MAGNETIC REPORT on

MINE CENTRE PROJECT

of
THE HANNA MINING COMPANX

by

John E. Muhic
February 9, 1976
A. Unpatented claims held by The Hanna Mining Company.
$K-419522-531-10$
$K-413966-972-7$
$K-414984-415000-17$
$K-419501-03-3$
$K-419505-521-17$
$K-412629-662-34$
$K-434751-789-39$
$K-434791-795-5$
$K-434797-805-9$
$K-412716-723-8$
Total
B. Patented claims optioned from G. L. Pidgeon of Wabigoon, Ontario

K.298	-1
K. 300	-1
K. 801	-1
P. 683	-1
K.304	-1
Total	$-\frac{5}{2}$

introduction

The Hanna Mining Co. was originally attracted to the area by zinc showings on patented claims P. 683 and K.301. A total of 149 claims were staked and 5 patented claims were optioned by The Hanna Mining Company.

The property was covered by a grid of picket lines at 400-1'oot intervals. During 1975, a geological survey, two types of electromagnetic surveys, and a magnetometer survey were conducted on the claim block.

The project was supervised by H, Willson, B.SC, and assisted by A. Little, B.Sc, J. Muhic, B.Sc, R. Tanaka and J. Spiteri under the direction of Nelson Hogg, District Geologist for The Hanna Mining Co. After Septenber 1, John Muhic supervised all field work on the project, and the ploting and interpretation of data.

LOCATION \& ACCESS

The property crosses Ontario Hwy. 11 about $3 \frac{1}{2}$ miles enst of Mine Centre. It extends 3 miles southwest of the highway, and to the east it occupies the ground between Hwy.ll and the Little Turtle River for a distance of 4 miles.

The west end can be reached by old logging roads branching east from the shoal Lake Rd. The eastern portion is reached from Hwy.11, from the road to Bowes Camp, and from the CNR which traverses the central part of the claimb.

Three power lines, Highway 11, and the CNR cross the property in an east-west direction.

FORMER WORK

In 1969, Kerr Addison Mines Ltd. conducted a geophysical and geological survey over the area of the property south of Hwy. 21. The geophysical survey was done using a Crone JEM Instrument. The JEM survey did not detect any anomalies. As far as it is known no geophysical survey was carried out on the rest of the property.

The area, however, has been heavily prospected for gold dating back to 1893. Abundant trenches and occasional shafts scattered throughout the property serve as evidence of the prospecting activity.

LINE CUTTING

Because of bend in the geologic structure, two gride of picket lines were cut. A base line bearing $N 55^{\circ} \mathrm{E}$ was cut from $60+00 \mathrm{E}$ to $200+00 \mathrm{E}$ and a base line bearing 90° Astronomic was cut from 298+00E to 400t00East. All base lines were transit controlled. Tle-lines were cut at $20+00 \mathrm{~N}, 20+00 \mathrm{~S}, 40+00 \mathrm{~N}$ and $40+00 \mathrm{~S}$, but were not transit controlled. Picket lines were cut perpendicular to the base lines at 400-foot intervals. Some lines across bad awamps and ponds were completed after freezemp.

The line-cutting was done under contract. Work was begun under Mr. C. D. Huston of Winnipeg and completed under the supervision of Mr . Scott Waldie, Red Lake, Ontario.

A total of 6.5 miles of base lines, 21.07 miles of tie lines and 106.94 miles of picket lines were cut. Because of reconnaisance mapping, the decision was made to do no further work on 29 claims in the southwest end of the property. The grid and the surveys cover 120 unpatented claims and 5 patented claims. All geological surveys and geophysical surveys were carried out using the same grid.

PERSONNEL

The magnetometer survey was conducted by Joseph Spiteri and John Muhic during the sumner and fall of 1975. The results are plotted and contoured on 8 standard sized sheets of $36^{\prime \prime} \times 44^{\prime \prime}$.

GENERAL GEOLOGY

Even though there was an abundance of prospecting activity on the property, little geological mapping has been carried out by Ontario Dept. of Mines or the G.S.C. In 1911, A. C. Lawson (1913) and in 1.934 T . L. Tanton $(1935,1936)$ mapped the Mine Centre area including the west end of the Hanna property. To the east of the property, the Bennett-Tanner area was mapped by W. L. Young (1960) in 1958.

The property is in general underlain by felsic to rhyolitic volcanics interbedded with intermediate volcanice and intruded by quartz gabbro. It is bounded on the north by highly sheared, carbonatized and chloritized intermediate volcanics which lie just south of the Quetico Fault. The southern boundary consists of the Seine River group of conglonerates and intemediate volcanics. To the west, the volcanics pinch out into the Seine conglomerate.

There is one elliptical nass of mafic volcanics extending from L3I2E to LS40E north of Tie Line $20+00 \mathrm{~N}$. The intermediate volcanics occur in bands up to 300 ft . wide interbedded with felsic volcanics, and in greater widths to the north and south of the felsic volcanics.

Most of the property is underlain by felaic volcanic rocks which include uniform, fine grained, sericitized rhyolite with well developed quartz eyes.

The quartz gabbro occurs as two massive sill like sheets that appear to be conformable with the surrounding volcanics. The gabbro is characterized by a high magnetic relief.

A general geology map at a scale of 1 inch equals $\frac{1}{3} \mathrm{mile}$ is bound into the report.

INSTRUMENT
The survey was conducted using a Scintrex MF-2 Fluxgate magnetometer with a sensitivity of 20 gamas per scale division on the most sensitive scale.

METHOD OF SURVEY

Base stations were established along the base lines and tie lines of the grid at 100 foot intervals. This was done by reading the base stations a few at a time, checking back constantly to an already established base station and then carrying the survey ahead. On this property a total of 367 base stations were eatablished over 16.52 miles of the lines and base lines.

The picket line grid was then run in closed loops, checking in at the base stations on the base line or tie line at regular periods. The readings were taken at 50 -foot intervals except in anomalous areas where 25 -foot readings were taken. A total of 11,685 roadings were taken over 104.87 miles of picket line,

RESULTS \& CONCLUSIONS

The readings were plotted on eight $36^{\prime \prime} X 44^{\prime \prime}$ sheets and contoured. Copies of the maps are enclosed with the report.

The contour pattern shows a strong trend sub paradiel to the base Lines. Geological. units can be successfully traced under over burden and thus the magnetometer readings were useful in geological interpretation. The most striking magnetic relief is associated with the two gabbroic sills. One extends from the eastern boundary and pinches out at L212+00E. A second sill occurs south of the base lines between L252+00E and line 300+00East.

There are scattered one-station anomalies throughout the property that do not extend to adjacent picket lines, One axample of this is on LI64E 10to0S. These small nagnetic anomalies are probibly due to very narrow magnetic bands that have been observed in a few places on the property. They occux in the felsic and intermediate volcanic units.

It is interesting to note that the intermediate volcanion along the northern boundary of the claim group have very low magnetic properties. In contrast the intermediate volcanics along the eouthern boundary between $L 60+00 \mathrm{E}$ and $228+00 \mathrm{E}$, have relatively high magnetic rellef.

SEFERENCES

Lawson, A.C. - The Archean Geology of Rainy Lake Re - Studied G.S.C. Wem. 40 - map no.98a-1913.

Lawson, A.C. -"Report on the Geology of the Rainy Lake Region" Annual Report, G.s.C.Vol.111, 1888 Report F.

Tenton, T.L. - Geological Survey of Canada Map 334 A Mine Centre Area - 1936. 1 in. $=\frac{1}{2}$ mile.

Tanton, T.L. -Preliminary Report on Mine Centre Area, Ontario, G.8.C., Jan. 1935.

Young, W.L. -Geology of the Bennett-Tanner area, Ont. Dept. of Mines Vol.LXIX Pt 4, 1960.

MINE CENTRE PROJECT

THE HANA MiNING COMPANY
 ELECTROMANETIC REPORT
 on a
 CRONE C.EAM. SURVEY (HORE SHowtonte)

by
JOHN F. MUHC, B.Sc.

february 9, 1976

THE HANNA MINING COMPANY MINE CENTRE PROPERTY

LIST OF CLAIMS
A. Unpatented claims held by The Hanna Mining Company.

```
K-419522-531 - 10
K-413966-972 - 7
K-414984-415000-17
K-419501-03 - 3
K-419505-521 - 17
K-412629-662 - 34
K-434751-789 - 39
K-434791-795 - 5
K-494797-805 - 9
K-412716-723 - 8
Total
    -149
```

B. Patented claims optioned from G. L. Pidgeon of Wabigoon, Ontario

$K .298$	-1
$K .300$	-1
$K .301$	-1
P. 683	-1
$K .304$	-1
Total	-5

INTRODUCTION

The Hanns Mining Co. was originally attracted to the area by zinc showings on patented claims P. 683 and K.301. A total of 149 claims were staked and 5 paterted claims were optioned by The Hanna Mining Company.

The property was covered by a grid of picket Hines at 400-foot intervals. During 1975, a geological survey, two types of electromagnetic surveya, and a magnetometer survey were conducted on the claim block.

The project was supervised by H. Willson, B.Sc, and aseiated by A. Little, B.Se, J. Muhic, B.Sc, R. Tanaka and J. Spiteri under the direction of Nelson Hogg, District Geologist for The Hanna Mining Co. Atter Septerber 1, John Muhic supervised all field work on the project. and the plotting and intexpretation of data.

LOCATLON \& ACCESS

The property crosses Ontario Hwy. 11 about $3 \frac{1}{2}$ miles east of Mine Centre. It extends 3 miles southwest of the highway, and to the east it occupies the ground between Hwy. 11 and the Liftle Turtie River for a diatance of 4 miles.

The west and can be reached by old logging roads branching east from the shoal Lake Rd. The eastern portion is reached from Huy. 11 , from the road to Bowes Camp, and from the CNR which traverses the contral part of the claims.

Ihree power lines, Highway 11, and the CNR crose the property In an east-west direction.

EORMER HORK
In 1969, Kerr Addison Mines Ltd. conducted geophyaiand and geological survey over the axea of the property south of Hwy.11. The geophysical survey was done using a Crone JEM instrument. The JEA survey did not detect any anowilies. Ab far as it is known no geophyaical survey was carried out on the rest of the property.

The area, however, has been heavily prospected for gold dating back to 2893. Abundant trenches and occasional shafts scattered throughout the property serve as ovidence of the prospecting activity.

IINE CUTTING
Because of a bend in the geologic atructure, two gride of picket lines were cut. A base line bearing $N 55^{\circ} \mathrm{E}$ was cut from $60+00 \mathrm{E}$ to $200+00 \mathrm{E}$ and a base line bearing 90° Astronomic was cut from 198+00E to 400+00East. All base lines were transit controlled. Tie-lines were cut at $20+00 \mathrm{~N}, 20+00 \mathrm{~S}, 40+00 \mathrm{~N}$ and $40+00 \mathrm{~S}$, but were not transit controlled. Picket lines were cut perpendicular to the base lines at 400-foot jimtervale. Some lines across bad swamps and ponds were completed after freezo-up.

The linemcutting was done under contract. Work was begun under Mr. C. D. Huston of Winnipeg and completed under the supervision of Mr . Scott Waldie, Red Lake, Ontario.

A total of 6.5 miles of base lines, 11.07 miles of tie lines and 106.94 miles of picket lines were cut. Because of reconnalsance mapping, the decision was made to do no further work on 29 claims in the southwest end of the property. The cxid and the surveys cover 120 unpatented claims and 5 patented claims. All geological surveys and geophysical surveys were curried out using the same grid.

PLESONNEL

The Crono C.E.M. Survey was conducted by Joseph Spiteri, Rod Tanaka and John Muhic during the sumer and fall of 1975. The resilts were plotted and profiled on 8 standard $36^{\prime \prime} X 44^{\prime \prime}$ sheets.

GENELAL GEOLOCY

Even though there wes un abundance of prospecting activity on the property, $1+t+1$ g geological mapping has been carried out by Ontario Lept. of lines or the C.S.C. In 1911, A. C. Liveson (1018) and in 1921 T. I. Fanton (1935 , 1986) rapped the Mine Centre axes Including the west end of the Hana property. To the cast of the property, the Bennett-Tanner area was mapped by W. L. Young (1960) in 1958.

The property is in general underlain by felsic to rhyolitic volcanics interbeaded with internediate volcanics and intruded by quartz gabbro. It is bounded on the north by highly sheared, carbonatized and chloritized intemediate volcanics which lie just south of the Quetico Fault. The southern boundary consists of the seine River group of conglonerates and intemediate volcanica. To the west, the volcandes pinch out into the seine conglomerate.

There is one elliptical nass of mafic volcanics extending from L3L2E to L340 north of Tlio line $20+00 \mathrm{~N}$. The intemediate volcanice occur in bands ap to 300 ft . wide interbedded with felsic volcanics, and in greater widths to the north and south of the felsic volcanice.

Most of the property is underlain by felsic volcanic rocke which include unform, fine grained, aerfcitized rhyolite with well devaloped quartz eyes.

The quartz gabbro occurs as two masive olll like sheets that appear to be conformable with the surrounding volcanics. The gabbro is characterized by high magnetic relief.

A general geology map at a scale of 1 inch equals $\frac{1}{4}$ mile is bound into the report.

LNSTRUMENT

The survey was conducted using a Crone C.E.M. unit. It conalsts of two identical coils that can alternately tranemit and receive. The operating range of the coils is up to 200 meters. Neasurements are made by visual null on the field strength aeter and by audio null through crystal earphones. The inclinometer has a range of 200 degrees and an accuracy of ± 0.5 degrees. The instrunent has three frequencies 5010%, 1830 Hz and 390 Hz .

The Horizontal Shootback EM method was employed during this survey. With this method, both operators traverse along the eame picket line. Both, in turn, transait end receive, measuring the dip angle of the ileld. The two angles are then added together and equal " 0 " if no conductor is present. The result is plotted at the mid-point between the two coils. One advantage of this system is that no corrections are necessary because of topography.

A 300 -foot coil spacing was used during the ourvey. Readinge were taken at 100-foot intervals except in anomalous zones, where readings were taken at $\mathbf{5 0 - f o o t}$ intervals. The basic coverage was conducted using the mediun frequency of 1830 Hz . Where anomalous sones were encountered, both 1830 and 390 Hz were recorded.

A total of 108.36 miles of picket line were covered. This involved 6264 readings at 1830 Hz and 2009 readings at 390 Hz .

RESUTS \& CONCLUSIONS

The readings were plotted on eight $36^{\prime \prime} \times 44^{\prime \prime}$ sheets and profiled. Copies of the maps are enclosed with the report.

As a result of the two high voltage power lines, one low voltage power line (along Hwy 11) and the railway, severe electromagnetic interference was encountered in their vicinity. Thus any anomalous readinge obtained 800 to 900 feet on either side of the high voltage lines or 400 to $\$ 00$ feet on either aide of the railway and the highway can be attribur ted to the electrical interference. Anomalles found on the rent of the property along with their interpretation are sumarized in the following table. The interpretations are based on consultations with Duncan Crone who designed the instrument.

Line	$\text { Station (based on consultation with DiCrone) } \frac{\text { Surface Geolory }}{\text { (bterpretion }}$		
LIOOE	8+508	Good conductor Depth 50-75' Width 50^{\prime} Dip $45^{\circ} \mathrm{S}$	Felsic Volcanica
L204E	12+008	Bedrock conductor. Steep dip to Bouth. Depth- 75 feet	Spruce muskeg
LIL2E	12+508	Deep narrow bedrock conductor. Depth- over 100 feet.	Spruce muskeg
L128E	10+00S	Good conductor dipping south 50 to 75^{\prime} deep	Muskeg
L232E	16+008	Narrow deep conductor	Muskeg

LIne $\frac{\text { Station }}{11+00 S}$| Good narrow, very deep $(150 \mathrm{ft})$ |
| :--- |
| conductor |

L200E	$23+00 \mathrm{~N}$	Weak multiple conductor about 50^{\prime} deop	Sand plain
L204E	$\begin{aligned} & 19+40 \mathrm{~N}- \\ & 21+00 \mathrm{~N} \end{aligned}$	Narrow, banded, multiplo conductor.	Sand plain
L208E	$14+50 \mathrm{~N}$	Narrow, multiple conductor	Sand plain
L224E	$\begin{aligned} & 37+70 \mathrm{~N}- \\ & 42+40 \mathrm{~N} \end{aligned}$	Anomalous readings only in medium (1830 Hz) frequency indicate probm ability of highly conductive overburden.	8pruce amamp
L228E	40+50N	Good target. Poor conductor. Steep dip to north. Depth 50-75'.	Spruce swamp
L232E	$\begin{aligned} & 37+00 \mathrm{~N}- \\ & 44+00 \mathrm{~N} \end{aligned}$	Only nedium frequency anomalous readings* probably overburden.	Spruce ovamp
L236E	$25+50 \mathrm{~N}$	Good conductor. Narrow. Bteep dip to north. Depth 50-75'	sand plain

L236E	$\begin{aligned} & 38+50 \mathrm{N-} \\ & 44+00 \mathrm{~N} \end{aligned}$	Probably conductive, overburden. Possibly poor bedrock conductor, at $39+50 \mathrm{~N}$.	Spruce ewamp
L240E	38+00N	Deep good conductor	Spruce mamy
L240E	$42+00 \mathrm{~N}$	Deep good conductor	Spruce enamp
L240E	$8+00 \mathrm{~N}$	Parajlel, multiple weak conductors.	Sand plain
L240E	$25+20 \mathrm{~N}$	Paxallel, multiple weak conductors.	Sand plain
L240E	17+00N	Parallel, multiple weak conductors.	Sand plain
L244E	$44+00 \mathrm{~N}$	Conductive overburden.	Spruce swamp

Line	Station	Interpretation	Urface Geology
L244E	19+50N	Deep, poor conductor, steep dip north. Sand Plain	
L256E	18+20N	Weak, multiple conductors, deep.	Rhyolite
L264E	20+00N	Weak, multiple conductors	Felsic volcanic
L264E	23+00N	Weak, multiple conductore	Rhyolite
L272E	23+00N	Weak, multiple conductors.	Rhyolite
L296E	2+80S	Weak, narrow bedrock conductor	Tag alder awamp
L304E	6+008	Weak, poor conductor, high magnetics due to gabbro.	Quarts gubbro
L312E	37+80N	Deep conductor, vertical dip.	Intermediate Tuff
L816E	4+00S	Narrow, weak, near surface conductor	sand E Boulder*
L360E	18+50N	Narrow, multiple, weak conductors.	Mareh
LS80E	$\begin{aligned} & 20+00 \mathrm{~N}- \\ & 22+60 \mathrm{~N} \end{aligned}$	Shallow, poor, multiple conductors.	8heared Quartm Gabbro
L384E	$28+00 \mathrm{~N}$	Good conductor near surface	Interbedded Intez modiate folale Volcanics.

It should be noted that none of the above anomalies, with the exception of that on L304 and $6+00 \mathrm{~S}$, have coincident magnetometer anomalies. Also, the conductors have a very short strike length. The majority are found on only one line and no conductor crosses more than two adjacent picket lines.

Another electromagnetic survey using the APEX Max Min 11 syatem run over the best Crone C.E.M. conductors failed to confirm any of thom. As realt, decision was made to drill only the beat three C.E.M. anomelias on the property. The anomalies drilled ware (1) L100E $8+508$, (2) L236E $15+50 \mathrm{~N}$ and L228E $40+50 \mathrm{~N}$.

The first hole intersected seversl zones of seamy and disseminated pyrite with up to 15% sulphides. When the cross section of the diamond drill hole was drawn, the correlation between any of the sulphide zones and the aurface C.E.M. anomaly was dubious at best.

The second hole on line 236E Intersected a 2.5 foot zone of 5\% sulphides that appeared to correlate with the C.E.M. anomaly, but it is doubtful that the sulphide content is high enough to be detected by the instrument.

The third hoje on line 226E encountered no bedrock conductor, but the ovarburden was 193 feet deep and consisted of sand and red clay. Because of the depth and nature of the overburden, the writer concludes that the anomaly was caused by it.

A separate detailed report on the diamond drilling program has been submitted to the government.

BEEERENCES
Lawson, A.C. - The Archean Geology of Rainy Lake
Re - Studied G.S.C. Meun. 40 - map no.98a-1913.
Lawson, A.C."- "Report on the Geology of the Rainy Lake Region" Annual Report, G.S.C. Vol. 111,1888 Report F.

Tanton, T.L. - Geological Survey of Canada Map 33AA Mine Centre Area - 1936. 1 in. $=\frac{1}{2}$ mide.

Tanton, T.L. - Preliminary Report on Mine Centre Area, Ontario, G.S.C., Jan. 1935.

Young, W.L.- Geology of the Bennett-Tanner area,
Ont. Dept. of Mines Vol.LXXX Pt 4, 1960

February 9, 1976
John D. Mulic, B.8c

MINE CENTRE PROJECT
THE HANNA MINING COMPANY
ELECTYOMAGNETIC REPORT
on an
APEX SURVEY (HLEA)
by
JOHN F. MUHIC
February 10, 1976

THE HANNA MINING COMPANY

 MINE CENTRE PROPERTYHIST OF CAAMS
A. Unpatented clalms held by The Hanna Mining Company

K-419522-531 - 10
$K-413966-972-7$
K-414984-425000-27
K-419501-03 - 3
K-419505-521 - 27
$K-412629-662-84$
K-434751-789 - 39
K-434791-795 - 5
$K-494797-805-9$
$K-412716-723-8$
Total -149
B. Patented claims optioned fron G. L. Pidgeon of Wabigoon ontario

K.298	-1
K. 800	-1
K. 801	-1
P. 688	-1
K. 804	-1
Tota1	-5

INTRODUCTION

The Kanna Mining Co. was originally attracted to the area by zinc showings on patented claims P. 683 and K.301. A total of 149 claims were staked and 5 patented claims were optioned by The Hanna Mining Company.

The property was covered by a grid of picket lines at 400-foot intervals. During 2975, a geological survey, two types of electromagnetic surveys, and a magnetometer survey were conducted on the claim block.

The project was supervised by H. Willson, B.8c, and asaisted by A. Little, B.SC, J. Nuhic, B.SC, R. Tanaka and J. Spiteri under the direction of Nelson Hogg, District Geologist for The Hanna Mining Co. After September 1, John Mulic aupervised all rield work on the project, and the plotifing and interpretation of data.

The electrical interference from the power 2 ines and railway crossing the property invalidated the readings of the Crone CEN in their vicinity. Therefore, a decision was made to ourvey these areas as well as some of the better CEM conductors with an APEX Parametrice Max Min 11 system.

LOCATION \& ACCESS

The property crosses Ontario Hwy. 12 about 3 直 miles east of Mine Centre. It extends 3 miles southwest of the highway, and to the eas it occuples the ground between Jiwy, 11 and the Little Turtle Rivar for adstance of 4 miles.

The west end can be reached by old logging roade branching oast from the Shoal Lake Rd. The eastern portion is raached from Hwy. 11 , from the road to Bowes Camp, and from the CNR which traversen the central part of the claims.

Three power lines, Highway 11, and the CNR cross the property In an eastwest direction.

EORMER WORK

In 1969, Kerr Addison Mines Litd. conducted a geophysical and geological survey over the area of the property south of Hwy.11. The geophysical survey was done using a Crone JEM instrument. The JEM survey did not detect any anomalies. As far as it is known no geophyaical survey was carried out on the rest of the property.

The area, however, has been heavily prospected for gold dating back to 1898. Abundant trenches and occasional shafts acattered throughout the property serve as evidence of the prospecting activity.

Because of a bend in the geologic structure, two grids of picket lines were cut. A base line bearing $N 55^{\circ} \mathrm{E}$ was cut from $60+00 \mathrm{E}$ to $200+00 \mathrm{E}$ and a base line bearing 90° Astronomic was cut from $198+00 \mathrm{E}$ to $400+00 \mathrm{East}$. All base lines were transit controlled. Tie-lines were cat at $20+00 \mathrm{~N}, 20+00 \mathrm{~s}, 40+00 \mathrm{~N}$ and $40+00 \mathrm{~s}$, but were not transit controlled. Picket lines were cut perpendicular to the base lines at 400 foot intervals. Some lines across bad swamps and ponds were completed after freezoup.

The lineweutting was done under contract. Work was begun under Mx. C. D. Haston of Winnipeg and completed under the supervision of Mr. Scott Waldide, Red Lake, Ontario.

PERSONNEL
The Apex Max Min il survey was conducted under contract by Geosearch Consultants Ltd., 100 university Ave., Suite 1114, Toronto, Ontario betiveen Septetaber 10 and Septenber 28, 2975, and batwoen Novamber 26 and Deceriber 5, 1775.

GENERAL GEOLOGX

Even though there was an abundance of prospecting activity on the property, ilttle geological mapping has been carried out by Ontario Dept. of Mines or the G.S.C. In 1911, A. C. Lawson (1918) and in 1984 T. L. Tanton $(2935,1936)$ mapped the Mine Centre area including the west end of the Hanna property. To the east of the property, the Benuett-Tanner area was mapped by W. L. Young (1960) in 1958.

The pioperty is in general underiain by felaic to rhyolitic volcanics interbedded with internediate volcanics and intruded by quartz gabbro. It is bounded on the north by highly sheared, carbonmtized and chloritized intermediate volcanics which lie just gouth of the Quetico Fault, The southem boundary consiste of the seine River group of conglomerates and intemediate volcanics. To the west, the volcanics pinch out into the Seine conglowerate.

There is one elliptical mass of mafic volcanics extending from LSI2E to LS4OE north of Tie Line $20+60 \mathrm{~N}$. The internediate voloanion occur in bands up to 800 ft . wide interbedded with felsic volcanics, and in greater widthe to the north and south of the felsic volcanics.

Most of the property is underlain by felsic volcanic rocke which include uniform, fine grained, sericitized rhyolite with well developed quartz eyes.

The quartz gabbro occurs as two massive aill like sheets that appear to be conformable with the surrounding volcanics. The gabbro is characterized by high magnetic relief.

A general geology nap at a scale of 1 inch equals $\frac{1}{}$ mile is bound into the report.

INSTRIMENT

The survey was conducted using the new APEX Parametrics Max-Min 11 system. The unit was used on a horizontal loop mode which can be used with a cofl separation up to 800 feet. It features automatic, direct readout of the In-phase and Quadrature components of the secondary field on $3 \frac{1}{2}$ " size meters with a $+5 \%$ to $\pm 1 \%$ reading rapeatability. Operating frequencies include $222,444,888$, and 1777 Hg with a 0.2 Hz nomal receiver bandwidth. The system 18 reputed to be able to take valid readings underneath powar lines. A built-in intercom syatem pennits easy comunication at any coil separation.

METIOD OF SURVEX

The APIX byarem was used in a horizontal loop mode. Both operators traverse along the same picket line. When a gtation is reached, the tranamitter is turned on and the receiver operator notes the In -phase and quadrature readings. The readings are plotted at the nid point between the two coils. 2opographic effects are eliminated by tilting both the transaitter and recelver coils to maintain a coplanar configuration. Both coils have a built-in tiltmeter to comordinate the angle of tili for both operaturs.

During the aurvey a 800 foot coll separation was used and readings ware taken at 100 foot intervals. A frequency of 888 Hz was used on this property except where some experinental work was done using different frequencies and coil separations,

A total of 2,968 readings wero taken over 61.39 miles of picket line.

RESUTTS \& CONCLUSIONS

The readinge were plotted and profiled on elght $\mathbf{3 6}^{\prime \prime} \times 44^{\prime \prime}$ ebeets. Copies of the maps are included with the report.

No anomalies were detected by this survey, Moreover, when the Apex instrument was run over ground with CEM anomalies, it failed to confirm theia. Directly under power lines, low anomalous reading are obtained, but meaningful readings are obtained until one coll if direotly under the power line, so very littie ground is eliminated from the survey.

The survey was very useful in heiping to decide on a driming program.

February 10, 1976
John F Muhic, B.Sc
Geologist

REFERENCES
Lawson, A.C. - The Archean Geology of Rainy Lake
Re - Studied G.S.C. Mem. 40 - Lap no.98a-1.913.
Lawson, A.C. "Report on the Geolngy of the Rainy Lake Region" Annual Report, G.S.C. Vol.111, 1888 Report F.

Tanton, T.L. - Geological Survey of Canada Map 334A Mine Centre Area - 1936. 1 in. $=\frac{1}{2}$ mile.

Tenton, T.L. - Preliminary Report on Mine Centre Area, Ontario, G.S.C. Jan. 1935.

Young, W.L. Geology of the Bennett-Tanner area, Ont. Dept. of Mines Vol.LXIX PL 4, 2000

CERTIEICATE

I, John F. Muhic, of the city of Toronto, in the Province of Ontario, hereby certify that:

1. I am a graduate in geology with the degree of B. Sc. from the University of Toronto, 1975.
2. That I am full-time employee of The Hanna Mining Company, Room 805, 69 Yonge Street, Toronto, Ontario.
3. That the accompanying report is based on my personal knowledge of work done on the property, supplemented by information from published government reportis.
4. That I have no direct or indirect interest in the property.

Februaxy 9, 1976

GEOLOGICAL REPORT
 on
 MINE CENITE PROJECT
 of

THE HANNA MINING COMPANY

by

Nelson Hogg

Decembex 31, 1975

The Hanna Mining Company was attracted to the Mine Centre area by G. L. Pidgeon of Wabigoon, who had exposed zinc mineralization on two patented claime, F'683 and K.301. Pidgeon's fiive patented claims were optioned, and an additional 54 claims were staked in January, 1975. As work on these claims progressed, it became apparent that the favourable felsic rocks pinched out to the weat but widened to the enst, so 95 additional claims were staked during the summer of 1975 to cover the geologically attractive area. The property has a length of $7 \frac{1}{2}$ miles and a naximum width of 2 miles.

The entire property was covered by a grid of picket lines at intervals of 400 feet, and the grid was used to carry out a geological survey, two types of electromagnetic surveys, and a magnetometer survey during 1975.

The project was supervised by H. Willson, BA.Sc, assisted by A. Little, B Sc., J. Muhic, B Sc., R. Tamaka and J. Spiteri, under the direction of Nelson Hogg, District Geologist for The Hanna Mining Company.

Application was made under the Ontario Mineral Exploration Assistance plan to obtain assistance in the amount of one-third of expenditures on the property up to a maximum $\$ 100,000$.

LOCATION \& ACCESS:

The property crossee Ontario Highway No. 11 about $8 \frac{1}{2}$ miles east of Mine Centre, or 43 miles east of Fort Frances. It extends 3 miles couth-west of the highway, almost to Shoal Lake, and to the east it occupies the ground lying between Highway 11 and the Little Turtle River for a distance of 4 miles.

The west end is reached by old logging roads branching east from the shoal Lake Road. The eastern portion is reached trom Highway 21, from the road to Bowes Camp, and from the CNR, which traverses the central part of the claims.

Three power lines, Highway 11, and the C.N. Railway cross the property in an east-west direction.

HISTORY OF TIE MINE CENTLEE AREA:

Prospecting for gold in the Mine Centre area dates back to 1893 when prospectors entered the area from Minnesota. Quite a number of patented claims that are still in, good standing were patented before 1900. In 1934, T. L. Tanton 1,2 mapped the axea for the Geom logical Survey of Canada, and at that time he reported the existence of more than 60 goli-bearing veins in the quartz porphyry mass south-east of Bad Vermillion Lake, plus at least 20 gold-bearing veins in the quartz porphyry lying close to the north shore of the same lake.

The titaniferous magnetite deposits west of Bad Vermillion Lake were also investigated bypprospectors in the early 1900's and are described by A. C. Lawson in 1913. In 1957 some of these occurrences were drilled by Stratmat Ltd.

Copper has also been found in the gabbro and volcanic rocks of the area. In 1916 the Port Arthur Copper Company worked on a copper deposit located 3 uiles west of Mine Centre, on claim HP 187. Another copper occurrence in gabbro was developed by International Copper Company on claim IF 388 located 1 mile south-east of Mine Centre.

LINE-CUTITNG:

Because the geological structure bends, two grids of picket lines were cut. A base line bearing N55 ${ }^{\circ}$ Enst was cut from $60+00$ East to $200+00$ East, and picket lines were cut at 400 -foot intervals to the property boundarias. The baseline was not cut from 0+00 to $60+00$ East because the decision was made to drop 29 claims forming the south-west corner.

At $198+00$ East, a second base line was started, bearing 90° Astronomic. This base line was extended to the weat for 800 feet, and to the east from 198+00East to $400+00$ East. All base lines were transit-controlled. Tie-lines were cut at $20+00$ North, $20+00$ South, $40+00$ North and $40+00$ Soxth, but they were not transit-controlled, so they do not maintain a fixed distance from the base line. Picket lines were cut at 400 -foot intervals from the base line to the property boundaries except in places where ponds or awamps prevented cutting. In these cases the lines were cut back from a tie line toward the base line. Some lines across bad swamps and ponds were completed in November after freezeup.

The following table summarizes the line-cutting operation.

	Miles
Base Lines	6.5
Tie Lines	11.07
Plcket Lines	106.94

All picket lines were cut under contract. Work was started by Mr. C. D. Huston of Red Lake and Winnipeg, and was complated by Mr. Scott Waldie of Red Lake. Attempts to use local labour were largely unsuccessful, although the local unemployment rate is high. Progress was slow due to inability of the contractors to attract jabour, and in the end nearly all the line-cutters were imported from other parts of the province.

Names and addresses of the contractors axe listed belows
Mr. C. D. Huston
94 Columbus Crescent,
Westwood, Manitoha.
Mr. J. Scott Waldie,
Box 52,
Madsen, Ontario.

OWNERSIITR:

The 149 anpatented claims are held by The Hanna Mining Company, Room 805, 69 Yonge Street, Toronto. These claims are numbered as follows:

K-419522-531	- 10
K-413966-972	- 7
K-414984-415000-17	
K-419501-03	- 3
K-419505-521	- 17
K-412629-662	- 34
K-434751-789	- 39
K-434791-795	- 5
K-434797-805	- 9
K-412716-723	- 8
Total	-149

Five patented claims, $\mathrm{K} 298, \mathrm{~K} 300$, K301, Y683 and K304 are held under an option agreement with G. L. Pidgeon of Wabigoon, Ontazio.

The Hanna Mining Company is responsible for submitting assessment work on the unpatented claims.

One unpatented claim ($K-416612$), and one patented claim (K388) located within the Harma claim block, are not owned by The Hanna Mining Company.

GEOLOGICAL MAPPING:

Reconnaissance mapping along the claim boundaries of the original 54 claims was started on May 11, 1975 and mapping continued until October. As a result of the early reconnaissance mapping, the decision was made to do no work on the 29 claims forming the southwest end of the property, but to stake additional claims at the northeast end. Eventually a total of 149 claims were staked, but work was confined to 120 unpatented claims and 5 patented clainis. These clains were mapped on picket lines 400 feet apart at a scale of 1 inch equala 200 feet. Mapping was done on 107 miles of picket line, $6 \frac{1}{2}$ miles of base line, and 11 railes of tie line.

Mr. Hugh Wi22son was in charge of the mapping and was asaigted at different times by A. Little, J. Spiteri, R. Tanaka, and J.Muhic.

Results are plotted on 8 standard-sized sheets of $36^{\prime \prime} \times 44^{\prime \prime}$.

REGIONAL GEOLOGY:

Although the Mine Centre district has been a focal point for prospecting since 1880 , little detailed geological mapping has been carried out by the Ontario, Department of Mines or the Geological Survey of Canada. A.C. Lawson mapped the area in 1911, and atarted the long-standing discussion about the age relationship between the Seine Series, the Keewatin Series, and the Couchiching Series of sedimentary rocks.
T. L. Tantion 1,2 made a more detailed map of the Mine Centre gold camp in 1934, mapping at a scale of 1 inch equals $1 / 2$ mile.

Both Lawson and Tanton mapped to a north-south line about 3 miles east of Mine Centre. No detailed mapping has been done to the east of this line for 8 miles , which marks the west boundary of the Bennett-Tanner area, mapped in 1958 by W. L. Young 3 for the Ontario Department of Mines. Most of the property held by The Hanna Mining Company is in this 8 -mile gap of unmapped ground. Neither Tanton's Mine Centre map, nor Young's Bennett-Tanner map designate a unit of felsic volcanic rock, which is the principal rock-type on the Hanna claims. Tanton grouped all the Keewatin volcanic rocks together as greenstone, and Young apparently mapped the felsic volcanicg as part of a "chloritic schist and rufi" unit. Later complations 4,5 by the Ontario Department of Mines do not resolve the problem, 80 a modified table of formations for the area is used in this report.

Only the geology to the south of the Quetico fault is considered. The Quetico fault zone follows the Little Turtle River, and the Hanna property lies to the south of the fault. The Quetico fault is one of the major old faults of the Canadian shield, ranking in importance with the Porcupine-Destor fault and the Kirkiand-Najartic fault. It can be traced from the Lake of the Woods to Lake Superior, a distance of pore than 200 miles , and 1 it is characterized by a profound change in lithology of the Archean rocks on the two sides of the fault.

A table of Cormations for rocks in the Mine Centre axea, south of the Quetico fault is given below:

Archean:

Post Seine - Felsic Intrusive Rocks - Granite, Quartz Porphyry.

- Basic to Ultrabasic Intrusive Rocks - Anorthositic Gabbro, Gabbro, and Peridotite. -Intrusive Contact

Seine - Conglomerate, graywacke.
Keewatin -Internediate, Basic and Felsic Volcanic Rocks.
Couchiching - Graywacke, argillite and derived schists.

QQUCHICHING:

The argillaceous sedimentary rocks of the Couchiching Series underlie an area 30 miles wide to the south of shoal Lake, but there are no exposures of Couchiching rocks on the Hanna property. Lawson ${ }^{8}$ considered them to be the oldest rocks in the area, underlying the Keewatin volcanics. In the Rainy Lake area this question is still unsettled, but it seems certain that the great thickness of: uniform argillaçous sediraents was derived from older volcanic units containing intermediate to basic flows and tuffa.

KEEWATIN:

In the Mine Centre area the Keewatin volcanic rocks include felsic, intermediate and basaltic ilows and pyroclastice, They occur In an easterly trending belt from 2 to 7 miles wide lying between the Quetico fault on the north and the Couchiching sedinents on the south. The contact between Couchiching and Keewatin rocks is probably also a fault contact in this area.

Felsic rocks make up the greatest volume in the area between Mine Centre and Glenorchy. They vary in composition from rhyolites with more than 50% quartz to trachytic types with little quartz and a high content of light-coloured, sericitized feldspars. Fragmental lavas and tuff breccias constitute only a small proportion of the felaic volcanics, which are generally massive with distinct quartmeyes, or fine-textured and uniform. It seems probable that a large percentage of this felsic volcanic material originated as ash flows and ignimbrites.

Relativaly thin bands of intermediate tufte and ilows are interbedded with the felsic volcanic rocks, but the greatest volume of these rock types occur to the north and south of the felaic unit. Sone poorly developed pillow lavar were identified, but most of the flowe are masaive. Narrow felsic tuffs and some narrow iron formation bands occur between the intermediate flow.

SEINE:

The Seine Series comprises conglomerate and graywacke in a belt up to 4 miles wide that follows the general atrike of the Keewatin volcanics, but locally shows evidence of being unconformable. In the Mine Centre area, the Seine rocks are almost entirely conglomeratea, which contain a great variety of bouldere and cobbles, both as to size and rock type. Many of the boulders are granitic, but all variaties of volcanic rock are also represented. Poorly sorted boulders up to 3 feet in diameter are not uncomnon in a matrix of graywacke that aleo contains rock grains of various rock-types.

POST SEINE:

The oldest intrusive unit of the area is a differentiated basic mass which forms the shores and islands of Bad Vermiliion Lake and extends west along the north shore of Seine Bay to Rainy Lake. The mass is made up of differentiated bands that vary in composition from anorthosite to peridotite. Along the northwest side of Bad Vermiliion Lake, massive, lenticular bodies of titaniferous magnetite occur with anorthositic gabbro.

Apophyses from this basic intrusive, and sill-like bodies, extend to the east of Bad Vermillion Lake within the Keawatin volcanice. When these intrusive rocks are sheared and chloritized, they are very difficult to distinguish from the intermediate to basic volcanics.

The youngest intrusive rocks are relsic types which includo granite, quartz-porphyry, syenite and pegnatite. The most prominent iclsic mass is an elongated stock located batween Shoal Lake and Bad Vemillion Lake, Other masses occur weat of Bad Vermiliion Lake and on the south shore of Bad Vermillion Lake. Most of the gold occurrences of the axea are in quartz veins cutting these felsic intrusive rocke.

STRUCTURE:

The rock units described in this report are conilned by two regional, easterly-trending faults. The Quetico fault marks the north boundary, whereas a sinilar strong fault marks the contact between the Keewatin volcanics and the Couchiching sedinents. These two faults are 8 miles apart at Seine Bay on Rainy Lake, but they converge to the East and merge at Calm Lake, just east of rlanders on the C.N.R.

The sedinentary and volcanic rock units generally trend eastwest, but in the Bad Vermilion Lake area the general strike is $N 55^{\circ} E$, parallel to the long axis of the differentiated malic intrusion and the granitic stocks. This change in strike is probably related to complex folding, but there is litile evidence of tops of beds in either the volcanic units or the conglomerates. Detailed napping failed to provide evidence that would unravel the complex atructures that are suspected.

METAMORPHISM:

Most rocks of the area are affected by strong regional shearing and alteration, but these features are stronger in the softer rock units. The intrusive granites have escaped pervasive shearing and alteration although they are locully sheared in distinct sones.

The gabbroic jatrusives are generally massive and crystulline, but they have suffered wore than the granite from regional ahearing, especially in the narrow sills and lenticular deposits cutting the volcanic rocke.

All of the volcanic rocks are more or less sheared and altexed. The siliceous rhyolites are least affected, but most felsic volcanics are altered to sericitic schists. The andesitic and basaltic rocks have been converted to chloritic schists, but original structures such as pillows are preserved in the thick flows. Carbonate alteration has also affected all of the volcanic rocks and the sheared gabbroic rocks. It is more intense in the vary highly sheared rocks near the Quetico fault.

The conglonerates of the Seine Group have a fresher appearance than the volcanic rocks, but the boulders are generally elongated to some extent, and the matrix is altered by carbonatiation, chloritivation and sericitization.

Regional shearing is sub-parallal to the stratigraphy. It strikes about $N 60^{\circ} E$ in the southwest part of the property and changes to a strike of about $N 80^{\circ} \mathrm{E}$ east of line $190+00 \mathrm{East}$. However the shoaring often makes a small angle with contacts between flow units and with bedding in the graywacke bands of the Seine conglonerate.

Genlogy along the base lines and picket lines was mapped at a scale of 1 inch $=200$ feet, and was plottid on 8 standard sheets of $36^{\prime \prime} \mathrm{X} 44^{\prime \prime}$ size. Copies of these ukps are enclosed in a folder at the back of this report. The goneral genlogy was also reduced to a scale oí 1 incl $=1 / 4$ mile, and a copy is bound into the report.

The property was staked to cover the extensions of the rhyolitic rocks in which zinc sulphide minezalizalion occurs. This anit pinches out to the weat into Seine-type conglonerate, but in expands to the north and east to reach a width oi wore than 1 mize. It is bounded on the north by sheared intermediate volcanic rocks, and on the south by internediate valcanic rocks and Seinemtype con* glomerate with graywacke.

One ellipitical mass oi matic rock with fragmental and tuffaceous bands is napped as basail. it extends ixom line 312+00 East to line $340+00$ East, nosth of the $20+00$ North Tle Line. The southern parti of this body is naseive, wheroas the northern part has bende of iragmental and bedded tufisceous dockif, sugyesting that the top is ta the north.

There are numerods narrow bands (up to 300 lt . wide) of intermediate volcanic rocks interbedded with the iolsic volcanice. In some cases these fine gruined, shared, chlorilic rocks cut across the trend of shearing and bedding, but most are coniomable, it is probable that some rocks napped as volcanic are aleared, altered intruaives equivalent in age to the gabbras of the lad Vermilition Lake area.

The band of intomedinte volcanics along the north edge of the property is highly sheared, caitonatized and chloritized, probably in part due to the proxinity of the Quetico dault. It contains a high percentage of tulfacous nuterial with composstiomal banding that is drag folded and contorted. The main band of intermediate volcanis rocks to the south has suliexed less metamorfihsem. Poorly formed pillows can be recognized in several places, and there aro interilow bands of felsic lava, cherty tuif, and thin ixon formation. This band trends slightly north oi cast from line $200+00$ Fast to line $400+00$ East, but changes surike to the west of line 200 , trending about $S 60^{\circ}$ West to line $60+00$ Laet.

Conglomerates of the Seine Groap are exposed along the south edge of the properiy, and good exposares can be seen in the road cuts of Highway 1i. The mit follous the intem:ediate volcanics through the change of strike at line $200+00$ cast, bat is not entirely conformable, and may be resting on an old erosional siviace.

At the west end of the property the voleanic unite pinch out into conglonerate which scens to be rolded isoclinally into chevron-type folds. Poor evidence of tojes in the gedtments find volcanic rocks along the south edge of the property suggest tops to the south. 11 these are reliable, an anticlinal axis is indicated along the south part of the relsic volcanic band, and a synclinaj axis close to the north edge of the feleic volcanic band.

The felsic volcanic rocks include a massive, fine-grained rhyolite characierized by abundant "eyes" of quartz us to 4 umin diameter; a line-grained, nassive, sexicitized rhyolite; bedded, cherty tult; and some fragmental material. The bert-devedoped iragmental thyolite is on clain P. 683 in the vicinity of the zinc sulfhide ninemation. ragments are angalar, very siliceous, and up to 6 inches in their long dimension. The matrix is yellow, siliceous and sericitized. Niost of the lelsic volcante rock is the uniform quartzeye shyolite, which in sone cases has sharp, irregular contacts with sheared, serioitized ielsic volcanic. The uniform texture, and the well developed quartz eyes euggests that this unit noxy be a welded tuit or ashmilow. No original. textures to conliatio this could be seen in thin section.

The rock mapped as quartz-gabbro is a massive, iresh-looking, dark green rock, characterized by "eyes" of blue quartz. A good exposure is in the milroad cat at line $284+00$ [ast, It is a sill-like body that pinches out to the west at line $212+00 \mathrm{E}$ and extends to the enst boundary. it can be traced easily because of its high magnetic relied, bat it is also well exposed in outcrop. llowever, at the east end of the property the ontcrops are so badly sheared and altered that the rock was lirst napped as intermedinte tufi. Only the continuity of high magnetic readings identilies it as part of the quartz-gabbro sill. A second narrow sill of guartz gabbro has been interpreted iron magnotic readings between lines $252+00$ East and line $300+00$ East, south of the base line.

There are no exposures of granitic intrusive rocks on the jlanna claims.

IRSCRIPTION OF MINLRALIZEI BICAS

A nuriber of old pits and trenches on quariz veins and stringer zones were lowited in the course of mapiing. These apparentiy date from the 1930^{\prime} s when the area was last prospected for gold.

A number of zince sulphide occurrences have been opened up more recently by trenching dore by G. L. Ifdgeon of Wabigoon. Mast zinc sulphide occurcences are in fatented claim ${ }^{2} .683$, from line $96+00 \mathrm{E}$ to line $23.6+00 \mathrm{~L}$, but some minor occurrences are exposed in trenches on clain K.301, just north of highway 1.1. khyolitic volcanice are well exposed in outcrop on a riuge ruming through 1.083 to K. 301 , a distance of $1 \frac{1}{2}$ nifles. Snall lemitulay pathes a iew feet in length are stained and oxidized throughout this ridge of outcrop. These small patches are no doubt caused by disseminated sulphide mineralization. Rock trenches are contined to the larger mineralized zones which can be measured in tens of leet of strike length. Sphalerite occurs as a stockwork of nassive stringers up to an inch thick, izregular blebs, and disseninated grains. A few grains of chalcopyrite and 2-5 man seams of pyrite also occur. The host rock is a highly siliceous, waxy-luoking rhyolite breccia.

None of the individual exposures has ore-grade material, but the extent of mineralization and the faviarable rack type nakes the property an attractive exploration target.

PREYIOUS WORK DONE ON THE PROPERTY
There is ample evidence in the form of old trenches and pits, that the property wes thoroughly prospected for gold in the period between 1900 and 1939. Some of these old pits are completely grown over with mature poplax bush.

In 1969, Kerr Addison optioned the patented claims owned by G. L. Pidgeon, and ataked additional ground along strike. A program of mapping and geophyaical work was carried out, and six short diamond drill holes were drilled under the surface trenches. The deepest hole was 124 feet, and the total footage in 6 holea wes 672 . These holes explored beneath the trenches at a shallow depth, but did not inveatigate poseible extensions or the ewamp to the south of the surface exposures. scattered low values in einc and lead were obtained.

REFERENCES -

(1) Tanton, T. L. - Geological Survey of Canada Map 834A Mine Centre Area - 1936. 1 in. $=$ mile.
(2) Tanton, T. L. - Preliminary Report on Mine Centre Area, Ontario, G.S.C., Jan. 1935.
(3) Young, W.L. - Geology of the Bennett-Tanner area, Ont. Dept. of Kines Vol.LXIX Pt 4, 1960.
(4) Map 2115 - Compilation Series, Ontario Dept. of Mines, 1967. "Kenora-Fort Erances Sheet" - 1 in . $=4 \mathrm{mi}$.
(5) McWilliams, G. and All, A. - Mine Centre-Entwine Lake sheet Ont. Dept. of Mines, Preliminary Map P. 965 $1 \mathrm{in} .=2 \mathrm{mi} .-1974$.
(6) Rose, E. R. - Geology of Canadian and Vanadiferous Occurrences of Canada - G.S.C. Economic Geology Report No.27, 1978.
(7) Lawaon, A.C. -The Archean Geology of Rainy Lake Re - Studied G.S.C. Mem. 40 - map no.98a-1918.
(8) Lawson, A.C. -"Report on the Geology of the Rainy Lake Region" Annual Report, G.S.C. Vol. 111 , 1888 Report E.
(9) Robinson, A.H.A. 1917 - "The titaniferous magnetite deposits of seine Bay and Bad Vermillion Lake; Mines Branch Canada, Sum.Rept. p 11-22.
(10) 1922 - Titanium Mines Branch Canada, Publication No. 529.

900

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) MAGNETIC
Township or Area \quad Mine Centre area (Kenora)

Survey Company \qquad
Author of Report - John E. Muhic
Address of Author 805 - 69 Yonge St., Toronto, Ontario:
Covering Dates of Survey May $\frac{10,1975-\text { Dec. } 8,1975}{\text { (linecutting to office) }}$
Total Miles of Line Cut \qquad

SPECIAL PROVISIONS CREDITS REQUESTED

ENTER 40 days (includes line cutting) for first survey.
ENTER 20 days for each additional survey using same grid.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radiometric \qquad
DATE: Feb. 12/1976 SIGNATURE: $\frac{\text { eh } \mu}{\text { Author of Report or Agent }}$ John F.Muni 2.2081 + abO

Res. Geol. \qquad Qualifications \qquad this file Previous Surveys

GROUND SURVEYS - If more than one survey, specify data for each type of survey
Number of Stations 367 base stations Number of Readings 12, 685

Station interval 50 feet -25 feet in anomalous area ${ }^{\text {fine }}$ spacing__ 400 feet
Profile scale
Contour interval__100 gammas

Instrument SCINTREX MF-2 Fluxgate magnetometer
Accuracy - Scale constant 20 gammas per scale division on the most sensitive scale
Diurnal correction method Closed loop
Base Station check-in interval (hours) Approx. 3/4 hour
Base Station location and value $148+00 \mathrm{E}$ on base line 00
Value: 195 gammas

Instrument
Coil configuration \qquad
Coil separation \qquad
Accuracy
Method:
\square Fixed transmitterShoot back
\square In line
\square Parallel line
Frequency \qquad (specify V.L.F. station)
Parameters measured

Instrument
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain

Frequency Domain

Parameters - On time \qquad Frequency \qquad

- Off time \qquad Range \qquad
- Delay time \qquad
- Integration time \qquad
Power
Electrode array
Electrode spacing \qquad
Type of electrode \qquad

LIST OF CLAIMS FOR ASSESSMENT CREDIT
MINE CENTRE PROJECT

K 41.9502	K 412651	K 434788
K 419503	K 412652	K 434789
	K 412653	K 434791
K 419505	K 412654	K 434792
K 419506	K 412655	K 434793
K 419507	K 412656	K 434794
K 419508	K 412657	K 434795
K 419509	K 412658	
K 41.9510	K 412659	K 434797
K 41.9511	K 412660	K 434798
K 419512	K 412661	K 434799
K 419513	K 412662	K 434800
K 419514		K 434801
K 419515	K 434751	K 434802
K 419516	K 434752	K 434803
K 419517	K 434753	K 434804
K 419518	K 434754	K 434805
K 419519	K 434755	
K 419520	K 434756	K 412716
K 419521	K 434757	K 412717
K 419522	K 434758	K 412718
K 419523	K 434759	K 412719
K 419524	K 434760	K 412720
	K 434761	K 412721
K 419527	K 434762	K 412722
K 419528	K 434763	K 412723
K 419529	K 434764	
	K 434765	-
K 412629	K 434766	
K 412630	K 434767	Total - 120 Claims
K 412631	K 434768	
K 412632	K 434769	
K 412633	K 434770	
K 412634	K 434771	
K 412635	K 434772	
K 412636	K 434773	
K 412637	K 434774	
K 412638	K 434775	
K 412639	K 434776	
K 412640	K 434777	
K 412641	K 434778	
K 412642	K 434779	
K 412643	K 434780	
K 412644	K 434781	
K 412645	K 434782	
K 412646	K 434783	
K 412647	K 434784	
K 412648	K 434785	
K 412649	K 434786	
K 412650	K 434787	

Ministry of Natural Resources
GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL

PROJECTS UNIT
Type of Survey (s) ELECTROMAGNETIC (C.E.M.)
Township or Area Mine Centre Area (Kenora)
Claim Holder (s) The Hanna Mining Co.

Survey Company The Hanna Mining Co.

Author of Report \qquad John E. Muhic
Address of Author _805-69 Yonge St., Toronto, Ontario
Covering Dates of Survey May 10,1975 -Dec. 8,1975
(linecutting to office)
Total Miles of Line Cut 124.30

SPECIAL PROVISIONS CREDITS REQUESTED

ENTER 40 days (includes line cutting) for first survey.
ENTER 20 days for each additional survey using same grid.

Geophysical
--Electromagnetic
-Magnetometer

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radiometric \qquad (enter days per claim)

DATE:Feb. $12 / 76$ \qquad

$$
2.2081 \text { of a bo }
$$

Res. Geol. \qquad Qualifications \qquad on this filo
Previous Surveys

MINING CLAIMS TRAVERSED
List numerically

SEE ATTACHED LIST (prefix)
(number)
..
...
...
...
\qquad

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS -- If more than one survey, specify data for each type of survey

Number of Stations
6264
Number of Readings $1830 \mathrm{~Hz}-6264 ; 390 \mathrm{~Hz}-2009$
Station interval 100 feet, 50 feet in anomalous areas Line spacing $\quad 400$ feet
Profile scale $\quad 7^{\prime \prime}=40^{\circ}$
Contour interval \qquad

Instrument
Accuracy - Scale constant
Diurnal correction method
Base Station check-in interval (hours)
Base Station location and value \qquad

Instrument Crone CEM			
Coil configuration Horizontal Shoot Back			
Coil separation - 300 feet			
Accuracy ± 0.5 degrees			
Method: $\quad \square$ Fixed transmitter	[X Shoot back	\square In line	\square Parallel line
Frequency_ $\quad 1830 \mathrm{~Hz} ; \quad 390 \mathrm{~Hz}$			
Parameters measured Dip angle of resultant field			

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain Frequency Domain
Parameters - On time \qquad Frequency

- Off time ___ Range
- Delay time \qquad
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode

THE HANNA MINING CDMPANY
ROQM BO5, 69 YONGE BTREET
TORONTO, QNTARID MSE IK3
TELE\#HONE (416) 363-308.
LIST OF CLAIMS FOR ASSESSMENT CREDIT

Ministry of Natural Resources

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
 FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT
 TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) ELECTROMAGNETIC (APEX)Township or Area Mine Centre Area (Kenora)Claim Holder (s) The Hanna Mining Company
Survey Company Geosearch Consultants Ltd.Author of Report John F. MuhicAddress of Author 805-69 Yonge St., Toronto, OntarioCovering Dates of Survey $\frac{\text { Sept.16,1975-Sept.28,1975. Nov.26/7 }}{\text { (linecutting to office) to Dec.5/75. }}$Total Miles of Line Cut
\qquad

SPECIAL PROVISIONS
CREDITS REQUESTED

ENTER 40 days (includes line cutting) for first survey.
ENTER 20 days for each additional survey using same grid.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radiometric (enter days per claim)

DATE: Feb .12,1976
 .
$2.208 / 6 a 100$
Res. Geol. \qquad Qualifications on this file Previous Surveys

MINING CLAIMS TRAVERSED List numerically
$\underset{\text { (prefix) }}{\text { SEE ATTACHED }}$ LIST

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS -- If more than one survey, specify data for each type of survey

Number of Stations _- 2968	Number of Readings 2968
Station interval 100 feet	Line spacing 400 feet
Profile scale $\quad I^{\prime \prime}=40 \%$	

Contour interval

Instrument \qquad
Accuracy - Scale constant
Diurnal correction method
Base Station check-in interval (hours)
Base Station location and value \qquad
\qquad

Instrument Apex Parametrics Max - Min 11
Coil configuration Horizontal Loop
Coil separation 400 feet
Accuracy $\pm \frac{1}{2} \%$ to $\pm 1 \%$
Method: $\quad \square$ Fixed transmitter
\square Shoot back
X In line
Parallel line
Frequency 888 Hz
(specify V.L.F. station)
Parameters measured_Eield strength in per cent.

Instrument
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain
Frequency Domain
Parameters - On time \qquad Frequency

- Off time

Range
\qquad

- Delay time \qquad
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode
$工$

THE HANNA MINING CDMPANY

ROOM BO5, 69 YONGE BTREET TORONTD, ONTARID MSE IK3

TELEMONT [4163 365-508

LIST OF CLAIMS FOR ASSESSMENT CREDIT
MINE CENTRE PROJECT

K 419502
K 419503
K 419505
K 419506
K 419507
K 419508
K 419509
K 419510
K 419511
K 419512
K 419513
K 419514
K 419515
K 419516
K 419517
K 419518
K 419519
K 419520
K 419521
K 419522
K 419523
K 419524
K 419527
K 419528
K 419529
K 412629
K 412630
K 412631
K 412632
K 412633
K 412634
K 412635
K 412636
K 412637
K 412638
K 412639
K 412640
K 41.2641
K 412642
K 412643
K 412644
K 412645
K 412646
K 412647
K 412648
K 412649
K 412650

K 412651
K 412652
K 412653
K 412654
K 412655
K 412656
K 412657
K 412658
K 412659
K 412660
K 412661
K 412662
K 434751
K 434752
K 434753
K 434754
K 434755
K 434756
K 434757
K 434758
K 434759
K 434760
K 434761
K 434762
K 434763
K 434764
K 434765
K 434766
K 434767
K 434768
K 434769
K 434770
K 434771
K 434772
K 434773
K 434774
K 434775
K 434776
K 434777
K 434778
K 434779
K 434780
K 434781
K 434782
K 434783
K 434784
K 434785
K 434786
K 434787

K 434788
K 434789
K 434791
K 434792
K 434793
K 434794
K 434795
K 434797
K 434798
K 434799
K 434800
K 434801
K 434802
K 434803
K 434804
K 434805
K 412716
K 412717
K 412718
K 412719
X 412720
K 412721
K 412722
K 412723

Total - 120 Claims

Type of Survey
 Geological

Township or Area__Mine Centre Area (Kenora)
Claim holder (s) ._The_Hanna Mining Company

Author of Report Nelson_Hogg
Address Room 805, 69 Yong St., Toronto, Ont.M5E IK3
Covering Dates of Survey $\frac{\text { May 10, 1975 ~Oct.13, } 1975}{\text { (linecuting to office) }}$
Total Miles of Line cut_ 124.30

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

PROJECTS SECTION

Res. Geol.
Qualifications .63.1991
Previous Surveys \qquad

Checked by \qquad date \qquad

GEOLOGICAL BRANCH \qquad

Approved by \qquad date \qquad

GEOLOGICAL BRANCH \qquad

Approved by \qquad date

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS

Number of Stations

\qquad
Number of Readings
Station interval 400 ft .
Line spacing
Profile scale or Contour intervals
(specify for each type of survey)
MAGNEIIC
Instrument

\qquad
Accuracy - Scale constant
\qquad
Diurnal correction methodBase station location
ELECTROMAGNETIC
Instrument
\qquad
Coil configurationCoil separationAccuracy
\qquadMethod:[] Fixed transmitterShoot back\square In line\square Parallel lineFrequency
(specify V.L.F. station)
Parameters measured \qquad

GRAVITY

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location

Elevation accuracy

INDUCED POLARIZATION - RESISIIVITY
Instrument \qquad

Frequency Range

Power

Electrode array \qquad
Electrode spacing \qquad
\qquad

THE HANNA MINING CDMPANY

ROQM EOS, 69 YONGE BTREET TORONTO, ONTARIO M5E IK3

TELEMON: 4163 ses-spen
LIST OF CLAIMS FOR ASSESSMENT CREDIT MINE CENTRE PROJECT

K 419502	K 412651	K 434788
K 419503	K 412652	K 434789
	K 412653	K 434791
K 419505	K 412654	K 434792
K 419506	K 412655	K 434793
K 419507	K 412656	K 434794
K 419508	K 412657	K 434795
K 419509	K 412658	
K 419510	K 412659	K 434797
K 419511	K 412660	K 434798
K 419512	K 412661	K 434799
K 419513	K 412662	K 434800
K 419514		K 434801
K 419515	K 434751	K 434802
K 419516	K 434752	K 434803
K 419517	K 434753	K 434804
K 419518	K 434754	K 434805
K 419519	K 434755	
K 419520	K 434756	K 412716
K 419521	K 434757	K 412717
K 419522	K 434758	K 412718
K 419523	K 434759	K 412719
K 419524	K 434760	K 412720
	K 434761	K 412721
K 419527	K 434762	K 412722
K 419528	K 434763	K 412723
K 419529	K 434764	
	K 434765	-
K 412629	K 434766	
K 412630	K 434767	Total - 120 Claims
K 412631	K 434768	
K 412632	K 434769	
K 412633	K 434770	
K 412634	K 434771	
K 412635	K 434772	
K 412636	K 434773	
K 412637	K 434774	
K 412638	K 434775	
K 412639	K 434776	
K 412640	K 434777	
K 412641	K 434778	
K 412642	K 434779	
K 412643	K 434780	
K 412644	K 434781	
K 412645	K 434782	
K 412646	K 434783	
K 412647	K 434784	
K 412648	K 434785	
K 412649	K 434786	
K 412650	K 434787	

-®	

