-15cm wide foliation parallel veinlet with tr Cp, sericite at													
	6.55m.													
	ALTERATION: Trace-1% fine Py overall. Tr Sp noted along													
	mm wide fractures at 13.25 within rhyolite and at 15.60 and 16.95,													
	also along foliation parallel fractures within a fine rhyolitic													
	crystal tuff. 5-10% disseminated Py over 10cm at 17.05 apparently													
	filling amygdules with qtz and calcite.													
	about 10m tend to be at 10-15 degrees less to the CA than is													
	foliation. Below 10m. contacts are at 10-15 degrees greater angle													
	to the CA than foliation, suggesting a fold axis may have been													

-
DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9604

-

-

				~					_ ~ ~ ~ ~ ~ ~					
								A	SSAYS					
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
		crossed.												
24 74	30 22		27 24	27 76	0.50	0.5	0		0.0		NTT			
511/1	50.22	(Maf to Int Matawaldanica) - fine amained medium to dark amor	27.24	27.70	0.52	10	245	N L L	0.2	NTT	NIL		NIL	
		Well feliated with strong companies Parastante and shirtit	27.70	20.00	0.80	10	340	NIL.	0.0	NIL	NIL	N L L	NIL	
		Well follated, with strong pervasive re-carbonate and chiorite	28.00	30.19	1.03	10	NIL	NTL	0.2	NIL	NIL	NTT	NIL	
		alteration. Generally unbanded, and presumably massive flows.												
		·												
		ALTERATION: Strong Fe-carbonate and modstrong sericite												
		alteration. 1% fine disseminated Py. 4-5% foliation parallel												
		to subconcordant cm-wide qtz and re-carbonate stringers												
		with minor tourmaline noted at 28.55m.												
		STRUCTURE: Contact at 27.47 subparallel to foliation.												
		Foliation 55 to CA. Contact 40-45 to CA.												
		From 29.75 to below lower contact: Unit is strongly folded,												
		strongly fractured and well veined. Infolded rhyolite from												
		29.80-30.0m.												
		STRUCTURE: Rhyolite at 28.9m has contorted crosscutting												
		top contact with mafic unit. Lower contact foliation parallel												
		at 70 to CA. Lower contact of unit at 30.22 subconcordant at												
		70-75 to CA. Foliation locally variable within veined interval.												
30.22	56.40	FELSIC METAVOLCANICS (Felsic Metavolcanics) - similar	30.19	30.87	0.68	25	NIL	NIL	0.2	NIL	NIL	NIL	NIL	
		to interval from 1.62-27.47, with dacitic crystal tuffs and a few thin	30.87	31.28	3 0.4	1 10	NI	L NI	L NI	L NI	L NI	L NI	L NIL	
						• •								

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9604

-

**

				~ _									
								A	SSAYS				
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
		mafic tuffs predominanting below 45.75.	31.28	31.75	0.47	50	NIL	NIL	0.8	NIL	NIL	NIL	NIL
			31.75	32.00	0.25	60	NIL	NIL	NIL.	NIL	NIL	NIL	NIL
		ALTERATION: Tr-2% fine disseminated Py, primarily along	32.72	33.12	0.40	115	NIL						
		fractures.	44.42	45.24	0.82	135	153	NIL	0.4	NIL	NIL	NIL	NIL
			45.24	45.85	0.61	10	133	NIL	0.2	NIL	NIL	NIL	NIL
		STRUCTURE: Foliation 60-70 to CA, commonly 65.											
		30.22 to 30.6: 30-35% foliation parallel to contorted qtz and											
		Fe-carbonate stringers with tr Py.											
		30.60 to 31.57: Otz-carbonate vein with 5% sheared rhyolite											
		inclusions.											
		ALTERATION: Tr Py, tourmaline, minor sericite.											
		STRUCTURE: Top contact foliation parallel at 65 to CA.											
		Lower contact foliation parallel to subconcordant at 45 to CA.											
		32.70 to 33.08: Qtz-carbonate vein similar to the one											
		from 30.6-31.57.											
		ALTERATION: Tr Py.											
		STRUCTURE: Foliation and top contact 60-65 to CA.											
		Lower contact 30 to CA.											
		44.60 to 45.60: Strongly fractured to shattered rhyolite											
		•											

PROPERTY: Turtle Tank HOLE No.: NTT9604 Page 5 ASSAYS FROM то LITHOLOGICAL DESCRIPTION FROM TO WIDTH Au ppb Cu ppm Zn ppm Ag ppm Pb ppm Co ppm Ni ppm Pt ppb ALTERATION: 1-2% very fine Py. 5-7% qtz-carbonate fracture fillings up to 2mm wide. . 45.70 to 56.40: Primarily fine-med. grained dacitic crystal tuff, with greatly subordinate narrow intervals of rhyolite, rhyolitic ash and fine mafic tuff? ALTERATION: 1-2% fine disseminated Py. Strong Fe-carbonate alteration accompanied by chlorite within the mafic sections. . STRUCTURE: Foliation 65-75 to CA. Contact with overlying rhyolitic package within an interval of broken core; remaining contacts foliation parallel. Rhyolitic from: 48.76-48.91 49.16-49.49 55.65-55.78 . Mafic from: 48.58-48.76 48.91-49.16 55.78-56.04 . 50.0 to 55.65: Dark grey dacitic crystal tuff grades into a darker-andesitic?-rock spotted with up to 15-20% subhedral Fe-carbonate crystals averaging 1mm in diameter.

DIAMOND	DRILL	LOG
		100

PROPERTY: Turtle Tank HOLE No.: NTT9604 Page 6 _____ ASSAYS FROM то LITHOLOGICAL DESCRIPTION FROM TO WIDTH Auppb Cuppm Znppm Agppm Pbppm Coppm Nippm Ptppb 56.40 85.34 MAFIC TO INTERMEDIATE METAVOLCANICS (Maf. to Int. Metavolcanics) - fine-med. grained. Dark green. Consisting of about 60% amphibole and chlorite, 40% Fe-carbonate plus gtz, and minor feldspar? A strongly altered, well foliated sequence of massive to amygdaloidal flows and recrystallized crystal tuffs. Amygdules visible in places throughout, but are most notable from 56.80-59.60, often exceeding 2 x 5mm in size. ALTERATION: Strong chlorite and Fe +/- Ca carbonate alteration. Spotted with 10-25% Fe-carbonate crystals up to 1-2mm in size in places. Tr-1% fine disseminated Py; no veining of significance. 2-3% disseminated Mt. in crystal tuff from 78-79.5m. . STRUCTURE: Foliation 60-70 to CA, commonly 65. Subinterval contacts difficult to discern due to the intensity of alteration/deformation, but appear foliation parallel.

DIAMOND DRILL LOG

PROPE HOLE	RTY: Tur No.: NTI	tle Tar 9604	nk														Page	7
					 						A.	SSAYS						
FROM	то	LITHO	LOGICAL DESCRIP	TION		FROM	ТО	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb		
		DOWI	N-HOLE SURVEY D.	ATA														
		DEPTH	INCLINATION	BEARING														
		38.11	-48.00															
		76.22	-46.00															
		85.34	-46.00															

-

2.17320

PROPERTY: Turtle Tank HOLE No.: NTT9605 Collar Eastings: 11637.00 Collar Northings: 9545.00 Collar Elevation: 0.00 Grid: Stored at Nuinsco Resources core shack located

FROM

0

0.7

TO

10.65

OVERBURDEN (OVE) -

MINOR RHYOLITE

0.7

Nuinsco Resources Limited

DIAMOND DRILL LOG

Per C. A. WARG

Collar Inclination: -45.00 Grid Bearing: 180.00 Final Depth: 83.84 metres Ultra Mobile Diamond Drilling Ltd. in Richardson Township - Lot 6 Conc. III Logged by: C.A. Wagg Date: Down-hole Survey: Acid Test BO Core, Claim Number 1050815

ASSAYS LITHOLOGICAL DESCRIPTION FROM TO WIDTH Au ppb Cu ppm Zn ppm Ag ppm Pb ppm Co ppm Ni ppm Pt ppb INTERMEDIATE TO FELSIC CRYSTAL TUFFS WITH 0.82 1.81 0.99 105 300 NIL 0.2 NIL NIL NIL NIL 1.81 2.69 0.88 240 315 0.2 NTL. NIL NTT. NIL NIL (Int. to Fels. Crys. Tuffs with Min. Rhyolite) - fine grained. 5 2.69 3.57 0.88 200 NIL 0.2 NIL NIL NIL NIL light grey to greenish grey, with two 20cm aphanitic rhyolite 3.57 4.36 0.79 NIL 78 NIL 0.6 NIL NIL NTL. NIL flows? between 1.3 and 2.0 metres, and a third from 1.5-1.98 5.47 5 6.03 0.56 120 NIL 0.6 NIL NIL NIL NIL metres. Tuff composition approximately 5% fine, green-black 6.03 6.62 0.59 305 570 NIL 0.2 NIL NIL NIL NIL amphibole crystals. Remainder -includes med. grey calcite 7.62 8.04 0.42 300 940 NIL 0.4 NIL NIL NIL NIL after fsp? dominated groundmass. Locally to 30-50% fine 8.88 9.56 140 0.68 193 NIL 1.2 NIL NIL NIL NIL mafic silicates Chl +/- amphibole +/- biotite. 25-30cm gtz 9.56 10.03 0.47 70 2450 NIL 2.0 NIL NIL NIL NIL and Fe-carbonate vein at 3.85m with tr Cp. Contacts non-parallel, 10.03 10.49 0.46 925 600 NIL 0.4 NIL NIL NIL NTT. planar to gently folded at 45 and 55 to CA respectively.

ALTERATION: Intermediate tuffs strongly Ca +/- Fe-carbonate altered. Rhyolites and minor felsic ash tuff strongly sericitized. 3-5% qtz and Fe-carbonate fracture fillings <5mm wide, generally foliation parallel. Veinlets <1.5cm wide which are generally crosscutting. 7-8% veinlets 1.5-10cm wide. Larger veins described separately. Tr-1% Py on average, almost entirely from wallrock -locally to 3-4% over 20-25cm.

DIAMOND DE	RILL]	LOC
------------	--------	-----

G **PROPERTY:** Turtle Tank HOLE No.: NTT9605 Page 2 _____ ASSAYS FROM TO LITHOLOGICAL DESCRIPTION FROM WIDTH Au ppb Cu ppm Zn ppm Ag ppm Pb ppm Co ppm Ni ppm Pt ppb TO STRUCTURE: Above 4m, contacts parallel foliation at 60-70 to CA, averaging 65. Below 4m rhyolite contacts are near perpendicular to foliation, and usually contorted to ptygmatically folded, averaging approximately 45 to CA. . COMMENTS: Hole collered approximately on the contact between rhyolitic unit -to north- and the mafic metavolcanics. Rhyolite uphole -to the north. 5.54 to 6.25: Approximately 80% qtz and Fe-carbonate vein with brecciated to stringer rich contacts. Vein material 15-20% Fe-carbonate, 1-2% sericite, tr Cp, with a few vugs along fractures only partially resealed by Fe-carbonate. . ALTERATION: Tr Cp, contained almost exclusively within veins, as disseminated blebs to fine stringers filling fractures. Best mineralization within the interval 2-3% Py, 1% Cp over 1m above lower contact, from veinlets 5cm wide and under. 10.65 54.30 MAFIC TO INTERMEDIATE METAVOLCANICS 11.55 12.00 0.45 20 305 NIL 0.4 NIL NIL NIL NIL NIL NIL (Maf. to Int. Metavolcanics) - fine to med. grained. Light 13.98 14.36 0.38 25 370 NIL 0.4 NIL NIL NIL NIL NIL NIL to med. green. Strongly foliated, with strong pervasive Ca 14.36 14.82 0.46 1550 590 NIL 0.4 NIL NIL and Fe-carbonate alteration throughout. Well fractured to 14.82 15.82 1.00 35 44 NIL 0.2 NIL NIL shattered throughout, with only a few isolated metre-long 16.69 435 5300 NIL 0.4 NIL NIL NIL NIL 16.24 0.45 NIL NIL NIL NIL intervals containing less than 5% fracture filling gtz-carbonate. 16.69 17.09 200 430 NIL 0.6 0.40 63 NIL NIL NIL NIL In general the unit contains 8-10% gtz and Fe-carbonate 17.94 0.85 15 NIL 0.4 17.09

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9605

.

.

-

Page 3

								A	SSAYS				
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
		veins with 20-25% veining common over 1-2m intervals.	17.94	18.38	0.44	95	1800	NIL	2.6	NIL	NIL	NIL	NIL
		Probably tuffaceous near the contact with intermediate to	18.38	19.01	0.63	15	285	NIL	0.2	NIL	NIL	NIL	NIL
		felsic rocks, but apparently grading into fine massive flows	19.01	19.68	0.67	10	205	NIL	0.4	NIL	NIL	NIL	NIL
		at depth. Transition to less banded, less fractured rocks	19.68	20.18	0.50	20	230	NIL	0.4	NIL	NIL	NIL	NIL
		with somewhat less abundant veining is at about 32 metres.	20.18	20.85	0.67	600	310	NIL	0.4	NIL	NIL	NIL	NIL
		Below about 35m, Fe-carbonate within veins is often stained	20.85	21.33	0.48	NIL	11	NIL	0.6	NIL	NIL	NIL	NIL
		pinkish to reddish, presumably due to the presence of fine	21.33	21.84	0.51	40	65	NIL	1.0	NIL	NIL	NIL	NIL
		hematite.	23.57	24.13	0.56	75	480	NIL	0.6	NIL	NIL	NIL	NIL
			24.13	25.10	0.97	30	57	NIL	0.2	NIL	NIL	NIL	NIL
		ALTERATION: Strong pervasive Fe-carbonate +/- silicification	25.10	26.25	1.15	20	115	NIL	0.4	NIL	NIL	NIL	NIL
		1% Py, tr-1% Cp from 14.35-18.0m. Tr Cp overall from 10.65-	26.25	27.43	1.18	15	35	NIL	NIL	NIL	NIL	NIL	NIL
		21.30 as fine fracture fillings and disseminations within veins.	27.43	28.98	1.55	30	6	NIL	0.2	NIL	NIL	NIL	NIL
		Veining concentrated within 0.5 metre intervals bracketing 16.60,	35.20	36.12	0.92	80	NIL	NIL	0.4	NIL	NIL	NIL	NIL
		18.20, 18.75, 19.80, 20.3-21.75, and at 23.55m. Tr Cp	36.57	37.51	0.94	NIL	NIL	NIL	0.4	NIL	NIL	NIL	NIL
		in veinlet at 23.30, below which veining appears to be	37.76	39.01	1.25	75	NIL	NIL	0.2	NIL	NIL	NIL	NIL
		essentially barren of sulphides. Approximately 50% veining	39.25	40.55	1.30	5	NIL						
		from 24.2-27.0m. Approximately 20% veining from 34.20-	46.80	47.17	0.37	50	NIL						
		38.90, 20% over 1m at 47.25, and 75% over 1.3m at 57.5m.	51.38	52.10	0.72	10	NIL						
		i.e. 56.85-58.15m.	52.10	52.76	0.66	10	NIL						

STRUCTURE: Vein contacts generally subconcordant to crosscutting. Stringers usually contorted and interconnected, giving the appearance of a qtz-cemented breccia. Foliation is generally 60-65 to CA with several short intervals of 20-85 to CA, possibly indicating the axial planes of small scale folds.

COMMENTS: Transition from intermediate to mafic units is marked by an increase in grain size, and a colour change from

DIAMOND DRILL LOG

PROF HOLE	PERTY:	Turtle Tank NTT9605												Page
			~ _ ~					 A						
FROM	то	LITHOLOGICAL DESCRIPTION greyish to greenish. Deformation and alteration have largely obliterated all signs of bedding and other primary textural features within the mafic-intermediate metavolcanics. Includes two short rhyolitic intervals from 23.5-24.20, and 27.40- 27.90 with foliation parallel contacts. Possibly the very crests of the tight folds. COMMENTS: No particular increase in veining as contact with felsic volcanics is approached, although wallrocks to veins and inclusions in the area are bleached and noticeably sericitized.	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
54.30	66.88	INTERMEDIATE TO FELSIC VOLCANICS	54.90	55.43	0.53	140	NIL							
		(Int. to Felsic Volcanics) - light grey to very pale greenish grey	55.43	56.38	0.95	25	NIL	NIL	0.2	NIL	NIL	NIL	NIL	
		to very pale pink. Interval consists primarily of fine grained	56.38	57.27	0.89	75	NIL	NIL.	NIL	NIL	NIL	NIL	NIL	
		dacitic ash crystal tuff, and slightly lesser amount of massive	57.27	57.88	0.61	25	NIL							
		aphanitic rhyolite flows. Interval is well fractured particularly	57.88	59.11	1.23	75	NIL	NIL	0.2	NIL	NIL	NIL	NIL	
		within rhyolite. Fractures often coated with mm thick chlorite +/-	59.11	60.21	1.10	10	NIL	NIL	0.2	NÍL	NIL	NIL	NIL	
		Py seams. Unit is well foliated and strongly altered throughout,	60.21	60.53	0.32	NIL								
		with nearly all qtz-carbonate veins and stringers exhibiting	60.53	61.01	0.48	NIL								
		contorted folds. Significant veining restricted to	61.01	62.16	1.15	75	NIL							
		57.30-57.88, with 40-50% vein material, tr Py and weakly Chl-	62.16	62.92	0.76	15	NIL							
		sericite altered contacts and wallrock inclusions.	62.92	63.39	0.47	NIL								
			63.39	63.77	0.38	NIL	NÍL							
		ALTERATION: Dacites strongly Fe-carbonate altered with amygdaloidal fillings in places, rhyolites are modstrongly Fe-carbonate altered, possibly weakly hematized and weakly	64.38	65.00	0.62	30	NIL							

-

-

4

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9605

-

								AS	SSAYS				
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
		sericitized. <1% Py on average for the interval. Dacites are											
		occasionally weakly magnetic, spotted with up to 3-4% fine											
		magnetite over 10-20cm intervals. <1% qtz and Fe-carbonate											
		stringers <2cm wide, and total of approximately 2m of qtz											
		and Fe-carbonate veining, or approximately 15% of the unit.											
		STRUCTURE: Foliation is 70-80 to CA throughout interval,											
		except where deflected to parallel the contacts of folded											
		veins. Bedding and internal contacts are largely parallel to											
		foliation, although in a few places the two fabrics may											
		diverge by 10-15 degrees.											
		•											
		60.20 to 60.77: 85-90% vein material, tr Py. Appears to be											
		the crest of an open fold, with a single contact cutting the core											
		axis twice. Upper contact 50 to CA. Lower contact at 25-30											
		to CA; nearly perpendicular to the upper one.											
		62.97 to 63.78: Single Vein with 90-95% rather barren looking											
		qtz. Apparentiy a fold crest with non-parallel contacts. Upper											
		contact 45 to CA. Lower contact 65 to CA, subparallel to											
		follation.											
		·											
		64.40 to 65.0: 80% vein material, with some of the Fe-Carbonate											
		partially oxidized. Core somewhat broken, but little if any											
		ground.											
		Tr Py, strongly sericitized, with minor chiorite alteration of											
		wallrock and inclusions.											

DIAMOND DRILL LOG

PROP: HOLE	ERTY: No.:	Turtle Tank NTT9605												Page 6
									ASSAYS					
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
66.88	83.84	MAFIC TO INTERMEDIATE METAVOLCANICS												
		(Maf. to Int. Metavolcanics) - fine to medium grained. Medium												
		green, spotted with up to 35-40% fine to med. grained crystalline												
		Fe-carbonate. Well foliated and strongly altered, but not												
		obviously sheared. Similar to the metavolcanics encountered												
		at depth within holes 96-01 through 96-04, lacking any												
		sizable veins, without any appreciable sulphides, and with												
		only rare stringers to 1cm in width. Consists primarily of												
		massive to amygdaloidal flows, and likely includes some												
		crystal tuff, possibly with fine lapilli now altered to Fe-												
		carbonate.												
		ALTERATION: Strong pervasive Chl +/- Fe-carbonate alteration.												
		Trace to <1% very fine Py. Below about 76.5m the unit contains												
		1-2% qtz and Fe-carbonate filling 1-5mm wide randomly oriented												
		fractures.												
		STRUCTURE: Foliation averages between 70 and 75 to CA,												
		occasionally reaching 65 or 80 to CA. Linear fabric is												
		evident from about 70.85-72.20 with rod-like Fe-carbonate altered												
		stretched lapilli? oriented along a line raking <30 degrees in the												
		plane of foliation.												

DIAMOND DRILL LOG

PROPERTY: Tu HOLE No.: NT	rtle Ta T9605	lnk														Page	7
				 						A	SSAYS					 	
FROM TO	LITH	OLOGICAL DESCRIP	TION		FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb		
	DOV	WN-HOLE SURVEY D	ATA														
	DEPTH	INCLINATION	BEARING														
	36.00	-43.00															
	76.00	-41.00															
	83.84	-41.00															

-

2.17320

12700.00

9875.00

0.00

PROPERTY: Turtle Tank HOLE No.: NTT9606 Collar Eastings: 12

Collar Northings:

Collar Elevation:

Grid:

Nuinsco Resources Limited

DIAMOND DRILL LOG

- FArehold P.G.O P. C. A. WAGG

Collar Inclination: -45.00 Grid Bearing: 180.00 Final Depth: 95.43 metres Ultra Mobile Diamond Drilling Ltd.

Logged by: C.A. Wagg Date: 25/05/96 Down-hole Survey: Acid Test BQ Core, Claim Number 1050574

								А	SSAYS				
FROM	то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
0	0.35	OVERBURDEN (OVB) -											
0.35	27.90	MAFIC METAVOLCANICS (Mafic Metavolcanics) - fine to med.	16.15	16.43	0.28	105	300	NIL	0.2	NIL	NIL	NIL	NIL
		grained. Medium green. Individual units vary from medium	17.81	18.29	0.48	240	315	NIL	0.2	NIL	NIL	NIL	NIL
		grained, massive to weakly foliated flow rocks consisting of 55-65%	22.88	23.45	0.57	5	200	NIL	0.2	NIL	NIL	NIL	NIL
		1-2mm dark green subhedral amphibole crystals, and 30-40%	25.20	25.46	0.26	5	120	NIL	0.6	NIL	NIL	NIL	NIL
		fine subhedral whitish feldspar, partly altered to calcite -to											
		well foliated, somewhat banded, fine grained rocks of similar											
		composition, but more strongly altered and apparently tuffaceous.											
		ALTERATION: Weak to strong chloritization and Ca +/-											
		Fe-carbonate alteration, best developed within foliated rocks											
		of probable tuffaceous origin. Trace-1% fine disseminated Py.											
		STRUCTURE: Foliation 60-65 to CA. Contacts between											
		individual flows appear to be foliation parallel.											
		.35 to 7.6: Medium grained massive interval with a deeply											
		weathered 20cm section at 3.36m, possibly a vesicular											

7.6 to 12.31: Fine-med. grained mafic crystal tuff. Very

interflow contact subsequently deformed and altered.

DTAMOND	DRTLL	LOG
DIANOND		004

PROPERTY: Turtle Tank HOLE No.: NTT9606

-

Page 2

								A	SSAYS				
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
		well foliated to moderately sheared.											
		ALTERATION: Strong pervasive chlorite-calcite alteration.											
		•											
		STRUCTURE: Foliation 65 to CA; 60 degrees only at contact											
		with underlying unit.											
		12.31 to 27.9: Fine to medium grained mafic flow rocks.											
		Moderately foliated and somewhat finer above about 16.80.											
		Includes a 10cm wide foliation parallel qtz veinlet with											
		tr Py at 25.30m.											
		ALTERATION: Modstrong calcite alteration of feldspar,											
		amphiboles fresh. From 16.80-26.50, calcite is absent except											
		along fractures, and feldspar is altered to epidote-rich											
		sausserite.											
		STRUCTURE: Below 22.90 unit is moderately fractured											
		-5 to 10 pre metre- with qtz-calcite +/- chlorite, Py fillings											
		generally .5cm wide. Wallrock chloritized for up to 1cm.											
		Fractures randomly oriented.											
27 00	05 40		27.04	20 61	0 67	205	570	NTI	0.2	NTT	NITT	NTT	NTT
27.90	99.40	SHEARED MAFIC METAVOLCANICS	27.94	20.01	0.67	200	570	NIL	0.2	NIL	NIL	NIL	NTL
		(Sheared mail: metavoicanics) - medium to light green. Strongly	20.01	29.20	0.05	140	102		1 2	NTT	NTT	NTT	NTT
		aftered. Difficult to discern whether or not the boundary	29.20	30.01	0.15	140	2450	NTT	1.4	NTT	NTT	NIL	NTF
		of the deformation zone is coincident with a fithological	32.08	32.97	0.89	70	2450	NT.	4.0	NIL		NTT	
		contact. From 27.90 to about 29.0, the zone progresses	32.91	33.56	0.59	925	600	NIL	0.4	NIL	NiL	NIL	NTT

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9606

-

								AS	SAYS				
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
		from a breccia-like margin with weakly aligned subangular	33.56	34.16	0.60	20	305	NIL	0.4	NIL	NIL	NIL	NIL
		cm diameter and smaller undeformed "blocks," separated	34.16	34.95	0.79	25	370	NIL	0.4	NIL	NIL	NIL	NIL
		by mm thick chloritic "matrix." Gradually the blocks decrease	34.95	36.07	1.12	1550	590	NIL	0.4	NIL	NTL	NIL	NIL
		in size and become augen or lens shaped, so that at 29.0m,	36.07	37.32	1.25	35	44	NIL	0.2	NIL	NIL	NIL	NIL
		the rock is best described as having an anastomosing shear	37.32	38.16	0.84	435	5300	NIL	0.4	NIL	NIL	NIL	NIL
		fabric with chloritized shear surfaces enveloping Ca and	38.16	39.36	1.20	200	430	NIL	0.6	NIL	NIL	NIL	NIL
		Fe-carbonate replaced lenticles of less sheared rock, which	39.36	40.15	0.79	15	63	NIL	0.4	NIL	NIL	NIL	NIL
		measure 1-2mm x 5-8mm.	40.15	41.06	0.91	95	1800	NIL	2.6	NIL	NIL	NIL	NIL
			41.06	41.79	0.73	15	285	NIL	0.2	NIL	NIL	NIL	NIL
		ALTERATION: Strong to intense chlorite-calcite +/- Fe-carbonate	41.79	42.86	1.07	10	205	NIL	0.4	NIL	NIL	NIL	NIL
		alteration. Tr Py, Mt in places. 1-2% Cp over 10cm in bleached	42.86	44.13	1.27	20	230	NIL	0.4	NIL	NIL	NIL	NIL
		rock adjacent to a small unremarkable qtz-calcite filled fracture at	44.13	45.13	1.00	600	310	NIL	0.4	NI	L NII	L NII.	NIL
		27.90m.	45.13	45.61	0.48	NIL	11	NIL	0.6	NIL	NIL	NIL	NIL
			45.61	45.91	0.30	60	65	NIL	1.0	NIL	NIL	NIL	NIL
		Possibly a mafic crystal tuff below about 29.75.	45.91	47.11	1.20	75	480	NIL	0.6	NIL	NIL	NIL	NIL
			47.11	48.15	1.04	30	57	NIL	0.2	NIL	NIL	NIL	NIL
		STRUCTURE: Shearing 65-70 to CA.	48.15	49.12	0.97	20	115	NIL	0.4	NIL	NIL	NIL	NIL
			49.12	49.74	0.62	1180	35	NIL	NIL	NIL	NIL	NIL	NIL
		33.08 to 33.27: Light to med. grey chert bed.	49.74	50.22	0.48	30	6	NIL	0.2	NIL	NIL	NIL	NIL
			50.22	50.79	0.57	80	NIL	NIL	0.4	NIL	NIL	NIL	NIL
		ALTERATION: 1% fine Py along fractures.	50.79	51.20	0.41	NIL	NIL	NIL	0.4	NIL	NIL	NIL	NIL
			51.20	52.16	0.96	75	NIL	NIL	0.2	NIL	NIL	NIL	NIL
		STRUCTURE: Contacts appear to parallel shearing at 70 to CA.	52.16	53.04	0.88	5	NIL						
			53.04	53.66	0.62	10	NIL						
		33.27 to 34.75: Strongly colour banded. Probably fragmental.	53.66	53.97	0.31	10	NIL						
		.5-1cm thick strongly flattened clasts. Includes a 15cm thick	53.97	54.85	0.88	50	NIL						
		bed of chert at 33.80.	54.85	55.77	0.92	5	NIL						
			55.77	56,59	0.82	10	NIL	NIL	0.2	NIL	NIL	NIL	NIL

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9606

-

-

								AS	SAYS				
FROM	то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
		ALTERATION: Spotted with up to 25% fine crystalline	56.59	57.81	1.22	75	NIL						
		Fe-carbonate below 34.75. Minor sericite appears	57.81	58.82	1.01	25	NIL						
		to be present along with chlorite and Ca and Fe-carbonate	62.57	63.27	0.70	75	NIL	NIL	0.2	NIL	NIL	NIL	NIL
		below 37.0m.	64.02	64.92	0.90	10	NIL	NIL	0.2	NIL	NIL	NIL	NIL
			64.92	65.47	0.55	NIL							
		STRUCTURE: Shear 65-70 to CA.	65.47	66.18	0.71	NIL							
			75.17	75.82	0.65	75	NIL						
		COMMENTS: Contacts essentially obscured by shearing and	75.82	76.60	0.78	10	NIL						
		alteration below this point except for strongly contrasting	76.60	77.32	0.72	NIL							
		rock types.	77.32	77.67	0.35	NIL							
			77.67	78.23	0.56	30	NIL						
		40.20: 2-3cm thick bed of fine medlight grey dacitic? ash.	78.23	79.35	1.12	NIL							
		Contacts parallel to shear fabric.	79.35	80.85	1.50	NIL	NIL	NIL	0.4	NIL	NIL	NIL	NIL
			80.85	82.33	1.48	NIL							
		ALTERATION: 1% fine Py present on average below this	82.33	82.70	0.37	NIL							
		point, mostly as coatings along foliation/shear planes.	82.70	83.12	0.42	5	NIL						
		Shearing 60 to CA at 40.5π .	83.12	84.22	1.10	NIL							
			84.22	85.67	1.45	NIL							
		40.85 to 41.35: 10% qtz-calcite stringers up to 2cm wide,	85.67	87.15	1.48	NIL							
		primarily foliation parallel.	87.15	88.40	1.25	NIL							
			88.40	89.55	1.15	20	NIL						
		ALTERATION: 3-4% fine disseminated Mt. over 15cm	89.55	90.48	0.93	20	NIL						
		at centre of interval.	90.48	90.91	0.43	NIL							
			90.91	91.42	0.51	NIL							
		43.50 to 43.75: 1-2% fine-med. grained disseminated Py.	91.42	91.92	0.50	25	NIL						
			91.92	92.64	0.72	5	NIL						
		44.50: A few 2-3mm qtz eyes present over 10cm.	92.64	93.31	0.67	NIL							
			93.31	93.87	0.56	15	NIL						

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9606

-

								~					
							_	А	SSAYS				
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb
		45.12 to 45.90: 10% foliation parallel to contorted qtz	93.87	94.58	0.71	NIL							
		stringers.											
		ALTERATION: Minor Fe-carbonate within stringers. 2-3%											
		fine to coarse Py.											
		49.0 to 54.75: 10–15% qtz and whitish Fe-carbonate stringers,											
		fracture fillings, and veinlets. Brecciated, and strongly altered											
		to grey and brownish tones from 49.60-54.30.											
		ALTERATION: Strongly chloritized at margins. Brecciated											
		central section is strongly silicified with locally abundant very											
		fine brownish Fe-carbonate within altered hostrock. Tr-1%											
		fine Py. Tourmaline occurs as mm thick coatings along the											
		contacts of some veinlets and along fractures. It is most											
		abundant at 50.3 where small masses of fine crystals occur											
		within <1cm wide breccia fillings.											
		•											
		STRUCTURE: Shearing 65-70 to CA, rarely to 60, partially											
		overprinted within strongly brecciated and silicified areas.											
		55./U to 58./5: Well colour banded, bedded at 60-65 to CA.											
		Snearing appears weaker. Tuffaceous, possibly fragmental											
		in part; with a bondinaged om thick chert bed -or possibly											
		iragments- at 56.13m. Also two lense-like Py-Calcite "clasts"											
		<lem 58.3.<="" at="" td="" thick=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lem>											
		50.75 to 62.05; top bucm transitional in appearance. Probably											

DIAMOND DRILL LOG

•

-

PROPERTY: Turtle Tank

HOLE	No.:	: NTT9606												Page 6
								i	ASSAYS					
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
		weakly sheared flow margin. Below 59.60 apparently a fine												
		grained massive flow.												
		ALTERATION: Spotted with 20-25% up to 1mm diameter												
		crystalline Fe-carbonate, tr Py.												
		STRUCTURE: Well foliated at 65 to CA, rarely to 60 or 70.												
		Does not appear sheared.												
		•												
		62.25 to 75.25: Moderately sheared crystal tuffs spotted with												
		fine to very fine Fe-carbonate at levels of 10-15%.												
		•												
		ALTERATION: Tr-1% Py. <1% qtz-carbonate stringers.												
		•												
		STRUCTURE: Very well foliated at 60-70 to CA, but appears												
		only weakly-mod. sheared.												
		•												
		72.95 to 95.4: Strongly banded with relatively abundant qtz-												
		carbonate stringers, often contorted or bondinaged. Tuffaceous,												
		possibly fragmental in part. Contains a few 1-2cm thick beds												
		of grey ash over 10-15cm at 75.95. 75.35-75.75, 20-25%												
		qtz-carbonate stringers with sericitized wallrock and several												
		percent tourmaline within contorted veinlets. 77.35-77.7,												
		70% qtz-carbonate veining with 3-4% tourmaline, minor												
		sericite.												
		ALTERATION: 5-10% qtz-carbonate stringers and veinlets as												
		well as strong pervasive chlorite-calcite alteration throughout												

DIAMOND	DRILL	LOG
---------	-------	-----

PROP: HOLE	ERTY: No.:	Turtle Tank NTT9606				_								Page 7
								 #	ASSAYS					
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	Co ppm	Ni ppm	Pt ppb	
		remainder of hole. 1% fine Py.												
		•												
		STRUCTURE: Strongly banded and moderately to strongly												
		sheared in appearance to end of hole. Shearing 65-70 to CA,												
		to 75 degrees only at about 88.7m.												
		DOWN-HOLE SURVEY DATA												
		DEPTH INCLINATION BEARING												
		95.43 -40.00												

-

2.17320

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9607 Collar Eastings: 11637.00 Collar Northings: 9575.00 Collar Elevation: 0.00 Grid: Stored at Nuinsco Resources core shack located

Collar Inclination: -50.00 Grid Bearing: 180.00 Final Depth: 121.00 metres Ultra Mobile Diamond Drilling Ltd. in Richardson Township - Lot 6 Conc. III

J. Anh-Uld P.Geo Dr. C. A. WAGG

Logged by: C.A. Wagg Date: 00/08/96-05/08/96 Down-hole Survey: Acid Test BQ Core, Claim Number 1050815

ASSAYS FROM то LITHOLOGICAL DESCRIPTION FROM ΤO WIDTH Au ppb Cu ppm Zn ppm Ag ppm Pb ppm 0.0 4.3 OVERBURDEN (OVB) 4.3 9.82 MAFIC TUFF (Maf Tuff Alt'd) NTL NTL. 4.83 5.03 0.20 10 80 110 5.93 Medium green, fine to med. grained, and spotted with 20-40% 5.83 0.10 55 230 106 NIL NIL fine iron-carbonate. Strongly chloritized. 5% <2 cm wide qtz-5.93 6.50 0.57 15 110 NIL 93 NIL carbonate stringers, foliation parallel to crosscutting and 8.15 8.56 0.41 5 147 87 NIL NIL contorted, occasionally with minor py +/- tr cpy. Very well foliated and apparently sheared at between 50 and 65 deg to the CA. 9.82 to 10.9 FELSIC ASH TUFF (Fels Ash Tuff) Beige to whitish, streaked to laminated with mm-wide bands of partially oxidized fe-carb. Possibly flow rocks, as are the mafic units, however present appearance is suggestive of recrystallized weakly sheared pyroclastics. Moderately sericitized, with tr very fine py occurring along with fe-carb fillings. Top contact is fol. parallel at ~55 deg to the CA. Lower contact is broken and slightly ground, but appears fol. parallel at 50 deg to CA. 12.0 to 12.43 FELSIC ASH TUFF (Fels Ash Tuff)

		DIAMON	D DRI	LL LC)G						
HOLE No.:	NTT9607									Pag	je 2
FROM TO	LITHOLOGICAL DESCRIPTION Similar to the interval from 9.82-10.9m, but with contacts at 60 and 55 deg to the CA respectively.	FROM		WIDTH	Au ppb	ASSAYS Cu ppm	Zn ppm	Ag ppm	Pb ppm	 	
	13.6 to 13.85 (Fels Ash Tuff) Similar to previous subunits, with contacts at 60 and 50 deg to the CA.										
	Lower contact of the mafic unit, and the local foliation, are at 45 deg to the CA.										
15.16 19.2	FELSIC ASH AND FINE CRYSTAL TUFF (Fels Ash/Xtal Tuff fg) Beige to pale grey. fine to very fine grained. Felsic to rhyolitic ash tuff above 16.6m, grading into a fine intermed. to felsic crystal tuff with up to 1% <1mm qtz eyes and flecked with about 10% very fine chlorite. Trace very fine diss. py. Includes 30 cm with dense ptygmatically folded fe-carb fracture fillings to 5mm wide at 16.75m. Upper contact is fol. parallel, lower contact is crosscutting, near perpendicular to fol., and weakly undulatory at about 45 deg to the CA. 5% med. to coarse py occurs over 10-15 cm above lower contact.										
19.2 22.2	MAFIC TUFF (Maf Tuff Alt'd) Similar to the interval from 4.3-15.16m, but spotted with 3-4% fine magnetite. Very well foliated at 60-65 deg to the CA. Includes a few 1-2cm wide qtz-carb veinlets and several <1cm	19.31 19.63 20.80 21.10	19.41 19.78 20.91 21.29	0.10 0.15 0.11 0.19	NIL NIL 10 20	27 26 29 100	92 72 72 82	NIL NIL NIL NIL	NIL NIL NIL NIL		

-

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9607

-

Page 3

							ASSAYS			
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm
		wide parallel to the fol. just above lower contact.								
		Foliation is 50-55 deg at the lower contact. Contact is 35-40								
		deg to the CA, subparallel to foliation.								
22.2	67.2	FELSIC ASH TUFF AND RHYOLITE (Fels Ash Tuff + Rhy)	26.83	27.14	0.31	20	5	26	NIL	2
		Similar to the interval from 9.82-10.9m for the most part,	27.85	28.58	0.73	15	137	162	NIL	2
		with some very fine grained, evenly coloured, silica sections	32.33	32.60	0.27	NIL	1	17	NIL	NIL
		which may be massive rhyolite flows.	33.47	33.73	0.26	45	500	28	0.2	NIL
		Strongly fe-carb altered, and moderately-strongly sericitized,	34.07	34.29	0.22	140	430	123	0.2	NIL
		more weakly within rhyolitic sections. Trace py is not	34.29	34.45	0.16	75	300	72	0.2	NIL
		uncommon, tr cpy less so, most from fillings. Qtz stringers	34.45	34.69	0.24	20	114	72	NIL	NIL
		are common (over 5%) only from 27.9-28.6m and within a few	34.69	34.86	0.17	NIL	13	172	0.2	NIL
		subunits.	35.15	35.36	0.21	15	19	89	0.2	NIL
			35.84	35.90	0.06	2830	69	62	0.6	NIL
		33.18 to 33.56 INTERMED. CRYSTAL TUFF (Int Xtal Tuff fg)	36.62	36.67	0.05	15	2	17	NIL	NIL
		Light greenish grey, fine grained, spotted with 15-20% fine chl	37.36	37.50	0.14	15	29	22	NIL	NIL
		and containing 1-2% fine py. Moderately fe-carb and ser alt'd.	37.70	37.76	0.06	10	64	15	NIL	NIL
		Contacts are foliation parallel.	37.76	37.88	0.12	120	187	33	0.2	NIL
			37.88	38.03	0.15	15	142	35	NIL	NIL
		34.18 to 36.7 (Maf Tuff Alt'd)	41.71	41.81	0.10	5	1	26	NIL	NIL
		Similar to the interval from 4.3-15.16m. 20% qtz stringers	43.11	43.16	0.05	NIL	8	27	NIL	NIL
		over the uppermost 50 cm.	43.68	43.94	0.26	NIL	16	435	0.2	3
		Upper contact is crosscutting at 70-75 deg to the CA. Lower	47.69	48.08	0.39	NIL	20	800	NIL	NIL
		contact is fol. parallel, coincident with a cm-wide stringer at	48.08	48.21	0.13	NIL	2	65	NIL	NIL
		50-55 deg to the CA.	50.73	51.01	0.28	NIL	12	255	NIL	NIL
			52.34	53.00	0.66	NIL	7	88	0.2	NIL
		43.95 to 44.73 (Int-Fels Xtal Tuff)	56.00	56.10	0.10	10	122	96	0.2	NIL

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9607

							ASSAYS			
FROM	то	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm
		Similar to the section from 33.18~33.56m. Moderately fe-carb	57.45	57.81	0.36	25	260	80	0.3	NIL
		and ser altered, and weakly chloritized, with tr py.	57.81	58.46	0.65	15	187	91	0.2	NIL
		Contacts are fol. parallel. Foliation varies from 45-60 deg	58.46	58.60	0.14	NIL	5	12	NIL	NIL
		to the CA.	58.60	58.94	0.34	NIL	26	14	NIL	NIL
			58.94	59.10	0.16	10	1	9	NIL	NIL
		Similar intervals to the preceding subunit occur from 50.18-	59.31	59.55	0.24	40	112	17	0.2	NIL
		51.45m and from 57.0-58.3m.	59.67	59.96	0.29	NIL	25	23	NIL	NIL
			64.91	65.02	0.11	NIL	13	42	0.2	NIL
		65.42 to 65.7 (Maf Tuff alt'd)	65.23	65.43	0.20	NIL	28	29	NIL	NIL
		Similar to the interval from 4.3-15.16m. Contacts appear fol.								

parallel for the most part, but show evidence of having been modified by shearing.

66.15 to 65.57 Similar to the preceding subunit.

67.2 121.31 MAFIC TUFF (Maf Tuff)

Similar to the interval from 4.3-15.16m. Strongly altered and very well foliated. Probably tuffaceous for the most part. Upper contact is fol. parallel at ~60 deg to the CA. Fol. is commonly 60-65 deg to the CA above about 108m, and 65-70 deg to the CA below that.

77.0 to 82.1 15-25% qtz+fe-carb veinlets, with most parallel to subparallel to fol. Trace py, less common cpy. Includes a 1.2m long section of brecciated felsic ash tuff, now 60-70% vein material, beginning at 79.05m.

6	7.56	67.85	0.29	NIL	32	91	NIL	NIL
6	9.37	69.99	0.62	10	50	97	NIL	NIL
7	2.31	72.63	0.32	NIL	12	83	NIL	NIL
7	2.63	73.08	0.45	NIL	9	131	NIL	NIL
7	3.08	73.42	0.34	15	NIL	63	NIL	NIL
7	3.42	73.81	0.39	NIL	NIL	139	NIL	NIL
7	3.81	73.96	0.15	NIL	3	115	NIL	NIL
7	3.96	74.74	0.78	NIL	24	114	NIL	NIL
7	4.74	74.95	0.21	5	20	106	NIL	NIL
7	4.95	75.96	1.01	15	38	114	NIL	NIL
7	5.96	76.26	0.30	15	22	84	NIL	NIL

Page 4

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9607

FROM

-

						ASSAYS			
TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm
		76.26	77.07	0.81	5	47	115	NIL	NIL
	81.6 to 82.65 Frequently laminated with 1-3 cm thick beds	77.07	77.31	0.24	10	4	127	NIL	NIL
	of felsic ash tuff, somewhat distorted by shearing at 70-85	77.31	77.93	0.62	50	20	78	NIL	NIL
	deg to the CA. Sericitized and fe-carb altered.	77.93	78.13	0.20	5	8	55	NIL	NIL
		78.13	78.32	0.19	5	5	180	NIL	NIL
	Possibly amygdaloidal or originally feldspar-phyric in places	78.32	78.45	0.13	NIL	5	69	NIL	NIL
	from about 87.5-101m, with med. sized fe-carb+/-qtz "augens"	78.45	78.84	0.39	25	7	150	NIL	NIL
	at levels to 5-10% over 10-50cm intervals. Also spotted with	78.84	79.09	0.25	15	17	45	NIL	NIL
	up to 5% fine to med. grained diss. magnetite.	79.09	79.41	0.32	15	18	160	NIL	NIL
		79.41	79.62	0.21	5	1	5	NIL	NIL
	112.5 to 121.33 Banded with mm to cm-wide fe-carb rich zones	79.62	80.18	0.56	10	6	35	NIL	NIL
	parallel to foliation. Shear-parallel replacement or dilation zone	80.18	80.50	0.32	NIL	11	23	NIL	NIL
	fillings, with strong brecciation and intense replacement over	80.50	80.69	0.19	NIL	20	36	NIL	NIL
	5-7cm at 116.0 and over 15-18 cm at 118.1m. Foliation is	80.69	80.83	0.14	5	2	47	NIL	NIL
	70-75 deg to the CA.	80.83	81.47	0.64	NIL	4	118	NIL	NIL
		81.47	81.93	0.46	10	66	112	NIL	4
		81.93	82.34	0.41	5	3	74	NIL	NIL
		82.34	82.98	0.64	20	159	56	NIL	NIL

DOWN-HOLE SURVEY DATA

DEPTH INCLINATION BEARING

60.96 -50.00

121.00 -50.00

2.17390

Collar Inclination: -50.00

Final Depth: 106.00 metres

DIAMOND DRILL LOG

то

Grid Bearing: 180.00

FROM

FJ Suchibeld P.Geo Por C.A. WAGG

Logged by: C.A. Wagg Date: 00/08/96-10/08/96 Down-hole Survey: Acid Test Ultra Mobile Diamond Drilling Ltd. BQ Core, Claim Number 1050815 in Richardson Township - Lot 6 Conc. III

HOLE No.: NTT9608 Collar Eastings: 11675.00 Collar Northings: 9575.00 Collar Elevation: 0.00 Grid: Stored at Nuinsco Resources core shack located

ASSAYS

WIDTH Au ppb Cu ppm Zn ppm Ag ppm Pb ppm

LITHOLOGICAL DESCRIPTION

0.0 4.35 OVERBURDEN (OVB)

FROM

то

PROPERTY: Turtle Tank

4.3 28.32 MAFIC TUFF (Maf Tuff alt'd)

> Probably tuffaceous for the most part. Medium green, fine to med. grained, and spotted with 10-40% fine calcite. Strongly chloritized. 5-7% <2 cm wide qtzcalcite stringersand calcite-rich fracture fillings, foliation parallel to subconcordant. Trace py is common, and up to 5% med grained py occurs in places over 10-15cm intervals. Very well foliated and apparently sheared at between 40 and 60 deg to the CA, commonly 40-45 deg above 24.25m.

24.25 to 26.12 Finer grained, slightly less altered and deformed than preceding rocks, and possibly a massive flow. Unit may have fractured rather than sheared. Contacts are fol. parallel. Fol. is consistently 55-65 deg to the CA.

Iron-carbonate rather than calcite alteration occurs below 26.12m

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9608

							ASSAYS				
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	
28.32	74.15	INTERMEDIATE TO FELSIC TUFF + RHYOLITE (Int-Fels Tuff+Rhy)	41.22	41.78	0.56	5	5	102	NIL	8	
		Composed of three subunits:	42.94	43.20	0.26	900	6000	570	11.6	14	
		Int-Fels Xtal Tuff, broadly dacitic, which is a greenish grey,	43.20	43.39	0.19	15	350	143	0.4	11	
		typically spotted with 10-20% very fine chl+/-amph aggregates,	43.39	43.69	0.30	10	41	33	NIL	NIL	
		and often banded on a cm scale or interbedded with Fels Ash.	4	13.88	44.33	0.45	NIL	66	183	NIL	2
		Fels Ash Tuff, which is grey-white, very fine grained,	44.33	44.63	0.30	NIL	4	24	NIL	NIL	
		generally weakly banded and exhibits fe-carb alteration +/-	44.63	44.95	0.32	NIL	NIL	22	NIL	NIL	
		sericite along bedding or shear planes.	44.95	45.13	0.18	80	3	22	NIL	NIL	
		Rhyolite, which is a creamy white, aphanitic, and appears to	45.13	45.39	0.26	NIL	5	12	NIL	NIL	
		be unaltered and undeformed aside from fracturing.	45.39	45.94	0.55	10	55	16	NIL	NIL	
		Repetitions of the three units may be due to isoclinal folding.	45.94	46.30	0.36	10	141	59	NIL	NIL	
			46.30	46.50	0.20	10	53	300	NIL	6	
		28.32 to 29.9 (Int-Fels Xtal Tuff)	46.50	46.85	0.35	5	34	197	NIL	2	
		Upper contact is 60-65 deg to the CA. Upper contact ~75 deg	46.85	47.61	0.76	10	280	38	0.2	NIL	
		to the CA. Foliation is variable but is most commonly 55-60	47.61	48.30	0.69	30	660	58	0.7	NIL	
		deg to the CA. 1-2% fine diss. py.	48.30	48.92	0.62	30	205	33	0.2	NIL	
			48.92	49.16	0.24	90	29	28	0.2	30	
		29.9 to 30.74 (Rhy)	49.16	49.56	0.40	50	410	68	0.6	6	
		Alteration appears to be restricted to mm-wide fe-carb fillings	49.56	49.69	0.13	5	6	27	NIL	2	
		along fol. parallel to subparalel fractures. Trace py.	49.84	49.98	0.14	2400	139	40	0.2	20	
		Upper contact is "crennulated" to ptygmatically folded, and	49.98	50.06	0.08	2630	315	98	0.3	17	
		averages about 25 deg to the CA. Lower contact is at about 55	51.80	52.95	1.15	25	32	180	NIL	NIL	
		deg to the CA, nearly perpendicular to the foliation.	52.95	53.26	0.31	40	290	62	0.2	NIL	
			53.26	53.74	0.48	15	340	41	0.4	NIL	
		30.74 to 31.9 (Int-Fels Xtal Tuff)	53.74	54.11	0.37	10	154	35	NIL	NIL	
		Strong fe-carb, chl, and ser alteration with 1-2% py.	54.11	54.45	0.34	NIL	1	3	NIL	NIL	
			54.45	54.72	0.27	5	14	51	NIL	NIL	
		31.9 to 34.62 (Rhy + Fels Ash Tuff)	54.72	54.86	0.14	NIL	2	3	NIL	NIL	

Page 2

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9608

ASSAYS FROM то LITHOLOGICAL DESCRIPTION FROM то WIDTH Au ppb Cu ppm Zn ppm Ag ppm Pb ppm Moderate fe-carb and weak ser alteration 54.86 55.24 0.38 NIL 3 8 NIL NIL 55.24 55.59 0.35 5 34 NIL NIL NIL 34.62 to 36.0 (Int-Fels Xtal Tuff) 55.59 56.49 0.90 NIL 4 13 NIL NTL Sediment in part? Strongly sheared and chlorite rich at 35.4m. 56.49 56.73 0.24 NIL 2 8 NIL NIL Otz-carb stringers are common within top half of unit. 56.73 56.88 0.15 NIL 15 12 NIL 5 Strong fe-carb, chl, and ser alteration, with 1-2% diss. py. 56.88 57.03 0.15 NIL 3 18 NIL 4 58.43 58.66 0.23 20 92 20 NIL 4 36.0 to 36.83 (Rhy) 5 58.66 58.82 0.16 23 13 NIL 4 Contacts are fol. parallel at 55-60 and 45-50 deg to the CA. 59.15 58.82 0.33 20 145 18 3 NIL 59.51 5 59.15 0.36 101 33 NIL 3

36.83 to 38.9 (Rhy, Xtal + Ash Tuff)

Interbedded on a 10-30 cm scale. Foliation is about 45-60 deg to the CA. Contacts are indistinct (fuzzy) and appear to be at higher angles to the CA than is foliation.

38.9 to 62.80 (Rhy + Fels Ash Tuff/q-cb veins) Foliation and fracturing are predominantly at 55-65 deg to CA. Trace py mostly from veins, lesser cpy. Mod. ser and abundant fe-carb fracture fillings. Abundant veining from 43-57m. 30-35 cm core length vein at 59.5m subconcordant at about 45 deg to the CA.

Includes an 80cm thick section of Int-Fels Xtal Tuff starting at 60.4m, with fol. parallel contacts.

62.8 to 74.15 (Rhy + Int-Fels Xtal Tuff) Interbedded on a 0.25-1.25m scale, with some compositionally graded beds toward the bottom of the sequence. Intense fe-carb alteration at the top and bottom of the subunit. Tr-1% py.

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9608

Page 4

							ASSAYS			
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm
		Fol. is consistent at 60-65 deg to CA, parallel to contacts.								
74.15	106.68	MAFIC TUFF (Maf Tuff alt/d)	79.10	79.27	0.17	NIL	84	24	NIL	4
		Similar to the interval from 4.35-28.32m, but with strong	80.94	81.10	0.16	NIL	4	111	NIL	2
		fe-carb rather than calcite alteration. 2-3 cm-wide gtz-carb	81.40	81.50	0.10	NIL	5	117	NIL	3
		stringers per metre, most fol. parallel.	86.11	86.25	0.14	10	51	36	NIL	2
			87.70	87.90	0.20	NIL	20	250	NIL	13
		79.2 to 80.35 (Fels Ash Tuff)	88.14	88.28	0.14	NIL	5	68	NIL	1
		With mod. fe-carb alteration as fracture fillings, tr-1% fine	88.28	88.60	0.32	20	3	125	NIL	NIL
		diss py, and cpy within fol. parallel qtz stringer at 79.7m.	88.60	88.73	0.13	NIL	56	69	NIL	NIL
		Contacts parallel fol., but appear to have been modified	88.83	89.25	0.42	NIL	5	54	NIL	2
		by shearing.	89.25	89.63	0.38	NIL	16	103	NIL	NIL
			90.30	90.45	0.15	70	122	75	NIL	NIL
		Contacts are distinguishable between mafic flows at	90.71	90.79	0.08	NIL	4	30	NIL	NIL
		80.63 and 86.03m at 65 and 55 deg to CA respectively.	91.44	91.53	0.09	NIL	96	118	NIL	NIL
			91.73	91.86	0.13	NIL	199	66	NIL	NIL
		83.1 to 86.25 (Int-Fels Xtal/Fels Ash Tuff)	92.33	92.42	0.09	NIL	28	58	NIL	NIL
		Weakly sericitized, and strongly fe-carb altered, with up to	92.42	96.39	3.97	30	285	54	0.3	NIL
		1% py.	96.39	96.53	0.14	15	20	92	NIL	NIL
			96.53	96.73	0.20	10	14	173	NIL	NIL
		92.0 to 96.6 (Int-Fels Xtal Tuff)	96.73	96.95	0.22	5	78	23	NIL	2
		Similar to previous sections of this subunit. Weak to mod.	96.95	97.08	0.13	10	4	18	NIL	2
		sericite and strong fe-carb alt. Foliation and contacts are	97.08	97.47	0.39	165	1750	33	0.3	NIL
		60-65 deg to the CA.	97.47	97.53	0.06	100	136	33	NIL	NIL
			97.53	97.69	0.16	65	205	73	NIL	NIL
		102.02 to 105.45 (Int-Fels Ash Tuff)	97.69	97.82	0.13	30	113	50	NIL	NIL
		Light grey green to pale pink. Faintly bedded in places,	98.52	98.76	0.24	40	23	140	NIL	NIL

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9608

-

							ASSAYS			
FROM TO	LITHOLOGICAL DESCRIPTION		FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm
	with strong fe-carb and weak to mod. chl and ser alteration.		98.76	98.83	0.07	20	46	48	NIL	NIL
	Trace to 1% very fine py. top contact fol. parallel at 75 deg		98.83	98.94	0.11	5	31	143	NIL	NIL
	to the CA. Lower contact near perpendicular to fol. at about		98.94	99.01	0.07	150	183	78	NIL	NIL
	40 deg to the CA.		99.01	99.27	0.26	25	29	155	NIL	NIL
			99.27	99.35	0.08	360	5200	73	NIL	NIL
	Mafic unit at end of hole is strongly fe-carb and chl altered,		99.35	99.51	0.16	30	205	73	NIL	NIL
	with tr py. Very well foliated at 70-75 deg to the CA.		99.51	99.59	0.08	95	1450	44	0.2	NIL
	99.59	99.68	0.09	10	28	3 11	5 NII	L NI	L	
			99.68	99.75	0.07	45	131	84	NIL	NIL
			99.75	99.84	0.09	10	145	105	NIL	NIL
			99.84	100.02	0.18	30	198	68	NIL	NIL

DOWN-HOLE SURVEY DATA

DEPTH INCLINATION BEARING

60.96 ~50.00

106.00 ~50.00

Page 5

Per C.A. WAGG

2.17320

PROPERTY: Turtle Tank HOLE No.: NTT9609 Collar Eastings: 12600.00 Collar Northings: 9875.00 Collar Elevation: 0.00 Grid: Stored at Nuinsco Resources core shack located Nuinsco Resources Limited

DIAMOND DRILL LOG

Collar Inclination: -50.00 Grid Bearing: 180.00 Final Depth: 107.00 metres Ultra Mobile Diamond Drilling Ltd. in Richardson Township - Lot 6 Conc. III

FROM

Logged by: C.A. Wagg Date: 00/08/96-01/08/96 Down-hole Survey: Acid Test BQ Core, Claim Number 1050574

ASSAYS

LITHOLOGICAL DESCRIPTION FROM TO 6.25 0.0 OVERBURDEN (OVB)

6.25 21.2 MAFIC FLOW? + TUFF (Maf Flow+Tuff)

Mottled medium to dark green, medium grained. Containing about 40-70% dark green amphibole, rarely exceeding 2mm, and 30-60% greenish white fine fsp and similarly coloured fine alteration products. Apparently an amphibolitized mafic flow. Moderately to strongly chloritized, with mod. sausseritization of fsp. Calcite is restricted to fracture fillings, and tr py occurs only in places usually associated with 1-2cm wide gtzcalc stringers.

Moderately well foliated at 45-60 deg to the CA.

19.78 to 21.2 Fine grained and well foliated. Possibly a weakly graded tuff, slightly finer grained and more mafic at the top of the section. Top contact and foliation are at ~50 deg to the CA, decreasing to 40-45 deg at the lower contact.

21.2 28.70 MAFIC CRYSTAL TUFF (Maf Xtal Tuff bdd)

> Medium green, fine grained, well bedded. Commonly with about 5% mm and smaller gtz eyes, and flecked with 2-3% fine yellow-

WIDTH Au ppb Cu ppm TO Zn ppm Ag ppm

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9609

-14

					ASS	AYS		
FROM TO	LITHOLOGICAL DESCRIPTION white metamorphic epidote? Strong chl and lesser calc alteration, with strong ep alt. over 10cm adjacent to a fracture at 27.8m. Trace py. Foliation is typically 45 deg to the CA, as is lower contact.	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
28.7 48.2	MAFIC FLOW? (Maf Flow) Similar to the interval from 6.25-21.2m, but slightly finer grained and commonly with 5% fine qtz eyes. Non-banded and only moderately foliated, so presumed to be flow rocks. Mod. to strong chl, sauss, and weak calc alteration. Tr hem occurs in places with calcite along hairline fractures. Well fol. only over the lowermost 50cm of the interval at 45- 50 deg to the CA.							
48.26 66.2	MAFIC TUFF (Maf Tuff alt'd) Probably tuffaceous for the most part. Similar to 21.2-28.7m. Medium green, fine to med. grained, often spotted with very fine calcite. Strongly chloritized. 1-2% <1 cm wide qtz- calcite stringers and calcite-rich fracture fillings, almost solely foliation parallel. Tr-1% fine py along fol. planes. Prominently fe-carb alt. over 60-70cm at 52.15m Very well foliated and apparently sheared at about 40 deg to the CA, with strong kinking at the top of the carb alt. zone.	58.40 59.50 60.90 61.95 64.49	59.50 60.90 61.95 62.90 64.92	1.10 1.40 1.05 0.95 0.43	195 10 NIL 15 10	NIL NIL NIL 29	NIL NIL NIL 124	NIL NIL NIL NIL NIL
	57.75 to 62.85 Strongly to intensely fe-carb altered interval with a few cm-thick beds of intfelsic ash at 58.0m, and with							

HOLE No: NTT9609

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9609

-

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION a 15cm thick bed at the end of the interval. Fol., shearing, and contacts are 45-50 deg to the CA, except at the lower contact of the subinterval, where contacts and foliation are 70-75 deg to the CA. Strongly brecciated, with moderate to strong hem alt. from	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		62.85 to 66.25 Very fine grained and probably mafic ash. Strongly chl and fe-carb altered, with up to 1% diss. py. Well foliated at 60-70 deg to the CA, with 3-5% cm-wide fol. parallel qtz-carb stringers.							
66.25	71.93	INTERMED TO FELSIC TUFF (Int-Fels Tuff alt'd) Banded orange to pale yellow green to grey green. Very fine grained, and probably an ash tuff with tr-1% very fine qtz-eyes. Banding is presumably due primarily to shearing and alteration, but varying chl content is likely indicative of primary compositional differences from bed to bed. Strongly to intensely fe-carb and ser altered, with tr-1% fine diss. py. Shearing and foliation are at 60-70 deg to the CA.	67.74 68.26 69.67	68.26 68.72 69.96	0.52 0.46 0.29	20 15 30	46 15 64	84 62 30	NIL NIL NIL
71.93	106.07	MAFIC TUFF (Maf Tuff alt'd) Similar to the interval from 65.25-66.25m. Strongly to intensely chl and fe-carb altered, mod. to strongly sheared.	72.18 72.34 73.53	72.34 73.21 74.06	0.16 0.87 0.53	15 55 15	39 770 80	106 87 81	NIL NIL NIL

HOLE No: NTT9609

DIAMOND DRILL LOG

PROPERTY: Turtle Tank HOLE No.: NTT9609

· 🖵

						ASS	AYS			-
FROM	то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	
		Up to 1% fine diss. py is often present. Foliated at 45-75	75.58	76.36	0.78	10	106	118	NIL	
		deg to the CA, commonly at about 60 deg.	79.13	79.78	0.65	10	75	90	NIL	
		5-15% cm-wide qtz-carb fillings and 1-15cm wide fe-carb	82.61	83.44	0.83	10	25	55	NIL	
		replacement zones occur throughout the unit, with some	84.20	84.59	0.39	815	36	48	NIL	
		displaying clear evidence of folding during shearing.	86.99	87.86	0.87	10	43	96	NIL	
			88.16	88.63	0.47	15	24	62	NIL	
		72.3 to 74.0 20-25% qtz-carb as cm to 15cm wide veinlets, and	92.99	93.31	0.32	40	18	63	NIL	
		with 1-2% py and tr cpy, mostly from veinlets. Strong kinking/	97.85	98.44	0.59	20	49	99	NIL	
		contorted folding of the foliation is also evident throughout.	98.44	99.00	0.56	10	48	98	NIL	
			101.38	101.80	0.42	10	32	70	NIL	
		91.25 to 106.7 Commonly with 5-7% 0.5-1cm qtz-carb filled	103.92	104.26	0.34	10	33	79	NIL	
		amygdules, suggesting a flow rather than a tuffaceous origin.	104.26	104.90	0.64	5	37	92	NIL	
		Fe-carb and strong shearing cease around 104.75 , and the rock downhole resembles that from the interval $28.7-48.26$, except	105.40	106.07	0.67	1 0	22	73	NIL	

DOWN-HOLE SURVEY DATA

DEPTH	INCLINATION	BEARING

for the presence of the amygdules and the absence of hem.

107.00 -50.00

HOLE No: NTT9609

🗑 Ontario	Ministry of Northern Development and Mines	Declaration of Assess Performed on Mining I Mining Act, Subsection 65(2) and 6	ment Work Land 6(3), R.S.O. 1990	
Personal information coll Mining Act, the informatic Questions about this co 933 Ramsey Lake Road,	52C15SE0029 2 17320 L	ITTLE TURTLE LAKE	(3) of the Mining Act. Under section k and correspond with the mining is rthern Development and Mines, 900	ion and 61
Instructions: - For - Plea	work performed on ase type or print in	Crown Lands before recording ink.	a claim, use form 0240.	:
1. Recorded holde	er(s) (Attach a list	if necessary)	2.1732	0
Name EDWARD	Louis Cou	SINEAU	Client Number 121594	
Address P.D. Bof	.33		Telephone Number 807-486-130	4
FORT FRANC	ES BNT.	FPA 3M5	Fax Number 867 - 274 - 46	R
	- MEXILL		Client Number	
Address Po B_L	33		Telephone Number	 '⁄~
En En		Podauc	Fax Number	<u> </u>
TORI (RA)	NCC.JONT.	[717 3/13	801 214 4686	
Dates Work Performed From	NO BRILL 9,5,1996	To 31 8, 1996	Commodity Total \$ Value of Work Claimed ; 7843.00 NTS Reference ;	
Performed From	9 5 /996 Dey Month Year Data (if available) To	To 91 8 1996 Day Month Year	NTS Reference	·
	Z	-ITTLE TURTLE LANE or G-Plan Number	- Mining Division Kenara	
		63682	District KIMAL	2
Please remember to	: - obtain a work pe - provide proper n - complete and att - provide a map sl - include two copie	rmit from the Ministry of Natural otice to surface rights holders be ach a Statement of Costs, form howing contiguous mining lands as of your technical report.	Resources as reduired, CEIV ofore starting work; 0212; that are linked for assigning work;199 <u>MINING LANDS BR</u>	37
3. Person or comp Name	banies who prepare	ed the technical report (Attach	Telephone Number	:
WRG& MINER	AL-EXPLORA	TTI ON & CONSULTING INC	61.3 - 3 33 - 5 3 Fax Number	22
<u></u>	DENBIGH, Ø	NT: KDH ILO	Telephone Number	
Address			Fax Number	
Name	a je nymoti sta	n de Partici a sensella Halla men Aurabil a	Telephone Number	
Address	••• • · · •	and the second		
4. Certification by	Recorded Holder	or Agent		

Signature of Recorded Rolder or Agent		Date March 31, 1997
Agent's Address PD Raf 33. For FORNOEG. MXIV.	Telephone Number 957-914- 3761	Fax Number 807-374-4686
	1	н

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

Mining work wa mining i column indicate	Claim Number. Or if is done on other eligible and, show in this the location number d on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to th is claim.	Value of work assigned to other mining claims.	Bank, Value of work to be distributed at a future date.
eg	TB 7827	16 ha	\$26, 825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568	2	\$ 8, 892	\$ 4,000	0	\$4,892
1	1050574	1	9843	400	1200	8243
2	1178167	1	0	1,200	0	10
3						
4						
5						· · ·
6		·			· · · · · · · · · · · · · · · · · · ·	
7	· · · · · · · · · · · · · · · · · · ·		****			
8						
9		2	20. 6		······································	
10	2		N. K)		
11		4 -				
12	· · · ·		10			
13						
14			· ·	·····	***	
15	· · · · · · · · · · · · · · · · · · ·				· · ·	
		Column Totals	9843.	1600	1200	8243

I, ______, do hereby certify that the above work credits are eligible under subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

Signature of Recorded Holder ef Agent Authorized in Writing March 31 our Cousineau/

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\sim) in the boxes below to show how you wish to prioritize the deletion of credits:

1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

2. Credits are to be cut back starting with the claims listed last, working backwards; or

3. Credits are to be cut back equally over all claims listed in this declaration; or

4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Us	ONLYNORA - MINING DIV.		
Received Stamp	REELVEIL	Deemed Approved Date	Date Notification Sent
	APR - 3 1997	Date Approved	Total Value of Credit Approved
	789101112123456	Approved for Recording by Mining Recor	der (Signature)

Statement of Costs for Assessment Credit

I	ransaction	Number	(office	use)

W9710.00070

Personal information collected on this form is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

		12 01	C ~
Work Type	Units of Work Depending on the type of work, list the number of hours/days worked, metres of drilling, kilo- metres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
DIAHOND DRILLING	304'	+65T 1700 FT.	5168.00
CASINES	41	1700 17,	68.00
ACID TESTS	2	5000 EA	100.00
GEO CHENISTRY	107 SANTLES	C30.00 LA	2010,00
	· · · · · · · · · · · · · · · · · · ·	GS71	514.22
Associated Costs (e.g. supplies	, mobilization and demobilization).		
PAUL JOYES 1467.1	13+41.7,67+1113.381	3058,43×11.59	351,72
DAMIEN ENGELBRECH	T 1009,11	1009.11×11.5%	114.05
WAGG MINTRAL EXP+ CO.	ISULTING 6830,96 7	6830.96×11.5%	785.5%
DON J MCEACHREN-UN	NE CUTT ING 4547,50	4547.50×11.5%	522.910
MOBILIZATION + STA Transp	ortation Costs	1800 × 11,5%	207.00
Food a	nd Lodging Costs		
· · · · · · · · · · · · · · · · · · ·		RECEI	VED
	Total Value o	Assessment Work	9979849.51
Calculations of Filing Discounts	:	MINING LANDS	BRANCH

Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.
 If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK	$\times 0.50 =$	Total \$ value of worked claimed
	~ 0.00 -	

Note:

- Work older than 5 years is not eligible for credit.

- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

I, <u>LOUIS</u> <u>COUSINEAU</u>, do hereby certify, that the amounts shown are as accurate as may (please print full name)

reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying Declaration of Work form as $\frac{1}{(\text{fecorded holder, sgent, or state company position with signing authority)}$ I am authorized

to make this certification.

Lovis Cousinaer March 31, 1997

 $< 1 \le 1$ **Declaration of Assessment Work Performed on Mining Land**

and the set of the first

ber (office use)	
10071	
Research Imag	ing
· .	
	iber (office use) ••••71 s Research Imag

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

Personal information collected on this form is obtained under the authority of subsections 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.

Instructions: - For work performed on Crown Lands before recording a claim, use form 0240. - Please type or print in ink. 2 17320

....

1. Recorded holder(s) (Attach a list if necessary)	
EDWARD LODIS COUSINEAU	Client Number
Address P.D. Bot 33	Telephone Number 807 - 486 - 1204
FORT FRANCES, BNT, PEA 3MS	Fax Number 867-274-4686
LOUIS E COUSINEAU	Client Number
Address P.O., Box 3.3	Telephone Number 807-774-3761
FORT FRANCES, ONT. PPA 3115	Fax Number 807 - 774 - 4686

Type of work performed: Check (~) and report on only ONE of the following groups for this declaration. 2.

Geotechnical: prospecting, surveys, assays and work under section 18 (regs)	Physical: drilling, stripping, trenching and associated assays
Work Type	Office Use
DIAMOND DRILLING	Commodity
	Total \$ Value of 72, 434 Work Claimed 72, 434
Dates Work From 9 5 /994 To Day Month Year	8 Month Year /9% NTS Reference
Global Positioning System Data (if available) Township/An	TLE LAKE Mining Division Kenora
M or G-Plan G-2	Besident Geologist KenoRa

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required; - provide proper notice to surface rights holders before starting work;

- complete and attach a Statement of Costs, form 0212;

provide a map showing contiguous mining lands that are linked for assigning work;

- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a	a list if necessary) a second contact of second
Name	Telephone Number
WARA MINERALEXPLORATIONACONFORTING INC.	613-333-5828
Address RR. #1 DENBIGH, ONT. KDH 110	Fax Number
Name /	RECEIVED
Address	Fax Number APR 2 2 1997
Name	Telephone Number
Address	Fax Number NING LANDS BHAN OF

Certification by Recorded Holder or Agent

1.

- _ , do hereby certify that I have personal knowledge of the facts set Louis COUSINEAU
- forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Ho	tiler or Agent		Date March 31 / 1997
Agent's Address	FORT FRANCES, CAT	Telephone Number	Fax Number
P.D. Bofi 33		807-274-376(807-974-4686

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

Mining (work wa mining i column indicated	Claim Number. Or if is done on other eligible and, show in this the location number d on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date.
eg	TB 7827	16 ha	\$26, 825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568	2	\$ 8, 892	\$ 4,000	0	\$4,892
1	1050815		72,434	0	16400	56,034
2	1161514	12	0	4800	0	0
3	1161515	14	0	3600	0	6
4	116/ 200	le	6	2400	0	0
5	1161434	2	6	800	6	0
6	1161435	6	0	2400	0	0
7	1161513	6	6	2400	0	D
8	-			· ·		
9				· .		
10	`					
11		1 in	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$			
12		No Lo	no			
13			10000		ŧ	
14						
15						
		Column Totals	72.434	16400	16,400	56.03.4

I. LOUIS CONSANEAU, do hereby certify that the above work credits are eligible under (Print Full Name) subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing

ouis Consincale

Date Mach 31, 1997

6. instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (-) in the boxes below to show how you wish to prioritize the deletion of credits:

1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

2. Credits are to be cut back starting with the claims listed last, working backwards; or

3. Credits are to be cut back equally over all claims listed in this declaration; or

4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 11 necessary.

the second se			
For Office Us	· OFFICIENCY EN	· · · · · · · · · · · · · · · · · · ·	
Received Stamp	APR - 3 1997 AM PM PM	Deemed Approved Date	Date Notification Sent Total Value of Credit Approved
0241 002/080	A	Approved for Recording by Mining Record	Her (Signature)

Statement of Costs for Assessment Credit

Transaction Number (office use)

W9710.0007

Personal information collected on this form is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 933 Ramsey Lake Road, Sudbury, Ontarlo, P3E 6B5. 60 LU CO CO V

Work Type	Units of Work Depending on the type of work, list the number of hours/days worked, metres of drilling, kilo- metres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
DIAMOND DRILLING	2331 FEET	#17,00 FT.	39,627.00
CASINGS	651	\$ 17.00 FT.	1,105,00
ACID TESTS	\$ HOLES (2-EACH)	# 50,00 EA	800,00
GEO CHEMISTRY	406 SAMPLES	e# 30,00	12,180,00
LINE CUTTING	5.2 KM DRILLING GRID	4250. × 88,5%	3,767.25
		GST, T	4,023,13
Associated Costs (e.g. supplies,	mobilization and demobilization).		
PROGR	AM SUMERVISION		
MOBILIZATION	+ STANBY	1800× 58,5%	1,593.00
DAMIEN ENGEL	BRECHT	1009.11 × 881570	893,04
WAG, MINERAL EXP.	Y CONSULTING	6830,96 × 48,5%	6045.40
PAUL JONES INC.		3058.43×88.5%	2706.71
Transp	ortation Costs		•
Food a	nd Lodging Costs		· · · · · · · · · · · · · · · · · · ·
	Total Value	Assesmentwork	72,434.5.
Calculations of Filing Discounts:		APR 2 2 1997	
 Work filed within two years of p If work is filed after two years a Value of Assessment Work. If t 	MINI performance is claimed at 100% of the and up to five years after performance his situation applies to your claims, us	NG LANDS BRANCH above Total Value of A b, it can only be claimed se the calculation below:	ssessment Work. at 50% of the Total
TOTAL VALUE OF ASSESSME	NT WORK × 0.50 =	Total \$ valu	e of worked claimed.
Note:			····

- Work older than 5 years is not eligible for credit.

- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

(please print full hame), do hereby certify, that the amounts shown are as accurate as may 1, Louis reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying Declaration of Work form as AGEXIT (recorded holder, agent, or state company position with signing authority) to make this certification.

Date Anna han han hall 1947

July 31, 1997

Louis Cousineau EDWARD LOUIS COUSINEAU P.O. BOX 33 FORT FRANCES, Ontario P9A-3M5

Ministère du Développement du Nord et des Mines

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9846 Fax: (705) 670-5863

Dear Sir or Madam:

Submission Number: 2.17320

		Status
Subject: Transaction Number(s):	W9710.00070	Approval After Notice
	W9710.00071	Approval After Notice

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Steve Beneteau by e-mail at beneteau_s@torv05.ndm.gov.on.ca or by telephone at (705) 670-5855.

Yours sincerely,

~ the

ORIGINAL SIGNED BY Blair Kite Supervisor, Geoscience Assessment Office Mining Lands Section

Work Report Assessment Results

Submission Number: 2.17320						
Date Correspondence Sent: July 31, 1997			Assessor:Steve Beneteau			
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date		
W9710.00070	1050574	LITTLE TURTLE LAKE	Approval After Notice	July 28, 1997		
Section: 10 Physical PDRILL						
All deficiencies associated with this submission have been corrected. Accordingly, assessment credit has been approved as outlined in the Report of Work form accompanying this submission.						
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date		
W9710.00071	1050815	LITTLE TURTLE LAKE	Approval After Notice	July 28, 1997		
Section: 10 Physical PDRILL						
All deficiencies associated with this submission have been corrected. Accordingly, assessment credit has been approved as outlined in the Report of Work form accompanying this submission.						
Correspondence to: Recorded Holder(s) and/or Agent(s):				nd/or Agent(s):		
Resident Geologist			Louis Cousineau			
Kenora, ON			EDWARD LOUIS COUSINEAU			
Assessment Files Li	ibrary		FORT FRANCES, Onta	ario		
Sudbury, ON			LOUIS E COUSINEAU			
			Fort Frances, Ontario			
			EDWARD LOUIS COUSINEAU FORT FRANCES, Ontario			
			Fort Frances, Ontario			

 \leq

۰

.

-

-48°52'30" THE INFORMATION THAT APPEARS ON THIS MAP HAS BEEN COMPILED FROM VARIOUS SOURCES, AND ACCURACY IS NOT GUARANTEED. THOSE WISHING TO STAKE MIN-ING CLAIMS SHOULD CON-SULT WITH THE MINING RECORDER, MINISTRY OF NORTHERN DEVELOP MENT AND MINES, FOR AD-DITIONAL INFORMATION ON THE STATUS OF THE LANDS SHOWN HEREON. 1149608 LEGEND 🕒 no 🗿 PATENTED LAND CROWN LAND SALE C.S. \bigcirc LEASES LOCATED LAND Loc. LICENSE OF OCCUPATION L.O. M.R.O. MINING RIGHTS ONLY S.R.O. SURFACE RIGHTS ONLY IQC ROADS IMPROVED ROADS The second second second 6 and Jacobs KINS'S HIGHY AVS (\mathfrak{I}) PALL WAYS 7 POWER LINES 11 13 MAREN ON MUSKEG · · · · · · MILLES PATENTED S.R.C. -CANCELLE 05 $\{\mathcal{L}_{i}\}$ REFERENCE - 1 AREAS WITHDRAWN FROM D SPOSITIO ${}^{\circ}$ M.R.O. - MINING RIGHT ONLY S.R.O. - SURFACT RIGHTS ONLY LLI M.+ S. - MINING AND BURFACE RIGE 15 €Ľ -10 . 19/11/ 85 3 & MR. (R) WK-24-90 20/12/90 9R0 (R) MINING ACT W-KE-05/9, 14/06/91 54MR * W.20/85 MINING ACT W-K-25/92 14/06/92 5.R.O. 195150 AREA LITTLE TURTLE LAKE M.N.H. ADMINISTRATIVE DISTRICT 2.17320 FORT FRANCES I DATE OF MINING DIVISION KENORA APR 1 0 1997 LAND TITLES / REGISTRY DIV/S.ON RAINY RIVER Ministryof (V) Natural Mana Resources ED. Branul Onterio Auer or Bat: MARCH , r 84 G-268