

Nuinsco Resources Rainy River Project

VOLUME I EXPLORATION DATA

2.18270

Rainy River Project Richardson Township

(January 26 – April 7 1997 Diamond Drilling)

Rainy River District Kenora Mining Division N.T.S. 52 C/13 and 52D/16

RECEIVED
MAR 1 8 1998
GEOSCIENCE ASSESSMENT OFFICE

NUINSCO RESOURCES LIMITED

Rainy River Project Richardson Township

(Winter 1997 Diamond Drilling)

Rainy River District Kenora Mining Division N.T.S. 52 C/13 and 52D/16

2.12619 Pitman Pau Consulting Geologisi February 9, 1998

Table of Contents

1.0	Introd	Introduction					
2.0	Locat	ion and Access	1				
3.0	Physic	ography	2				
4.0	Exploration History						
5.0	Claim	Description	4				
6.0	Regio	Regional Geology					
	6.1	Precambrian Geology	6				
	6.2	Cretaceous Geology	8				
	6.3	Quaternary Geology	8				
	6.4	Recent Geology	9				
7.0	Local Geology						
	7.1	Lower Mafic Succession	10				
	7.2	Felsic-Intermediate Succession	10				
	7.3	Felsic-Intermediate Intrusions	11				
	7.4	Mafic-Ultramafic Intrusion	11				
	7.5	Black Hawk Stock	12				
	7.6	Diabase	13				
	7.7	Structural Geology	13				
8.0	Janu	ary – end April 1997 Diamond Drilling	14				
9.0	Conclusions						
10.0	References						
11.0	Certi	Certificate of Qualifications					

2.18270

010C

List of Figures

Regional Location Map	After Page 1
Land Position Map	After Page 4
Richardson Township (Details)	After Page 4
Regional Geology	After Page 5
Physiography	After Page 8
# 17 Zone Drill Plan	After Page 16
3-D Model	After Page 17
	Land Position Map Richardson Township (Details) Regional Geology Physiography # 17 Zone Drill Plan

List of Tables

1	Drill Hole Location	5
2	List of Publications (OGS Reports	5
	on Rainy River Region	
3	Exploration Expenditures	Appendix I
4	Drill Hole Locations	Appendix II
5	Meters Drilled/Option Agreements/	Appendix II
	Assessment Credits – Richardson Twp.	

Appendices

- I Summary Table Exploration Expenditures
- II Summary Tables Drill Location Information
- III Diamond Drill Logs
- IV Assay Certificates
- V Lakefield Research Report
- VI Exploration Expenditures (backup invoices)

Pocket

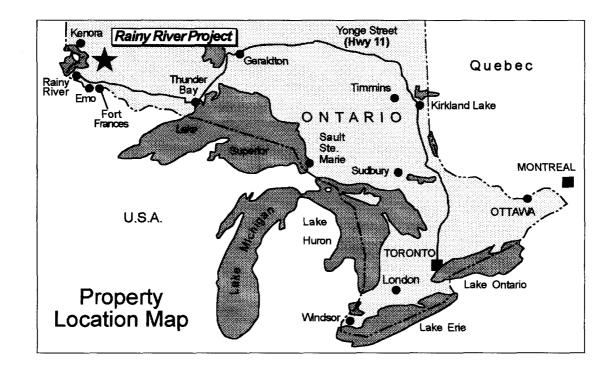
- 1 Richardson Township Grid Drill Plan
- 2 Diamond Drill Hole Cross-Sections

RICHARDSON TOWNSHIP PROJECT

(Winter 1997 Diamond Drilling)

Rainy River District, Kenora Mining Division N.T.S. 52 C/13 and 52D/16

1.0 **INTRODUCTION**


This report describes the results of one component of the Nuinsco exploration program, namely diamond drilling that was carried out in south Richardson Township during 1997. This drilling comprises drill holes drilled on patents from January 26, 1997 to April 7, 1997. Also included is a metallurgical study completed by Lakefield research on the #17 Gold Zone. The results are reported here for assessment purposes.

2.0 LOCATION AND ACCESS

The claims and options comprising the Rainy River Project property are located in northwestern Ontario in the Ministry of Natural Resources Administrative District of Rainy River, Kenora Mining Division. The area is located near both the border with Manitoba and the international boundary with Minnesota. The nearest population center is Fort Frances, 50 km to the southeast. The villages of Emo and Nestor Falls are about 25 km to the south and north respectively. The claim group is centered approximately by latitudes 48°45'N to 49°00'N and longitudes 93°46'W and 94°36'W. The property area lies within N.T.S. maps 52 C/13 and 52 D/16. Nuinsco Resources Cameron Lake exploration mine site is located approximately 40 km to the northeast.

Nuinsco's accumulated land position consists of a series of discontinuous blocks lying in an arcuate east-west band of some 60 km length (see figure). The staked ground and optioned patents are predominantly underlain by metavolcanic-metasedimentary terrain located approximately between the contact of the Sabaskong Batholith to the north, the Rainy River Batholthic Complex and other subordinate intrusions in the east and the interpreted location of the Quetico Fault to the south. The Company's land position is located in the townships of Senn, Menary, Potts, Richardson, Tait, Sifton, Pattullo, Nelles, Blue, Pratt, Attwood and Curran.

Access to most of the claim group is attained via the numerous all weather, secondary, provincial highways (gravel) and township roads which lead off of paved highways 11 and 71. These routes traverse the region and provide excellent ingress to claims in the west and center of the property area. Access into Richardson Township in the area of this reported drilling is excellent. All drill sites are readily accessible by foot from graveled secondary Township roads.

Starting at Queen Street in Toronto, where Yonge Street originally began, you can travel into history by heading north past old mills, played-out mines and ghost towns on the way to Rainy River, where Canada's great street ends after stretching 1,896 kilometres.

Regional Location Map

Figure 1

3.0 PHYSIOGRAPHY

The Rainy River region is located within the Severn Upland of the Canadian Shield. Generally the Precambrian surface, and the overlying Paleozoic and Mesozoic strata to the west, dip at a very low angle to the southwest into the Williston Basin.

Physiographically the landscape on which the Nuinsco claim groups are situated can be divided into two distinct domains separated by a sharp northwest-southeast trending break - the site of the Rainy Lake - Lake of the Woods Moraine, which locally traverses Rowe, Menary, Potts, and Fleming townships. To the north and east of the moraine in the Beadle Lake and Off Lake -Burditt Lake areas, a Precambrian highland is only sparsely covered by glacial drift and is characterized by extensive outcrop exposure. This area has been subjected to only one of the most recent glacial advances (the Whiteshell - from the northeast) because of the elevated topography which prevented the advance of other glacial lobes from the west. Glacial drift attains significant thickness only in very local areas. It displays few signs of intense weathering. Relief is controlled by bedrock geology with the supracrustal sequences displaying positive relief relative to the batholithic complexes; relief can attain 90 meter.

The broad lowland, reduced to a peneplain during Cretaceous time has been subject to either two (central areas) or three (west areas) late-Wisconsinan glacial events. Here outcrop ranges from 5-40%, thick drift blankets bedrock surfaces and saprolites are commonly observed in boreholes. The area has been subdivided by Bajc (1991b) into two regions. Region 2a contains 30-40% outcrop by area, and may attain significant relief which is related to bedrock topography; areas separating outcrops are sites of extensive drift accumulation. In region 2b outcrop comprises less than 5% of the surface area, topography is low and undulating, drainage is poor, and peatland is common.

The area underlying the Richardson Township - Potts Township area lies at the margin of 2a and 2b topography. Large outcrop areas to the north and east provide the maximum relief. To the west and south small outcrop areas provide limited relief in extensive flat lying terrane covered by substantial till and bog accumulations.

4.0 **EXPLORATION HISTORY**

Although exploration activity in the area by individual prospectors dates back to the 1930's, the documented exploration in the Ministry of Natural Resources assessment files commences in 1967. Additional exploration programs are known to have taken place on private land, however a record of assessment has not been filed for this work.

In 1967 copper was recorded from a water well hole on the western shore of Off Lake. Consequently Noranda Exploration Company registered claims around the original discovery and performed mapping, geophysics, and diamond drilling. This activity met with limited success and the claims were allowed to lapse. In 1971 International Nickel Company of Canada Limited conducted airborne and follow-up ground geophysics in the region as a whole. Although there is no record of this work INCO did file a report on two diamond drill holes in Richardson Township in 1973. Reportedly one of these drill holes encountered anomalous gold values, however the exact location of this hole remains unknown.

In 1972 Hudsons Bay Exploration and Development carried out airborne geophysical surveys followed by claim staking and ground geophysics. In 1973 HBED drilled 54 diamond drill holes regionally to test 42 E.M. conductors which work included anomalies in Tait Township adjacent to the south portion of the Quetico Fault. The principal target of this exploration was base metal however, none of the work was filed for assessment purposes although it is apparent that it was subsequently available to Mingold personnel.

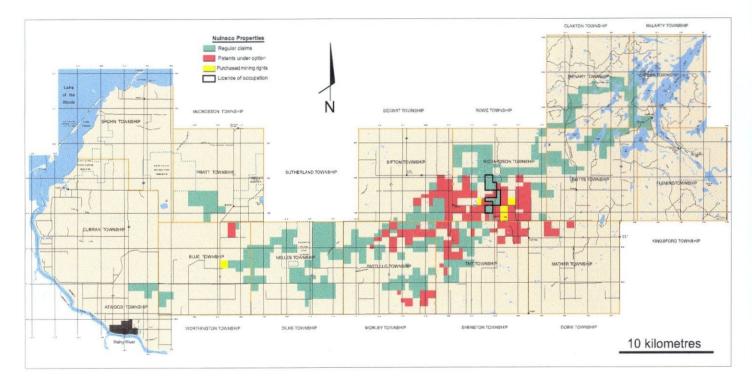
In the mid 1980's exploration programs were mounted in Menary Township and the Off Lake area by several companies. Agassiz Resources examined the potential for both base metal and gold in both area's with a program of mapping, stripping, sampling, and geophysics over two field seasons. In the process they discovered numerous showings of both gold and copper-zinc and discovered what came to be termed the Agassiz Showing in Menary Township. In 1984 Lacana Mining Corporation undertook a single field season of mapping and sampling over an extensive area adjacent to Off Lake and Burditt Lake. No significant areas of mineralization were reported. Spartan Resources conducted an I.P. survey over a grid adjacent to the eastern shore of Off Lake in 1988. Anomalous responses were obtained from the survey but no further assessment is recorded, although unreported trenching, stripping and sampling was conducted at the site of the survey.

In 1989 Western Troy Capital Resources began a mapping and sampling program on claims staked in Menary Township which partly encompass the lapsed properties of Agassiz and HBED. Both gold and base metal occurrences were discovered during these programs. Following initial exploration for base metals Western Troy discovered "several" native gold bearing, quartz veins late in 1991. The veins are at present interpreted to be the folded and boudinaged fragments of a single original vein. When sampled, this zone returned an average of 1.4 oz/ton gold. Subsequently, additional showings were discovered later in 1991 and during the 1992 season. Interestingly most of these veins are situated in the lowermost unit of the mafic stratigraphic succession of the area in close proximity to the contact of the Sabaskong Batholith. A 250 ton bulk sample of the veins discovered in 1991 was taken during the 1992 program. Sampling was later expanded to a reported 500 tons and was completed in September of 1993. An additional more ambitious extraction was conducted throughout the 1994 field season (to December, 1994).

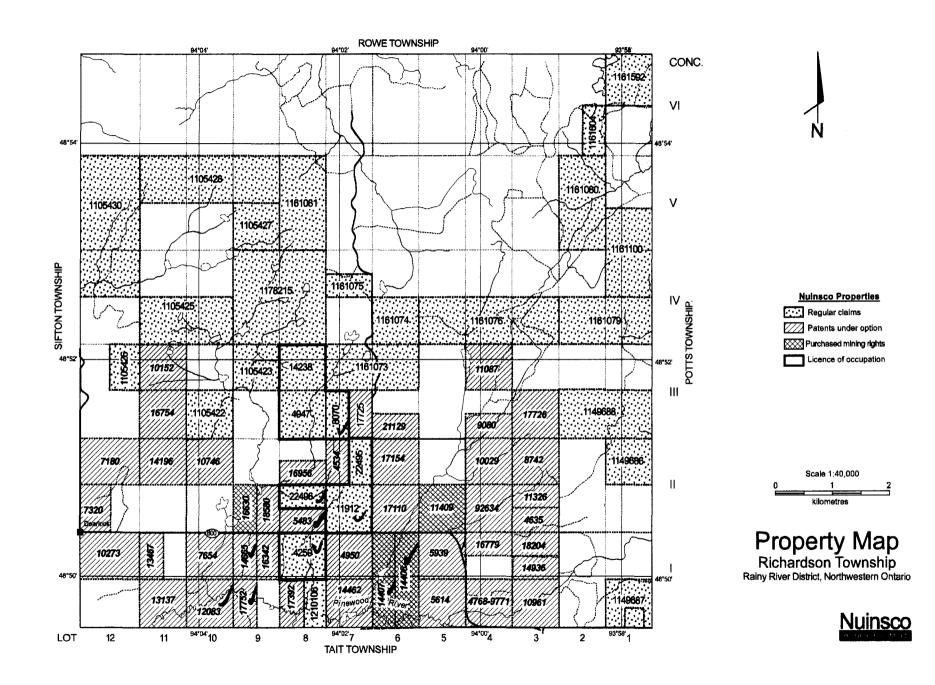
Considerable interest was generated in the area west of Finland following the release of the O.G.S. publication "Gold Grains in Rotosonic Drill Core and Surface Samples (1987-1988), Map No. P.3140. In 1989 Mingold Resources Inc. staked 85 claims and optioned property from 12

local landowners in three separate blocks in Richardson, Tait, Pattullo, and Sifton townships. Between mid-1989 and late-1990 Mingold conducted a sampling program of the glacial drift by hand, backhoe trenching, and reverse circulation drilling. This work was accompanied by geological mapping and ground geophysics. Subsequently, a limited diamond drilling program consisting of three drill holes was carried out in Pattullo Township based on these surveys. The results of this drilling were inconclusive and the anomalous values obtained in the tills were generally left unexplained. The Canadian activities of Mingold were terminated prior to complete assessment of all anomalous results.

Nuinsco Resources began to assemble a land position in the region in 1991, initially centered on the Richardson Township - Menary Township area. In 1993 the land position was expanded to include Crown Land in several townships extending west to the international boundary and currently Nuinsco has claims and options comprising some 24,400 ha across the Rainy River greenstone belt.


Between the initiation of field work in June, 1993, and the end of 1997 Nuinsco Resources has completed a Landsat linear study; local I.P., magnetometer, horizontal loop E.M., surface P.E.M., borehole P.E.M. surveys as well as additional interpretation of selected parts of the 1990 government sponsored regional airborne E.M.-mag survey; regional reconnaissance mapping and sampling; enzyme leach soil sampling; detailed grid mapping; outcrop stripping and trenching, four separate programs of rotasonic and reverse circulation drilling, comprising some 573 holes in total; diamond drilling in Menary, Senn and Richardson townships comprising 175 drill holes (37,535 meters).

This report summarizes a portion of the exploration work, namely diamond drilling, which was carried out from January 26, 1997 to April 7, 1997.


5.0 CLAIM DESCRIPTIONS

The Nuinsco Resources Ltd. properties discontinuously span some 60 km east to west and encompass 24,436 ha in total at time of writing. It is composed predominantly of mineral claims on Crown Land (18,592 ha), with subordinate optioned patented ground (5,491 ha), and a License of Occupation from the Agricultural Rehabilitation Development Agreement (A.R.D.A., 353.10 ha). The land position in its entirety falls within the jurisdiction of the Kenora Mining Division, Ministry of Natural Resources Administrative District of Fort Frances.

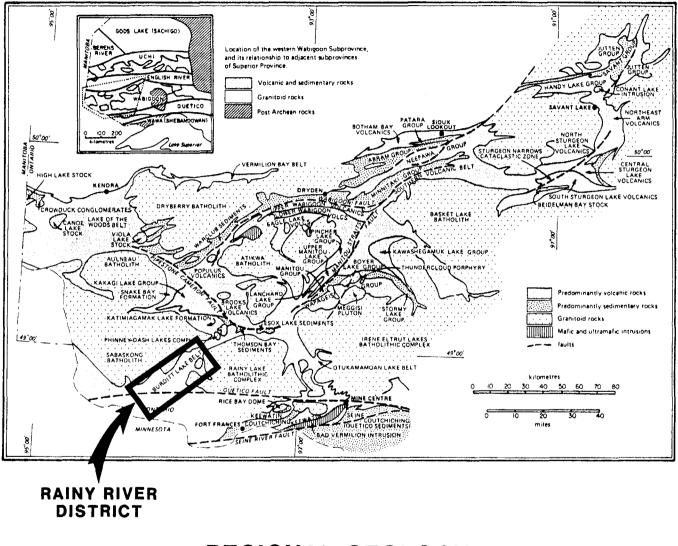
The assessment work conducted and detailed in this report consists of diamond drilling and assay results. All of the work was carried out on patented lands in Richardson Township under option to Nuinsco Resources. Property boundary locations are included on the drill hole location map in the pocket included with this report. The patents on which work was conducted are listed below and detailed again in the Appendix. The Company is maintaining all options in good standing.

Land Position Map Rainy River District, Northwestern Ontario

, .

Township	Lot No. (Concession	Drill Holes
Richardson	Lot 6, E1/2	Ι	NR-97- 04, 05, 06, 14, 16, 17, 18, NRX-97-02, 04.
Richardson	Lot 6, W1/2	Ι	NR-97- 19.
Richardson	Lot 10, S1/2	Ι	NR-97- 25, 27, 29.
Richardson	Lot 8	II	NR-97- 24, 26, 28.
Richardson	Lot 9, W1/2, S1	./2 I	NR-97- 30, 31.
Richardson	Lot 9, W1/2, N	1/2 I	NR-97- 32, 33, 34.

Table 1. Diamond Drill Holes Collar Locations (Lot & Concession) Richardson Township


6.0 **REGIONAL GEOLOGY**

The Nuinsco Resources claim groups and patent options are located in a 900 km long by 150 km wide granite-greenstone belt within the Wabigoon Subprovince of the western Superior Province. Approximately 100 km to the west of the property area the Archaean rocks of the shield are covered by Phanerozoic sedimentary strata in southern Manitoba and Minnesota. Much of the extreme southwest part of the Wabigoon, and particularly the area encompassing the Nuinsco land holdings has been reduced to a peneplain, the result of extensive Cretaceous erosion and weathering. This region is the site of extensive regolith accumulation comprised of (apparently) locally extensive saprolites followed by Quaternary glacial drift, and recent accumulations.

The region has been the subject of several Ontario Department of Mines - Ontario Geological Survey mapping programs (see below) from which much of the geological descriptions are excerpted;

 Table 2.
 O.D.M.-O.G.S. Reports Covering in the Rainy River Region

1954.	Fletcher and Irvine	O.D.M. Vol. LXIII, part 5. The Geology of the Emo Area
1 976 .	Blackburn, C.E.	O.D.M. G.R. 140. Geology of the Off Lake Burditt Lake
19 83 .	Edwards,	O.G.S. Report 201. Geology of the Bethune Lake Area.
1 988 .	Johns, G.	O.G.S. Map P3110. Geology - Rainy River Area.

REGIONAL GEOLOGY WESTERN WABIGOON SUBPROVINCE AND ITS MARGINS

6.1 Precambrian Geology

The Western Wabigoon region underlying the Nuinsco claim groups is composed of supracrustal metavolcanic and metasedimentary rocks of the Rainy River Greenstone Belt (Blackburn et al., 1992). Syntectonic granitoid batholithic complexes (Sabaskong Batholith, Fleming Township Tronjhemites, Jackfish Lake Complex) occupy the northwest, northeast, and east of the region respectively. Late to post tectonic stocks such as the zoned Blackhawk, homogeneous Finland and inhomogeneous Burditt Lake, as well as other unnamed intrusions are located within the boundaries of the greenstone terrain.

The extreme northwest of the greenstone belt centered around the north part of Burditt Lake and Pipestone Lake is underlain by submarine mafic flows and pretectonic, subvolcanic, quartz-hornblende gabbro and leucogabbro intrusions (Edwards, 1983). These rocks have been folded into the northeast trending Silver Lake Syncline, the axial trace of which is identifiable to Dad Lake in the north and to the contact of an apophysis of the Sabaskong Batholith near Tompkins Lake in the south. Rare occurrences of mafic to intermediate tuff (described as shardy to ashy, Edwards, 1983) occur within the metavolcanic package. Where mapped in the Burditt Lake area, the metavolcanic succession is approximately 4 - 5 km wide and is sandwiched between the Sabaskong Batholith to the northwest and the Jackfish Lake-Weller Lake Pluton to the southeast. Edward (1983) ascribed a crude zonation in the metavolcanic assemblage, consisting of a Lower Mafic Group of 300 - 900 m thickness adjacent to the Sabaskong Batholith, overlain by a Middle Mafic Group.

The metavolcanic stratigraphy to the central part of the region extending south to the interpreted trace of the Quetico Fault has been subdivided on lithological grounds. In the north and west of the project area the stratigraphy has been divided into six distinct mafic tholeiitic units, while in the south and east five distinct intermediate-felsic calc-alkaline units have been identified. The underlying mafic members comprise approximately 2/3 of the metavolcanic pile and the overlying felsic-intermediate accumulations approximately 1/3. The true thickness of the entire sequence is estimated at approximately 4.5 km, however the belt narrows to approximately 1.6 km near the boundary between Richardson and Potts townships, and broadens to more than 10 km as a result of folding near the Sifton and Richardson townships boundary. The mafic volcanics are described as being composed of massive, porphyritic, and pillow lavas and gabbroic lavas (gabbro's?). The felsic-intermediate rocks are described as volcanic to subvolcanic and equivalent intrusive phases and are composed of pyroclastic breccias, lapilli tuffs, ash tuffs, and quartz-feldspar porphyries. The late to post tectonic Blackhawk and Finland stocks have been intruded into the center south of the project area, deflecting bedding radically around the intrusions.

In the west of the region (i.e. west of the Sifton-Richardson and the Tait-Pattullo Townships boundaries) preliminary mapping by Johns (1988) has crudely outlined the meta-volcanic stratigraphy, although mapping was greatly hindered by the lack of outcrop in this area of extensively covered glacial drift. The metavolcanic rocks are divided into two stratigraphic units. A lower mafic unit consisting of massive and pillowed mafic flows with local pillow breccia, hyaloclastite, and feldspar phyric flows. Gabbro occurs in the extreme west, northeastern and southeastern portions. An upper diverse member conformably overlies the lower member and is composed of interbedded and interdigitated mafic and intermediate flows, debris flows, intermediate pyroclastics, wacke, and reworked tuff. In the eastern portion of this area volcanic derived metasediments (bedded wackes) have been mapped and extend eastward.

The south and southeastern part of the region south of the Richardson-Potts-Fleming townships south boundaries was mapped by Fletcher and Irvine (1954). Felsic and intermediate metavolcanics occur in the south of the area in Dobie and Shenston townships (also in the north as the southern continuation of the metavolcanics mapped by Blackburn). These units are composed of quartz-feldspar porphyries, blocky fragmentals (agglomerate), and tuffs.

Mafic metavolcanics occur in association with the felsic-intermediate members and are composed of fine to coarse grained flows and pillow lavas and associated interbedded mafic rich interflow metavolcanic sediments. In addition, extensive wackes occur in two bands extending from west of the map area (see Johns, 1988) and have been interpreted to be the opposing limbs of a syncline. These bands are separated by a granitoid (granodiorite) intrusion. The metavolcanicmetasedimentary stratigraphy is again intruded by numerous igneous bodies including the southwestern extensions of the Rainy Lake Batholithic Complex, as well as mafic intrusions such as the Dobie Intrusion and the Lash-Carpenter Intrusion.

Regional metamorphic grade is regarded as being generally of greenschist to low-mid amphibolite facies (although higher grades are noted by Johns in the west and Fletcher and Irvine in the south and west). Metamorphic grade, particularly adjacent to the late-post tectonic stocks may attain upper amphibolite with possible local partial re-melting of the host rocks.

Structurally, the region is complex and very little of the structural elements have been worked out. Evidence of stratigraphic facing comes dominantly from the presence of pillows. In the extreme north, the metavolcanic succession has been folded around the Sabaskong Batholith into the east-northeast trending Nightjar Anticline which is paired with the Slender Lake Syncline to the southeast. The Helena-Pipestone Lake Fault extends south to Dad Lake and in the north approaches the trace of the Pipestone-Cameron Fault. Continuing to the south the metavolcanic stratigraphy of the Off Lake-Burditt Lake area are considered to form a southeasterly facing homoclinal sequence between the Sabaskong Batholith and the Burditt Lake Stock and the Fleming Township Tronjhemites. Farther to the west the metavolcanic-metasedimentary stratigraphy has been folded about the north-south axes of the southward plunging Deerlock Syncline which is paired with an unnamed anticline in Richardson Township. South of this area Johns (1988) has inferred the presence of a complex fold pattern, showing several anticline-syncline pairs which strike northeast curving to the east. Fletcher and Irvine (1954) infer the presence of three folds, two anticlines and a syncline with east to northeast striking axes - as with those mapped by Johns.

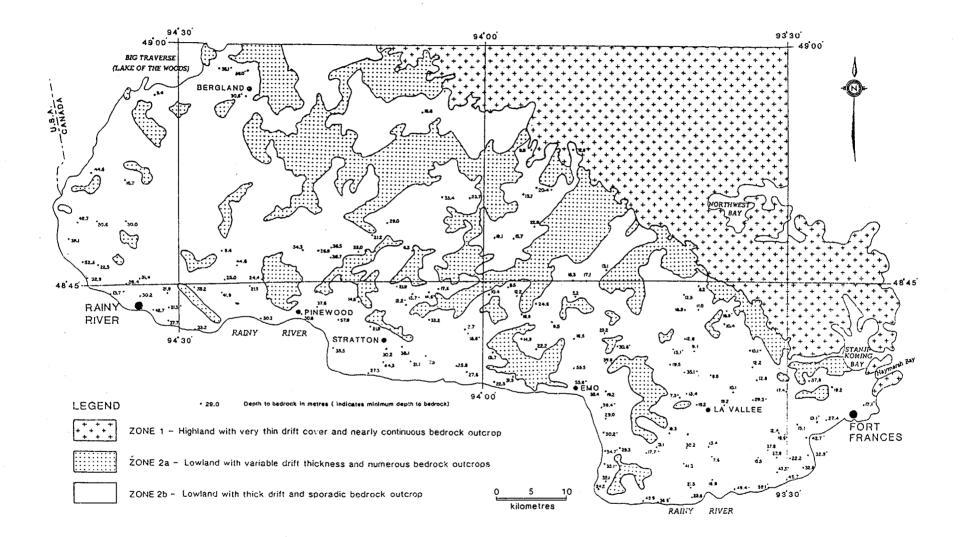
The southern part of the region is transacted by the Quetico Fault, although the surface trace of the fault is only conjectured towards the west. The fault is traceable for over 200 km and in part defines the southern boundary of the Wabigoon Subprovince which lies to the east of the project area. Dextral transcurrent offsets are interpreted to be the major movement, estimated to be up to 128 km (Mackasay et al., 1974, Blackburn et al., 1992). A southerly splay from the Quetico is interpreted to strike northeast passing near the village of Stratton.

Well defined penetrative deformation is commonly observed on a regional scale. At the margins of intrusive bodies foliation/schistosity can be very strongly developed, striking tangentially to the contact of the intrusion.

6.2 Cretaceous Geology

Cretaceous Sediments occupy the Red River Valley and are observable in Manitoba, Minnesota, and North Dakota where they blanket older sediments that fringe the Williston Basin (Bajc, 1991b). In the Rainy River region no exposures of Cretaceous age have been documented, however an outlier of Cretaceous marine clay has been noted 65 km south of Fort Frances, suggesting a more extensive pre-existing presence (Bajc, 1991b). Middle Cretaceous, non-marine, fossiliferous, clastic sediments have been encountered in an O.G.S. borehole 7.5 km northwest of Rainy River. Composed primarily of white to buff colored, moderately sorted, silica sand and gravel, this occurrence is located in a protected hollow, down-ice from prominent bedrock highlands.

Results from the Nuinsco 1995 and 1996 overburden drilling programs suggest more widespread occurrences of probable Cretaceous and possible Jurassic sediments across the Rainy River district although none thus far appear to be mineralized.


Thick saprolites (of diverse protolith), presumed to be Cretaceous in age have also been documented. These units attain in excess of 60 m and have been encountered in several O.G.S. and Nuinsco overburden boreholes and diamond drill holes. This weathered profile suggests previously widespread residual soil over much of the Precambrian Shield which was subsequently removed by Quaternary and Tertiary erosion (Bajc, 1991b).

6.3 Quaternary Geology

The youngest members of the stratigraphic succession are widely distributed, unconsolidated sediments which blanket the entire region and become very thick to the west.

Generally the unconsolidated sediments encountered are Late Wisconsinan tills. However, reports in Bajc (1991b) indicate that pre-Late Wisconsinan tills have been preserved locally under significant Late Wisconsinan till cover and have only been observed in boreholes; they are interpreted to be Early Wisconsinan or perhaps Illinoian in age.

The oldest Late Wisconsinan deposits are attributed to an ice advance originating from the northeast (Labradorean Lobe, Laurentide Ice Sheet), and has been named the Whiteshell Till. This till is widely distributed as a discontinuous veneer in bedrock depressions and in the lee of topographic highs (Bajc, 1991b). It is also concealed beneath younger tills and is observed in overburden boreholes in the west part of the project area. This till may contain 15-70% clasts with lithologies which closely reflect the underlying bedrock type. The matrix is composed of

Physiography of the Rainy River District (Bajc, 1991)

sand and silt with only minor clay (Bajc, 1991b). Associated glaciofluvial sediments were deposited either subglacially or subaqueously and consist of stratified sands and gravels.

Overlying Labradorean derived drift are Keewatin derived tills which originated with ice advancing from the west. These tills extend east to the site of the present day Lake of the Woods Rainy Lake Moraine. The Whitemouth Lake till is the oldest Keewatin derived till. It is composed of a sand-silt-clay matrix comprising 90-95% of the unit and containing generally <5cm pebbles of dominantly carbonate composition, although shale, siltstone and lignite are also noted.

The youngest till, again Keewatin derived, is the Marchand till which is deposited in the extreme west of the project area. It often is in direct contact with the Whitemouth Lake till or may be separated from it by up to several metres of glaciolacustrine sediments. The matrix is composed of sand-silt-clay (lower clay content than in the Whitemouth Lake till) and contains up to 10-20% clasts of similar composition to the pebble fraction in the Whitemouth Lake till.

Glacial deposition was complete shortly after 11,600 years B.P. (date of the Whitemouth Lake till deposition - Bajc, 1991b). The initial phases of Glacial Lake Agassiz commenced around 11,500 years B.P. and the lake inundated parts of the region, depending on water level fluctuations, until 7,500 years B.P. Glaciolacustrine phases of deposition recognized in the region include pre-Lockhart (pre-Late Agassiz), Lockhart, Moorhead, Emmerson, Nipigon, and Ojibway phases. All phases consist of sand, silt, clay, glaciolacustrine-lacustrine sediments deposited between and above the previously deposited till horizons.

6.4 <u>Recent Deposits</u>

Extensive peat deposits occur throughout the project area, attaining 8 m depth in the east near Fort Frances and generally thinning to the west. Radiocarbon dating gives a maximum age of approximately 5,000 years for these deposits.

Finally recent alluvium, and eolian deposits are restricted to the floodplains of the major water courses. They are composed of organic rich sand, silt, and clay (Bajc, 1991b).

7.0 LOCAL GEOLOGY

The local geology of Richardson Township and immediately surrounding townships has been generally poorly understood because of the paucity of outcrop and lack of past exploration activity. As mapped by Blackburn (1976) and Johns (1988) this area is underlain by a thick succession of tholeiitic mafic metavolcanics which conformably passes into an upper diverse metavolcanic unit, often intermediate in composition.

Recent mapping, overburden drilling, and diamond drilling by Nuinsco have further served to define the geology in the are of central southeast portion of Richardson Township. The following rock descriptions are taken from both drill core observations and notes from surface outcrops.

7.1 Lower Mafic Succession

The most abundant metavolcanic rocks in the project area are mafic metavolcanic massive and pillowed flows, flow breccias and tuff-hyaloclastites, and interflow and graphitic sediments. These units correspond with M3 and M5 members of Blackburn's (1976) six member mafic stratigraphic succession. They have also been observed in the northern part of Richardson Township and are folded around the nose of an unnamed anticline. The strike varies from approximately 45° (on line 22+00E) to approximately 115° (to the west of line 4+00W). Pillow tops comprise the sole criteria for stratigraphic facing and have been used to define the presence of a synclinal fold (i.e. tops are to the southeast of line 0+00 while on line 32+00W tops to the southwest were observed). The contact between the mafic metavolcanics and the overlying intermediate succession is conformable. In drill core this contact is defined by well bedded pyritic (\pm pyrrhotite) - graphitic sediments and magnetite bearing iron formation.

7.2 Felsic-Intermediate Succession

Abundant lichen growth and uniform weathering have hindered detailed mapping of individual stratigraphic units within the upper diverse succession. Efforts to clean individual outcrops, and subsequent diamond drilling indicate that the stratigraphy within the upper diverse succession can be both varied and complex. Certainly, evidence from stripped outcrops indicates that numerous distinct members comprise the stratigraphic assemblage and, that as a result of subsequent deformation, these units may be truncated, juxtaposed or folded.

Whole rock analyses indicate that most of the members of this succession plot within the calcalkaline domain of the Jensen Cation Diagram as rhyolites through to basalts. The preponderance of samples however, fall within the dacite and andesite fields. Observations from diamond drill holes and whole rock sampling show the succession to also include theoleiitic and locally ultramafic (komatiitic) units.

As with the underlying mafic metavolcanic assemblage the felsic-intermediate surface rocks have been folded about the north-south axis of the anticline, however contacts are difficult to identify at surface. Abutting the western contact of the Blackhawk stock, mapping, overburden drilling and diamond drilling show these units to extend well to the west and northwest of earlier interpretations, ie. West of lot 8 con I and II, Richardson Twp.

In addition to the quartz eye dacite fragmentals (crystal-ash tuff) which form the dominant portion of the succession, subordinate, intermediate, flows and possible quartz \pm feldspar intrusions of sub-meter to decimeter widths have been noted. Contacts between individual horizons in this part of the stratigraphic package are usually not well defined. Some local grading of quartz crystals occurs has been mapped.

The intercalated, fine grained, mafic flow/tuff horizons which have been intersected in several drill holes throughout the predominantly intermediate stratigraphic succession are up to 250 m thick. At surface these mafic units lie between lines 6+00W and 10+00W near the 8+00S tieline. These units exhibit a characteristic buff-rust weathering of the iron-carbonate mineralization and are the sites of the anomalous gold mineralization contained within narrow (cm scale) shears. The rocks are pyritiferous and silicified.

A subordinate but highly visible member of the succession is a matrix to fragment supported, blocky fragmental unit containing abundant groundmass chlorite enveloping the more siliceous clasts/pyroclasts. Typically these horizons contain 45-50 weight % SiO₂ and up to 25% pyrite by mode, in bands that possibly define bedding. These units stand out in outcrop as they weather to a dark brown to black gossan. They are tentatively interpreted to be debris flows.

A noteworthy feature of the upper diverse succession is the abundance of disseminated sulfide mineralization encountered, particularly within the quartz eye dacite member. It is evident on weathered outcrop surfaces as ubiquitous rusty patches. In drill core the pyrite is observed as fine disseminations and fracture fillings, locally (as in the "17 Zone") with abundant sphalerite. As fracture fillings, the sulphides are often associated with quartz, chlorite, and carbonate, implying a suspect epigentic origin. A pyrite content of approximately 3%-5% is ubiquitous across this area and measures > 2 km by > 1 km in size. In addition, subordinate pyrrhotite, chalcopyrite, galena, arsenopyrite and visible gold have been observed.

7.3 Felsic-Intermediate Intrusions

Abundant felsic-intermediate dykes cut the mafic stratigraphic succession. They are particularly abundant on a large area of outcropping mafic volcanics lying between 6+00 E and 11+00 E. Here they bifurcate and rejoin but generally strike at approximately 30° . The dykes range from decimeter to tens of metres in thickness. Textural and chemical similarities between these bodies and the intermediate metavolcanics stratigraphically above suggest that these dykes were feeders to the felsic-intermediate succession.

These dykes are light to medium gray on fresh surfaces and weather to a buff color. The groundmass is aphanitic with local quartz and or feldspar phenocrysts. They rarely contain more than a trace amount of sulphide mineralization. There is a strong similarity between the dykes and the fragmentals up-section; in all probability these units have been confused with one another.

7.4 Mafic-Ultramafic Intrusions

Narrow (often sub-meter) mafic intrusions are frequently intersected in drill holes. In general these bodies are aphanitic to fine grained, massive to weakly feldspar phyric. Concordant and discordant contacts occur while shearing at the contacts is common. Sulphide mineralization is generally limited to less than 2%. They are variably magnetic.

In contrast to the inconsequential mafic units mentioned above, diamond drilling has partially defined an irregular shaped, south dipping, discordant, layered mafic-ultramafic intrusion between lines 3+50W and 6+00W. This body is now known to extend from less than -75 m to greater than -200 m depth. Intercepts of up to 135m have been obtained. Lithologies identified within the lobes or septa which define the intrusion as intersected to date include (from hanging wall (south) to footwall (north)), k-spar-quartz bearing gabbro, gabbro, pyroxene phyric gabbro, pyroxenite and dunite. Contacts may be sharp, locally with reaction rims, or sheared/faulted. Chloritization is ubiquitous, while local serpentinization and steatization occurs also.

Although traced for over 350m along strike the body is discontinuous as a result of fault offsets and appears to bifurcate as a series of individual septa separated by lobes of host dacite; possibly indicating that intersections to date have encountered the periphery of a larger intrusion extending to depth.

The pyroxenite-dunite contains intercumulate sulphide mineralization in embayments. These sulphides appear to occur as distinct horizons and can comprise nearly 100% of the mode. Sulphides which have been identified either in hand specimens or by electron microprobes include; pyrrhotite, pyrite, chalcopyrite, pentlandite, tellurides including merenskyite, michenerite and hessite and the arsenide sperrylite. Economic grade assays in Cu, Ni, Au, Pt, Pd and Co have been obtained from the sulphide intersections obtained from NR-95-34 and NR-96-31,51 and 65 (see below).

DDH No.	Au g/t	Cu %	Ag g/t	Co %	Ni %	Pt g/t	Pd g/t
NR-95-34	2.90	0.78	7.1	0.060	1.08	0.91	2.11
NR-96-31	3.07	2.32	23.1	0.110	2.26	3.16	7.71
NR-96-51	0.55	2.68	32.4	0.760	2.76	3.4	8.05
NR-96-65	0.69	2.18	40.47	0.090	2.94	2.86	7.56
Weighted Ave	1.59	1.65	22.51	0.079	1.98	2.35	5.94
Mode	0.60	N/A	12	0.086	2.39	2.21	6,44
Median	0.07	1.20	19	0.760	1.93	2.16	5.47

34 Zone Ni-Sulphide Intersection Values

7.5 Black Hawk Stock

Where encountered the Black Hawk Stock is generally an equigranular, coarse grained, unfoliated, pink-grey monzonite of the marginal phase of the stock. Rarely observed are outcrops of the interior zone, a grey, porphyritic granodiorite phase. Outcroping of the Black Hawk stock tend to be larger than the metavolcanic ones and display significant positive relief.

The contact between the Black Hawk Stock and the enveloping metavolcanic rocks is generally unexposed. Numerous narrow aplitic and rare pegmatite dykes are observed to transect metavolcanic stratigraphy in proximity to the stock. These typically can be measured in decimetre to meter thicknesses. In the extreme south-east of the project area, near Blackhawk, the contact with the country rock is observed to be sharp and unmineralized.

7.6 <u>Diabase</u>

One Proterozoic diabase dyke was observed in outcrop near the southwest corner of Lot 4, Concession I Richardson Twp. It is approximately 10 m thick, weathers to a medium brown color, has a near vertical dip and strikes $230\Box$. The strike extension of this diabase is inferred from intersections in drill holes on the north half of Lots 5 and 6, Con I and the south half of Lot 6, Con II. The diabase is well defined where it passes in close proximity to the mafic-ultramafic body on line 4+00W. Note that this dyke appears to have a sinestral offset of several tens of metres near line 2+00W.

7.7 <u>Structural Geology</u>

The rocks underlying the project area in Richardson Township are interpreted to be folded about the nose of a south plunging anticline which is thought to be paired with the Dearlock Syncline located approximately 3 km to the west.

On the east limb of the anticline between lines 22+00E and 0+00 bedding measurements on the relatively abundant outcrop show the strike to be approximately 50° to 60° strike. The few measurements available between lines 0+00 and 8+00W show the strike to be almost east-west.

To the west of 8+00W no measurements are available but intersections obtained from overburden drilling and very rare pillow facing obtained from an outcrop in the west of the map area are consistent with strike to the northwest. Where measured, bedding varies from vertical to approximately 70°S, although near the nose of the anticline dips may be much shallower - between 50° and 60° south.

Regional foliation closely parallels the bedding and as one would expect deflected around the nose of the fold. Planar fabrics are well developed throughout the volcanic pile except in the coarser grained gabbroic basalt and felsic-intermediate dykes. Intense foliation/schistocity is developed on the large intermediate-felsic outcrop located on lines 19+00E and 20+00E. This sheared rock lies adjacent to the Black Hawk Stock and parallels the inferred contact of the intrusion. The fabric is also often folded and contorted and envelopes dismembered, boudinaged veins and dykes within the deformed intermediate volcanics.

Observations from diamond drilling show ubiquitous deformation of variable intensity. Since the foliation/schistocity obscures or completely masks the pre-existing texture structures can rarely be traced from section to section. Stripping and washing of outcrops between lines 6+00W and 10+00W has uncovered a number of narrow (cm scale), auriferous shears which strike 80-115° and dip 50-60° south. Further, more diffuse deformation in a wider (approximately dm scale) zone is noted from other trenches in the same area.

Faulting, based on lithological discontinuities and alteration observed in drill core are inferred in the south part of Richardson Township. Magnetic discontinuities may also imply faulting. Although more than one direction is assumed, a north - south set may have significantly modified

the stratigraphy. In particular, several faults transect the mafic-ultramafic body between lines 5+00W and 6+50W. These structures display dextral and reverse sense of motion and result in truncation and juxtaposition of the intrusive body.

8.0 Winter 1997 DIAMOND DRILLING

This report describes the results of diamond drill holes listed in Table 1 drilled during the months from January 26 through to April 7, 1997. During this period a total of 4,429.97m of core was recovered.

Two drilling contractors were engaged during this portion of the 1997 fall program; Ultra Mobile Diamond Drilling of Surrey, British Columbia and Bradley Brothers of Noranda, P.Q. Drill hole data is tabulated in tables 4 and 5 (Appendix II), the drill logs and assays are located in appendix III and IV, drill cross sections and the drill plan are located in the pocket. A brief description of the drill targets and results follows.

Drill holes NR- 97 4,5,6,14,16,17,18,19 and NRX 97 2,4:

This series of holes was directed towards examining the eastern limits of the #17 gold zone and to test the zone diagonally (see figure, next page).

The 17 Zone is a broad, diffuse zone of gold mineralization hosted by quartz eye dacite and ash tuffs. It has been traced from 2+00W to 11+50W; at either extremity the zone has narrowed significantly but it is open down-dip. Between 6+00W and 3+50W gold mineralization in dacitic metavolcanics is spatially associated with the mafic-ultramafic host to the 34 Zone copper-nickel sulphide mineralization.

The gold mineralization occurs within a structure which is coincident with the east-central part of a relative magnetic low. This prominent magnetic feature extends, apparently discordantly, from the Black Hawk Stock in the east to the Sabaskong Batholith in the west, a distance of some 11 km.

Nowhere is the 17 Zone known to outcrop, it is overlain by up to 50m of glacio-lacustrine clay and sand, and two till horizons; an earlier one (Labradorean) of northeast provenance overlain by one originating in the west (Keewatin).

The gold mineralization was discovered by drilling reverse circulation/rotasonic drill holes and sampling the Labradorean Till. These samples produced highly anomalous heavy mineral concentrates with respect to total contained sulphide and gold grain content. Subsequent diamond drilling up-ice from these overburden drill holes outlined a large central gold zone zone that strikes at approximately 100° and generally dips at approximately 55°S (both of these measurements are variable on individual cross-sections), it has an average true width of approximately 75m. Other smaller, satellite zones of similar inferred orientation and grade have

been intersected by this drilling, generally of 10m-20m thickness. All of these zones are enveloped by Au anomalous (with respect to average Archaean metavolcanics) metadacite (QID).

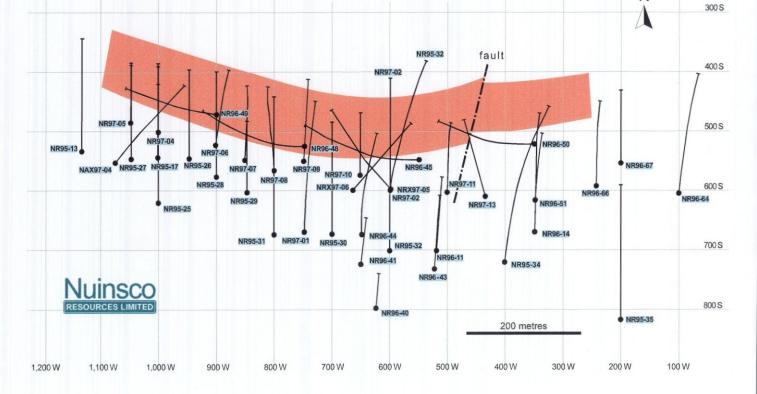
The boundaries of the 17 Zone with the enveloping host rock are gradational and cryptic. Assay values of greater than approximately 375ppb (the 95th percentile of the gold values from the enveloping quartz eye dacites) are used to define these boundaries. It is apparent that the zone extends to the bedrock-overburden interface, hence its' detection as a gold in till anomaly defined by overburden drilling. As yet the depth to which the 17 Zone extends is unknown, it has been tested to a maximum depth of about 240m, however subordinate zones have been encountered at greater depth, approximately 350m. Only limited drilling has been conducted on strike to the west and east of the known zone.

The precursor texture to the 17 Zone is often preserved. In overall appearance it is similar to the quartz eye dacite and ash and crystal tuff which envelops the zone. Bleaching of the rock is ubiquitous but heterogeneous and extends well beyond the defined boundaries of the zone. An erratic but locally well developed lepidoblastic texture defined by sericite and to a much lesser extent by chlorite, and by elongate quartz aggregates has been noted. The planar fabric may be folded or kinked and sulphide bands within this zone may also be folded. Evidence of widespread propyllitic alteration defined by the presence of carbonate, epidote, sericite, and chlorite is also evident. Possible potassic alteration has been noted by the local abundance of biotite, possible amphibole and k-spar(?). Further, a common (but not abundant) component of the mode is spessartine garnet that is spatially restricted to the 17 Zone and the periphery of the maficultramafic host to the 34 Zone (possibly as a thermal aureole?). In part the pre-existing texture is recrystallized, particularly with respect to quartz and sericite. Possible dynamic recrystallization has led to reoriented aggregates of quartz and sericite now paralleling the fabric.

Macroscopically the 17 Zone is composed of a heterogeneously bleached rock, usually with abundant sericite which comprises 20% to 50% of the mode as fine grains in subparrallel aggregates in the groundmass. Quartz is abundant at 25% to 50% of the modal mineralogy and occurs as a fine grained, groundmass component with the sericite. Quartz also occurs as subhedral to euhedral crystals up to 5mm in size which comprise a variable proportion of the mode and define grading. Feldspar occurs in the groundmass and less commonly as larger macroscopic grains, usually white-grey in colour. It has been identified as plagioclase in hand specimen and from limited thin section studies (Buckley, 1995), however microcline has also been identified (Putz, 1996). Feldspars are often observed to be the sites of significant replacement by sericite, chlorite, carbonate, quartz and epidote. Chlorite (clinochlore - Putz, 1996) is a ubiquitous but highly variable component.

Tourmaline is commonly noted within the zone, but on close examination of widely dispersed drill holes outside of the 17 Zone it also appears to be a common accessory constituent to the dacites. Tourmaline, therefore, may not be a particularly useful marker or indicator mineral. On the other hand pink-orange garnet (Mn bearing spessartine-almandine, O.D.M., 1996) is commonly observed within the 17 Zone but appears to be totally absent from rock adjacent to it.

Garnet content is not constant, the area in proximity to line 6+00W appears to be the most prolifically mineralized (at perhaps 2-3% of the mode). Garnet content decreases to the west, and although still abundant to the east it does appear to decrease in abundance from 6+00W. Garnet occurs as individual grains and small clusters within the altered dacite host but most spectacularly it occurs within or adjacent to quartz veins where individual crystals may attain a diameter of 5-10mm. Note that the abundance of garnets around 6+00W coincides with elevated gold assays in the east-west drill hole NR-96-45. Rare kyanite is observed in one drill hole (NR-95-28) as a vein constituent with quartz and carbonate (?). Isolated occurrences of fluorite are noted at several locations through the zone.


Sulphide mineralization typically comprises 5% to 10% of the mode of the zone. Pyrite predominates, accounting for 90% of the sulphide content. Other sulphide minerals identified include (in decreasing order of abundance), sphalerite, chalcopyrite, pyrrhotite, galena, and arsenopyrite. Native gold comprises a very small component of the metallic mineral suite and has only been observed in six or seven drill holes to date. A total of twenty separate occurrences have been noted in the core. Sulphide occurs as fine disseminations and aggregates in the groundmass, as fracture fillings up to 4-5 cm wide and as minor vein constituents. Disseminated sulphide comprises the greatest modal component, however fractures/bands can contribute a significant portion of the total sulphide content.

In the groundmass pyrite occurs as anhedral to subhedral grains, usually <1mm in size containing inclusions of chalcopyrite, sphalerite, pyrrhotite, galena and rutile (Buckley, 1995). Pyrite can also occur associated with quartz and chlorite in or adjacent to recrystallized quartz rich pods (Buckley, 1995). Pyritic banding occurs locally. This banding may be either bedding parallel or related to subsequent fabric development. A pyrite phase, composed of larger (>2mm) subhedral and euhedral grains comprises a small component of the pyrite population and may be primary phenocrysts or the result of recrystallization. Honey to dark brown sphalerite often occurs with the pyrite as anhedral aggregates, locally comprising a significant component of the sulphide mineralogy.

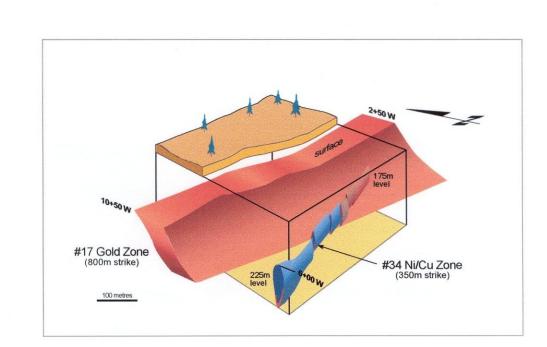
Sulphide mineralized bands traverse the silicate groundmass of the 17 Zone at variable orientations. In core taken from drill hole NR-96-45 it seems apparent that this irregularity in orientation is in part the result of folding, implying some degree of post sulphide mineralizing deformation in the 17 Zone. Again the dominant sulphide species within these bands is pyrite, but sphalerite, chalcopyrite, galena, and arsenopyrite have all been observed macroscopically and in greater relative abundance than in the groundmass.

Generally native gold occurrences occur within these features. Typically, but not exclusively, this banding will produce higher grade gold values. Silicate minerals are usually associated with the sulphide bands and are commonly composed of quartz, sericite, chlorite, and carbonate. Native gold is observed as blebs within the sulphide bands. Gold occurs as irregular patches, usually <1 mm in diameter, intimately intergrown with the sulphide minerals within the sulphide aggregates at grain boundaries or within sulphide grains (from petrography). More rarely, gold occurs freely in silicate host as individual grains or grain clusters.

Rainy River Project, "17" Gold Zone Plan View

The general character of the sulphide-gold mineralization in the 17 Zone appears to be comprised of two components. The diffuse "background" gold mineralization composed of fine disseminated sulphide and possible conformable bands/beds which will typically return assay values from <100 ppb to several hundred ppb. Transecting this groundmass are narrow vein/fracture sets with thin alteration haloes which generally return significantly higher values i.e. hundreds to thousands of ppb. A preferred orientation to this fracture set has yet to be determined

The assay values of the drilled holes are listed on the drill logs appended to the back of this report. The majority of the holes intersected gold values that average about 1 gram/tonne over varying widths


Drill holes NR- 97 24 to 34:

These holes were directed at geophysical targets thought to represent disseminated sulphides in bedrock. Only minor mineralization was encountered as a result of the drilling of these holes and no new zone of gold mineralization was located.

9.0 CONCLUSIONS

The diamond drilling that is the subject of this report comprises a small portion of an extensive and on-going exploration program in Richardson Township and the Rainy River region as a whole that started in 1993. As such, any conclusions drawn from such a small component of the program may very well be out of context with respect to the results obtained from the other components. The principal reason for reporting this work is as assessment.

Respectfully submitted,

1

Schematic #17 & #34 Zones

REFERENCES

- Bajc, A.F., 1991a. Till Sampling Survey, Fort Frances Area. Results and Interpretation. O.G.S. Study 56, 214pp, plus plans.
- Bajc, A.F., 1991b. Quaternary Geology, Fort Frances Rainy River Area. O.G.S. Open File Report 5794, 170pp, plus plans and sections.
- Blackburn, C.E., 1976. Geology of the Off Lake Burditt lake Area, District of Rainy River. O.D.M. Geoscience Report 140, 62pp, plus map.
- Jones, P. 1996, (March 1996, Diamond Drilling) Rainy River District, Kenora Mining Division N.T.S. 52 C/13 and 52D/16
- Jones, P. 1996, (March/April 1996, Diamond Drilling), Rainy River District, Kenora Mining Division N.T.S. 52 C/13 and 52D/16
- Jones, P. 1996 (April 1996, Diamond Drilling), Rainy River District, Kenora Mining Division N.T.S. 52C/13 and 52D/16.

Nuinsco Resources Rainy River Project

P.W. PITMAN CONSULTING GEOLOGIST

CERTIFICATE

I, Paul Pitman, residing at 51 Isabella Street, Brampton, Ontario, do hereby certify that;

- 1. I am a Consulting Geologist since 1983.
- 2. I am a graduate of Carleton University, Ottawa, having received an Honors B.Sc. in Geology in 1969 and have been practicing my profession continuously for over 25 years.
- 3. I have been a registered Fellow of the Geological Association of Canada since 1981, a period extending over two decades.
- 4. I have an indirect equity interest in Nuinsco Resources Limited by way of an option to purchase Nuinsco shares.
- 5. This report is written from materials obtained from Nuinsco Resources and from first-hand observations of field data.
- 6. As a consultant under contract to Nunisco Resources I consent to and authorize the use of the attached report and my name.

Dated at Brampton, this 9th day of February, 1998.

PWP Consulting Company 51 Isabella Street Brampton, Ontario, L6X 1P8 (905) 451-5057 (FAX) 451-5462

Nuinsco Resources Rainy River Project

APPENDIX I

SUMMARY TABLE

EXPLORATION EXPENDITURES STATEMENT OF COSTS

Table 3

EXPLORATION EXPENDITURES

(A) Direct Diamond Drilling Costs:

(i) Drilling (Ultra Mobile)

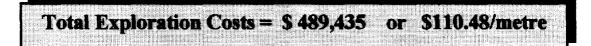
DDH 97-04, and 97- 05, 06 DDH 97-14 DDH 97-16 DDH 97-17 DDH 97-18 DDH 97-19 DDH 97 -25 DDH 97 -26		\$31,040.74 \$13,589 \$10,103 \$12,016 \$15,430 \$16,720 \$20,542.53 \$10,053	DDH 97 DDH 97 DDH 97 DDH 97 DDH 97 DDH 97 NRX 97 NRX 97	28 29 30 31 to 34 02	\$14,831.22 \$17,346 \$12,579.94 \$16,051.41 \$56,786.15 \$15,386.61 \$4,667 <u>\$19,000.05</u> \$ 286,142.65
 (ii) Bradley Bros. (Casing) Demobilization of drills Sperry Sun Rental (ii) Assaying; 2,154 samples @ \$23/samples 		Ís	\$19,879.85 \$5,000.00 \$4,004.07 \$49,542.00		
(iii)	Core Saw Core Racks Core Trays		\$988.70 \$5,722.05 \$1,483.11		
(B) <u>G</u>	Total Direct		\$ 86,619.78		
P. Jon C. Wa S. Wa O. Bu	chibald (V.P. Exploratio les (Senior Geologist) agg (Project Geologist) mer (Geologist) rnell (Core Grabber) inston, B. Burnell (Helpo		\$6,000 \$15,925 \$11,412.5 \$11,600 \$7,956 \$1,210	5	
	Total				\$ 54,103.50

EXPLORATION EXPENDITURES (continued)

(C) Other Field Services

Line cutting	\$16,228.
Drafting (autocad)	\$5,688.40
Lakefield Research	\$8,927.50
Crone Geophysics	\$3,470.12

Total


\$ 34,314.02

(D) Camp/Transport Support Costs & Services

Camp and field expenses	\$19,175.12
GMC Truck rentals \$550 x 2 for 2.0 months	\$2,200
Gasoline	\$3,041
House (camp) rental	\$1,400
Phone	\$1,184.66
Fuel oil	\$441.68
Hydro	\$817 .31

Total

\$ 28,259.78

APPENDIX II

SUMMARY TABLES DRILL LOCATION INFORMATION

Drill <u>Hole No.</u>	Grid Latitude	Departure	Depth	Work		ation
NR-97-04	10+00 W [~]	5+00 S (50°)	175.50	26/01 - 28/01	Lot 6 E1/2,	Con. 1
NR-97-05	10+50 W ັ	4+88 S (50°)	160.30	28/01 - 30/01	Lot 6 E1/2,	Con. 1
NR-97-06	9+00 W∕	5+25 S (50°)	193.80	31/01 - 02/02	Lot 6 E1/2,	Con. 1
NR-97-14	11+00 W	5+50 S (50°)	224.03	20/02 - 23/02	Lot 6 E1/2,	Con . 1
NR-97-16	11+00 W	4+75 S (50°)	160.02	26/02 - 28/02	Lot 6 E1/2,	Con. 1
NR-97-17	11+50 W·	4+75 S (50°)	199.64	04/03 - 06/03	Lot 6, E1/2,	Con. 1
NR-97-18	9+50 W∕	6+00 S (50°)	257.55	08/03 - 10/03	Lot 6, E1/2,	Con. 1
NR-97-19	14+00 W	4+50 S (50°)	275.84	10/03 - 14/03	Lot 6, W1/2,	Con. 1
NR-97-24	28+00 W	1+60 N (50°)	184.40	21/03 - 25/03	Lot 8, S1/2, S1/2	Con. 2
NR-97-25	44+00 W	10+60 S (55°)	196.90	23/03 - 25/03	Lot10, S1/2,	Con. 1
NR-97-26	28+00 W	0+35 N (50°)	175.87	25/03 - 27/03	Lot 8, S1/2, S1/2	Con. 1
NR-97-27	43+00 W	10+10 S (55°)	199.90	26/03 - 27/03	Lot 10, S1/2,	Con. 1
NR-97-28	27+00 W	1+50 S (50°)	275.40	27/03 - 05/04	Lot 8, N1/2, S1.2	Con. 1
NR-97-29	42+00 W	9+40 S (60°)	199.90	27/03 - 28/03	Lot10, S1/2,	Con. 1
NR-97-30	41+00 W	8+75 S (50°)	211.15	28/03 - 30/03	Lot 9, W1/2, S1/2	Con. 1
NR-97-31	41+00 W	9+30 S (50°)	273.10	30/03 - 01/04	Lot 9, W1/2, S1/2	Con. 1
NR-97-32	41+00 W	7+25 S (50°)	273.10	01/04 - 03/04	Lot 9, W1/2, N1/2	Con. 1
NR-97-33	38+00 W	5+20 S (50°)	202.90	03/04 - 05/04	Lot 9, W1/2, N1/2	Con. 1
NR-97-34	39+00 W	5+50 S (50°)	236.50	05/04 - 07/04	Lot 9, W1/2, N1/2	Con. 1
NRX-97-02	10+75 W ~	⁄ 5+95 S (50°)	93.27	30/01 - 31/01	Lot 6, E1/2,	Con. 1
NRX-97-04	10 +75 W ⁻	5+50 S (50°)	260.90	03/02 - 05/02	Lot 6, E1/2,	Con. 1

Table 4Drill Hole Locations

4,429.97 meters

Table 5Meters Drilled/Option Agreements/Assessment CreditsRichardson Township

Concession	Lot	Meters	Parcel. No.	Owner	Option (Date) (A	(\$) ssessment)
						<u> </u>
1	6, E1/2	1,725.01	14408	Elving S.	Aug. 06/93	\$ 190,580
1	6, W1/2	275.84	14407	Morrison, J.	Aug. 03/93	\$ 30,476
1	10, S1/2	596.70	12083	Teeple D. I.	Aug. 09/94	\$ 65,925
1	8, S1/2, S1/2	360.27	5483	Georgeson, F.	May 02/92	\$ 30,426
2	8, N1/2, N1/2	275.4	22496	ARDA	July 01/93	\$ 39,805
1	9, W1/2, S1/2	484.25	17752	Corley, R.	Dec. 29/94	\$ 53,503
1	9, W1/2, N1/2		14665	Caul, W.	Oct. 08/92	\$ 78,720
		4,429.97		-		\$489,435

See attached Nuinsco Agreements next page

(

*

APPENDIX III

EXPLORATION DATA

DIAMOND DRILL HOLE LOGS

DIAMOND DRILL LOG

Collar Collar	lo.: NR Eastin North	ngs: -1075.00 ings: -595.00	Collar Inclination: -5 Grid Bearing: 45.00			Date	ged by: e: 30/01	/97 - 31	/01/97	
Collar Grid:	Eleva Rich	tion: 0.00	Final Depth: 93.20 m	etres		Dowr	n-hole S	urvey: S	Sperry S	un
				· - - +			 ASS/	 		
FROM	ТО 26.9	LITHOLOGICAL DESCRIPTI OVERBURDEN (OVD)	ON	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
26.9	39.26	QUART2-EYE DACITE (QID)		25.90	27.00	1.10	50	93	40	0.3
		Medium to dark grey, fine grained	groundmass. Blue-grey quartz	27.00	28.50	1.50	15	7	34	0.1
		phenocrysts comprise 5-8% of the	rock (up to 1cm, but most are	28.50	30.05	1.55	10	20	31	0.1
		< 5mm) and are distributed evenly	throughout the groundmass.	30.05	31.54	1.49	10	30	30	0.1
		There are only minor feldspars ph		31.54	33.15	1.61	3	16	27	0.1
		altered, recognized by mm scale s		33.15	33.93	0.78	3	8	27	0.1
		bleaching. Alteration increases s		33.93	34.70	0.77	35	12	20	0.1
		contact, and the weak green color		34.70	36.00	1.30	150	47	29	0.1
		Moderate to strong mm scale carb	•	36.00	37.50	1.50	3	60	30	0.1
		throughout the unit. Less frequen	tl y, there are mm scale quartz	37.50	38.40	0.90	30	94	33	0.4
		fractures.		38.40	39.25	0.85	5	34	37	0.1
		There is 1-3% fine grained py eit groundmass, or in minor mm scale and fractures.								
		The weak foliation ranges from 65 contact is 85 deg to the CA.	to 75 deg to the CA. The lower							
•		34.22 - 34.28 6cm band with 10%	finely disseminated py.							
39.26	45.32	MAFIC ASH TUFF (MAF. ASH TUFF)		39.25	40.60	1.35	30	105	126	0.1
		Light to medium green, aphanitic	to fine grained groundmass.	40.60	41.87	1.27	20	100	110	0.1
			may be recognized (each < 1mm).	41.87	42.95	1.08	3	155	110	0.1

.

.

· •

1

HOLE No: NRX9702

_

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NRX9702

•

¥

						 AS Si			
FROM	то	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cuppm	Zn ppm	Ag ppm
FROM	10	The variable colour banding (primary bedding?) suggests that the	42.95	44.50	1.55	20	106	211 pp. 145	0.1
		unit is tuffaceous. Moderate alteration is recognized by mm scale	44.50	45.32	0.82	30	100	168	0.1
		foliation which is the product of chlorite-rich lamellae.	44.50	43.30	0.02	50			•••
		Moderate guartz veins (widest is 3 cm) occur throughout the unit.							
		Minor mm scale carbonate fractures also occur randomly							
		throughout.							
		There is tr-2% fine grained disseminated py in the groundmass,							
		and in minor mm scale fractures.							
		The moderate foliation (bedding) is 65-70 deg to the CA. The							
		lower contact is 80 deg to the CA.							
		40.6 - 42.24 Spotted (up to 10%) with fine grained white grains (< 1mm). Most react with acid and may be carbonates replacing relic feldspar phenocrysts. Some of the grains are light pink and may be garnets.							
45.32	56.77	QUART2-EYE DACITE (OID)	45.32	46.60	1.28	3	11	52	0.1
		Medium grey to pink, aphanitic to fine grained ash-rich	46.60	48.10	1.50	35	8	60	0.1
		groundmass. Blue-grey to purple quartz eyes comprise 3-5% of the	48.10	48.85	0.75	3	21	56	0.1
		rock (< 6mm) and are distributed evenly throughout the	48.85	50.50	1.65	3	31	51	0.1
		groundmass. Feldspar phenocrysts are rare. There is variable	50 .50	52.05	1.55	3	9	50	0.1
		(over meter intervals) hematite staining to the entire rock which	52.05	53.60	1.55	5	8	52	0.1
,		appears to be emanating from mm scale fract. The unit is weakly	53.60	55.10	1.50	3	4	43	0.1
		altered, recognized by sericite and chlorite lamellae. There is	55.10	55.88	0.78	3	34	40	0.1
		also evenly to irregularly spaced mm scale bands that occur							
		through most of the unit. The bands are white to pink and are							

associated with micro-fractures (slips?) parallel to the bedding.

They do not react with acid. Moderate mm scale carbonate

.

.

HOLE No: NRX9702

Page 2

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NRX9702

.

.

.

2

.

Page 3

					ASSA	YS		
rom to	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppa
	fractures occur randomly throughout the unit; there may be							
	chlorite in some of the fractures.							
	Tr-1% finely disseminated py is distributed evenly in the							
	groundmass.							
	The foliation and banding ranges from 60 to 70 deg to the CA.							
	The lower contact is 60 deg to the CA.							
	48.9 - 50.5. Broken core. 3cm of possible fault gouge at 49.7m.							
	Contacts are irregular.							
	54.8 - 56.77 The groundmass becomes more chlorite rich.							
77 93.2	INTERMEDIATE CRYSTAL TUFF (XI TUFF)	55.88	56.80	0.92	3	16	40	0
	Dark grey to green, fine to medium grained groundmass. White to	56.80	58.15	1.35	10	16	42	0
	dark blue quartz phenocrysts comprise 3-5% of the rock (up to	58.15	59.70	1.55	10	40	22	0
	<pre>1cm, but most are < 5mm) and are distributed evenly throughout</pre>	59.70	60.40	0.70	5	21	20	0
	the groundmass. Portions of the unit have up to 3% feldspar	60.40	61.47	1.07	10	14	16	0
	phenocrysts which may reach 5mm in size (see description below).	61.47	62.90	1.43	5	15	11	C
	The unit is moderately altered, recognized by mm scale sericite	62.90	64.25	1.35	10	51	28	C
	and chlorite lamellae, bleaching, and recrystallization of the	64.25	65.65	1.40	25	13	20	C
	groundmass. The groundmass is relatively chlorite-rich (mafic);	65.75	67.14	1.39	15	30	21	0
	darker than a typical dacite. Moderate to strong mun scale	68.80	70.35	1.55	55	36	21	0
	carbonate fractures occur throughout the unit. The fractures are	70.35	71.90	1.55	65	53	22	0
	either parallel to the foliation, or form a dense network of	75.35	76.77	1.42	35	74	22	0
	irregular fractures. Less frequently, there are mm scale chlorite-	76.77	77.70	0.93	190	26	21	C
	filled fractures.	77.70	78.58	0.88	215	61	21	C
	Excluding where described below, there is tr-1% fine grained	78.58	79.50	0.92	· 35	16	20	C
	disseminated and fracture-controlled py. There are also minor	79.50	81.00	1.50	80	29	22	C

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NRX9702

à.

ð

					ASS	AYS		
FROM T	O LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
	mm scale sulphide-rich bands with 1-2% py. The bands are either	81.00	82.30	1.30	115	52	21	0.3
	parallel to the folicition, or cross-cut it.	82.30	83.35	1.05	85	41	21	0.2
	The moderate foliation ranges from 65 to 75 deg to the CA.	83.35	84.27	0.92	750	75	45	1.7
	-	84.27	85.00	0.73	755	50	34	1.9
	57.66 to 71.3 Feldspar phyric. 2-4% whitish-yellow feldspar	85.00	85.75	0.75	225	83	22	0.7
	phenocrysts that may reach 5mm in size. The grains are altered	85.75	86.40	0.65	380	68	25	1.3
	to sericite and/or saussurite. Lower contact is gradational.	86.40	87.50	1.10	70	59	23	0.4
		90.20	91.50	1.30	200	26	22	0.9
	57.66 - 67.55 Strong occurrence of mm scale network of	91.50	93.20	1.70	105	41	23	0.1
	interconnected fractures. The fractures are cemented with							
	carbonate, and may signify minor brecciation. These fractures							
	are less common further down the hole.							
	60.75 - 60.9 Two guartz veins (each < 1cm), one of which is							
	enriched in tourmaline.							
	61.47 - 62.9 2-3cm Milky white guartz vein. The vein includes							
	trace occurrences of tourmaline, and possibly fluorite. The vein							
	is offset (slip?) 2cm at 62.15m. Contacts of the vein are 0-10 deg							
	to the CA.							
	67.55 - 67.8 A 6cm milky white quartz vein. No sulphides. The							
	67.55 - 67.8 A 6cm milky white quartz vein. No sulphides. The contacts are 35-40 deg to the CA.							

77.7 - 85.9 Stronger bleaching than remaining unit. Bleaching is associated with sericite-rich lamellae. The lower contact may be a bedding contact.

.

.

HOLE No: NRX9702

DIAMOND DRILL LOG

-

EDOM	-				77.014			ASS		1	
FROM	TO	83.4 - 84.87 A trace sph?) and is essentially p	leaser amounts of marallel to the of the CA. From (filled predominately with py (and filled predominately with py (and of carbonate and chlorite. The vein CA, but the lower contact is 84.87 to 86.6 there is 2-3%	FROM	TO	WIDTH	Ац ррб	Cu ppm	Zn ppm	Ag pp
	90.9 - 91.2 A 2- approx. 10 deg to DOWN		illed with tourmaline. The vein is		•						
		DEPTH	INCLINATION	BEARING							
		28.70	- 50.00	45.00							
		76.20	-48.00	42.50							
		93.20	-47.00								

.

.

Collar Inclination: -50.00

Final Depth: 260.90 metres

DIAMOND DRILL LOG

Grid Bearing: 45.00

PROPERTY: Richardson HOLE No.: NRX9704 Collar Eastings: -1075.00 Collar Northings: -550.00 Collar Elevation: 0.00 Grid: Rich

ASSAYS FROM то LITHOLOGICAL DESCRIPTION FROM TO WIDTH Auppb Cuppm Znppm Ag ppm 0.0 46.9 OVERBURDEN (Ovb) 46.9 71.6 INTERMEDIATE CRYSTAL TUFF (XI TUFF) 47.50 49.00 1.50 20 6 37 NIL 1.50 31 NIL Dark grey to green, fine grained groundmass. Dark blue to grey 49.00 50.50 5 4 quartz phenocrysts comprise 5-8% of the rock (up to 1cm, but most 50.50 51.60 1.10 NII. 6 31 NIL are < 5mm) and are distributed evenly throughout the groundmass. 51.60 53.30 1.70 NIL 6 29 NIL Feldspar phenocrysts are rare and smaller. The unit is moderately 53.30 54.75 1.45 10 2 23 0.2 altered, which is recognized by a well developed foliation 54.75 55.85 1.10 30 60 36 0.3 consisting of mm scale sericite and lesser chlorite lamellae. The 55.85 57.33 1.48 30 4 24 NIL foliation and minor bleaching produce a weak banding, but the 59.70 61.20 1.50 100 13 26 0.3 rock is relatively homogeneous. The unit is strongly fractured by 61.20 62.70 1.50 130 8 24 0.4 230 mm scale carbonate-filled veins. The fractures are either 62.70 64.00 1.30 42 26 0.6 parallel to the foliation or form a dense network of transecting 64.00 65.30 1.30 105 41 23 0.4 170 fractures. There are minor mm scale fractures that are filled 66.45 1.15 73 31 0.4 65.30 with tourmaline and/or quartz. The fractures are sub-parallel to 66.45 67.40 0.95 105 12 31 0.2 the CA. Less commonly, there are mm scale chlorite-filled 67.40 68.80 1.40 70 16 28 0.3 fractures. There is 1-3% fine grained py that is found in bands parallel to the foliation, disseminated in the groundmass, or in minor fractures.

The foliation ranges from 75 to 80 deg to the CA. The lower contact is 70 deg to the CA.

49.37 - 49.54 Milky white guartz vein with minor tourmaline. The

HOLE No: NRX9704

Logged by: S. Warner

Date: 03/02/97-05/02/97

Down-hole Survey: Sperry Sun

DIAMOND DRILL LOG

Page 2 _____ ASSAYS FROM то LITHOLOGICAL DESCRIPTION FROM то WIDTH Auppb Cuppm Znppm Ag ppm upper and lower contact are 60 deg to the CA. 51.58 to 51.69 Fine grained, medium grey ash-rich bed (< 1% blue guartz eyes). Sharp contacts at 75 deg to the CA. 52.85 to 53.03 Fine grained, medium grey ash-rich bed. Similar to previous unit. 53.1 to 53.28 Fine grained, medium grey ash-rich bed. Similar to previous units with minor py. 54.73 to 55.88 Fine to medium grained, medium grey ash-rich tuff. Less than 1% quartz eyes. Minor mm scale carbonate fractures and trace py. Similar to previous ash beds, but coarser grained. Upper contact is 60 deg to the CA, and the lower contact is 80 deg. 67.75 - 67.82 Minor QID bed with 8-10% quartz eyes (< 5mm). The rock is strongly bleached. The upper and lower contacts are 85-90 deg to the CA. 70.57 - 70.75 Milky white quartz vein with moderate tourmaline. The upper and lower contacts are 60 deg to the CA. 71.6 83.0 INTERMEDIATE ASH/CRYSTAL TUFF (ASH/XI TUFF) 71.90 73.40 1.50 56 0.2 40 5 77 Medium to dark grey, aphanitic to fine grained groundmass. Grey 73.40 74.90 1.50 25 10 0.2 quartz eyes comprises up to 2% of the rock (most < 1%), and are 74.90 30 107 0.2 76.40 1.50 34 distributed evenly throughout the groundmass (< 5mm). The unit is 76.40 77.90 1.50 10 18 100 NIL

HOLE No: NRX9704

PROPERTY: Richardson HOLE No.: NRX9704

DIAMOND DRILL LOG

PROPERTY: Richardson HOLE No.: NRX9704

.

\$

١

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		weakly to moderately altered, which is recognized by mm scale	79.00	80.50	1.50	35	12	46	0.3
		sericite lamellae, and less commonly, chlorite lamellae and	80.50	82.00	1.50	35	23	44	0.3
		patches. Bleaching of the sericite lamellae produces banding in	82.00	83.00	1.00	45	9	50	0.3
		the upper half of the unit. Bleaching is weaker towards the							
		bottom. There are moderate mm scale carbonate-filled fractures,							
		and three to four cm scale milky white quartz veins.							
		There is tr-1% finely disseminated py throughout the groundmass.							
		The foliation is 65-70 deg to the CA.							
		78.92 to 83.0 XI TUFF. The same unit as from 46.9 to 71.6m. See							
		description above. The carbonate fractures are just as intense.							
		Sub-unit includes a milky white quartz vein from 79.4 - 79.7m,							
		with trace tourmaline. The vein has irregular contacts that are							
		approx. 60 deg to the CA, and there is chloritic alteration at							
		the lower contact.							
3.0	103.87	QUARTZ-EYE DACITE (QID)	84.10	85.60	1.50	50	22	54	0.
		Medium grey, fine grained groundmass. Grey-blue quartz eyes	93.20	94.75	1.55	105	13	75	0.0
		comprise 3-5% of the rock, and are distributed evenly throughout	94.75	96.30	1,55	50	15	54	0.1
		groundmass. Feldspar phenocrysts are rare. Excluding where	96.30	97.50	1.20	25	10	64	0.
		described below, the unit is homogeneous, and weakly altered.							
		Minor mm scale sericite lamellae produce a weak foliation. There							
		are minor mm scale carbonate-filled fractures, and grey-white							
		quartz veins (at least one has trace tourmaline).							
		Tr-1% finely disseminated py is distributed evenly throughout the							

groundmass.

.

.

The weak foliation is 65-75 deg to the CA.

HOLE No: NRX9704

DIAMOND DRILL LOG

PROPERTY: Richardson HOLE No.: NRX9704

÷.

						ASS	AYS		
FROM	то	LITHOLOGICAL DESCRIPTION 83.0 - 86.25 The alteration is stronger than the remaining unit. A moderate banding is produced resulting from seritization and associated bleaching.	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
03.87	133.83	QUARTZ-EYE DACITE (QID)	105.40	106.27	0.87	110	11	60	0.6
		Medium grey, fine grained groundmass. Grey-blue quartz eyes	106.27	107.20	0.93	180	19	40	1.0
		comprise 3-5% of the rock (< 5mm), and are distributed evenly	107.20	108.50	1.30	95	15	48	0.9
		throughout the groundmass. Feldspar phenocrysts are rare. This	113.25	114.25	1.00	725	22	252	11.0
		unit is similar in composition to the previous unit, but is	114.25	115.70	1.45	85	16	92	1.0
		distinguished by a well developed light/dark banding. The banding	117.60	119.10	1.50	25	14	80	0.4
		is a product of mm scale ser. lamellae that are weakly bleached,	119.10	120.60	1.50	140	20	140	0.9
		suggesting an increase in alteration. There are minor mm scale	120.60	121.70	1.10	130	31	60	0.9
		carbonate fractures throughout. Minor chloritic alteration is	123.70	124.60	0.90	80	21	158	0.
		associated with some of the carb veins. There are rare white	126.70	128.25	1.55	115	28	114	0.
		quartz veins (< 1cm).	128.25	129.80	1.55	765	28	95	1.0
		In the upper portion of the unit there is tr-1% fine grained py	129.80	131.30	1.50	75	14	76	0.
		either disseminated in the groundmass, or in mm scale bands that	131.30	131.90	0.60	40	23	62	2.
		associated with the sericite lamellae. Py mineralization	131.90	132.80	0.90	25	19	56	0.
		increases to $1-3$ towards the bottom of the unit. The bands (foliation) are 75-80 deg to the CA.	132.80	133.80	1.00	355	36	248	0.

115.8 to 115.9 Minor medium grey ash-rich bed. Fewer quartz eyes (~1%) than surrounding rock. Contains 1% py. The contacts are < 60 deg to the CA.

132.09 - 132.36 A milky white quartz vein. Within the vein there is chloritic and carbonate alteration. Upper contact is 60 deg to the CA, and the lower contact is broken but steep. For

.

HOLE No: NRX9704

DIAMOND DRILL LOG

PROPERTY: Richardson HOLE No.: NRX9704

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppr
		50cm below the lower contact there is strong seritization and							
		bleaching to the rock.			•				
3.83	153.06	INTERMEDIATE ASH TUPF (ASH TUFF)	133.80	135.05	1.25	655	59	620	4.
		Medium grey, aphanitic to fine grained groundmass. Grey-blue	135.05	136.60	1.55	230	24	118	0
		quartz eyes comprise < 1% of the rock (< 5mm), and are	136.60	137.50	0.90	130	38	120	0
		distributed evenly throughout the groundmass. Feldspar	137.50	138.90	1.40	320	18	145	0
		phenocrysts are rare. The unit is well banded (similar to	138.90	140.10	1.20	120	17	83	(
		previous unit), which are recognized by mm scale sericite/	140.10	141.50	1.40	195	80	148	(
		sulphide lamellae and associated bleaching. The bands probably	141.50	142.50	1.00	200	63	130	(
		represent primary bedding and compositional variations.	142.50	144.00	1.50	125	82	105	
		The unit is moderately altered, and sericitization and	144.00	145.50	1.50	300	20	124	
		silicification increase in intensity towards the bottom of the	145.50	146.45	0.95	225	42	210	
		unit. There are minor mm scaled carbonate- and quartz-filled	146.45	147.60	1.15.	365	181	1150	
		fractures throughout the rock.	147.60	148.60	1.00	15 60	35	112	I
		The sulphide mineralogy is composed almost entirely of py	148.60	149.60	1.00	550	50	390	
		(3-5%), although there may be tr sph. The py is found in mm	149.60	150.85	1.25	530	22	298	
		scale bands parallel to the foliation, dispersed in the	150.85	152.10	1.25	3860	260	1880	
		groundmass, and less frequently in minor fractures as small, subhedral to euhedral grains.	152.10	153.06	0.96	280	39	246	
		-							

The foliation is 65-70 deg to the CA, although some sulphide bands are at a shallower angle.

138.3 to 138.9 The sub-unit contains small (< 2mm) white grains that may be altered feldspar phenocrysts (up to 4% of the rock).

144.07 to 144.12 Ash-rich bed, but darker color (compositional variations?). Contacts are parallel to the foliation.

HOLE No: NRX9704

DIAMOND DRILL LOG

PROPERTY: Richardson

·. ·

¥

1

.

DLE NÒ.	.: NR	X9704							Page
		· · · · · · · · · · · · · · · · · · ·				ASSA			
ROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pi
		145.26 to 145.27 Very minor, but distinct, unit with abundant quartz eyes (< 5mm each). The contacts are parallel to the foliation.							
		148.6 - 148.9 A 4-5cm wide milky white quartz vein. The vein is approx. 45 deg to the CA. At the lower contact the vein ends abruptly and appears to be cut by a 1cm wide carbonate vein. The core is broken and altered at the lower contact.							
		152.91 - 153.06 The lower contact of this unit contains three bands (1-2cm wide) of soft and very altered rock that may be fault gouge. The bands are parallel to the foliation.							
3.06 1	72.1	QUARTZ-EYE DACITE (QID)	153.06	154.20	1.14	155	23	148	0
		Medium grey, fine to medium grained groundmass. Grey-blue quartz	154.20	155.70	1.50	320	70	322	1
		eyes comprise 1-3% of the rock, and are distributed evenly	155.70	157.20	1.50	1240	39	97	1
		throughout the groundmass (< 5mm). Altered, white feldspars are	157.20	158.35	1.15	3580	11	120	(
		visible in the relatively coarse groundmass, but are smaller than	158.35	159.75	1.40	2070	13	378	(
		the quartz eyes (up to 2mm). This unit is more altered than any	159.75	160.95	1.20	295	10	132	(
		of the above units. There are well developed bands (beds?), which	160.95	162.10	1.15	1290	18	166	(
		are recognized by mm scale sericite/sulphide lamellae and	162.10	163.30	1.20	3800	26	380	C
		associated bleaching. The unit is also moderately to strongly	163.30	164.42	1.12	75	7	65	(
		silicified which occurs in bands parallel to the foliation or in	164.42	166.00	1.58	130	8	100	(
		patches giving portions of the unit a mottled texture.	166.00	167.20	1.20	190	12	47	(
		Throughout the unit there is a strong occurrence of cm scale	167.20	168.30	1.10	135	16	20 0	Ň
		milky white quartz veins (see description below). There are also	168.30	169.40	1.10	230	40	262	C
		minor mm scale carbonate-filled fractures.	169.40	170.90	1.50	395	23	276	0

DIAMOND DRILL LOG

PROPERTY: Richardson HOLE No.: NRX9704

ł

.

					ASS	AYS		
rom to	LITHOLOGICAL DESCRIPTION The unit contains 3-5% finely disseminated py and tr sph. The py is found in ng scale bands parallel to the foliation, and disseminated in the groundmass. Less frequently, py can be found	FROM 170.90	ТО 172.10	WIDTH 1.20	Au ppb 460	Cu ppm 36	Zn ppm 130	Ag ppr 0.0
	in minor, irregular, and undulating fracture that are oblique to the foliation. Lastly, py is closely associated with many of the milky white quartz veins in patchy aggregates. The foliation and banding are 60–75 deg to the CA.							
	158.94 - 167.9 Ten to twelve milky white quartz veins that range in width from 2-20cm. Generally, the contacts of the veins have coarser lamellae of sericite, minor chlorite, and aggregates of py. There are also minor carbonate fractures within the quartz. Most of the veins have well defined sharp contacts. The largest vein, on the other hand, has undefined contacts and the foliation appears to irregularly folded and/or altered. The veins, generally, cross-cut the foliation. There is a strong occurrence of py and tr sph near and within the largest vein. For at least 5m below the quartz veins the core is moderately broken, parallel to the foliation.							
.1 195.	39 ASH TUFF/QUARTZ-EYE DACITE (ASH TUFF/QID)	172.10	173.00	0.9 0	315	31	48	0
	Medium grey, aphanitic to fine grained groundmass. Grey-blue	173.00	174.03	1.03	1110	44	145	0
	quartz eyes comprise < 1% of the rock, and are scattered	174.03	175.40	1.37	950	25	175	N
	throughout the groundmass (< 5mm). Over cm intervals, the unit	175.40	176.93	1.53	765	30	185	0
	may be feldspar phyric. There may be 3-4% soft, altered, and	176.93	178.23	1.30	255	21	208	N
	white relic feldspars (< 4mm). Similar to previous unit, but	178.23	179.33	1.10	560	17	145	0
	fewer quartz eyes. The unit is moderately altered, but it is only	179.33	180.08	0.75	170	67	560	0
	weakly banded (bedded), resulting from mm scale sericite/	180.08	180.80	0.72	510	45	67	

HOLE No: NRX9704

DIAMOND DRILL LOG

PROPERTY: Richardson HOLE No.: NRX9704

1

.

•

					ASS	AYS		
OM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
	sulphide lamellae. Moderate silicification occurs in patches to	180.80	182.10	1.30	590	60	610	0.9
	irregular bands. The upper half of the unit contains 7–9 milky	182.10	183.00	0.90	280	26	2600	1.0
	white quartz veins (1-20 cm wide). Some have sharp contacts, but	183.00	184.45	1.45	470	102	1150	1.
	generally the contacts are irregular and are cross-cutting the	184.45	185.80	1.35	295	17	960	0.
	foliation. Most of the veins contains tr-1% gal and py. There are	185.80	187.20	1.40	810	72	1550	0.
	also minor mm scale carbonate-filled fractures.	187.20	188.77	1.57	1150	24	495	1.
	This unit has 2-4% py and tr gal and cpy (gal mostly occurs in	188.77	189.50	0.73	2560	30	332	2.
	quartz veins). The py is found in mm scale bands parallel to the	189.50	190.80	1.30	2580	205	3100	4.
	foliation, and as finely disseminated grains in the groundmass.	190 .80	192.30	1.50	1390	38	520	1.
	Cpy is recognized in some of the coarser sulphide bands. There	192.30	193.80	1.50	1230	51	350	1.
	are also rare py-filled fractures (-1mm) that cross-cut the	193.80	194.80	1.00	900	25	410	1.
	foliation. The sulphide mineralization decreases in intensity	194.80	195.39	0.59	885	31	980	1.
	slightly towards the bottom of the unit.							
	The weak foliation and banding ranges from 60-70 deg to the CA.							
	The lower contact is gradational with a gradual increase in the							
	concentration of quartz eyes.							
	180.2 - 180.47 There is 1cm of fault gouge at the upper and							
	lower contacts of the sub-unit. The rock in between is altered							
	and bleached. The upper and lower contacts are sharp and sub-							
	parallel to the foliation; 80-90 deg to the CA.							
.39 208.18	QUARTZ-FELDSPAR PORPHYRY (QFP)	195.39	196. 55	1.16	930	73	1550	3
	Medium grey, fine to medium grained groundmass. Grey-blue guartz	196.55	197.37	0.82	340	91	980	2
	eyes comprise 2-4% of the rock, and are distributed evenly	197.37	198.93	1.56	450	97	2400	2
	throughout the rock (< 5mm). White feldspar comprises 3-5% of the	198.93	199.90	0.97	320	60	880	2
	rock and are also distributed evenly (< 5mm). The feldspars are	199.90	200.95	1.05	. 410	96	3300	2
	soft and altered (carb. and/or mica's). There is a moderate	200.95	201.45	0.50	510	245	5600	2

HOLE No: NRX9704

DIAMOND DRILL LOG

PROPERTY: Richardson HOLE No.: NRX9704

.

•

.

					ASS	AYS		
FROM T	O LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
	foliation developed in the rock comprised of evenly spaced mum	201.45	202.40	0.95	875	80	1480	4.2
	scale sericite langilar. The unit is also weakly to moderately	202.40	203.65	1.25	265	98	780	1.8
	silicified, occurring in irregular bands. There is a strong	203.65	204.94	1.29	330	116	920	1.5
	occurrence of milky white quartz veins (up to 35cm wide)	205.70	206.90	1.20	235	70	380	1.1
	throughout the unit. The contacts are generally irregular and	206.90	208.18	1.28	370	48	385	1.8
	cross-cut the foliation. The veins contain trace gal and py, and							
	chloritic alteration. There are minor mm scale carbonate-filled							
	fractures.							
	The unit has 1-3% finely disseminated py occurring in mm scale							
	bands and scattered in the groundmass. Trace gal can be found in							
	the quartz veins.							
	The foliation is 60 deg to the CA. Foliation is stronger at the							
	lower contact, and the contact with the next unit is sharp.							
	204.94 to 205.7 Intermediate intrusion (Int. Intrus.)							
	Greenish-white, fine-medium grained, equigranular intermediate							
	rock. Composed of altered mafic minerals (40%), white feldspar							
	(40%), and grey quartz (10%). The mafic minerals are altering to							
	chlorite. There are minor carbonate-filled fractures and 1%							
	fracture-controlled py. The contacts cross-cut the foliation							
	(upper contact is approx. 90 deg to the CA, and the lower is 45							
	deg). Whole-rock sample taken.							
208.18 260	.9 QUARTZ-EYE DACITE (QID)	208.18	209.00	0.82	645	101	800	5.0
	Medium grey, aphanitic to fine grained groundmass. Grey-blue	209.00	210.55	1.55	405	67	415	3.6
	quartz eyes comprise 2-4% of the rock (unless described below),	210.55	212.10	1.55	190	26	360	2.0
	and are distributed evenly throughout the rock (< 5mm). Less	212.10	213.37	1.27	390	57	700	4.3
	commonly, white and altered feldspar phenocrysts (< 4mm) occur	213.37	214.25	0.88	305	380	4000	12.9
							HOLE	No: NRX9704

DIAMOND DRILL LOG

PROPERTY: Richardson HOLE No.: NRX9704

.

•

						ASSI	AYS		
ROM	O LITHOLOGICAL DESCRIPTION		FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppi
	over cm to 10cm intervals. The unit	is moderately altered, but	214.25	215.42	1.17	465	31	26 0	6.
	the texture is relatively homogeneo		215.42	216.60	1.18	330	48	490	4.
	banded (or bedded); which is a prod	uct of mm scale sericite/	216.60	218.05	1.45	280	97	75 0	5.
	sulphide lamellae and associated bl	eaching. The rock is also	218.05	219.45	1.40	235	150	330	6.
	weakly silicified. Excluding where	described below, there are	219.45	220.48	1.03	120	47	205	1.
	minor c m scale white-grey qu artz ve		220.48	221.40	0.92	235	64	127	3.
	tr-1% gal in them. There are also m	inor mm scale carbonate-filled	221.40	222.48	1.08	240	61	1050	2.
	fractur es.		222.48	223.25	0.77	95	48	800	1.
	The rock contains 3-5% finely disse	minated py. Mostly, the py is	223.25	224.30	1.05	125	21	85	0.
	found in bands (largest is 1cm, but	· ·	224.30	225.75	1.45	70	18	54	0
	to the foliation. It is also found	-	228.11	228.95	0.84	400	62	62	2
	and rarely as small patches or bleb		230.40	231.56	1.16	295	33	266	2
	which occurs mostly in the quartz v		234.46	235.70	1.24	110	27	275	2
	strongest in the upper part of the		235.70	236.70	1.00	310	24	500	3
	The foliation is 65-70 deg to the	СА.	242.60	244.10	1.50	235	28	192	3
			244.10	245.70	1.60	90	23	300	1
	214.56 to 216.63 Ash-rich unit wit	-	245.70	246.55	0.85	125	21	75	1
	quartz eyes in a fine-grained matri	x. The upper and lower	246.55	247.85	1.30	170	28	97	1
	contacts are gradational.		247.85	249.12	1.27	145	24	125	1
			249.12	250.20	1.08	65	36	127	0
	219.62 – 219.9 A milky white quart		250.20	251.05	0.85	60	24	110	0
	cross-cuts the foliation and is < 4	5 deg to the CA.	251.05	251.70	0.65	80	30	76	1
			251.70	253.25	1.55	110	30	102	1
	223.32 - 223.7 A milky white quart		253.25	254.80	1.55	95	59	336	1
	the foliation and has irregular con	itacts. There is tr gal within	254.80	255.96	1.16	70	18	127	0
	the vein.		255.96	256.93	0.97	195	33	320	1
			256.93	257.80	0.87	270	36	320	2
	228.24 - 228.54 Possible fault pla	ne. The fracture plane is	257.80	259.03	1.23	150	18	242	1

HOLE No: NRX9704

DIAMOND DRILL LOG

PROPERTY: Richardson HOLE No.: NRX9704

.

.

						ASS	AYS		
ROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		1-2cm wide, contains minor fault gouge, and is filled with	259.03	259.94	0.91	180	46	760	1.9
		carbonate. Th e core is broken within this sub-unit, and the plane is < 45 deg to the CA.	259.94	260. 9 0	0.96	235	151	1 200	3.8
		237.5 to 246.7 Ash-rich unit within the QID. There are < 1% quartz eyes in a fine-grained matrix. The upper and lower contacts are gradational. Similar to sub-unit from 214.56 to 216.63m.							
		246.7 - 260.9 The rock is slightly more altered than the							
	• .	most of the lower part of the unit. The rock becomes moderately							
		to strongly bleached (patchy to pervasive), and the sericitic alteration is stronger. This sub-unit has 2-4% py mineralization,							
		whereas the previous sub-unit has 1-2% py.							
		251.25 - 251.45 A patchy, irregular white quartz vein that							
		intersects one side of the core. There is py within the vein. The sericite lamellae near the vein may be kinked or folded.							
		256.3 - 256.53 an irregular white quartz vein that cross-cuts							
		the foliation. The vein contains minor amounts of py and gal.							
		DOWN-HOLE SURVEY DATA							
		DEPTH INCLINATION BEARING							

HOLE No: NRX9704

DIAMOND DRILL LOG

.

.

.

.

.

					 			ASS	AYS		
OM TO	LITHO	DLOGICAL DESCRIP	TION		FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppi
	DEPTH	INCLINATION	BEARING	ŀ							
	109.73	-47.50	39.50								
	170.70	-47.00	43.00								
	215.20	-46.50	45.00								
	260.90	-46.00	48.00								

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER

÷

.

HOLE No.: NR9704			
Collar Eastings:	-1000.00	Collar Inclination: -50.00	Logged by: S. Warner 29/01/97
Collar Northings:	-500.00	Grid Bearing: 0.00	Date: 26/01/97 - 28/01/97
Collar Elevation:	0.00	Final Depth: 175.50 metres	Down-hole Survey: Sperry Sun
Grid: Rich		-	

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
0.0	57.3	OVERBURDEN (Ovb)							
57.3	175.5	QUARTZ-EYE DACITE (QID)	57.30	58.80	1.50	170.	20	83	0.4
		Medium to dark grey, fine grained groundmass. Blue-grey quartz	58.80	59.70	0.90	180	25	81	0.8
		phenocrysts comprise up to 5% of the rock (< 5mm) and are	59.70	61.20	1.50	185	34	104	0.6
		distributed evenly throughout the groundmass. Rare feldspar	61.20	62.70	1.50	115	28	107	0.6
		crystals throughout, unless noted below. The texture of the unit	62.70	64.20	1.50	55	24	93	0.4
		ranges from massive to having a well developed bedding, which is	64.20	65.80	1.60	55	24	118	0.6
		recognized by mm scale sericite/sulphide-rich bands. The upper	65.80	67.30	1.50	95	28	161	0.4
		part of the unit is weakly sericitized and siliceous, but becomes	67.30	68.80	1.50	65	19	64	0.4
		moderately to strongly sericitized and silicified further down	68.80	70.30	1.50	75	13	65	0.2
		the hole. At the top of the unit, there are minor mm scale	70.30	71.90	1.60	45	15	66	NIL
		fractures filled by either carbonate and/or possibly sericite.	71.90	73.40	1.50	170	20	54	0.2
		Further down the hole, carbonate fractures may be 3cm wide.	73.40	74.90	1.50	105	19	42	0.2
		There are minor white quartz-filled fractures, up to 5cm, but	74.90	75.90	1.00	80	28	41	0.4
		most are < 1cm. There are also mm scale irregular grey quartz	75.90	76.86	0.96	330 •	46	205	0.6
		veins	76.86	77.52	0.66	125	13	67	0.4
		At the top of the unit, there is 3-5% finely disseminated py and	77.52	79.02	1.50	200	18	93	NIL
		trace sph which may have no preferred orientation, but generally	79.02	80.52	1.50	160	20	81	0.4
		is parallel to the bedding. Below 112.95 m, py content increases	80.52	81.00	0.48	40	30	100	0.4
		to 5% and tr-1% sph.	81.00	82.50	1.50	160	50	101	1.0
		The bedding, where it occurs, ranges from 70 to 80 deg to the CA.	82.50	84.10	1.60	240	18	72	0.6
			84.10	85.60	1.50	· 270	21	88	0.6
		57.3 to 76.86 Bedded QID. Beds recognized by mm scale sericite	85.60	87.10	1.50	190	15	88	0.4

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9704

÷.

.

2

					ASS	AYS		
м то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppr
	/sulphide bands.	87.10	88.60	1.50	450	12	96	0.0
		88.60	90.30	1.70	265	14	116	۱.
	76.86 - 77.52. Milky-white quartz vein. The vein is patchy, and	90. 30	91.80	1.50	270	21	102	0.
	mixed with an altered dacite. There is chloritic alteration in	91.80	93.20	1.40	135	18	60	0.
	the dacite and > 5% py. The upper and lower contacts are	93.20	94.70	1.50	165	29	330	1.
	irregular, but are approximately 90 deg to the CA.	94.70	96.30	1.60	80	24	161	0
		96.30	97.80	1.50	410	24	189	0
	77.52 to 81.05. Bedded QID, with minor feldspar phenocrysts	97.80	99.30	1.50	295	26	133	0
	(< 4mm).	99.30	100.85	1.55	360	27	138	0
		100.85	102.40	1.55	520	19	110	0
	81.05 to 93.9 Feldspar phyric QID. Minor to strong occurrence	102.40	103.90	1.50	390	18	122	0
	of white feldspar phenocrysts (up to 4mm). From 83.65 to 87.9	103.90	105.40	1.50	925	37	210	1
	there only is only minor feldspars. The core is broken, and	105.40	106.90	1.50	335	33	190	0
	strongly sericitized, but bedding can still be recognized in	106.90	108.50	1.60	1050	32	12,4	1
	places. Gradational contacts.	108.50	110.00	1.50	3600	90	500	1
		110.00	111.50	1.50	2120	50	240	1
	96.6 - 96.7 Milky-white quartz vein. 45 deg to the CA. No	111.50	113.00	1.50	865	40	360	1
	sulphide.	113.00	114.43	1.43	825	74	970	1
		114.43	115.86	1.43	575	53	740	2
	98.42 - 98.44 Possible fault gouge. 90 deg to the CA.	115.86	117.25	1.39	415	18	330	2
		117.25	118.70	1.45	920	146	1950	5
	108.1 to 111.8 Feldspar phyric QID. Gradational upper contact, '	118.70	119.70	1.00	320	12	880	1
	and a sharp lower contact.	119.70	120.70	1.00	285	20	680	0
	· ·	120.70	122.20	1.50	360	50	520	1
	112.95 - 172.9 Heterogeneous, mottled texture. Sericite/chlorite	122.20	123.70	1.50	390	39	530	1
	banding and sil. patches intensify. Bands of fine grained sulphide	123.70	125.40	1.70	400	67	1400	1
	are usually associated with the micaceous lamellae. Foliation is	125.40	126.70	1.30	430	17	420	2
	70-80 deg to the CA. May contain minor 1-2cm ash-rich units. The	126.70	128.15	1.45	680	38	490	2

HOLE No: NR9704

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9704

 .

.

••

					ASS	AYS		
om to	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppi
	alteration decreases towards the bottom of the hole.	128.15	129.65	1.50	740	10	280	1.
		129.65	131.15	1.50	455	26	330	1.
	133.7 - 134.94 Broken and sericitized core. Contains 2 low	131.15	132.80	1.65	635	28	870	1.
	angled carbonate/quartz fractures (< 2 cm each) and 1 quartz	132.80	134.35	1.55	550	15	240	1
	fracture (3cm) at 45 deg to the CA.	134.35	135.90	1.55	615	35	1050	1
		135.90	137.40	1.50	585	54	600	2
	146.25 to 158.56 Higher concentration of quartz eyes (> 5%), but	137.40	138.90	1.50	120	25	310	2
	they are smaller (< 3mm). Their concentration is highest near the	138.90	139.64	0.74	600	275	1900	9
	end of this sub-interval.	139.64	140.21	0.57	355	345	1500	11
		140.21	142.00	1./9	245	80	1300	6
	169.0 – 169.2 Milky-white quartz vein. Irregular high-angled	142.00	143.50	1.50	295	142	1150	8
	contact and no sulphides.	143.50	145.00	1.50	160	47	430	2
		145.00	146.50	1.50	200	42	320	2
	172.9 to 175.5 Banded feldspar phyric QID. Moderately banded	146.50	148.10	1.60	270	16	128	3
	(bedded?), distinguished by mm scale white feldspars. Bands are	148.10	148.92	0.82	400	26	980	5
	75 deg to the CA.	148.92	149.65	0.73	180	20	198	2
		149.65	151.10	1.45	255	37	490	4
		151.10	152.65	1.55	260	19	300	4
		152.65	154.20	1.55	225	35	126	3
		154.20	155.70	1.50	265	14	107	2
		155.70	157.20	1.50	95	42	400	1
		157.20	158.75	1.55	95	63	1400	1
		158.75	160.30	1.55	60	17	123	1
		160.30	161.80	1.50	90	17	102	1
		161.80	163.20	1.40	90	21	61	0
		163.20	164.70	1.50	80	21	80	0
		164.70	166.28	1.58	, 75	21	65	0
		166.28	167.88	1.60	75	22	67	0

HOLE No: NR9704

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9704

.

÷.

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
			167.88	169.18	1.30	120	35	176	1.8
			169.18	170.68	1.50	50	17	53	0.6
			170.68	171.60	0.92	125	24	132	1.8
			171.60	172.50	0.90	60	10	63	1.6
			172.50	173.14	0.64	45	4	54	1.2
			173.14	174.10	0.96	40	6	125	1.2
			174.10	175.50	1.40	35	11	69	0.8

.

.

DOWN-HOLE SURVEY DATA

DEPTH	INCLINATION	BEARING
57.90	-48.00	0.00
121.90	-48.00	
175.50	-49.00	

.

.

HOLE No: NR9704

DIAMOND DRILL LOG

		INYRIVER	DIAMOND DRILL LOG							
	No.: NR r Easti		Collar Inclination: -5	0.00			ged by:			/97
Colla	r North	ings: -488.00	Grid Bearing: 0.00			Date	e: 28/01	/97 - 29	9/01/97	
	r Eleva	tion: 0.00	Final Depth: 160.30 m	etres		Dowr	n-hole S	urvey: S	Sperry S	un
Grid:	Rich									
							ASS	AYS		
FROM 0.0	то 54.3	LITHOLOGICAL DESCRIPTIO OVERBURDEN (Ovb)	N	FROM	TO	WIDTH	Au ppb	Cu ppm	2n ppm	Ag ppm
54.3	69.45	QUARTZ-EYE DACITE (OID)		54.30	55.55	1.25	20	20	97	0.6
		Medium to dark grey, fine grained	groundmass. Blue-grey guartz	55.55	56.60	1.05	40	19	98	0.6
		phenocrysts comprise up to 5% of t		56.60	58.20	1.60	15	18	92	1_0
		distributed evenly throughout the	groundmass. The unit is weakly	58.20	59.70	1.50	30	20	138	0.4
		banded, which is recognized by mm	scale sericite/sulphide-rich	59.70	61.20	1.50	40	- 28	129	0.6
		bands, and weak bleaching. There a	re minor mm scale fractures	61.20	61.50	0.30	425	18	129	1.2
		filled by carbonate; generally, th	e veins are less than 45 deg to	61.50	62.70	1.20	95	14	160	NIL
		the CA. Minor guartz fractures (<	1cm) that contain tourmaline,	62.70	64.25	1.55	90	13	78	0.4
		unless noted below.		64.25	65.80	1.55	70	14	68	0.4
		There is 3-5% fine grained py and	trace sph which is mostly	65.80	67.30	1.50	50	22	68	0.6
		concentrated in mm scale bands par	allel to the foliation.	67.30	68.60	1.30	30	13	66	0.6
		The weak foliation ranges from 70	to 80 deg to the CA.	68.60	69.30	0.70	120	9	68	1.0
		61.3 - 61.4 White quartz vein . A	long the contacts of the vein							
		there is a strong concentration of	massive tourmaline and lesser							
		amounts of pyrite. The vein is 45	deg to the CA.							
		68.6 - 69.3 White quartz vein. A parallel to the CA. Just as the ve concentration of tourmaline and le	in at 61m, there is a strong							

69.45 91.78 QUARTZ FELDSPAR PORPHYRY (QFP)

.

,

ð.

.

HOLE No: NR9705

63

35

70.10

69.40

0.70

50

0.6

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9705

н

M TO	LITHOLOGICAL DESCRIPTION Light-medium grey QID with 3-5% quartz eyes and a high concentration of feldspar phenocrysts. The feldspar is white, 2-4mm in size, and are distributed unevenly (5-30% over cm intervals) in cm scale bands which are parallel to the foliation.	FROM 70.10 71.90 73.00	TO 71.90 73.00 74.47	WIDTH 1.80 1.10	Auppb 365. 50	Cuppm 15 15	Zn ppm 63	Ag ppr 1.(
	concentration of feldspar phenocrysts. The feldspar is white, 2-4mm in size, and are distributed unevenly (5-30% over cm	71.90 73.00	73.00	1.10				1.0
	2-4mm in size, and are distributed unevenly (5-30% over cm	73.00			50	15		
	•		74.47				64	0.
	intervals) in cm scale bands which are parallel to the foliation.	74 47		1.47	50	14	62	0
		74.47	76.06	1.59	50	24	91	0
	The core over this interval is strongly broken, altered, and very	76.06	77.07	1.01	50	20	78	0
	soft in places. It is moderately to strongly sericitized and	77.07	78.15	1.08	160	23	86	1
	foliation is recognized by mm scale sericite/sulphide layers.	78.15	79.65	1.50	205	53	81	1
	Excluding where described below, there are 2-3 white quartz	79.65	80.70	1.05	370	27	180	2
	veins (cm scale) in the upper half of interval.	80.70	81.25	0.55	390	40	2500	1
	There is less than 5% finely disseminated py and perhaps trace	81.25	81.82	0.57	270	25	370	
	sph occurring mostly in bands less than 1cm. Minor galena can be	81.82	83.20	1.38	105	33	560	-
	found associated with the quartz veins.	84.10	85.60	1.50	260	46	670	:
	The feldspar bands are 70-80 deg to the CA. There is fault gouge	85.60	86.58	0.98	55	9	103	f
	from 72.41 to 72.44, 70 deg to the CA.	86.58	87.10	0.52	75	16	162	:
		87.10	88.30	1.20	75	13	155	
	80.3 - 87.1 Strongest concentration of finely disseminated py	88.30	89.35	1.05	240.	21	175	
	(up to 5%) occurring is cm scale bands.	89.35	90.20	0.85	620	33	240	
	-	90.20	91.75	1.55	870	27	119	1

80.5 to 83.2 Sub-unit contains 2-3 cherty bands (1-3 cm each). The bands are dark grey, very siliceous, and have no feldspars.

86.6 - 86.8 A milky white quartz vein with a strong occurrence ' of fine aggregates of gal and lesser amount of py along the vein contacts and in small fractures of the quartz. The upper contact of the vein is 45 deg to the CA.

87.43 to 88.1 QID with only minor feldspar phenocrysts.

HOLE No: NR9705

DIAMOND DRILL LOG

.

.

.

ł

•

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	yd bbi
.78	160.3	QUARTZ EYE DACITE (QID)	91.75	93.20	1.45	610	15	101	1.
		Medium to dark grey, aphanitic to fine grained groundmass. Blue-	93.20	94.75	1.55	650	26	107	1.
		grey quartz phenocrysts comprise 3-5% of the rock (< 5mm) and are	94 .75	96.30	1.55	570	53	320	2.
		distributed evenly throughout the groundmass. Small (2-4mm),	96.30	97.80	1.50	1260	45	240	3.
		white feldspar phenocrysts range from sparse to 5%. The texture	97.80	99.30	1.50	235	62	240	1.
		of the unit ranges from homogenous to having a well developed	99.30	100.40	1.10	1340	86	430	2.
		banding (primary?). The banding can be recognized by mm scale	100.40	101.25	0.85	735	39	182	1.
		sericite/sulphide-rich bands, coarser feldspars, and bleaching.	101.25	102.40	1.15	490	35	152	1.
		The upper and lower portions of the unit are weakly to moderately	102.40	103.65	1.25	665	18	121	1.
		sericitized and siliceous, but it becomes moderately to strongly	103.65	104.95	1.30	1470	97	620	2.
		sericitized and silicified within the middle (described below).	104.95	105.30	0.35	355	48	80	1.
		There are minor, and evenly distributed, mm scale fractures	105.30	105.62	0.32	299000	1400	17500	40
		filled by carbonate. Minor white quartz fractures (up to 1cm) can	105.62	106.08	0.46	5860	215	1200	7
		also be found.	106.08	106.60	0.52	850	62	145	2
		There is 3-5% finely disseminated py and which may have no	106.60	107.90	1.30	610	18	81	0
		preferred orientation, but generally is in mm scale bands	107.90	108.70	0.80	160	134	2000	5
		parallel to the foliation. There may even be trace amounts of	108.70	109.77	1.07	450	66	440	4
		cpy, sph, gal, and in one band, visible gold (see below).	109.77	111.15	1.38	350	38	135	1
		The fine sericite lamella range from 70 to 80 deg to the CA. The	111.15	112.75	1.60	600	35	1750	0
		coarser alteration zones closely parallel this foliation.	112.75	114.32	1.57	3800	35	640	2
			114.32	115 .24	0.92	150	47	530	1
		99.79 - 99.8 Minor galena in a carbonate/sericite fracture.	115.24	115.90	0.66	150	30	117	1
			115.90	116.55	0.65	245	27	880	1
		105.32 - 105.4 Visible gold. 10–12 small grains (< 1mm)	116.55	117.38	0.83	350	13	93	1
		distributed evenly in a py-rich band. There is also tr-1% of cpy	117.38	118.95	1.57	420	37	390	1
		and gal. Sample 18093 taken over 32cm.	118.95	119.90	0.95	640	36	143	1
			119.90	121.06	1.16	570	44	570	1
		105.74 – 106.5 Milky white guartz vein (< 2cm) with minor	121.06	122.40	1.34	240	36	500	0

HOLE No: NR9705

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9705

ŧ

.

.

					ASS	AYS		
DM TC	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
	aggregates of tourmaline and py. The vein is closely parallel to	122.40	123.30	0.90	250	30	650	1.
	the CA.	123.30	124.35	1.05	450	18	165	1.
		124.35	125.40	1.05	200	34	151	1.
	106.95 - 128.5 Zone of stronger alteration and banding (< 1cm),	125.40	126.50	1.10	310	43	400	1
	which is most intense in the upper half. Distinguished by mm	126.50	127.40	0.90	520	36	930	1
	scale sericite and chlorite (talc?) lamella, irregular siliceous	127.40	128.30	0.90	265	133	610	30
	patches, and more common and coarser (< 5mm) feldspar	128.30	129.00	0.70	155	22	210	4
	phenocrysts. From 116.4 to 117.03 the core is strongly	129.00	130.55	1.55	340	84	430	15
	silicified. The core is moderately to strongly broken.	130.55	131.80	1.25	190	65	590	11
	This alteration zone is only moderately more mineralized (up to	131.80	132.80	1.00	145	47	390	10
	5% fine aggregates/bands of sulphides) than the remaining unit.	132.80	134.20	1.40	230	70	420	12
	At 108.54 there is a 5mm sulphide band with py, and minor amounts	134.20	135.27	1.07	310	37	250	7
	of cpy and gal.	135.27	136.70	1.43	560	76	750	11
	The bands are generally 70-80 deg to the CA. Possible fault gouge	136.70	137.62	0.92	750	42	230	6
	from 111.22 to 11.25, at 90 deg to the CA.	137.62	138.90	1.28	1380	88	650	7
		138.90	140.00	1.10	565	152	1750	8
	128.5 - 128.74 Milky white quartz vein with trace py. The	140.00	141.15	1.15	325	86	1050	5
	contacts are 90 deg to the CA.	141.15	142.00	0.85	700	70	850	3
		142.00	142.90	0.90	380	55	440	5
	128.74 to 140.2 Quartz and feldspar phyric. Higher concentration	142.90	143.92	1.02	360	117	600	7
	of feldspar phenocrysts (<4mm) and quartz eyes (many up to 5mm).	143.92	144.75	0.83	570	275	2400	15
		144.75	146.43	1.68	220	8 6	680	4
	142.55 - 142.58 Milky white quartz vein with trace amounts of	146.43	148.00	1.57	190	101	530	5
	gal and py. Contacts are 90 deg t the CA.	148.00	149.50	1.50	105	61	800	3
		149.50	150.80	1.30	125	60	570	3
	144.6 to 149.5 Feldspar phyric. White feldspars up to 4mm. Only	150.80	152.09	1.29	200	125	570	5
	weakly banded.	152.09	153.10	1.01	125	25	165	2
		153.10	154.20	1.10	70	22	210	3

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9705

•

Т

2

						ASSI	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	τo	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		149.5 to 153.1 Only 1-2% quartz eyes. There is 2-4% gtz eyes	154.20	155.70	1.50	170	36	330	6.6
		from 152.0 to 152.1. The last 20cm of this sub-unit is marked by	155.70	157.20	1.50	140	30	540	4.0
		well developed we scale ba nding which is the product of sericite	157.20	158.70	1.50	50	20	380	1.0
		and chlorite (?) lamellae separated by siliceous bands.	158.70	160.30	1.60	155	18	340	5.2

153.1 to 160.3 QID with 5-8% quartz eyes. The upper 3m is well banded and recognized by evenly spaced, mm scale, bands of dark micaceous lamella. The banding is 70 deg to the CA. From 153.95 to 154.4 there are 2 white quartz veins with trace py.

DOWN-HOLE SURVEY DATA

DEPTH	INCLINATION	BEARING
55.70	-49.00	0.00
68.88	-48.00	2.00
114.60	-48.00	3.00
160.30	-48.00	5.00

.

HOLE No: NR9705

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9706 Collar Eastings: -900.00 Collar Northings: -525.00 Collar Elevation: 0.00 Grid: Rich

1

Collar Inclination: -50.00 Grid Bearing: 0.00 Final Depth: 193.90 metres Logged by: S. Warner Date: 01/02/97-02/02/97 Down-hole Survey: Sperry Sun

						ASS	YS			
ROM	то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH P	u ppb	Cu ppm	Zn	ppm A	ng ppm
0	25.6	OVERBURDEN (Ovb)								
. 6	29.64	QUARTZ-EYE DACITE (QID)	25.60	26.70	1.10	10	4		36	NIL
		Dark grey, fine grained groundmass. Blue-grey quartz phenocrysts comprise 5-8% of the rock (up to 1cm, but most are < 5mm) and are distributed evenly throughout the groundmass. There are only minor feldspars phenocrysts (< 3mm). The unit is bedded, recognized by mm scale light-dark bands suggesting compositional variations. It is weakly altered, with minor to moderate sericite, and less commonly chlorite, lamellae (10:1). Bleaching is associated with mm scale fracture planes. Minor mm scale carbonate fractures occur randomly throughout the unit. Most of the fractures are 45 deg to the CA. There is 1-3% fine grained py disseminated in the groundmass, mostly in close spatial relationship with the sericite or chlorite lamellae. The bedding and foliation range from 75 to 80 deg to the CA.	26.70	27.9	90 1.20		5	13	40	N
		27.3 - 27.7 A 1cm wide qtz/carb vein that is 45 deg to the CA. The vein is ransected by a 1cm slip plane. Tourmaline occurs in the vein and in close proximity. The sub-unit is more strongly bleached.								
.64	42.2	QUARTZ-EYE DACITE (OID)	29.90	31.15	1.25	60	11		49	1.0

.

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9706

1

¥.

.

•

					ASS	AYS		
OM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppn
	Medium to dark grey fine grained groundmass. Grey-blue quartz	31.15	32.30	1.15	50	13	55	1.0
	phenocrysts comprise 3-5% of the rock and are distributed evenly	32.30	33.80	1.50	20	15	45	1.0
	throughout the groundmass (most are < $5mm$). Feldspar phenocrysts	33.80	35.30	1.50	10	19	48	0.8
	are not as common and smaller. Bedding is recognized by irregular	38.40	39.90	1.50	25	10	75	0.0
	<pre>cm scale bleached bands which represent either compositional or alteration variations. The unit is relatively unaltered, and the matrix is dark coloured which includes minor sericite lamellae and to a lesser extent chlorite. Chlorite mineralization also occurs in irregular patches. There are minor mm scale fractures filled with carbonate and/or chlorite. There is also one fracture (< 1mm) with biotite. 1-3% py occurs as fine disseminated grains in the groundmass, or concentrated in sericite or chlorite-rich bands. The foliation and bleached bands are 70-75 deg to the CA.</pre>	39.90	41.40	1.50	20	11	57	1.
2 61.0		44.50	46.00	1.50	40	10	48	2.
2 01.0	Medium grey, fine grained groundmass. Grey quartz phenocrysts	46.00	47.50	1.50	80	11	120	1.
	comprise 3-5% of the rock and are distributed evenly throughout	47.50	49.00	1.50	15	8	90	1.
	the groundmass (< 5mm). Feldspar phenocrysts are rare. There is	49.00	50.50	1.50	40	9	66	1.
	mm scale banding (bedding?), the result of sericite/sulphide-rich	50.50	51.30	0.80	20	12	230	1.
	lamellae and associated bleaching. The rock is becoming	51.30	52.50	1.20	15	13	60	1.
	increasing altered, with stronger sericite alteration than the '	52.50	53.60	1.10	20	13	49	1.
	upper units. There are minor mm scale fractures filled with	53.60	55.10	1.50	25	11	63	0
	carbonate and less commonly with quartz.	55.10	56.60	1.50	30	13	98	1.
	1-3% py occurs as fine disseminated grains in the groundmass, or	56.60	57.45	0.85	15	13	86	1
	concentrated in sericite-rich bands.	57.45	58.58	1.13	15	16	124	1
	The foliation is 65-70 deg to the CA.	58.58	59.70	1.12		14	94	1
	-	59.70	61.00	1.30	50	17	96	2

.

HOLE No: NR9706

.

DIAMOND DRILL LOG

PROPE	ERTY:	RAINY	RIVER
HOLE	No.:	NR9706	5

•

Page 3

					ASSA	AYS		
ROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
	46.0 - 58.8 Includes three fractures (< 1cm each) that are							
	filled with py. The fractures are oblique to the foliation and							
	higher angled from the CA.							
0 90.1	QUARTZ-EYE DACITE/ASH TUFF (QID/ASH TUFF)	61.00	62.30	1.30	400	28	880	3.
	Medium to light grey, aphanitic to fine grained groundmass. Grey-	62.30	63.80	1.50	340	21	156	1
	blue quartz eyes comprise less than 1% of the rock and are	63.80	65.25	1.45	410	25	178	1.
	distributed evenly throughout the groundmass (< 7mm). Coarse	65.25	66.7 0	1.45	170	41	520	2
	feldspars are rare. The rock is weakly to moderately banded	6 6.70	67.60	0.90	280	24	1200	5
	(bedded), which is a product of mm scale sericite lamellae and	67.60	68.80	1.20	445	84	2500	14
	cm scale bleaching which represent either compositional or	68.80	69.85	1.05	245	17	650	4
	alteration variations. The unit is moderately to strongly	69.85	71.50	1.65	2060	70	1800	1
	altered, and it increases towards the bottom. Banding is rare in	71.50	72.80	1.30	520	22	93	N
	the lower half of the unit. Minor mm scale carbonate fractures	72.80	73.95	1.15	740	63	1050	1
	are distributed evenly, and rare, undulating grey quartz veins	73.95	74.90	0.95	1710	51	1500	3
	(< 5mm).	74.90	75.85	0.95	775	30	205	1
	There is 3–6% finely disseminated py and tr sph and gal either	75.85	77.45	1.60	815	27	410	1
	scattered in the groundmass, or more commonly in mm scale bands	77.45	78.30	0.85	685	31	410	0
	parallel to the foliation. In the upper part of the unit, py can	78.30	79.85	1.55	640	28	160	0
	also be found in irregular, folded patches or blebs, which are	79. 85	80.70	0.85	435	25	185	0
	discordant with the foliation.	80.70	81.45	0.75	8401	25	200	0
	The foliation is 65-75 deg to the CA.	81.45	82.85	1.40	115	27	127	N
		82.8 5	84.10	1.25	115	34	104	N
	74.8 to 75.06 Two minor dark grey ash beds. Sharp lower contact	84.10	85.60	1.50	285	22	235	N
	at 75 deg.	85.60	86.73	1.13	70	24	130	N
		86.73	87.20	0.47	65	8	26	0
	79.0 - 79.2 A 4cm white quartz vein. 45 deg to the CA.	87.20	88.70	1.50	1410	54	960	1
		88.70	90.10	1.40	130	36	48	0

.

.

•

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9706

1997 - 1997 **-** 1997 -

.

.

Page 4

					ASS	AYS		
'ROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
	81.46 - 90.1 Stronger alteration than top of unit. Light grey							
	color and homogeneous sericitic alteration and bleaching.			•				
	Possible fault at upper contact (approx. 80 deg to the CA). The							
	sub-unit is also spotted in py (3-4%). The py is subhedral to							
	euhedral and < 2mm in size. Near the end of the unit there is a							
	fracture (< 5mm) filled with py that is oblique to the foliation.							
	86.7 - 87.1 Milky white quartz vein with minor tourmaline and							
	py. Irregular high angled contacts.		٠					
.1 113.85	QUARTZ-FELDSPAR PORPHYRY DACITE (QFD)	90.10	91.7 0	1.60	460	34	850	1
	Medium grey, fine to medium grained phaneritic groundmass. Grey-	91.70	92.70	1.00	475	51	490	1
	lue quartz eyes comprise 2-4% of the rock (up to 1cm, but most	92.70	93.75	1.05	280	35	510	1
	are less than 5mm). White feldspar phenocrysts comprise 3-5% of	93.75	95.10	1.35	410	38	850	0
	the rock and are < 5mm. The feldspar are soft and well-altered	95.10	96.30	1.20	555	40	750	1
	being replaced by sericite and/or carbonate. Excluding where	96.30	97.80	1.50	1200	30	230	0
	described below, the unit is strongly altered with an irregular	97.80	99.30	1.50	1230	41	370	N
	coarse and mottled texture (rough surface on core). The texture	99.30	100.55	1.25	1170	72	470	N
	consists of mm to cm scale siliceous bands or patches, and mm	100.55	101.95	1.40	905	16	420	0
	scale sericite/sulphide bands or lamellae. There are minor mm	101.95	103.20	1.25	1250	56	450	0
	scale white and grey quartz fractures. Carbonate fractures are	103.20	104.30	1.10	370	27	640	0
	rare.	104.30	105.30	1.00	420	24	740	0
	The unit is well mineralized with 4-6% py, and trace cpy and gal.	105. 30	106.10	0.80	1500	156	2700	4
	The sulphides occur mostly in mm scale (up to 1cm) bands that are	106.10	107.30	1.20	510	40	790	0
	closely associated with the sericite lamellae. The cpy and gal	107.30	108.10	0.80	640	146	1450	1
	occur in some of the wider sulphide-rich bands.	108.10	109.58	1.48	500	28	580	0
	The irregular foliation ranges from 70-80 deg to the CA.	109.58	110.50	0.92	340	36	155	N
		110.50	111.75	1.25	1000	42	520	0

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9706

i.

.

.

					ASS	AYS			
FROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	
	102.97 - 103.13 Broken core and fault gouge. Contacts are 90	111.75	112.55	0.80	815	14	720	NIL	
	deg to the CA.	112.55	113.20	0.65	230	10	680	NIL	
		113.20	113.85	0.65	230	16	1150	NIL	
	103.3 to 111.75 Relatively unaltered quartz-feldspar porphyry								
	dacite. The texture is not as coarse and mottled as the rest of								
	the unit. There is still a weak to moderate banding, resulting								
	from the sericite lamellae.								
	105.08 - 105.25 A 2cm white quartz vein which is approx. 45 deg								
	to the CA. There is minor py and gal.								
	111.3 - 111.4 White guartz vein with contacts 90 deg to the CA.								
	Contains minor py.								
3.85 166.6	QUARTZ-FELDSPAR PORPHYRY DACITE (QFD)	113.85	115.30	1.45	100	32	1100	0.8	
	Medium grey, fine grained phaneritic groundmass. Blue-grey	115.30	116.75	1.45	95	45	310	NIL	
	quartz eyes comprise 2-4% of the rock (each < 5mm), and altered	116.75	118.15	1.40	165	42	490	2.2	
	white feldspar phenocrysts (< 4mm) comprise 3-5%. Feldspar	118.15	119.20	1.05	495	23	245	NIL	
	phenocrysts are less common towards the bottom of the unit. This	119.20	120.40	1.20	470	54	1800	NIL	
	unit is similar in composition to that from 90.1 to 113.85m, but	120.40	121.30	0.90	960	37	112	0.4	
	it is less altered. The mottled siliceous/sericite texture is	121.30	122.28	0.98	400	46	360	NIL	
	weaker, and only occurs cm to m scale intervals. The sericite/	122.28	123.70	1.42	155	39	600	1.4	
	sulphide lamellae produce a weak banding in the rock. There are	123.70	125.20	1.50	230	155	3100	1.4	
	minor mm scale carbonate- filled fractures, and cm scale white			26.27	1.07	85	46	1050	0.
	and gray quartz fractures.	126.27	127.90	1.63	640	31	860	0.8	
	The mineralization is not as intense as that from the previous	127.90	129.05	1.15	225	16	360	2.4	
	unit. There is 3-4% py, and trace cpy, gal, and sph. The	129.05	130.00	0.95	230	72	810	2.4	
	sulphides mostly occur in mm scale bands parallel and in close	130.00	130.62	0.62	315	510	10600	17.0	

HOLE No: NR9706

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9706

• 1 E

ł

.

.

							ASSA	YS		
M	то	LITHOLOGICAL DESCRIPTION		FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
		spatial association with the foliation.		130.62	131.60	0.98	630	· 29	410	0.
		The foliation is 70-75 deg to the CA.		131.60	132.80	1.20	235	51	970	0.
				132.80	134.35	1.55	415	220	1850	1.
		112.57 -112.85 Milky white quartz vein. Upper contact is 60 deg		134.35	135.43	1.08	330	48	560	0
		and the lower contact is 90 deg to the CA.		135.43	136.25	0.82	875	32	730	1.
				136.25	137.63	1.38	350	70	1350	5
		113.4 - 113.75 Milky white quartz vein. with tr py. The upper		137.63	138.90	1.27	130	28	147	1.
		and lower contacts are 90 deg to the CA.		138.90	140.00	1.10	905.	44	1200	1
				140.00	141.50	1.50	325	49	780	4
		120.5 - 121.3 A 1-2cm wide grey quartz vein that runs sub-		141.50	143.03	1.53	180	24	127	1
		parallel to the CA. The contacts of the vein are very irregular		143.03	144.56	1.53	400	. 13	99	3
		and appears almost broken or boudinaged in places.		144.56	145.95	1.39	485	18	142	5
				145.95	146.38	0.43	805	135	510	7
		126.85 - 140.25 Strongest mottled/banded alteration with		146.38	147.70	1.32	520	31	150	3
		siliceous-rich bands, and coarse texture. Sulphide mineralization		147.70	148.90	1.20	280	30	330	1
		is strongest in this sub-unit.		148.90	149.75	0.85	290	27	78	0
				149.75	151.10	1.35	460.	32	182	2
		136.85 - 137.15 Contains an irregular 1-3cm wide quartz vein(s)		151.10	152.65	1.55	435	34	135	4
		with a slip plane through it. The contacts of the vein are		152.65	154.20	1.55	525	109	360	5
		concentrated with sericite lamellae and minor carbonate and py.		154.20	155.80	1.60	220	52	202	1
		The slip plane is 45 deg to the CA.		155.80	157.00	1.20	390	40	126	3
		ł		157.00	158.20	1.20	660	135	9 50	3
		139.53 to 139.57 Minor dark grey ash (sed?) bed. The contacts are		158.20	159.60	1.40	690	34	152	3
		parallel to the foliation.		159.60	160.70	1.10	1470	44	215	3
				160.70	161.85	1.15	260	42	192	2
		146.15 – 146.23 A 3cm wide milky white quartz vein with minor		161.85	163.30	1.45	410	133	720	4
		cpy and gal. Irregular contacts.		163.30	164.85	1.55	110	53	200	2
			65.70	0.85	335	49	220	D, 2.	6	

.

HOLE No: NR9706

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9706 Page 7 ASSAYS Zn ppm FROM LITHOLOGICAL DESCRIPTION FROM TO WIDTH Au ppb Cu ppm Ag ppm TO 0.90 235 21 139 1.2 146.68 - 146.97 Broken core and fault gouge(?). Contacts appear 165.70 166.60 to be parallel to the foliation. 146.97 - 166.6 Moderate to strong alteration. Still the same unit but alteration has produced irregular/mottled siliceous-rich bands and bleached sericite lamellae (as described above). Sulphide mineralization is not as strong as the sub-unit from 126.85 to 140.25m. 151.7 - 151.9 A grey quartz vein (1.5cm wide) that has been offset 5cm by a carbonate-filled slip plane. The quartz vein is 40 deg to the CA, and the slip plane 20 deg (120 deg angle between the two). 157.25 to 157.29 Minor dark grey ash (sed?) bed. Contacts are parallel to the foliation. Well mineralized with py. 162.32 to 162.37 Minor medium grey ash bed. No sulphides, and irregular high angled contacts. 164.27 - 164.32 Three to four mm scale py bands that are parallel to the foliation, but connected by minor py fractures ' that are oblique to the foliation. 168 NIL 166.6 193.9 QUARTZ-EYE DACITE/ASH TUFF (QID/ASH TUFF) 166.60 167.90 1.30 105 17 1.4 100 23 69 Medium to dark grey, fine grained groundmass. Grey-blue quartz 167.90 169.40 1.50 117 NIL eves comprise < 1% of the rock (up to 2% in places) and are 169.40 170.95 1.55 40 30 31 100 NIL distributed evenly throughout the groundmass (< 5mm). Feldspar 170.95 172.50 1.55 40

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9706

1

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		phenocrysts are less common. The top of the unit is weakly	172.50	173.35	0.85	30	18	174	NIL
		banded, but it becomes moderately banded towards the bottom. The	173.35	174.00	0.65	30	34	770	0.4
		banding (original bods?) is a product of mm scale sericite, and	174.00	175.20	1.20	40	25	500	0.5
		lesser chlorite, lamellae. The unit is moderately to strongly	175.20	176.60	1.40	280	115	770	1.3
		altered, which is recognized by bleaching of the fine lamellae,	176.60	177.80	1.20	70	41	1350	0.9
		and patchy silicification. Minor mm scale carbonate fractures	177.80	179.15	1.35	70	47	700	0.5
		are distributed evenly, and rare, undulating grey quartz veins	179.15	180.57	1.42	80	28	122	0.3
		(< 5mm). There are also minor cm scale milky white quartz veins	180.57	181.85	1.28	135	43	214	0.4
		throughout the unit. Chlorite lamellae are often strongest along	181.85	183.30	1.45	45	30	328	0.4
		the contacts of the white quartz veins, and is more common	183.30	184.70	1.40	85	56	345	0.5
		towards the bottom of the unit.	184.70	186.10	1.40	120	39	630	1.2
		There is 3-5% finely disseminated py and tr gal either scattered	186.10	187.30	1.20	250	28	180	0.3
		in the groundmass, or more commonly in mm scale bands parallel	187.30	188.55	1.25	165	23	200	0.4
		to the foliation. Py is also found in undulating fractures	188.55	190.05	1.50	170 [.]	16	215	0.3
		(described below).	190.05	190.80	0.75	175	19	170	0.8
		The foliation is 70-75 deg to the CA.	190.80	192.30	1.50	280	24	136	2.0
			192.30	193.80	1.50	305	27	150	1.3

.

168.8 - 175.5 Most of the py occurs in mm scale bands (fractures?) that are irregular and undulating. In places they look like small scale folds. The alteration is also mottled with patchy silicification and bleaching, and irregular weak bands.

155.7 - 156.7 Minor grey-white quartz veins (< 1cm wide) that are broken or perhaps boudinaged.

178.6 - 181.6 A moderate fabric is developed that is 15-20 deg to the CA, and oblique to the foliation. The fabric is composed of mm scale bands of py and lesser to equal amounts of quartz.

HOLE No: NR9706

DIAMOND DRILL LOG

PROPER HOLE N		AINY RIVER 89706			DIAMOND DAI							Page
						 			ASS	AYS		
FROM	то	LITHC May represent mi	DLOGICAL DESCRIP			FROM	то	WIDTH	Au ppb	Cu ppm	2n ppm	Ag ppm
		182.0 - 182.7 5	Strong and homoge	eneous bleachi	ng.							
		DO	N-HOLE SURVEY D	ата								
		DEPTH	INCLINATION	BEARING								
		45.70	-48.00	5.00			•					
		121.90	-46.75	9.50								
		193.90	-46.00	13.00								

,

.

.

.

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9714 Collar Eastings: -1100.00 Collar Northings: -550.00 Collar Elevation: 0.00 Grid: Rich

.

.

Collar Inclination: -50.00 Grid Bearing: 360.00 Final Depth: 224.03 metres CONTRACTOR: ULTRAMOBILE D.D.

Logged by: C.A. WAGG, 24/02/97 Date: 20/02/97-23/02/97 Down-hole Survey: Sperry-Sun

			ASSAYS						
FROM	TO 45.87	LITHOLOGICAL DESCRIPTION OVERBURDEN (Ovb) Boulders encountered seem to be predominantly of local origin, and include a 1.3m thick block of mafic volcanics, as well as ep, qtz, and py-rich altered mafic volcanics and vein qtz with minor kspar, ep, and py.	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
45.87	57.29	PILLOWED MAFIC METAVOLCANICS (Pill. Maf. Mvolc, var?) Fine grained, medium to dark green, relatively unaltered except along selvages where abundant epidote and qtz-calc is present with minor chl and occasionally up to 10% fine py over 10cm sections. Small, rather indistinct varioles (poss. vesicles in places, filled with qtz and minor ep) are evident at some pillow margins, particularly below about 50m. Weakly chloritized, primarily along pillow edges, with strong ep-calc-qtz along selvages and in well fractured short sections. Up to 1% fine diss. py overall, but quite unevenly distributed. Very weakly foliated at pillow cores. Lower contact is at 70- 75 deg to the CA, oriented parallel to foliation in underlying tuff units.	53.95	55.45	1.50	15	33	62	0.2
		54.0 - 54.95 A long narrow fracture filled with qtz-calc exhibits considerable kspar and minor fine tourmaline along its irreqular contacts.							

DIAMOND DRILL LOG

PROPERTY :	RAINY RIVER
HOLE No.:	NR9714

٠

Page 2

.

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
7.29	58.9	BEDDED MAFIC TUFF (Bdd Maf Tuff) Banded medium green well bedded rock, strongly altered and weakly to mod. sheared in places, with frequent qtz-carb stringers paralleling foliation. Strongly chl-carb altered, with probably 5-10% very fine ep, and 1-2% fine diss. py. Bedding, foliation, and contacts are consistently at ~75 deg to the CA.	57. 46	58.86	1.40	45	550	87	0.2
8.9	65.0	PILLOWED TO MASSIVE? MAFIC METAVOLCANICS (Pill. to Mass? M.volc) Similar to the unit at the top of the hole, but with fewer unmistakable selvages. Varioles are still present in a few places, but the lower portion of the unit may consist of thin massive flows. Weakly chloritized, with strong ep alt. along and adjacent to common hairline fractures. <1% fine diss. py. Lower contact of the unit is at 65-70 deg to the CA. 59.4 - 59.85 Intensely chloritized section of core, with ~40% qtz-calc veining, trace to 1% fine py, and up to 1% mt diss.	58.86	59.95	1.09	25	140	80	NIL
5.0	70.95	within the chloritic rock. BEDDED MAFIC TUFF (Bdd Maf Tuff) Quite similar to the unit from 57.29-58.9m, but slightly less	68.15 69.08	69.08 70.56	0.93 1.48	80 50	84 120	75 85	0.5 NII

DIAMOND DRILL LOG

1

Ł

	IÓ.: NR	INY RIVER 9714							Page
						ASS	AYS		
FROM	τo	LITHOLOGICAL DESCRIPTION well-bedded, and with less frequent narrow calc stringers. Bedding/foliation is oriented at 70-75 deg to the CA throughout. Lower contact with the underlying dacite is at ~68 deg to the CA, parallel to foliation or very nearly so.	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
0.95	72.40	QUARTZ-EYE DACITE/ASH TUFF (QID/Ash Tuff, bdd) Pale grey, fine grained QID, reasonably typical of the country rock dacite in the area, but with a pale grey-green colour over the lower half of the unit, similar to the shade of the Intermediate Ash unit immediately below. Qtz-eyes show a slight grading from about 5% at the upper contact, to about 8% in the lower portion of the unit. Well bedded, with mm-scale bleaching defining foliation at about 65 deg to the CA. 2-3% fine diss. py	70.56	71.33	0.77	90	76	50	0.4
2.4	73.86	INTERMEDIATE ASH TUFF (Int. Ash Tuff, bdd) Fine, pale grey, and overall very similar to the previous unit except for the greenish-grey hue present here, and a qtz-eye content of only trace (but up to 5mm in diam.). Perhaps about 10-15% fine evenly diss. chlorite. Weakly sericitized, with tr-1% fine diss. py. Foliation is at about 70 deg to the CA.							
3.86	78.06	QUARTZ-EYE DACITE/ASH TUFF (QID/Ash Tuff, bdd) Very similar to the QID unit from 70.95-72.4m, particularly	74.68 76.12	76.12 77.53	1.44 1.41	95 115	10 7	30 35	0.3

.

.

DIAMOND DRILL LOG

-

•

ł

	RTY: RA No.: NR	INY RIVER 9714							Page	4
FROM	- TO	LITHOLOGICAL DESCRIPTION	FROM		WIDTH	ASS	AYS Cuppm	Zn ppm	Ag ppm	
TROP	10	the lower half with the greenish-grey colouration. Qtz-eyes comprise about 7-10% of the unit, with most 3-4mm in diam. and pale blue. Weakly sericitized, with 3-4% fine to med. grained diss. py. Foliation and contacts are 70-73 deg to the CA.			*****			Fb		
78.06	78.82	ASH TUFF (Ash Tuff, bdd) Essentially identical to the unit from 72.4-73.86m. Trace qtz-eyes to 2mm, and tr py.	77.53	78.79	1.26	45	11	60	0.2	
78.82	82.20	QUARTZ-EYE DACITE/ASH TUFF (QID/Ash Tuff, bdd-gdd)	78.7 9	80.22	1.43	130	19	63	0.9	
		Well bedded sequence of fairly thin QID tuffs, somewhat graded, at least near the upper contact of each tuff horizon, where qtz- eye content usually drops off by a few percent. Moderately ser altered with 2-3% mostly diss. py.	80.22	81.29	1.07	45	8	75	0.4	
		Two 15-20cm thick horizons, with about 5% smmed. qtz-eyes, at the top of the interval are followed by relatively homogeneous 2m thick section with 10-12% med. sized eyes. This thicker section includes two thin ash-like "beds" of about 10-15cm thick, which are finer grained and contain fewer qtz-eyes overall. Both beds have contacts oriented parallel to fol., and one occurs at the lower contact of the main unit, where contacts and foliation approximate 75 deg to the CA.		-		·				

.

•

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9714

.

ł

·

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
2.20	85.45	BEDDED ASH TUFFS (add Ash Tuffs)	81.29	82.47	1.18	70	13	83	0.8
		Pale grey to grey with, very fine grained, and prominently	82.47	83.48	1.01	15	11	40	0.2
		banded on a mm to 1/2cm scale, with pale bleached? layers	83.48	84.70	1.22	20	19	104	0.2
		separated by sericitic laminae up to 1-2mm thick but commonly							
		much thinner. Most laminae appear to be planar shear surfaces							
		paralleling bedding, but wavy to irregular "stair-step" slips?							
		resembling fractures are also common, and typically crosscut							
		the main fabric by 15-30 deg, at about 65 deg to the CA.							
		Moderately bleached, weakly sericitized on the whole, with <2% very fine py.		-					
		Upper contact is 75 deg to the CA or a little steeper. Bedding/							•
		foliation is ~80 deg to the CA throughout, and the lower contact							
		at about 85 deg to the CA.							
		Includes a 33 cm core length section of similarly laminated							
		<pre>material with 2-3% mm-diameter qtz-eyes, commencing at 84.14m,</pre>							
		bearing more resemblance to the adjacent Ash Tuff than to the							
		QID country rock. Contacts parallel foliation.							
		Below about 85m, the sericitic laminae progressively fade away,							
		so that the lowermost 10-20cm are only faintly bedded.							
35.45	177.78	QUARTZ-EYE DACITE/ASH TUFF (QID/Ash Tuff, bdd to gdd)	84.70	85.55	0.85	25	25	62	0.4
		A sequence of broadly similar QID units, with individual subunits	85.55	86.38	0.83	90	16	82	2.0
		typically well-bedded and in some instances clearly graded	86.38	87.3	2 0.9	4	65	13	56 1.
		(normallytops uphole) near the top of the unit; but overall	87.32	88.03	0.71	60	14	73	1.7
		showing a progressive decrease in gtz-eye content and a fining	88.03	88.88	0.85	190	23	72	2.0

HOLE No: NR9714

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9714

1

ł

.

•

					ASS	AYS			
OM T	O LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	
	`of groundmass grain size down the hole from about 100m to	88.88	90.05	1.17	320	20	95	1.8	
	177m, where "medium grained" qtz and fsp phyric dacite resumes.	90.05	91.78	1.73	155	19	92	1.5	
	Alteration and mineralization are best described by subunit.	91.78	92.96	1.18	60	16	88	1.0	
	Bedding and foliation appear to remain consistently at 70-75	92.96	94.11	1.15	35	15	116	0.5	
	deg to the CA down to about 165m, below which it occasionally	9 4.1 1	95.06	0.95	60	21	390	1.0	
	reaches 56 deg to the CA.	95.06	96.48	1.42	65	19	325	1.1	
		96.48	97.96	1.48	90	20	170	1.0	
	85.45 to 94.92 BDD-GDD QID/ASH TUFF (Bdd-Gdd QID/Ash Tuff)		97.96	99.28	1.32	120	26	850	
	Well bedded, reasonably well graded series of QID Tuffs,	99.28	100.64	1.36	75	14	195	1.7	
	moderately bleached, well-fractured to weakly brecciated with	100.64	102.20	1.56	90	10	74	0.9	
	ser-py enrichment along many fractures and with thin bedding	102.20	103.86	1.66	50	14	60	0.4	
	parallel seams and small lenses of sulphide. A 50-60cm	103.86	104.88		40	13	72	0.5	
	shattered to brecciated section around 88.4m contains some fault	104.88	105.75		30	24	108	0.4	
	gouge. Its margins crosscut foliation by about 60 deg and are	105.7 5	107.30		55	24	135	0.3	
	oriented at \sim 30 deg to the CA.	107.30	108.33	1.03	80	16	135	0.5	
	Qtz-eye content ranges from a low of 4-5% up to 7-8%, with	108.33	109.71	1.38	70	20	88	0.3	
	individual tuffs generally weakly graded.	109.71	110.70		100	20	95	0.4	
	Moderately to strongly bleached, weakly to mod. ser and carb	110.70	111.80		30	6	102	0.2	
	altered, with an average of 3-5% fine diss. to banded py.	111.80	112.75		NIL	11	28	0.3	
	Trace sph occurs with minor py in a 5cm wide subconcordant	112.75	113.30		20	20	94	0.2	
	qtz-carb vein at 87m.	113.30	114.30		85	24	60	0.3	
		114.30	115.72		145	28	88	0.5	
	94.92 to 104.02 GDD QID/ASH TUFF (Gdd QID/Ash Tuff)	115.72	117.23		85	21	65	0.3	
	Conspicuously graded from 94.92 to about 96m, with qtz-eyes	117.23	118.55		195	24	62	0.5	
	going from 2-3% up to 7-8%. A second cycle seems to start at	118.55	119.62		85	13	43	0.3	
	about 97.35m, grading rapidly to 7-8% qtz-eyes in a medium	119.62	120.33		45	8	36	0.3	
	grained groundmass. Most eyes within the lower cycle are from	120.33	121.76		30	24	88	0.2	
	1-1.5mm in diameter.	121.76	123.17	1.41	95	20	45	0.4	,

HOLE No: NR9714

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9714

.

.

.

T I

2

.

					ASS	AYS		
м то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
	Weakly to mod. ser altered, with 2-3% fine py.	123. 17	124.62	1.45	75	15	36	0
		124.62	126.12	1.50	95	12	58	0
	104.02 to 113.03 QID/Ash Tuff (QID/Ash Tuff, bdd-gdd,mg)	126.12	127.63	1.51	150	18	36	0
	Faintly to mod. well bedded QID, weakly graded overall, with	127.63	129.13	1.50	155	12	108	0
	from 2-3% up to -5% small qtz eyes. Much less well bedded and	129.13	130.68	1.55	95	29	46	0
	graded than the preceding subunit, similarly altered and	130.68	132.13	1.45	60	30	40	0
	mineralized.	132.13	133.43	1.30	235	102	520	1
		133.43	134.91	1.48	350	73	218	5
	Includes a 30cm thick gtz vein just below the upper subunit	134.91	136.26	1.35	135	17	140	1
	contact, and a 10cm thick vein at 108.15m, both subparallel to	136.26	137.78	1.52	290	37	220	C
	foliation, and with minor calc and py at their contacts. The	137.78	139.21	1.43	755	. 94	165	1
	smaller vein also has a few cm-size clusters of fine tour.	139.21	140.71	1.50	315	23	317	0
	A 2-3cm thick, irregular-walled crosscutting veinlet at 105.4m	140.71	142.17	1.46	180	44	520	1
	includes a few "large" patches of ser-calc and exhibits	142.17	143.55	1.38	210	19	148	1
	abundant "semi-massive" fine tour intergrown with calc.	143.55	144.95	1.40	320	24	510	1
		144.95	146.38	1.43	140	21	115	0
	Also includes the upper portion of a zone of qtz veining	146.38	147.83	1.45	175	16	112	C
	beginning at 110m which extends into and beyond the next sub-	147.83	149.36	1.53	500	200	2900	4
	unit to about 117.2m, and which could be extended beyond that	149.36	150.88	1.52	1660	192	1250	4
	to 121.6m to include 50cm and 80cm well-veined sections	150.88	152.29	1.41	305	29	86	C
	found below 120.3m. Most veinlets are from 5-30cm thick,	152.29	153.72	1.43	420	27	152	0
	but a single vein a little over a metre thick begins at 111.85m	153.72	154.98	1.26	275	35	156	(
	The zone appears to be a vein system, with most contacts	154.98	156.35	1.37	120	92	208	1
	parallel to subparallel to the fol., strong sericitization of	156.35	157.79	1.44	190	72	730	1
	wallrocks and frequent inclusions of sheared dacite, and with	157.79	159.28	1.49	250	27	97	C
	very minor py concentrated along dacite-qtz boundaries.	159.28	160.75	1.47	235	70	388	C
		160.75	162.25	1.50	165	22	93	C
	113.03 to 119.95 BDD QID/ASH TUFF (Bdd QID/Ash Tuff, fg)	162.25	163.70	1.45	100	25	168	0

HOLE No: NR9714

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9714

1

					ASS	AYS		
ROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppr
	Fine, well bedded QID with up to 3% small qtz eyes.	163.70	165.06	1.36	100	32	224	1.5
	Moderately to strongly sericitized, with 3-4% diss. py.	165.06	166.12	1.06	165	95	1000	1.
	Approximately 15-20% vein qtz.	166.12	166.66	0.54	120	26	128	2.
		166.66	168.17	1.51	560	37	78	0.
	119.95 to 177.78 QID/ASH TUFF (Int.bdd QID/Ash Tuff, bdd/mass)	168.17	169.40	1.23	520	33	125	1.
	Interbedded fine grained bedded to rather massive QID Tuffs,	169.40	170.50	1.10	180	22	113	0.
	fairly uniformly pale grey in colour, mod. to strongly ser	170.50	171.22	0.72	315	34	60	1.
	altered, and with 2-4% fine diss. py. 2-3% qtz-eyes.	171.22	172.30	1.08	275	37	225	0.
	Veining and sulphide bands are both quite rare, limited to <5cm	172.30	173.73	1.43	205	20	105	2.
	thick calc-rich stringers with some py, and to largely barren qtz	173.73	175.26	1.53	105	22	182	١.
	veinlets of similar dimensions, both generally paralleling fol. Trace light brown sph occurs with py along a narrow seam at 157.6m.	175.26	176.78	1.52	75	28	285	1
7.78 224.03	QUARTZ+QT2-FSP DACITE/ASH TUFF (Qt2+ Qt2-Fsp D/Ash Tuff, mg)	176.78	178.30	1.52	60	46	226	1
	Weakly to mod. well-bedded, medium grained QID with from 3-5%	178.30	179.80	1.50	60	14	105	0
	up to 5-7% 1-2mm qtz-eyes, and in places quite abundant (15-40%)	179.80	181.35	1.55	60	20	190	1
	whitish fsp phenocrysts of similar size as the qtz-eyes. Fsp is	181.35	182.85	1.50	75	30	172	1
	commonest from about 180-187.5m, probably within two or more	182.85	184.40	1.55	115	70	252	2
	discrete horizons.	184.40	185.93	1.53	135	97	306	3
	Moderately ser altered, with fsp bleached and moderately carb	185.93	187.45	1.52	80	40	210	1
	altered. 3-4% diss. fine py is typical for the unit, but 5-7%	187.45	188.47	1.02	355	190	1500	11
	somewhat coarser than average is present through much of the	188.47	189.19	0.72	1550	460	3150	34

189.19

190.50

0.46

191.94 193.45

190.04

191.94

225

0.85

1.44

1.51

230

315

115

100

1550

130

11.7

37

74

somewhat coarser than average is present through much of the fsp rich section. 190.04 190.50

189.4 to 190.5 About 5% of this section consists of 1-2mm wide streaks and small lenses of greyish "melt?" qtz, apparently

,

.

HOLE No: NR9714

9.3

2.8

2.0

740

520

170

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9714

т. •

•

					ASSA	YS		
OM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppr
	mostly the boudinaged remains of initially crosscutting? fracture	193.45	194.70	1.25	85	93	122	2.0
	fillings. A few of the larger lenses contain traces of fine galena.	194.70	195 .84	1.14	100	60	164	4.
	Within this subsection, bedding becomes evident though not	195.84	196.24	0.40	270	174	1800	12.
	particularly prominent. Thin sericitic laminae are commonly	196.24	197.60	1.36	65	42	268	3.
	spaced on a 5mmm to 1cm scale from this point down to about	197.60	199.11	1.51	80	76	195	4
	200m, fading markedly beyond that.	199.11	200.31	1.20	120	76	185	5
	Bedding/foliation averages about 70 deg to the CA through the	200.31	201.83	1.52	110	30	346	1
	bedded section, variable from about 65 to 75 deg. Within the	201.83	203.52	1.69	40	16	350	0
	unbanded section below, it appears to be more consistently at	203.52	205.02	1.50	50.	20	188	0
	70 deg or slightly steeper.	205.02	206.53	1.51	75	36	272	1
		206.53	207.98	1.45	25	52	270	2
	Two rather unusual semi-spherical concentrations of sulphide-	207.98	209.54	1.56	25	43	310	2
	rich material, rimmed by a mm thick rind of chlorite were noted	209.54	210.88	1.34	85	55	480	4
	at 201.8m, apparently of a different composition than the	210.88	212.14	1.26	2790	34	385	84
	surrounding rocks. They seem to consist of about 20% minute	212.14	213.52	1.38	70	34	250	2
	qtz-eyes within a whitish altered groundmass, and contain 20-	213.52	214.72	1.20	145	60	540	6
	25% fine diss. py.	214.72	215.16	0.44	790	195	9000	23
		215.16	216.64	1.48	140	35	188	2
	3-4% fine diss. py persists to the bottom of the hole at 224.03m.	216.64	218.12	1.48	65	30	115	1
		218.12	219.55	1.43	140	45	96	2
	214.98 - Two or three inconspicuous cm-wide seams of fine	219.55	220.98	1.43	170	80	480	2
	diss. sulphide occur with a fine flesh-coloured carbonate?,	220.98	222.50	1.52	110	73	510	3
	oriented parallel to the foliation. Under 1% gal and tr cpy occur over a core length of about 10cm.	222.50	224.03	1.53	100	45	450	1

Foliation is at ~75 deg to the CA.

• .

223.1 -223.28 A barren qtz vein cuts the CA at -45 deg, oblique to the foliation.

.

HOLE No: NR9714

DIAMOND DRILL LOG

.

222.50

224.03

.

-42.00

-42.00

.

.

4.00

4.00

.

.

¥ 1

	RTY: RAINY No.: NR9714					200							Page 10
										ASSA			
FROM	TO	LITH	DLOGICAL DESCRIP	TION			FROM	ŤO	WIDTH	Au ppb	Cu ppm	2n ppm	Ag ppm
			10 T		,				•				
		DO	WN-HOLE SURVEY D	ATA									
		DEPTH	INCLINATION	BEARING									
		54.86	-47.00	360.00									
		121.92	-45.75	1.00									
		182.88	-42.75	3.00									

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9716 Collar Eastings: -1100.00 Collar Northings: -475.00 Collar Elevation: 0.00 Grid: Rich

Collar Inclination: -50.00 Grid Bearing: 360.00 Final Depth: 160.02 metres Ultramobile Logged by: S. Warner Date: 26/02/97 - 28/02/97 Down-hole Survey: Sperry Sun

						ASS	AYS		
FROM	TO 44.95	LITHOLOGICAL DESCRIPTION OVERBURDEN (Ovb) Gabbroic and granitic pebbles for 30cm.	FROM	TO	WIDTH	Au ppb	Cu ppm	2n ppm	Ag ppm
1.95	65.28	QUARTZ-EYE DACITE (QID)	53.34	54.68	1.34	30	15	57	NI
	00120	Medium grey, fine grained groundmass. Blue-grey quartz	55.23	56.38	1.15	60	20	49	0.
		phenocrysts comprise up to 8% of the rock (most are < $3mm$), but	56. 38	57.65	1.27	35	14	48	0.
		are variable (weakly gradational) over m scale intervals (see	62.48	63.64	1.16	45	16	40	0.
		below). At the top of the unit, there are cm scale intervals	63.64	64.70	1.06	65	12	37	0.
		where the rock is feldspar phyric (up to 10%), with white and altered feldspar (< 3mm). The rock is relatively homogeneous and	64.70	65.27	0.57	140	14	36	1.

weakly altered, recognized by mm scale sericite bands. Minor cm

The unit is weakly mineralized with 1-2% py, which is found disseminated in the groundmass, and in minor mm scale bands that

44.95 - 52.22 Moderately to strongly broken core, especially

50.29 to 57.65 Graded Bedding. The concentration of the quartz eyes is gradational, ranging from 1-2% at the top of this sub-

scale white quartz veins occur throughout the unit.

The foliation ranges from 65-70 deg to the CA.

are parallel to the foliation.

where the rock is feldspar-rich.

unit, up to 8% near the bottom.

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9716

1

						ASSA	AYS .		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
5.28	86.7	BEDDED FELDSPAR PHYRIC CRYSTAL TUFF (BDD FSP XI TUFF)	65.27	66.40	1.13	45	· 6	50	0.
		Pale to medium grey, fine grained groundmass. White feldspar	66.40	67.59	1.19	210	76	252	0.
		phenocrysts (1-3mm wide) comprise up to 10% of the rock, although	67.59	68.17	0.58	455	36	93	2
		their concentration may be much less and variable. Different beds	68.17	69.24	1.07	50	10	33	1
		may be distinguished based on the concentration of feldspars. The	69.24	70.05	0.81	30	24	42	1
		feldspars, generally, are soft and altered (they react with acid	70.05	70.89	0.84	40	20	56	2
		weakly), and their alteration may produce pitting in the core.	70.89	71.62	0.73	60	19	64	1
		Grey-blue quartz phenocrysts comprise tr-1% of the rock (most are	71.62	72.78	1.16	195	199	840	5
		< 3mm). There may be rare lapilli fragments scattered through the	72.78	73.70	0.92	55	18	73	•
		unit (1-3 cm along their long axes), that are siliceous and	73.70	74.85	1.15	240	12	50	C
		rounded. The rock is moderately altered, and the groundmass is	74.85	76.30	1.45	150	. 8	45	(
		sericite-rich with associated bleaching. Over m scale intervals,	76.30	77.22	0.92	420	16	97	
		the unit may be banded, which is a product of mm scale sericite/	77.22	78.25	1.03	260	12	107	
		sulphide-rich bands. The core over the entire unit is moderately	78.25	79.37	1.12	260	36	235	
		to strongly broken, resulting from feldspar alteration. There are	79.37	80.77	1.40	100	57	195	:
		strong occurrences of cm scale white quartz veins throughout the	80.77	82.00	1.23	170	18	54	
		unit (larger ones are described below).	82.00	83.16	1.16	265	12	115	:
		The unit contains 3-4% py which occurs mostly as finely	83.16	84.58	1.42	440	17	244	:
		disseminated grains in the groundmass, and in mm scale bands	84.58	85.72	1.14	485	24	120	:
		(up to 2cm wide) or blebs that are parallel to the foliation. The	85.72	86.70	0.98	435	20	75	1
		py may also be found filling the cavities left by the altered							
		feldspars. There is also tr gal in the larger quartz veins.							

65.73 - 66.16 Strongly broken white quartz vein.

are parallel to the foliation.

66.94 - 67.03 Fault Gouge. Contacts are sub-parallel to the

The foliation ranges from 65-70 deg to the CA. The bedding planes

HOLE No: NR9716

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9716

÷.

ł

.

.

.

Page 3

						ASS	AYS		
ROM	то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn p pm	Ag ppm
		foliation.							
		71.65 - 72.13 Broken white quartz vein that contains tr py. The contacts are broken, but roughly 20 deg to the CA.							
		72.39 - 73.7 Broken white quartz vein that contains tr py fact gal. The contacts are low angled to the CA. These two veins are probably the same vein that runs roughly sub-parallel to the CA.							
		86.55 86.7 Upper 2cm of this sub-unit contains fault gouge, and the remaining rock is strongly broken. Represents a fault at the contact of these two units.							
.6 11	0.06	BEDDED ASH TUFF/QUARTZ-EYE DACITE (BDD ASH TUFF/QID)	86.70	89.64	2.94	525	64	215	4
		Medium grey, aphanitic to fine grained groundmass. The unit is	89.64	90.92	1.28	355	96	200	0
		comprised of ash-rich beds that are interbedded with several	90.92	92.23	1.31	10000	111	740	1
		quartz-rich beds. The ash-rich beds (Ash Tuff) have tr-1% small	92.23	93.78	1.55	150	23	86	1
		quartz phenocrysts in a sericite-rich and moderately foliated	93.78	94.24	0.46	200	27	165	2
		groundmass. The quartz-rich beds (QID) range from several cm's to	94.24	95.52	1.28	145	13	82	1
		over 1m in length. They have up to 8% quartz phenocrysts (most	95.52	96.68	1.16	210	65	590	2
		are < 4mm) in a groundmass that is similar to the ash-rich	96.68	97.55	0.87	2070	179	1250	4
		portions (a very homogeneous groundmass). There may be abrupt	97.55	99.06	1.51	270	22	96	2
		variations in the quartz eye concentration, or the contacts may	99.06	100.56	1.50	240	35	240	1
		be gradational. Minor cm scale white quartz veins and mm scale	100.56	102.11	1.55	105	26	190	1
		carbonate-filled fractures occur throughout the unit. The core at	102.11	103.64	1.53	100	25	213	1
		the top of the unit is moderately broken, but it becomes more	103.64	104.10	0.46	115	29	195	1
		competent towards the bottom.	104.10	105.47	1.37	. 285	28	114	0
		The unit contains 2-3% py that occurs as finely disseminated	105.47	106.95	1.48	385	21	140	1

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9716

÷.

.

•

.

,

					ASS	AYS		
om to	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
	grains in the groundmass, or concentrated in mm scale bands that	106.95	107.58	0.63	390	29	70	1.
	are parallel to the foliation. There is tr gal in the quartz	107.58	109.03	1.45	145	16	104	1.
	veins.	109.03	110.06	1.03	205	41	285	2.
	The bedding planes range from 65-75 deg, and the foliation is parallel to the bedding.							
	87.6 - 89.92 Feldspar phyric. Fewer phenocrysts than the							
	previous unit, and a stronger alteration texture than this unit.							
	Transitional interval between the two units. 6 feet of missing							
	core at the bottom of this interval.							
	89.92 to 90.6 Mafic Dyke. Grey-green, medium grained gabbro dyke							
	composed of 60% feldspar and 40% pyroxene and/or amphibole. There							
	is tr py disseminated in the dyke. The contacts are broken, but							
	appear to be low angled to the core. At the lower contact, there							
	is 2-3cm of altered rock. It is off-white, granular, spotted with							
	py, and appears to be primarily feldspar. Well defined contact with the principle unit.							
	with the principle duit.							
	106.95 - 107.35 At the lower and upper contacts there is fault							
	gouge, and the core in this interval is broken. The foliation is							
	also slightly kinked. The upper contact is sub-parallel to the							
	foliation, and the lower contact cross-cuts it at 50 deg to the							
	СА.							
.06 126.0		110.06	111.25	1.19	185	27	170	1.
	Medium grey, fine to medium grained groundmass. Blue-grey quartz	111.25	112.75	1.50	185	36	355	2
	and white feldspar phenocrysts each comprise up to 8% of the rock	112.75	114.30	1.55	125	17	122	1

HOLE No: NR9716

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9716

.

¥

ł

.

.

					ASSI	AYS		
ROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
	(both < 5mm), and are distributed unevenly throughout the rock.	114.30	115.19	0.89	160	20	204	1.
	Generally, they bet increase gradationally from approx. 1% near	115.19	116.19	1.00	125	35	372	1.
	the top of the unit, to near 8% near the bottom. Although the	116.19	117.35	1.16	100	18	148	1.
	concentration of both quartz and feldspar increases towards the	117.35	118.85	1.50	140	35	250	1.
	bottom, throughout the unit, there are minor cm scale beds that	118.85	120.39	1.54	190	20	162	0
	may be more enriched in either mineral. The rock is weakly	120.39	121.58	1.19	160	19	174	1
	altered, and the groundmass is sericite-rich. There is minor	121.58	122.79	1.21	1450	59	420	2
	bleaching associated with the feldspar and sericite. Minor cm	122.79	124.10	1.31	260	78	370	4
	scale white guartz veins occur throughout.	124.10	125.19	1.09	90	56	254	2
	The unit contains 2-3% py that is found mostly as fine to medium	125.19	126.05	0.86	100	55	236	2
	grained crystals, or aggregates, disseminated in the groundmass							
	(weak spotted texture). There are only minor mm scale bands of							
	ру.							
	The bedding contacts are 70-75 deg to the CA. The foliation is							
	parallel to the bedding.							
	115.52 - 115.54 Minor Fault Gouge. The contacts are parallel to							
	the foliation, and 2cm of the upper contact is strongly bleached.							
5.05 160	02 QUARTZ-EYE DACITE (QID)	126.05	127.35	1.30	270	77	416	3
	Medium grey, fine grained groundmass. Excluding where described	127.35	128.48	1.13	235	35	370	1
	below, blue-grey quartz phenocrysts comprise 5% of the rock (<	128.48	129.63	1.15	65	44	350	0
	5mm), and are distributed evenly throughout the rock. The unit is	133.25	134.64	1.39	85	52	405	3
	relatively homogeneous, and weakly altered. The groundmass is	134.64	135.63	0.99	135	28	174	4
	sericite-rich, and a moderately developed foliation is pervasive	138.46	139.43	0.97	255	380	1000	15
	throughout. There are minor cm scale quartz veins throughout the	142.80	143.92	1.12	280	265	950	12
	unit (largest intersection is - 20cm).	143.92	145.30	1.38	125	133	214	2
	The unit is weakly mineralized with 2-3% py that mostly occurs as	145.30	146.65	1.35	80	114	110	1

HOLE No: NR9716

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9716

.

.

Ŧ

2

.

						ASS	AYS		
ROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	yd bba
		finely disseminated grains in the groundmass, and in minor mm	148.02	148.94	0.92	90 -	41	94	1.1
		scale bands that are perallel to the foliation. There is one	150.87	152.00	1.13	105	41	2900	3.9
		py-filled and irregular fracture that is contorted and roughly	152.00	152.87	0.87	50	29	162	1.
		45 deg to the CA. Trace gal can be found in some of the quartz	154.22	155.11	0.89	105	26	190	1.0
		veins.	157.77	159.00	1.23	55	24	170	0.
		The foliation ranges from 75-80 deg to the CA. The bedding	159.00	160.02	1.02	205	36	108	2.
		contacts are parallel to the foliation.							

126.05 to 128.3 QID with only 1-2% quartz eyes in a sericiterich groundmass. The contacts are well defined, and parallel to the foliation. At the lower contact there is an abrupt increase in the quartz eyes (5%), but they are smaller.

DOWN-HOLE SURVEY DATA

DEPTH	INCLINATION	BEARING
54.86	-49.00	357.00
103.63	-48.00	357.00
158.50	-46.00	1.00
160.02	-46.00	1.00

HOLE No: NR9716

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9717 Collar Eastings: -1150.00 Collar Northings: -475.00 Collar Elevation: 0.00 Grid: Rich

ł

¥

Collar Inclination: -50.00 Grid Bearing: 360.00 Final Depth: 199.64 metres Ultramobile Logged by: S. Warner 05/03/97 Date: 04/03/97-06/03/97 Down-hole Survey: Sperry-Sun

						ASSA	YS		
FROM 0.0	то 46.32	LITHOLOGICAL DESCRIPTION OVERBURDEN (OVD)	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
46.32	57.7	ASH TUFF/QUARTZ-EYE DACITE (ASH TUFF/QID)	50.84	51.84	1.00	75	15	220	1.7
		The ash tuff is medium grey, has an aphanitic to fine grained groundmass, and there are < 1% quartz eyes. The groundmass is pale grey, and silica/sericite-rich (hard to scratch). There is a well developed banding in the rock that is composed of evenly spaced mm scale chlorite lamellae. Within the ash tuff there is a QID unit (see description below). At 49.15m there is minor kyanite along the edge of broken core (fracture). The unit contains 2-3% py that is found disseminated in the groundmass, and in mm scale bands (or blebs) that are parallel to the foliation. There are also minor py-filled fractures that cross-cut to the foliation. The banding (foliation) is 75 deg to the CA.	55.20	56.28	1.08	15.	21	105	0.5
		51.3 to 54.95 QID. The interval contains 3-4% quartz phenocrysts (< 5mm) that are distributed evenly throughout. There are also							
·		2-3% white feldspar phenocrysts (<3mm)that are more common at the top of the interval (produce a weak banding) and decrease in abundance towards the bottom. The groundmass is sericite-rich,							
		although there are minor bands of mm scale chlorite lamellae dispersed throughout the interval. The upper and lower contacts are parallel to the foliation.							

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE NO.: NR9717

1

¥

.

.

						ASSA	YS		
ROM	то	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	yd bbi
.7	91.87	BEDDED QUARTZ-EYE DACITE/CRYSTAL TUFF (BDD QID/XI TUFF)	58.83	59 .9 1	1.08	65	15	720	1.
		Medium grey, fine grained groundmass. Blue-grey quartz	59.91	60.89	0.98	75	17	435	1.
		phenocrysts comprise up to 5% of the rock (< 5mm). Their	60.89	62.19	1.30	225	27	600	3
		abundance may be variable (down to 1-2%), and the unit may be	62.19	63.25	1.06	330	27	278	2
		graded over metre scale intervals. The unit also contains up to	63.25	64.25	1.00	960	136	720	10
		8-10% white feldspars (< 5mm) over cm to m scale intervals. In	64.25	64.76	0.51	1000	149	1800	30
		beds where their abundance is highest it is described as a XI	64.76	65.33	0.57	330	18	82	2
		Tuff (see below). The rock is moderately altered, and a pervasive	65.33	66.60	1.27	190	19	95	2
		foliation is composed primarily of mm scale sericite lamellae,	66.60	67.80	1.20	65	23	236	1
		and minor chlorite (roughly 20:1 ratio). Cm scale bedding planes	67.80	68.80	1.00	115	19	115	1
		are parallel to the foliation, and recognized by variable	68.80	69.72	0.92	130	23	146	1
		groundmass compositions and quartz eye abundance. There are	69.72	70.73	1.01	180 •	21	160	1
		minor mm scale carbonate-filled fractures and cm scale quartz	70.73	72.15	1.42	175	46	132	2
		veins (up to 10cm) throughout.	72.15	72.72	0.57	590	345	5050	7
		Unless described below, there is 4-5% py, and tr cpy and gal. The	72.72	73.80	1.08	170	33	188	2
		py is disseminated in the groundmass and in mm scale bands	73.80	74.87	1.07	145	12	272	1
		(< 1cm) that are parallel to the foliation. Cpy and gal are found	74.87	75.88	1.01	260	40	580	1
		in some of the sulphide-rich bands. There is also tr gal in some	75.88	77.31	1.43	185	36	510	1
		of the white quartz veins.	77.31	78.52	1.21	125	15	125	1
		The bedding contacts are approximately 75 deg to the CA.	78.52	79.87	1.35	155	39	200	2
			79.87	80.77	0.90	180	29	130	1
		60.42 to 60.75 XI Tuff. Similar to the main unit, this interval	80.77	81.88	1.11	120	53	95	0
		has a sericite-rich groundmass and 3-4% quartz eyes, but it is	81.88	82.90	1.02	170	79	390	0
		feldspar-rich (over 10%). The feldspars are altered and the rock	82.90	83.82	0.92	200	215	1200	3
		scratches easily. The contacts are parallel to the foliation.	83.82	85.00	1.18	145	25	70	0
			85.00	85.78	0.78	300	28	80	2
		70.86 to 74.05 XI Tuff. Feldspar-rich interval (5-8%) in an	85.78	86.57	0.79	275	32	116	1

HOLE No: NR9717

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9717

.

è

.

.

.

						ASSI	YS		
M	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	yd bbi
		otherwise similar rock. The feldspars produce a weak banding	86.57	87.30	0.73	160	35	145	1.1
		(bedding?) in the rock and their abundance decreases gradually	87.30	87.88	0.58	185	20	86	1.
		at, and across, the upper and lower contacts.	87.88	88.80	0.92	280	40	105	1.
			88.80	89.25	0.45	225	161	550	1.
		72.26 - 72.54 Well mineralized interval. There is 6-8% py and	89.25	90.30	1.05	300	39	210	1.
		tr cpy that occurs in mm scale bands (up to 1cm) that are	90.30	91.20	0.90	350	62	455	1.
		separated by sericite-rich bands. The banding is sub-parallel to							
		the foliation, but the bands may also be irregular and contorted.							
		Looks more like soft-sediment deformation than a tectonic fabric.							
		83.32 - 91.87 Stronger alteration texture than the remaining							
		unit. The interval is generally feldspar phyric (probably a XI							
		tuff), and the core is moderately broken. There are moderate							
		occurrences of mm scale dark fractures that appear to be enriched							
		in chlorite. The fractures may be parallel or cross-cut the							
		foliation, and in places form a weak network of fractures. Minor							
		py-filled fractures that are oblique to the foliation may also							
		occur. There is also a moderate occurrence of grey/white quartz							
		veins (up to 3cm wide) that are low angled to sub-parallel to the							
		CA. From 88.83 to 89.12m there is a grey/white quartz vein							
		(2-3cm wide), that contains 5-6% py that is occurs as blebs along							
		the margins of the vein, or fractures within the vein.							
97 1	38.72	BEDDED ASH TUFF (BDD ASH TUFF)	91.20	91.97	0.77	360	48	250	1
		Medium grey, aphanitic to fine grained groundmass. Unless	91.97	93.42	1.45	545	198	1100	3
		described below, grey quartz phenocrysts comprise < 1% of the	93.42	94.94	1.52	285	22	225	1
		upper portions of the unit. Below 120.3m there are approx. 1%	94.94	96.26	1.32	235	18	110	1
		quartz eyes (ash tuff or QID?). Cm scale beds are distinguished	96.26	97.29	1.03	205	41	315	1

HOLE No: NR9717

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9717

Page 4

					ASSI	AYS		
OM T	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
	by compositional icplour and micaceous minerals) variations. The	97.29	98.44	1.15	290	121	1 300	4.
	unit is moderately stered, recognized by a pervasive foliation	98.44	99.60	1.16	225	84	445	2.
	that is composed mostly of mm scale sericite lamellae. Less	99.60	101.00	1.40	215	82	1500	1
	commonly, there are minor bands (1-2mm) of chlorite lamellae that	101.00	102.11	1.11	475	73	175	2
	are parallel to the foliation. Unless described below, minor cm	102.11	103.55	1.44	370	25	88	2
	scale white quartz veins occur throughout. There are also minor	103.55	105.16	1.61	305	54	415	3
	mm scale carbonate-filled fractures.	105.16	106.25	1.09	2670	30	134	2
	The unit contains 3-4% py and tr gal that is found mostly	106.25	107.48	1.23	10000	54	95	3
	disseminated throughout the groundmass, or less commonly, in	107.48	108.45	0.97	425	45	125	0
	minor mm scale bands that are parallel to the foliation. Most of	108.45	109.68	1.23	1790	55	52	1
	the larger white quartz veins have tr-1% gal within them, and its	109.68	111.25	1.57	135	27	62	0
	concentration increases towards the bottom of the unit (see	111.25	112.54	1.29	245	12	22	1
	below).	112.54	113.21	0.67	120	20	76	0
	The bedding contacts range from 75-80 deg to the CA, and the	113.21	113.80	0.59	45	14	30	0
	foliation is parallel to the bedding.	113.80	114.57	0.7 7	100	24	44	1
		114.57	115.80	1.23	200	73	860	1
	95.44 to 99.88 QID. Grey, fine grained groundmass with 1-2%	115.80	116.65	0.85	210	44	190	0
	quartz phenocrysts (< 5mm), that are distributed evenly	116.65	117.65	1.00	175	39	142	1
	throughout. Essentially the same composition and texture as the	117.65	118.96	1.31	105	18	54	1
	ash tuff, but slightly more abundant quartz eyes. The upper and	118.96	119.62	0.66	70	14	300	0
	lower contacts are gradational and poorly defined.	119.62	120.56	0.94	260	106	620	4
		120.56	121.53	0.97	465	61	640	4
	100.45 - 100.82 Irregular foliation on either side of a 2cm	121.53	122.88	1.35	345	52	970	7
	white quartz vein. The micaceous minerals (mostly sericite) are	122.88	124.20	1.32	335	68	600	6
	coarser grained and crenulated. There is minor fault gouge at the	124.20	125.10	0.90	305	30	136	4
	upper contact that is perpendicular to the CA.	125.10	126.49	1.39	160	66	1000	4
		126.49	127.00	0.51	440	370	7650	25
	106.44 - 107.97 Moderate occurrence of evenly spaced, mm scale	127.00	128.00	1.00	210	27	530	1

.

,

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9717

.

1

,

.

					ASSI	AYS		
і то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
	chlorite lamellae. The lamellae are slightly irregular to	128.00	128.92	0.92	420	37	85	2.9
	crenulated, and are generally parallel to sub-parallel to the	128.92	129.54	0.62	150	16	53	1.
	foliation, but may also cross-cut the foliation. Py may be	129.54	130.32	0.78	235	71	2200	3.
	closely associated with the lamellae.	130.32	131.47	1.15	375	105	850	7.
		131.47	132.59	1.12	145	50	420	1.
	112.52 - 114.56 The interval is comprised mostly of white quartz	132.59	133.62	1.03	125	48	328	2.
	veins. The veins range from 1-2cm to 60cm wide, and have	133.62	135.00	1.38	115	17	145	1.
	irregular contacts that are generally parallel to sub-parallel to	135.00	136.20	1.20	300	91	480	4.
	the foliation. Between the quartz veins the foliation is	136.20	137.56	1.36	135	48	800	2.
	irregular to contorted, and is relatively chlorite-rich. There	137.56	138.68	1.12	230	37	580	1
•	is tr py and gal in the veins.							
	117.9 to 130.44 Moderate occurrence of cm scale white quartz veins (widest is 10cm). The veins are generally parallel to sub- parallel to the foliation, and the foliation is altered and irregular along the contacts of some of the veins. The veins are enriched in gal $(1-28)$, which occurs mostly as small blebs along the margins of the veins. Within this interval there is also tr-18 gal that is found along with py in mm scale bands that are parallel to the foliation.							
	130.8 - 137.87 This interval contains 5-6 "zones" of fault gouge that are 1-2cm wide. The zones are relatively even spaced, and they are all sub-parallel to the foliation. The core is moderately broken in this interval, but only slightly more altered.							

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9717

١

X

.

Page 6	
--------	--

					ASS	AYS		
ом то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
	Medium grey, fine grained groundmass. Grey-blue quartz	139.74	140.87	1.13	80	42	240	0.
	phenocrysts comprise up to 5% of the rock (< 5mm), and are	140.87	142.13	1.26	120	46	305	0
	for the most part distributed evenly throughout the unit. The	142.13	142.92	0.79	60	25	302	0
	abundance of quartz eyes may be slightly higher or lower in cm	142.92	143.64	0.72	65	67	640	1
	scale beds, and the unit may be graded over m scale intervals	143.64	144.78	1.14	125	125	1780	4
	(ranging from 2-3% up to 5%). The rock is moderately altered, and	144.78	145.86	1.08	160	64	190	2
	a pervasive foliation is composed mostly of mm scale sericite	145.86	146.86	1.00	335	123	2000	4
	lamellae. The groundmass may also contain minor chlorite over	146.86	147.82	0.96	355	42	2100	4
	m scale intervals. Excluding where described below, there are	147.82	148.74	0.92	325	115	246	5
	minor occurrences of cm scale quartz veins, and mm scale	148.74	149.65	0.91	65	34	92	0
	carbonate-filled fractures.	149.65	150.46	0.81	40	- 22	48	0
	The unit contains 4-5% py that occurs mostly as finely	150.46	151.44	0.98	105	50	180	C
	disseminated grains in the groundmass, and in mm scale bands that	151.44	152.49	1.05	350	640	3250	8
	are parallel to the foliation. There is also tr gal in at least	152.49	153.92	1.43	85	37	132	1
	one of the quartz veins.	153.92	154.86	0.94	155	41	82	3
	The bedding contacts range from 75-80 deg to the CA, and the	154.86	155.86	1.00	125	119	220	3
	foliation is parallel to the bedding.	155.86	156.97	1.11	30	40	66	0
		156.97	158.20	1.23	30	30	94	0
	138.72 - 144.0 Moderately broken core. There is fault gouge from	158.20	159.20	1.00	15	28	75	0
	143.14 to 144.2m, and it is sub-parallel to the foliation. For	160.50	161.48	0.98	25	35	102	C
	10-15cm on either side of the fault gouge the rock has a stronger	161.48	162.59	1.11	70	49	125	C
	tectonic fabric (sericite/silica alteration). The foliation may	162.59	163.70	1.11	25	36	128	C
	be slightly kinked. At the top of this interval, the foliation	163.70	164.74	1.04	35	31	126	C
	contains minor chlorite lamellae (still sericite-rich), but	164.74	165.69	0.95	65	30	122	C
	decreases in abundance towards the bottom.	165.69	166.63	0.94	55	31	108	C
		166.63	167.71	1.08	70	30	104	0
	149.86 - 150.2 White guartz veins that contains tr py. The	167.71	168.72	1.01	55	45	96	C
	upper and lower contacts are irregular, and roughly 45 deg to the	168.72	169.65	0.93	85	22	88	0

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9717

· •

2

.

					ASSA	YS		
OT MC	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	yd bbw
	CA.	169.65	170.69	1.04	80	25	92	1.2
		170.69	171.92	1.23	110	22	102	1.0
	150.26 to 150.34 Two minor, pale grey ash-rich beds. The	171.92	173.26	1.34	70	30	88	0.7
	contacts are 80 deg to the CA.	173.26	174.29	1.03	35	28	78	1.2
		174.29	175.20	0.91	65	42	88	1.0
	158.57 to 158.8 Maf Dyke. Minor intersection of a dyke (see	175.20	176.20	1.00	370 •	42	190	0.7
	description below), that is sub-parallel to the CA and intersects	176.20	177.74	1.54	85	40	136	0.4
	one side of the core. There is a 15cm quartz vein at the upper	177.74	179.04	1.30	85	28	86	0.4
	contact, and strong occurrence of carbonate fractures in the	179.04	180.22	1.18	60	26	96	0.5
	dyke. The dyke contains 1-2% of disseminated py.	180.22	181.26	1.04	30	18	90	0.2
		181.26	182.35	1.09	125	26	176	0.2
	159.2 to 160.5 Maf Dyke. A grey, fine grained, and massive dyke.	182.35	183.57	1.22	45	28	97	0.4
	It is composed of 60% grey/white feldspar, and 40% mafic minerals	183.57	184.73	1.16	40	45	85	0.7
	(pyroxene?). There are minor sub-parallel (~45 deg to the CA)	184.73	185.71	0.98	45	39	108	0.6
	carbonate fractures throughout, and 1-2% disseminated py. The	185.71	186.90	1.19	165	30	144	0.5
	upper contact is 20 deg to the CA, and the lower contact is 50	186.90	187.68	0.78	95	75	178	0.7
	deg to the CA.	187.68	188.65	0.97	50	52	140	0.5
		188.65	189.74	1.09	75	41	130	0.5
	174.28 - 174.88 Moderately to strongly broken core (along	189.74	191.11	1.37	60	20	170	0.7
	foliation planes). There is no fault gouge. At the upper contact,	191.11	192.52	1.41	110	24	420	0.8
	the foliation is weakly kinked.	192.52	193.76	1.24	75	40	260	1.2
		193.76	195.05	1.29	55	52	800	2.0
	183.57 - 191.1 The rock has a stronger tectonic fabric, and it	195.05	196.60	1.55	60	63	570	1.2
	is feldspar phyric. There are up to 4% white feldspar phenocrysts	196.60	197.78	1.18	55	48	322	3.3
	(< 4mm), and 5% guartz eyes in a groundmass that is fine to	197.78	198.65	0.87	55	30	172	0.4
	medium grained. The tectonic fabric is recognized by a well developed banding (parallel to the foliation) of mm scale	198.65	199.64	0.99	25	26	168	0.3

HOLE NO: NR9717

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9717

.

ł

ł

Page 8

-

								ASS	AYS		
FROM	то			NION is no significant change in the	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppn
		groundmass, that groundmass is fi	t contains approx iner and more how	Medium to dark grey, fine grained x. 1% quartz eyes (< 5mm). The mogenous relative to the lower contacts are approx. 80 deg							
		198.65 to 199.21 Well developed micaceous laminations (sediment horizon?). The interval is composed of cm scale (up to 3cm) sericite/chlorite lamellae (roughly 20:1 ratio) that are separated by mm scale (up to 1cm) white/grey quartz (veins or cherty seds?). The interval is spotted with 2-3% py. The lamellae bands are 80-90 deg to the CA.									
		DO	WN-HOLE SURVEY D	АТА							
		DEPTH	INCLINATION	BEARING							
		54.86	-44.00	355.00							
		131.06	-42.00	355.00							
		198.12	-38.50	347.00							
		199.64	-38.50	347.00							

.

.

.

DIAMOND DRILL LOG

HOLE No.: NR9718Collar Eastings: -950.00Collar Inclination: -50.00Logged by: S. WarnerCollar Northings: -600.00Grid Bearing: 0.00Date: 08/03/97 - 10/03/97Collar Elevation: 0.00Final Depth: 257.55 metresDown-hole Survey: Sperry SunGrid: RichUltramobile

PROPERTY: RAINY RIVER

						ASSI	AYS		
FROM	TO 15.64	LITHOLOGICAL DESCRIPTION OVERBURDEN (Ovb)	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	y g bbu
15.64	96.73	BEDDED QUARTZ-EYE DACITE (BDD QID)	19.95	20.80	0.85	40	24	38	0.2
		Dark grey to green, fine grained groundmass. The unit is enriched	20.80	21.33	0.53	230	90	45	0.9
		in fine (< 5mm) to coarse (~1cm) grained, grey to blue/purple	21.33	22:34	1.01	45	26	32	0.3
		quartz phenocrysts. The phenocrysts comprise up to 8 10% of the	22.34	23.38	1.04	25	13	20	0.2
		rock, and are generally distributed evenly throughout the	24.90	25.90	1.00	10	9	31	0:1
		groundmass. There are cm scale beds that may have fewer and	25.90	27.42	1.52	NIL	14	26	0.2
		smaller quartz eyes (see below), and it may be graded over m	27.42	28.96	1.54	95	21	22	0.4
		scale intervals (from 4% to 8%). The rock is moderately altered,	34.20	35.05	0.85	15	20	28	0.1
		(although does not scratch easily) and the groundmass is enriched	35.05	35.72	0.67	15	26	24	0.2
		in chlorite (sericite:chlorite = 2:1). The chlorite is found in	35.72	36.46	0.74	25	7	29	0.2
		mm scale lamellae that, along with sericite, produce a moderate	37.20	38.10	0.90	30	10	30	0.3
		foliation. Chlorite also occurs as an alteration mineral in	38.10	39.28	1.18	15	18	28	NI
		fractures or cm scale patches. There is a strong occurrence of mm	42.42	43.50	1.08	80	24	28	0.3
		scale fractures that are filled with a white mineral. Most of the	43.50	44.68	1.18	40	28	31	0.3
		fractures do not react with acid. They are sub-parallel, but are	44.68	45.26	0.58	50	15	26	0.3
		connected by fractures that are oblique to the foliation. In	45.26	46.52	1.26	20	28	42	0.2
		places, the intense fracturing resembles in-situ brecciation.	46.52	47.49	0.97	35	49	34	0.
		Excluding where described below, there are minor cm scale white	47.49	48.50	1.01	75	56	43	0.
		quartz veins, that may contain massive tourmaline.	48.50	49.00	0.50	565	1750	68	3.
		The rock contains 4-5% py and tr cpy that occurs mostly as finely	49.00	50.44	1.44	50	50	43	NI
		disseminated grains in the groundmass, or in minor mm scale bands	50.44	51.95	1.51	50	48	40	0.
		that are parallel to the foliation. There are also moderate	51.95	52.55	0.60	120	49	58	0.

DIAMOND DRILL LOG

.

PROPERTY: RAINY RIVER HOLE No.: NR9718

•

ł

I

						ASSI	NYS .		
M	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		occurrences of py-filled fractures. The fractures may or may not	52.55	53.63	1.08	90	120	52	0.9
		also contain chlorite, and their orientation ranges from 45 deg	53.63	54.73	1.10	45	43	41	0.2
		to the CA, to being sub-parallel. Generally, the sulphide	54.73	55.5 0	0.77	140	127	40	0.1
		mineralization is strongest where the rock is bleached, and there	55.50	56.38	0.88	55	57	32	NI
		is chlorite and/or carbonate alteration.	56.38	56.95	0.57	105	80	44	0.
		The foliation ranges from 60-65 deg to the CA. The white	56.95	57.72	0.77	35	41	50	NI
		fractures that are sub-parallel are generally parallel to the	57.72	58.55	0.83	35	47	32	NI
		foliation, but may be 65-75 deg to the CA.	58.55	60.05	1.50	45	44	40	NI
			60.05	61.37	1.32	35	44	36	NI
		20.85 - 21.22 An irregular py-filled fracture (1-3mm wide) that	61.37	62.00	0.63	10	81	42	NI
	-	is sub-parallel to the CA.	62.00	63.24	1.24	NIL	18	37	NI
			63.24	64.23	0.99	NIL	13	37	NI
		21.33 - 25.09 Moderate to strong pervasive bleaching, associated	64.23	65.10	0.87	NIL	8	31	N
		with the sericite lamellae.	65.10	66.38	1.28	25	47	40	NI
			66.38	67.74	1.36	5	13	32	NI
		25.09 - 25.31 White quartz veins. There is massive tourmaline	67.74	69.11	1.37	NIL	18	40	N I
		within the vein, and the contacts are roughly perpendicular to	69.11	70.39	1.28	NIL	9	60	N
		the CA.	70.39	71.62	1.23	NIL	15	32	NI
			71.62	72.70	1.08	25	54	30	N]
		45.38 to 45.87 Quartz-Eye Dacite with fewer and smaller quartz	72.70	73.38	0.68	300	23	21	0.
		eyes. There are approx. 3% quartz eyes (< 5mm) that are evenly	73.38	74.07	0.69	190	47	25	0
		distributed through a groundmass of similar composition as the	74.07	75.60	1.53	40	74	30	0.
		major unit. The intense fracturing does not occur in this	75.60	76.53	0.93	25	23	31	N
		interval. The upper and lower contacts are 65 deg to the CA.	76.53	77.26	0.73	375	8	36	1.
			77.26	77.99	0.73	510	9	46	1.
		46.37 to 46.75 Quartz-Eye Dacite with fewer and smaller quartz	77.99	79.00	1.01	255	5	30	0
		eyes. See description above. The upper contact is 60 deg to the	79.00	79.76	0.76	330	5	32	1
		CA, and the lower is 80 deg.	79.76	80.27	0.51	145	5	32	0

HOLE No: NR9718

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9718

i.

					ASSI	YS		
ROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		80.27	81.54	1.27	75	· 37	34	0.4
	49.4 to 49.45 Ash Tuff. Medium green, fine grained, and	81.54	82.35	0.81	35	22	28	0.2
	chlorite-rich groundmass. There are < 1% blue quartz eyes in the	82.35	82.88	0.53	50	10	24	0.4
	groundmass. The upper contact is 80 deg to the CA, and the lower	82.88	84.40	1.52	15	11	24	0.2
	is 75 deg.	84.40	85.90	1.50	20	16	26	0.2
		85.90	87.06	1.16	25	17	30	0.3
	58.42 to 58.47 Minor siliceous sediments horizon. The interval	87.06	88.45	1.39	20	9	29	0.
	consists of alternating, mm scale cherty bands and chlorite-rich	88.45	89.46	1.01	10	8	30	0.
	bands. The banding is roughly 75 deg to the CA.	89.46	90.83	1.37	20	21	27	0.1
		90.83	92.00	1.17	15	7	26	0.
	65.53 - 66.33 Moderate to strong occurrence of chlorite/carb	92.00	92.66	0.66	65	. 5	30	0.3
	fractures that are sub-parallel to the CA.	92.66	93.71	1.05	10	5	28	0.3
		93.71	94.90	1.19	30	4	28	0.
	69.5 - 70.25 Strongly broken and altered core. In the middle of	94.90	96.01	1.11	15	4	34	0.
	the interval there is fault breccia, minor fault gouge, and	96.01	96.73	0.72	570	15	48	4.
	pervasive carbonate alteration. The upper and lower contacts are broken and undefined.							
	76.5 - 80.06 Moderate to strong bleaching, and alteration of the rock. The mm to cm scale bleaching (of the sericite lamellae) produces a banding. There is also patchy or fracture-controlled carbonate alteration. The interval is well-mineralized with dissem. and mm scale bands of py (5-7%).							

87.0 - 89.35 Stronger occurrence of white fractures (do not react with acid), but most of them are very narrow (up to 1mm). The fractures form a strong network, and are weakening the rock. There is minor kinking of the foliation within this interval.

.

HOLE No: NR9718

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9718

1

.

.

.

		·····							
		<i>,</i>				ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		91.2 - 92.25 QID bed with 4-5% blue quartz eyes (most are							
		> 5mm), and only minor white fractures. The groundmass is silica-							
		rich (hard to scratch), and has less chlorite than the major							
		unit. The upper and lower contacts are parallel to the foliation.							
		Across the lower contact there is a 3cm wide white quartz vein							
		that contains tourmaline. The vein is approx. 20 deg to the CA.							
		95.8 - 96.73 The interval is moderately bleached, and the large							
		quartz eyes are less common. From 96.27 to 96.73m there is a 2mm							
		wide quartz/tourmaline vein that is parallel to the CA.							
96.73	162.95	GRADED QUARTZ-EYE DACITE/ASH TUFF (GRD QID/ASH TUFF)	96.73	97.50	0.77	160	23	270	0.8
		Medium grey, fine grained ash-rich groundmass. Grey quartz	97.50	98.40	0.90	65	12	36	1.0
		phenocrysts comprise from 1% to 4% of the rock (most are 2-4mm),	98.40	99.06	0.66	50	11	36	1.0
		and the unit is weakly graded over m scale intervals (see below).	99.06	100.06	1.00	40	10	34	1.1
		The rock at the top of the unit is relatively massive and	100.06	101.03	0.97	55	8	38	0.7
		homogeneous, and is weakly altered. The groundmass is silica-rich	101.03	102.10	1.07	105	10	50	0.8
		(hard to scratch), and a pervasive foliation is composed	102.10	103.37	1.27	35	6	42	0.5
		primarily of mm scale sericite lamellae. Towards the bottom of	103.37	104.60	1.23	130	12	53	0.8
		the unit the alteration increases slightly, and there is a weakly	104.60	105.95	1.35	50	8	62	0.5
		developed banding (mostly recognized by sulphides). There are	105.95	107.54	1.59	30	7	60	0.7
		minor mm scale carbonate/quartz-filled fractures throughout the	107.54	108.20	0.66	50	9	70	1.0
		unit.	108.20	109.70	1.50	45	12	68	0.7
		The rock contains 3% py at the top of the unit, and increases to	109.70	111.25	1.55	45	8	60	0.7
		5-6% near the bottom. The py occurs mostly as finely disseminated	111.25	112.75	1.50	30	5	36	0.3
		grains in the groundmass, or in mm scale bands that are parallel	112.75	114.30	1.55	. 30	9	56	0.3
		to the foliation. There are minor occurrences of py-filled	114.30	115.05	0.75	40	9	60	0.6

HOLE No: NR9718

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9718

-

÷ ۲

•

Page 5

						ASSA	rs		
ROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
		fractures that cross-cut the foliation.	115.05	116.45	1.40	15	9	53	0.
		The foliation ranges from 65-70 deg to the CA. Most of the	116.45	116.86	0.41	90	15	59	0.
		carbonate fractures are approx. 45 deg to the CA.	116.86	117.60	0.74	55°	7	58	0
			117.60	119.10	1.50	20	6	50	0
		96.73 - 101.57 Parallel to irregular and contorted, mm to cm	119.10	120.39	1.29	10	12	220	0
		scale bands of sericite and chlorite lamellae (but the groundmass	120.39	121.85	1.46	15	4	430	0
		is still silica-rich - does not scratch easily). The interval	121.85	123.44	1.59	10	9	21 0	0
		may even have a mottled or patchy texture. The chlorite	123.44	124.86	1.42	20 4	10	70	0
		alteration decreases towards the bottom of the interval. There	124.86	125.85	0.99	15	19	102	0
		are only tr-1% quartz eyes (ash tuff?). The rock is well	125.85	127.27	1.42	15	10	142	0
		mineralized with mm scale py-rich bands. At 96.1 m the foliation	127.27	128.22	0.95	NIL	9	70	0
		is slightly kinked.	128.22	129.54	1.32	10	8	68	0
			129.54	131.06	1.52	75	19	92	0
		96.73 to 119.27 A weakly graded interval. The top of the	131.06	132.58	1.52	45	17	86	0
		interval contains approx. 1% small quartz eyes, and they increase	132.58	133.86	1.28	110	15	110	0
		gradually to 3-4% at the bottom of the interval.	133.86	135.18	1.32	90	12	250	0
			135.18	136.55	1.37	90	19	240	0
		110.45 - 111.65 A 2mm wide carbonate-filled fracture that is	136.55	137.67	1.12	60	20	210	0
		sub-parallel to the CA. The core is broken along the fracture.	137.67	138.68	1.01	45	19	80	0
			138.68	139.90	1.22	165	17	88	0
		116.6 - 116.73 A py-filled fracture that is oblique to the	139.90	140.65	0.75	115	10	166	0
		foliation. The fracture is approx. 45 deg to the CA.	140.65	141.62	0.97	95	16	110	0
			141.62	142.51	0.89	6500	36	1280	2
		119.27 to 139.0 A weakly graded interval. The top of the	142.51	143.70	1.19	295	20	168	0
		interval contains tr-1% small quartz eyes, and they increase	143.70	144.78	1.08	380	24	162	0
		gradually to 3-4% near the bottom. The foliation is weakly	144.78	146.30	1.52	255	16	152	0
		kinked at 135.45m.	146.30	147.82	1.52	530	17	108	0
			147.82	149.05	1.23	650	50	480	1

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9718

.

ાં

1

*1

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		139.0 to 162.95 Ash Tuff (QID?) There are approx. 1% small	149.05	150.18	1.13	985	37	940	2.7
		quartz eyes in an an rich groundmass, that are distributed	150.18	150.84	0.66	425	30	104	0.7
		evenly throughout the remainder of the unit.	150.84	151.98	1.14	390	28	220	0.5
			151.98	152.95	0.97	870	86	480	2.7
		153.72 - 162.95 Strongest py mineralization in the entire unit.	152.95	153.72	0.77	2770	111	280	2.0
		From 155.95 to 156.19 there is > 10% py that occurs as aggregates	153.72	154.51	0.79	269100	265	1980	19.5
		in cm scale bands or patches. It appears to be a deformed,	154.51	155.78	1.27	910	119	380	2.8
		primary feature.	155.78	156.26	0.48	4900	103	700	10.2
			156.26	157.48	1.22	680	51	200	0.7
			157.48	158.20	0.72	455	30	107	0.0
			158.20	159.12	0.92	605	37	310	1.5
			159.12	160.02	0.90	565	18	200	0.0
			160.02	160.95	0.93	525	29	450	0.6
			160.95	161.98	1.03	570	125	3550	0.0
			161.98	162.95	0.97	875	20	184	0.9
62.95 1	76.59	BANDED QUARTZ-EYE DACITE (BND QID)	162.95	163.70	0.75	3390	265	2600	5.
		Medium to pale grey, fine to medium grained groundmass. Grey-blue	163.70	164.80	1.10	650	41	420	0.8
		quartz phenocrysts comprise 2-3% of the rock (< 5mm), and are	164.80	166.11	1.31	670	32	520	0.1
		distributed evenly throughout the groundmass. There are also	166.11	166.91	0.80	1550	91	860	1.1
		minor, white feldspar phenocrysts. The unit has a strong tectonic	166.91	167.71	0.80	3050	315	1580	3.
		fabric (well developed banding). The banding is recognized by mm	167.71	168.50	0.79	535	205	800	1.
		scale sericite and chlorite lamellae (ser:chl = 5:1), that	168.50	169.51	1.01	290	22	940	1.
		alternate with siliceous bands or blebs. There are minor mm scale	169.51	170.57	1.06	205	16	300	0.
		carb/quartz veins throughout.	170.57	171.70	1.13	160	37	580	1.
		The rock contains 5-6% py and tr-1% gal that occur in mm scale	171.70	172.80	1.10	160	15	820	1.
		bands that are parallel to the foliation, and as finely	172.80	173.83	1.03	250	8	660	1.
		disseminated grains in the groundmass.	173.83	174.57	0.74	740	93	1240	3.

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9718

ł.

1

					ASS	YS		
'ROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
	The banding ranges from 75-80 deg to the CA.	174.57	175.08	0.51	7540	174	10000	24.
		175.08	175.86	0.78	545	22	1000	1.
	162.95 - 163.3 Fault zone, with strongly broken core and gouge. The contacts are broken and undefined.	175.86	176.40	0.54	350	22	530	0.
	163.65 to 166.73 There are several cm scale, medium grey ash- rich beds (widest is 4cm) that have < 1% quartz eyes, and do not have a strong tectonic fabric. The bedding contacts are all approx. 75 deg to the CA.							
	166.97 - 167.42. Fault zone, with strongly broken core and fault gouge (especially at the lower contact). The faulting planes are approx. parallel to the foliation (80 deg to the CA).							
5.49 207.59	BEDDED QUARTZ-EYE DACITE (BDD QID)	176.40	176.93	0.53	3270	1150	10000	24
	Medium to dark grey, fine grained groundmass. Grey-blue quartz	176.93	177.26	0.33	2150	140	10000	17
	phenocrysts comprise 2-3% of the rock (< 5mm), and are	177.26	177.60	0.34	945	220	4600	6
	distributed evenly throughout the groundmass (there may be minor	177.60	178.30	0.70	190	33	1160	1
	beds with 1% quartz eyes). The rock is weakly to moderately	178.30	179.00	0.70	2110	96	1800	2
	banded (primary bedding?), which is recognized by mm scale	179.00	179.91	0.91	1250	31	1640	0
	<pre>sericite/chlorite lamellae (roughly 10:1 ratio), and siliceous-</pre>	179.91	181.00	1.09	790 [.]	12	480	0
	rich bands. The banding becomes more developed towards the	181.00	181.99	0.99	1370	46	280	0
	bottom of the unit. There may also be cm scale bands that are	181.99	182.95	0.96	2260	41	5100	1
	spotted with carbonate blebs (after feldspar?). There are minor	182.95	183.87	0.92	2020	68	380	0
	cm scale quartz veins, and mm scale carbonate fractures	183.87	184.80	0.93	100	22	700	0
	throughout.	184.80	185.56	0.76	65	11	660	1
	This unit has the strongest mineralization in the entire hole,	185.56	186.09	0.53	105	14	3300	4
	which is strongest at the upper contact. There is 6-8% py, tr-1%	186.09	186.54	0.45	785	47	500	

HOLE No: NR9718

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9718

.

.

.

÷.

.

						ASS	AYS		
ROM T	O LITHO	LOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ng ppi
	gal, tr-1% sph, a	and tr cpy that occur as finely disseminated	186.54	187.45	0.91	125	28	340	0.
	grains in the gro	oundmass, or in mm scale bands (up to 1-2 cm)	187.45	188.80	1.35	130	77	2400	0.
	that are paralle	1 to the foliation. The sulphides may also be in	188.80	189.35	0.55	150	205	5800	1.
	irregular to con	torted py-filled fractures or patches that are	189.35	190.35	1.00	335	28	980	0.
	oblique to the f	oliation.	190.35	191.71	1.36	235	12	240	0.
	The foliation (b	edding) ranges from 70-80 deg to the CA. The	191.71	192.78	1.07	65	13	220	0.
	lower contact is	gradational.	192.78	193.78	1.00	40	10	360	0.
			193.78	194.36	0.58	50	10	330	1
	176.49 - 177.35	Well mineralized interval. There is 8 10% py,	194.36	194.96	0.60	70	32	420	1
	1-2% gal, and tr	-1% cpy, and tr sph (and possibly small grains of	194.96	196.06	1.10	620	108	1420	2
	gold?) that occu	r in mm to cm scale bands that are parallel to	196.06	196.77	0.71	3810	159	4400	12
	the foliation, a	nd in irregular fractures. The sulphides are in	196.77	197.59	0.82	170	34	1100	2
	close spatial as	sociation (along the margins) with minor quartz	197.59	198.28	0.69	185	69	1340	0
	veins in this in	terval.	198.28	199.31	1.03	1270	46	280	0
			199.31	200.27	0.96	195	23	360	0
			200.27	201.29	1.02	2050	22	500	1
			201.29	202.16	0.87	340	18	320	1
			202.16	202.69	0.53	220	12	400	1
			202.69	203.56	0.87	180	20	380	1
			203.56	204.20	0.64	205	33	280	1
			204.20	205.41	1.21	255	49	300	1
			205.41	206.37	0.96	385	20	210	1
			206.37	207.59	1.22	320	25	770	2
7.59 257	.55 QUARTZ-EYE DACIT	E (QID)	207.59	208.79	1.20	410	16	210	1
	Medium grey, fin	e grained groundmass. Grey-blue quartz	208.79	210.15	1.36	555	15	182	2
	phenocrysts comp	rise up to 4% of the rock (< 5mm), and for the	210.15	211.32	1.17	780	15	250	2
		stributed evenly throughout the groundmass (it	211.32	212.64	1.32	1530	23	600	3

HOLE No: NR9718

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9718

.

.

.

Page 9

						ASSA	YS		
ROM	то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	yd bbu
		may be weakly graded from 2-4% over m scale intervals). The upper	212.64	213.88	1.24	290	13	280	2.0
		portions of the unit are feldspar phyric. Small (< 3mm), white	213.88	215.35	1.47	620	124	2400	3.
		feldspar grains are scattered throughout the groundmass. The rock	215.35	216.80	1.45	1170	18	220	4.
		is weakly to moderately altered, and a pervasive foliation is	216.80	217.93	1.13	475	31	540	3.
		composed of mm scale sericite lamellae, and minor chlorite. There	217.93	218.93	1.00	1200	26	330	2.
		is also weak bleaching over cm scale intervals. Minor cm scale	218.93	219.65	0.72	1000	38	520	3.
		quartz veins, and mm scale carbonate fractures occur throughout	219.65	220.98	1.33	605	25	210	2
		the unit.	220.98	222.20	1.22	1440	42	380	3
		The rock contains 3-4% py, tr gal, and tr cpy (in at least one	222.20	223.42	1.22	315 •	41	360	2
		band). The py is found disseminated in the groundmass, and in mm	223.42	224.46	1.04	250	79	340	3
		scale bands that are parallel to the foliation. Less commonly,	224.46	225.36	0.90	330	32	320	3
		there are minor py-filled fractures that are oblique to the	225.36	226.62	1.26	85	23	108	0
		foliation. The gal occurs with py in, and along the margins, of	226.62	227.66	1.04	40	11	60	0
		some quartz veins.	227.66	228.88	1.22	145	6	52	1
		The foliation ranges from 75–85 deg to the CA.	228.88	229.92	1.04	65	28	54	1
			229.92	231.10	1.18	75	21	192	1
		209.35 - 209.36 Minor Fault Gouge. The contacts are sub-parallel	231.10	232.29	1.19	65	31	124	1
		to the foliation.	232.29	233.72	1.43	145	34	112	2
			233.72	234.64	0.92	165	26	680	2
		223.64 - 223.68 Fault Gouge. The contacts are sub-parallel to	234.64	235.76	1.12	115	16	180	1
		the foliation.	235.76	236.60	0.84	265	26	270	2
			236.60	237.42	0.82	135	52	190	1
		224.01 to 240.18 QID that is texturally and compositionally	237.42	238.49	1.07	65	28	200	0
		different from the main unit. This interval has 2-3% quartz eyes	238.49	239.63	1.14	40	15	164	0
		in a medium grey, fine grained groundmass. There are no feldspar	239.63	240.40	0.77	100	14	138	0
		phenocrysts. The groundmass is silica-rich (does not scratch	240.40	241.34	0.94	60	18	90	0
		easily). The interval may also be weakly banded, which is a	241.34	242.32	0.98	. 30	30	160	0
		product of sericite, and minor chlorite, lamellae. The strongest	242.32	243.74	1.42	25	127	770	2

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9718

•

A THE REAL PROPERTY IN

						ASSI	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
		occurrence of quarts veins is in this interval.	243.74	245.36	1.62	90	27	154	0.3
			245.36	246.72	1.36	65	36	178	0.6
		236.65 - 236.92 Moderately broken core and minor fault gouge.	249.70	250.50	0.80	85	26	80	0.5
		•	250.50	251.43	0.93	85	25	130	0.9
		240.7 - 242.0 Spotted with 6-8% white carbonate grains or blebs	253.32	254.20	0.88	55	15	138	0.0
		(up to 5 mm). After feldspars?	256.03	257.55	1.52	195	46	210	1.0
		251.46 - 255.37 Spotted with 5-6% white carbonate grains or blebs.							
		DOWN-HOLE SURVEY DATA							

DEPTH	INCLINATION	BEARING
21.34	-48.50	3.00
97.54	-47.00	5.00
173.74	-45.00	8.00
249.94	-44.00	8.00
257.55	-44.00	8.00

.

.

.

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9719 Collar Eastings: -1400.00 Collar Northings: -450.00 Collar Elevation: 0.00

.

.

Collar Inclination: -50.00 Grid Bearing: 0.00 Final Depth: 275.84 metres Logged by: S. Warner 11/03/97 Date: 10/03/97 - 14/03/97 Down-hole Survey: Sperry Sun

		and the second	ASSAYS								
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	λg ppm		
0.0	62.17	OVERBURDEN (OVD)									
62.17	67.0	QUART2-EYE DACITE (QID) Medium grey, fine grained groundmass. Grey-blue guartz									
		phenocrysts comprise 3-4% of the rock (< 5mm), and are									
		distributed evenly. The rock is weakly altered, and there is		•							
		minor bleaching. A weak foliation is recognized by mm scale sericite/sulphide lamellae.									
		The unit contains 2-3% py that is found disseminated in the									
		groundmass, in mm scale bands which are parallel to the									
		foliation.									
		The foliation ranges from 70-75 deg to the CA.									
57.0	73.0	ASH TUFF (ASH TUFF)	67.25	67.85	0.60	230	12	18	1.6		
		Medium grey, aphanitic to fine grained groundmass. There are no quartz eyes. The groundmass is silica-rich (hard to scratch),									
		but there is also a "network" of micaceous minerals present. Both									
		sericite (bleaching to white) and chlorite (pale green) are									
		evenly distributed throughout the unit along narrow (< 1mm) and									
		irregular bands. The bands are all weakly interconnected, but are									
		mostly sub-parallel. The silica-rich groundmass to micaceous minerals ratio is roughly 5:1. There are minor mm scale carbonate									
		and epidote(?)-filled fractures throughout. The unit also has one									
		quartz vein (2-3 cm wide), that contains massive tourmaline.									

.

HOLE No: NR9719

4 . A 4

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9719

.

•

📲 id 🙀

.

			ASSAYS							
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	yg bbw	
		Excluding where described below, there is 2-3% py that is found								
		mostly as finely dismeminated grains in the groundmass.								
		The sub-parallel micaceous minerals range from 70-75 deg to the								
		CA. The lower contact is gradational and poorly defined. There is								
		a 1-2m interval that defines the contact.								
		67.45 · 67.54 There is 6-8% py that occurs in mm scale irregular								
		and contorted bands (< 1cm) that are sub-parallel to oblique to								
		the foliation. They appear to be fracture-controlled.								
3.0 E	84 [.] .54	BANDED QUARTZ-EYE DACITE/ASH TUFF (BND QID/ASH TUFF)	73.56	74.44	0.88	260	17	98	0.9	
		Pale to medium grey, fine grained groundmass. Grey quartz	74.44	75.28	0.84	105	17	82	1.3	
		phenocrysts (< 5 mm) comprise tr-1% of the rock (QID/Ash Tuff?),	75.28	76.68	1.40	210	25	124	3.3	
		and are distributed evenly. This unit has a stronger alteration	76.68	77.95	1.27	525	34	220	4.2	
		texture than the previous, and a moderately developed tectonic	77.95	79.06	1.11	585	48	152	4.8	
		fabric. The rock is also moderately to strongly bleached. A	79.06	80.00	0.94	220	17	78	2.3	
		pervasive foliation is recognized by mm scale sericite/sulphide-	80.00	81.25	1.25	265	23	98	2.9	
		rich bands.	81.25	82.60	1.35	720	81	310	5.6	
		The unit contains 4-5% py that is found disseminated in the	82.60	83.49	0.89	180	14	84	1.4	
		groundmass, and in mm scale bands that are parallel to the								
		foliation.								
		The banding (bedding) is approx. 75 deg to the CA.								
		76.0 - 76.52 Moderately to strongly broken core. Fault zone? The								

83.82 - 84.54 Moderately to strongly broken and altered core. The core is broken along the foliated planes. The rock in this

.

.

HOLE No: NR9719

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9719

.

.

.

.

· •

1 2

			ASSAYS						
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppr
		interval is also pitted, and appears to be feldspar phyric. There are small white grains (blebs) that may be relic feldspar.							
34.54 117.	117.54	BEDDED ASH TUFF (BDD ASH TUFF)	83.49	84.60	1.11	365	44	220	3.1
		Medium to dark grey, fine grained groundmass. Excluding where	84.60	85.55	0.95	530	21	182	3.
		described below, there are tr-1% quartz eyes in a weakly banded	85.55	86.86	1.31	2240	17	220	2.
		rock. The banding is recognized by a pervasive foliation	86.86	88.48	1.62	355	19	152	2.
		consisting of mm scale sericite/sulphide-rich lamellae. The rock	88.48	89.64	1.16	315	13	98	2.
		is moderately altered, and scratches easily. There are minor mm	89.64	90.55	0.91	240	4	60	2.
		scale carbonate-filled fractures, and cm scale quartz veins	90.55	91.11	0.56	595	123	240	9.
		(largest described below) that occur throughout. The carbonate	91.11	92.24	1.13	465	-31	140	5.
		fractures (alteration) inceases toward the bottom.	92.24	93.30	1.06	300	106	88	4.
		The unit contains 4-5% py that is found disseminated in the	93.30	94.40	1.10	385	275	680	8.
		groundmass, and in mm scale bands that are parallel to the	94.40	95.64	1.24	280	205	130	5.
		foliation. The py may even occur in minor patches or aggregates.	95.64	96.83	1.19	210	96	102	5.
		There is also tr gal that occurs in, and along the margins, of	96.83	98.32	1.49	240	80	108	3.
		some of the quartz veins.	98.32	100.08	1.76	265	20	88	3.
		The foliation ranges from 70-80 deg to the CA.	100.08	101.20	1.12	135	26	66	1.
			101.20	102.50	1.30	100	33	70	0.
		84.54 to 88.56 QID. There are 2-3% grey quartz eyes (< 5mm) in	102.50	103.72	1.22	290	32	74	1.
		an ash-rich groundmass that is similar in composition and texture	103.72	104.35	0.63	345	41	98	1.
		to the main unit.	104.35	105.55	1.20	285	53	132	2.
			105.55	106.78	1.23	190	65	210	2.
		84.7 – 84.9 White quartz vein. There is no gal present. The	106.78	107.96	1.18	460	65	72	1.
		contacts are sub-parallel to the foliation.	107.96	108.66	0.70	425	18	58	1.
			108.66	109.40	0.74	325	14	70	1.
		90.61 - 91.0 White quartz vein. The vein is approx. 1cm wide,	109.40	110.08	0.68	1460	18	62	6
		and is roughly parallel to the CA. There is tr-1% gal within the	110.08	111.20	1.12	660	30	144	3

HOLE No: NR9719

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9719

						ASS	AYS		
ROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppa
		vein. At 90.75m there is a slip plane that is 45 deg to the CA,	111.20	112.21	1.01	1190	57	114	7.3
		and the vein is offset -5cm (dextral fault). There is carbonate	112.21	113.34	1.13	910	38	60	6.7
		alteration associated with the slip plane.	113.34	114.16	0.82	665	20	58	5.1
			114.16	115.11	0.95	1340	33	220	28.
		92.96 - 100.08 A moderate banding in the rock is recognized by	115.11	116.30	1.19	480	109	510	6.
		light grey and irregular silica-rich bands, that alternate with	116.30	117.54	1.24	245	37	210	3.
		darker grey micaceous lamellae (sericite/sulphide). In places,							

the silica-rich bands are discontinuous, and appear to be flattened lapilli fragments (?). There is still <1% quartz eyes. At 99.2m there are several small and broken pieces of dark brown to black mineral(s). Most of it is grey/black, aphanitic, hard, and perhaps metallic (non-magnetic). It looks like re-melted rock. One small piece appears to be composed mostly of sulphides, and contains several small, dark black, metallic, non-magnetic

100.08 - 117.54 The silica-rich bands diminish, but the rock is still moderately banded. Banding is recognized by weakly bleached groundmass and darker sericite/sulphide-rich bands. The foliation may be weakly kinked in places. Towards the bottom of the unit the banding becomes more stronger, but irregular. The darker bands may be spaced up to 1cm apart, and there may be 5-7% py in

108.82 - 109.27 Strong occurrence of white quartz veins. There are several veins with irregular contacts. The foliation is

and euhedral crystals (ilmenite, rutile?).

this interval.

coarser near the veining.

HOLE No: NR9719

DIAMOND DRILL LOG

are parallel to the foliation. There is also tr-1% gal that

.

.

PROPERTY: RAINY RIVER HOLE NO.: NR9719

· · ·

.

ULE NO.: NR								Page
					ASSA	AYS		
FROM TO	LITHOLOGICAL DESCRIPTION 111.74 to 111.94 Quartz-Feldspar Porphyry. Pale grey to pale green, medium grained, and equigranular rock that is composed primarily of grey quarts and altered feldspar. The feldspar is altering to epidote and carbonate. There is 2-3% coarse grained py disseminated throughout. The upper contact is 70 deg to the CA, and the lower is 30 deg to the CA.	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
-	111.94 to 112.5 Feldspar phyric. There are 6-8% small (< 4mm), white feldspars in a sericite-rich groundmass (XI Tuff?). There are no quartz eyes.							
	114.12 to 114.53 Quartz-Feldspar Porphyry. See description above. The upper and lower contacts are approx. 15-20 deg to the CA.							
7.54 177.78	BEDDED QUARTZ-EYE DACITE (BDD QID)	117.54	118.44	0.90	350	27	480	8.0
	Medium grey, fine grained groundmass. Grey-blue quartz	118.44	119.40	0.96	1670	54	270	17.0
	phenocrysts comprise 2-4% of the rock (most are < 4mm), and are	119.40	120.40	1.00	690	66	98	11.
	distributed evenly throughout the groundmass. The unit may also	120.40	121.66	1.26	415	17	130	4.
	be feldspar phyric (see below). The moderately altered groundmass	121.66	122.43	0.77	305	16	42	2.
	is sericite-rich and a pervasive foliation is recognized by mm	122.43	123.44	1.01	160	39	132	1.
	scale sericite/sulphide-rich lamellae. There is minor chlorite	123.44	124.53	1.09	85	12	67	0
	lamellae near the bottom of the unit. Excluding where described	124.53	125.38	0.85	105	20	54	0
	below, there are minor mm scale quartz/carbonate fractures	125.38	126.49	1.11	50	18	80	0
	throughout.	126.49	127.91	1.42	35	13	72	0
	The unit contains 4-5% py that is found mostly as finely	127.91	128.74	0.83	30	9	58	0.
	disseminated grains in the groundmass, and in mm scale bands that	128.74	130.04	1.30	50	15	105	0.
				4 00			~ * *	

130.04 131.33

1.29

495

17

HOLE No: NR9719

3.4

240

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9719

•

· · · · ·

.

						ASS	AYS		
ROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		occurs in most of the quartz/carbonate fractures, and rarely in	131.33	132.59	1.26	155	15	340	1.0
		sulphide-rich bands.	132.59	133.82	1.23	105	48	115	0.8
		The foliation ranges from 70-80 deg to the CA. The bedding	133.82	135.38	1.56	170	40	220	1.1
		contacts are parallel to the foliation. The lower contact is	135.38	136.78	1.40	210	80	310	1.2
		gradational.	136.78	137.78	1.00	170	70	740	1.1
			137.78	138.68	0.90	95	32	174	0.5
		121.85 - 122.1 White quartz vein. There is py and carbonate	138.68	139.65	0.97	65	40	185	0.6
		alteration along the contacts, and the foliation is irregular and	139.65	140.83	1.18	130	37	335	0.9
		coarser near the margins. There is tr gal within the vein. The	140.83	141.73	0.90	140	38	390	0.9
		contacts are approx. 60 deg to the CA.	141.73	142.86	1.13	130	35	720	1.0
			142.86	143.48	0.62	460	186	3600	7.8
		124.64 - 124.93 White quartz vein. There is minor carbonate	143.48	144.28	0.80	95	47	168	1.3
		alteration along the margins, and tr gal within the vein. The	144.28	145.08	0.80	225	190	146	2.8
		contacts are approx. 60 deg to the CA.	145.08	146.10	1.02	80	40	295	0.7
			146.10	147.18	1.08	90	60	170	0.7
		130.44 to 130.5 Siliceous Sediments. A minor sed-rich interval	147.18	148.00	0.82	135	40	148	1.0
		that consists of alternating and irregular, mm scale silica-rich	148.00	148.74	0.74	560	130	490	4.(
		bands and micaceous bands (chlorite and sericite). There is 2-3%	148.74	149.68	0.94	185	40	240	1.6
		py within the bands. The contacts are 75 deg to the CA.	149.68	150.54	0.86	160	47	350	1.4
			150.54	151.45	0.91	175	76	550	5.0
		130.5 - 130.9 Minor kinking plane that is sub-parallel to the	151.45	152.11	0.66	625	330	3900	4.2
		СА.	152.11	153.03	0.92	205	97	515	1.1
			153.03	154.23	1.20	155	93	770	1.1
		135.09 to 145.7 Feldspar Phyric QID. The groundmass is fine to	154.23	155.30	1.07	130	75	290	1.4
		medium grained, and feldspar-rich. The coarser phenocrysts are	155.30	156.32	1.02	100	83	104	1.0
		white and comprise up to 8% of the rock (< 4mm). They are	156.32	157.16	0.84	120	48	186	0.9
		distributed over most of this interval. The rock scratches	157.16	157.88	0.72	190	56	132	2.0
		easily, and is moderately to strongly bleached. The interval is	157.88	158.88	1.00	65	32	168	0.6

HOLE No: NR9719

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9719

CA.

.

						ASSA	YS		
ROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	yd bbu
		also moderately banded, which is recognized by dark grey	158.88	160.02	1.14	30	31	182	0.3
		sericite/sulphide-rish bands. There is tr-1% gal in every carb/	160.02	160.92	0.90	45	63	330	0.4
		quartz fracture.	160.92	162.08	1.16	55	16	198	0.9
			162.08	163.03	0.95	420 •	42	860	3.2
		145.7 - 169.0 The rock is becoming increasingly altered, and the	163.03	163.90	0.87	135	135	2000	3.
		core is weakly to moderately broken. There is patchy to banded	163.90	164.98	1.08	90	115	210	0.
		bleaching, and carbonate alteration. Also, moderate occurrences	164.98	166.11	1.13	115	110	230	0.
		of cm scale quartz veins, and mm scale carbonate-filled fractures	166.11	167.59	1.48	135	84	300	1.
		(most contain gal) occur throughout. There is no significant	167.59	169.16	1.57	95	40	320	0.
		increase in the py content. The foliation may also be weakly	169.16	170.18	1.02	80	50	92	0,.
		kinked over cm scale intervals (sub-parallel to the CA).	170.18	171.00	0.82	85	94	152	0.
			171.00	171.70	0.70	70	82	200	0.
		149.25 - 149.46 Minor fault gouge at the upper and lower	171.70	172.70	1.00	85	82	140	0.
		contacts of this interval. The contacts are sub-parallel to the	172.70	174.00	1.30	90	32	90	0.
		foliation.	174.00	175.26	1.26	210	60	142	1.
			175.26	176.41	1.15	90	28	100	0.
		157.24 - 157.8 White quartz vein. The vein is approx. 6cm wide, and the contacts are irregular. The foliation along the margins	176.41	177.77	1.36	75	40	106	. Q.

.

159.33 to 159.57 Maf Dyke? The interval is composed primarily altered feldspar and chlorite(?) (strongly altered dyke, or maific-rich sediments?). At the upper contact there is a 12cm quartz vein, and the lower contact is a well defined, but irregular contact. The chlorite and white feldspar have a weak, but preferred orientation (similar to foliation). Whether a dyke or sediment, it went through the same metamorphic episode as the

.

is coarser and distorted. The contacts are approx. 30 deg to the

HOLE No: NR9719

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9719

N 8 4

-

						ASSI	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION principal unit.	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		160.35 - 160.48 At the upper contact there is a quartz vein, and the remaining interval has strong banding (bedding?). The banding is recognized by well developed sericite and minor chlorite lamellae.							
		169.54 to 172.26 Ash Tuff. Medium to dark grey, fine grained groundmass. There are only trace quartz eyes. The groundmass is sericite-rich and is relatively massive. The unit is weakly banded, which is a product of mm scale sulphide-rich bands.							
77.78	200.27	QUARTZ-EYE DACITE (QID)	177.77	178.98	1.21	60	32	164	0.2
		Medium grey, fine grained groundmass. Blue-grey quartz	178.98	179.91	0.93	30	21	285	0.2
		phenocrysts comprise 4-5% of the rock (< 5mm), and are	179.91	180.40	0.49	110	130	920	0.7
		distributed evenly throughout the groundmass. There may also be	180.40	181.35	0.95	45	65	450	1.0
		white feldspar phenocrysts (< 4mm) over m scale intervals (up to	181.35	182.49	1.14	30	62	235	0.6
		5%), and their concentration increases towards the bottom of the	182.49	183.26	0.77	20	17	184	0.3
		unit. The top of the unit is relatively massive, and the	183.26	184.19	0.93	80	27	210	0.5
		groundmass is silica and sericite-rich. Towards the bottom, the	184.19	185.10	0.91	3090	260	1200	11.2
		alteration texture becomes stronger and the unit is weakly to	185.10	185.77	0.67	30	13	92	0.2
		moderately banded. Banding is recognized by mm scale sericite,	185.77	187.03	1.26	110	25	225	0.4
		and rare chlorite, lamellae. There may also be weak bleaching,	187.03	187.75	0.72	130	16	570	0.6
		but the groundmass is still silica-rich. There are minor cm scale	187.75	188.42	0.67	670	205	1350	3.1
		quartz veins, and mm scale carbonate-filled fractures that occur	188.42	189.28	0.86	70	57	156	0.6
		throughout the unit.	189.28	190.50	1.22	40	90	400	0.5
		The rock contains 4-5% py that is found as finely disseminated	190.50	191.73	1.23	50	83	685	0.9
		grains in the groundmass, and in mm scale bands that are parallel	191.73	192.53	0.80	50	28	550	0.4

HOLE No: NR9719

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9719

<u>а</u> – -

*¥

.

•

					ASS	AYS		
OM T	D LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	yd bbi
	to the foliation. There may also be minor py-filled fractures	192.53	193.82	1.29	70	21	580	0.4
	that are oblique to the foliation. In at least one spot, there is	193.82	194.68	0.86	55	21	410	0.
	tr cpy and gal that are found associated with a white quartz	194.68	195.47	0.79	590	42	186	2.
	vein.	195.47	196.22	0.75	205	62	60	0.
	The foliation ranges from 70-80 deg to the CA.	196.22	197.21	0.99	330	29	86	0.
		197.21	198.34	1.13	405	48	45	0.
	184.54 to 190.27 There are 4 dykes(?) or ash/sed beds(?) over	198.34	199.10	0.76	315	75	120	0.
	this interval that range from 4 to 16 cm wide. They are similar							
	to the rock from 159.33 to 159.57m, but finer grained. They are							
	pale green/brown and composed of feldspar, and lesser amounts of							
	chlorite (altered mafic minerals?). They are all spotted with							
	1-2% of subhedral to euhedral py. The contacts appear to be							
	chilled, and they are not parallel to the foliation. The contacts							
	are generally 80-90 deg to the CA.							
	192.06 - 192.3 Fault gouge and fractured core. The contacts are							
	30 deg to the CA.							
	197.23 - 198.74 Strongly broken core.							
	199.31 to 199.36 QFP? Pale grey, fine grained interval. It							
	appears to be composed of feldspar and quartz primarily. The							
	contacts are well defined and sub-parallel to the foliation, but							
	do cross-cut it. The contacts look more like a dyke than an ash-							
	rich bed.							
. 27 239	.12 BANDED ASH TUFF/QUARTZ-EYE DACITE (BND ASH TUFF/QID)	199.10	200.28	1.18	430	310	980	0
	Medium grey, aphanitic to fine grained groundmass. At the top of	200.28	201.68	1.40	680	76	112	N.

HOLE No: NR9719

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9719

ì

.

.

					ASS	AYS		
OM T	D LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
	the unit, there are <1% quartz eyes, and they increase to > 1%	201.68	203.18	1.50	180	47	120	0.
	near the bottom (contacts are poorly defined). The unit may also	203.18	204.55	1.37	110	34	220	0.
	be weakly feldspar phyric. The groundmass near the top of the	204.55	205.74	1.19	600	40	80	1.
	unit is silica and sericite-rich, and banding is recognized by	205.74	207.22	1.48	125	29	90	0.
	evenly spaced, mm scale chlorite lamellae. Towards the bottom of	207.22	208.52	1.30	65	4	92	N.
	the unit, the chlorite lamellae are less prominent, but the	208.52	209.48	0.96	175	42	72	0
	alteration texture increases (see below).	209.48	210.31	0.83	130	112	198	0
	The rock contains 5-6% py that is found disseminated in the	210.31	211.63	1.32	330	190	840	1
	groundmass, and in mm scale bands (or patches) that are parallel	211.63	212.77	1.14	125	32	104	N
	to the foliation. Less commonly, there are py-filled fractures	212.77	213.77	1.00	65	11	67	N
	that are oblique to the foliation. There is tr gal (along with	213.77	214.88	1.11	80	35	122	N
	py) in some of the quartz veins.	214.88	215.91	1.03	125	34	122	N
	The orientation of the foliation (banding) is variable, and may	215.91	216.83	0.92	140	33	148	N
	be irregular. The banding near the top of the unit may be as high	216.83	217.44	0.61	120	340	180	0
	as 80 deg to the CA, and as low as 60 deg near the bottom.	217.44	218.33	0.89	90	24	60	0
		218.33	219.31	0.98	510	405	124	2
	208.48 - 238.24 Zone of moderate to strong fracturing and	219.31	220.00	0.69	235	127	86	1
	veining, and associated alteration. White quartz veins are	220.00	220.73	0.73	150	134	230	1
	irregular, and occur over m scale intervals. Also, mm scale	220.73	221.59	0.86	175	40	116	1
	carbonate-filled fractures occur in random orientations. The	221.59	222.47	0.88	170	25	96	1
	foliation may be distorted and irregular (non-parallel). There is	222.47	223.26	0.79	285	172	116	3
	chlorite banding at the top of this interval, but it diminishes	223.26	224.03	0.77	185	50	134	1
	near the bottom. Towards the bottom, there may be 1-2% quartz	224.03	224.90	0.87	365	90	70	3
	eyes (grades into a QID), and there are cm scale bands where the	224.90	225.82	0.92	315	39	116	2
	rock is feldspar phyric. The groundmass is generally silica-rich,	225.82	226.77	0.95	160	102	162	1
	and there may be well developed sericite, and minor chlorite,	226.77	227.58	0.81	80	31	122	0
	banding.	227.58	228.30	0.72	130	44	220	0
	Probably has the strongest py mineralization (5-7%) of the entire	228.30	229.18	0.88	80	48	170	C

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9719

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	yd bbw
		unit.	229.18	230.12	0.94	75.	58	140	0.8
			230.12	230.80	0.68	225	147	89	2.2
		213.8 - 215.78 A carbonate-filled fracture (< 5mm wide) that is	230.80	231.81	1.01	275	53	106	2.3
		parallel to the CA. For the last 45 cm there is quartz veining	231.81	232.62	0.81	280 ·	169	166	1.4
		associated with the fracture, and minor fault gouge within the	232.62	233.45	0.83	160	42	170	0.7
		fracture.	233.45	234.10	0.65	75	89	400	0.4
			234.10	235.33	1.23	160	43	191	0.5
		216.58 - 218.7 Interval of moderate occurrence of guartz	235.33	235.87	0.54	69 5	199	370	2.8
		veining. The veins have irregular contacts, but are generally low	235.87	236.93	1.06	80	130	810	0.6
		angled wrt the CA.	236.93	237.75	0.82	65	69	185	0.3

237.75

238.48

238.48

239.05

0.73

0.57

115

70

73

86

166

370

225.6 to 225.66 Sediment-rich horizon? Pale brown/yellow, fine grained rock that appears to be composed of equal proportions of sericite, chlorite, and feldspar. The micaceous minerals have a preferred orientation that is sub-parallel to the foliation. The contacts are well defined, but do not look like that of a discordant dyke. Generally, though, all of these minor bodies (see above) have similar textures, but some look like dykes, and others look like sediments or ash beds.

225.84 - 228.86 Strong occurrence of white quartz veins. The veining is irregular and contacts are poorly defined. The foliation (sericite and lesser chlorite) is also distorted, and may be coarser. There is tr gal within the veins. Some of the contacts are sub-parallel to the CA.

229.77 - 231.39 A 2-4mm wide fracture that is sub-parallel to the CA. There is minor fault gouge over most of the fracture, and

HOLE No: NR9719

Page 11

0.5

0.6

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9719

.

.

.

•

.

÷.

					ASSA	YS		
IOM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
	at the top of the interval there is minor in-situ brecciation of the rock.							
.12 275.84	QUARTZ -EYE DACITE (QID)	239.05	240.50	1.45	85	63	340	0.
	Medium grey, fine grained groundmass. Grey-blue quartz	240.50	241.86	1.36	70	37	200	0.
	phenocrysts comprise 1-2% of the rock (< 5mm), and are	248.16	249.19	1.03	330	99	820	1.
	distributed evenly throughout the groundmass. The top of the	249.19	250.10	0.91	795	147	950	3.
	unit is relatively massive, and weakly to moderately altered. The	252.49	253.87	1.38	380	38	485	1
	groundmass is silica and sericite-rich (does not scratch easily).	253.87	255.32	1.45	130	38	194	0
	Towards the bottom of the unit, the rock becomes feldspar phyric,	255.32	256.65	1.33	70	63	114	0
	and it is moderately banded (see below). Unless described below,	256.65	257.86	1.21	45	76	116	0
	there are minor, mm scale quartz/carb fractures throughout. There	257.86	258.98	1.12	30	63	92	0
	may be minor tourmaline in the quartz veins.	258.98	260.04	1.06	50	101	79	0
	The rock contains 3-4% py and tr cpy that is found disseminated	260.04	260.80	0.76	40	163	80	0
	in the groundmass, and in mm scale bands that are parallel to the	261.20	261.85	0.65	30	80	44	0
	foliation. Py-filled fractures are rare. The mineralization is	261.85	262.80	0.95	380	580	49	0
	strongest in the banded portion of the unit (up to 4-5% py).	262.80	263.65	0.85	190	131	56	0
	The foliation (banding) is 65-70 deg to the CA.	263.65	264.71	1.06	160	112	64	0
		264.71	265.77	1.06	95	106	76	0
	260.8 to 261.2 Maf Dyke. Black, medium grained, equigranular	265.77	266.38	0.61	145	690	64	0
	rock that is composed equal proportions of mafic minerals, and	266.38	267.68	1.30	105	92	68	0
	feldspar. The mafic minerals are mostly pyr/amph, and there is	267.68	268.70	1.02	20	31	74	0
	minor biotite. There is tr-1% diss. py. The upper and lower	268.70	269.74	1.04	60	76	360	0
	contacts are roughly 55 deg to the CA. Below the lower contact,	269.74	270.82	1.08	30	11	66	0
	there is 50cm of strong quartz veining in the QID. The foliation	270.82	271.94	1.12	95 🛛		320	N
	is distorted and coarser.	271.94	273.10	1.16	120	53	184	0
		273.10	274.64	1.54	. 70	112	179	0
	261.8 to 275.84 The unit becomes feldspar phyric, and it is	274.64	275.84	1.20	750	230	230	0

.

HOLE No: NR9719

DIAMOND DRILL LOG

.

PROPERTY: RAINY RIVER

275.84

.

-42.50

.

HOLE N		R9719									Page 13
								ASS			
PROM	то	moderately to st phenocrysts comp of this interval chlorite (rough) associated with more common over and alteration i	Tige up to 5% of Banding is really 10:1 ratio) lo the feldspars. The last 5m of is also stronger he upper portion	Small (< 4mm), white feldspar f the rock, and occur over most cognized by mm scale sericite and amellae, and minor bleaching The chlorite lamellae (bands) are the interval. Carbonate fracture . The sulphide mineralization is s of the unit (up to 5%), but the	S	то	WIDTH	Au ppb	Cu ppm	2n ppm	Ag ppm
		DOV	IN-HOLE SURVEY D	ATA							
		DEPTH	INCLINATION	BEARING							
		73.15	-46.00	5.00							
		140.21	-45.00	8.00							
		207.26	-43.50	9.00							
		274.32	-42.50	9.00							

9.00

.

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9724 Collar Eastings: -2800.00 Collar Northings: 160.00 Collar Elevation: 0.00 Grid: Rich

Collar Inclination: -50.00 Grid Bearing: 360.00 Final Depth: 184.40 metres CONTRACTOR: Ultramobile D.D. Logged by: C.A. WAGG, 25/02/97 Date: 21/03/97-25/03/97 Down-hole Survey: Sperry-Sun

ASSAYS FROM TO LITHOLOGICAL DESCRIPTION FROM то WIDTH Auppb Cuppm Znppm Ag ppm 0.0 29.56 OVERBURDEN (Ovb) No boulders were encountered in this hole, but porous gravels at the bedrock interface are sufficiently saturated to cause water to flow up around the outside of the casing once it was anchored into bedrock. 29.56 38.35 COARSE GRAINED MAFIC METAVOLCANICS (Maf Mvolc, cg) Medium green, mottled with abundant yellow-green "spots" <1cm in diameter. Medium to coarse grained, but strongly altered and likely somewhat deformed. It appears probable that this unit may be an equivalent of the coarse flow rocks outcropping along the roadside about 400m WSW of the drill. On its weathered surface, hb porphyroblasts appear to stand out in relief against a chloritic groundmass. It appears that here, alteration is more intense, resulting in fuzzy chlorite-rich spots to 1cm diameter encompassed by a pale "groundmass" rich in calc +/- Fe-carb, epidote, and lesser qtz

and chlorite +/- sericite. Dark and light phases each account for about 50% of the rock. 5-8% mm-sized grains of fine mag are diss. throughout. Trace to 1% Py. Moderately foliated at -60 deg to the CA. The lower contact

is somewhat gradational and appears mod. to strongly sheared parallel to the foliation. An abrupt decrease in average grain

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9724

۲

						ASS	AYS .		
FROM	TO	LITHOLOGICAL DESCRIPTION size at 38.35m, and the presence of banding in the underlying unit, place the contact within a 30cm core length zone of fol. parallel calc stringers. Foliation at the lower contact is 43-45 deg to the CA.	FROM	TO	Width	Au ppb	Cu ppm	2n ppm	Ag ppm
38.35	55.75	BEDDED MAFIC TUFFS (Bdd Maf Tuffs)	37.95	38.78	0.83	3	53	220	0.1
		Fine to medium grained, and light grey-green at the top of the	38.78	39.83	1.05	3	50	420	0.2
		unit. Moderately banded parallel to fol., which is interpreted	39.83	41.84	2.01	3	44	300	0.2
		as bedding. Fairly similar in appearance to the overlying unit	41.84	43.21	1.37	3	62	186	0.1
		but with chl-rich indistinct laminations to 2-3mm thick, spaced	48.50	49.40	0.90	3	77	120	0.1
		on a regular 5mm to 1cm scale and oriented parallel to the fol.	49.40	50.79	1.39	3	96	106	0.1
		Alteration is also very similar to the preceding unit. Fine mag	50.79	52.15	1.36	3	72	130	0.1
		content is approx. 10%, and 1-2% fine diss. py on average.	52.15	53.34	1.19	3	134	110	0.1
		Foliation is at 55-60 deg to the CA, steepening some with increasing depth.	53.34	55.00	1.66	3	412	72	0.2

48.78 to 52.1 Fine Mafic Ash/Flow Rocks?

Well foliated, fine grained, with tiny calcite filled vesicles at the top, possibly thin flows to 53.70m, below which the unit is a homogenous dark green colour. The entire subinterval is mod. to strongly magnetic, although mag is too fine to be visible. The lower section might have been interpreted as a metamorphosed massive flow, but for the interbedded apparently tuffaceous units below.

Strongly carb and chl altered, with 1-2% very fine diss. py.

52.1 to 55.75 Interbedded Mafic to Intermediate Ash Tuffs

HOLE No: NR9724

DIAMOND DRILL LOG

-

PROPERTY: RAINY RIVER

.

•

OLE N	o.: NR9	9724							Page
						ASS	 NYS		
FROM	TO	LITHOLOGICAL DESCRIPTION A sequence of fine Ash Tuffs. Bedded/banded and mafic to 52.48m. Faintly hadded, grey-green and "intermediate" to 54.50m, and interbedded mafic and intermediate material as 5- 10cm thick beds down to the lower contact. A 10-12cm thick pale greenish white section at 55.1m, exhibits a few qtz eyes and fine fsp phenocrysts, and is likely a sheared narrow dyke related to the intrusive body downhole. Moderately chloritized with some fine ser and weak pervasive silicification. Moderately to strongly magnetic with 1-3% py. Lower contact is slightly irregular and oriented approximately parallel to the foliation.	FROM	TO	WIDTH	Au ppb	Cu ppm	2n ppm	Ag pp
5.75	113.95	QUARTZ PORPHYRY INTRUSIVE (Qtz Porphyry Intr.)	55.00	56.39	1.39	3	254	64	0.
		Pale greenish white to pale pinkish in colour, fine to med?	56.39	57.64	1.25	3	113	30	0
		grained and porphyritic. The unit contains from 7-10% up to	57.64	58.80	1.16	3	185	32	0
		15-18% generally subhedral qtz phenocrysts. They range in	58.80	59.43	0.63	3	170	40	0
		size from 1-2mm up to 7-8mm in cross-section, and occasional	59.43	60.61	1.18	3	490	23	0
		euhedral outlines of all sizes can be seen. 1-2mm sized whitish	60.61	62.12	1.51	3	92	25	0
		fsp is occasionally evident, but most appears to be a fine	62.12	63.35	1.23	3	2	20	0
		groundmass constituent, either initially or as a result of	63.35	64.84	1.49	ز د	2	19 26	0
		alteration. Minor chlorite (to 10-15% locally) occurs within	64.84	66.18	1.34 1.18	3 2	2	26 36	0
		the marginal zone near the upper contact, and within the whitish sections, usually as thin streaks along foliation planes and	66.18 69.27	67.36 70.90	1.63	3	7	50	0
		fractures. Groundmass to the pinkish sections is presumably	70.90	71.98	1.08	3	, 8	50	0
		rich in kspar, owing to its hardness, colour, and minor ser alt.,	70.90	73.20	1.22	3	9	20	0
		but fine diss. hematite may also be present. (Reddish oxide	73.20	74.20	1.00	30	4	22	Ő
		staining is well-developed from 72.0-73.3m coating closely	74.20	75.45	1.25	3	ċ	20	Ő

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9724

1

is rarely apparent.

			ASSAYS									
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp			
		spaced fol. parallel fractures which resemble a "brittle shear".)	75.45	76.75	1.30	3	2	22	0.			
			76.75	80.88	4.13	3	10	4	0			
		Sericitization is moderate at best, with moderate to strong	80.88	81.20	0.32	3	2	10	0			
		bleaching (due in part to Fe-carb) apparently producing the	84.18	85.45	1.27	25	10	20	0			
		whitish sections. The potassic sections seem relatively less	85.45	86.86	1.41	45	5	24	(
		altered, however, it is possible that the kspar is also a product of	89.92	90.67	0.75	3	4	160				
		metasomatic replacement of an initially sodic to mod. calcic fsp.	90.67	91.83	1.16	10	7	28	(
		This scenario appears less likely though, because of the presence	91.83	92.96	1.13	50	5	118	4			
		of a few strongly deformed, but little altered mafic xenoliths.	92.96	93.97	1.01	40	4	24				
		Extremely distorted xenoliths are associated with qtz-tour veins	93.97	95.40	1.43	15	7	26				
		at 90.3m, and 92.8m. Pyrite mineralization is sporadic,	99.30	100.67	1.37	5	2	22				
		commonest as fine disseminations alonf fol. planes and fractures,	100.67	102.11	1.44	3	20	22				
		and with tr-1% present in rare qtz-tour+/-carb veins, it reaches										
		maximum levels of 2-3% over 1 to 2 metres. The unit also										

.

Well-foliated, but without any of the questionable deformationrelated? banding or obvious bedding features characteristic of the 17 Zone dacites, which this unit more or less resembles, aside from its unusual colouration. The lack of significant chilling at its contacts, and the pervasive moderate foliation which is strongest at its margin and at subunit contacts, point to a syntectonic emplacement; which may increase the possibility that internal inhomogeneity is due to several pulses or phases of intrusive activity, each of slightly differing composition because of differentiation or the assimilation of wallrocks. 59.0 - Several small grains of native Cu were noted along a

.

displays trace to weak magnetism most places though magnetite

HOLE No: NR9724

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9724

Page 5

Ag ppm

Zn ppm

FROM то LITHOLOGICAL DESCRIPTION late? partially annealed fracture developed at ~90 deg to fol.

65.0 to 65.5 An orange-brown section within the whitish variety of Qtz Porphyry appears due to abundant partially oxidized fe-carbonate. Margins of the zone are irregular and oriented subparallel to the fol. A similar zone occurs from 66.57 to 67.1m, with a 5cm wide fol. parallel qtz-carb veinlet at its centre.

67.1 to 71.8 Very pale greenish-white section, similar in all respects but colour to the surrounding rock. Lower contact of the section is very sharp, parallel to fol. at $\sim 50 \text{ deg to the CA}$, against weakly chilled? pinkish material. This subunit is interpreted as an early, slightly contaminated phase of the intrusion. Trace to 1% fine py. Nil to trace magnetism.

71.8 to 73.25 1-2% fine mag is visible disseminated throughout this section, which includes the hematitic fractures mentionned earlier. 2-3% fine py present locally iincludes some small euhedral grains overgrowing the fabric.

Below this point foliation parallel shear planes and micaceous slips along fractures commonly display fine tour crystals, often if not always with a linear orientation raking moderately across the plane of foliation.

Crosscutting qtz-tourmaline veins carrying tr-1% fine py occur from 80.57~81.50m near perpendicular to fol., from 90.08-90.52m FROM

TO

ASSAYS

- WIDTH Au ppb Cu ppm

DIAMOND DRILL LOG

.

:1

.

*V.

DLE No.: NR	9724							Pa ge
					ASS	 YS		
rom to	LITHOLOGICAL DESCRIPTION and 92.05-93.0m (likely the same structure) along irregular non- planar structures nearly paralleling the CA, with minor mafic material present at one contact in both cases, and with traces of fuchsite? and abundant fe-carb. 113.22 to 113.38 Two 5cm thick mafic volcanic xenoliths with their contacts oriented parallel to fol. at 60-65 deg to the CA. The material resembles the fine grained tuffs noted uphole. The host rock to the inclusions is a guite kspar-rich salmon coloured Qtz Porphyry, which would apparently be close to granitic were it not entirely barren of mafic silicates.	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppr
3.95 119.52	ALTERED SYENITIC? INTRUSIVE (Alt'd Syenitic? Intr.) Subconcordant? intrusive of unusual appearance, of a variety not previously encountered in drilling, or observed on surface in the area. Probably originally fine to medium grained with 5-10% sub-cm sized kspar phenocrysts, resting in an equigranular amph-alkalai feldspar groundmass. Colour index is about 35- 45, with little alteration other than prevasive chloritization of mafic constituents. Very weakly magnetic in places, with 1-2% fine diss py, commonest on fractures. The upper contact is paralle to foliation and weakly chilled over 1-2cm. Foliation is reasonably well developed, but is oriented from 45-55 deg to the CA, at 20-30 deg lower angle to the CA than the fol. in the country rock. This orientation is evident above the unit also over about 75cm. The lower contact is at 45	112.90 118.70	114.30 119.48	1.40 0.78	3 3	24 68	58 140	0. 0.

HOLE No: NR9724

.

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9724

1

•

.

					ASSI	YS		
From to	LITHOLOGICAL DESCRIPTION deg to the CA, out of alignment with the host rock foliation by about a 90 deg rotation CCW about the CA. The lowermost 50-60cm of the unit is distinctly chilled, suggesting that the contact is an irregular non-planar structure.	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
19.52 184.	QUARTZ PORPHYRY INTRUSIVE (Qtz Porphyry Intr.)	119.48	120.40	0.92	3	٦	26	0.1
	A continuation of the sizeable porphyry intrusive first	126.12	127.20	1.08	3	3	43	0.1
	encountered at 55.75m.	131.48	132.58	1.10	3	2	66	0.1
•		140.48	141.73	1.25	3	9	80	0.1
	131.4 - A 2-3cm wide fine grey-green band of rock resembling	141.73	143.00	1.27	10	41	98	26 0. 43 0. 66 0. 98 0. 99 0. 64 0. 70 0. 74 0. 66 0. 66 0. 74 0. 65 0. 66 0. 60 0.
	chilled diabase cuts the CA at ~65 deg, parallel to foliation.	146.53	148.08	1.55	45	214	90	0.1
		159.65	160.75	1.10	3	6	64	0.1
	140.88 to 184.4 Colouration due to abundant fine potassic fsp	161.80	163.07	1.27	15	10	66	0.1
	ceases abruptly at 140.88m. The unit is otherwise quite similar.	163.07	164.51	1.44	45	4	70	0.
	In place of the Kspar, sericite, and presumably considerable fine	166.12	167.60	1.48	3	6	74	0.
	whitish to pale grey alkalai or sodic fsp, as well as perhaps up	167.60	168.49	0.89	3	6	66	0.
	to 10% fine chlorite, give the lower portion of the unit a pale	170.41	171.75	1.34	3	6	64	0.
	slightly greenish grey colour. A shade closely resembling the	171.75	172.85	1.10	40	17	60	0.
	17 Zone dacites, but for the greenish tint.	174.99	176.10	1.11	25	5	56	0.
	Sericitization is moderate, chloritization appears to have	176.10	177.62	1.52	5	8	60	0.
	affected the mafic silicates present, but not altered bulk	177.62	179.20	1.58	3	4	60	0.
	chemistry, and carb alt. appears to be absent entirely.	182.20	183.49	1.29	40	7	56	0.
	Foliation is at about 40–55 deg to the CA throughout the lower portion of the hole. Sulphide content reaches maximum levels of 2–3% over lengths up to about 1.5 metres.	183.49	184.40	0.91	95	23	58	0.

Minor changes in average grain size from place to place may

.

HOLE No: NR9724

DIAMOND DRILL LOG

PROPERTY:	RAINY RIVER
HOLE No.:	NR9724

.

1

.

¥

								ASS	AYS		
TROM	то	indicate that a emplaced along f The only particu- presence of num- thickness bleach and where presen- a tectonic feath tensional period 161.55 to 161.4 ep-sauss (bleach margins. Trace The sole qtz v. 12-15cm at 171. of sulphides, of Foliation at the the CA, and a feather	the same structur ularly notable fe erous, somewhat a hed fractures dev nt spaced ure, they may hav d. 68 Fine mottled hing) alteration, py. Contacts pa einlet exceeding 25m, and consists riented nearly pe e end of the hole ew small zones of ould be approach	FION Finilar sill-like bodies were the over a "brief" time interval. Fature of the sequence is the mastomosing, hairline reloped parallel to the foliation, on a 5mm to 1cm scale. Presumably re developed durang a late mafic xenolith with strong best developed along its mallel foliation. a few cm in width occurs over s of coarse white qtz barren erpendicular to the foliation. a is variable from 40-60 deg to f minor shearing might indicate ing the northern contact of the	FROM	то	WIDTH		Cu ppm	Zn ppm	Ад рр
		DO	WN-HOLE SURVEY DA	АТА							
		DEPTH	INCLINATION	BEARING							
		44.80	-49.50	6.00							

DIAMOND DRILL LOG

.

.

.

•

.

					 			 ASS/	 	
FROM	то	LITH	OLOGICAL DESCRIP	TION	FROM	TO	WIDTH	Au ppb	Zn ppma	Ag ppma
		DEPTH	INCLINATION	BEARING						
		91.44	-48.00	2.00						
		137.16	-46.00	3.00						
		182.88	-44.50	8.00						
		184.40	-44.50	8.00						

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9725 Collar Eastings: -4400.00 Collar Northings: -1060.00 Collar Elevation: 0.00 Grid: Rich

Collar Inclination: -55.00 Grid Bearing: 0.00 Final Depth: 196.90 metres Bradley Bros. Logged by: S. Warner Date: 23/03/97 - 25/03/97 Down-hole Survey: Sperry Sun

						ASS	AYS		
ROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	2n ppm	Ag ppr
. 0	55.3	OVERBURDEN (OVD)							
5.3	101.7	BASALT (BAS)	58.47	59.47	1.00	3	156	110	0.1
	Green, fine grained, mafic volcanic rock. The primary	59.70	61.20	1.50	3	123	110	0.	
	constituents are altered dark mafic minerals (pyrox/amph), and	64.02	65.02	1.00	3	164	86	0.	
		white plagioclase. The mafic minerals are altering to chlorite	70. 40	71.90	1.50	3	144	104	0.
		mostly, and the plagioclase to sausserite/carb. Within this unit,	75.34	76.34	1.00	3	140	81	0.
		there are massive flows and pillows (see below). There are minor	80.00	81.00	1.00	3	124	92	0
		to moderate occurrences of mm scale carbonate/quartz fractures or	84.56	86.06	1.50 [.]	3	120	90	0
		patches, and minor epidote fractures and hematite staining. The	91.33	92.33	1.00	3	130	82	0
		rock is non-magnetic.	94.56	95.56	1.00	3	182	90	0
		There is $1-28$, subhedral to euhedral py grains disseminated in							

the matrix, and along fractures. The crystals may be up to 7mm wide.

The foliation is approx. 60-65 deg to the CA. Most of the carbonate fractures are sub-parallel to the foliation.

55.3 to 69.45 Flow/pillow Basalt. Massive, aphanitic to fine grained rock. There may be minor and small pillow salvages. The rock is weak, and moderately broken for the upper 8m (near surface alteration mostly).

59.59 - 59.77 Fault Gouge along a 1cm wide fracture. The fracture is 25 deg to the CA.

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9725

.

-

-

		ASSAYS								
м то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp		
	69.45 to 73.68 Plow Breccia? This interval is moderately									
	broken, and there is a fine network of fractures throughout									
	(in-situ brecciation). The rock is strongly altered (chlorite-									
	rich).									
	73.68 to 82.61 Flow Basalt. Massive, medium to fine grained									
	matrix, with abundant (50% of the rock) coarse mafic phenocrysts.		•							
	The phenocrysts appear to be an amphibole (after pyroxene?) and									
	may be up to 5mm wide. The dark black/green phenocrysts are									
	"enveloped" by a paler green, and weakly foliated matrix. The									
	lowermost 2m of this interval is finer grained and also massive.									
	82.61 to 92.04 Flow/Tuff(?) Basalt. Paler green, fine grained									
	mafic volcanic that is mostly massive, but may be bedded over cm									
	scale intervals. The bedding is recognized by alternating, mm									
	scale carbonate/chlorite laminations, which end abruptly in the									
	next unit. The bedding planes are 60-65 deg to the CA.									
	92.04 to 101.7 Pillow Basalt. The rock is medium green and									
	fine grained. There are dark green pillow salvages scattered									
	throughout this interval. The salvages are chloritic and softer									
	than the remaining rock.									
7 122.	59 INTERMEDIATE/MAFIC VOLCANIC (INT/MAF VOLC)	101.40	102.40	1.00	3	136	83	0		
	Grey, fine grained volcanic rock. The rock is composed of altered	103.90	105.40	1.50	3	112	74	0		
	feldspar (plagioclase?) and mafic minerals (pyr and/or amph).	111.00	112.00	1.00	· 3	130	86	0		
	There is much less chloritic alteration suggesting that the rock	114.00	115.50	1.50	3	138	92	0		

HOLE No: NR9725

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9725

***** .

1

.

.

.

					ASS	AYS		
ROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
	may have an andesitic composition. Unless described below, the	118.85	120.35	1.50	3	105	100	0.1
	rock is massive and homogeneous (volcanic flow). There are minor	120.35	120.85	0.50	3	248	66	0.1
	to moderate occurrences of carbonate/quartz fractures or patchy							
	carbonate alteration.							
	The unit contains 1-2% subhedral to euhedral py that is							
	disseminated in the matrix, or along fractures. The py crystals							
	may concentrate in mm scale bands that are associated with							
	carbonate alteration.							
	The foliation ranges from 60-65 deg to the CA. Most of the							
•	carbonate fractures are sub-parallel to the foliation. The lower contact is poorly defined and based on colour variations.							
	contact is poorly defined and based on colour variations.				,			
	104.44 - 105.22 Strong patchy to fracture-controlled carbonate							
	alteration.							
	119.15 to 120.4 Possible pillow salvages.							
2.59 160.0	8 BASALT (BAS)	122.27	123.77	1.50	3	140	66	0.1
	Similar to the basalt at the top of the hole. The upper part of	125.00	126.00	1.00	3	144	102	0.1
	the unit is relatively massive, but there are minor pillow	128.97	129.97	1.00	3	120	80	0.1
	salvages scattered throughout. The salvages are chlorite and	130.96	131.96	1.00	3	144	88	0.1
	carb-rich. There is a moderate occurrence of mm scale carb/	134.40	135.90	1.50	3	132	100	0.1
	quartz fracturing and irregular patches throughout the unit, and	138.90	140.40	1.50	3	150	90	0.1
	is strongest towards the lower contact.	144.65	145.65	1.00	3	138	94	0.1
	The rock contains 1-2% subhedral to euhedral py that is diss. in	146.60	147.60	1.00	3	138	90	0.1
	the matrix, or along fracture surfaces. The py may also	148.64	150.14	1.50	3	144	96	0.1
	concentrate in bands that are associated with carbonate	153.37	154.87	1.50	3	135	90	0.
	alteration.	157.20	158.70	1.50	3	142	74	0.

-

HOLE No: NR9725

DIAMOND DRILL LOG

OLE NO.: NR								Page
FROM TO	LITHOLOGICAL DESCRIPTION The foliation is approx. 60 deg to the CA. Most of the carbonate fractures are parallel to the foliation.	FROM	то	WIDTH	ASS. Au ppb	AYS Cuppm	Zn ppm	Ag pp
	151.6 - 153.0 Densely spotted with small (< 1mm) white blebs (carbonate?). They are too small to be amygduals or phenocrysts, and may just be an alteration feature (after feldspar?).							
	154.22 to 160.08 Mafic Tuff (?) The alternating carb/chlorite laminations are well developed, suggesting possible bedding planes.							
50.08 169.64	MAFIC DYKE (MAF DYKE) Greenish-white, medium grained, and equigranular mafic rock. It is composed of altered mafic minerals, feldspar, and minor blue quartz (1%). The dominant mafic minerals have almost completed altered to chlorite. The altered feldspars are mostly white, but may have a purple/blue shade. There is also tr-1% diss. magnetite (strongly magnetic). The rock has a weak foliation and has gone through one metamorphic episode. The strongest alteration zones are described below. The rock contains tr-1% diss. py. The upper and lower contacts are chilled and strongly altered (mostly chlorite/carb) for over 1m. The contacts were selected by where the strong magnetism ends.	158.70 160.20	160.20 161.70	1.50 1.50	3 3	125 100	76 48	0. 0.
	160.08 – 161.8 The upper contact is fine grained and altered. Assumed to be a chilled margin of the dyke, because unlike the basalt, it is magnetic. There are two white quartz veins in this							

.

, •

DIAMOND DRILL LOG

.

DLE NO.: NI	C2/C3							Page		
			ASSAYS							
rom to	LITHOLOGICAL DESCRIPTION interval (40 and 60cm respectively). The quartz vein near the upper contact is 20-30 deg to the CA, and the other vein is approx. 60 deg (although both have irregular contacts). Along the margins of the smaller quartz vein (closest to upper contact) the quartz has a bluish shade (almost ultraviolet). Appears to be something in the quartz and not another mineral. The larger quartz vein has minor tourmaline.	FROM	то	WIDTH	Ац ррb	Cu ppm	2n ppm	Ag pp		
	166.9 - 167.86 Zone of moderate to strong alteration. There is irregular quartz veins (1-3cm) that contain tourmaline. Associated with the veins is fracture-controlled and pervasive chlorite, carbonate, epidote, and K-spar alteration.									
59.64 196.9	INTERMEDIATE/MAFIC VOLCANIC (INT/MAF VOLC)	169.40	170.90	1.50	3	112	82	0.		
	Grey, fined grained volcanic rock. Similar to that described	170.90	172.50	1.60	3	86	66	0		
	above (andesitic). From the top of the unit to approx. 187.2m the	174.50	175.50	1.00	3	74	68	0		
	rock is pillowed (salvages scattered throughout), and then to the	178.60	179.60	1.00	3	72	64	0		
	end of the hole it is a massive flow unit. There are moderate	183.70	184.70	1.00	3	80	66	0		
	occurrences of mm scale carbonate/quartz fractures, which	184.70	185.70	1.00	3	87	80	0		
	diminish below 193.2m. There may be minor tourmaline in the	186.70	187.70	1.00	3	70	60	0		
	larger quartz veins.	190.80	192.30	1.50	3	84	70	0		
	The rock contains 1-2% subhedral to euhedral py that is diss. in the matrix, and along fractures. The py may be coarse grained (> 5mm).	192.30	193.30	1.00	3	82	66	0		
	The foliation is approx. 60 deg to the CA. Most of the carb.									
	fractures are sub-parallel to the CA.				•					

169.64 - 171.55 Moderate to strong pervasive and fracture-

.

.

-

PROPERTY: Rainy River

•

.

3

1

DIAMOND DRILL LOG

.

ł

•

PROPER HOLE N		ainy River 89725		-								Page	6
									ASS	AYS			
FROM	TO	controlled chlor	product, and ma	and epidote alte	eration. The from, the dyke at	FROM	TO	WIDTH	Au ppb	Cu ppm	2n ppm	y d bbw	
	DOWN-HOLE SURVEY DATA												
		DEPTH	INCLINATION	BEARING									
		60.96	-54.00	2.00									
		121.92	-54.00	5.00									
		182.88	-53.00	5.00									
		196.90	-53.00	5.00									

.

.

.

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9726 Collar Eastings: -2800.00 Collar Northings: 35.00 Collar Elevation: 0.00 Grid: Rich

Collar Inclination: -50.00 Grid Bearing: 360.00 Final Depth: 175.87 metres CONTRACTOR: Ultramobile D.D. Logged by: C.A. WAGG, 28/02/97 Date: 25/03/97-27/03/97 Down-hole Survey: Sperry-Sun

		·			•							
			ASSAYS									
FROM 0.0	то 38.00	LITHOLOGICAL DESCRIPTION OVERBURDEN (OVD)	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm			
38.0	47.89	ALTERED GABBROIC MAFIC INTRUSIVE (Alt'd Gabb. Maf Intr) Medium to somewhat coarse grained, dark green rock, mottled	38.71 44.30	39:87 45.85	1.16	1 2	3	36 27	58.0 70.0			
		with common mm to cm sized spots of epidote +/- qtz, and rare	45.85	47.40	1.55	2	3	18	55.0			

throughout, suggesting about 5% modal qtz may have been
present. Qtz content now is about 10-12%. Moderately to
strongly magnetic throughout, with up to 5% 1mm sized grains
evident in places. Accessory py is present as 1-2% fine diss.
grains on the average. Minor med. grained cubes are present a
few places alongside stringers or on ep-rich fractures.
Alteration consists of ep-qtz from fsp breakdown, likely
amphibolitization of primary pyroxene, and very weak chl alt.
The uppermost 2-2.5m of the hole appears "rotten" due to near
surface weathering processes.
Well foliatied at about 55-65 deg to the CA. The lower contact

calc. The unit appears to have been 50-70% calcic plagioclase prior to alteration. Isolated qtz eyes 2-3mm in size occur

seems subconcordant if not parallel to the foliation.

47.89 63.8 MAFIC FLOWS? (Mass. Maf Flows?)

Similar to the previous unit in mineralogy, but much finer

Page 2

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9726

ł

.

¥

.

						ASS	AYS		
ROM	TO	LITHOLOGICAL DESCRIPTION grained overall. Contains 1-2% 2mm qtz eyes, and flecked with about 25-35% fine evenly diss. ep-sauss, presumably after fsp. Possibly a fine grained hypabyssal intrusive, but more likely a med grained massive flow, or series of flows. Weakly to mod. foliated at about 60 deg to the CA on average. 51.58 to 53.8 GABBROIC TO DIORITIC DYKE (GabbDior. Dyke) Med. to coarse grained crosscutting intrusive. Broadly similar to parts of the gabbroic uppermost unit in this hole, but much richer in fsp and its associated alt. products. It appears dioritic in composition near the top contact, but gabbroic over most of the interval, with 5-7% fine diss. mag. Top contact is nearly perpendiculat to the foliation, while the	FROM	то	WIDTH	Au ppb	Cu ppm	2n ppm	Ag pp
		lower contact is approx. parallel to fol. 55.45 to 55.73 Small sill-like intrusive resembling the upper portion of the interval from 51.58 to 53.8m. Both contacts are weakly chilled over <1cm, and oriented sub-parallel to fol. which is -60 deg to the CA.							
		58.9 to 60.15 Sill-like gabbroic to dioritic dyke similar to the section from 51.58 to 53.8m, but with contacts parallel to the fol. which has decreased to about 35-40 deg to the CA.							
		1-2cm wide gtz-calc stringers, oriented parallel to fol., are frequent from this point to the lower contact, and often exhibit fine masses of chl along their centres. Foliation is at 40-45 deg to the CA at the contact with the							
		-						UOT R	No: NRS

DIAMOND DRILL LOG

.

ł

ł

PROPERTY: RAINY RIVER

HOLE 1	NÒ.: NR	9726							Page
						ASSA	 (S		
FROM	TO	LITHOLOGICAL DESCRIPTION underlying unit.	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
63.8	64.1	BEDDED MAFIC TUFF? (Bdd Maf Tuff?) Banded chloritic section which may be a weakly sheared flow contact, but the chloritization (to this point in the hole) seems strangely restricted to this section, poss. indicating a tuffaceous origin.							
64.1	79.45	COARSE GRAINED MAFIC METAVOLCANICS (Maf Mvolc, cg) Apparently the uppermost portion of the unit encountered at	64.40 65.43	65.43 66.58	1.03	1	3	27 16	80.0 120.0
		the top of DDH NR9724. Medium green, mottled with abundant	68.71	69.52	0.81	1	3	18	102.
		yellow-green "spots" <1cm in diameter. Medium to coarse	70.84	72.23	1.39	1	3	20	92.0
		grained, but strongly altered and somewhat deformed. It appears that this unit may be an equivalent of the coarse flow rocks outcropping along the roadside about 400m WSW of the drill. It seems that here, alteration is more intense, resulting in fuzzy chlorite-rich spots to 1cm diameter encompassed by a pale "groundmass" rich in calc +/- Fe-carb, epidote, and lesser qtz and chlorite +/- sericite. Dark and light phases each account for about 50% of the rock. 5-8% mm-sized grains of fine mag	77.40	79.10	1.70	2	3	20	66.0
		are diss. throughout. Trace to 1% Py. Moderately foliated at ~60 deg to the CA. The unit is broken to weakly brecciated as its lower contact is approached. Perhaps it could be called a basal section of flow breccia below 77.2m,	,						

with about 5% chloritic gouge-like material cementing fractures.

.

.

HOLE No: NR9726

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9726

1

						ASS	AYS		
FROM	то	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
79.45	80.2	BEDDED MAFIC ASH TUFF (Bdd Maf Ash Tuff) Fine grained very well bedded, possibly sheared. Strongly chl altered, with 3-44 fine diss py. Weakly to moderately magnetic. Includes a 10-15cm section of the underlying unit, faulted into position, and with minor qtz veining along both contacts. Foliation and contacts are at 40-45 deg to the CA.	79.10	80.10	1.00	1	3	11	42.0
80.2	84.5	GRADED? QUARTZ-EYE DACITE/ASH TUFF (QID/Ash Tuff, gdd?)	80.10	81.20	1.10	1	3	13	52.(
		Pale grey-white, very well foliated section of dacitic Ash Tuff	81.20	81.97	0.77	1	3	12	67.0
		with up to 8-10% small-med. sized gtz-eyes present within the	81.97	82.63	0.66	1	3	17	380.0
		central portion of the unit, but with only tr-1% present near	82.63	84.10	1.47	1	3	15	95.0
		both the upper and lower contacts. Approx. 3-5% eyes on average.							
		Moderately bleached, and containing <10% amph +/- chl.							
		2-3% fine diss. py.							
		mba laway washing of the weight in residential along the OO days to the							

The lower contact of the unit is oriented close to 90 deg to the CA, oblique to fol. by about 20 deg.

81.2 to 82.4 A gently non-planar qtz vein oriented at <20 deg to the CA for the most part, wanders along the CA over a 1.2m core length. It contains rather common tour for its upper half, and exhibits a few cm-sized splashes of cpy 10cm above its lower contact. Foliation at its lower contact is about 65 deg to the CA, with the vein contact subparallel at ~30 deg lower angle to the CA.

HOLE No: NR9726

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9726

,

. .

.

- A

Ł

Page 5

						ASSI	AYS .		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
1.5 9	9.37	COARSE GRAINED NAFIC METAVOLCANICS (Maf Mvolc, cg)	84.10	84.84	0.74	1	3	15	55.0
		Similar to the interval from 64.1-79.45m. Appears to be							
		perhaps two separate intrusions chilled on either side of a							
		contact at about 94.1m. 2% fine py							
		Lower contact is sheared over 40-50cm within the intrusive, oriented at -20 deg ot the CA. Foliation in the vicinity is							
		abpout 40 deg to the CA.							
9.37 1	07.45	MAFIC FLOWS? (Mass. Maf Flows?)	102.72	103.80	1.08	1	3	22	52.
		Fine grained dark green section resembling the interval from	105.27	106.34	1.07	1	3	13	54.
		47.89-63.8m, but without ep or qtz-eyes. Weakly chl-calc							
		altered. 3-4% fine diss. py. Lower contact is parallel to fol. at 55-60 deg to the CA.							
)7.45 1	175.87	QTZ + QTZ-FSP PORPHYRY INTRUSIVE (Qtz+Qtz-Fsp Porphyry Intr.)	106.34	107.52	1.18	1	3	12	54.
		Pale greenish white to pale pinkish in colour, fine to med	107.52	108.81	1.29	1	3	38	70.
		grained and porphyritic. In contrast to the intersection of	108.81	110.40	1.59	2	3	16	66.
		this unit in DDH NR9724, here there are distinct qtz only,	113.17	114.37	1.20	1	3	156	300
		and qtz-fsp bearing phases to the intrusive. Sections containing	115.15	116.10	0.95	1	3	51	72.
		fsp phenocrysts exhibit a fine variably chl- ser altered	116.10	117.39	1.29	1	3	55	56
		groundmass. The fsp crystals are by no means pristine, but they	117.39	123.44	6.05	6	3	12	84
		are clearly evident, and usually 1-3mm across, whitish and	123.44	126.53	3.09	3	3	19	72
		subhedral. It follows that the intrusive body is composed of	131.06	132.42	1.36	1	3	17	54
		multiple lens-like? sills of slighlty differing chemistry and	132.42	133.90	1.48	1	3	7	·46.
		mineralogy.	138.16	139.29	1.13	1	3	42 152	102. 88.
		Very well foliated overall, with evidence of minor to moderate	147.72	149.17	1.45	1	د	152	88

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9726

underlying unit.

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		shearing at subunit contacts. Kspar rich groundmass appears to	149.17	150.44	1.27	1	3	14	125.0
		be a primary feature in most areas, and occurs where white fsp	150.44	152.03	1.59	2	3	15	146.0
		phenocrysts are abundant.	152.03	153.64	1.61	2	3	12	60.0
			153.64	155.10	1.46	1	3	18	40.0
		The unit contains from 7-8% generally subhedral gtz phenocrysts,	155.10	156.61	1.51	2	3	22	98.0
		locally up to ~20% in some fsp depleted units. Feldspar is at	156.61	158.23	1.62	2	3	30	105.0
		levels of 4-5% up to 20% in a potassic subunit near the top of	158.23	159.93	1.70	2	3	24	135.0
		the interval. Trace to 1% py unless otherwise noted.	168.56	169.77	1.21	1	3	26	170.0
		Foliation is somewhat variable from around 35-40 deg to about	169.77	171.44	1.67	2	3	17	49.0
		60-65 deg to the CA.	171.44	173.28	1.84	2	3	22	48.0
		-	173.28	174.73	1.45	1	3	15	42.0
		113.5 to 115.15 Qtz-Fsp Porphyry (QFP) with a fine pinkish	174.73	175.86	1.13	1	3	15	67.0
		grey groundmass and 10-15% dark green amph porphyroblasts?							
		to 1mm by 2mm. Uppermost 20cm of the unit is pale grey-green							

to whitish in colour, similar to the unit overall, while the lowermost 10-15cm is greenish due to assimilation of chl from the

Greenish to pinkish altered inclusion. Fine grained and mod. to strongly magnetic throughout. Possibly an iron-rich interflow sediment, or fine Ash Tuff, substantially chl and kspar altered. Bedding is about 45 deg to the CA. Foliation at its margins,

117.2 to 131.3 QFP with mod. kspar alteraion over about 30cm at 132.55m, and pressure shadows of alt. products developed around the larger qtz-eyes, most notably from about 133-137m.

115.15 to 117.2 BEDDED XENOLITH (Bdd Xenolith)

and its contacts are at ~35 deg to the CA.

HOLE No: NR9726

Page 7

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9726

1

.

.

.

						 ۸SS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH		Cu ppm	Zn ppm	Ag ppm
		131.3 to 138.78 Gtz Porphyry with 1% very fine py and good foliation at 45-55 deg to the CA. Sericitization is moderate at best through this portion of the hole.							
		146.8 to 156.8 Strong ser-sauss? and weaker kspar alteration commence about coincident with the transition from QFP to Qtz Porphyry. Up to 2-3% fine py diss along foliation planes within this section. Foliation varies from close to 70 deg to the CA near the upper contact, to 45 deg or less in places, back to 80- 85 deg to the CA at the sharp lower contact with typical (of this hole) greenish-white QFP.							
		A similar section, again consisting of qtz-rich porphyry, which almost resembles QID but for its pinkish rather than grey colour, occurs from about 165.2-168.05m.							
		156.8 to 175.87 The lowermost QFP section of the hole exhibits frequent minor warps and small tight folds in the foliation. Small, cm-wide irregular qtz stringers and mm-wide fracture fillings are present at low angles to the CA. And as well, there is a moderately to strongly developed secondary fabric present, which runs near parallel to the CA, and may be pseudomylonitic in nature. This low angle fabric has almost entirely overprinted the pre-existing planar fabric. A flaser-like shear pattern of chl-ser rich slips in this orientation, and a set of evenly spaced chl-coated fractures in perpendicular orientation give the impression							
								HOLE	No: NR9726

DIAMOND DRILL LOG

.

8.00

PROPERTY:	RAINY RIVER
HOLE No.:	NR9726

175.87

.

-45.50

...

1

.

HOLE N		89726									Page	8
								ASS/	AYS			
FROM	TO			TION ongly sericitized with 2-4% fine	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	
		DO	ата									
		DEPTH	INCLINATION	BEARING								
		44.80	-49.50	6.00								
		47.85	-50.00	15.00								
		108.81	-47.00	17.00								

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9727 Collar Eastings: -4300.00 Collar Northings: -1010.00 Collar Elevation: 0.00 Grid: Rich

.

5

2

Collar Inclination: -55.00 Grid Bearing: 0.00 Final Depth: 199.90 metres Bradley Bros. Logged by: S. Warner 27/03/97 Date: 26/03/97 - 27/03/97 Down-hole Survey: Sperry Sun

						ASS	AYS		
OM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
)	40.8	OVERBURDEN (Ovb)							
8	96.3	BASALT (BAS)	44.50	46.00	1.50	3	72	90	0.1
		Grey-green, fine grained volcanic rock. It is primarily composed	46.00	47.50	1.50	3	72	102	0.
		of altered mafic minerals and feldspar. The mafic minerals have	49.60	50.60	1.00	3	66	92	0.
		altered to chlorite, but moderate to strong sericitization and	51.60	52.60	1.00	3	80	78	0.
		bleaching has diminished the effects of chloritization (may just	52.60	53.60	1.00	3	88	62	0.
		be an andesitic composition?). Unless described below, the rock	55.30	56.30	1.00	3	100	140	0
		is massive and homogeneous, suggestive of a flow unit. There is	60.23	61.23	1.00	3	55	108	0
		moderate to strong occurrences of mm scale carb/quartz	61.23	62.23	1.00	3	86	150	0
		<pre>fracturing, mostly along well developed sub-parallel shearing(?)</pre>	62.80	63.80	1.00	3	84	104	0
	•	planes. The carb. fractures may be crenulated and deformed.	64.80	65.80	1.00	3	116	200	0
		The rock may also be spotted with small (< 1mm) carb. blebs over	65.80	66.80	1.00	3	84	174	0
		<pre>cm to m scale intervals (an alteration product).</pre>	66.80	68.30	1.50	3	77	148	0
		There is 3-4% py in the rock, and its abundance increases	68.30	69.80	1.50	3	60	108	0
		towards the bottom of the unit. The py is found as coarse,	69.80	70.80	1.00	3	65	92	0
		subhedral to euhedral crystals that are disseminated in the	70.80	71.80	1.00	3	52	128	0
		matrix, or along fractures. Also, there is finely diss. py that	73.14	74.14	1.00	3	100	84	0
		may concentrate in mm scale bands that are parallel to the	77.43	78.43	1.00	3	67	88	C
		foliation.	78.43	79.93	1.50	3	45	78	0
		The well developed foliation is approx. 60 deg to the CA. Most of	82.50	83.50	1.00	3	73	128	0
		the carb. fractures are parallel to the foliation.	83.50	84.50	1.00	3	67	120	0
			84.50	85.50	1.00		45	104	0
		53.2 - 53.4 Strongly sericitized interval. The core is broken	85.50	86.20	0.70	3	75	205	0

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9727

Page 2

			ASSAYS							
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	2n ppm	Ag ppm	
		and may represent a minor shear zone.	86.20	87.10	0.90	3	152	120	0.1	
			90.20	91.70	1.50	10	133	92	0.1	
		61.14 to 74.14 Mafic Ash Tuff. This interval has a stronger	95.30	96.30	1.00	3	120	94	0.1	

61.14 to 74.14 Mafic Ash Tuff. This interval has a stronger foliation (banding) which suggests that it is bedded. The banding is recognized by alternating mm scale dark chlorite and bleached sericite lamellae. There is also a strong occurrence of carb. fractures that are parallel to the foliation (minor Fe-carb in one fracture).

77.6 to 80.0 Flow Breccia. The interval is comprised of dark, chlorite-rich fractures that form a weak and irregular network. The dominant fractures are sub-parallel to the foliation. Appears to be in-situ brecciation. There is only minor sulphide mineralization.

80.0 to 96.3 Flow/Tuffaceous Basalt. The remainder of the unit is comprised of alternating metre scale massive (Flow) and well banded (Tuff) intervals. The banding is mostly recognized by dark black chlorite-rich lamellae. The sulphide mineralization is stronger in the tuffaceous intervals.

From 86.16 to 86.44 the core is strongly broken and altered. There is 1-2cm of fault gouge at the upper contact that is subparallel to the foliation.

94.57 to 94.98 Mafic Dyke. Medium grey, aphanitic to fine grained gabbroic rock. The rock is massive and relatively unaltered. There is tr-1% fine grained py scattered throughout. There is quartz veining at the contacts, which are roughly 60-65

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9727

 $\mathbf{\hat{e}}_{\mathbf{r}} = \mathbf{\hat{r}}_{\mathbf{r}} + \mathbf{\hat{$

.

.

.

Page 3

						ASS	YS		
FROM	то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		deg to the CA.							
96.3	114 00		06.30	07 00	1 50	2	73	71	0.1
90.3	114.05	TUFFACEOUS BASALT (TUFF BAS)	96.30	97.80	1.50	3	73	71	0.1
		Medium to dark grey, fine grained mafic unit. The unit has a well	99.30	100.30	1.00	3	78	66	
		developed fabric that is enhanced by tectonism, but appears to be	103.90	105.40	1.50	3	70	95	0.1
		primary bedding. The groundmass is ash-rich and there are no	105.40	106.40	1.00	3	63	73	0.1
		fragments. The composition ranges between a bleached basalt and	108.50	109.50	1.00	3	80	70	0.1
		andesite. The fabric is recognized by mm scale dark black	110.00	111,50	1.50	3	73	78	0.1
		chlorite and bleached sericite lamellae (chlorite is the dominant							
		micaceous mineral). Towards the bottom of the unit the chlorite							
		lamellae are more irregular and less dominant (or more							
		bleached?). There are minor mm scale carb/quartz fractures							
		throughout the unit (there may be massive tourmaline in the							
		larger quartz veins).							
		The rock contains tr-1% py that occurs as coarse, subhedral to							
		euhedral crystals that are disseminated in the groundmass.							
		The banding (bedding) is 60-65 deg to the CA.							
114.05	135.27	MIXED INTERMEDIATE-CRYSTAL TUFF (MIXED INT-XI TUFF)	114.30	114.80	0.50	3	130	122	0.1
		The unit is comprised of intermediate to mafic ash-rich tuffs	114.80	115.80	1.00	3	16	50	0.1
		that are interbedded with guartz-rich debris flows(?). The ash-	115.80	116.55	0.75	3	27	72	0.1
		rich tuffs are comprised of mm scale chlorite and lesser sericite	117.00	118.50	1.50	3	42	54	0.1
		lamellae, and may have tr-1% small quartz eyes; they may also be	118.50	119.50	1.00	3	50	103	0.1
		weakly to moderately siliceous (primary or secondary?). These	119.50	120.05	0.55	3	64	75	0.1
		beds are separated (interrupted) by cm scale ash-rich units with	120.05	121.00	0.95	3.	40	46	0.1
		an intermediate composition(?) and up to 6-8% blue-grey guartz	121.00	122.50	1.50	10	74	87	0.1
		eyes (< 8mm wide). This unit may represent a mafic tuff that was	122.50	123.70	1.20	3	28	56	0.1
		"rained" upon by a quartz-rich ash. The guartz eyes appear to	123.70	124.27	0.57	15	112	177	0.5
					0.57				•••

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9727

•

¥.

.

.

.

						ASSI	YS		
ROM	то	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppr
		have mixed in with the mafic tuffs. There are minor mm scale	124.27	125.82	1.55	10	49	105	0.1
		carb/quartz fractures throughout.	126.90	128.40	1.50	5	45	73	0.1
		Unless described below, there is 4-5% py and tr po. The sulphides	129.80	130.80	1.00	3	17	43	0.1
		are disseminated in the groundmass, and in minor bands or patches	132.80	133.80	1.00	3	24	43	0.1
		parallel to the foliation. There is also minor sulphide-filled							
		fractures oblique to the foliation.							
		Most of the bedding contacts are 60-70 deg to the CA, but some							
		are irregular and lower angled. The foliation is parallel to the							
		regular bedding contacts.							
		114.05 to 125.2 Strongest occurrence of alternating ash-rich and							
		quartz-rich beds. The beds range from several cm's to over a							
		metre in length. Overall, the rock appears to have an							
		intermediate composition.							
		114.48 - 114.6 Fracture-controlled py (6-8%) and cpy (tr).							
		123.9 - 124.2 Well mineralized interval with 6-8% py and 4-5%							
		po. The sulphides are found in mm scale fractures that are							
		parallel to the foliation. At the end of the interval there is							
		also 1-2cm of massive py. The groundmass is very siliceous, but							
		appears to be a secondary feature.							
		125.2 to 135.27 The rock is mostly homogeneous, and is comprised							
		of a chlorite-rich mafic ash tuff with 1-2% small (< 2mm)							
		scattered throughout. The quartz eyes may have mixed in with the							
		mafic rock.							

HOLE No: NR9727

.

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9727

.

.

.

1

						ASSA	YS		
FROM	тО	LITHOLOGICAL DESCRIPTION	FROM	τo	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
35.27	181.79	MIXED MAFIC-CRYSTAL TUFF (MIXED MAF-XI TUFF)	135.40	136.40	1.00	3	71	124	0.1
		Medium to dark grey, fine grained mafic tuff. The rock has a	136.40	137.40	1.00	3	96	57	0.
		strong banding (bedding) which becomes better developed towards	137.40	138.90	1.50	3	30	35	0.
		the bottom of the unit. The banding is recognized by mm scale	138.90	139.90	1.00	3	145	218	0.
		dark black chlorite and bleached sericite lamellae (chlorite is	139.90	141.40	1.50	3	39	57	0.
		the more common mineral). There may be tr-1% guartz eyes found in	141.40	142.40	1.00	3	56	92	0.
		the groundmass, and there is up to 5% lapilli fragments (< 1cm to	142.40	143.40	1.00	3	38	105	0.
		several cm's wide), which are more common towards the bottom of	143.40	144.30	0.90	3	49	112	0.
		the unit. The fragments are pale grey, oval, and weakly	144.30	145.23	0.93	5	84	103	0.
		siliceous. Towards the bottom of the unit, there are also	145.23	146.30	1.07	3	. 47	120	0.
		interbedded guartz-rich units (see below). The rock is moderately	146.30	147.15	0.85	5	62	198	٥.
		to strongly altered (weakly silicified), and there is pervasive	147.15	147.80	0.65	10	51	192	0.
		bleaching over cm scale intervals (chlorite may also be	147.80	148.57	0.77	3	95	155	0.
		bleached). There are minor mm scale quartz/carb fractures	148.57	149.26	0.69	3	38	225	٥.
		throughout.	149.26	150.00	0.74	3	52	207	0.
		The unit may be well mineralized, and the strongest	150.00	151.10	1.10	3	40	190	0.
		mineralization is described below. There are coarse euhedral	151.10	151.88	0.78	3	80	107	0.
		crystals of py, and finely diss. grains concentrated in bands.	151.88	152.86	0.98	10	51	140	0.
		There may also be tr po.	152.86	153.82	0.96	3	65 *	146	0.
		The bedding planes are 60–65 deg to the CA, and the foliation is	153.82	154.74	0.92	· 3	62	147	0.
		parallel to the bedding. Rarely, the foliation is deformed and	154.74	155.72	0.98	3	80	155	0.
		irregular.	155.72	156.64	0.92	3	24	50	0.
			156.64	157.86	1.22	3	16	42	0.
		135.9 - 155.42 Strongly mineralized interval. There is up to	157.86	158.86	1.00	3	26	105	0.
		10-15% py, and tr-1% po. Most of the sulphides are found as	158.86	160.30	1.44	3	22	67	0.
		disseminated aggregates in irregular, but sub-parallel (to the	160.30	161.80	1.50	3	20	38	0.
		bedding) bands that may be up to several cm's wide. The sulphides	161.80	163.30	1.50	3	20	55	0.
		may be weakly connected by a network of fractures over cm scale	163.30	164.30	1.00	3	18	42	0.

HOLE No: NR9727

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9727

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		intervals. The bedding contacts in this interval may be deformed,	164.30	165.80	1.50	3	20	45	0.1
		and the sulphides will mostly conform to these contacts. The	165.80	166.80	1.00	3	12	28	0.1
		sulphides are confined to certain beds, as minor cm scale ash-	166.80	168.30	1.50	3	23	50	0.1
		rich beds have much less mineralization. The rock may be weakly	168.30	169.40	1.10	3	13	50	0.1
		magnetic even if po is not visible. Less commonly, there are	172.50	173.50	1.00	3	26	59	0.1
		coarse euhedral crystals of py that overprint the foliation (late	173.50	174.50	1.00	3	15	26	0.1
		stage?). Generally, the sulphides are not as finely diss. as	175.00	176.00	1.00	3	27	68	0.1
		those in "zone 17", but the rock is still sheared and strongly	177.10	178.60	1.50	3	56	72	0.1
		altered.	180.00	181.00	1.00	3	1322	70	0.1

153.63 - 153.7 Fault Gouge and broken core. The faulting plane is sub-parallel to the CA.

163.96 to 181.79 Interbedded XI Tuff. There are numerous (> 10) crystal-rich debris flows(?) mixed with the more mafic tuff. These beds (1-2 cm to over 20 cm wide) are medium grey, and have a fine grained groundmass (possibly an intermediate composition). They generally have 3-5% blue-grey quartz eyes (up to 1cm), small feldspar phenocrysts, and minor pale grey lapilli fragments (< 5mm). The contacts of these beds are generally parallel to the foliation, but may also be irregular and lower angled (possible erosional surface). The more mafic component of this unit has many lapilli fragments (-5%), and tr-1% quartz eyes (may of been introduced by ash debris). There is only 2-3% py and tr po in this interval.

166.55 - 166.56 Minor Fault Gouge. Contacts are parallel to the foliation.

.

1

HOLE No: NR9727

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9727

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
181.79	199.9	INTERMEDIATE ASH TUFF (INT ASH TUFF)	182.42	183.42	1.00	3	1.04	90	0.1
		Grey-pale green, aphanitic to fine grained groundmass. The unit	184.70	185.70	1.00	3	73	70	0.1
		is ash-rich, with no quartz eyes, and is moderately to strongly	187.70	188.70	1.00	3	62	58	0.1
		laminated (bedded?). The groundmass is sericite-rich, with minor	188.70	189.70	1.00	3	57	98	0.3
		chlorite, and is spotted (up to 10%) with a green mineral (1-2mm)	189.70	190.80	1.10	3	65	92	0.1
		throughout the unit. The mineral (amphibole?) stands out on the	190.80	191.80	1.00	3	80	50	0.1
		fractured surface. The rock is strongly altered (essentially an	193.80	194.76	0.96	3	77	73	0.1
		amphibole schist), and the sericite laminations towards the	194.76	195.76	1.00	3	72	45	0.1
		bottom of the unit may be weakly crenulated or kinked (strongest	196.90	198.40	1.50	3	78	40	0.1
		deformation in the hole). There are minor mm scale quartz/carb	198.40	199.90	1.50	3	80	48	0.1
		fractures throughout.							
		There is 1-2% py and tr po diss. in the groundmass.							
		The foliation is approx. 60 deg to the CA.							

185.65 to 191.02 Mafic Tuff. Grey-black, fine grained groundmass. The rock has a well developed foliation that is composed of dark chlorite and bleached sericite lamellae. The rock is also spotted (1-2%) with a greenish-white mineral (1-2mm), that may be the same amphibole as in the primary unit. There are 2-3% pale grey lapilli fragments (1-4cm), and there may also be minor amygduals (up to 8mm wide, filled with carb and/or quartz). The interval is strongly altered and sheared. The foliation may be deformed, and there may be boudinages. Both contacts are gradational.

HOLE No: NR9727

DIAMOND DRILL LOG

.

.

.

.

a . . .

PROPERT HOLE NC	Y: Rainy .: NR972	River 27			DIMOND DAILS BO	-						Page
									ASS/			
FROM	то	LITHO	DLOGICAL DESCRIP	rion		FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		DO	N-HOLE SURVEY D	ата								
		DEPTH	INCLINATION	BEARING								
		60.96	-53.50	3.00								
		121.92	-52.00	5.00			•					
		192.85	-52.00	6.00								
		199.90	-52.00	6.00								•

DIAMOND DRILL LOG

Collar	Easti North Eleva Rich	ings: -150.00	Collar Inclination: -50.00 Grid Bearing: 360.00 Final Depth: 275.84 metres CONTRACTOR: Ultramobile D.D.		Date	ged by: e: 27/03 n-hole S	/97-05/0	04/97	
						ASSI	 AYS		
FROM 0.0	то 27.40	LITHOLOGICAL DESCRIPTION OVERBURDEN (Ovb) The sole boulder fragment included at the 7-8cm long apparently unaltered andesitic metavolcanic containing several cm-sized s feldspar phenocrysts.	piece of porphyritic	то	WIDTH	Au ppb	Cu ppm	2n ppm	Ag ppm
27.4	37.1	QTZ-FSP PORPHYRY INTRUSIVE (Qtz-Fsp Porph Medium grained, mottled grey-white and rel undeformed in appearance. Composed of abo white fsp from 2-5mm in x-section, 15-20% 10-15% fine chloritized amphiboles? Well lowermost 60cm and virtually unfoliated. tectonic, much less altered version of the toward the bottom of holes DDH NR9724 and Here feldspars are moderately ser-carb alt distinct. The lower contact is oriented a subparallel to the foliation in the underl	atively fresh and ut 60-70% subhedral 2-4mm qtz-eyes, and chilled over its Possibly a post- QFP encountered DDH NR9726. ered, but quite t 60 deg to the CA,	36.60	1.60	3	26	34	0.1
37.1	38.42	PORPHYRITIC MAFIC METAVOLCANICS (Por. Maf Fine grained, dark green massive? flow roc percent 6-12mm diameter, grey subhedral fs Well foliated and strongly altered, with p	ks containing a few p phenocrysts.						

.

.

÷.

è

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9728 Page 2 ASSAYS FROM то LITHOLOGICAL DESCRIPTION FROM то WIDTH Au ppb Cu ppm Zn ppm Ag ppm and development of tiny (<1mm) fe-carb crystals. 1-2% fine diss. py, mod. to strongly magnetic. Foliation is ~50 deg to the CA. The lower contact is placed where fsp phenocrysts disappear, coincident with the top of the second vein described below. 38.0 -38.15 White gtz vein with contacts broken by drilling. It appears oriented parallel to sub-parallel to fol. and contains only minor chlorite. A similar vein occurs from 38.42-38.66m along the lower contact of the unit. 135 0.1 38.42 44.55 MAFIC TUFF AND TUFF-BRECCIA? (Maf Tuff+Tuff Bx?) 37.30 38.85 1.55 . 3 152 Strongly altered and recrystallized dark green rock, spotted with 1-2mm fe-carb crystals in its upper portions, and exhibiting fine but abundant flecks of yellow-white (ep-sauss?) throughout the lower, finely brecciated section. Not appreciably bedded until the lower contact of the unit is approached. Possibly flow rocks. An indistinct selvage-like feature occurs at 42.45m. Strongly chloritized and fe-carb altered, with ep+/-sauss present in small amounts throughout, but common below 41.45m. 1% fine diss py. Foliation is consistently about 50 deg to the CA until 43.5m, below which it has likely been disrupted by the emplacement of the Porphyry unit encountered next. 41.45 to 44.55 Section of finely brecciated to fairly wellbedded rock displaying flow breccia like features in its upper

÷.

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9728

•

1

.

.

.

•

						ASSI	YS		
ROM	то	LITHOLOGICAL DESCRIPTION part, and apparently grading into a tuff-breccia with 1-2cm thick fragments of grey-green ash from 43.5-43.75m, and to a well bedded mafic tuffaceous section from 43.75-44.3m. Bedding changes from 60 deg to the CA at 43.9m, to ~40 deg to the CA at 44.3m. The lower contact is coincident with an abrupt colour change to a near white sheared sericitic rock, broken and somewhat ground by drilling. The contact appears consistent with foliation in the country rocks.	FROM ,	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
. 55	275.84	QTZ + QTZ-FSP PORPHYRY INTRUSIVE (Qtz+Qtz-Fsp Porphyry Intr.)	44.19	45.74	1.55	3	43	130	0.1
		Pale greenish white to pale pinkish in colour, fine to med	45.74	47.24	1.50	3	4	50	0.1
		grained and porphyritic. In contrast to the intersection of	47.24	48.76	1.52	3	5	43	0.1
		this unit in DDH NR9726, where there were distinct gtz only,	48.76	50.29	1.53	3	4	46	0.
		and qtz-fsp bearing phases to the intrusive, here the unit more	50.29	51.81	1.52	3	6	45	0.
		closely resembles the intersection in DDH NR 97-24, where	57.19	58.77	1.58	40	22	38	0.
		fsp is evident only rarely as phenocrysts <2mm in x-section.	67.45	68.58	1.13	3	4	72	0.
		Small whitish fsp crystals are distinguishable in both the pink	68.58	69.54	0.96	3	5	68	0.
		and the greenish phases of the porphyry above 60-61m. They are	69.54	70.80	1.26	3	4	57	0. 0.
		much less common and smaller than the qtz-eyes present.	70.80	71.92	1.12	3	5	48 52	
		Below this point deformation and alteration could certainly have	71.92	73.01	1.09	3	4	52 78	0. 0.
		obliterated similar sized fsp crystals.	82.38 83.47	83.47 84.95	1.09 1.48	10 3	4	78 50	0.
		Pinkish sections typically exhibit sharp contacts, likely indicating that their potassium enrichment is due to primary	88.20	89.73	1.40	د د	נ ג	50	0.
		composition rather than to alteration processes. It follows that	91.79	93.27	1.48	נ נ	נ	63	0.
		the intrusive body is likely composed of multiple sill-like	113.50	114.79	1.40		17	55	0.
		bodies of slightly differing bulk chemistry.	126.85	128.20	1.35	23		68	0.

HOLE No: NR9728

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9728

.

1

•

¥

						ASS	YS		
ROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppi
		Strongly sericitized, with minor chl probably from the breakdown	129.65	131.15	1.50	3	5	50	0.
		of primary amphiboles. Minor sausserite may accompany the	131.15	132.58	1.43	3	5	58	0.
	••	fe-carb alt which seems responsible for the bleaching around	133.52	134.62	1.10	3	5	55	0.
		tour bearing qtz veinlets. .	137.72	139.15	1.43	3	4	58	0.
		Very well foliated overall, with evidence of considerable	146.54	147.94	1.40	3	10	60	0.
		shearing and minor gouge development at the upper contact, and	151.52	152.97	1.45	3	11	55	0
		seemingly weakly sheared overall beolw about 90m	155.24	156.44	1.20	5	20	62	0.
			159.38	160.72	1.34	10	11	64	0
		44.55 -46.0 Strongly bleached and sericitized section broken	163.70	164.30	0.60	10	7	73	0
		during drilling. Foliation can be seen to be folded to parallel	166.89	167.95	1.06	15	8	57	0
		the CA, and gouge is present a few places.	167.95	169.35	1.40	3	4	64	0
			169.35	170.85	1.50	5	4	68	0
		Below this section the rock is greenish-white and contains about	170.85	172.21	1.36	90	5	53	0
		10-15% grey-blue qtz eyes from 1-6mm across and occasionally	172.21	173.83	1.62	3	9	102	0
		<pre>subhedral to euhedral. <1-1% fine py. Foliation is 50-55 deg</pre>	178.13	179.20	1.07	35	10	60	0
		to the CA. This is the typical rock for this unit.	184.96	186.25	1.29	30	11	48	0
			186.25	187.75	1.50	10	16	52	0
		55.7 to 67.25 Pink Qtz-Fsp Porphyry (QFP)	196.00	196.75	0.75	20	19	44	0
		Chl and ser are both relatively uncommon, largely restricted	197.98	199.56	1.58	3	11	40	0
		to fractures/slips developed parallel to the foliation.	203.44	205.14	1.70	3	7	48	0
		Top contact is sharp and appears intrusive, with the overlying	205.14	206.73	1.59	3	4	41	0
		greenish section poss. the younger. The lower contact is	206.73	208.13	1.40	3	12	45	0
		gradational into a bleached somewhat fractured section with	232.90	234.45	1.55	30	7	30	0
		several qtz-carb-tour veinlets <10cm in thickness.	234.45	236.22	1.77	3	22	37	0
			236.22	237.68	1.46	3	16	32	0
		69.08 - 69.25 Narrow qtz veinlet with ~5% fe-carb and diss.	240.90	242.31	1.41	10	36	36	0
		clusters of tour crystals to 1cm in length. Trace py. The	242.31	243.81	1.50	5	30	40	0
		veinlet has an irregular top contact which appears to narrow to	243.81	245.26	1.45	3	12	44	0

HOLE No: NR9728

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9728

.

.

.

10 **1**

					ASSI	AYS		
от м	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppr
	a cm-wide stringer, while the lower contact crosscuts the fol.	248.41	250.04	1.63	20	5	32	0.
	only slightly at 40,45 deg to the CA.	252.80	254.23	1.43	20	63	30	0.
		254.23	255.70	1.47	125	63	30	0.
	A few cm-wide stringers are present both above and below the	261.15	262.25	1.10	45	10	26	0.
	vein for 1-2m. They are mostly oriented nearly perpendicular	262.25	263.97	1.72	35	9	27	0.
	to the fol. at 35-45 deg to the CA.	265.10	265.92	0.82	10	16	28	0.
		265.92	267.35	1.43	25	48	31	0.
	90.0 to 127.3 At about this point the unit develops a more	267.35	268.79	1.44	3	12	34	0.
	well foliated appearance. This is apparently due in part to	269.75	271.21	1.46	3	22	42	0
	a general coarsening in the grain size of the groundmass.	274.56	275.84	1.28	3	20	36	0
	As well minor shearing may have occurred, resulting in a							
	rock more easily broken along fol. rather than prone to							
	fractuing. Sulphide content remains <1-1%, and foliation is							
	variable from 45-60 deg to the CA.				,			
	A number of cm-wide narrow slips/shears are present, parallel							
	to subparallel to fol., and a few similar structures cut the CA							
	at very low angles toward the bottom of the subinterval.							
	Includes a 40cm (core length) gtz vein intersection at 113.85m,	,						
	containing 1-2% fine tour and tr py. Its contacts are irregular,							
	and cut the fol. at a high angle.							
	140.2 to 143.7 Pinkish potassic section without fsp phenocrysts							
	containing 10–12% med. green chloritized amph. Contacts are							
	indistinct and do not appear chilled.							
	Qtz stringers to 1-2cm wide, +/- fe-carb, chl, tour, and tr py,							

HOLE No: NR9728

Page 6

DIAMOND DRILL LOG

PROPERTY:	RAINY RIVER
HOLE NO .:	NR9728

,

.

· ·

a 1977 - 1977

¥

 FROM TO LITHOLOGICAL DESCRIPTION FROM TO WIDTH Au ppb Cu ppm Zn ppm Ag is are relatively common throughout this portion of the hole, comprising perhaps 1/2 to 1% of the rock volume. Most seem unlikely to carry gold values however. Small, fine grained mafic xenoliths are also commonly noted, usually measuring up to 1cm by 2-4cm in x-section. 161.4 to 163.8 Pinkish QPF section similar to the rock from 140.2-143.7m. Trace-2% py. Well foliated at 55-70 deg to the CA. The upper contact is occupied by a 2-3cm thick qtz vein paralleling fol., with a few cm of sheared rock on either side. Lower contact is gradational into greensish QPF with white subhedral fsp about half as common as qtz-eyes, followed by another pink potassic section from 165.5-165.2m. Fsp phenocrysts are weakly calc altered. Below this point 2-3% fine diss. py is common, with some contributed from frequent narrow qtz-carb +/- tour stringers. Narrower (1-5mm) planar fracture fillings are often cennetd by tour and abundant py. Foliation is commonly oriented oblique to fol. at a high angle to the CA. A single vein exceeding a few cm in width occurs at 173.15m, with weakly sheared and chloritized wallrocks, oriented at 45-50 deg to the CA. A small mafic xenolith, 4-5mm in thickness, at 90.4m is lying in the plane of foliation, and has likely been flattened 						ASS	AYS		
<pre>Fsp phenocrysts are weakly calc altered. Below this point 2-3% fine diss. py is common, with some contributed from frequent narrow qtz-carb +/- tour stringers. Narrower (1-5mm) planar fracture fillings are often cemented by tour and abundant py. Foliation is commonly 65-75 deg to the CA, and fracturing is moderate (1-2/30cm), and commonly oriented oblique to fol. at a high angle to the CA. A single vein exceeding a few cm in width occurs at 173.15m, with weakly sheared and chloritized wallrocks, oriented at 45-50 deg to the CA. A small mafic xenolith, 4-5mm in thickness, at 90.4m is lying</pre>	ROM TO	 are relatively common throughout this portion of the hole, comprising perhaps 1/2 to 1% of the rock volume. Most seem unlikely to carry gold values however. Small, fine grained mafic xenoliths are also commonly noted, usually measuring up to 1cm by 2-4cm in x-section. 161.4 to 163.8 Pinkish QFP section similar to the rock from 140.2-143.7m. Trace-2% py. Well foliated at 55-70 deg to the CA. The upper contact is occupied by a 2-3cm thick qtz vein paralleling fol., with a few cm of sheared rock on either side. Lower contact is gradational into greenish QFP with white subhedral fsp about half as common as qtz-eyes, followed by 	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	λg ppm
		Below this point 2-3% fine diss. py is common, with some contributed from frequent narrow qtz-carb +/- tour stringers. Narrower (1-5mm) planar fracture fillings are often cemented by tour and abundant py. Foliation is commonly 65-75 deg to the CA, and fracturing is moderate (1-2/30cm), and commonly oriented oblique to fol. at a high angle to the CA. A single vein exceeding a few cm in width occurs at 173.15m, with weakly sheared and chloritized wallrocks, oriented at							

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9728

FROM

Page 7

Ag ppm

Zn ppm

TO LITHOLOGICAL DESCRIPTION significantly, but by coincidence fails to extend the entire distance across the core.

185.8 to 189.83 Pale pinkish to creamy whitish QFP, with indistinct to 2mm evident only within the whitish sections. 3-4% fine diss. py, about half as very fine disseminations on fol. planes. Mod. to strongly sericitized and quite well foliated. Upper contact is gradational and based on the colour change from greenish-white to pinkish and whitish. The lower contact is very sharp against the bleached, near aphanitic underlying subunit. Contact is at -60 deg to the CA, parallel to the local fol. orientation.

189.83 to 190.06 Fine evenly coloured beige to whitish section with only a few 2-3mm qtz eyes, and strong ser and albite? alt. The section appears bleached and to have been initially a much finer grained variety than that of the bulk of the hole. 1% py.

Several similar intervals are present over the next 10m, generally with sheared contacts over 10-30cm. They are interpreted as perhaps a late aplitie-like phase of the intrusive, injected once most of the composite body had cooled.

190.06 to 191.32 Pinkish to whitish QFP section with partially altered fsp phenocrysts at levels of ~ 54 . Similar to the subunit from 85.8-189.3m. Both contacts parallel foliation at about 60 deg to the CA. то

FROM

WIDTH Au ppb Cu ppm

ASSAYS

Page 8

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9728

ì.

2

.

.

.

						ASS	AYS		
ROM	то	LITHOLOGICAL DESCRIPTION 191.32 to 195.98 Similar to the section from 189.83-190.06m. Contacts parallel folletion. <1-1% very fine py. <2% qtz-eyes.	FROM	то	WIDTH	A u ppb	Cu ppm	Zn ppm	yd bbw
		197.92 to 198.85 Fine, very pale interval similar to the sections from 189.83-190.06m, and 191.32-195.98m, but with irregular, non-planar contacts, and foliation at a very low angle to the CA. The upper contact crosscuts fol. at close to 90 deg., and the lower contact is sheared at 15-35 deg to the CA. It has been placed in the middle of a 40-45cm sheared section, midway between the two recognizable units, although the shearing appears contained within this unit.							
		198.85 to 214.25 Pink, potassic QFP. Well foliated but relatively unfractured section, in comparison to the surrounding rock. Contains 2-3% 2-3mm qtz-eyes. Mod. sericitized with 1-2% fine diss. py. Includes a sheared ser-chl altered section from 206.73-207.85m, with qtz-carb veining and replacement. It contains 2-3% fine py, and is oriented subparallel to the foliation. Lower contact of the subunit, at 214.25m, is a non-planar, low- angle structure, exhibiting little if any chilling. This tends to confirm the earlier interpretation that the fine, qtz-eye poor sections are intrusive into the coarser grained, porphyritic host.							
		214.25 to 231.8 Pinkish Qtz Porphyry with minor indistinct fsp. Similar to the section preceding the first fine grained subunit, from 185.8-189.83m. Moderately ser altered, with minor chl							
								HOLE	No: NR9

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9728

ì

3

.

.

.

•

					ASS	AYS		
м то	LITHOLOGICAL DESCRIPTION and tour occurring along fol. planes and as a component of relatively rare fracture fillings. The lower contact is gradational into a quite pale greenish-grey variety, and has been placed where pink colouration disappears. 236.47 to 236.73 Small brecciated zone with chloritic infilling material accounting for 40-45% of the rock. The enclosing pale QFP commonly exhibits narrow chl +/- tour fillings along	FROM	то	WIDTH		Cu ppm	Zn ppa	Ng ppr
	fractures developed subparallel and parallel to fol. above about 238.3m 243.32 to 245.55 Fine grained, homogeneous, yellow-white section with trace qtz-eyes and strong ser alt., very similar to the sections from 189.83-190.06m, 191.32-195.98m, and 197.92-198.85m. Here the upper contact is abrupt, slightly non-planar (due to deformation?), and at 35-40deg to the CA. The lower contact is fol. parallel at -55 deg to the CA, and marks a change back to rock with >10% smlg. qtz eyesmore typical of the intrusive as a whole.							
	The remainder of the hole consists of alternating pinkish and whitish intervals of up to 2-3m in length along the CA. In places, a few pyrite rich fracture fillings to 5mm thickness were noted, as well as minor shearing parallel to fol. occurs over 10-15cm in a few places, adjacent to small qtz veinlets at about 266.5m, and 268.6m. Sericite and carb alteration are moderate and py content is about 2% on average.							

HOLE No: NR9728

DIAMOND DRILL LOG

								ASS	AYS		
ROM	то	LITHO	LOGICAL DESCRIPT	rion	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
		DO	N-HOLE SURVEY DI	ATA							
		DEPTH	INCLINATION	BEARING							
		36.57	-47.50	8.00							
		106.68	- 44 . 50	9.50		•					
		195.07	-42.50	14.50							
		274.32	-40.50	21.50							
		275.84	-40.50	21.50							

HOLE No: NR9728

man and my ۰. ۵

.

-

•

.

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9729 Collar Eastings: -4200.00 Collar Northings: -940.00 Collar Elevation: 0.00 Grid: Rich

alteration.

(abrupt change to a sheared QID).

The foliation is approx. 60 deg to the CA. The lower contact is strongly broken (poorly defined), and is a faulted contact

44.82 - 47.38 Up to 10% of small (1-2mm), white carbonate blebs. Most of the blebs are roundish (amygduals?), but there are also euhedral rhombs suggesting they are an alteration feature.

49.26 - 51.0 Medium to coarse grained texture. The altered mafic

ì

Collar Inclination: -60.00 Grid Bearing: 0.00 Final Depth: 199.90 metres Bradley Bros.

Logged by: S. Warner 28/03/97 Date: 27/03/97 - 28/03/97 Down-hole Survey: Sperry Sun

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
0.0	37.35	OVERBURDEN (Ovb)							
37.35	69.8	BASALT (BAS)	41.40	42.40	1.00	3	89	74	0.1
		Grey-green, fine grained volcanic rock. It is primarily composed	44.50	46.00	1.50	3	85	66	0.1
		of altered mafic minerals and feldspar (andesite-basalt). The	47.50	48.50	1.00	3	115	72	0.1
	-	mafic minerals have altered to chlorite, but there is also weak	50.50	51.50	1.00	3	92	71	0.1
		to moderate sericitization and bleaching that may diminished the	53.60	54.60	1.00	3	116	70	0.1
		effects of chloritization. Unless described below, the rock is	56.60	58.10	1.50	3	86	58	0.1
		massive and homogeneous, suggestive of a flow unit. There is a	61.70	62.70	1.00	3	82	56	0.1
		moderate occurrence of mm to cm scale carb/quartz fractures,	63.86	64.86	1.00	3	23	82	0.1
		which are strongest near the top of the unit	65.80	66.80	1.00	3	94	85	0.1
		The rock contains 2-3% py that is found as subhedral to euhedral	66.80	67.50	0.70	3	69	64	0.1
		grains that are diss. in the matrix, or along fractures. The py	67.50	68.80	1.30	3	77	46	0.1
		may also concentrate in bands that are associated with carbonate							

DIAMOND DRILL LOG

PROPERTY: Rainy River

•

,

.

						ASS	AYS		
ROM	то	LITHOLOGICAL DESCRIPTION minerals are coarser than those in the surrounding rock (phneocrysts?). They appear to be completed altered to chlorite, but may of been an amphibole.	FROM	то	WIDTH		Cu ppm	Zn ppm	Ag ppi
		57.86 - 60.3 Medium to coarse grained. Similar to that described above.							
		64.33 - 64.53 An irregular quartz vein with contacts that are approx. 45 deg to the CA. Along the margins of the vein there is strong chlorite and carbonate alteration. The carbonate has a orange-brown colour (siderite?). There is also 10cm orange carbonate alteration in the wallrock below the lower contact.							
		66.44 - 69.8 Stronger alteration and pervasive bleaching close to the faulted contact. At 68.4m there is 2ft of missing core below a 20-30 cm wide quartz vein.							
9.8	102.47	BEDDED QUARTZ-EYE DACITE (BDD OID)	68.80	70.30	1.50	3	81	56	0.
		Variable colour and fine grained groundmass. Grey-blue guartz	70.30	71.30	1.00	3	17	40	0.
		phenocrysts, which comprise 3-4% of the rock, are distributed	71.30	72.30	1.00	3	21	54	0.
		evenly throughout the unit and coarse grained (up to 1cm, and	73.90	74.90	1.00 *	3	4	40	0.
		most are at least 5mm). There are also 1-2% white to yellowish	74.90	75.90	1.00	3	3	44	0
		feldspar phenocrysts (most are < 5mm). The rock is strongly	75.90	78.06	2.16	3	2	60	0
		altered or sheared, and has a well developed tectonic fabric. The	78.06	79.45	1.39	3	3	48	0
		foliation (essentially a schist) is mostly sericite-rich, but the	83.60	84.60	1.00	3	4	53	0
		composition may be variable (see below). The quartz eyes may have	87.10	88.10	1.00	3	11	47	0
		pressure shadows around them, and most of the feldspar grains are	88.10	89.10	1.00	3	18	48	0
		flattened parallel to the foliation. There are minor mm scale	92.70	93.70	1.00	3	12	45	0.

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9729

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppr
		quartz/carb fr actures throughout.	95.30	96.30	1.00	3	13	46	0.1
		The unit contains 1-23 subhedral to euhedral py that is diss. in	96.30	97.30	1.00	3	11	41	0.
		the groundmass. Over the lower half of this unit, there is tr-1%	99.30	100.30	1.00	3	14	50	0.
		fine grained magnetite scattered throughout the groundmass,							
		making the rock weakly magnetic.							
		The foliation is 60 deg to the CA. The upper contact is strongly							
		broken and faulted. The lower contact is interbedded with the							
		next unit.							
		69.8 to 80.82 Greyish-green QID. The mm scale foliation is							
		comprised of sericite and chlorite lamellae (sericite: chlorite =							
		5:1). The chlorite may of been introduced from the overlying							
		mafic volcanic unit. From 75.8 to 78.0m the core is moderately to							
		strongly broken, the foliation is weakly crenulated, and there is							
		carbonate alteration. At 78.0m there is 3ft of missing core.							
		Faulting/shearing zone.							
		80.82 to 86.59. Pale yellow/green QID. The foliation is composed							
		almost entirely of a bloosted equisite with since ablanite. From							

almost entirely of a bleached sericite, with minor chlorite. From 85.37 to 86.59m there are abundant (5%) white feldspar grains that are flattened parallel to the foliation. Throughout this interval, there are also yellowish grains that may be altered feldspars.

86.59 to 98.04 Greenish-pink QID. The foliation is slightly coarser and mottled compared to that up and down-hole. Along with the sericite lamellae, there is chlorite (roughly 8:1) lamellae. There is also strong pink K-spar alteration over most

.

1

HOLE No: NR9729

DIAMOND DRILL LOG

PROPERTY:	Rainy River
HOLE No.:	-

the rock.

.

ì

-

Page 4

					ASSI	AYS		
FROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
	of this interval. The k-spar is concentrated in mm scale bands							
	that are parallel to the foliation, and may be pervasive.							
	From 93.2 to 96.6m there is 5-6% coarse quartz eyes.							
	98.04 to 102.47 Pale yellow/green QID. Similar to that from							
	80.82 to 86.59m, but with slightly more chloritic alteration.							
	From 99.9 to 100.72m there is a bed with 4-5% quartz eyes and a							
	poorly developed foliation.							
02.47 121.91	MAFIC-INTERMEDIATE TUFF/FLOW (MAF-INT TUFF/FLOW)	102.40	103.40	1.00	3	51	74	0.1
	Grey-green, aphanitic to fine grained volcanic rock, which is	105.40	106.40	1.00	3	69	94	0.1
	primarily composed of altered mafic minerals (pyrox/amph) and	106.40	107.40	1.00	5	70	76	0.1
	feldspar (andesitic to basaltic). The upper part of the unit is	110.00	111.00	1.00	3	80	100	0.1
	bedded, but it becomes massive towards the bottom (see below).	111.00	112.00	1.00	3	70	48	0.1
	The rock is moderately altered (sheared), and a pervasive	112.00	113.50	1.50	3	76	97	0.1
	foliation is composed of both sericite and chlorite lamellae.	119.70	120.70	1.00	3	63	65	0.1
	Chlorite appears to be the more dominant mineral, but it is hard	120.70	121.70	1.00	3	86	57	0.1
	to determine because of weak to moderate bleaching. The foliation							
	may be deformed, irregular, and weakly crenulated over short cm							
	scale intervals. At the top of the unit, there is moderate to							
	strong quartz/carb fracturing, but it diminishes towards the							
	bottom of the unit. The rock may also be weakly magnetic over							
	short intervals.							
	The unit contains 1-2% coarse, euhedral py that is found diss. in							
	the matrix, or concentrated in bands associated with carb.							

alteration. Near the top of the unit, there is tr-1% mag diss. in

The foliation is approx. 60 deg to the CA. Most of the carb.

DIAMOND DRILL LOG

DLE No).: NR9	0729							Page
						ASS	AYS		
rom	тО	LITHOLOGICAL DESCRIPTION fractures are parallel to the CA.	FROM	TO	WIDTH	Au ppb	Cu ppm	2n ppm	ng ppi
		102.47 to 114.28 Mefic Tuff. This interval has a stronger banding (foliation), suggesting that it is bedded. The upper 3m is interbedded with 3 QID beds (from 2cm to 50cm wide). Most of the contacts are parallel to the foliation, but they may also be lower angled and irregular (erosional?). From 105.8 to 105.9m there is an irregular and deformed black, magnetite-rich bed. There are two beds (1-2cm wide) that are parallel to the foliation, but they are discontinuous and weakly connected. From 109.45 to 112.28 the rock is weakly spotted with round to oval carb/quartz blebs (up to 1cm). Amygduals or spherulites?		·					
		114.28 to 121.91 Mafic Flow. The banding is not as strongly developed and it is massive over metre scale intervals, suggesting that the reminder of the unit is a flow unit.							
21.91	139.82	MAFIC VOLCANIC TUFF (MAF VOLC TUFF)	122.70	123.70	1.00	3	60	145	0.
		Green-grey, aphanitic to fine grained volcanic rock. This unit is	123.70	124.70	1.00	3	78	157	0
		similar to the previous unit, but has a stronger alteration	124.70	125.70	1.00	3	93	106	0
		(shearing) texture, and a well developed banding (bedding). The	125.70	126.70	1.00	3	60	94	0
		green colour also suggests that it is mafic and not intermediate.	126.70	127.70	1.00	3	89	133	0
		The foliation is recognized by chlorite and lesser sericite	127.70	128.78	1.08	3	85	132	0
		lamellae. The foliation may be moderately to strongly deformed	128.78	129.80	1.02	3	83	110	0
		and irregular, or even weakly crenulated. There is also moderate	129.80	131.30	1.50	. 3	69	93	0
		to strong pervasive bleaching and carbonate alteration over cm to	131.30	132.80	1.50	3	79	85	0
		m scale intervals. The carbonate alteration may be along	132.80	134.30	1.50	3	73	92	0

.

•

<u></u>

`¥ _ _ _ _

.

HOLE No: NR9729

.

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9729

.

					ASSI	YS		
ROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppi
	irregular bands, patches, or what appears to be brecciated	134.30	135.90	1.60	3	85	88	0.
	fragments. The unit may be weakly spotted with oval to round	135.90	136.70	0.80	3	76	104	0.
	carb. blebs (up to 1cm), which may be a crystal/fragment, because	136.70	137.20	0.50	3	117	160	0.
	the foliation grows around them, while others appear to be	137.20	137.95	0.75	3	46	144	0.
	amygduals. The rock may also be weakly magnetic. There is minor quartz/carb. fractures throughout the unit.	137.95	138.90	0.95	3	87	188	0.
	The rock contains 3-4% py that is found as finely diss. grains in the groundmass, or along fractures. The sulphides also							
	concentrate in bands that are associated with carbonate alteration.							
	The bedding planes are 60-65 deg to the CA, and the foliation is parallel to the bedding.							
	126.57 - 127.22 Within this interval there are two large (7 and							
	15cm) ovoid objects (alteration texture?). They appear to be primarily composed of epidote. How did they form?							
.82 199.9	INTERMEDIATE-MAFIC FLOW/TUFF (INT-MAF FLOW/TUFF)	138.90	139.90	1.00	3	111	182	0
	Grey-black, aphanitic to fine grained rock. Composed of altered	142.00	143.50	1.50	3	65	60	0
	mafic minerals and feldspar (basalt-andesite). A pervasive	143.50	145.00	1.50	3	76	65	0
	foliation is composed of primarily chlorite and lesser sericite,	148.10	149.10	1.00	3	68	72	0
	but moderate bleaching makes proportions difficult to determine.	151.10	152.10	1.00	3	63	64	0
	The rock varies between a well developed banding (tuff), and a	153.20	154.20	1.00	3	90	73	0
	massive (flow) texture over cm to m scale intervals; primarily	154.20	155.20	1.00	3	85	74	C
	tuffaceous though. The alteration (shear texture) is not as strong	157.20	158.20	1.00	3	73	53	C
	as the previous units, but it does increase towards the bottom of	158.20	159.20	1.00	3	78	78	0
	the unit. The foliation may be weakly deformed or crenulated.	162.80	163.30	0.50	3	65	92	0
	Also, there are minor fragments (< 1cm) scattered throughout the	163.30	164.30	1.00	3	79	70	0

. .

•

HOLE No: NR9729

.

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9729

				ASSAYS							
ROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp		
		groundmass that may have pressure shadows around them. There is	165.40	166.40	1.00	3	75	70	0.		
		also weak to moderate bleaching over cm scale intervals, and weak	166.40	167.40	1.00	3	71	55	0.		
		to moderate quarts/carb fractures that are more common towards	167.40	168.40	1.00	3	79	72	0.		
		the bottom of the unit.	169.90	170.90	1.00	3	71	60	0.		
		The rock contains 1-2% py and tr po. The py occurs as subhedral	174.50	175.50	1.00	3	82	94	0.		
		to euhedral grains that are diss. in the matrix or concentrated	175.50	176.50	1.00	3	92	86	0		
		in alteration bands. The po (at 162.9m) is found as finely diss.	178.60	180.10	1.50	3	82	77	0		
		grains associated with carbonate alteration.	180.10	181.60	1.50	3	82	76	0		
		The foliation is 65 deg to the CA, and the bedding contacts are	183.70	184.70	1.00	3	71	80	0		
		parallel to the foliation.	184.70	185.70	1.00	3	86	76	0		
			186.70	187.70	1.00	3	98	70	0		
		146.55 to 146.65 Possible pillow salvage in a relatively massive	189.30	190.80	1.50	3	104	70	0		
		flow unit.	190.80	191.80	1.00	3	83	76	0		
			193.80	195.30	1.50	3	87	44	0		
		Below 158.0m, darker laminations are more common. They are	195.30	196.90	1.60	3	75	70	0		
		blackish-grey, and probably chlorite.	196.90	197.90	1.00	3	43	70	0		
			197.90	198.90	1.00	3	41	83	0		
		194.86 - 195.78 Spotted with 4-5% small (1-3mm) and round	198.90	199.90	1.00	3	28	70	0		
		carb/quartz blebs, in a well banded unit. Some of them appear to									
		be stretched parallel to the foliation. Possible amygduals?									

197.22 to 199.9 The rock has a banded black and white colour, with a stronger alteration texture (probably another tuffaceous unit). The foliation is black (chloritic), and there are irregular white bands that become wider are more abundant than the black bands towards the bottom. The white bands react with acid only weakly, and there may be silica alteration associated with them. Essentially, it is a deformed chlorite schist, with

.

HOLE No: NR9729

DIAMOND DRILL LOG

PROPER HOLE N		iny River 9729										Page	8
									ASSI	AYS			
FROM	то	possible strong	DEOGICAL DESCRIPTION bleaching of fei N-HOLE SURVEY D	ldspar/quartz-1	rich bands?	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm	
		DEPTH	INCLINATION	BEARING									
		60.96	-56.00	5.00									
		198.12	-54.50	7.00									
		199.90	-54.50	7.00									

.

.

ì.

2

HOLE No: NR9729

.

DIAMOND DRILL LOG

۰

.

2

			DIAMOND DRILL LOG							
		iny River								
	No.: NR r Easti		Collar Inclination: -5	0 00		Logo	ed by:	s Warne	or 30/03	/97
	r North	2	Grid Bearing: 360.00	0.00			28/03			, ,,
	r Eleva	2	Final Depth: 211.50 m	etres			hole S			un
Grid:			Bradley Bros.							
			· · · · · · · · · · · · · · · · · · ·							
FROM	TO	LITHOLOGICAL DESCRIPTI	ON	FROM	TO	WIDTH	Au ppb		Zn ppm	Ag ppm
0.0	49.9	OVERBURDEN (Ovb)							••	2
49.9	92.88	INTERMEDIATE-MAFIC TUFF (INT-MAF	TUFF)	50.50	52.00	1.50	3	23	70	0.1
		Black and white, aphanitic to fir	e grained groundmass. The top of	52.00	53.60	1.60	3	12	60	0.1
		the unit is strongly to intensely	altered and deformed (it is now	56.10	57.10	1.00	3	23	33	0.1
		a chloritic schist). The rock has	a well developed banding that	59.20	60.20	1.00	3	7	48	0.1
		is comprised of alternating mm so	ale black chlorite lamellae, and	60.20	61.20	1.00	3	15	51	0.1
		white bands. The white bands are	composed of a combination of	61.70	62.70	1.00	3	18	44	0.2
		white feldspar and quartz (the fe	eldspar may be altering to	62.70	63.70	1.00	3	13	53	0.1
		sericite/carbonate). There may be	e small quartz eyes (tr-1%) and	63.70	65.20	1.50	3	25	62	0.1
		lapilli fragments in some of the	beds (strongest intervals are	65.20	66.30	1.10	3	23	54	0.1
		described below). There may be p	essure shadows around the	66.30	67.30	1.00	3	30	51	0.1
		quartz eyes, and the fragments ma	y be weakly flattened. The	67.30	68.80	1.50	3	19	74	0.1
		foliation is strongly deformed an	nd irregular in places. It may	68.80	70.30	1.50	3	10	35	0.1
		also be moderately to strongly c	cenulated over cm scale	70.30	71.90	1.60	3	16	58	0.1
		intervals. The core is moderately	broken and there are several	71.90	72.90	1.00	3	5	40	0.1
		fractures with fault gouge (large	est fault zones described below).	72.90	73.90	1.00	3	22	46	0.1
		There is moderate to strong blead	ching over cm scale intervals,	73.90	74.90	1.00	3	12	65	0.1
		and weak pervasive carbonate alte	eration. There are minor to	74.90	75.90	1.00	3	18	82	0.1
		moderate mm scale quartz/carb fra	actures throughout the unit	75.90	76.90	1.00	3	21	53	0.1
		(largest quartz vein is 12cm).		76.90	78.00	1.10	3	16	56	0.1
		The rock contains 3-4% py that is	s found as finely diss. grains in	78.00	79.50	1.50	3	27	76	0.1
		the groundmass, or along fracture	es. There are also minor mm scale	79.50	81.00	1.50	3	17	55	0.1
		py-rich bands that are parallel	to the foliation.	81.00	82.00	1.00	3	10	86	0.1

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9730

.

.

.

					ASSA	YS		
ROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
	Where its not deformed, the foliation is 65–70 deg to the CA.	82.00	83.00	1.00	3	37	168	0.
		83.00	84.10	1.10	3	16	84	0.
	49.9 to 50.76 Pale green basalt. The rock does not have the	84.10	85.10	1.00	3	78	270	0.
	black/white banding at the top of the hole, and it appears to be	86.10	87.10	1.00	3	12	74	0.
	a massive, but altered, flow basalt. The lower contact is approx.	87.10	88.10	1.00	3 -	11	68	0.
	60 deg to the CA.	88.10	89.10	1.00	3 .	11	57	0.
		89.10	9ዑ. 20	1.10	3	15	72	0.
	59.6 - 61.05 Fault Zone. The rock is strongly altered, broken and soft (it scratches easily). Towards the lower contact there is fault gouge. The upper contact is broken, and the lower contact is 20 deg to the CA. There is limonite staining along the lower contact.	90.20	91.70	1.50	3	14	65	0.
	61.05 - 66.5 The strongest deformation to the foliation is over this interval.							
	74.9 to 77.37 There are 1-2% small (< 4mm) quartz eyes in an intermediate to mafic tuff. Introduced from an ash debris?							
	80.1 to 83.5 Lapilli Tuff. There are 4-5% pale grey to white fragments (< 1cm to several cm's wide) that are oval to round, and mostly flattened parallel to the foliation. They are siliceous and appear to be composed of quartz/feldspar. Some of the fragments may just be an alteration feature.							
	Below 83.46m the foliation is less deformed, and the banding is fairly uniform.							
							HOLE	No: NR

DIAMOND DRILL LOG

PROPERTY:	Rainy River
HOLE No .:	•

.

è

.

-

					ASS	YS		
ом то	LITHOLOGICAL DESCRIPTION 88.73 to 89.1 Basalt. Medium green, fine grained massive basalt. The rock is chlerite-rich, and there is minor carbonate alteration. The contacts are broken, but appear to be parallel to the foliation.	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppa
	90.33 to 92.88 Lapilli Tuff. There are 4-5% fragments. Similar to that from 80.1 to 83.5m.							
88 146.54	BEDDED QUARTZ-EYE DACITE/INT. TUFF (BDD OID/INT TUFF)	91.70	93.20	1.50	3	9	65	0.
	Greyish-white to black, fine grained groundmass. The unit is	93.20	94.70	1.50	3	10	50	0.
	comprised of a chlorite-rich tuff that is interbedded with cm	94.70	96.30	1.60	3	13	64	0
	scale felsic, quartz-rich unit (debris flow?). There may be well	96.30	97.80	1.50	3	15	68	0
	defined contacts with an abrupt increase in guartz eyes (up to	97.80	99.30	1.50	3	15	67	0
	4-5%), or there may be 1-2% guartz eyes distributed through both	99.30	100.30	1.00	3	10	82	0
	rock types (poorly defined contacts, if any). The intermediate	100.30	101.30	1.00	3	16	80	0
	tuff is composed of mm scale black chlorite and lesser sericite	101.30	102.40	1.10 .	3	22	90	0
	lamellae, and feldspar/guartz-rich bands. Some of these beds may	102.40	103.90	1.50	3	12	56	0
	have small crystal/lapilli fragments concentrated in them, while	103.90	105.40	1.50	3	9	40	0
	others may be ash-rich with no quartz eyes or fragments. The	105.40	106.40	1.00	3	12	59	0
	quartz-rich beds (QID?) are composed of grey quartz eyes (< 4mm)	106.40	107.40	1.00	3	25	47	0
	in a white, sericite-rich groundmass. The rock is moderately to	110.50	111.50	1.00	3	11	115	0
	strongly altered, and has a well developed banding (schisty). The	111.50	113.00	1.50	3	8	78	0
	rock becomes more siliceous towards the bottom (see below). The	113.00	114.60	1.60	3	13	93	0
	foliation may be crenulated over cm scale intervals. There are	116.60	117.60	1.00	3	10	47	0
	minor quartz/carb fractures throughout.	117.60	118.60	1.00	3	9	45	0
	The rock contains 2-3% py and tr po. The sulphides mostly occur	120.70	121.70	1.00	3	9	47	0
	as finely diss. grains or blebs in the groundmass (spotted	122.70	123.70	1.00	3	19	48	0
	texture). They may also concentrate in minor bands (in two	123.70	124.70	1.00	3	13	60	0

HOLE No: NR9730

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9730

Ì

ł

.

.

							ASSA	YS		
OM	TO	LITHOLOGICAL DESCRIPTION		FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppr
		places, up to 2-3 cm′s).		126.70	127.70	1.00	3	9	35	0.
		The foliation ranges from 60-65 deg to the CA. The bedding		127.70	128.70	1.00	3	25	58	0.
		contacts are generally parallel to the foliation, but may also be		128.70	129.80	1.10	3	27	48	0.
		irregular and lower angled (erosional surfaces?).		131.80	132.80	1.00	3	14	65	0.
		135.90	137.40		3	10	42			_
		100.2 to 101.29 Ash-rich bed. There are no quartz eyes or		137.40	138.90	1.50	3	13	46	0.
		fragments in a finely laminated unit. The laminations are		138.90	139.90	1.00	3	13	50	0.
		composed of black chlorite and bleached sericite lamellae.		139.90	140.50	0.60	3	38	53	0
				140.50	141.60	1.10	3	7	48	0
		108.0 to 146.54 Quartz eyes are becoming more abundant, and the		141.60	142.60	1.00	3	11	44	0
		overall composition is changing from intermediate to more felsic.		142.60	143.60	1.00	3	11	34	0
		Quartz eyes are distributed over most of the groundmass (even in		143.60	145.00	1.40	3	11	48	0
		the more mafic beds), and there are cm scale quartz-rich beds with up the 6-8% quartz eyes. The quartz eyes are also coarser (up to 5-6mm) than closer to the top of the unit. The dark chlorite-rich bands are less common, and are spaced further apart. The quartz-rich beds are more siliceous (hard to scratch) and a pale grey instead of white (less altered?). There are also minor (< 10cm), pale grey ash-rich beds with no, or very small (< 2mm) quartz eyes. Most of the contacts between these beds are parallel to the foliation, but they may also be irregular. 140.34 - 140.4 Minor interval with approx. 5% fracture-		145.54	146.54	1.00	3	9	63	0
.54 1	167.73	controlled po. The po is mostly concentrated in the dark chloritic bands, but also cross-cuts a quartz-rich bed. BEDDED INT. TUFF/QUARTZ-EYE DACITE (BDD INT TUFF/QID)		146.54	147.24	0.70	3	36	58	0
		Similar to the previous unit, but the intermediate-rich tuff beds		147.24	148.50	1.26	3	27	70	C

HOLE No: NR9730

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9730

. _ _ . . . _ _ _ _ _ _

					ASS	AYS		
OM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	yd bbw
	are more common than the quartz-rich beds (QID), and there is	148.50	149.50	1.00	3	18	55	0.4
	much stronger sulphide mineralization. The unit is comprised of	149.50	150.08	0.58	3	27	80	0.8
	alternating cm scale black to pale grey tuffaceous beds. The more	150.08	150.62	0.54	3	16	120	0.2
	mafic beds may have minor quartz eyes, and there are also ash-	150.62	151.50	0.88	3	18	102	0.1
	rich beds with no quartz eyes. The quartz-rich beds have up to	151.50	152.50	1.00	3	20	92	0.1
	4-5% grey quartz eyes (< 5mm). There may also be beds with	152.50	153.50	1.00	3	20	66	0.1
	small, pale grey lapilli/crystal fragments. The well developed	153.50	154.53	1.03	3.	11	42	0.1
	banding is comprised of man scale black chlorite and lesser pale	154.53	155.70	1.17	3	13	52	0.1
	grey sericite lamellae that alternate with feldspar/quartz-rich	155.70	157.20	1.50	3	12	67	0.1
	bands (chlorite schist); different beds have a finer or coarser	157.20	158.20	1.00	3	17	380	0.1
	banding. The foliation may be moderately deformed or crenulated.	158.20	159.20	1.00	3	15	95	0.1
	Minor quartz/carb fractures throughout the unit.	159.20	160.30	1.10	3	15	55	0.1
	Excluding where described below, the rock contains up to 5-6% py	160.30	161.30	1.00	3	22	52	0.
	and 1-2% po. The sulphides are found as finely diss. grains in	161.30	162.30	1.00	3	13	54	0.
	the groundmass, or in mm scale bands that are parallel to the	162.30	163.30	1.00	3	12	54	0.
	foliation. There are also sulphide-filled fractures (especially	163.30	164.00	0.70	3	38	70	0.
	the po) that are mostly sub-parallel to the foliation.	164.00	165.00	1.00	3	16	66	0.
	The bedding contacts are approx. 60-65 deg to the CA, but they	165.00	166.40	1.40	3	14	58	0.
	may also be irregular (slumping and/or erosional surfaces). The foliation is parallel to the bedding contacts.	166.40	167.73	1.33	3	19	84	0.

148.88 - 150.4 Well mineralized interval. There are 8-10 massive py bands (from 2-3cm to 20cm wide). The bands are parallel to the foliation, but may be irregular, patchy and discontinuous. Within these bands, the py may form concentric "globules" with overgrowth rims (up to 1 or 2 cm). There may be carb/quartz alteration associated with the bands, and they appear to be syngenetic with the tuffaceous horizon. The rock in this interval

HOLE No: NR9730

DIAMOND DRILL LOG

DLE NO.: NR	9730							Page
					ASSI	 AYS		
ROM TO	LITHOLOGICAL DESCRIPTION is a chlorite-rich (almost graphitic) and there is 4-5% pale grey lapilli/crystal fragments that are flattened parallel to the foliation.	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
	161.64 to 167.73 The lower part of this unit is comprised of mostly grey-black ash-rich beds with fine laminations, and only minor quartz-rich beds.							
7.73 193.22	GRAPHITIC SEDIMENTS (GRAPH SEDS)	167.73	168.73	1.00	3	15	86	0.1
	Black to dark grey, aphanitic groundmass. The rock is comprised	168.73	169.40	0.67	3	43	132	0.2
	of finely laminated black graphitic (but not true graphite)	169.40	170.40	1.00	3	18	200	0.1
	sediments, that is banded (mm scale) with pale grey siliceous	171.50	172.50	1.00	3	12	110	0.1
	sediments. These fine laminations may be moderately to strongly	172.50	173.50	1.00	3	13	72	0.1
	deformed or crenulated. It may be weakly spotted with blebs (< 1cm)	174.50	175.50	1.00	3	24	198	0.1
	of carbonate alteration. There are moderate to strong mm scale	175.50	176.50	1.00	3	19	128	0.
	carb/quartz fractures throughout the unit.	176.50	177.50	1.00	3	14	125	0.
	The unit contains 3-4% py and tr sph. The sulphides are found as	177.50	178.28	0.78	3	15	146	0.
	finely diss. grains in the groundmass, and in mm scale bands	178.28	179.56	1.28	3	12	60	0.
	(fractures?) that are parallel to the foliation. Where the	179.56	180.71	1.15	3	18	40	0.
	foliation is deformed or irregular these bands will conform to	180.71	181.60	0.89	3	22	98	0.
	the irregularity. There are also coarse euhedral crystals of py	181.60	182.60	1.00	3	30	105	0.
	scattered throughout the groundmass, and carb fractures that	182.60	183.60	1.00	3	24	135	0.
	cross-cut the foliation (late stage) that contain py.	183.60	184.70	1.10	3	26	170	0.
	The foliation (where it is not deformed) is 60-65 deg to the CA.	184.70	186.20	1.50	3	17	49	0.
•	Most of the carb fractures are parallel to the foliation.	186.20	187.70	1.50	3	22	48	0.
		187.70	188.70	1.00	3	15	42	0.
	180.0 - 180.7 Fracture/fault zone. The rock is strongly altered	188.70	189.70	1.00	3.	15	67	0.
	and broken. There is pervasive and fracture-controlled carbonate	189.70	190.80	1.10	3	13	56	0.

ł

•

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9730

.

•

i .

.

					ASS	NYS ·		
ROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
	alteration. The largest fracture is < 20 deg to the CA.	190.80	191.80	1.00	3	22	34	0.1
		191.80	192.80	1.00	3	22	56	0.
	Below 187.7m the rogic is not as dark black (less graphitic							
	sediments), and it alternates between cm scale dark and pale grey							
	bands. The pale grey bands are more siliceous, and perhaps weakly							
	bleached. From 191.0 to 191.5 there are alternating mm scale							
	bands that may be graphitic/cherty beds.							
	188.5 - 190.35 Most of this interval is spotted with small							
	(< 2mm), white blebs or grains. They weakly react with acid when							
	scratched (carbonate alteration?).							
3.22 211.5	INTERMEDIATE LAPILLI TUFF? (INT LAP TUFF)	192.80	193.80	1.00	3	13	74	. 0
	Medium to pale grey, fine grained groundmass. The unit appears to	193.80	195.30	1.50	3	14	50	0
	be comprised of tuffaceous beds of intermediate composition, and	195.30	196.90	1.60	3	14	52	0
	many of the beds have abundant lapilli fragments (4-5%). Most of	196.90	198.11	1.21	3	11	37	0
	the fragments (< 1cm to 10cm) are pale to medium grey, oval to	198.11	199.11	1.00	3	17	50	0
	round, and siliceous. There are even 1 or 2 black and white,	199.11	199.90	0.79	3	9	62	0
	medium grained fragments that look dioritic. Along with the	199.90	200.90	1.00	-3	10	50	0
	fragments, the rock may have a mottled to almost brecciated	200.90	201.90	1.00	3	20	104	0
	texture, which makes it difficult to determine what are	201.90	202.90	1.00	3	19	82	0
	fragments, and what is an alteration texture. Most of the beds in	202.90	204.14	1.24	3	11	114	0
	the upper half of the unit have 2-3% small (< 4mm) quartz eyes.	204.14	205.00	0.86	3	16	90	0
	There are fewer quartz eyes in the bottom half of the unit (the	205.00	206.00	1.00	3	13	66	0
	alteration texture is also stronger). The rock is moderately to	206.00	207.00	1.00	3	17	50	0
	strongly altered, and a pervasive foliation is composed of mostly	207.00	208.00	1.00	3	16	32	0
	sericite and lesser chlorite lamellae. There is weak pervasive	208.00	208.90	0.90	3	7	36	0
	carbonate alteration, and it may be spotted with carbonate blebs	208.90	209.65	0.75	3	16	51	0

HOLE No: NR9730

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9730

.

ł

.

.

-

								ASS	AYS		
FROM	TO	LITHO	LOGICAL DESCRIP	TION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		· · · · · · · · · · · · · · · · · · ·		amygduals or alteration?). There	209.65	210.50	0.85	3	18	54	0.1
			25	throughout. There is also massiv	e 210.50	211.50	1.00	3	17	66	0.1
	o a t T g (t o o T c	tourmaline diss									
				th 6-7% py. The py is diss. in th	e						
		-		in irregular bands or patches parallel to the foliation. Some o	£						
		-		ven look like fragments (from som							
				e py-rich bands may be associated							
				blebs may have concentric							
				seen from 148.88 to 150.4m.							
	ar tc Th gr (t t) tr ot Th cc	The foliation is	approx. 60-65	deg to the CA, and the bedding							
PROM TO	contacts are para	allel to sub-pa	rallel to the foliation.								
	о н то	201.0 to 211.5	Strongest occur	rence of the lapilli fragments.							
		DOW	N-HOLE SURVEY D	ATA							
		DEPTH	INCLINATION	BEARING							
		60.96	-48.00	360.00							
		128.02	-46.00	2.00							
		198.12	-43.00	6.00							
			12.00	6.00							
		211.50	-43.00	6.00							

HOLE No: NR9730

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9731 Collar Eastings: -4100.00 Collar Northings: -930.00 Collar Elevation: 0.00 Grid: Rich

Collar Inclination: -50.00 Grid Bearing: 360.00 Final Depth: 273.10 metres Bradley Bros. Logged by: S. Warner 01/04/97 Date: 30/03/97 - 01/04/97 Down-hole Survey: Sperry Sun

						ASSA	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppea	Ag pp
.0	44.15	OVERBURDEN (Ovb)							
4.15	72.28	BASALT (BAS)	44.50	46.00	1.50	3	64	58	0.
		Medium to dark green, aphanitic to fine grained mafic rock.	46.00	47.50	1.50	3	68	44	0
		Composed of altered mafic minerals and feldspar; altering to	47.50	49.00	1.50	3	59	76	0
		chlorite and albite/sausserite respectively. Unless described	50.50	51.50	1.00	3	81	75	C
		below, the rock is relatively massive, suggestive of a flow unit.	53.60	55.10	1.50	3	84	65	0
		The rock is well foliated (chlorite), and a weak banding is	55.10	56.60	1,50	3	69	72	(
		recognized by mm scale green chlorite lamellae and pale	58.70	59.70	1.00	3	103	70	(
		green/white carbonatized-bleached lamellae, or patches. Bleaching	59.70	61.20	1.50	3	35	74	0
		may be over cm scale intervals. The unit may also be spotted over	61.70	62.70	1.00	3	72	120	(
		cm to m scale intervals with small (< 2mm), white carb blebs	64.80	65.80	1.00	3	72	72	0
		(alteration?). Less frequently, over cm scale intervals, the core	65.80	67.30	1.50	3	56	70	(
		is pitted (possible vesicules). There is moderate to strong carb/	67.30	68.80	1.50	3	100	77	(
		quartz fractures throughout the unit.	70.90	71.90	1.00	3	78	68	C

The rock contains 1-2% py that is found diss. in the matrix, and along minor fractures.

The foliation is approx. 60-65 deg to the CA. The lower contact is well defined, and parallel to the foliation.

44.15 - 49.06 Strongly altered, and broken core (1 ft of missing core). This interval has a well developed banding (tuffaceous?), and is assumed to be mafic. The banding is still chlorite-rich, but there are purple/orange bands (K-spar alteration), and

DIAMOND DRILL LOG

.

•

•

3

+

					ASS			
om to	LITHOLOGICAL DESCRIPTION moderate to strong blanching of the rock. The rock is also spotted (up to 2-36) with small magnetite grains; there is even a 2-3cm wide magnetite-rich band. Faulting/shearing zone. 52.37 - 55.65 Strongest interval of spotted carbonate	FROM	то	WIDTH		Cu ppm	Zn ppm	Ag ppi
	alteration. 56.0 to 64.86 The banding is slightly more developed over this interval, suggesting that it is a tuffaceous unit. In this interval there are 2-3 black, magnetite-rich bands or beds (from mm's to 5-6cm wide). 68.8 - 72.28 Pervasive bleaching of the rock is stronger closer to the lower contact.		·					
28 97.15	QUART2-EYE DACITE	71.90	72.90	1.00	3	48	53	0
	Pale greyish-green, fine grained groundmass. Coarse, grey-blue	73.90	74.90	1.00	3	11	37	0
	quartz phenocrysts comprise 2-4% of the rock (up to 1cm, and most	77.00	78.00	1.00	3	43	40	0
	are $> 5mm$), and are distributed evenly throughout the groundmass.	78.00	79.00	1.00	3	128	43	0
	Less commonly, there are small, light brown/off-white crystals	81.00	82.50	1.50	3	18	42	0
	(fragments?), or even white feldspar phenocrysts scattered in the	82.50	84.10	1.60	3	4	45	0
	groundmass. The rock is strongly altered (sheared). The	87.50	88.50	1.00	3	1	44	0
	groundmass is comprised of a well developed foliation, consisting	90.20	91.20	1.00	3	2	52	0
	of predominantly sericite, and minor chlorite, lamellae. (it is	91.20	92.20	1.00	3	1	52	0
	now a quartz-sericite schist). The evenly spaced chloritic	93.20	94.70	1.50	3	1	42	0
	lamellae produces a banding in the rock. The foliation is weakly to moderately crenulated or deformed. There may be pressure shadows around the quartz eyes, and the crystal/fragments may be	94.70	95.70	1.00	3	1	44	0

.

.

DIAMOND DRILL LOG

PROPERTY: Rainy River

Ì

1

.

.

						ASS	YS		
ROM	то	LITHOLOGICAL DESCRIPTION flattened parallel to the foliation. There are minor quartz/carb fractures throughout. The rock contains \$-30 py that is found as finely diss. grains in the groundmass, and along minor fractures. The foliation is approx. 65 deg to the CA. The lower contact is parallel to the foliation.	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	yd bt
		72.28 to 77.9 The QID has a paler colour than the rest of the unit, and there are fewer feldspar phenocryst/fragments. The sericite lamellae are also more strongly bleached. A "cleaner" rock.							
		77.47 - 78.0 Moderately broken/fractured core. At the top of this interval there is a 5cm white quartz vein that contains massive tourmaline. The fractures are low angled wrt the CA, but the quartz vein at the upper contact is sub-parallel to the foliation.							
		Below 93.2m the foliation becomes slightly more deformed, and chlorite-rich.							
. 15	125.65	INTERMEDIATE-MAFIC TUFF (INT-MAF TUFF)	96.30	97.30	1.00	3	1	44	0.
		Black and white, aphanitic to fine grained groundmass. The rock	99.30	100.80	1.50	3	3	40	0
		is strongly to intensely altered and deformed (it is now a	100.80	102.40	1.60	3	1	43	0
		chloritic schist). It has a well developed banding that is	104.40	105.40	1.00	3	6	51	0.
		comprised of alternating mm to cm scale black chlorite lamellae,	105.40	106.40	1.00	3	7	46	0.
		and white bands. The white bands are composed of a combination of	108.00	109.00	1.00	3	11	40	0.
		white feldspar and quartz (the feldspar may be altering to	109.00	110.00	1.00	3	27	49	0.

.

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9731

.

1

÷.

.

					ASS	AYS		
OM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	yd bb
	sericite/carbonate). There may be quartz eyes (up to 2%) and	111.00	112.00	1.00	3	13	52	0.
	small lapilli/crystal fragments in some of the beds; pressure	112.00	113.00	1.00	3	11	54	0.
	shadows may form around the quartz eyes, and the fragments may be	113.60	114.60	1.00	3	22	58	0.
	weakly flattened. The foliation is strongly deformed and	114.60	115.60	1.00	3	14	48	0
	irregular in places. It may also be moderately to strongly	116.60	117.60	1.00	3	8	46	0
	crenulated over cm scale intervals. There is moderate to strong	117.60	118.60	1.00	3	8	54	0
	bleaching over cm scale intervals, and weak pervasive carbonate	120.70	121.70	1.00	3	16	44	0
	alteration. There are minor to moderate mm to cm scale quartz/	121.70	123.22	1.52	3	16	48	0
	carb fractures throughout the unit.	123.22	124.65	1.43	3	· 8	56	0
	The rock contains 2-3% py that is found as finely diss. grains in the groundmass, or along minor fractures.	124.65	125.65	1.00	3	8	160	C
	Where its not deformed, the foliation is 65-70 deg to the CA. The							
	lower contact is faulted (see below).							
	122.6 - 125.65 Faulted contact. The core is moderately to							
	strongly broken, and there is 2 ft of missing core. This interval							
	marks the contact between two units. The rock is fractured, there							
	is fault gouge, and quartz veining. As well, the foliation is							
	highly deformed, and the rock may be brecciated over several							
	cm's. The lower contact is assumed to be at the end of this							
	faulted interval.							
.65 212.9	BEDDED INT. TUFF/QUARTZ-EYE DACITE (BDD INT TUFF/QID)	125.65	126.40	0.75	15	84	250	2
	Greyish-white to black, fine to medium grained groundmass. The	126.40	127.33	0.93	3	2	42	(
	unit is comprised of a chlorite-rich tuff that is interbedded	127.33	128.33	1.00	3	3	40	(
	with felsic, quartz-rich beds (debris flow?). There are only tr-	129.80	130.80	1.00	3	17	62	(
	1% quartz eyes near the top of the unit, but they increase to	130.80	131.80	1.00	3	13	54	(
	4-5% closer to the bottom (see below). There are also cm scale	133.00	134.00	1.00	3	10	40	(

HOLE No: NR9731

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9731

.

.

3

		ASSAYS						
ROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	y bbur
	ash-rich units with no quartz eyes. Contacts between each bed may	134.00	135.00	1.00	3	23	48	0.1
	be poorly defined. The intermediate tuff is composed of	138.90	139.90	1,00	3	9	120	0.1
	alternating mm scale black chlorite and lesser sericite lamellae,	139.90	140.9 0	1.00	3	9	92	0.1
	and feldspar/quartz-rich bands. There are lapilli/crystal	142.00	143.00	1.00	15	4	46	0.1
	fragments throughout this unit, but some beds are more	145.00	146.00	1.00	3	13	40	0.1
	concentrated than others (see below). The quartz-rich beds (QID?)	146.00	147.00	1.00	3	5	43	0.1
	are composed of grey quartz eyes (most are < 4mm) in a white,	147.00	148.10	1.10	3	17	82	0.1
	sericite-rich groundmass. The rock is moderately to strongly	148.90	149.40	0.50	3	34	184	0.1
	altered, and has a well developed banding (schisty). The	149.40	150.40	1.00	3	8	72	0.1
	foliation may be moderately deformed or crenulated. There are	150.40	151.30	0.90	3	20	52	0.
	minor quartz/carb fractures throughout.	151.30	152.30	1.00	3	11	44	0.
	Unless described below, the rock contains 3-4% py and tr-1% po.	152.30	153.80	1.50	3	23	110	0.
	The sulphides mostly occur as finely diss. grains or blebs in the	153.80	154.50	0.70	3	18	72	0.
	groundmass, or concentrated along minor fractures.	156.20	157.20	1.00	3	24	140	0.
	The foliation ranges from 60-65 deg to the CA. The bedding	157.20	158.20	1.00	3	20	90	0.
	contacts are generally parallel to the foliation.	159.30	160.30	1.00	3	15	141	0.
		160.30	161.30	1.00	3	14	124	0.
	125.65 - 126.9 Black to grey, ash tuff. The rock over this	162.30	163.30	1.00	3	13	98	0.
	interval is comprised of fine chlorite-rich laminations. Towards	164.40	165.40	1.00	3	25	120	0.
	the bottom, it grades into a banded intermediate tuff. The upper	165.40	166.40	1.00	3	12	74	0.
	60 cm of this interval contains 3 bands (up to 6cm wide) of semi-	169.40	170.40	1.00	3	12	46	0.
	massive to massive py. The bands are sub-parallel to the	170.40	171.40	1.00	3	10	44	0.
	foliation, and where the foliation is deformed, so are the py-	174.00	175.50	1.50	3	34	45	0.
	rich bands (syngenetic?).	175.50	176.50	1.00	3	6	43	0.
		178.60	179.60	1.00	. 3	8	22	0.
	136.22 to 137.95 Lapilli Tuff bed. This interval has 4-5%	180.60	181.60	1.00	3	12	50	0.
	pale to medium grey lapilli fragments (< 1cm to 2-3cm's). The	183.70	184.70	1.00	3	10	57	0.
	fragments are round to sub-angular, and siliceous. The fragments	186.20	187.70	1.50	3	14	50	0.

HOLE No: NR9731

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9731

i.

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	2n ppm	Ag ppm
		may be stretched parallel to the foliation.	187.70	189.20	1.50	3	16	55	0.1
			189.80	190.80	1.00	3	20	56	0.1
		147.7 to 148.1 Lapilli Tuff. See description above.	190.80	191.80	1.00	3	22	57	0.1
			192.80	193.80	1.00	3	20	43	0.1
		149.9 to 150.86 Ash-rich bed. Grey to black, fine grained	193.80	195.30	1.50	3	15	41	0.1
		groundmass comprised of finely laminated sericite and lesser	195.30	196.30	1.00	3	15	45	0.1
		chlorite lamellae.	196.30	197.30	1.00	3	20	70	0.1
			197.30	198.30	1.00	3	22	83	0.1
		152.86 to 157.43 Ash-rich bed. The top of this interval is well	198.30	199.30	1.00	3	24	174	0.1
		banded, recognized by alternating grey (sericite?) and black	199.30	200.22	0.92	3	19	70	0.1
		(chlorite) lamellae. Towards the bottom it becomes more massive	200.22	201.22	1.00	3	15	72	0.1
		and a homogeneous grey colour. There are no quartz eyes over this	201.22	202.42	1.20	3	13	64	0.1
		interval.	202.42	203.20	0.78	3	15	64	0.1
			203.20	204.00	0.80	3	17	58	0.1
		158.06 to 187.72 There are abundant cm scale quartz-rich beds	204.00	205.17	1.17	3	8	60	0.1
		"mixed" in with the chlorite-rich intermediate tuff (the rock is	205.17	205.64	0.47	20	27	95	1.0
		more felsic). The quartz-rich beds may have up to 5-6% small,	205.64	206.64	1.00	3	12	65	0.1
		grey quartz eyes (< 5mm) in a sericite-rich groundmass. The beds	206.64	207.64	1.00	3	17	83	0.1
		may have well defined contacts, or the quartz eyes may just be	207.64	208.64	1.00	3	13	61	0.1
-		scattered throughout the groundmass (a quartz-rich ash may of	208.64	210.14	1.50	3	10	68	0.1
		fallen on the more mafic tuff). The interval has a strong	210.14	211.64	1.50	3	13	58	0.1
		banding, but the chlorite lamellae are not as abundant as the	211.64	212.64	1.00	3	15	67	0.1
		remaining unit. There are minor, siliceous lapilli fragments							

187.72 to 298.02 Interbedded intermediate to mafic ash/lapilli tuffs. There are only tr-2% quartz eyes over this interval, and the chlorite lamellae are much stronger than above or below this

scattered throughout this interval.

HOLE No: NR9731

DIAMOND DRILL LOG

PROPERTY:	Rainy River
HOLE No .:	NR9731

.

.

· · · · •

Page 7

						ASS	AYS		
ROM	то	LITHOLOGICAL DESCRIPTION interval; so strong that at the bottom of this interval the rock is black (becoming graphitic seds). The ash-rich beds are recognized by chlorite and sericite lamellae (banded). The lapilli tuffs are composed of pale grey, flattened, and siliceous fragments (> 5%) in a chlorite-rich groundmass. The lower half of this interval (where it is chlorite-rich) is well mineralized with py (5-7%). The py is found mostly concentrated in bands (up to 2cm wide) or irregular patches that are parallel to the foliation.	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
		298.02 to 212.98 Interbedded tuffs. There are numerous cm scale quartz-rich beds that are interbedded with intermediate ash/ lapilli tuffs. The quartz-rich beds may have well defined contacts, or be irregular fragments in lapilli-rich beds. This suggests that the quartz-rich portions of the rock have been transported and deposited. The chlorite lamellae diminish towards the lower contact, and the rock has a homogeneous grey colour (ash-rich). The lower contact is abrupt. This interval is moderately well mineralized (5-6%) with irregular, patchy blebs (up to 1-2cm) of py. Some of the blebs may have concentric overgrowths. From 205.3 to 205.52m there is semi-massive to massive py.							·
.98	234.58	BEDDED GRAPHITIC SEDIMENTS (BDD GRAPH SEDS)	212.64	213.64	1.00	3	22	97	0.
		Black to dark grey, aphanitic groundmass. The rock is comprised	213.64	215.10	1.46	. 3	30	140	0.
		of finely laminated black graphite-rich sediments, that are	215.10	215.70	0.60	3	64	204	0
		banded (mm scale) with pale grey siliceous sediments. These fine	215.70	216.70	1.00	3	19	108	0
		laminations may be moderately to strongly deformed or crenulated.	216.70	218.20	1.50	3	16	70	0

.

.

.

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9731

,

•

.

.

					ASS	YS		
ROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
	It may be weakly spotted with carbonate blebs (< 1cm), and there	218.20	219.20	1.00	40	26	275	0.
	is weak pervasive carbonate alteration. There are also minor cm	219.20	220.20	1.00	3	15	64	0.
	scale dark grey bedg, that are slightly coarser (still fine	220.20	221.20	1.00	3	27	23	0.
	grained) than the graphite seds (ash beds?). There are moderate	221.20	222.70	1.50	3	28	86	0.
	to strong mm scale carb/quartz fractures throughout the unit (the	222.70	224.30	1.60	3	15	134	0
	carb fractures can be strongly crenulated.	224.30	225.80	1.50	3	18	57	0
	The unit contains 3-4% py and tr sph. The sulphides are found as	225.80	227.30	1.50	3	14	114	0
	finely disseminated grains in the groundmass, and in mm scale	227.30	228.30	1.00	3	23	245	0
•	bands (fracture-controlled?) that are sub-parallel to parallel to	228.30	229.30	1.00	3	28	35	0
	the foliation. Where the foliation is deformed or irregular these	229.30	230.40	1.10	3	23	93	0
	bands will conform to the irregularities. There are also coarse	230.40	231.90	1.50	3	17	130	0
	euhedral crystals of py scattered throughout the groundmass (they	231.90	233.40	1.50	3	20	86	0
	may have carb pressure shadows around them).	233.40	233.98	0.58	3	32	166	0
	The foliation (where it is not deformed) is 60–65 deg to the CA.							
	The bedding contacts are parallel to the foliation (there may be							
	two cleavages). Most of the carb fractures are parallel to the							
	foliation. The lower contact is approx. 60 deg to the CA.							
1.58 265.3	INTERMEDIATE LAPILLI TUFF? (INT LAP TUFF)	233.98	234.77	0.79	3	32	170	0
	Medium to dark grey, fine grained groundmass. The unit appears to	234.77	236.27	1.50	3	26	74	C
	be comprised of cm to m scale tuffaceous beds of intermediate	236.27	237.54	1.27	3	14	58	0
	composition; mostly interbedded lapilli tuffs, and less commonly,	237.54	238.54	1.00	3	12	42	0
	ash-rich or even quartz-rich beds. The lapilli tuffs have	238.54	239.50	0.96	3	11	46	0
	abundant (up to 6–8%) lapilli fragments (< 1cm to 10cm), which	239.50	240.50	1.00	10	19	48	0
	are mostly pale to medium grey, oval to round, and siliceous	240.50	241.50	1.00	3	13	57	0
	(rarely, some of the clasts look like a medium grained, black and	241.50	242.60	1.10	3	14	48	0
	white diorite). The rock has a strong deformation texture, which	242.60	243.60 •	1.00	3	15	78	0
	makes it difficult to determine which are clasts, and what is an	243.60	244.60	1.00	3	16	84	0

.

HOLE No: NR9731

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9731

•

3

.

						ASS	AYS		
ROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
		alteration product. There are abundant irregular, dark grey	244.60	245.60	1.00	3	10	35	0.
		fractures (replacement feature?), and the rock appears to be	245.60	246.60	1.00	3	17	62	0.
		brecciated over cm scale intervals (turbulent debris flows?).	246.60	247.60	1.00	3	13	55	0.
		There may be tr-1% quartz eyes, but are mostly concentrated (up	247.60	248.70	1.10	3	16	52	0.
		to 3-4%) in minor beds. The rock is moderately to strongly	248.70	249.21	0.51	3	16	48	0.
		altered, and a pervasive foliation is composed of roughly equal	249.21	250.21	1.00	3 .	12	50	0.
		sericite and chlorite lamellae; the foliation may be deformed	250.21	251.00	0.79	3	15	90	0.
		and/or crenulated. There is weak pervasive carbonate alteration,	251.00	251.70	0.70	3	25	170	0
		and it may be spotted with carbonate blebs over short cm scale	251.70	253.20	1.50	3	12	37	0
		intervals (alteration?). There are minor to moderate carb/quartz	253.20	253.70	0.50	3	18	35	0
		fractures throughout. There is also massive tourmaline diss. in	253.70	254.80	1.10	3	18	48	0
		the groundmass (may be clasts).	254.80	255.80	1.00	3	18	43	0
		The unit is well mineralized with 6-8% py, tr-2% sph, and tr-1%	255.80	256.60	0.80	3	7	16	0
		po. The py is diss. in the groundmass, and is concentrated in	256.60	257.35	0.75	3	12	35	0
		irregular bands or patches (up to 10cm wide) that are sub-	257.35	258.25	0.90	3	22	85	0
		parallel to the foliation. The blebs may have concentric	258.25	258.85	0.60	15	20	45	0
		overgrowths. Some of the sulphide patches or blebs even look like	258.85	259.85	1.00	3	20	53	0
		fragments (transported from another mineralized horizon?). The	259.85	260.90	1.05	3	20	75	0
		sph and po may be finely diss., but are mostly fracture-	260.90	261.90	1.00	- 3	20	20	0
		controlled.	261.90	262.65	0.75	3	23	57	0
		The foliation is approx. 60-65 deg to the CA, and the bedding	262.65	263.00	0.35	3	73	23	0
		contacts are mostly parallel to the foliation, but may be	263.00	263.90	0.90	3	73	150	0
		irregular and lower angled (erosional surface?).							

257.86 to 262.6 Well banded tuffaceous bed. The pale grey to white clasts range from < 5mm to 1-2cm wide. The foliation is is comprised of black chlorite lamellae and pale grey/white

siliceous bands (chlorite schist).

.

.

HOLE No: NR9731

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9731

.

						ASSI	YS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	2n ppm	Ag ppm
		262.6 to 265.3 The remainder of the unit is comprised of a							
		finely laminated medium grey, ash-rich groundmass. There are no							
		lapilli fragments or quartz eyes over this interval. The							
		foliation may be deformed or even strongly fractured over cm							
		scale intervals.							
265.3	273.1	PILLOWED BASALT-ANDESITE	263.90	265.40	1.50	3	77	102	0.1
		Pale greyish-green, aphanitic to fine grained mafic to volcanic	265.40	267.00	1.60	3	50	88	0.1
		rock. The colour suggests that its composition ranges between a	267.00	268.00	1.00	3	68	87	0.1
		basalt and andesite (or it is just pervasively bleached). The	270.00	271.00	1.00	3	52	55	0.1
		foliation appears to be composed of both chlorite and sericite	272.10	273.10	1.00	3	60	72	0.1
		lamellae (proportions?). There are several chlorite-rich pillow							
		salvages in the upper half of the unit. Over cm scale intervals							
		there may also be small (< 2mm) silica-rich blebs (amygduals?).							
		There is minor, pervasive carbonate alteration, and rare carb.							
		fractures.							
		The rock contains $tr-18$ by an pothat is diss, in the matrix, and							

The rock contains tr-1% py an po that is diss. in the matrix, and associated with carbonate alteration.

The foliation is 60-65 deg to the CA. The upper contact is gradational and poorly defined.

DOWN-HOLE SURVEY DATA

DEPTH	INCLINATION	BEARING

60.96 -49.00 360.00

HOLE No: NR9731

DIAMOND DRILL LOG

.

.

.

											Page 11
~		·						ASS	 AYS		
TO	LITHO	DLOGICAL DESCRIPT	FION		FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ng ppm
	DEPTH	INCLINATION	BEARING								
	121.92	-49.00	1.00								
	182.88	-47.00	5.00								
	259.08	-44.00	9.00								
	•.: NR973	TO LITHO DEPTH 121.92 182.88	TO LITHOLOGICAL DESCRIP DEPTH INCLINATION 121.92 -49.00 182.88 -47.00	TO LITHOLOGICAL DESCRIPTION DEPTH INCLINATION BEARING 121.92 -49.00 1.00 182.88 -47.00 5.00	TO LITHOLOGICAL DESCRIPTION DEPTH INCLINATION BEARING 121.92 -49.00 1.00 182.88 -47.00 5.00	TO LITHOLOGICAL DESCRIPTION FROM DEPTH INCLINATION BEARING 121.92 -49.00 1.00 182.88 -47.00 5.00	TO LITHOLOGICAL DESCRIPTION FROM TO DEPTH INCLINATION BEARING 121.92 -49.00 1.00 182.88 -47.00 5.00 5.00 5.00	TO LITHOLOGICAL DESCRIPTION FROM TO WIDTH DEPTH INCLINATION BEARING 121.92 -49.00 1.00 182.88 -47.00 5.00	ASS/ TO LITHOLOGICAL DESCRIPTION FROM TO WIDTH Au ppb DEPTH INCLINATION BEARING 121.92 -49.00 1.00 182.88 -47.00 5.00	ASSAYS TO LITHOLOGICAL DESCRIPTION FROM TO WIDTH Au ppb Cu ppm DEPTH INCLINATION BEARING 121.92 -49.00 1.00 182.88 -47.00 5.00	TO LITHOLOGICAL DESCRIPTION FROM TO WIDTH Au ppb Cu ppm Zn ppm DEPTH INCLINATION BEARING 121.92 -49.00 1.00 182.88 -47.00 5.00

273.10 -44.00 9.00

•

PROPERTY: Rainy River

.

Ł

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9732 Collar Eastings: -4100.00 Collar Northings: -725.00 Collar Elevation: 0.00 Grid: Rich

.

Collar Inclination: -50.00 Grid Bearing: 360.00 Final Depth: 273.10 metres Bradley Bros.

Logged by: S. Warner 03/04/97 Date: 01/04/97-03/04/97 Down-hole Survey: Sperry Sun

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
0.0	53.6	OVERBURDEN (Ovb)							
53.6	64.14	GRAPHITIC SEDIMENTS (GRAPH SEDS)	59.70	60.70	1.00	3	28	30	0.1
		Medium grey to dark black, aphanitic to fine grained sediments.	62.50	63.50	1.00	3	38	54	0.2
		The unit starts in greyish-black, finely banded sediment and							
		grades into a dark black, graphite-rich rock. Where the rock is							
		banded, it is comprised of finely laminated, mm scale grey							
		siliceous seds, and less commonly, dark graphitic seds. The rock							
		is moderately to strongly broken, and there are several feet of missing core. The foliation may be weakly to moderately deformed							
		or crenulated over cm scale intervals. Near the upper contact							
		(approx. 1m), there is hematite staining along the parted							
		cleavage planes.							
		The rock contains 1-2% py that is found as finely diss, grains in							
		the groundmass, and coarse euhedral crystals that may concentrate							
		in bands.							
		The fine laminations are 60 deg to the CA. The lower contact is							
		broken, and there is a 15cm quartz vein at the contact. Possible							
		faulted contact.							
64.14	80.86	INTERMEDIATE TUFF? (INT TUFF)	63.50	64.35	0.85	10	35	85	0.1
		Pale to dark grey, fine grained, ash-rich groundmass. The rock	65.80	66.80	1.00	[.] 15	17	54	0.2
		has a deformed, irregular, and mottled texture that appears to	66.80	67.60	0.80	20	15	44	0.6
		primarily be a felsic to intermediate ash tuff. The groundmass	67.60	68.55	0.95	3	18	86	0.1

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9732

.

					ASS	AYS		
ROM T	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppr
	near the upper contact is composed of sericite, but towards the	68.55	69.65	1.10	5	11	52	0.
	bottom of the unit there are irregular, black chlorite-rich	69.65	70.70	1.05	3	10	31	0.
	bands. Within the chlorite-rich bands there are small, pale grey,	70.70	71.90	1.20	3	13	60	0.
	round, and siliceous grains (they may be lapilli clasts). There	71.90	72.90	1.00	3	21	305	0.
	is also minor and irregular, cm scale siliceous beds	72.90	73.70	0.80	3	17	35	0.
	(rhyolite?). Throughout the unit, there are lapilli fragments	73.70	74.90	1.20	3	25	60	0.
	(pale grey and siliceous), and larger (several cm's) quartz-rich	74.90	76.50	1.60	3	22	62	0.
	fragments (debris flow?). Over cm scale intervals, the rock may	76.50	78.00	1.50	3	6	51	0.
-	be strongly fractured (almost brecciated), and the fractures have	78.00	79.50	1.50	3	16	75	0.
	mostly been healed and filled with chlorite. The core may also be							
i	moderately broken and pitted (dissolved carbonate).							
	The rock is well mineralized with py $(7-10$ %). The py is found as							
	finely diss. grains that may concentrate in bands that are							
	parallel to the foliation, but also occur in irregular patches or							
	blebs (overall they are parallel to the foliation). The py-rich							
	bands may be deformed and crenulated, or concentrate along the							
	margins of fragments.							
	The foliation is approx. 60 deg to the CA. Generally, the bedding							
	contacts are parallel to the foliation, but they may be irregular							
	and lower angled (deformed during deposition?).							
	74.5 to 75.3 Greyish-green, medium grained intermediate dyke(?).							

quartz. The rock is weakly foliated, and the quartz crystals (dark grey, round blebs) are weakly concentrated suggesting that it may also be a XI tuff. It does, though, have an igneous texture, and the margins appear to be weakly chilled. There is tr-1% diss. py in the matrix. The upper contact is 30 deg to the

.

HOLE No: NR9732

DIAMOND DRILL LOG

٠

(alteration?). There are minor to moderate carb/quartz fractures

.

.

PROPERTY: Rainy River HOLE No.: NR9732

) i

¥

.

						ASSI	AYS		
ROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
		CA, and the lower contact is broken.							
).86	100.66	INTERMEDIATE LAPILLI TUFF (INT LAP TUFF)	79.50	81.00	1.50	10	16	58	0
		Medium to dark grey, fine grained groundmass. The unit appears to	81.00	81.80	0.80	3	10	77	0
		be comprised of cm to m scale tuffaceous beds of intermediate	81.80	82.50	0.70	3	23	102	0
		composition; mostly interbedded lapilli tuffs, and less commonly,	82.50	83.45	0.95	3 -	14	84	C
		ash-rich beds. The lapilli tuffs have abundant (up to 6-8%)	83.45	84.45	1.00	3	10	62	(
		fragments (< 1cm to several cm's), which are mostly pale to	84.45	85.45	1.00	3	11	64	
		dark grey, oval to round, and siliceous (rarely, some of the	85.45	86.30	0.85	3	. 17	72	1
		clasts appear to be pumice). The rock has a strong deformation	86.30	87.10	0.80	25	44	292	
		texture, which makes it difficult to determine which are clasts,	87.10	88.10	1.00	20	27	76	
		and what is a product of alteration. There are abundant	88.10	89.10	1.00	10	17	52	
		irregular, dark grey fractures (healed and filled with	89.10	90.20	1.10	3	18	46	
		chlorite?), and the rock appears to be brecciated over cm scale	90.20	90.80	0.60	3	23	75	
		intervals (turbulent debris flows?). There may be tr-1% quartz	90.80	91.80	1.00	3	15	. 46	
		eyes scattered throughout the groundmass. The rock is moderately	91.80	93.20	1.40	3	16	32	
		to strongly altered, and a pervasive foliation is composed of	93.20	94.20	1.00	3	14	55	
		mostly sericite (moderately bleached), but the abundance of	94.20	95.20	1.00	10	17	54	
		chlorite lamellae increases to roughly equal proportions towards	95.20	96.30	1.10	· 5	22	53	
		the bottom of the unit. In chlorite-rich bands, there may be a	96.30	97.30	1.00	3	39	23	
		strong occurrence of small, siliceous clasts. The foliation may	97.30	98.10	0.80	3	21	23	
		be deformed and/or crenulated, and the smaller lapilli fragments	98.10	99.10	1.00	3	10	54	
		flattened or stretched parallel to the foliation. The contacts	99.10	99.90	0.80	15	15	35	
		between chlorite and sericite-rich bands may be irregular and							
		discontinuous, and the rock may have a strong mottled texture.							
		There is weak pervasive carbonate alteration, and it may be							
		spotted with carbonate blebs over short cm scale intervals							

HOLE No: NR9732

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9732

.

ł

.

.

					ASS	AYS		
FROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
	throughout (there is one 20cm wide quartz vein).							
	The unit is well mineralized with 8-10% py. The py is diss. in							
	the groundmass, and is concentrated in irregular mm to cm scale							
	bands or patches that are sub-parallel to the foliation. The							
	blebs may have concentric overgrowths. Some of the sulphide							
	patches or blebs even look like fragments (transported from							
	another mineralized horizon?).							
	The foliation is approx. 60–65 deg to the CA, and the bedding contacts are mostly parallel to the foliation, but may be							
	irregular and lower angled (erosional surface?). The upper and							
	lower contacts are parallel to the foliation.							
	81.98 - 82.33 Over this interval there are two wide bands of							
	semi-massive to massive py. Sedimentary py?							
00.66 143.9	ASH/GRAPHITIC SEDIMENTS (ASH/GRAPH SEDS)	99.90	100.80	0.90	10	16	38	0.1
	Pale grey to dark black, aphanitic to fine grained groundmass.	100.80	101.54	0.74	40	110	148	0.3
	The top of unit is a pale grey, silica/sericite-rich ash tuff(?).	101.54	102.40	0.86	3	110	60	0.1
	It also looks like a massive andesite-basalt, but it gradually	102.40	103.90	1.50	3	102	112	0.
	grades into a dark black chlorite/graphite-rich sediment. As the	103.90	105.40	1.50	3	154	100	0.
	chlorite lamellae become more prominent, the rock becomes weakly	105.40	106.40	1.00	3	64	82	0.
	banded. There are < 1% small, grey quartz eyes scattered	106.40	107.40	1.00	3	60	98	0.
	throughout. Unless described below, the rock has a massive,	107.40	108.50	1.10	3	84	56	0.
	homogeneous texture. There are minor mm scale quartz/carb	108.50	109.50	1.00	3	110	87	0.
	fractures throughout the unit.	111.00	112.00	1.00	. 3	47	90 70	0.
	Excluding where described below, the rock contains 2-3% py and	114.60	116.10	1.50	3	103	66	0.
	tr-1% po. The sulphides are found as finely diss. grains in the	116.10	117.60	1.50	3	120	66 77	0. 0.
	groundmass, and concentrated in bands that are associated with	123.70	125.20	1.50	د	118		υ.

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9732

.

						ASS	YS		
FROM	то	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		carbonate alteration.	125.20	126.80	1.60	3	175	93	0.1
		The foliation is 60-65 deg to the CA. The lower contact is	129.30	130.30	1.00	3	76	60	0.1
		irregular, but is roughly 65 deg to the CA.	135.90	136.90	1.00	3	158	170	0.1
			136.90	137.90	1.00	3	193	156	0.1
		100.66 to 101.0 Grey/green, fine to medium grained intermediate	137.90	138.90	1.00	3	116	104	0.1
		dyke. Similar to that from 74.5 to 75.3m. The upper and lower	138.90	140.40	1.50	3	120	120	0.1
		contacts are 50-55 deg to the CA.	140.40	142.00	1.60	3	112	92	0.1
		101.0 - 114.18 Moderately to strongly deformed texture. The							
		foliation is irregular and crenulated, and there is moderate							
		guartz/carb fracturing and bleaching. The interval appears to be							
		comprised of mostly sericite-rich beds, and minor chlorite-rich							
		beds that have irregular contacts (looks like soft-sediment							
		deformation). There is also 1cm wide carbonate/py-rich fractures							
		(beds) that are crenulated and sub-parallel to the CA. Most of							
		the po mineralization occurs over this interval.							

From 101.0 to 101.45 the rock is strongly mineralized with up to 30% py. The py is found as irregular bands or stringers (up to 1cm wide) that are parallel to the foliation.

Below 133.57 the rock is primarily a dark black chlorite/graphite sediment. Over this interval, there is also an increase in the py mineralization (3-4%). The py is found as coarse euhedral crystals diss. in the groundmass, and fine grains or blebs concentrated in bands (up to 1-2cm wide). The bands are associated with stronger carbonate alteration, and the py may be oxidizing to limonite (pitting of the core). The carbonate fractures may be weakly to moderately deformed or crenulated.

.

HOLE No: NR9732

DIAMOND DRILL LOG

PROPI	ERTY:	Rainy	River
HOLE	No.:	NR9732	2

,

•

.

•

.

4 · · · •

						ASSI	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	то	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		136.68 to 137.22 Clast-rich Beds. There are several beds (the first bed is over 20cm wide, and others are 2-3 cm) that are comprised of small (up to 1cm), angular, graphitic fragments in a paler black matrix (there is pervasive carbonate alteration in the matrix). The upper contact is 65 deg to the CA, and the contacts along the smaller beds are irregular (erosional?). For 20-30 cm above this interval, the rock is composed of finely laminated carbonate-rich bands.							
43.9	148.08	BANDED ASH TUFF (BND ASH TUFF)	144.00	145.00	1.00	3	114	145	0.1
		Pale grey/green, aphanitic to fine grained groundmass. The	145.00	146.00	1.00	3	125	105	0.1
		groundmass is comprised of mm scale sericite, and minor dark black chlorite lamellae, that produces a moderately developed banding over most of this interval. The rock is moderately to strongly altered, and there is pervasive carbonate and chloritic (soft, pale green patches) alteration. The rock contains 1-2% py that is finely diss. in the groundmass, and along minor fractures. The foliation is approx. 65 deg to the CA. The lower contact is parallel to the foliation.	146.00	147.00	1.00	3	95	352	0.1
		147.1 - 147.77 Irregular and discontinuous quartz veining. There is chloritic alteration along the margins of the veins.							
48.08	164.45	GRAPHITIC SEDIMENTS/TUFFS (GRAPH SEDS/TUFFS)	147.00	148.10	1.10	. 3	120	285	0.1
		Medium grey to dark black, fine grained groundmass. The unit is	148.10	149.10	1.00	3	75	106	0.1
		comprised of interbedded tuff/sediments that are weakly to	151.10	152.10	1.00	3	38	180	0.1

HOLE No: NR9732

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9732

3

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag pp
		strongly graphitic (each bed described below). At the top of the	152.10	152.70	0.60	3	160	148	0.
		unit, the pervasive foliation is comprised of mostly mm scale	152.70	153.78	1.08	3	100	406	0.
		sericite lamellae, but it grades in and out of chlorite/graphite-	153.78	154.45	0.67	30	550	100	0.
		rich lamellae. The rock is moderately to strongly altered	154.45	155.45	1.00	3	134	400	0.
		(sheared), which is recognized by its well developed fabric, and	155.45	156.45	1.00	3	205	322	0.
		flattened phenocrysts/fragments (see below). The foliation may	156.45	157.20	0.75	3	70	920	0
		also be deformed and irregular over cm scale intervals. There are	157.20	158.20	1.00	3	23	475	0
		minor to moderate quartz/carb fractures.	158.20	159.50	1.30	3	18	85	0
	·	Unless described below, the unit contains 5-7% py. The py is	159.50	160.05	0.55	3	92	198	0
		found mostly in irregular, mm scale bands or patches that are	160.05	161.50	1.45	3	21	83	0
		parallel to the foliation. These py-rich bands conform to the	162.30	163.30	1.00	3	10	55	0
		irregularities of the foliation. Less commonly, there are evenly							
		spaced fractures (slip planes?) that are py-filled. The larger							
		bands of py may be oxidizing to limonite.							
		The foliation is 60-65 deg to the CA. The py-filled fractures							
		that cross-cut the foliation are approx. 40 deg to the CA.							
		148.08 to 152.0 Medium grey, fine grained ash tuff. This							
		interval is massive and the groundmass is composed of sericite							
		lamellae mostly. Towards the bottom it gradually grades into a							
		chlorite/graphite-rich groundness. This interval is weakly							
		mineralized.							

152.0 to 155.1 Dark grey to black chlorite/graphite-rich sediments (ash?). There are no clasts or phenocrysts over this interval, and the fine laminations may be moderately deformed. The strong py-mineralization begins within this interval. From 153.9 to 154.2 there is semi-massive to massive py that occurs

HOLE No: NR9732

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9732

.

Page 8

ASSAYS FROM TO LITHOLOGICAL DESCRIPTION FROM TO WIDTH Au ppb Cu ppm Zn ppm Ag ppm in bands/stringers(?) that are sub-parallel to the foliation. The

in bands/stringers(?) that are sub-parallel to the foliation. The py may be altering to limonite.

155.1 to 158.27 XI Tuff (?). There are abundant (5-6%) phenocrysts (clasts?) in a chlorite/graphitic-rich groundmass. The phenocrysts are small (most are < 5mm), white to grey and siliceous. They appear to be either quartz eyes or white feldspar. Most of the phenocrysts are stretched (flattened) parallel to the foliation, and the chloritic lamellae developed around them. The rock has a fine schisty texture. This interval is also well mineralized, and there is minor hematite staining along a fracture.

158.27 to 164.45 Ash/XI tuff. The groundmass is not as dark (graphitic), and it is finer grained. The top of the unit is composed of chlorite/sericite lamellae, and there are small (1-2mm) crystal phenocrysts scattered throughout (XI tuff). Below 161.0m the rock is finer grained, and there are fewer crystal phenocryts (ash tuff). Below 162.28m the rock becomes increasingly graphitic, but still not as pervasive as the next unit.

From 159.35 to 159.46m the rock is well mineralized with a pyrich band that is parallel to the foliation. A py/quartz-filled fracture (~1cm wide) cuts through this band (90 deg to the foliation). There are large pits in the mineralized band. From 159.55 to 159.7m there is a 0.5cm wide quartz/feldspar vein that is crenulated and sub-parallel to the CA (one side of the core).

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9732

.

.

Ŧ

1

.

.

						ASSI	AYS		
ROM	то	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppr
54.45	191.76	GRAPHITIC SEDIMENTS (GRAPH SEDS)	164.30	165.30	1,.00	5	206	1100	0.
		Dark black, aphamitic groundmass. The rock is comprised of finely	165.30	166.40	1.10	25	245	2100	0.
		laminated graphite/chlorite-rich sediments. The rock looks like a	166.40	166.90	0.50	30	245	1300	1.
		slate with a weakly to moderately developed cleavage. The unit is	166.90	167.40	0.50	20	192	850	0.
		relatively massive and homogeneous, although there are beds(?)	167.40	168.40	1.00	15	148	700	0.
		with stronger alteration and py mineralization (see below). The	168.40	169.40	1.00	20	104	455	0.
		foliation may be moderately deformed and crenulated over cm scale	169.40	170.40	1.00	10	76	300	0
		intervals. There is strong carbonate/quartz alteration that occur	170.40	171.25	0.85	3	104	570	0
		together, in round to stretched blebs (up to 2cm) that are	171.25	172.50	1.25	3	46	360	0
		associated with py (see below). The carb/quartz "balls" are	172.50	173.50	1.00	3	30	182	0
		stretched parallel to the foliation, and are either a replacement	173.50	174.50	1.00	3	36	225	0
		feature, or formed as concretions during "diagenesis"	174.50	175.00	0.50	20	77	500	1
		(sedimentary processes). Rarely, these alteration balls may be	175.00	175.50	0.50	20	66	370	0
		joined together to form an irregular vein. There are also mm	175.50	176.50	1.00	10	76	475	0
		scale carbonate fractures that may be deformed and strongly	176.50	177.50	1.00	5	94	600	0
		crenulated.	177.50	178.60	1.10	3	96	435	0
		The unit is well mineralized with up to 10-12% py. Most commonly,	178.60	179.60	1.00	3	122	370	0
		the py occurs is irregular balls or spheres (most are 0.5 to 1cm	179.60	180.10	0.50	5	145	830	0
		wide), and are closely associated with the carb/quartz	180.10	180.60	0.50	3	62	322	0
		alteration. The "py-balls" are distributed over the entire unit,	180.60	181.60	1.00	3	76	385	0
		but there are cm scale beds with little or no py. Many of the py	181.60	183.10	1.50	3	110	750	0
		balls have well developed concentric growth rings. Also, the	183.10	184.70	1.60	3	136	780	0
		balls may be enveloped in carb/quartz alteration that appears to	184.70	185.50	0.80	3	122	470	0
		be a pressure shadow around the py. Sedimentary py? Less	185.50	186.50	1.00	3	148	930	0
		commonly, there is finely diss. py that is strongly distributed	186.50	187.70	1.20	· 3	60	408	0
		over cm scale bands.	187.70	188.75	1.05	3	19	105	0
		The foliation is 60–65 deg to the CA. Bedding contacts may be	188.75	189.75	1.00	3	110	550	0
		parallel to the foliation, but they may also be lower angled	189.75	190.80	1.05	3	90	520	1

HOLE No: NR9732

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9732

1

1

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppi
		(40-50 deg). The upper contact is 40 deg to the CA, and the lower							
		is 50 deg. The lower contact is well defined, but gradational							
		(gradual decrease in the graphitic lamellae into the next unit).							
91.76	218.16	CRYSTAL TUFF (XI TUFF)	190.80	191.80	1.00	3	92	480	0.
		Medium to dark grey, fine to medium grained groundmass. There are	191.80	192.80	1.00	3	9	67	0
		abundant, small crystal phenocrysts (fragments) within this unit.	192.80	193.80	1.00	3	21	87	0
		Grey-blue guartz eyes (most are < 4mm) comprise 3-4% of the rock,	193.80	195.30	1.50	3	19	73	0
		and are scattered throughout. There are also 3-4% off-white	195.30	196.10	0.80	3	20	48	0
		feldspar phenocrysts distributed throughout. Along with these	196.10	196.90	0.80	3	18	60	C
		crystal phenocrysts there are possible lapilli fragments that are	196.90	197.90	1.00	3	16	63	C
		<pre>small (mostly < 5mm), pale brown/yellow clasts. At least 10%</pre>	197.90	198.90	1.00	3	22	52	ເ
		small crystal/fragments in total. The unit is relatively massive,	198.90	199.90	1.00	3	16	35	0
		but is moderately to strongly altered. A pervasive foliation is	199.90	200.90	1.00	3	20	53	C
		mostly sericite-rich, but there are minor chlorite lamellae	200.90	201.90	1.00	3	15	50	0
		(increase towards the bottom). Also, the rock may have a mottled	201.90	202.90	1.00	3	17	60	C
		texture, with a minor chlorite foliation (healed fractures?) that	202.90	204.40	1.50	3	17	56	(
		cross-cuts the primary foliation (2nd generation?). Most of the	204.40	206.00	1.60	3	14	46	(
		phenocrysts/fragments have not been deformed, but some of them	209.00	210.00	1.00	3	16	50	(
		are flattened parallel to the foliation.	212.10	213.10	1.00	3	8	56	0
		The rock contains 2-3% py, and 1-2% po. The sulphides occur	215.10	216.10	1.00	3	17	63	0
		mostly as finely disseminated grains in the groundmass, or in							

mostly as finely disseminated grains in the groundmass, or in minor blebs that are sub-parallel to the foliation. The po is strongest near the upper contact, and diminishes towards the bottom. At the top of the unit there are also coarse, euhedral py crystals diss. in the groundmass.

The primary foliation (S1) is approx. 60-65 deg to the CA. The overprinted, mottled foliation (S22) ranges from 0-30 deg to the

HOLE No: NR9732

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9732

i.

.

					ASSI	AYS		
ROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
	CA. The few bedding contacts in the unit are parallel to the S1							
	foliation. Th e upper and lower contacts are approx. 60 deg to the C A .							
8.16 273.1	INTERBEDDED/LAPILLI TUFFS (INTBDD/LAP TUFFS)	217.70	218.70	1.00	3	16	63	0.1
	Greyish-green, fine grained groundmass. The rock is comprised of	220.20	221.20	1.00	3	NIL	70	0.1
	irregular tuffaceous beds that are interbedded with QID beds	221.20	222.20	1.00	3	24	114	0.2
	(fragments). The irregular tuffs are comprised of two components	224.30	225.80	1.50	3	102	80	0.9
	(different beds?). First, there are ash-rich beds with no quartz	225.80	227.30	1.50	3	54	57	0.1
	eyes, and range in colour from dark grey to pale green (chloritic	229.40	230.40	1.00	3	75	92	0.1
	alteration). Secondly, there are quartz-rich (2-3% small grey	230.40	231.40	1.00	3	86	94	0.
	eyes) beds with a bleached, sericite-rich matrix. In these beds	231.40	232.40	1.00	3	60	66	0.
	there is a strong occurrence of irregular chlorite-rich fractures	232.40	233.40	1.00	3	37	50	0.
	that may be so intense, over cm scale intervals, that they	236.50	237.50	1.00	3	88	110	0.
	resemble brecciation. Overall, the beds may have well defined	238.60	239.50	0.90	3	80	72	0.
	contacts, but more commonly they are strongly deformed and poorly	242.60	243.60	1.00	3	60	75	0.
	defined. The texture appears to be the result of depositional	243.60	244.60	1.00	3	72	60	0.
	deformation, rather than tectonic. Along with these irregular	244.60	245.60	1.00	3	43	42	0.
	beds, there are QID intervals with 6-8% blue-grey, coarse quartz	248.70	249.70	1.00	3	34	56	0.
	eyes (up to 1cm) in a sericite-rich matrix, with chlorite-rich	251.70	252.70	1.00	3	82	102	0.
	bands. These intervals range from several cm's up to 50cm wide.	252.70	253.70	1.00	3	86	82	0.
	They may have well defined contacts that are parallel to the	254.80	255.80	1.00	3	50	67	0.
	preferred orientation of the rock, suggesting that they are beds.	257.80	258.80	1.00	3	58	37	0.
	Most of them, though, are large fragments (even bomb size) with	259.90	260.90	1.00	3	72	55	0.
	irregular contacts. The strongest deformation and chlorite-	267.00	268.50	1.50	. 3	46	65	0.
	fracturing begins below 226.3m. There are minor quartz/carb.	268.50	270.00	1.50	3	40	44	0.
	fractures throughout the unit.	272.10	273.10	1.00	3	70	77	0.

The rock contains 2-3% py and tr-1% po that is found as finely

.

.

HOLE No: NR9732

DIAMOND DRILL LOG

PROPERTY: Rainy River HOLE No.: NR9732

.

Ł

I

259.08

273.10

.

-44.00

-44.00

.

8.00

8.00

HOLE N		R9732										Page 12
									ASS	AYS		
FROM	TO	LITHC	LOGICAL DESCRIP	FION		FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
				and minor fractu								
				he quartz veins,	there is minor							
		po-filled fraction.	110	deformed, is appro	ox 60-70 deg to							
		The foliation, where it is not deformed, is approx. 60-70 deg to the CA. The well defined bedding contacts are parallel to the										
		foliation. The d		o be irregular, a								
		wrt the CA.										
	•	DO	N-HOLE SURVEY D	ATA								
		DEPTH	INCLINATION	BEARING								
		76.20	-47.00	3.00								
		137.16	-46.50	3.00								
		198.12	-45.00	6.00								

,

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9733 Collar Eastings: -3800.00 Collar Northings: -520.00 Collar Elevation: 0.00 Grid: Rich

1

.

ł

Collar Inclination: -50.00 Grid Bearing: 360.00 Final Depth: 202.90 metres CONTRACTOR: Bradley Bros. D.D. Logged by: C.A. WAGG, /04/97 Date: 03/04/97-05/04/97 Down-hole Survey: Sperry-Sun

			ASSAYS								
FROM 0.0	то 46.94	LITHOLOGICAL DESCRIPTION OVERBURDEN (OVD)	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppn		
46.94	64.9	ALTERED MAFIC METAVOLCANICS (Alt. Maf Mvolc))	47.50	49.00	1.50	3	106	96	0.1		
		Intensely altered, deeply weathered? reddish to green-black fine grained rocks, progressing from well banded/bedded? tuffaceous? material at the top of the hole, (possibly with some sedimentary component), to recognizably pillowed material in the lower half of the unit. Strongly chloritized throughout, and very strongly foliated. Trace to 1% py. Foliation ranges from 40-60 deg to the CA. The lower contact of the unit appears gently folded and to have been offset by minor faults. It cuts the CA at ~40 deg to the CA, at a 15-20 deg lower angle than the local foliation.	50.90	52.28	1.38	3	80	155	0.1		
		46.94 to 55.1 Strongly sheared, banded to laminated interval ranging from a muddy greenish brown to a jasper-like reddish colour. Strongly chloritized, and likely substantially altered to clay minerals by near surface weathering processes. The reddish colour is presumably due to fine hematite formed as a result of oxidation. Limonite and ochre coloured staining is common along fractures, and seems to occur in places as a filling (or weathering product) in small irregularly-shaped									

DIAMOND DRILL LOG

PROPI	ERTY :	RAINY	RIVER
HOLE	No.:	NR9733	3

i i

ł

.

.

٠

Page 2

						ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		dilation zones.							
		The section is interpreted as possibly tuffaceous or even a							
		sediment of mafic derivation at its top, transitional into							
		strongly deformed pillows at about 53.5m. A few areas within							
		this transitional section display mm-sized red-brown spots							
		which seem too soft for garnets and may be amygdules.							
		55.1 to 64.9 Dark green pillowed basalt. Most selvages parallel							
		the foliation. A few toward the bottom of the section are							
		reddish in colour and contain a little cherty material.							
64.9	66.25	PORPHYRITIC ASH TUFF (Porph. Ash Tuff)							
		Medium grey felsic ash unit with approx. 20% strongly altered							
		subhedral feldspar phenocrysts measuring up to 6-7mm across.							
		The fsp is yellowish white and sericite altered, while the groundmass is vesicular with innumerable minute gas cavities.							
		The lower contact was broken and ground somewhat by drilling,							
		but appears likely to have been parallel to fol. at about 60 deg							
		to the CA.							
66.25	68.63	PILLOWED BASALT (Pill. Bslt)							
		Resembles the interval from 55.1-64.9m, but with several							
		selvages at very low angles to the CA, and a similarly oriented							
		1-2cm wide partly colloform banded qtz-tour veinlet at 67.8m.							

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9733

•

1

.

.

.

		· · · · · · · · · · · · · · · · · · ·				ASS	YS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppi
3.53	74.5	ASH TUFF (Ash Tuff)	67.55	68.80	1.25	3	62	154	0.1
		Pale to med. grey, fine grained. Uniformly coloured and	68.80	69.93	1.13	3	107	88	0.
		ranging from faintly bedded to strongly banded as a result of	72.95	74.40	1.45	3	125	125	0.
		deformation. Strongly sericite altered, with only trace py							
		found as isolated fine to med sized grains.							
		Foliation is at -45 deg to the CA, and subunit contacts parallel							
		this orientation.							
		a secondary tectonic fabric is developed to varying degrees							
		throughout the unit, becoming most evident within a few							
		strongly tectonized subintervals.							
		68.53 to 69.95 Sheared section with a weak crenulation cleavage							
		developed nearly perpendicular to the first order fabric.							
		The intersection of the two fabrics has resulted in rod-shaped							
		lozenges of bleached rock separated by darker sericitic slips.							
		in places this has produced an appearance resembling fine							
		lapilli tuff.							
		69.95 to 71.35 Fine, massive to faintly bedded pale grey ash,							
		with a few cm-sized vugs and qtz-calc filled vugs near its							
		upper contact and a sharp lower boundary at 45 deg to the CA.							
		71.35 to 71.5 10-15cm thick section of broken and ground							
		chloritic-sericitic rock, with 1-2cm of clayey gouge along its							
		lower contact. Possibly a thin bed of mafic tuff, which sheared							
		preferentially. Possibly chloritic alt. adjacent to the fault.							
		71.5 to 74.5 Strongly deformed section of banded ash, with the							

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9733

.

.

.

•

.

Page 4

						ASS	AYS		
FROM	то	LITHOLOGICAL DESCRIPTION initial fabric oriented at 35-40 deg to the CA, displaying mm- scale offsets along a well developed S2 foliation (crenulation cleavage) at about 55 deg to the CA. Toward the bottom of the unit, the S1 fabric swings to <15 deg to the CA, appearing to parallel the vein contact at 74.6m The S2 fabric is prominent at and below the bottom of this subunit as a phyllitic sheen and faint colour lamination, about perpendiculat to the vein contact.	FROM	то	WIDTH	Au ppb	Ου ρρπ	Zn ppm	Ag ppm
		Includes a broken and ground section over 20 cm above the lower contact where fault-like movement may have ocurred.							
4.5 79.6	79.6	ALTERED MAFIC METAVOLCANICS (Alt. Maf Mvolc)	74.40	75.20	0.80	3	34	122	0.1
		Dark green, intensely chloritized interval, spotted with a few	75.20	75.80	0.60	3	19	52	0.1
		percent to 15-20% tiny dark green relict amphibole?	75.80	77.28	1.48 0.88	3	36 25	116 63	0.1
		The section seems strongly sheared, mostly at very low angle to the CA. Almost "soapstone-like" and greasy in appearance and to the touch, so talc may be present in small amounts. Trace to <1% py +/- po is present as filmy disseminations along the S1 fabric.	77.28 78.16	78.16 78.98	0.88	3	70	212	0.1
		The interval is strongly veined, with 90cm and 50cm core length intersections, as well as stringers or boudinaged vein fragments accounting for 30% of the unit above 78.7m. The vein material consists mostly of well-fractured, fine grained white qtz, with abundant iron carb and limonite along contacts and some fractures. Contorted greyish-green inclusions							

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9733

TO

Page 5

Ag ppm

FROM

÷.

LITHOLOGICAL DESCRIPTION

of wallrocks are strongly ser-chl altered. In vuggy sections, fe-carb, ser-musc, and an unidentified black mineral intergrown with carbonate, sake up a significant portion of the vein. The carbonate where fresh is the deep red-brown ankerite variety, and the black mineral is relatively soft, with a pale greenish white streak, and a dull to slightly resinous lustre.

The upper 90cm intersection cuts the CA at 20-40 deg to the CA, and appears to be a thin gently folded vein parallel to S1. The 50cm intersection at about 78.0m, appears to be parallel to the S2 fabric at 50-55 deg to the CA. Below the second intersection, the unit is strongly banded, possibly from primary flow banding or tuffaceous bedding. This S1 (and S0?) feature is at 45-50 deg below the vein, decreases to <5 deg to the CA within a metre, and increases back to 50-60 deg to the CA at the contact with the underlying dacitic rock. At this point S1 is parallel to the contact, and S2 is only evident as a weak crenulation, absent entirely from the following unit.

79.6 82.55 LAPILLI TUFF AND TUFF-BRECCIA (Lap. Tuff and Tuff-Bx) Fine grained, medium to light grey moderately sericitized tuff with 1-2% mm-sized gtz-eyes. Weakly graded in appearance overall, and containing a few sections with distinct 2-5mm lapilli grading into sections presumably brecciated by volcanic activity, and subsequently sheared duriing metamorphism. Trace to 1% fine py.

то

FROM

ASSAYS WIDTH Auppb Cuppm Zn ppm

DIAMOND DRILL LOG

PROPERTY:	RAINY RIVER
HOLE No.:	NR9733

۲

3

						ASSI	YS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	y d bbw
82.55	85.0	ALTERED MAFIC METAVOLCANICS (Alt. Maf Mvolc) Dark green, fine grained and well foliated chloritic rock of probable flow or tuffaceous origin. Trace py. Foliation and contacts are at ~65 deg to the CA	82.15	82.95	0.80	3	48	44	0.1
		Includes a 1m long section with near 0% core recovery beginning about 82.9m. Some pale grey dacitic? material occurs in this section, as may a frault.							
85.0	156.87	LAPILLI TUFF AND TUFF-BRECCIA (Lap. Tuff and Tuff-Bx)	87.05	88.17	1.12	3	90	88	0.1
		Light to med. grey rock with occasional slightly greenish or	93.20	94.80	1.60	3	21	44	0.1
		yellowish grey sections. The unit varies from a "coarse" Qtz-	100.99	102.40	1.41	3	33	60	0.1
		Eye Dacite with common eyes, and rare to isolated small lapilli	104.60	106.04	1.44	3	63	105	0.1
		of finer grained QID and Ash Tuff, to Lapilli Tuff and Tuff-	108.50	110.03	1.53	3	80	82	0.1
		Breccias composed of sub-cm to cobble sized, often angular	110.03	111.25	1.22	3	88	92	0.1
		fragments of fine Ash Tuff, lesser fine QID, infrequent mafic	118.05	119.61	1.56	3	82	85	0.1
		material, very rare rhyolite or chert, and trace spherical py.	124.90	126.35	1.45	3	64	82	0.1
			133.80	135.30	1.50	3	33	65	0.1
		Most of the unit seems to consist of pyroclastic material,	143.82	145.00	1.18	3	80	82	0.1
		possibly graded from place to place, however, post-depositional	145.00	146.36	1.36	3	75	80	0.1
		(autoclastic?) brecciation is prominent in a few areas, with	146.36	147.83	1.47	3	93	110	0.1
		ser-chl alteration and shearing along fracture surfaces.	147.83	149.52	1.69	3	67	85	0.1
			149.52	151.06	1.54	3	63	95	0.1
		Strongly sericitized and moderately to strongly calc-carb							

altered for the most part. Ser-chl enrichment along shear

.

.

DIAMOND DRILL LOG

						AS	SAYS		
ROM	TO	LITHOLOGICAL DESCRIPTION surfaces and in the groundmass of lapilli rich and brecciated sections gives the unit a streaked to weakly banded appearance. Sulphide content ranges from an average of about 1% diss. py- po, as occasional spotty to lensy aggregate grains to 1cm in diameter, up to 3-4% primarily po over a few 0.5-1m sections of Tuff-Breccia, where 1-2mm aggregates are diss. within the Ash Tuff fragments. Well foliated to apparently sheared and strongly deformed. Foliation is at about 60-65 deg to the CA near the top contact, but becomes more variable (55-70) within the coarser fragmental subunits.	FROM	то	WIDTH		Cuppm	Zn ppm	λg pg
		providing some detail in the description of the unit, and may require revision as drilling proceeds and more information becomes available. 85.0 to 111.2 LAPILLI TUFFS (Lap. Tuffs)							
		This section grades rapidly from a fine ash-like rock with <1% gtz-eyes <2mm in diam., with common sub- cm lapilli, to a coarse QID with up to 15% gtz-eyes to 1cm in diam., containing mixed lapilli to several cm in diameter. No exotic fragments were noted, and most of those which are clearly distinguishable as lapilli are subangular pea to pebble-sized pieces of Ash Tuff.							
		111.2 to 143.75 TUFF BRECCIAS (Tuff BX) A section of coarse blocky, in many places breccia-like dacitic							
								HOLE	No: NR

•

.

.

.

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9733

Page 8

ASSAYS FROM то LITHOLOGICAL DESCRIPTION FROM то WIDTH Auppb Cuppm Zn ppm Ag ppm rock, composed primarily of subangular to angular fragments of Ash Tuff commonly several cm in x-section, and often of bomb size dimensions. Smaller lapilli are common in areas where groundmass QID is relatively abundant, but the larger fragments of ash constitute the bulk of the rock's volume. Includes large block like fragments of Ash Tuff exceeding 15cm in core length, at 114.15m, 121.1m, 121.9m, and 127.9m, rare 2-3cm rhyolitic lapilli at 125.2m and 134.45m, and a cobblesized mafic fragment at 119.0m. A few metre long sections at133-135m, which could perhaps be named beds of Lapilli Tuff display fairly common pebble-sized dark patches rich in ser and chl. These may be strongly altered and deformed mafic to intermediate lapilli. 143.75 to 146.37 LAPILLI TUFF (Lap. Tuff) Here abundant <1cm to 3-4cm lapilli are clearly distinguishable from a med. grained matrix rich in qtz-eyes from 1-2mm in diam. Approximately 55-65% lapilli with only a few exceeding 5cm in x-section. 7-8% py as fine to med. grained disseminations in the matrix. Most notable are occasional oval to perfectly circular x-sections through small "balls" of py, essentially identical to those previously observed within graphitic argillite beds, but much less common here. The pyrite concretions? are 5mm to 7-8mm in diameter, and usually have small qtz-calc pressure shadows. Here they are considered a species or small component of the lapilli present. A few of HOLE No: NR9733

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9733

Page 9

ASSAYS FROM то LITHOLOGICAL DESCRIPTION FROM то WIDTH Auppb Cuppm Znppm Ag ppm the balls show very faint concentric banding (despite recrystallization), lending credence to the theory that they are of biogenic rather than detrital clastic origin. Sedimentary beds containing up to 20-25% similar roundish balls of py have been encountered by drilling in many nearby areas, most recently a few hundred metres to the southwest, in rocks interpreted to be up-section from those of this hole. 146.37 to 154.2 TUFF BRECCIA (Tuff BX) A section containing mostly large broken blocks of fine grained Ash Tuff, and a few cobble to bomb sized fragments of "coarse" QID with up to 30-40% gtz-eyes from 1-2mm up to 7-8mm in diam. 2-3% py, mostly as spherical lapilli in the upper parts of the unit. Moderately to strongly sericitized with strong calc-carb alteration of the feldspathic constituents in the QID bombs and the coarser parts of the matrix. Foliation is at 55-65 deg to the CA on average. 154.2 to 156.87 LAPILLI TUFF (Lap. Tuff) Similar to the section from 143.75-146.37m, but with less py at about 2%. Here Ash Tuff and coarse QID lapilli are about equally abundant. 156.87 157.64 ASH TUFF (Ash Tuff) Fine, light grey, massive bed of Ash Tuff. Weakly sericitized and mod. to strongly calc altered. Approx. 1% fine diss. py. Weakly to moderately foliated parallel to its contacts, which are HOLE No: NR9733

DIAMOND DRILL LOG

PROPERTY:	RAINY	RIVER
HOLE No.:	NR9733	3

- 1

ð

.

.

Page 10

					ASS	AYS		
rom to	LITHOLOGICAL DESCRIPTION both at 45 deg to the CA, with the lower one slightly offset by nor movement.	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppna	Ng ppi
7.64 186.7	LAPILLI TUFF AND TUFF-BRECCIA (Lap. Tuff and Tuff-Bx)	160.00	161.53	1.53	3	72	77	0.
	Similar to the unit from 85-156.87m, but somewhat greenish	161.53	162.75	1.22	3	82	78	0.
	grey in its lower parts, and generally progressing steadily	162.75	164.20	1.45	3	75	82	0.
	toward a rather massive ash-like rock. Lapilli are clearly	164.20	165.70	1.50	3	70	73	0.
•	evident many places, but seem much less angular than those	172.95	174.40	1.45	3	77	82	0
	uphole. Tuff Breccia seems to consist of blocks which behaved in a quite ductile fashion during deformation, and to contain very little matrix. About 3% diss. py, with spherical lapilli only a minor component.	184.70	186.01	1.31	3	73	86	0.
	5cm to 15cm long sections of coarse QID become fairly common below about 174m. A few resemble rounded bombs, but others are likely relatively unaltered Qtz and Qtz-Fsp Porphyry dykes. No signs of obvious chilling are present, but their occurrence as planar, foliation parallel structures, and as irregular, possibly folded ones, may indicate that their introduction was during a period of shearing. As well a boudinaged 5mm thick bed? of Chert occurs at 185.45m, but does not extend the entire way across the core.							
6.7 202.9	INTERMED. ASH + LAPILLI TUFFS (Intermed. Ash+Lap. Tuffs) Composed primarily of fine to med. grained greenish grey ash,	190.60 192.00	192.00 193.40	1.40 1.40 •	3	92 75	90 87	0

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9733

ł.

۶

202.90

٠

-45.00

.

								ASSA	AYS		
Rom	TO		DLOGICAL DESCRIP		FROM	TO	WIDTH	Au ppb	••	Zn ppm	Ag ppr
				ions weakly to mod. brecciated	197.88	199.56	1.68	3	80	82	0.1
				Possibly a series of subaqueous	199.56	200.97	1.41	3	88	75	0.
		slump or flow br	-								
				f chert, similar to the one noted							
				t 190.2m. It is oriented parallel							
			-	ns are out of line in a step-like ng was not precisely parallel to							
		the pre-existing	•	ig was not precisely parallel to							
			-	on, with 3-4% diss. fine to med.							
		grained py on av		ony with 5 40 diss. Time to mea.							
rom to			Foliation is about 60 deg to the CA at the top of the unit, and								
			-	out 40 deg to the CA at the							
		end of the hole	at 202.9m.								
		DOW	N-HOLE SURVEY D	ATA							
		DOW DEPTH	WN-HOLE SURVEY D	ATA BEARING							
		DEPTH 60.96	INCLINATION	BEARING 3.00							
		DEPTH	INCLINATION	BEARING							

6.00

HOLE No: NR9733

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9734 Collar Eastings: -3900.00Collar Northings: -550.00 Collar Elevation: 0.00 Grid: Rich

í

Collar Inclination: -55.00 Grid Bearing: 360.00 Final Depth: 236.50 metres CONTRACTOR: Bradley Bros. D.D. Logged by: C.A. WAGG, /04/97 Date: 05/04/97-/04/97 Down-hole Survey: Sperry-Sun

ASSAYS FROM то WIDTH Au ppb Cu ppm 2n ppm Ag ppm FROM TO LITHOLOGICAL DESCRIPTION 31.2 OVERBURDEN (Ovb) 0.0 31.2 39.7 BEDDED ASH TUFF (Bdd Ash Tuff) Medium grey, fine grained. Finely laminated for the most part on a mm to sub-cm scale, with pale grey to whitish laminae composed of gtz and fsp alt. products, contrasting well against brownish to greenish grey sericitic to chloritic foliation planes along which shearing has likely occurred. Strongly sericitized with weak to mod. calc-carb alt., and in some areas mm-sized spots and small booklets of med. green mica (biot?), likely of metamorphic origin. Trace to 1% very fine py. Foliation is 45-50 deg to the CA, and the unit overall appears weakly to moderately sheared. BEDDED MAFIC TUFF? (Bdd Maf Tuff?) 39.7 39.97 Dark grey to blackish, well bedded section of fine grained foliated. Whitish qtz-carb laminae are present here, strongly but are greatly subordinate to the dark coloured material. It seems here that much of the banding is likely due to deformation and a subsequent gneissic segregation of qtz-fsp vs. micaceous minerals. HOLE No: NR9734

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9734

						ASS	YS		
FROM	TO	LITHOLOGICAL DESCRIPTION	FROM	TÒ	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		Strongly chl-ser altered, with <1% fine diss. py.							
		Both contacts are quite sharp, and parallel the foliation at							
		about 55 deg to the CA.							
39.97	73.1	INTERMED. TO FELSIC ASH TUFF (Bdd Int. to Fels. Ash Tuff)	39.15	40.57	1.42	3	70	70	0.1
		Pale grey to grey green fine to medium grained Ash Tuffs, which	42.13	43.46	1.33	3	106	60	0.1
		appear moderately to strongly sheared throughout. Probably well	43.46	45.01	1.55	3	74	52	0.1
		bedded, with micaceous laminae resulting from shears/slips along	45.01	46.58	1.57	3	20	52	0.1
		bedding planes. The section appears to consist of interbedded,	62.00	63.18	1.18	3	63	78	0.1
		strongly altered beds of similar texture and slightly differing	63.18	64.46	1.28	3	82	50	0.1
		chemical compostion. Most are greyish and dacitic at the top of	64.46	65.14	0.68	3	40	42	0.1
		the unit, and progress toward more intermediate, possibly	65.14	66.42	1.28	3	155	65	0.1
		andesitic? compositions at depth.	67.37	68.80	1.43	3	90	50	0.1
		Qtz eyes are occasionally present in trace quantities as mm-sized	68.80	70.19	1.39	3	82	47	0.1
		or smaller crystals, and fuzzy outlines of strongly alt. fsp							

crystals can commonly be observed. As with the unit encountered at the top of the hole, a common and well developed feature of the section is the presence of up to 30% fine green micas as spots

Moderately to strongly bleached and ser alt., with strong carb alteration of the feldspathic constituents within the more felsic portions. 1-2% fine diss. py is present, with slightly more in areas of strong bleaching, fracturing, and qtz stringer

1-2mm in diameter, most abundant within the coarser more

Foliation averages about 55-60 deg to the CA, but is quite variable over short intervals in places, presumably as a result

greenish coloured portions of the unit.

development.

of shearing.

1

HOLE No: NR9734

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9734

ASSAYS WIDTH Auppb Cuppm FROM то Zn ppm Ag ppm FROM TO LITHOLOGICAL DESCRIPTION In many places, mm to cm wide gtz stringers can be seen as boudinaged vein fragments and tightly folded stringers oriented parallel to the foliation. They appear to have been rotated into parallelism with the fol. as a result of strong shearing. 39.97 to 47.2 Strongly banded, in places brecciated section of pale dacitic Ash Tuff with intense ser-chl development along fractures spaced 1-2cm apart. Interpreted as a tectonic breccia rather than a coarse lapilli unit. Resembles long portions of holes recently drilled to the southwest of the 97-34 collar, particularly holes 29 through 31. Includes two small qtz veins 10-20 cm in core length cutting the foliation at a mod. oblique angle. Both are a little vuggy and contain tr py. The section also includes some broken core and at least three <5cm thick zones of fault gouge, seemingly nearly perpendicular to the foliation. 48.9 to 49.25 Short section of rather massive fine grey-green Ash Tuff, unsheared and relatively "fresh" in appearance. Trace to 1% fine py. Upper contact is coincident with a qtz vein at about 20 deg to the CA. The lower contact is parallel to fol. at 55-60 deg to the CA, and somewhat gradational with a coarser version of the same rock downhole. Below this point in the hole the rock typically displays a greenish to slightly yellowish tint, interpreted as a certain amount of epidote-sausserite alteration accompanying the HOLE No: NR9734

DIAMOND DRILL LOG

.

1

.

						ASSI			
FROM	TO	LITHOLOGICAL DESCRIPTION carbonate alt. of fep. 62.12 to 65.15 Tuff Breccia? or perhaps broken and strongly sheared, with about 3-5% narrow folded qtz stringers and later fracture fillings. 2-3% fine diss py. Veins typically contain little other than minor chlorite. 66.2 - A 5cm thick qtz vein at ~50 deg to the CA contains a single large clot about 1.25cm in diameter of cpy and py along its lower contact. The veinlet parallels foliation.	FROM	то	WIDTH	Au ppb		Zn ppm	Ag pp
73.1	79.5	MAFIC-INTERMEDIATE METAVOLCANICS (Alt. Maf-Int. Mvolc) Strongly altered, weakly to moderately sheared and fractured, and interpreted as initially a massive basaltic to andesitic flow. Fine to med. grained, light grey-green, and containing from 10% to 40-45% fine med. green amph set in a greyish to beige groundmass of fsp alt. products. Also contains tr-1% small qtz eyes, or qtz-carb filled vesicles. Appears strongly bleached, and to have undergone moderate sauss and ser alteration. 1-2% fine diss. py. Moderately well foliated at 50-60 deg to the CA.	73.15 74.61 75.95	74.61 75.95 77.38	1.46 1.34 1.43	3 3 3	166 82 54	82 80 68	0. 0. 0.
		73.4 - A 30-40cm core length section is broken to brecciated, and contains 10-15% vein gtz and 3-5% fine to med. grained py, concentrated within the altered wallrocks. Strongly bleached, carb and ep-sauss altered wallrock, with 30-40% chl clusters, may be a strongly altered ded. grained mafic rock, although its							No: NR

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER

HOLE No.: NR9734 Page 5 ASSAYS FROM TO LITHOLOGICAL DESCRIPTION FROM ΤO WIDTH Au ppb Cu ppm Zn ppm Ag ppm present appearance suggests intermediate composition. 75.85 - Similar section to that at 73.4m, but here with more qtz and tr-1% py occurring as films in places along late fractures. The interval from 73.4-76m is well sheared and altered overall, with perhaps 1-2% gtz veinlets and 2% diss py on average. 79.5 87.4 PILLOWED AMYGDALOIDAL METAVOLCANICS (Alt Pill Amyg Mvolc) Fine to medium grained yellowish-green to greenish-grey, spotted with up to 30-40% fine amph. Small amygdules, from 1-2mm up to 3-4mm in rare cases, are filled with qtz-calc, and seem commonest close to pillow margins. Selvages to 1.5cm wide are commonly seen in various orientations, but are only slightly darker in colour in colour than the pillows themselves. May include massive flow rocks at the top and bottom contacts. 87.4 95.85 ASH TUFF (Ash Tuff) 91.13 1.47 3 77 64 0.1 92.60 Fine grained pale grey bed(s) of massive dacitic ash. Spotted with up to 30-35% mm-sized fe-carb crystals (after fsp?) above 90.7m. Strongly fractured to brecciated within its middle part, and vuggy to vesicular below about 93.2m, with innumerable tiny gas cavities. 95.85 105.78 PILLOWED AMYGDALOIDAL METAVOLCANICS (Alt Pill Amyg Mvolc) 1.39 3 84 72 0.1 95.20 96.59

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9734

.

1 N

.

					ASS	AYS			
FROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag	, ppm
	Similar to the section from 79.5-87.4m, but her even more strongly to a light brownish grey or beige-grey colour. As well, only a few distinct selvages are present within this section, near the top where amygdules are particularly abundant and a few exceed 5mm in x-section. The lower part of the unit is rather massive and closely resembles the unit from 73.1-79.5m. 1-2% fine py in places.	96.59	97.99	1.40	3	64	88		0.1
	Moderately sheared at a low angle to the CA, with mod-strong carb alt as the vein occupying the lower contact is approached. From 105.2-105.78m, carb veinlets to 2cm wide run along the CA terminating at a qtz rich section with abundant fine tour, which parallels the contact with the underlying felsic ash at 55 deg to the CA.								
05.78 112.35	BEDDED ASH TUFF (Bdd Ash Tuff) Fine, generally well-bedded pale grey ash, strongly sheared in appearance for the most part, with an S2 foliation evident but not prominent over 30-50cm at 111.4m, within a section where bedding has been folded (rotated by shearing?) to parallel the CA. The secondary fabric is oriented 40-45 deg to the CA, and the same orientation is evident at 110.4m, there oblique to bedding. Stringer-like zones of dilation zone fillings or carb replacement have produced a cm-scale zebra style lamination within the most deformed part of the unit from 107.6-110m. Strongly ser and carb altered, with 1-3% very fine py.	104.85 107.48	105.88 109.10	1.03 1.62	3 3	48 80	60 68		0.1 0.1

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9734

÷.,

Page 7

					ASS	AYS		
FROM TO	LITHOLOGICAL DESCRIPTION	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	yd bbi
12.35 120.	PILLOWED AMYGDALOIDAL METAVOLCANICS (Pill Amyg Mvolc)	116.17	117.60	1.43	3	72	84	0.
	Similar to the unit from 95.85-105.78m. Strongly deformed,	117.60	118.85	1.25	3	100	90	0.
	with several amygdule-rich sections and only a few distinct selvages. Pillow breccia? below about 118.25m is strongly ser-chl altered and contains at least 15-25% vein-like qtz-carb material with about 1% py. Both contacts parallel the primary foliation orientation commonest through most of the hole at 50-55 deg to the CA.	118.85	119.90	1.05	3	56	68	0.
20.0 135.	27 ASH TUFF (Ash Tuff)	122.76	124.17	1.41	3	96	92	٥.
	Reasonably massive and fine grained, light grey Ash Tuff.	128.69	130.00	1.31	3	77	48	0.
	Greenish enough in a few places to be suggestive of either	130.00	131.40	1.40	3	60	32	0.
	intermediate composition or weak pervasive chl alteration. Very faintly bedded for the most part, with a section from about 128.8–129.95m, exhibiting carb-rich banding similar to that noted in the preceding tuff unit.	133.33	134.78	1.45	3	78	48	0.

deformed qtz stringers paralleling the CA provide evidence of shearing parallel to the fol., and of tensile forces operating across the shear. A similar zone of abundant, narrow, carb-rich veinlets parallels foliation (shearing?) from about 133.7-134.6m, with banding in the lowermost part contorted and at low angle to the CA--the same orientation as the lower contact of the unit.

130.7 - 131.05 A white gtz vein containing a few percent

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9734

.

.

¥

.

HOLE N		9734							Page
						 ASS	AYS		
FROM	TO	LITHOLOGICAL DESCRIPTION dark brown-black tour and tr py at the same or a slightly lower angle than th e foliation.	FROM	TO	WIDTH	Au ppb	Cu ppm	2n ppm	Ag ppm
		The lower contact, at 135.27m, is an irregular, possibly folded feature averaging about 15 deg to the CA. The S1 foliation is a well developed schistosity which generally parallels any bedding-like banding or lamination within individual units. Although it is not particularly prominent over the core length in which the contact occurs, the S1 fabric is conspicuous anywhere above 135m. Its orientation is variable from 45-65 to the CA, and the rock fractures preferentially along this plane, over the contact interval. An S2 crenulation cleavage is quite prominent in the upper ash unit over the 30cm where the contact crosses the core. It is at a moderate angle to the S1 fabric, and nearly square to the contact, at about 40 deg to the CA.							
135.27	141.75	AMYGDALOIDAL MAFIC METAVOLCANICS (Amyg Maf Mvolc) Similar to the pillowed amygdaloidal sections noted uphole, but here with a strongly deformed flow top breccia, and no distinct selvages above about 138m. Bleached to the grey side of olive- grey, except for 5mm greenish rinds at selvages. Moderately to strongly ser and carb altered, likely with some fine epidote. 1-2% fine py. Vein qtz and minor carb constitute about 20% of the unit above 136m, but contain little sulphide. Below 140.9m, amyg are smaller and fewer, and colour approaches the pure grey of the underlying unit. The basal part of the unit	134.78	136.19	1.41	3	76	94	0.1

HOLE No: NR9734

DIAMOND DRILL LOG

	5.: NR9	INY RIVER 9734							Page
						ASS			
FROM	то	LITHOLOGICAL DESCRIPTION seems gradational into the underlying massive intermediate? unit. Foliation is at 55deg to the CA in the vicinity of the lower contact.	FROM	то	WIDTH	Au ppb	Cuppm	2n ppm	yd bba
41.75	145.53	INTERMEDIATE DACITE? FLOW (Intermed. Dacite? flow) Massive, medium grey, very well foliated section of moderately sericitized fine grained rock. Probably dacitic in composition as its paler colour tends to suggest. Trace-1% fine py. Foliation is 45-55 deg to the CA.							
45.53	147.88	AMYG. MAFIC FLOW/TUFF BRECCIA? (Amyg Maf Flow/Tuff Bx?) Medium green, fine grained, and with 5-10% amygdules to 2-3mm. Similar to the uphole mafic units overall, but without selvages, and grading into a tuff breccia? below 147m, with up to 40-50% pale grey, very hard fine QID? lapilli (which bear little resemblance to any nearby unit) set in a green, chloritic, amyg groundmass. The lower contact is parallel to the fol. at 50 deg to the CA.	145.55	146.83	1.28	3	14	90	0,
47.88	149.4	INTERMEDIATE DACITE? FLOW (Intermed. Dacite? flow) Similar to the interval from 141.75-145.53m, with the lower contact with the amygdaloidal flows sharp, but drag folded to parallel the foliation. It appears to average about 45 deg to the CA, perpendicular to foliation.	146.83	148.38	1.55	3	77	122	0.

.

ł

1

.

.

HOLE No: NR9734

.

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9734

1 A 1

.

•

						ASS	AYS		
FROM 149.4	TO 158.75	LITHOLOGICAL DESCRIPTION AMYGDALOIDAL MAFIC METAVOLCANICS (Amyg Maf Mvolc) Similar to the preceding mafic units, without lapilli, but strongly deformed and apparently containing abundant flow breccia. Qtz veining is devoloped within a well fractured section for 30 cm above the lower contact, which is parallel to fol. at -60 deg to the CA.	FROM 148.38	TO 149.93	WIDTH 1.55	Auppb 3	Cu ppm 12	2n ppm 70	Ag ppm 0.1
158.75	160.61	GRADED MAFIC TUFF+TUFF-BRECCIA (Gdd Maf Tuff/Tuff-Bx) Fairly similar to the lower part of the interval from 145.53- 147.88m, with tightly packed pale lapilli in a chloritic Gmass. Here fragments are strongly carb altered, (and may have initially been mafic) fine uphole, and the unit is graded to a fine bedded mafic ash just below the top contact . Foliation and the lower contact are at 57-58 deg to the CA.	158.52	160.00	1.48	3	136	118	0.1
160.61	161.6	ASH TUFF (Ash Tuff, Bdd) Light grey fine grained, intermediate to felsic ash. Well banded, particularly at the top of the unit, which is interpreted as bedding. Mod. to strongly ser altered, with tr-1% fine py Lower contact is marked by broken to faulted rock over about 25cm, and an abrupt textural change.							
161.6	165.2	PORPHYRITIC INTERMEDFELSIC INTRUSIVE (Porph Int-Fels Intrus.) Fine grained greenish grey almost unfoliated rock, with rare small to large (1cm) qtz phenocrysts. A few seem augen shaped,						·	

HOLE No: NR9734

Page 10

DIAMOND DRILL LOG

PROPERTY:	RAINY RIVER
HOLE No.:	NR9734

.

.

•

i c

2

Page 11

						ASSA	YS		
FROM TO	LITHOLOGICAL DESCRIPTION but most are subhedral blobs. Colour index might be 15-20 at most, from very fine amph and/or chl. The primary constituent seems to be grey white plag? fsp. Tr py. The lower contact is about 55 deg to the CA subparallel to the fol. in the underlying mafic unit.]	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
55.2 178.95	PILLOWED MAFIC METAVOLCANICS (Pill Maf mvolc)	16	6.40	、 167.85	1.45	3	35	70	0.1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Medium green moderately altered flow rocks. Basaltic in		7.85	169.32	1.47	3	60	70	0.1
	appearance and pillowed for the most part. Fracture-controlled		9.32	170.95	1.63	3	58	88	0.1
	gtz veins to 15-20 cm in core length are not uncommon,		0.95	172.50	1.55	3	96	120	0.
	occurring in various orientations and comprising about 5% of		2.50	173.73	1.23	3	45	66	0.
	the unit. 1-2% diss. py. Moderately chl and carb altered.	17	3.73	175.00	1.27	3	90	68	0.
78.95 227.75	QID w LAPILLI AND LAPILLI TUFF (QID w Lap+Lap Tuff)	17	8.16	179.30	1.14	3	88	142	0.
	Fine grained medium grey QID with 5% <2mm gtz eyes, grading		36.70	187.94	1.24	3	106	84	0.
	rapidly to a Lapilli Tuff exhibiting weak grading, and abundant	18	37.94	189.50	1.56	3	84	100	0.
	subrounded fragments ranging from 5mm in diam to 1-1.5cm in	18	39.50	190.80	1.30	3	25	40	0.
	x-section. Most lapilli are QID similar to the groundmass, but	19	0.80	192.16	1.36	3	92	250	0.
	rare Ash Tuff and a few undeformed rhyolitic? lapilli near	19	92.16	193.27	1.11	3	18	40	0.
	189.2m, indicate exotic rock fragments are present.	19	95.95	197.35	1.40	3	26	46	0.
	Moderately sericitized with weak carb alteration and 2-3% fine	20	3.70	205.12	1.42	3	19	52	0.
	diss. py on average.	21	1.26	212.56	1.30	3	28	60	0.
	213.95	215.10	1.15	3	47				
	Qtz eye diameter, the grain size of the groundmass, and the size		5.10	216.65	1.55	3	12	66	0.
	of lapilli all appear to increase downhole within individual tuff units. Carb rich banding (or strongly altered fragments) is	21	6.65	218.20	1.55	3	31	86	0.

HOLE No: NR9734

DIAMOND DRILL LOG

PROPERTY: RAINY RIVER HOLE No.: NR9734

ASSAYS FROM Auppb Cuppm Ag ppm TO WIDTH Zn ppm FROM TO LITHOLOGICAL DESCRIPTION prominent below about 190m within the uppermost subunit, and is folded to parallel the CA from 191-191.5m. From 191m to the top of the next subunit, 3-5% py is present as coarse aggregates (small fragments?) to about 1cm in diameter. Base of the top subunit is defined by an abrupt change from QID with 7-8mm gtz-eyes, to fine ash tuff-like material. The contact is at 50-60 deg to the CA, the same orientation as for most of the hole above this point. 192.9 to 227.75 One or more individual "flows" of coarse Lapilli Tuff, in places verging on agglomerate. The section consists of Bedded Tuff rich in small QID Lapilli, with rare 3-4cm Ash Tuff fragments to about 197m. The next section is notable for large QID lapilli and mixed fragments, with angular mafic fragments from 1-5cm in x-section the commonest variety of exotic at about 10-15%. There is moderate to strong ser alt. throughout and 2-3% diss, py is present as rare aggregates (lapilli?). From 212-226m, there is evidence of shear-like slip structures at very low angles and nearly parallel to the CA, and the foliation decreases progressively from about 60 deg to 40 deg to the CA over this interval. In contrast to the remainder of the hole, here it would appear that the hole could be running downdip (along a fold limb for example), or nearly parallel to a nearby zone of shearing. Throughout this lower part of the unit, the only exotic variety of lapilli present is a beige to pale brown intensely ser altered

HOLE No: NR9734

Page 12

DIAMOND DRILL LOG

.

1

ł

137.16

•

-52.00

.

3.00

HOLE NO	5.: NR	9734							Page 1
						ASSI	AYS		
FROM	то	LITHOLOGICAL DESCRIPTION Ash Tuff, commonly <2cm in x-section.	FROM	TO	WIDTH	Au ppb	Cu ppm	Zn ppm	Ag ppm
		Lower contact of the unit is parallel to foliarion at about 50-55 deg to the CA.							
227.75	236.5	ASH TUFF (Ash Tuff)	226.38	227.84	1.46	3	64	98	0.1
		Fine grained, medium grey for the most part, and dacitic in	229.32	230.75	1.43	3	82	330	0.1
		appearance. Strongly sericitized with up to 3-4% diss. py	233.62	235.10	1.48	3	46	82	0.1
		present locally within a strongly bleached 60cm section at	235.10	236.50	1.40	3	54	90	0.1
		about 230m, and an average py content of around 2%. Foliation is at ~40 deg to the CA for much of the unit, with							
		a well developed S2 crenulartion cleavage present in most areas.							
		The secondary fabric is oblique to S1, and oriented at <20deg to							
		the CA, coming close to parallel to the CA at the end of the hole.							
		A few short sections with a greenish tint may indicate the							
		presence of thin mafic-intermediate lithologies, with the subunit							
		as a whole, homogenized by shearing and alteration.							
		DOWN-HOLE SURVEY DATA							
		DEPTH INCLINATION BEARING							
		45.72 -53.50 1.00							

HOLE No: NR9734

DIAMOND DRILL LOG

.

.

ł

.

4

.

yd bbw
M A

HOLE No: NR9734

1.1

ADDENDUM Nuinsco Resources Limited

Required Additional Technical Support Data Submission: 2.18270

Rainy River Project Richardson Township

(January 26 - April 7 1997 Diamond Drilling Report)

Rainy River District Kenora Mining Division N.T.S. 52 C/13 and 52D/16

RECEIVED JUN 26 1998 GEOSCIE

07 581 . %

(1) Core Drilling

Size of Core: BQ

Storage:

Nuinsco Field Office, Core Racks Lot S1/2 #6, Concession 3 Richardson Township (807) 487-1140 mailing address: Off Lake Road, RR2, Emo POW 1E0

(2) Drill Plan

Although not requested I have attached two (2) copies of a drill plan at 1:5,000 scale with north arrow and bar scale which had been previously omitted from maps.

(3) <u>Metallurgical Study</u> - Lakefield Research.

Three samples were prepared by Nuinsco personnel; one sample weighing 22.5 kg was gathered from low grade mineralization, a second sample weighing 25.5 kg was selected from higher grade sections of core and the third sample weighing 8.3 kg was taken randomly from cores to be used for grinding tests. All samples were selected from the same rock type. This unit is a light grey, dacite crystal tuff containing blue-grey quartz crystals. The groundmass is aphanitic and grey. Fine disseminated sulphide composed of 1-5% pyrite occur as small aggregates or as minor fracture fillings.

Sample 1: (lower grade mineralization) 22.5 kg

Hole 95-26; L 9+50 W, L 5+45 S, 50 degree dip, 233.78 m deep. Samples: 3912, 3913, 3914, 3915, 3921, 3922, 3945, 3946.

Hole 95-28; L 9+00 W, L 5+75 S, 50 degree dip, 255.11 m deep. Samples: 179142, 179143, 179205, 179214, 179215, 179216 179217, 179239

Hole 95-30; L 7+00 W, L 6+75 S, 50 degree dip, 279.6 m deep. Samples: 179480, 179495, 179504, 179521, 179524, 179540, 179541, 179542, 179543, 179550. NR 96-45; 5+50 W, 5+50 S, 50 degree dip, 303.80 m deep. Samples: 74964, 74965, 74966, 74967, 74968

NR 96-48; L 7+50 W, L 5+50 S, 50 degree dip, 272.80 m deep Samples: 84581, 84582, 84583, 84584, 84585, 84586

NR 96-49; L 9+00 W, L 4+70 S, 50 degree dip, 237.74 m deep Samples: 82170, 82186, 82187, 82188, 82189, 82190, 82192,82193

Sample 3; (grinding) 8.3 kg

NR95-29; L 4+75 W, 7+25 S, 55 degree dip, 263.6 m deep <u>Samples:</u>179334, 179335, 179337, 179351, 179356, 179361, 179363, 179366, 179369, 179371, 179376, 179381, 179385, 179389, 179394, 179401, 179407.

NR95-30; L 7+00 W, 6+75 S, 50 degree dip, 279.6 m deep <u>Samples:</u> 179494, 179499, 179500, 179505, 179508, 179515, 179520, 179530, 179538, 179544.

NR96-45; L5+50 W, 5+50 S, 50 degree dip, 303.8 m deep <u>Samples:</u> 71003, 71013, 71016, 71081, 71084, 71112, 71113, 71114, 74915, 74916, 74925, 74929, 74932, 74937, 94942, 97949, 74961, 74967, 74981, 74983, 74985, 74988, 74996, 74999.

NR96-49; L9+00 W, 4+70 S, 50 degree dip, 237.74 m deep <u>Samples:</u> 82126, 82127, 82128, 82136, 82137,82138, 82153, 82154, 82155, 82163, 82164, 82165, 82167, 82174, 82188, 82189, 82190, 82197, 82198, 82199.

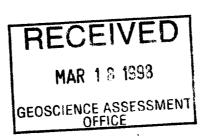
Sample 3 (gr		8.3kg	
Hole	Completed	Sample	Rock Type
NR95-29	07/06/95		Sericite/Chlorite-rich Dacite Porphyry, py, sph 5-6%, QCV
			Sericite/Chlorite-rich Dacite Porphyry, py, sph 5-6%, QCV
1		179337	Sericite/Chlorite-rich Dacite Porphyry, py, sph 5-6%, QCV
			Sericite/Chlorite-rich Dacite Porphyry, py, sph 5-6%, QCV
2			Sericite/Chlorite-rich Dacite Porphyry, py, sph 5-6%, QCV
			Sericite/Chlorite-rich Dacite Porphyry, py, sph 5-6%, QCV
			Sericite/Chlorite-rich Dacite Porphyry, py, sph 5-6%, QCV
			Sericite/Chlorite-rich Dacite Porphyry, py, sph 5-6%, QCV
			Sericite/Chlorite-rich Dacite Porphyry, py, sph 5-6%, QCV
			Sericite/Chlorite-rich Dacite Porphyry, py, sph 5-6%, QCV
			Sericite/Chlorite-rich Dacite Porphyry, py, sph 5-6%, QCV
			Sericite-poor Dacite Porphyry, py, po, sph, cpy 4%
			Sericite-poor Dacite Porphyry, py, po, sph, cpy 4%
			Sericite-poor Dacite Porphyry, py, po, sph, cpy 4%
			Sericite-poor Dacite Porphyry, py, po, sph, cpy 4%
			Sericite-poor Dacite Porphyry, py, po, sph, cpy 4%
			Sericite-poor Dacite Porphyry, py, po, sph, cpy 4%
NR95-30	13/06/95		Dacite Porphyry, py, sph, cpy 5%
			Dacite Porphyry, py, sph, cpy 5%
			Dacite Porphyry, py, sph, cpy 5%
		179505	Dacite Porphyry, py, sph, cpy 5%
		179508	Dacite Porphyry, py, sph, cpy 5%
		179515	Fragmental Dacite, py, cpy, sph, gal VG, QV
			Fragmental Dacite, py, cpy, sph, gal VG, QV
			Fragmental Dacite, py, cpy, sph, gal VG, QV
			Dacite Porphyry, py, sph 3-4%
			Dacite Porphyry, py, sph 3-4%
NR96-45	22/07/96		QID, py, sph, gal 5%
			QID, py, sph, gal 5%
			QID, py, sph, gal 5%
			QID, py, sph, gal 5%
			QID, py, sph, gal 5%
			Fragmental QID, 4% sulphides
			Fragmental QID, 4% sulphides
			Fragmental QID, 4% sulphides
			Sericite-rich QID, 3% sulphides
			Sericite-rich QID, 3% sulphides
			Sericite-rich QID, 3% sulphides
			Sericite-rich QID, 3% sulphides
			Sericite-rich QID, 3% sulphides
			Sericite-rich QID, 3% sulphides
			Sericite-rich QID, 3% sulphides
			Sericite-rich QID, 3% sulphides
			Sericite-rich QID, 3% sulphides
			QID, 5% sulphides
		ſ	QID, 5% sulphides
		74983	QID, 5% sulphides
		74985	QID, 5% sulphides
		,	QID, 5% sulphides
			QID, 5% sulphides

NR96-49	23/08/96	82126 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82127 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82128 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82136 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82137 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82138 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82153 Sericite-rich Ash Tuff/QID, py, sph 5-6%, QCV
		82154 Sericite-rich Ash Tuff/QID, py, sph 5-6%, QCV
,		82155 Sericite-rich Ash Tuff/QID, py, sph 5-6%, QCV
		82163 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82164 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82165 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82167 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82174 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82188 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82189 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82190 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82197 Sericite-rich Ash Tuff/QID, py, sph 5-6%
		82198 Sericite-rich Ash Tuff/QID, py, sph 5-6%
·		82199 Sericite-rich Ash Tuff/QID, py, sph 5-6%

(4) PEM Survey

We did not receive any technical data from Crone Geophysics nor a plan showing the location of the holes tested or loop layout. It was a hastily designed survey. As we cannot provide this support data feel free to cancel the credits.

Yours truly,


le

Paul Pilman Geological Consultant Nuinso Resources Limited June 23, 1998

Nuinsco Resources Rainy River Project

VOLUME II EXPLORATION DATA

Rainy River Project Richardson Township

(January 26 - April 7 1997 Diamond Drilling)

Rainy River District Kenora Mining Division N.T.S. 52 C/13 and 52D/16

APPENDIX IV

EXPLORATION DATA

ASSAY CERTIFICATES

Hole Number	Certificate Numbers
NR97-04	A9712667, A9713218
NR97-05	A9712894, A9713218
NR97-06	A9712894, A9713205, A9713632, A9713633, A9715172
NR97-14	A9716151, A9716152
NR97-16	A9716831
NR97-17	A9716832, A9716833, A9717393
NR97-18	A9716833, A9717393, A9717394, A9717395
NR97-19	A9717395, A9717575, A9717577
NR97-24	A9719162
NR97-25	A9719161
NR97-26	A9719162
NR97-27	A9719161, A9720417, A9720880
NR97-28	A9720418
NR97-29	A9720417
NR97-30	A9720417, A9720418, A9720747, A9720880
NR97-31	A9720747, A9720748, A9720880
NR97-32	A9720748, A9720881
NR97-33	A9720881
NR97-34	A9720881, A9721464
NRX97-02	A9713632
NRX97-04	A9713633, A9713635

.

Certificate Number	Hole Numbers
A9712667	NR97-04
A9712894	NR97-05, NR97-06
A9713205	NR97-06
A9713218	NR97-04, NR97-05
A9713632	NRX97-02, NR97-06
A9713633	NRX97-04, NR97-06
A9713635	NRX97-04
A9715172	NR97-06
A9716151	NR97-14
A9716152	NR97-14
A9716831	NR97-16
A9716832	NR97-17
A9716833	NR97-17, NR97-18
A9717393	NR97-17, NR97-18
A9717394	NR97-18
A9717395	NR97-18, NR97-19
A9717575	NR97-19
A9717577	NR97-19
A9719161	NR97-25, NR97-27
A9719162	NR97-24, NR97-26
A9720417	NR97-27, NR97-29, NR97-30
A9720418	NR97-28, NR97-30
A9720747	NR97-30, NR97-31
A9720748	NR97-31, NR97-32
A9720880	NR97-27, NR97-30, NR97-31
A9720881	NR97-32, NR97-33, NR97-34
A9721464	NR97-34

С

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9712667

CERTIFICATE

A9712667

(LVY) - NUINSCO RESOURCES LIMITED

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 7-FEB-97.

SAMPLE PREPARATION					
	NUMBER SAMPLES	DESCRIPTION			
205	61	Geochem ring to approx 150 mesh			
226	14	0-3 Kg crush and split			
294	47	4-7 Kg crush and split			
3202	61	Rock - save entire reject			
238	61	Witric-aqua-regia digestion			
	1				
	1 1				

	ANALYTICAL PROCEDURES												
CODE	IEX NUMBER E SAMPLES		DES	SCRIPTION	METHOD	DETECTION LIMIT	upper Limit						
983 2 5 6	61 61 61 61	Cu ppm	Fuse 30 g HNO3-aqua HNO3-aqua HNO3-aqua	sample regia digest regia digest regia digest	FA-AAS AAS AAS AAS-BKGD CORR	5 1 1 0.2	10000 10000 10000 100.0						
÷													

Ò

Ę

¢ Ī

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

Ontario, Canada

5175 Timberlea Blvd.. Mississauga L4W 2\$3 PHONE: 905-624-2806 FAX: 905-624-6163 J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page Jer :1 Total Pages :2 Certificate Date: 07-FEB-97 Invoice No. : 19712667 P.O. Number Account :LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS A9712667 PREP Au ppb Cu Zn Ag ppm SAMPLE CODE ppm FA+AA ppm Aqua R 0.4 1.2 1.0 1.4 1.8 1.2 0.8 1.4 1.2 1.8 1.6 1.8 1.8 2.4 9.6 11.4 6.2 3.4 5.0 2.6 2.8 1.2 1.8 1.0 1.4 0.2 1.8 0.4 0.8 0.6 0.6 0.4 0.6 0.4 0.4 0.2 < 0.2 0.2 0.2 0.4

CERTIFICIENCE flexande

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd. Ontario, Canada

Mississauga L4W 2\$3 PHONE: 905-624-2806 FAX: 905-624-6163 J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Total Pages :2 Certificate Date: 07-FEB-97 Invoice No. : 19712667 P.O. Number Account ELVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS A9712667 PREP Cu Ag ppm Au ppb Zn SAMPLE CODE FA+AA ppm Aqua R ppm 205 226 0.6 205 226 0.4 205 226 < 0.2 0.4 0.4 1.0 0.6 0.6 0.4 0.6 δ 1.0 Ъ Б 0.8 0.8 ¢ 1.2 0.8 0.6 0.4 0.4 0.2 0.2 1.0

CERTIFACtiqua flexandre

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

.

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9712894

CERTIFICATE

A9712894

(LVY) - NUINSCO RESOURCES LIMITED

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 13-FEB-97.

SAMPLE PREPARATION											
Chemex Code	NUMBER SAMPLES	DESCRIPTION									
205	34	Geochem ring to approx 150 mesh									
226	17	0-3 Kg crush and split									
294	17	4-7 Kg crush and split									
3202	34	Rock - save entire reject									
238	34	Nitric-aqua-regia digestion									

ANALYTICAL PROCEDURES NUMBER DETECTION UPPER CHEMEX CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT 5 10000 983 34 Au ppb: Fuse 30 g sample FA-AAS 10000 Cu ppm: HNO3-aqua regia digest AAS 1 2 34 10000 2n ppm: HN03-aqua regia digest 5 34 AAS 1 100.0 34 Ag ppm: HN03-aqua regia digest AAS-BKGD CORR 0.2 6 ۲

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd.,

Mississauga L4W 2S3 Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page I Jer :1 Total Pages :1 Certificate Date: 13-FEB-97 Invoice No. : 19712894 P.O. Number : Account LVY

Project :

Г

					(CERTIFICATE OF ANALYSIS	A9712894
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R		
18112 18113 18114 18115 18116	205 294 205 220 205 220	310 520 525	34 43 36 133 22	151 400 930 610 210	1.4 1.4 1.8 30.0 4.2		
18117 18118 291020 291021 291022	205 294 205 220 205 294	190 5 60 50	84 65 11 13 15	430 590 49 55 45	15.4 11.4 1.0 1.0 1.0		
291023 291024 291025 291026 291027	205 294 205 294 205 294	25 20 40	19 10 11 10 11	48 75 57 48 120	0.8 0.6 1.0 2.2 1.4		
291028 291029 291030 291031 291032	205 29 205 22 205 22	40 5 20 5 15	8 9 12 13 13	90 66 230 60 49	1.0 1.2 1.0 1.0 1.0		
291033 291034 291035 291036 291037	205 29 205 22 205 22	30 5 15 5 15	11 13 13 16 14	63 98 86 124 94	0.8 1.0 1.2 1.0 1.2		
291038 291039 291040 291041 291042	205 29 205 22 205 22	400 6 340 6 410	17 28 21 25 41	96 880 156 178 520	2.0 3.2 1.4 1.2 2.2		
291043 291044 291045 291049	205 29 205 22	4 445 6 245	24 84 17 51	1200 2500 650 1500	5.2 14.2 4.6 3.0		
	18112 18113 18114 18115 18116 18117 18118 291020 291021 291023 291024 291025 291026 291027 291028 291030 291031 291032 291033 291034 291035 291036 291037 291038 291041 291042 291043 291043 291045	SAMPLE CODE 18112 205 226 18113 205 226 18114 205 226 18115 205 226 18116 205 226 18117 205 296 18118 205 296 291020 205 296 291021 205 296 291023 205 296 291024 205 296 291025 205 296 291026 205 296 291027 205 296 291028 205 296 291030 205 296 291031 205 226 291032 205 296 291033 205 296 291034 205 296 291035 205 296 291036 205 296 291037 205 296 291038 <td>SAMPLE CODE FA+AA 18112 205 226 200 18113 205 294 310 18114 205 226 520 18115 205 226 155 18117 205 294 340 18117 205 294 340 18118 205 294 340 291020 205 294 340 291021 205 294 300 291022 205 294 20 291023 205 294 20 291024 205 294 20 291025 205 294 20 291026 205 294 40 291027 205 294 40 291028 205 294 30 291030 205 294 20 291031 205 294 30 291032 205 <t< td=""><td>SAMPLE CODE FA+AA ppm 18112 205 226 200 34 18113 205 294 310 43 18114 205 226 520 36 18115 205 226 265 133 18116 205 294 340 84 18118 205 294 190 65 291020 205 294 190 65 291021 205 294 20 15 291022 205 294 20 15 291023 205 294 20 15 291024 205 294 20 11 291025 205 294 40 10 291026 205 294 40 10 291027 205 294 40 10 291028 205 294 40 10 291031 205</td><td>SAMPLE CODE FA+AA ppm ppm 18112 205 226 200 34 151 18113 205 294 310 43 400 18114 205 226 520 36 930 18115 205 226 252 210 18116 205 226 155 22 210 18117 205 294 340 84 430 18118 205 294 190 65 590 291020 205 294 50 13 55 291021 205 294 20 15 45 291023 205 294 20 11 57 291024 205 294 20 11 57 291025 205 294 40 10 48 291026 205 294 40 10 48 291027 <</td><td>SAMPLE PREP CODE Au ppb PA+AA Cu ppm Zn ppm Ag ppm Aqua R 18112 205 226 200 34 151 1.4 18113 205 226 200 34 43 400 1.4 18114 205 226 226 220 36 930 1.8 18115 205 226 265 133 610 30.0 18116 205 294 190 65 590 11.4 291020 205 226 60 11 49 1.0 291021 205 294 50 13 55 1.0 291022 205 294 20 15 45 1.0 291023 205 294 20 15 45 1.0 291024 205 294 20 11 57 1.0 291025 205 294 40 10 48 2.2</td><td>SAMPLE CODE FA+ÃA ppm Agua R 18112 205 226 200 34 151 1.4 18113 205 294 310 43 400 1.4 18114 205 294 310 43 400 1.4 18116 205 226 2520 36 930 1.8 18116 205 294 340 84 430 15.4 18116 205 294 190 65 590 1.4 291020 205 294 10 19 48 0.8 291021 205 294 20 15 45 1.0 291023 205 294 20 15 45 1.0 291024 205 294 20 11 57 1.6 291025 205 294 40 10 48 2.2 291027 205 294</td></t<></td>	SAMPLE CODE FA+AA 18112 205 226 200 18113 205 294 310 18114 205 226 520 18115 205 226 155 18117 205 294 340 18117 205 294 340 18118 205 294 340 291020 205 294 340 291021 205 294 300 291022 205 294 20 291023 205 294 20 291024 205 294 20 291025 205 294 20 291026 205 294 40 291027 205 294 40 291028 205 294 30 291030 205 294 20 291031 205 294 30 291032 205 <t< td=""><td>SAMPLE CODE FA+AA ppm 18112 205 226 200 34 18113 205 294 310 43 18114 205 226 520 36 18115 205 226 265 133 18116 205 294 340 84 18118 205 294 190 65 291020 205 294 190 65 291021 205 294 20 15 291022 205 294 20 15 291023 205 294 20 15 291024 205 294 20 11 291025 205 294 40 10 291026 205 294 40 10 291027 205 294 40 10 291028 205 294 40 10 291031 205</td><td>SAMPLE CODE FA+AA ppm ppm 18112 205 226 200 34 151 18113 205 294 310 43 400 18114 205 226 520 36 930 18115 205 226 252 210 18116 205 226 155 22 210 18117 205 294 340 84 430 18118 205 294 190 65 590 291020 205 294 50 13 55 291021 205 294 20 15 45 291023 205 294 20 11 57 291024 205 294 20 11 57 291025 205 294 40 10 48 291026 205 294 40 10 48 291027 <</td><td>SAMPLE PREP CODE Au ppb PA+AA Cu ppm Zn ppm Ag ppm Aqua R 18112 205 226 200 34 151 1.4 18113 205 226 200 34 43 400 1.4 18114 205 226 226 220 36 930 1.8 18115 205 226 265 133 610 30.0 18116 205 294 190 65 590 11.4 291020 205 226 60 11 49 1.0 291021 205 294 50 13 55 1.0 291022 205 294 20 15 45 1.0 291023 205 294 20 15 45 1.0 291024 205 294 20 11 57 1.0 291025 205 294 40 10 48 2.2</td><td>SAMPLE CODE FA+ÃA ppm Agua R 18112 205 226 200 34 151 1.4 18113 205 294 310 43 400 1.4 18114 205 294 310 43 400 1.4 18116 205 226 2520 36 930 1.8 18116 205 294 340 84 430 15.4 18116 205 294 190 65 590 1.4 291020 205 294 10 19 48 0.8 291021 205 294 20 15 45 1.0 291023 205 294 20 15 45 1.0 291024 205 294 20 11 57 1.6 291025 205 294 40 10 48 2.2 291027 205 294</td></t<>	SAMPLE CODE FA+AA ppm 18112 205 226 200 34 18113 205 294 310 43 18114 205 226 520 36 18115 205 226 265 133 18116 205 294 340 84 18118 205 294 190 65 291020 205 294 190 65 291021 205 294 20 15 291022 205 294 20 15 291023 205 294 20 15 291024 205 294 20 11 291025 205 294 40 10 291026 205 294 40 10 291027 205 294 40 10 291028 205 294 40 10 291031 205	SAMPLE CODE FA+AA ppm ppm 18112 205 226 200 34 151 18113 205 294 310 43 400 18114 205 226 520 36 930 18115 205 226 252 210 18116 205 226 155 22 210 18117 205 294 340 84 430 18118 205 294 190 65 590 291020 205 294 50 13 55 291021 205 294 20 15 45 291023 205 294 20 11 57 291024 205 294 20 11 57 291025 205 294 40 10 48 291026 205 294 40 10 48 291027 <	SAMPLE PREP CODE Au ppb PA+AA Cu ppm Zn ppm Ag ppm Aqua R 18112 205 226 200 34 151 1.4 18113 205 226 200 34 43 400 1.4 18114 205 226 226 220 36 930 1.8 18115 205 226 265 133 610 30.0 18116 205 294 190 65 590 11.4 291020 205 226 60 11 49 1.0 291021 205 294 50 13 55 1.0 291022 205 294 20 15 45 1.0 291023 205 294 20 15 45 1.0 291024 205 294 20 11 57 1.0 291025 205 294 40 10 48 2.2	SAMPLE CODE FA+ÃA ppm Agua R 18112 205 226 200 34 151 1.4 18113 205 294 310 43 400 1.4 18114 205 294 310 43 400 1.4 18116 205 226 2520 36 930 1.8 18116 205 294 340 84 430 15.4 18116 205 294 190 65 590 1.4 291020 205 294 10 19 48 0.8 291021 205 294 20 15 45 1.0 291023 205 294 20 15 45 1.0 291024 205 294 20 11 57 1.6 291025 205 294 40 10 48 2.2 291027 205 294

CERTIFY obligue oflexander

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 : NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

A9713205

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE **ANALYTICAL PROCEDURES** A9713205 (LVY) - NUINSCO RESOURCES LIMITED DETECTION UPPER CHEMEX NUMBER LIMIT CODE SAMPLES DESCRIPTION METHOD LIMIT Project: P.O. # : 983 80 Au ppb: Fuse 30 g sample FA-AAS 5 10000 Samples submitted to our lab in Vancouver, BC. 2 80 Cu ppm: HNO3-aqua regia digest AAS 1 10000 This report was printed on 14-FEB-97. 5 80 Zn ppm: HNO3-aqua regia digest AAS 1 10000 6 80 Ag ppm: HNO3-aqua regia digest AAS-BKGD CORE 0.2 100.0 316 1 Zn %: Conc. Nitric-HCL dig'n AAS 0.01 100.0 SAMPLE PREPARATION CHEMEX NUMBER SAMPLES DESCRIPTION 205 80 Geochem ring to approx 150 mesh 226 0-3 Kg crush and split 50 294 30 4-7 Kg crush and split 3202 80 Rock - save entire reject 238 Nitric-aqua-regia digestion 80 :

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page I Jer : 1 Total Pages : 2 Certificate Date: 14-FEB-97 Invoice No. : 19713205 P.O. Number : LVY Account

.

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

Project :

Comments: ATTN: PAUL JONES FAX; JIM WILSON

		<u> </u>				CERTIFIC	ATE OF ANALYSIS	A971320	5
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R	Zn %			
291018	205 226	10	4	36	< 0.2			_	
291019	205 226	55	13	. 40	< 0.2				
291046	205 294	2060	70	1800	1.0				l
291047	205 226		22	93	< 0.2				
291048	205 226	740	63	1050	1.0				
291050	205 226	775	30	205	1.0				
291051	205 226	815	27	410	1.4				l
291052	205 294		31	410	0.6				
291053	205 226		28	160	0.4				
291054	205 226	435	25	185	0.4				
291055	205 226		25	200	0.6				
291056	205 226		27	127	< 0.2				
291057	205 294		34	104	< 0.2				
291058	205 226		22	235	< 0.2				
291059	205 226	70	24	130	< 0.2				
291060	205 226		8	26	0.8				
291061	205 226		54	960	1.2				
291064	205 226		51	490	1.2			1	
291065	205 226		35	510	1.4				
291066	205 294	410	38	850	0.8				. 1
291067	205 294		40	750	1.4				
291068	205 294		30	230	0.4				
291069	205 294		41	370	< 0.2				
291070 291071	205 294		72	470	< 0.2 0.6				
291071	203 220	905	10	420	0.0				
291072	205 226		56	450	0.4				
291073	205 226		27	640	0.6				
291074	205 226		24	740	0.2				
291075	205 226		156	2700	4.2				
291076	205 226	510	40	790	0.6				
291077	205 226		146	1450	1.6			1	
291078	205 294		28	580	0.8				
291079	205 226		36	155	< 0.2				
291080	205 226		42	520	0.4				
291081	205 226	815	14	720	< 0.2				
291082	205 226		10	680	< 0.2				
291083	205 226		16	1150	< 0.2			I	
291084	205 226		32	1100	0.8				
291085 291086	205 294		45	310	< 0.2				
	205 294	165	42	490	2.2			1	1

Г

CERTIFACIONAL Alexande

ð

Ļ

Ŕ

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

Page 1 Jer :2 Total Pages :2 Certificate Date: 14-FEB-97 Invoice No. : 19713205 P.O. Number : LVY Account

5175 Timberlea Blvd. Ontario, Canada

Mississauga L4W 2Š3 PHONE: 905-624-2806 FAX: 905-624-6163

M9B 6K2 Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL

ETOBICOKE, ON

CERTIFICATE OF ANALYSIS A9713205 PREP Au ppb Cu Zn Zn Ag ppm SAMPLE CODE FA+AA Aqua R ppm ppm < 0.2 _ _ _ _ _ _ < 0.2 ----0.4 ----< 0.2 _ _ _ _ _ 1.4 ____ 1.4 _ _ _ _ _ 0.6 ----0.8 ----2.4 ----2.4 ---->10000 17.0 1.06 . 0.8 ----0.8 ----1.6 -----0.8 _ _ _ _ _ 1.0 ----5.4 ----1.0 _ _ _ _ _ 1.8 ----4.4 ----1.2 ----3.2 _ _ _ _ _ 1.0 -----0.6 ----2.0 ----4.2 ----3.0 ----3.0 ____ 3.6 ____ 2.4 ----4.4 ____ 2.0 ----2.6 ____ 1.2 -----< 0.2 ----1.4 ____ < 0.2 ----< 0.2 _ _ _ _ _ < 0.2 ----0.4 _ _ _ _ _

CERUTALISTALLA flexandre

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

.

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9713218

CERTIFICATEA9713218(LVY) - NUINSCO RESOURCES LIMITEDProject:
P.O. #:Samples submitted to our lab in Vancouver, BC.
This report was printed on 14-FEB-97.SAMPLE PREPARATION

SAMPLE PREPARATION												
a S DESCRIPTION	NUMBER SAMPLES	CHEMEX CODE										
Geochem ring to approx 150 me	108	205										
0-3 Kg crush and split	57	226										
4-7 Kg crush and split	51	294										
Rock - save entire reject	108	3202										
Nitric-aqua-regia digestion	108	238										

ANALYTICAL PROCEDURES

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	Upper Limit
983 997 2 5 316 6	108 1 108 108 1 108	Au ppb: Fuse 30 g sample Au g/t: 1 assay ton, grav. Cu ppm: HNO3-aqua regia digest Zn ppm: HNO3-aqua regia digest Zn %: Conc. Nitric-HCL dig'n Ag ppm: HNO3-aqua regia digest	FÀ-AAS FA-GRAVIMETRIC AAS AAS AAS AAS-BKGD CORR	5 0.07 1 1 0.01 0.2	10000 1000.0 10000 10000 100.0 100.0
÷					
				-	

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 >: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2 Page 1 Jer : 1 Total Pages : 3 Certificate Date: 14-FEB-97 Invoice No. : 19713218 P.O. Number : Account : LVY

Project :

							CERTIFIC	ATE OF ANALYS	IS A9713218	······
	SAMPLE	PREP CODE	Au ppb FA+AA	Au FA g/t	Cu ppm	Zn ppm	Zn %	Ag ppm Aqua R		
T	18003	205 294	3600		90	500		1.4		
- 1	18007	205 294	575		53	740		2.2		
	18008	205 294	415		18	330		2.8		1
	18009	205 294	920		146	1950		5.0		1
	18014	205 294	400		67	1400		1.2		
	18015	205 294	430		17	420		2.0		
- 1	18016	205 294	680		38	490		2.4		
1	18020	205 294	550		15	240		1.6	1 1	
	18022 18027	205 294 205 294	585 295		54	600		2.4		
	18027	205 294	295		142	1150		8.6		
	18028	205 294	160		47	430		2.6		
8	18029	205 294	200	1	42	320		2.2		
· •	18033	205 294	255		37	490		4.2		
되	18034	205 294	260		19	300		4.0		
NR91	18035	205 294	225		35	126		3.6		
Z	18042	205 226			21	80		0.6		
	18043	205 294			21	65		0.4		
1	18044	205 294			22	67		0.4	1 1	
	18046	205 294			17	53		0.6		
	18047	205 226	125		24	132		1.8		
	18048	205 226			10	63		1.6		_
1	18049	205 226			4	54		1.2		
	18050	205 226			6	125		1.2		
L	18051	205 226			11	69]	0_8		
Γ	18052	205 294	20		20	97		0.6		
	18053	205 226	40		19	98		0.6		
- 1	18054	205 294	15		18	92		1.0		
	18055	205 294	30		20	138		0.4		
	18056	205 294			28	129		0.6		
	18057	205 226	425		18	129		1.2		
20-LPAN	18058	205 226			13	78		0.4		
14	18059	205 294	70		14	68		0.4		
σl	18060	205 294			22	68		0.6		
αÌ	18061	205 294			13	66		0.6		
2	18062	205 294	120		9	68		1.0		
	18063	205 226	50		35	63		0.6		
	18064	205 226	365		15	63		1.0		
	18065	205 226			15	64		0.6		
	18066	205 226			14	62		0.6		
L	18067	205 226	50		24	91		0.6		
	L				<u> </u>	<u> </u>	<u> </u>			

CERTIENDELIAUR flexause

ų.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page 1 Jer :2 Total Pages :3 Certificate Date: 14-FEB-97 : 19713218 Invoice No. P.O. Number : LVY Account

٦

Project :

Г

SAMPLE PREP CODE Au PA PA+AA Qu q/t Qu ppm Zn ppm Ag ppm Au a R Ag ppm Au a R 18069 18069 18069 180671 205 205 205 205 205 205 205 205 205 205		.					CERTIFIC	ATE OF ANALYS	SIS A97	713218	
18009 205 226 160 23 86 1.2 18070 205 226 370 27 180 2.2 18071 205 226 370 27 180 2.2 18073 205 226 370 25 570 3.4 18074 205 226 70 25 570 3.4 18075 205 226 75 16 670 2.4 18076 205 226 75 13 175 1.4 18079 205 226 75 21 175 1.4 1.6 18079 205 226 75 27 119 1.2 1.6 18081 205 294 650 26 107 1.2 1.6 1.0 1.6	SAMPLE										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		205 226	50		20	78		0.6			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18072	205 226	390		40	2500		3.4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					_						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	18077	205 226	75		16	162		2.2			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										T	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	18082	205 294	610		15	101		1.0	ł	1	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					26	107		1.2	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$]]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						_					[
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18087	205 226	1340		86	430		2.4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				F			1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										}	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1						1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18092	205 226	355		48	80		1.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				29.90	1400	>10000	1.75	40.0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
18097 205 226 160 134 2000 5.8 18098 205 226 450 66 440 4.2 18099 205 294 350 38 135 1.4 18100 205 294 3600 35 1750 0.8 18101 205 294 3800 35 640 2.0 18102 205 226 150 47 530 1.2 18103 205 226 150 30 117 1.8 18103 205 226 150 27 880 1.4 18105 205 226 350 27 880 1.4 18106 205 226 420 37 390 1.2											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1			1				
18099 205 294 350 38 135 1.4 18100 205 294 600 35 1750 0.8 18101 205 294 3800 35 640 2.0 18102 205 226 150 47 530 1.2 18103 205 226 150 47 530 1.2 18103 205 226 150 30 117 1.2 18104 205 226 245 27 880 1.4 18105 205 226 350 13 93 1.4 18106 205 226 420 37 390 1.2	18097	205 226	160		134	2000		5.8		1	1
18100 205 294 600 35 1750 0.8 18101 205 294 3800 35 640 2.0 18102 205 226 150 47 530 1.2 18103 205 226 150 47 530 1.2 18103 205 226 150 47 530 1.2 18104 205 226 245 27 880 1.4 18105 205 226 350 13 93 1.4 18106 205 226 420 37 390 1.2					66						1
18101 205 294 3800 35 640 2.0 18102 205 226 150 47 530 1.2 18103 205 226 150 47 530 1.2 18103 205 226 150 30 117 1.8 18104 205 226 245 27 880 1.4 18105 205 226 350 13 93 1.4 18106 205 226 420 37 390 1.2											1
18102 205 226 150 47 530 1.2 18103 205 226 150 30 117 1.8 18104 205 226 245 27 880 1.4 18105 205 226 350 13 93 1.4 18106 205 226 420 37 390 1.2				1			1	1 1			1
18103 205 226 150 30 117 1.8 18104 205 226 245 27 880 1.4 18105 205 226 350 13 93 1.4 18106 205 226 420 37 390 1.2				1			1			1	1
18104 205 226 245 27 880 1.4 18105 205 226 350 13 93 1.4 18106 205 226 420 37 390 1.2	10102	205 226	150		47	530		1.2		1	
18105 205 226 350 13 93 1.4 18106 205 226 420 37 390 1.2										1 .	
18106 205 226 420 37 390 1.2										1	1
				1							}
				1							
	18101	205 226	640		36	143		1.4	l	ļ	

CERTIFY obligues flexander

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd.,

Mississauga L4W 2S3 Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M98 6K2

Pagel Jer :3 Total Pages :3 Certificate Date: 14-FEB-97 Invoice No. : 19713218 P.O. Number : Account LVY

Project :

						CERTIFICATE OF ANALYSIS			A9713218		
SAMPLE	PREP CODE	Au ppb FA+AA	Au FA g/t	Cu ppm	2n ppm	2n %	Ag ppm Aqua R				
18108	205 226	570		44	570		1.0				
18109	205 226	240		36	500		0.6				
18110	205 226	250		30	650		1.2		1		
18111	205 226	450		18	165		1.6				
18119	205 226	145		47	390		10.0				
18120	205 294	230		70	420		12.2				
18121	205 226	310		37	250		7.4	ļ			
18122	205 294	560		76	750		11.2				
18123	205 226	750		42	230		6.2				
18124	205 226	1380		88	650		7.2				
18125	205 226	565		152	1750		8.8				
18126	205 226	325		86	1050		5.0		1		
18127	205 226	700		70	850		3.4				
18128	205 226	380		55	440		5.0	1			
18129	205 226	360		117	600		7.4				
18130	205 226	570		275	2400		15.4				
18131	205 294	220		86	680		4.8				
18132	205 294	190		101	530		5.4				
18133	205 294	105		61	800		3.0				
18134	205 294	125		60	570		3.0				
18135	205 294	200		125	570		5.2				
18136	205 226	125		25	165		2.6			1	
18137	205 226	70		22	210		3.2				
18138	205 294	170		36	330		6.6				
18139	205 294	140		30	540		4.0				
18140	205 294	50		20	380		1.0				
18141	205 294	155		18	340		5.2				
18174	205 226	95		14	160		< 0.2				
				}							
						1					
]	
			ļ	l		1		1			
		1		1		1		1			
		1	{			1					
			1	1							
								l l			
Į		1		ł	·	l		l			
L				L	_	<u> </u>				En 1	0

CERTIFICOSIALLA Alexandre

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

.

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9713632

CERTIFICATE A9713632 (LVY) - NUINSCO RESOURCES LIMITED Cł C Project: P.O. # : Samples submitted to our lab in Vancouver, BC. This report was printed on 19-FEB-97. **SAMPLE PREPARATION** CHEMEX NUMBER CODE SAMPLES DESCRIPTION 205 56 Geochem ring to approx 150 mesh 0-3 Kg crush and split 226 30 294 26 4-7 Kg crush and split 3202 56 Rock - save entire reject 56 Nitric-aqua-regia digestion 238

ANALYTICAL PROCEDURES

Hemex Code	NUMBER SAMPLES			DES	SCRIPTION	METHOD	DETECTION LIMIT	upper Limit
983 2 5 6	56 56 56 56	Cu Zn	ppm: ppm:	HNO3-aqua	sample regia digest regia digest regia digest	FA-AAS AAS AAS AAS-BKGD CO PP	5 1 1 0.2	10000 10000 10000 100.0
						. •		
2								

Analytical Chemists * Geochemists * Registered Assayers Mississauga L4W 2S3

5175 Timberlea Blvd., Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 : NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page I Jer: 1 Total Pages :2 Certificate Date: 19-FEB-97 Invoice No. : 19713632 P.O. Number : LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

-						CERTIFICATE OF ANALYSIS			A9713632		
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn pp m	Ag ppm Aqua R						
NRX-97-04-205.3	205 226		49	400	< 0.2						
18142 18143	205 294	50	93	40	0.3						
18143	205 294 205 294	15 10	7 20	34 31	< 0.2 < 0.2				1		
18145	205 294	10	30	30	< 0.2						
18146	205 226		16	27	< 0.2						, <u></u>
18147 18148	205 226 205 226		8 12	27	< 0.2 < 0.2						
18149	205 226		47	20	< 0.2						
18150	205 294	< 5	60	30	< 0.2						
18151	205 226		94	33	0.4	+					
18152 18153	205 226		34 105	37	< 0.2 < 0.2				1		
18154	205 226		105	126 110	< 0.2			1)		
18155	205 226		155	110	< 0.2						
18156	205 294		106	145	< 0.2		-				
18157 18158	205 226		100	168 52	< 0.2				1		
18159	205 226		11 8	60	<pre> < 0.2 < 0.2</pre>						
18160	205 226		21	56	< 0.2						
18161	205 226		31	51	< 0.2			++			
18162	205 294		9	50	< 0.2						
18163 18164	205 294 205 294		8	52	< 0.2 < 0.2						
18165	205 226		34	40	< 0.2						
18166	205 226		16	40	< 0.2			_			
18167 18168	205 226		16	42	< 0.2				1		1
18168	205 294 205 226		40 21	22 20	< 0.2				:		
18170	205 226		14	16	< 0.2						
18171	205 294		15	11	< 0.2		-	1			t
18172 18173	205 226		51	28	< 0.2						
291001	205 226		13	20 21	< 0.2						ł
291002	205 294		36	21	< 0.2						
291003	205 294		53	22	< 0.2						
291004 291005	205 294		74	22	< 0.2						
291005	205 226		26	21 21	0.4		1				1
291007	205 226		16	20	< 0.2						
			<u> </u>		1	_					
								CERTIFICATION:	125	utB	whe

Analytical Chemists * Geochemists * Registered Assayers

5175 Ontai PHO

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2 tai

CERTIFICATION:

Project :

								CERTIFICATE OF ANALYSIS				13632	
	SAMPLE	PR CO		Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
20-11	291008 291009 291010 291011 291012	205 205 205	294 226 226 226 226 226	80 115 85 750 755	29 52 41 75 50	22 21 21 45 34	0.2 0.3 0.2 1.7 1.9						
NRK97-	291013 291014 291015 291016 291017	205 205 205	226 226 294 294 294 294	225 380 70 200 105	83 68 59 26 41	22 25 23 22 23	0.7 1.3 0.4 0.5 0.3						
90-LPA	291109 291110 291111 291116 291117	205 205 205	294 226 294 294 294	485 805 520 525 220	18 135 31 109 52	142 510 150 360 202	5.8 7.0 3.0 5.3 1.8						
ב	291118	205	294	390	40	126	3.3						

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

. ນ :	NUINSCO	RESOURCES	LIMITED
. J .	NUNACO	RESUURCES	LIMITC

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9713633

٦

CERTIFICATE A9713633 (LVY) - NUINSCO RESOURCES LIMITED Project: P.O. # : Samples submitted to our lab in Vancouver, BC. This report was printed on 20-FEB-97. **SAMPLE PREPARATION** CHEMEX CODE NUMBER DESCRIPTION 205 68 Geochem ring to approx 150 mesh 226 28 0-3 Kg crush and split 294 40 4-7 Kg crush and split 3202 68 Rock - save entire reject 238 68 Nitric-aqua-regia digestion

ANALYTICAL PROCEDURES									
CHEMEX CODE	NUMBER SAMPLES		DES	CRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT		
983 2 5 6	68 68 68 68	Cu ppm: Zn ppm:	HNO3-aqua	sample regia digest regia digest regia digest	FA-AAS AAS AAS AAS-BKGD CORR	5 1 1 0.2	10000 10000 10000 100.0		
					• .				
÷									
1									

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

r

##

Page Ner:1 Total Pages:2 Certificate Date:20-FEB-97 Invoice No.:19713633 P.O. Number: Account:LVY

Analytical Chemists * Geochemists * Registered Assayers Mississauga L4W 2S3 5175 Timberlea Blvd., Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

: NUINSCO RESOURCES LIMITED

							(CERTIFICA	TE OF A	NALYSIS	A97	713633	
	SAMPLE		REP ODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
291 291 291	1133 1134 1135 1136 1137	205 205 205 205 205 205	226 294 226 226 294	40 280 70 70 80	25 115 41 47 28	500 770 1350 700 122	0.5 1.3 0.9 0.5 0.3						
291 291 291	L138 L139 L140 L141 L142	205 205 205 205 205 205	226 294 294 294 294 226	135 45 85 120 250	43 30 56 39 28	214 328 345 630 180	0.4 0.4 0.5 1.2 0.3						
291 291 291 291 291	L143 L144 L145 L146 L147	205 205 205 205 205 205	226 294 226 294 294	165 170 175 280 305	23 16 19 24 27	200 215 170 136 150	0.4 0.3 0.8 2.0 1.3						
291 291 291	L148 L149 L150 L151 L152	205 205 205 205 205 205	294 294 226 294 294	20 5 < 5 < 5 10	6 4 6 2	37 31 31 29 23	<pre> < 0.2 0.2</pre>		<u></u>				
291 291 291 291 291	1153 1154 1155 1156 1157	205 205 205 205 205 205	226 294 294 294 294	30 30 100 130 230	60 4 13 8 42	36 24 26 24 26 24	0.3 < 0.2 0.3 0.4 0.6						
291 291 291	1158 1159 1160 1161 1162	205 205 205 205 205 205	294 226 226 294 294	105 170 105 70 40	41 73 12 16 5	23 31 31 28 56	0.4 0.4 0.2 0.3 0.2						
291 291 291 291 291	1163 1164 1165 1166 1167	205 205 205 205 205 205	294 294 294	25 30 10 35 35	10 34 18 12 23	77 107 100 46 44	0.2 0.2 < 0.2 < 0.3 0.3						
29 29 29	1168 1169 1170 1171 1172	205 205 205 205 205 205	294 294 294	45 50 105 50 25	9 22 13 15 10	50 54 75 54 64	0.3 0.4 0.6 0.7 0.5					ABu	

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Ontario, Canada

Mississauga L4W 253 PHONE: 905-624-2806 FAX: 905-624-6163

908 THE EAST MALL ETOBICOKE, ON

o: NUINSCO RESOURCES LIMITED

Page Number :2 Total Pages :2 Certificate Date: 20-FEB-97 Invoice No. : 19713633 P.O. Number Account :LVY

A9713633

Project :

M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS

##

PREP Cu Au ppb Zn Ag ppm SAMPLE CODE FA+AA Aqua R ppm ppm 0.6 1.0 0.9 11.0 1.0 0.4 0.5 0.5 0.4 0.7 1.6 . 0.4 2.4 0.5 0.8 4.7 0.5 0.6 0.6 0.3 0.8 0.2 0.2 0.3 1.1 3.1 0.8 205 226 0.7

Ô C σ Ľ

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9713635

CERTIFICATE

A9713635

(LVY) - NUINSCO RESOURCES LIMITED

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 20-FEB-97.

	SAMPLE PREPARATION						
Chemex Code	NUMBER SAMPLES	DESCRIPTION					
205	84	Geochem ring to approx 150 mesh					
226	58	0-3 Kg crush and split					
294	26	4-7 Kg crush and split					
3202	84	Rock - save entire reject					
238	84	Nitric-aqua-regia digestion					
	1 1						

ANALYTICAL PROCEDURES

Hemex Code	NUMBER SAMPLES		DESCRIPTION		METHOD	DETECTION	UPPER LIMIT
983 2 5 6	84 84 84 84	Cu ppm: Zn ppm:	HNO3-aqua	sample regia digest regia digest regia digest	FA-AAS AAS AAS AAS-BKGD CORR	5 1 1 0.2	10000 10000 10000 100.0

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd.,

Mississauga L4W 2S3 Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 J: NUINSCO RESOURCES LIMITED

##

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page N. Jer: 1 Total Pages: 3 Certificate Date: 20-FEB-97 Invoice No.: 19713635 P.O. Number: 10// ELVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

SAMPLE PEP CODE Au ppb FA+AA Cu ppm Zn ppm Ag ppm Aqua R 291201 291203 291205 291205 201204 291205 2012							CERTIFICATE OF ANALYSIS A9713635					
291202 205 226 3860 260 1880 2.9 291203 205 226 155 23 148 0.9 291205 205 226 155 23 148 0.9 291205 205 224 1205 224 1.0 1.0 291205 205 224 1320 1.0 1.0 1.0 291205 205 224 1300 19 97 1.0 1.0 291205 205 224 2070 13 378 0.7 1.0 1.0 291217 205 226 1290 18 166 0.5 1.0	SAMPLE											
291203 291204 291205 205 226 280 294 330 70 322 1.6 291204 291207 205 224 1340 31 97 1.0 291204 291207 205 224 1340 31 97 1.0 291206 205 224 1340 31 97 1.0 291206 205 224 2070 13 378 0.7 291208 205 226 295 10 132 0.3 291210 205 226 1290 18 160 0.8 291211 205 226 130 12 0.7 291214 205 226 135 16 200 <0.2												
291204 291205 205 205 226 300 155 300 23 300 140 303 0.5 0.5 0.5 291205 205 205 294 205 294 205 130 205 300 205 300 205 300 205 300 205 13 205 100 205 13 205 130 205 130 205 130 205 130 205 130 205 140 205 160 205 0.6 0.8												
291205 205 206 294 120 70 322 1.6 100 291206 205 294 1240 39 97 1.0 1.0 291206 205 294 1360 11 120 0.7 3323 291207 205 226 295 11 130 0.7 3323 291210 205 226 75 7 65 0.2 129 121 205 226 75 7 65 0.2 129 121 205 226 135 16 400 0.1 200 226 135 16 200 40.2 227 121 205 226 135 16 400 40.2												
291207 291208 291209 205 226 291210 291210 291210 291210 291210 291211 291211 291212 291211 291212 291212 291211 291212 291213 291213 291214 291214 291215 291215 291215 291217 291216 291217 291216 291217 291221 291222 291224 291224 291224 291224 291225 291226 291231 291226 291226 291231 291226 291226 291231 291226 291231 291226 291231 291226 291231 291226 29124 291226 29124 291226 29124 291226 29124 291226 29124 291226 29124 291226 291231 291226 291231 291226 291231 291226 291231 291226 291231 291226 291231 291231 291232 291230 291231 291232 291230 291231 291232 291230 29124 291232 291230 29124 291230 29124 291230 29124 291230 29124 29124 291230 29124 29124 29124 291226 29124 29124 291226 29124 291226 29124 291226 291230 29124 291226 291230 29124 291226 291230 29124 291226 291230 29124 291226 29123 291226 291230 291226 291230 291226 291230 291226 291230 291226 291230 291226 291230 291226 291230 291226 291230 291226 291230 291226 291230 291226 291230 291226 291230 291226 291230 291226 291230 291226 291230 291226 291230 29123123 291230 291230 29123123 291230 291231 2912312 291230 291231 291												
291208 205 226 2070 13 378 0.7 291209 205 226 225 10 132 0.3 291210 205 226 1290 18 166 0.5 291211 205 226 1290 18 166 0.5 291212 205 226 75 7 65 0.2 291214 205 226 75 7 65 0.2 291216 205 226 135 16 200 (0.4 291216 205 226 135 16 200 (0.2 291216 205 226 135 16 200 (0.5 291216 205 226 315 31 48 0.4 291210 205 226 315 31 48 0.4 291212 205 226 550 17 145 (0.2 291226 205 226 550 17 146 0.4 291227									1			
291209 205 226 295 10 112 0.3 112 0.3 291210 205 226 1290 18 166 0.5 1 <td></td> <td>1</td> <td></td>											1	
291210 205 226 1290 18 166 0.5 291211 205 226 75 7 65 0.2							l					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
291213 205 294 130 8 100 0.3 291214 205 226 135 16 200 <												
291214 291215 205 226 135 12 477 0.4 0.2 291215 205 226 135 16 200 <0.2												
291215 205 226 135 16 200 < 0.2 291216 205 226 230 40 262 0.4 0.6 0.5 0.5 0.5 0.6<												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
291218 205 226 460 36 130 0.6 291220 205 226 1110 44 145 0.4 291221 205 294 765 30 185 0.3 291222 205 294 765 30 185 0.3 291224 205 294 765 30 185 0.3 291224 205 226 560 17 145 0.3 291225 205 226 560 17 145 0.3 291226 205 226 510 45 67 0.8 60.6 291227 205 226 590 60 610 0.9 60 610 0.9 60 610 0.9 60 610 0.9 60 610 0.9 60							1					
291219 205 226 315 311 44 145 0.4 291221 205 224 950 25 175 <												
291220 205 226 1110 44 145 0.4												
291222 205 294 765 30 185 0.3 291223 205 294 255 21 208 < 0.2												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									+			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
291225 205 226 170 67 560 0.6 291226 205 226 510 45 67 0.8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
291228 205 226 280 26 2600 1.0 291229 205 226 470 102 1150 1.2 291230 205 294 295 17 960 0.6 291231 205 294 810 72 1550 0.9 291232 205 294 1150 24 495 1.5 291233 205 226 2560 30 332 2.0 291234 205 226 2560 300 332 2.0 291235 205 294 1390 38 520 1.6 291236 205 226 900 25 410 1.9 291237 205 226 900 25 410 1.9 291238 205 226 930 73 1550 3.1 291239 205 226 930 73 1550 3.1 291240 205 226 340 91 980 2.0									1 1			
291229 205 226 470 102 1150 1.2 291230 205 294 295 17 960 0.6 291231 205 294 810 72 1550 0.9 291232 205 294 1150 24 495 1.5 291232 205 294 1150 24 495 1.5 291233 205 226 2560 30 332 2.0 291234 205 226 2560 30 332 2.0 291235 205 294 1390 38 520 1.6 291236 205 294 1390 38 520 1.6 291236 205 226 900 25 410 1.9 291238 205 226 885 31 980 1.9 291239 205 226 930 73 1550 3.1 291240 205 226 340 91 980 2.0								1				
291230 205 294 295 17 960 0.6												
291232 205 294 1150 24 495 1.5 291233 205 226 2560 30 332 2.0 291234 205 226 2580 205 3100 4.2 291235 205 294 1390 38 520 1.6 291236 205 294 1230 51 350 1.8 291237 205 226 900 25 410 1.9 291238 205 226 930 73 1550 3.1 291239 205 226 340 91 980 2.0												
291233 205 226 2560 30 332 2.0 291234 205 226 2580 205 3100 4.2 291235 205 294 1390 38 520 1.6 291236 205 226 900 25 410 1.9 291238 205 226 930 73 1550 3.1 291239 205 226 930 73 1550 3.1 291240 205 226 340 91 980 2.0									1 1		····	<u> </u>
291234 205 226 2580 205 3100 4.2 291235 205 294 1390 38 520 1.6 291236 205 294 1230 51 350 1.8 291237 205 226 900 25 410 1.9 291238 205 226 885 31 980 1.9 291239 205 226 930 73 1550 3.1 291240 205 226 340 91 980 2.0												
291235 205 294 1390 38 520 1.6												
291237 205 226 900 25 410 1.9 291238 205 226 885 31 980 1.9 291239 205 226 930 73 1550 3.1 291240 205 226 340 91 980 2.0												
291238 205 226 885 31 980 1.9 291239 205 226 930 73 1550 3.1 291240 205 226 340 91 980 2.0							1	-	1			
291239 205 226 930 73 1550 3.1 291240 205 226 340 91 980 2.0												
291240 205 226 340 91 980 2.0							1		1 1			
										,		
				<u> </u>	1		<u> </u>					

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

. o: NUINSCO RESOURCES LIMITED

##

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page Number :2 Total Pages :3 Certificate Date: 20-FEB-97 Invoice No. : 19713635 P.O. Number : LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

								CERTIFICATE OF ANALYSIS A9713635					
	SAMPLE		REP ODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
ſ	291241	205	294	450	97	2400	2.8						
Ш	291242	205	226	320	60	880	2.7						
Ш	291243 291244	205 205	226 226	410	96	3300	2.8						
	291244	205	226	510 875	245 80	5600 1480	2.8 4.2						
	291246	205	226	265	98	780	1.8						
	291247	205	226	330	116	920	1.5						
	291248	205	226	235	70	380	1.1						
	291249 291250	205 205	294 226	370 645	48 101	385 800	1.8 5.0						
╟	291251	205	294	405	67	415	3.6						
11	291252	205	294	190	26	360	2.0						
П	291253	205	226	390	57	700	4.3						
Ш	291254	205	226	305	380	4000	12.9						
	291255	205	226	465	31	260	6.3						
Π	291256	205	226	330	48	490	4.2						
Ш	291257	205	294	280	97	750	5.1		I				
.	291258 291259	205 205	294 226	235 120	150 47	330 205	6.0						
	291260	205		235	64	127	1.8 3.0						
	291261	205	226	240	61	1050	2.3				· · · · · · · · · · · · · · · · · · ·		
	291262	205	226	95	48	800	1.2						
(291263	205	226	125	21	85	0.7						
2	291264 291265	205	226 226	70 400	18 62	54 62	0.2						
							2.0						
	291266	205	226	295	33	266	2.8			1			
	291267 291268	205	226 226	110 310	27	275 500	2.0						
	291268	205	294	235	24	192	3.7						
	291270	205		90	23	300	1.1						
	291271	205	226	125	21	75	1.3						
	291272	205	294	170	28	97	1.5]]			
11	291273	205	226	145	24	125	1.4						
	291274 291275	205 205	226 226	65 60	36 24	127 110	0.9						
	291276	205	226	80	30	76	1.1						
	291277	205	294	110	30	102	1.3						
	291278	205	294	95	59	336	1.4						
	291279	205		70	18	127	0.8						
Ц	291280	205	226	195	33	320	1.9						
		L											

CERTIFICATION:

tat Bichler

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

908 THE EAST MALL ETOBICOKE, ON M9B 6K2 Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

.o: NUINSCO RESOURCES LIMITED

Page Number :3 Total Pages :3 Certificate Date: 20-FEB-97 Invoice No. : 19713635 P.O. Number LVY Account

##

							CERTIFICA	TE OF A	NALYSIS	A97	13635	
	SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag pp m Aqua R						
NRX97-04	291281 291282 291283 291284	205 226 205 226 205 226 205 226 205 226	270 150 180 235	36 18 46 151	320 242 760 1200	2.2 1.1 1.9 3.8						
	L	L			<u> </u>	I.,	1	اــــــــــــــــــــــــــــــــــــ	ERTIFICATIO	N: Ita	HBich	lez

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9715172

ANALYTICAL PROCEDURES CERTIFICATE A9715172 UPPER (LVY) - NUINSCO RESOURCES LIMITED CHEMEX NUMBER DETECTION SAMPLES DESCRIPTION METHOD LIMIT LIMIT CODE Project: P.O. # : 10000 Au ppb: Fuse 30 g sample 5 983 76 FA-AAS Samples submitted to our lab in Vancouver, BC. 10000 1 2 76 Cu ppm: HNO3-aqua regia digest ANS This report was printed on 5-MAR-97. 10000 ANS 1 5 76 Zn ppm: HNO3-aqua regia digest 100.0 0.2 AAS-BEGD CORR 6 76 Ag ppm: HNO3-aqua regia digest SAMPLE PREPARATION CHEMEX CODE NUMBER SAMPLES DESCRIPTION 76 205 Geochem ring to approx 150 mesh 226 40 0-3 Kg crush and split 294 36 4-7 Kg crush and split 3202 76 Rock - save entire reject 238 76 Nitric-aqua-regia digestion

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Ontario, Canada Mississauga L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 io: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page iber :1 Total Pages :2 Certificate Date: 05-MAR-97 Invoice No. :19715172 P.O. Number : Account LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

_*

							CERTIFIC	ATE OF A	NALYSIS	A97	15172	
	SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
97-06	291062 291063	205 294	130	36	48	0.2						
4	291285	205 294 205 294	460 580	34 26	850 900	1.6						
i	291286	205 226	300	26	450	0.9						
1	291287	205 226	340	57	670	1.3						
Í	291288	205 226	1130	137	1700	2.8						
	291289 291290	205 226 205 226	400	29 172	860 6700	0.8						
	291291	205 226	210	8	680	0.7						
	291292	205 226	300	10	720	0.6						
	291293	205 294	355	13	210	1.0		_	<u> </u>			
	29129 4 291295	205 226	170	12	158	0.7						
	291295	205 294 205 294	1800 225	16 23	355 113	1.7						
	291297	205 294	135	9	156	0.4						
	291298	205 294	85	12	700	0.8						
	291299 291300	205 294 205 294	95 90	10 10	270	0.6		1				1
	291301	205 294	165	10	112 1650	0.5						
	291302	205 294	90	20	1000	1.3						
	291303	205 226	110	21	1500	1.8		1				1
	29130 4 291305	205 226	180 285	14 72	127 3700	2.3						
	291306	205 226	245	55	1150	1.7	1	1	l	l	1	
	291307	205 226	380	48	3700	1.6						
	291308	205 226	570	180	7700	7.0		1	1			1
	291309 291310	205 226 205 294	120 410	30 108	1100 3550	0.9						
	291311	205 226	510	335	6000	8.3						l l
	291312	205 226		90	3600	1.5						
	291313	205 294		20	148	0.4	<u> </u>	1	1			1
1	291314 291315	205 226	175 350	22 90	620 367	0.8]				1	
	291316	205 294	290	90	122	0.2	1	1			1	
	291317	205 294	100	6	230	0.2						
	291318	205 226	165	10	600	0.5		1	1		· · ·	1
	291319 291320	205 226	825 825	132 50	510 940	1.3						
	291321	205 226		36	385	0.7		1			}	1
	291322	205 226		14	190	0.4						
	· · · · · · · · · · · · · · · · · · ·			<u> </u>			<u> </u>			L	atts	L

Analytical Chemists * Geochemists * Registered Assayers

Mississauga 5175 Timberlea Blvd.. L4W 2S3 Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163 fo: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page .iber :2 Total Pages 2 Certificate Date: 05-MAR-97 Invoice No. :19715172 P.O. Number LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS A9715172 PREP Au ppb Cu Zn Ag ppm SAMPLE CODE FA+AA ppm ppm Aqua R 0.2 0.2 < 0.2 2.1 0.6 1.2 205 226 0.6 0.5 0.5 0.8 0.6 1.7 205 226 1.6 205 294 1.5 1.6 2.2 1.1 1.3 2.2 5.0 1.0 0.4 0.5 0.4 0.3 0.3 0.5 < 0.2 0.7 0.6 0.5 0.6 0.8 0.5 0.7 205 294 0.9 tart Brehler

Project: P.O. # :

205

226

238

3202

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

Mississauga L4W 2S3 5175 Timberlea Blvd.. Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163 10: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9716151

CERTIFICATE A9716151 **ANALYTICAL PROCEDURES** (LVY) - NUINSCO RESOURCES LIMITED CHEMEX NUMBER DETECTION UPPER CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT 983 5 10000 43 Au ppb: Fuse 30 g sample FA-AAS Samples submitted to our lab in Vancouver, BC. 10000 1 2 43 Cu ppm: HNO3-aqua regia digest AAS This report was printed on 17-MAR-97. 10000 5 λλs 43 Zn ppm: HN03-aqua regia digest 1 6 AAS-BEGD CORR 100.0 43 Ag ppm: HNO3-aqua regia digest 0.2 SAMPLE PREPARATION CHEMEX CODE NUMBER SAMPLES DESCRIPTION 43 Geochem ring to approx 150 mesh 43 0-3 Kg crush and split 43 Rock - save entire reject 43 Nitric-aqua-regia digestion

.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd.. Ontario, Canada

Mississauga L4W 2\$3 PHONE: 905-624-2806 FAX: 905-624-6163 .o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Total Pages :2 Certificate Date: 17-MAR-97 Invoice No. : [9716151 P.O. Number Account :LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

CERTIFICATE OF ANALYSIS A9716151 PREP Au ppb Cu Zn Ag ppm SAMPLE CODE FA+AA DDM DDM Aqua R 1.0 0.5 1.4 0.7 2.2 1.8 1.8 1.9 0.9 1.2 1.3 2.2 3.7 1.6 11.5 34.2 9.3 11.7 2.8 2.0 2.6 . 4.2 Ġ 12.0 Q 3.5 4.5 5.5 1.4 0.7 0.8 1.9 2.4 2.0 4.2 84.0 2.0 6.6 23.8 2.6 1.6 2.7

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

io: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Pageber :2 Total Pages :2 Certificate Date: 17-MAR-97 Invoice No. :19716151 P.O. Number . LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS A9716151

...*

									10131	
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R					
17-14 291791 291792 291793	205 226 205 226 205 226	170 110 100	80 73 45	480 510 450	2.0 3.3 1.4					
								•		
									-	
							CERTIFICATIO	ĪĪ	whBe	Da

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 io: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CI	CERTIFICATE A9716152						AN/	ALYTICAL F	ROCEDURES		
LVY) - NU Project: P.O. # :	JINSCO R	ESOURCES LIMIT	ED	CHEMEX	NUMBER SAMPLES		DESC	RIPTION	METHOD	DETECTION LIMIT	upper Limit
amples	submitte ort was	ed to our lab : printed on 16	in Vancouver, BC. -MAR-97.	983 2 5 6		Cuppm: E Znppm: E	1NO3-aqua r	ample egia digest egia digest egia digest	ГА-ЛЛS ЛЛS ЛЛS ЛЛS-BKGD CORR	5 1 1 0.2	10000 10000 10000 100.0
	SAM	PLE PREPA	RATION								
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION								
205 226 294 3202 238	79 77 2 79 79	0-3 Kg crush 4-7 Kg crush Rock - save	and split								
	<u></u>		·								
										•	

A9716152

L4W 2\$3

Analytical Chemists " Geochemists " Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163 NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page N ar :1 Total Pages :2 Certificate Date: 16-MAR-97 Invoice No. :19716152 P.O. Number Account :LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

_'

CERTIFICATE OF ANALYSIS A9716152 PREP Au ppb Cu Zn Ag ppm SAMPLE ppm CODE FA+AAppm Agua R 0.2 0.2 < 0.2 0.5 < 0.2 0.4 0.2 0.4 0.2 0.9 0.4 0.8 0.2 0.2 0.4 2.0 1.8 1.7 2.0 1.8 1.5 1.0 0.5 1.0 d 7 1.1 1.0 2.2 1.7 0.9 0.4 205 0.5 0.4 205 0.3 0.5 0.3 0.4 . 0.2 < 5 0.3 0.2 205 226 0.3

> HartBuckley CERTIFICATION:

SAMPLE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Ontario, Canada

205 226

205 226

0.6

1.7

1.3

0.8

0.8

0.3

0.7

1.5

1.7

2.0

0.8

Mississauga L4W 2Š3 PHONE: 905-624-2806 FAX: 905-624-6163 >: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page N Jer :2 Total Pages :2 Certificate Date: 16-MAR-97 Invoice No. :19716152 P.O. Number ELVY Account

ABichle

A9716152

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS

...*

PREP Au ppb Cu Zn Ag ppm CODE FA+AA ppm DDM Aqua R 205 226 0.5 0.3 205 226 0.5 205 226 0.3 0.3 0.2 0.4 0.4 0.3 0.4 0.6 0.7 0.7 1.8 5.2 1.0 0.8 1.2 0.5 1.0 1.0 1.3 0.7 0.9 4.9 4.0 0.5 205 226 0.5

Z

C Z

CERTIFICATION:

IF.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

fo: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9716831

CERTIFICATE

A9716831

(LVY) - NUINSCO RESOURCES LIMITED

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 21-MAR-97.

	SAM	PLE PREPARATION
CHEMEX	NUMBER Samples	DESCRIPTION
205 226 3202 238	78 78 78 78	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject Nitric-aqua-regia digestion

ANALYTICAL PROCEDURES

CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
983 997 2 5 6 8	78 1 77 77 77 1	Au g/t: Cu ppm: Zn ppm: Ag ppm:	Fuse 30 g sample 1 assay ton, grav. HNO3-aqua regia digest HNO3-aqua regia digest HNO3-aqua regia digest HNO3-aqua regia digest	FA-AAS FA-GRAVIMETRIC AAS AAS-BKGD CORR AAS-BKGD CORR AAS-BKGD CORR	5 0.07 1 0.2 1	10000 1000.0 10000 10000 100.0 10000

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontano, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

fo: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page iber:1 Total Pages:2 Certificate Date:21-MAR-97 Invoice No.:19716831 P.O. Number: ELVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS A9716831

~*

	SAMPLE	PREP CODE	Au ppb FA+AA	Au FA g/t	Cu ppm	Zn ppm	Ag ppm Aqua R	Ni ppm				
	WR97-17-159.9	205 226	< 5					84				
- ri	277058	205 226	30		15	57	< 0.2					
- 11	277059	205 226	60		20	49	0.2					
- 11	277060											
- 11		205 226	35		14	48	, 0.2					
- 11	277061	205 226	45		16	40	0.6		1	1		
	277062	205 226	65		12	37	0.6				<u> </u>	
	277063	205 226	140		14	36	1.2					
- 11	277064	205 226	45		6	50	0.4		1	Į		
- 11	277065	205 226	210		76	252	0.1			ł		
- 11	277066									1		
	277066	205 226	455		36	93	2.5]		
- 11	277067	205 226	50		10	33	1.1				f	
	277068	205 226	30		24	42	1.3					
	277069	205 226	40		20	56	2.5					
- 11	277070	205 226	60		19	64	1.2					
	277071	205 226			199	840	5.2					
	2//0/1	205 220	193		199	040	3.4					
	277072	205 226	55		18	73	1.0			T		
	277073	205 226	240		12	50	0.9					ł
- 11	277074	205 226	150		8	45	0.8				{	
	277075	205 226	420		16	97	1.8					
9	277076	205 226	260		12	107	1.5					
-11			1 200			107	1.5					
£	277077	205 226	260		36	235	1.9				1	· · · · · · · · · · · · · · · · · · ·
ď	277078	205 226	100		57	195	2.1					
ž	2770 79	205 226	170		18	54	1.5		1			
-	277080	205 226	265		12	115	2.3					
	277081	205 226			1 17	244	3.6		1		1	
	277082	205 226	485		24	120	3.6				1	
	277083	205 226	435		20	75	3.3					
	277084	205 226	525		64	215	4.0		1			
	277085	205 226	355		96	200	0.7		1			
	277086	205 226		10.97	111	740	1.7					
			- I	L	ļ	ļ	ļ	l	<u> </u>	↓		L
	277087	205 226			23	86	1.8				1	
[]	277088	205 226	200		27	165	2.2					1
	277089	205 226	145		13	82	1.6					ļ
	277090	205 226	210		65	590	2.1			1		1
	277091	205 226	2070		179	1250	4.6		1			
			+		<u> </u>	_			+	<u> </u>	+	ļ
	277092	205 226			22	96	2.7					1
	277093	205 226	240		35	240	1.4			1	1	1
	277094	205 226	105		26	190	1.7				1	1
	277095	205 226			25	213	1.4			1		1
	277096	205 226			29	195	1.7					
L.,	•		1	1			1		1			{ _
	L	L		<u> </u>	1		<u> </u>	L	L	1	L	

CERTIFICATION:_

Sant Broklen

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd.,

Mississauga L4W 2S3 Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 io: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page liber :2 Total Pages :2 Certificate Date: 21-MAR-97 Invoice No. : 19716831 P.O. Number ٠ Account :LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS A9716831

~*

		_									
SAMPLE	PREP CODE	Au ppb FA+AA	Au FA g/t	Cu ppm	Zn ppm	Ag ppm Aqua R	Ni ppm				
277097	205 226	285		28	114	0.8		1			
277098	205 226	385		21	140	1.5					
277099	205 226	390		29	70	1.1					
277100	205 226	145	~~	16	104	1.3		1	1		
277101	205 226	205		41	285	2.0					
277102	205 226	185		27	170	1.4					
277103	205 226	185		36	355	2.2		1			
277104	205 226	125		17	122	1.0		[1	l l	
277105	205 226	160		20	204	1.2					
277106	205 226	125		35	372	1.8					
277107	205 226	100		18	148	1.0		1	<u>†</u>		
277108	205 226	140		35	250	1.8		1	1		
277109	205 226	190		20	162	0.9]		ł		
277110	205 226	160		19	174	1.0		1	1		
277111	205 226	1450		59	420	2.1		1			
277112	205 226	260		78	370	4.8		1	1		
277113	205 226	90		56	254	2.2					
277114	205 226	100		55	236	2.2					
277115	205 226	270		77	416	3.0			1		
277116	205 226	235		35	370	1.3		}	1		
277117	205 226	65		44	350	0.7		1	1		
277118	205 226	85		52	405	3.2					
277119	205 226	135		28	174	4.5					
277120	205 226	255		380	1000	15.5					
277121	205 226	280		265	950	12.2					
277122	205 226	125		133	214	2.3		1	1		
277123	205 226	80		114	110	1.6			1		
277124	205 226	90		41	94	1.1					
277125	205 226	105		41	2900	3.5		1	I	l	l
277126	205 226	50		29	162	1.5					
277127	205 226	105		26	190	1.6					
277128	205 226	55		24	170	0.7		ł		1	1
277129	205 226	205		36	108	2.2			1		
277130	205 226	195		275	115	2.7			1		Į
277131	205 226	35		22	61	0.3				1	
277132	205 226	15		18	62	0.3		1			
277133	205 226	25		14	80	0.2		1			1
277134	205 226	10		8	63	0.4					l
					<u> </u>	L	<u> </u>	<u> </u>		<u> </u>	L
								CERTIFICATIO	1571	it Bre	the

Analytical Chemists * Geochemists * Registered Assayers

 5175 Timberlea Blvd.,
 Mississauga

 Ontario, Canada
 L4W 2S3

 PHONE: 905-624-2806
 FAX: 905-624-6163

.o: NUINSCO RESOURC	CES LIMITED
---------------------	-------------

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE **ANALYTICAL PROCEDURES** A9716832 UPPER (LVY) - NUINSCO RESOURCES LIMITED CHEMEX NUMBER DETECTION SAMPLES METHOD LIMIT LIMIT CODE DESCRIPTION Project: P.O. # : 10000 983 FA-AAS 5 78 Au ppb: Fuse 30 g sample Samples submitted to our lab in Vancouver, BC. 0.005 10000 1350 Au check analysis 1 This report was printed on 24-MAR-97. FA-GRAVIMETRIC 0.07 1000.0 997 1 Au g/t: 1 assay ton, grav. Cu ppm: HNO3-aqua regia digest 2 78 λλS 1 10000 5 Zn ppm: HNO3-aqua regia digest λλs 1 10000 78 Ag ppm: HN03-aqua regia digest 100.0 6 78 AAS-BKGD CORR 0.2 10000 AAS-BEGD CORR 8 3 Ni ppm: HNO3-aqua regia digest 1 SAMPLE PREPARATION CHEMEX NUMBER CODE SAMPLES DESCRIPTION 205 78 Geochem ring to approx 150 mesh 226 78 0-3 Kg crush and split 3202 78 Rock - save entire reject 238 78 Nitric-aqua-regia digestion NOTE Code 1000 is used for repeat gold analyses It shows typical sample variability due to coarse gold effects. Each value is correct for its particular subsample.

A9716832

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

*PLEASE NOTE:

.o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2 Page Jer :1 Total Pages :2 Certificate Date: 21-MAR-97 Invoice No. : 19716832 P.O. Number : Account :LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS A9716832

...*

SAMPLE	PREP CODE	Au ppb FA+AA	Au check	Au FA g/t	Cu ppm	Zn ppm	Ag ppm Aqua R	Ni ppm			
277135	205 226	25			20	164	0.3				
277136	205 226	25			21	114	0.3				1
277137	205 226				14	76	0.4				1
277138	205 226				16	88	0.2			1	
277139	205 226	250			40	155	0.4			1	
277140	205 226				26	106	< 0.2				
277141	205 226				23	47	0.2				1
277142	205 226				24	47	0.2		ł		1
277143	205 226				19	132	< 0.2				
277144	205 226	10			15	50	0.2				
277145	205 226				8	41	0.2				
2771 46 2771 47	205 226				11	38	0.6		'		
277148	205 226				16	64 60	0.2		1		1
277149	205 226				11 41	310	0.3				
	105 220	33			**	510					
277150	205 226				19	428	0.2				
277151 277152	205 226				8	160	< 0.2				1
277153	205 226				10	66 84	0.2				{
277154	205 226				11	87	0.3				
000465								ļ	 	4	+
277155 277156	205 226				82 23	100	0.8	16	1	1	
277157	205 226				29	100	0.3	10			
277158	205 220				17	92	0.3				
277159	205 220				19	100	0.4]		
277160	205 220	10	<u> </u>		9	22	< 0.2			+	+
277161	205 220				20	780	0.3		1		
277162	205 220				12	184	1.2		1		
277163	205 220	115			9	150	1.5		ł	1	
277164	205 220	5 75			15	220	1.7			1	
277165	205 220	15			21	105	0.5		1		1
277166	205 220				15	720	1.1		1		1
277167	205 220				17	435	1.2		1		
277168	205 22				27	600	3.2		1	1	1
277169	205 22	330			27	278	2.6		1	{	
277170	205 220				136	720	10.8			1 .	
277171	205 22				149	1800	30.0		1		Į
277172	205 22				18	82	2.3				1
277173 277174	205 220				19 23	98 236	2.0				

*PLEASE NOTE:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

Mississauga L4W 2S3 5175 Timberlea Blvd., Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Total Pages :2 Certificate Date: 21-MAR-97 Invoice No. :19716832 P.O. Number . Account LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS

~*

A9716832

· · · · · · · · · · · · · · · · · · ·											
SAMPLE	PREP CODE	Au ppb FA+AA	Au check	Au FA g/t	Cu ppm	Zn ppm	A g ppm A qua R	Ni ppm			
277175	205 226	115			19	115	1.4				
277176	205 226	130			23	146	1.2				
277177	205 226	180			21	160	1.2				
277178	205 226	175			46	132	2.1				
277179	205 226	590			345	5050	7.0				
277180	205 226	170			33	198	2.0				
277181	205 226	145			12	272	1.2				
277182	205 226	260			40	580	1.8				
277183	205 226	185			36	510	1.3				
277184	205 226	125			15	125	1.1				
277185	205 226	155			39	200	2.3				
277186	205 226	180			29	130	1.8				
277187	205 226	120			53	95	0.8				
277188	205 226	170			79	390	0.9]			
277189	205 226	200			215	1200	3.0				
277190	205 226	145			25	70	0.9				
277191	205 226	300			28	80	2.0				
277192	205 226	275			32	116	1.7		[
277193	205 226	160			35	145	1.1				
277194	205 226	185			20	86	1.2				
277195	205 226	280			40	105	1.3				
277196	205 226	225			161	550	1.8				
277197	205 226	300			39	210	1.5		ł		
277198 277199	205 226	350			62	455 250	1.3				1
2//199	205 226	360			48	250	1.2		l		
277200	205 226	545			198	1100	3.5				
277201	205 226	285			22	225	1.2			1	
277202	205 226	235			18	110	1.3		1	1	1
277203	205 226	205			41	315	1.2				
277204	205 226	290			121	1300	4.9				
277205	205 226	225			84	445	2.5			1	
277206	205 226	215			82	1500	1.2			1	
277207	205 226	475			73	175	2.7				
277208	205 226	370			25	88	2.3			1	
277209	205 226	305			54	415	3.5				1
277210	205 226	2670			30	134	2.3		1	· · ·	1
277211	205 226	>10000	8.130	6.75	54	95	3.6				
277212	205 226	425			45	125	0.5			1]
				1	l			1			ł
									11	Are	D. Qo

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

.o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

С	ERTIFI	CATE	A9716833				ANALYTICAL I	PROCEDURES		
LVY) - N Project: P.O, # :	UINSCO R	ESOURCES LIMIT	ED	CHEMEX CODE	NUMBER SAMPLES	1	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
Samples	submitte port was	ed to our lab i printed on 21-	In Vancouver, BC. -MAR-97.	983 2 5 6	62	Au ppb: Fuse 30 Cu ppm: HN03-aq Zn ppm: HN03-aq Ag ppm: HN03-aq	ua regia digest ua regia digest	Fl-lls lls lls lls-bkgD corr	5 1 1 0.2	10000 10000 10000 100.0
	SAM	PLE PREPA	RATION							
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION							
205 226 3202 238	62 62 62 62 62	0-3 Kg crush Rock - save e	to approx 150 mesh and split nutire reject regia digestion							
	· • · · · · · · · · · · · · · · · · · ·									

A9716833

Analytical Chemists * Geochemists * Registered Assavers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2\$3 PHONE: 905-624-2806 FAX: 905-624-6163 .o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page . .ber :1 Total Pages :2 Certificate Date: 21-MAR-97 Invoice No. :19716833 P.O. Number LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

A9716833 **CERTIFICATE OF ANALYSIS** PREP Zn Au ppb Cu Ag ppm SAMPLE CODE FA+AA ppm DDM Aqua R 4.7 7.4 6.9 4.0 4.5 25.0 1.6 2.9 1.0 3.2 7.3 1.8 2.0 1.2 4.6 2.6 0.5 0.9 0.6 1.4 Å 4.4 Ī 2.1 4.9 4.0 5.8 0.4 0.2 0.2 0.3 0.2 0.2 0.4 3.3 0.4 0.2 0.2 <u>م</u> 3.5 < 0.2 0.5 0.3 ñ Z tait Bichle

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Invoice No. P.O. Number : 19716833 ٠ LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

						CERTIFICATE OF ANALYSIS	A9716833
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R		
277322 277323 277324 277325 277326	205 226 205 226 205 226 205 226 205 226 205 226	55 105 35 35 45	57 80 41 47 44	32 44 50 32 40	< 0.2 0.3 < 0.2 < 0.2 < 0.2		
277327 277328 277329 277330 277331	205 226 205 226 205 226 205 226 205 226 205 226	35 10 < 5 < 5 < 5	44 81 18 13 8	36 42 37 37 31	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2		
277332 277333 277334 277335 277336	205 226 205 226 205 226 205 226 205 226 205 226	25 5 < 5 < 5 < 5 < 5	47 13 18 9 15	40 32 40 60 32	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2		
277337 277338 277339 277340 277341	205 226 205 226 205 226 205 226 205 226 205 226	25 300 190 40 25	54 23 47 74 23	30 21 25 30 31	< 0.2 0.5 0.3 0.3 < 0.2		
277342 277357	205 226 205 226	375 65	85	36 30	1.1 0.2		
						CERTIFICATION:	HartBickley

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9717393

ANALYTICAL PROCEDURES A9717393 CERTIFICATE (LVY) - NUINSCO RESOURCES LIMITED UPPER CHEMEX NUMBER DETECTION LIMIT CODE SAMPLES DESCRIPTION METHOD LIMIT Project: P.O. # : 5 10000 983 83 Au pob: Fuse 30 g sample PA-AAS Samples submitted to our lab in Vancouver, BC. 10000 83 Cu ppm: HMO3-aqua regia digest λλs 1 2 This report was printed on 25-MAR-97. 5 In ppm: HNO3-aqua regia digest ANS 1 10000 83 100.0 6 83 Ag ppm: HNO3-aqua regia digest AAS-BEGD CORR 0.2 SAMPLE PREPARATION CHEMEX NUMBER CODE SAMPLES DESCRIPTION 205 83 Geochem ring to approx 150 mesh 226 82 0-3 Kg crush and split 294 1 4-7 Kg crush and split 3202 83 Rock - save entire reject 238 83 Nitric-aqua-regia digestion

Analytical Chemists * Geochemists * Registered Assavers

5175 Timberlea Blvd Ontario, Canada

Mississauga L4W 253 PHONE: 905-624-2806 FAX: 905-624-6163 fo: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page iber :1 Total Pages :3 Certificate Date: 25-MAR-97 Invoice No. : 19717393 P.O. Number :LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

_*

A9717393 **CERTIFICATE OF ANALYSIS** PREP Cu Zn Au ppb Ag ppm SAMPLE CODE FA+AA ppm ppm Acrua R 1.1 0.6 1.1 0.9 0.7 1.1 1.5 0.6 1.0 1.1 0.9 4.4 1.7 0.9 0.7 0.5 0.9 8.6 1.1 3.5 Ļ 3.0 0.5 ď 0.3 0.4 0.6 0.6 0.7 . 0.8 0.9 1.2 1.0 0.7 1.2 1.0 0.7 0.4 0.4 0.5 0.7 0.6 tart Brichler

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

fo: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page :ber :2 Total Pages :3 Certificate Date: 25-MAR-97 Invoice No. : 19717393 P.O. Number : Account LVY

1

Project :

r

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

						CERTIFICATE OF ANALYSIS			A9717393		
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
277285	205 226	165	30	144	0.5						
277286 277287	205 226	95 50	75 52	178 140	0.7						Į
277288	205 226	75	41	130	0.5						
277289	205 226	60	20	170	0.7						1
277290	205 226	110	24	420	0.8						
277291	205 226	75	40	260	1.2		ļ				
277292 277293	205 226	55 60	52 63	800 570	2.0						
277297	205 226	40	24	38	0.2						
277298	205 226	230	90	45	0.9			<u> </u>			
277299 277300	205 226		26	32	0.3		}	}			
277301	205 226		13	20 31	0.2						ł
277302	205 226		14	26	0.2						
277303	205 226	95	21	22	0.4		<u> </u>	†			
277304	205 226		20	28 24	0.2		1	1			
277306	205 226		26 7	29	0.2		Į	l			
277307	205 226		10	30	0.3						
277308	205 226		18	28	< 0.2		<u> </u>	1			1
277309	205 226		24	28	0.2			1			
277310 277311	205 226 205 226		28 15	31 26	0.2					l	
277312	205 226		28	42	0.2						
277313	205 226		49	34	0.3			1	[+
277317	205 294 205 226		48	40 52	0.3		1				1
277320	205 226		120	41	0.3	}				1	
277343	205 226		9	46	1.8						
277344	205 226		5	30	0.9		†	1		<u></u>	1
277345	205 226		5	32	1.0						
277347	205 226		37	34	0.4	1			1]	}
277348	205 226		22	28	0.2						1
277349 277350	205 226 205 226		10	24	0.4		1		1		
277351	205 226		11	24	0.2	ļ	1			l	1
277352	205 226		17	30	0.3		1			1	1
277353	205 226		9	29	0.3						1
L			1	<u> </u>	<u> </u>	L	<u> </u>		1	ABre	

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page . .nber :3 Total Pages :3 Certificate Date: 25-MAR-97 Invoice No. : 19717393 P.O. Number • LVY Account

Project :

r

Comments: ATTN: PAUL JONES FAX: JIM WILSON

...*

							CERTIFIC	ATE OF A	NALYSIS	A97	17393	
	SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
VR97-18	277354 277355 277356	205 226 205 226 205 226	10 20 15	8 21 7	30 27 26	0.2 0.3 0.2						
i												
	L	<u> </u>		.4		<u> </u>	_k	L(N:		

CHEMEX

CODE

\$

.

983

997

2

5

6

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

CERTIFICATE

A9717394

(LVY) - NUINSCO RESOURCES LIMITED

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 26-MAR-97.

	SAM	PLE PREPARATION
	NUMBER SAMPLES	DESCRIPTION
205 226 3202 238	93 93 93 93	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject Nitric-aqua-regia digestion

To: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

ANALYTICAL PROCEDURES DETECTION UPPER NUMBER SAMPLES LIMIT LIMIT DESCRIPTION METHOD 10000 Au ppb: Fuse 30 g sample FA-AAS 5 93 1000.0 0.07 Au g/t: 1 assay ton, grav. FA-GRAVIMETRIC 1 10000 93 Cu ppm: HNO3-aqua regia digest ANS 1 10000 93 Zn ppm: HNO3-aqua regia digest ЛЛS 1 100.0 93 Ag ppm: HNO3-agua regia digest AAS-BKGD CORR 0.2

A9717394

ď

Г

rp o

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers

5175 Timberlea Blvd. Ontario, Canada

Mississauga 14W 2Š3 PHONE: 905-624-2806 FAX: 905-624-6163

To: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Pag. _mber :1 Total Pages :3 Certificate Date: 26-MAR-97 Invoice No. :19717394 P.O. Number ELVY Account

A9717394

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

0.3

0.6

0.6

CERTIFICATE OF ANALYSIS

_*

PREP Au ppb Au FA Cu Żn Ag ppm SAMPLE CODE $F\lambda + \lambda\lambda$ g/t ppm ppm Agua R 0.2 ---------0.4 ----0.3 ----4.0 0.8 --------1.0 ----1.0 ----1.1 ----0.7 ____ 0.8 0.5 ----0.8 ----0.5 ____ 0.7 ----_____ 1.0 ____ 0.7 ----0.7 ----0.3 0.3 _____ 0.6 ----0.2 _____ 0.7 ----0.6 ----0.4 ____ 0.7 ____ ----0.4 0.4 205 226 ----205 226 ----0.4 205 226 ----0.6 -----0.5 < 5 0.5 ----0.5 -----0.3 205 226 ----0.2 ----0.4 ----0.3 ----0.2

CERTIFICATION:

Hart Brichler

Analytical Chemists " Geochemists " Registered Assayers

5175 Timberlea Blvd.. Ontario, Canada

Mississauga 14W 2Š3 PHONE: 905-624-2806 FAX: 905-624-6163 io: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M98 6K2

Pao .nber :2 Total Pages :3 Certificate Date: 26-MAR-97 Invoice No. :19717394 P.O. Number Account :LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9717394 **CERTIFICATE OF ANALYSIS** PREP Au ppb Au FA Cu Zn Ag ppm SAMPLE CODE ppm ppm FA+AA g/t Aqua R ____ 0.4 ----0.6 ----2.3 ----0.6 ____ 0.5 0.5 ____ 0.5 _ _ _ _ _ 1.6 ____ 2.7 ----0.7 ____ _____ 0.5 2.7 ----2.0 ____ >10000 26.19 19.5 2.8 ____ ____ 10.2 0.7 _____ _____ 0.8 ____ 1.5 ď 0.8 ----0.6 ____ ġ ____ 0.6 Ϋ́Z ____ 0.5 ____ 5.2 _____ 0.8 0.8 ____ ----1.2 _____ 3.9 ____ 1.8 1.0 ____ 0.9 ____ 1.9 ____ 1.3 ----1.7 ____ ____ 3.5 ____ >10000 24.3 ----1.5 ____ 0.8 >10000 24.4 -------->10000 17.0 Junto 1. les

L4W 2S3

Analytical Chemists * Geochemists * Registered Assayers Mississauga

5175 Timberlea Blvd., Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163 ,o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page ...ber :3 Total Pages :3 Certificate Date: 26-MAR-97 Invoice No. :19717394 P.O. Number :LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

A9717394 **CERTIFICATE OF ANALYSIS** PREP Au ppb Au FA Cu Zn Ag ppm SAMPLE g/t CODE $F\lambda + \lambda\lambda$ ppm ppm Aqua R 277438 205 226 945 ----220 4600 6.0 277439 205 226 190 -----33 1160 1.2 277440 205 226 2110 96 1800 2.1 ____ 277441 205 226 1250 ----31 1640 0.7 277442 205 226 790 ----12 480 0.7 81-LPAN 277443 205 226 1370 46 280 0.8 ----277444 205 226 2260 1.3 ----41 5100 277445 205 226 2020 68 380 0.9 ----277446 205 226 100 22 700 0.6 ----277447 205 226 65 11 660 1.4 ____ 277448 226 105 3300 4.0 205 14 ----277449 205 226 785 47 500 1.2 ----277450 205 226 125 28 340 0.6 ----2.0 \mathbb{C}^{-1}

CERTIFICATION:

tail aller

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9717395

CERTIFICATE

A9717395

(LVY) - NUINSCO RESOURCES LIMITED

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 25-MAR-97.

	SAMPLE PREPARATION									
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION								
205 226 294 3202 238	103 102 1 103 103	Geochem ring to approx 150 mesh 0-3 Kg crush and split 4-7 Kg crush and split Rock - save entire reject Nitric-aqua-regia digestion								

ANALYTICAL PROCEDURES CHEMEX NUMBER CODE SAMPLES DETECTION UPPER LIMIT LIMIT DESCRIPTION METHOD 10000 FA-AAS 5 983 103 Au ppb: Puse 30 g sample 1 10000 Cu ppm: HNO3-aqua regia digest λλ5 2 103 In ppm: HNO3-aqua regia digest AAS 1 10000 5 103 Ag ppm: HNO3-aqua regia digest AAS-BEGD CORR 0.2 100.0 103 6

ð

Ē,

σ

K

Ż

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

Ontario, Canada

5175 Timberlea Blvd.. Mississauga L4W 253 PHONE: 905-624-2806 FAX: 905-624-6163 :: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page Number 1 Total Pages :3 Certificate Date: 25-MAR-97 Invoice No. :19717395 P.O. Number Account :LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

_•

CERTIFICATE OF ANALYSIS A9717395 PREP Au ppb Cu Zn Ag ppm SAMPLE CODE $F\lambda + \lambda\lambda$ ppm Acua R ppm 205 226 0.7 1.2 0.5 0.7 0.9 0.9 1.1 1.2 2.5 12.9 2.5 0.7 0.7 0.9 1.9 1.3 1.4 1.0 1.2 1.3 1.8 2.9 1.8 2.3 2.3 3.5 2.0 3.0 4.2 3.0 2.6 3.2 205 226 2.5 205 226 3.1 2.3 3.4 3.4 0.9 0.6 1.3

> Hart Brichles CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd.,

Mississauga L4W 2S3 Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Certificate Date: 25-MAR-97 Invoice No. : 19717395 P.O. Number : LVY Account

Project :

Г

Comments: ATTN: PAUL JONES FAX: JIM WILSON

...*

205 205 205 205 205 205 205 205 205 205	1	Au ppb FA+AA 65 75 65 145 165 115 265 135 65 40	Cu ppm 28 21 31 34 26 16 26 52 28 15	Zn ppm 54 192 124 112 680 180 270 190	Ag ppm Aqua R 1.0 1.2 1.8 2.7 2.2 1.1 2.0						
205 205 205 205 205 205 205 205 205 205	226 226 226 226 226 226 226 226 226 226	75 65 145 165 115 265 135 65 40	21 31 34 26 16 26 52 28	192 124 112 680 180 270	1.2 1.8 2.7 2.2 1.1	:					
205 205 205 205 205 205 205	226 226 226 226 226 226	265 135 65 40	26 52 28	270	1.1						
205 205				200 164	1.6 0.6 0.5						
	226 226 226	100 60 30 25 90	14 18 30 127 27	138 90 160 770 154	0.8 0.6 0.4 2.2 0.3						
205 205 205	226 226 226 226 226 226	65 85 85 55 195	36 26 25 15 46	178 80 130 138 210	0.6 0.5 0.5 0.6 1.8						
205 205 205	226 226 226 226 226 226	230 260 105 210 525	12 17 17 25 34	18 98 82 124 220	1.6 0.9 1.3 3.3 4.2						,
205 205 205	226 226 226 226 226 226	585 220 265 720 180	48 17 23 81 14	152 78 98 310 84	4.8 2.3 2.9 5.6 1.4						
205 205 205	226 226 226 226 226 226	365 530 2240 355 315	44 21 17 19 13	220 182 220 152 98	3.1 3.4 2.7 2.8 2.8						
205 205 205	226 226 226 226 226 226	240 595 465 300 385	4 123 31 106 275	60 240 140 88 680	2.9 9.2 5.0 4.8 8.2						
	205 205 205 205 205 205 205 205 205 205	205 226 205 226	205 226 210 205 226 525 205 226 585 205 226 220 205 226 220 205 226 265 205 226 720 205 226 180 205 226 365 205 226 365 205 226 355 205 226 355 205 226 315 205 226 240 205 226 595 205 226 595 205 226 595 205 226 595 205 226 595 205 226 465 205 226 300	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Analytical Chemists * Geochemists * Registered Assavers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page 1. Der :3 Total Pages :3 Certificate Date: 25-MAR-97 Invoice No. : 19717395 P.O. Number : ELVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS A9717395

_*

	SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R					
	277531 277532 277533 277534 277535	205 226 205 226 205 226 205 294 205 226	280 210 240 265 135	205 96 80 20 26	130 102 108 88 66	5.4 5.0 3.5 3.9 1.2	:				
ł	277536 277537 277538 277539 277540	205 226 205 226 205 226 205 226 205 226 205 226	100 290 345 285 190	33 32 41 53 65	70 74 98 132 210	0.5 1.3 1.9 2.5 2.0					
P1-19AN	277541 277542 277543 277544 277544 277545	205 226 205 226 205 226 205 226 205 226 205 226	460 425 325 1460 660	65 18 14 18 30	72 58 70 62 144	1.9 1.9 1.4 6.6 3.8					
	277546 277547 277548 277549 277550	205 226 205 226 205 226 205 226 205 226 205 226	1190 910 665 1340 480	57 38 20 33 109	114 60 58 220 510	7.3 6.7 5.7 28.5 6.8					
	277555 277556 277557	205 226 205 226 205 226	415 305 160	17 16 39	130 42 132	4.0 2.5 1.9					
]	<u> </u>	1		1	1	CERTIFICATIO	N:	

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163

Mississauga L4W 2S3

io: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9717575

CERTIFICATE

A9717575

(LVY) - NUINSCO RESOURCES LIMITED

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 26-MAR-97.

	SAMPLE PREPARATION EMEX DDE NUMBER SAMPLES DESCRIPTION 205 103 Geochem ring to approx 150 mesh 226 101 0-3 Kg crush and split 294 2 4-7 Kg crush and split 3202 103 Rock - save entire reject 3103 Nitric-aqua-regia digestion								
CHEMEX CODE		DESCRIPTION							

			ANALYTICAL	ANALYTICAL PROCEDURES								
HEMEX	NUMBER SAMPLES		DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT						
983 2 5 6 8	101	Cuppa: Znppa: Ag ppa:	Fuse 30 g sample HH03-aqua regia digest HH03-aqua regia digest HH03-aqua regia digest HH03-aqua regia digest	AAS-BEGD CORR	5 1 1 0.2 1	10000 10000 10000 100.0 10000						

Analytical Chemists * Geochemists * Registered Assavers

5175 Timberlea Blvd., Ontario, Canada

Mississauga 14W 2Š3 PHONE: 905-624-2806 FAX: 905-624-6163 o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page ber :1 Total Pages :3 Certificate Date: 26-MAR-97 Invoice No. : 19717575 P.O. Number :LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

-*

CERTIFICATE OF ANALYSIS A9717575 PREP Au ppb Cu Zn Ni Ag ppm SAMPLE CODE $F\lambda + \lambda\lambda$ Aqua R ppm ppm ppm NRX97-08-236.15 ----____ _ _ _ _ _ NRX97-19-261 ____ ____ _ _ _ _ _ 3.2 ____ 8.0 ____ 17.6 ----11.4 ____ 0.6 ____ 0.7 _ _ _ _ _ 0.3 _ -- ----0.3 ----0.3 ----0.2 ____ 3.4 ----1.0 ----0.8 ----1.1 ____ 1.2 ____ 1.1 _____ 0.5 ____ 0.6 ---σ 0.9 ---r 0.9 ---σ ____ 1.0 ď 7.8 ____ 1.3 ----2.8 ----0.7 ----0.7 ----1.0 ----4.0 ----1.6 ----1.4 ____ 5.0 ----4.2 ----1.1 ____ 1.1 ____ 1.4 ----1.0 ____ 0.9 ____ 2.0 ----

CERTIFICATION: Stantfordler

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Ontario, Canada

Mississauga L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page Jer :2 Total Pages :3 Certificate Date: 26-MAR-97 Invoice No. : 19717575 P.O. Number : :LVY Account

ł

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS A9717575

_*

SAMPLE	PREP CODE		Cu ppm	Zn ppm	Ag ppm Aqua R	Ni ppm					
277592	205 22		32	168	0.6		[
277593	205 22		31	182	0.3						
277594	205 22		63	330	0.4					1	1
277595 277596	205 22 205 22		16 42	198 860	0.9						
277597	205 22	6 135	135	2000	3.5			<u> </u>			ł
277598	205 22	6 90	115	210	0.7						
277599	205 22		110	230	0.9					1	
277600	205 22		84	300	1.4						
277601	205 22	6 95	40	320	0.9						
277602 277603	205 22 205 22		50 94	92 152	0.8						
277604	205 22		82	200	0.7		1	1	1		1
277605	205 22		82	140	0.7						1
277606	205 22		32	90	0.6						
277607	205 22		60	142	1.5		<u> </u>	†	1	<u> </u>	1
277608	205 22		28	100	0.7						
277609	205 22		40	106	0.5		ł				
277610	205 22		32	164	0.2						
277611	205 22	6 30	21	285	0.2						
277612	205 22	6 110	130	920	0.7						
277613	205 22		65	450	1.0						
277614	205 22		62	235	0.6						4
277615	205 22		17	184	0.3						
277616	205 22	6 80	27	210	0.5						
277617	205 22		260	1200	11.2						
277618	205 22		13	92	0.2						
277619	205 22		25	225	0.4						1
277620	205 22		16	570	0.6			1			
277621	205 22	6 670	205	1350	3.1						
277622	205 22		57	156	0.6						
277623	205 22		90	400	0.5			1			
277624 277625	205 22		83 28	685 550	0.9						
277626	205 22		21	580	0.4						
277627	205 22	6 55	21	410	0.6		+				
277628	205 22	6 590	42	186	2.1			1	1	1	1
277629	205 22	6 205	62	60	0.3			1			
277630	205 22		29	86	0.2			1			
277631	205 22	6 405	48	45	0.3				ł		1

Analytical Chemists * Geochemists * Registered Assavers

5175 Timberlea Blvd. Ontario, Canada

Mississauga L4W 2\$3 PHONE: 905-624-2806 FAX: 905-624-6163 (o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page isumber :3 Total Pages :3 Certificate Date: 26-MAR-97 Invoice No. :19717575 P.O. Number Account LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

A9717575 CERTIFICATE OF ANALYSIS PREP Au ppb Cu Zn Ag ppm Ni SAMPLE CODE $F\lambda + \lambda\lambda$ ppm ppm Aqua R ppm 0.6 ____ 0.5 ____ < 0.2 ----0.2 ----0.2 -----1.5 ____ 0.2 ____ < 0.2 -4 _ _ _ _ _ 0.6 _ _ _ _ _ 0.4 ----1.5 _____ < 0.2 ____ < 0.2 Ġ ____ < 0.2 ŘZ ____ < 0.2 ----< 0.2 _____ 0.4 ____ 0.4 ----2.6 ____ 1.6 ____ 1.2 _ _ _ _ _ 1.2 ----1.3 ----

tart Bichles CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3

PHONE: 905-624-2806 FAX: 905-624-6163

o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9717577

CERTIFICATE

A9717577

(LVY) - NUINSCO RESOURCES LIMITED

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 26-MAR-97.

	SAMPLE PREPARATION											
Chemex Code	NUMBER SAMPLES	DESCRIPTION										
205 226 294 3202 238	107 98 9 107 107	Geochem ring to approx 150 mesh 0-3 Kg crush and split 4-7 Kg crush and split Rock - save entire reject Nitric-aqua-regia digestion										

ANALYTICAL PROCEDURES												
CHEMEX CODE	NUMBER SAMPLES		DESC	CRIPTION	METHOD	DETECTION LIMIT	Upper Limit					
983 2 4 5 6 13	107 107 2 107 107 2	Cu ppm: Pb ppm: Zn ppm: Ag ppm:	HNO3-aqua HNO3-aqua HNO3-aqua	sample regia digest regia digest regia digest regia digest	AAS-BKGD CORR	5 1 1 0.2 1	10000 10000 10000 10000 100.0 10000					

Mississauga

L4W 2\$3

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163 J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Pagel Jer :1 Total Pages :3 Certificate Date: 26-MAR-97 Invoice No. :19717577 P.O. Number :LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

CERTIFICATE OF ANALYSIS A9717577 PREP Pb Cu Zn Au ppb Ag ppm As SAMPLE CODE FA+AA ppm ppm ppm Aqua R ppm 277655 205 226 285 3.2 172 ____ 116 ____ 277656 205 185 226 50 134 1.8 ----____ 277657 205 365 70 226 90 3.2 _ _ _ _ _ ____ 277658 205 226 315 39 2.4 116 --------277659 205 226 160 102 ____ 162 1.2 ----205 277660 226 80 31 122 0.5 ____ ----205 130 220 0.8 277661 226 44 ____ __~_ 277662 205 226 80 48 ____ 170 0.8 ____ 277663 205 226 75 58 ____ 140 0.8 ----277664 205 226 225 147 ----89 2.2 ____ 277665 205 275 53 226 ----106 2.3 ____ 277666 205 226 280 169 ----166 1.4 ____ 277667 205 226 160 170 0.7 42 ----____ 277668 205 75 226 400 0.4 89 ____ ----277669 205 226 160 191 0.5 43 ____ ____ 277670 226 695 199 370 2.8 205 ____ ----277671 205 226 80 130 810 0.6 ____ ----277672 205 226 65 69 ____ 185 0.3 ----277673 205 226 115 73 166 0.5 _____ ----۵ 277674 205 226 70 370 0.6 86 ____ ____ ٢ 277675 205 226 85 63 340 0.7 -------σ 277676 70 205 226 37 ____ 200 0.5 ----КZ 277677 205 330 226 99 ____ 820 1.6 ____ 277678 795 205 226 147 ----950 3.3 ----277679 205 226 380 38 ----485 1.6 ____ 277680 205 130 0.8 226 38 194 ____ ----277681 205 226 70 0.6 63 ----114 ----277682 205 226 45 76 116 0.3 ____ ----205 277683 226 30 63 ----92 0.3 ----277684 205 226 50 101 ____ 79 0.6 ----277685 205 226 40 163 ____ 80 0.6 ----277686 205 226 30 80 ----44 0.3 _____ ____ 277687 205 226 380 580 49 0.9 ----277688 205 190 226 131 ____ 56 0.8 ----277689 205 226 160 64 0.5 112 ____ ____ 0.4 277690 205 226 95 106 ____ 76 ____ 277691 205 226 145 690 ____ 64 0.6 ----277692 205 226 105 92 68 0.3 --------277693 205 226 20 31 74 0.2 ____ _ _ _ _ _ 277694 205 226 60 76 0.3 ----360 ---tart Brickler

NR97-19

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers

5175 Timberlea Blvd.. Ontario, Canada

Mississauga L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M98 6K2

Page: Jer :2 Total Pages :3 Certificate Date: 26-MAR-97 Invoice No. :19717577 P.O. Number • Account :LVY

A9717577

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS

. •

PREP Pb Au ppb Cu Zn Ag ppm λs SAMPLE CODE $F\lambda + \lambda\lambda$ ppm ppm ppm Aqua R ppm 277695 205 226 30 11 ----66 0.2 ____ 277696 205 226 95 52 ____ 320 < 0.2 ____ 277697 205 226 120 53 184 0.5 ____ ----277698 205 226 70 112 ____ 179 0.7 ----277699 205 750 226 230 ____ 230 0.5 ----277700 265 205 226 187 26 ____ 0.4 _____ 277701 220 205 226 17 ____ 280 0.3 ----277702 205 226 485 45 780 0.9 ____ ____ 277703 205 285 226 32 ____ 1550 1.6 ____ 1.7 277704 205 226 135 27 1350 ----____ 277705 226 75 205 20 810 1.0 --------277706 205 226 75 21 480 1.1 ____ ----277707 205 226 125 13 ____ 310 0.4 ____ 277708 205 226 395 22 ----640 0.8 ____ 277709 205 226 410 10 68 0.4 ----____ 277710 226 205 210 15 570 0.5 _____ _ _ ~ _ _ 277711 205 80 0.3 226 18 _____ 210 ____ 277712 55 205 226 17 0.4 _____ 162 ____ 205 277713 85 810 226 26 ----1.2 ____ 277714 205 226 120 24 1100 1.5 _ _ _ _ _ _ ____ 277715 205 226 95 20 1500 1.1 ____ ----277716 226 205 130 20 815 0.9 ____ ----277717 205 226 50 17 610 0.5 ____ ____ 277718 205 294 145 905 18 ____ 1.0 ____ 277719 205 226 620 18 ____ 345 0.6 ____ 277720 205 294 100 28 _ - - - -2450 1.3 ____ 277721 205 226 165 3850 56 _____ 1.8 __~__ 277722 205 226 860 31 _ - - - -1400 2.3 ____ 277723 205 635 71 226 ____ 2350 3.0 ____ 277724 205 226 150 23 960 _____ 1.4 _____ 277725 205 226 120 12 142 0.4 ____ ----277726 205 294 290 23 ____ 1200 1.0 ____ 277727 205 226 180 25 590 0.9 --------277728 205 226 340 2500 120 _ _ _ _ _ 1.3 ----277729 205 294 405 14 ----515 1.5 ____ 277730 294 205 2350 70 _____ 980 3.0 _____ 277731 205 226 115 37 _____ 570 1.3 ____ 277732 205 294 115 38 1700 ____ 1.3 ____ 277733 205 226 265 31 ----2200 0.7 ----277734 205 226 280 12 ----420 0.4 ----

Kart Brick 10

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Ontario, Canada Mississauga L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

.o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page oer :3 Total Pages :3 Certificate Date: 26-MAR-97 Invoice No. : 19717577 P.O. Number LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS A9717577

~*

					L						
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Pb ppm	Zn ppm	Ag ppm Aqua R	As ppm				
277735	205 294	205	9		230	0.3					
277736	205 226	1320	395		>10000	18.5					
277737	205 226	440	172		1700	4.8					
277738	205 226	285	51		580	1.0					
277739	205 226	465	18		275	0.6					
=:::::		105	1 +0		2/3						
277740	205 226	660	7		230	0.6					
277741	205 294	175	22		2700	0.9					
277742	205 226	240	13		2100	0.5					
277743	205 226	400	8		345	0.4					
277744	205 226	420	38		1700	2.9					
			L								
277745	205 294	230	6		36	0.5					
277746	205 226	445	12		230	0.9			1		
277747	205 226	180	6		110	0.5					
277748	205 226	360	11		110	0.8					
277749	205 226	570	41		2550	1.5					
277750	205 226	125	12		62	0.8					
277751	205 226	110	10		182	0.6			1		
277752	205 226	165	21		165	1.6					
277753	205 226	130	9		74	0.8					
277754	205 226	90	9		52	0.7					
277754			, , , , , , , , , , , , , , , , , , ,		32	0.7				1	
277755	205 226	65	7		56	0.5					
277756	205 226	25	10		260	0.4			1		
277757	205 226	175	13	9	360	0.5	>10000				
277758	205 226	95	14		186	0.6					
277759	205 226	345	22	20	>10000	1.2	>10000		1		{ }
277760	205 226	345	12		560	0.8		<u> </u>	ł		
277761	205 226	280	13		215	1.0					
		1						1			
	1]]		1]]]
	1 1						1				
									1	1	
							1		}		
								1			
		1		1	1	1		1	1	1	}
								1		1	
		1		l	1	I	ł	ł	1	ł	1
		1								1	
			1						1	1	
								1		1	
									1		
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		·		·	
									. <u>5</u> 7		and the second second
							(CERTIFICATIO	N:	•	

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd.. Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

fo: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9719161

CERTIFICATE ANALYTICAL PROCEDURES A9719161 (LVY) - NUINSCO RESOURCES LIMITED CHEMEX NUMBER DETECTION UPPER SAMPLES DESCRIPTION METHOD LIMIT LIMIT CODE Project: P.O. # : 5 10000 983 100 Au ppb: Fuse 30 g sample FA-AAS Samples submitted to our lab in Vancouver, BC. Cu ppm: HNO3-aqua regia digest AAS 10000 2 5 100 1 This report was printed on 10-APR-97. 100 Zn ppm: HNO3-agua regia digest AAS 10000 1 6 100 Ag ppm: HNO3-agua regia digest AAS-BKGD CORR 0.2 100.0 SAMPLE PREPARATION CHEMEX CODE NUMBER SAMPLES DESCRIPTION 205 100 Geochem ring to approx 150 mesh 226 75 0-3 Kg crush and split 294 25 4-7 Kg crush and split 3202 100 Rock - save entire reject 238 100 Nitric-aqua-regia digestion .

Analytical Chemists * Geochemists * Registered Assayers

Ontario, Canada

Mississauga L4W 2S3 5175 Timberlea Blvd. PHONE: 905-624-2806 FAX: 905-624-6163

fo: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Total Pages :3 Certificate Date: 10-APR-97 Invoice No. :19719161 P.O. Number Account :LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

_*

CERTIFICATE OF ANALYSIS A9719161 PREP Au ppb Cu Zn Ag ppm SAMPLE CODE FA+AA DDM ppm Acrua R 1.4 2.1 5.6 12.0 4.4 1.1 1.0 0.4 0.2 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 0.2 0.2 0.5 0.3 0.3 0.2 < 5 0.2 < 5 0.2 0.5 0.7 0.5 1.1 0.5 9.0 5.4 2.4 0.3 0.3 1.5 0.5 1.3 2.0 1.0 < 5 < 0.2 < 5 < 0.2 NR97-25 < 5 < 0.2 < 5 < 0.2

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd.,

Mississauga L4W 2S3 Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 io: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Pageber :2 Total Pages :3 Certificate Date: 10-APR-97 Invoice No. : 19719161 P.O. Number : Account LVY

Project .

r

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

							(CERTIFIC	ATE OF A	NALYSIS	A97	19161	
	SAMPLE	PRE		Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
	491041 491042 491043	205 2	226 226 294	< 5 < 5 < 5	140 124 120	81 92 90	< 0.2 < 0.2 < 0.2						
	491044 491045	205 2 205 2	226 226	< 5 < 5	130 182	82 90	< 0.2 < 0.2	•					
	491046 491047 491048	205 2	226 294 226	< 5 < 5 < 5	136 112 130	83 74 86	< 0.2 < 0.2 < 0.2						
	491049 491050	205 2	294 294	< 5 < 5	138 105	92 100	< 0.2 < 0.2						
	491252 491253 491254 491255	205 2 205 2	226 226 226	< 5 < 5 < 5	248 140 144 120	66 66 102	< 0.2 < 0.2 < 0.2						
	491255 491256 491257	205 2	226 226 294	< 5 < 5 < 5	144	80 88 100	< 0.2 < 0.2 < 0.2		·				
52-11	491257 491258 491259 491260	205 2 205 2	294 294 226 226	< 5 < 5 < 5 < 5	132 150 138 138	90 94 90	< 0.2 < 0.2 < 0.2 < 0.2						
LP8Z	491261	205 2	226	< 5	144	96	< 0.2						
	491263 491264 491265	205 2 205 2	294 294 294	< 5 < 5 < 5	142 125 100	74 76 48	< 0.2 < 0.2 < 0.2						
ļ	491266 491267	205 2	294 226	< 5	112 86	82 66	< 0.2						
	491268 491269 491270 491271	205 2	226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5</pre>	74 72 80 87	68 64 66 80	< 0.2 < 0.2 < 0.2 < 0.2						
	491272 491273	205 2	226 294	< 5	70 84	60 70	< 0.2 < 0.2 < 0.2						
L 	491274 491275 491276	205 2 205 2	226 294 294	< 5 < 5 < 5	82 72 72	66 90 102	< 0.2 < 0.2 0.2						
2-2-	491277 491278 491279	205 2	226 226 226	< 5 < 5 < 5	66 80 88	92 78 62	0.2 0.2 0.2						
N ROT	491280 491281	205 2	226 226 226	< 5	100 55	140 108	< 0.2 < 0.2 < 0.2						

Sant Briddes CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd... Ontario, Canada

Mississauga 14W 2\$3 PHONE: 905-624-2806 FAX: 905-624-6163 fo: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Total Pages :3 Certificate Date: 10-APR-97 Invoice No. :19719161 P.O. Number LVY Account

0

and the second

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

-*

A9719161 **CERTIFICATE OF ANALYSIS** PREP Au ppb Zn Cu Ag ppm SAMPLE CODE FA+AA ppm ppm Aqua R 491282 205 226 < 5 86 150 < 0.2 491283 205 < 5 226 84 104 < 0.2 491284 205 226 < 5 200 < 0.2 116 491285 205 < 0.2 . 226 < 5 174 84 491286 205 < 5 77 < 0.2 294 148 205 205 491287 294 < 5 60 108 < 0.2 491288 226 < 5 65 92 < 0.2 205 205 491289 < 5 226 52 128 < 0.2 3 491290 226 < 5 100 84 < 0.2 -LORN 491291 205 < 5 88 < 0.2 226 67 491292 205 294 < 5 45 78 < 0.2 ٠ 205 491293 226 < 5 73 128 < 0.2 491294 205 226 < 5 67 120 < 0.2 491295 205 226 < 5 45 104 < 0.2 491296 205 226 < 5 75 205 < 0.2 491297 205 226 < 5 152 120 < 0.2 491298 205 294 10 133 92 < 0.2 205 491299 226 < 5 120 94 < 0.2 205 491300 294 < 5 73 71 < 0.2 491301 < 5 78 205 226 66 < 0.2

CERTIFICATION:_

14

1 -

Project: P.O. # :

CHEMEX

205

226

294

3202

238

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers Mississauga L4W 2S3 5175 Timberlea Blvd., Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163

o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9719162

ANALYTICAL PROCEDURES CERTIFICATE A9719162 (LVY) - NUINSCO RESOURCES LIMITED CHEMEX NUMBER DETECTION UPPER CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT 10000 Au ppb: Fuse 30 g sample 5 983 96 YX-XXS Samples submitted to our lab in Vancouver, BC. 10000 2 96 Cu ppm: HNO3-aqua regia digest AAS 1 This report was printed on 10-APR-97. AAS 10000 5 96 Zn ppm: HNO3-agua regia digest 1 Ag ppm: HNO3-aqua regia digest AAS-BEGD CORR 100.0 6 96 0.2 SAMPLE PREPARATION NUMBER SAMPLES DESCRIPTION 96 Geochem ring to approx 150 mesh 93 0-3 Kg crush and split 3 4-7 Kg crush and split 96 Rock - save entire reject 96 Nitric-aqua-regia digestion

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Ontario, Canada

Mississauga L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page per 1 Total Pages 3 Certificate Date: 10-APR-97 Invoice No. 19719162 P.O. Number 3 Account LVY

Project :

~

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

						CERTIFIC	ATE OF A	NALYSIS	A97	19162	
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
492001 492002 492003 492004 492005	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 < 5 < 5 < 5	53 50 44 62 77	220 420 300 186 120	< 0.2 0.2 0.2 < 0.2 < 0.2 < 0.2	3					
492006 492007 492008 492009 492010	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5 15 < 5</pre>	96 72 134 412 254	106 130 110 72 64	< 0.2 < 0.2 < 0.2 < 0.2 0.2 0.5						
492011 492012 492013 492014 492015	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>	113 185 170 490 92	30 32 40 23 25	< 0.2 < 0.2 < 0.2 < 0.2 0.4 < 0.2						
492016 492017 492018 492019 492020	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>	2 2 2 7 7 7	20 19 26 36 50	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
492021 492022 492023 492023 492024 492025	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 30 < 5 < 5 </pre>	8 9 4 6 2	50 20 22 20 22	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
492026 492027 492028 492029 492030	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 25 45 < 5</pre>	10 2 10 5 4	4 10 20 24 160	< 0.2 0.2 0.2 0.2 < 0.2 < 0.2						
492031 492032 492033 492033 492034 492035	205 226 205 226 205 226 205 226 205 226 205 226	10 50 40 15 5	7 5 4 7 2	28 118 24 26 22	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
492036 492037 492038 492039 492040	205 226 205 226 205 226 205 226 205 226 205 226	<pre></pre>	20 24 68 7 3	22 58 140 26 43	< 0.2 < 0.2 0.3 < 0.2 < 0.2						
L	<u> </u>		1		l	L	 (: Ita	<u></u>	1

0

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

a: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page i .oer :2 Total Pages :3 Certificate Date: 10-APR-97 Invoice No. : [9719162 P.O. Number LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

_*

								CERTIFIC	ATE OF	ANALYSIS	A97	19162	
	SAMPLE		REP ODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
492 492 492	041 042 043 044 045	205 205 205 205 205	226 226	<pre>< 5 < 5 10 45 < 5</pre>	2 9 41 214 6	66 80 98 90 64	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3					
492 492 492	046 047 048 049 050	205 205 205 205 205 205	226 226	15 45 < 5 < 5 < 5 < 5	10 4 6 6 6	66 70 74 66 64	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
492 492 492	051 052 053 054 055	205 205 205 205 205 205	226 226 226	40 25 5 < 5 40	17 5 8 4 7	60 56 60 60 56	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
492 492 492	056 057 058 059 060	205 205 205 205 205	226 226 226	95 < 5 < 5 < 5 < 5 < 5	23 76 17 18 340	58 260 150 240 100	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
492 492 492	061 062 063 064 065	205 205 205 205 205	226 226 226	<pre>< 5 < 5</pre>	212 325 500 146 350	106 114 114 128 98	< 0.2 0.5 0.3 < 0.2 0.5						
492 492 492 492	066 067 068 069 070	205 205 205 205 205	226 226 226	<pre>< 5 < 5 120 < 5 < 5 </pre>	21 90 >10000 94 143	32 23 490 230 420	< 0.2 < 0.2 12.3 < 0.2 0.3						
492 492 492 492	071 072 073 074 075	205 205 205 205 205	226 226 226	<pre>< 5 < 5</pre>	50 100 100 26 40	114 92 126 220 240	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
492 492 492	2076 2077 2078 2079 2080	205 205 205 205 205	226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	156 51 55 12 19	300 72 56 84 72	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga L4W 2S3

Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163 o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page ber :3 Total Pages :3 Certificate Date: 10-APR-97 Invoice No. : 19719162 P.O. Number Account :LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS A9719162

~*

< 5 17 54 < 5 7 46	
< 5 42 102 < 5 152 88 < 5 68 64	< 0.2 < 0.2 0.2 0.2 0.2 0.2
<pre>< 5 76 78 < 5 40 60 < 5 150 66 5 158 58 < 5 82 120</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2
10 60 120 10 44 182 10 58 158 < 5	<pre>< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2</pre>
15 64 98	CERTIFICATION: HTationa

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 .o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9720417

CI	ERTIFI	CATE A9720417			ANALYTICAL	PROCEDURES		
(LVY) - NI Project: P.O. # :	UINSCO R	ESOURCES LIMITED	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
Samples	submitte port was	ed to our lab in Vancouver, BC. printed on 29-AFR-97.	983 2 5 6	119 119	Au ppb: Fuse 30 g sample Cu ppm: HNO3-aqua regia digest Zn ppm: HNO3-aqua regia digest Ag ppm: HNO3-aqua regia digest	РА-ААS ААS АAS AAS-BKGD CORR	5 1 1 0.2	10000 10000 10000 100.0
	SAM	PLE PREPARATION				•		
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION						
205 226 294 3202 238	119 93 26 119 119	Geochem ring to approx 150 mesh 0-3 Kg crush and split 4-7 Kg crush and split Rock - save entire reject Nitric-aqua-regia digestion						

-

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Ontario, Canada

Mississauga L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page /ber :1 Total Pages :3 Certificate Date: 29-APR-97 Invoice No. : [9720417 P.O. Number LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

_*

		.	r			CERTIFIC	CATE OF	ANALYSIS	A97	20417	
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
491313	205 226	10	74	87	< 0.2						
491314	205 294	< 5	28	56	< 0.2						ł.
491315	205 226	15	112	177	0.5						
491316	205 294	10	49	105	< 0.2	;	1	1			Ĺ
491317	205 294	5	45	73	< 0.2						l
491318	205 226	< 5	17	43	< 0.2						Γ
491319	205 226	< 5	24	43	< 0.2						L
491320	205 226	< 5	71	124	< 0.2	1					1
491321	205 226	< 5	96	57	< 0.2						
491322	205 226	< 5	30	35	< 0.2						
491323	205 226	< 5	145	218	< 0.2						ſ
491324	205 294	< 5	39	57	< 0.2			1			Ļ
491325	205 226	< 5	56	92	< 0.2						ł
491326 491327	205 226	< 5	38	105 112	< 0.2		1				
491327	205 226	< 3	49	112	< 0.4				······································		
491328	205 226	5	84	103	< 0.2	1					
491329	205 226	< 5	47	120	< 0.2	1					
491330 491331	205 226	5 10	62 51	198 192	0.3						
491332	205 226	< 5	95	155	0.2						ł
			· · · · · ·								1
491333	205 226	< 5	38	225	< 0.2						
491345	205 294	< 5	20	38	< 0.2						l
491346 491347	205 294	< 5	20	55	< 0.2						
491348	205 226	< 5	18	42	< 0.2	1					I
			20	43	. 0.2					<u> </u>	
491349	205 226	< 5	12	28	< 0.2						
491350	205 294	< 5	23	50	< 0.2		1	1			
491351 491352	205 226 205 226	< 5	13	50	< 0.2					1	
491352	205 226	< 5	26 15	59 26	< 0.2						
491354	205 226	< 5	27	68	< 0.2	+				+	╉
491363	205 226		77	73	< 0.2						
491364	205 226		72	45	< 0.2						
491365	205 294		78	40	< 0.2				1	1	١
491366	205 294		80	48	< 0.2		1				
491367	205 226	< 5	89	74	< 0.2					1	†
491368	205 226		85	66	< 0.2	1		1			
491369	205 294		115	72					1	1	
491370	205 226		92	71	< 0.2						
491371	205 226	< 5	116	70	< 0.2	1					
					1	1			L	· ·	
									11	itBre	7.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2\$3 PHONE: 905-624-2806 FAX: 905-624-6163 .o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Total Pages :3 Certificate Date: 29-APR-97 Invoice No. : 19720417 P.O. Number Account :LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

CERTIFICATE OF ANALYSIS A9720417 PREP Au ppb Cu Zn Ag ppm SAMPLE CODE FA+AA mag mqq Aqua R < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 5 з < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 ų LPAJ < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 0.2 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < < 0.2

CERTIFICATION:

Jan Por

rices

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

.o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Certificate Date: 29-APR-97 Invoice No. : [9720417 P.O. Number :LVY Account

Project :

-

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

		1		r		CERTIFIC	CATE OF	ANALYSIS	A97	20417	
SAMPLE	PREP CODE	Ац ррб FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
491412	205 226	< 5	117	160	< 0.2						
491413 491414	205 226	< 5	46	144	< 0.2						
491414	205 226 205 294	< 5	87 87	188 182	< 0.2						
491416	205 294	< 5	65	60	< 0.2						
491417	205 294	< 5	76	65	< 0.2		1				
491418 491419	205 226	< 5	68 63	72 64	< 0.2						
491420	205 226	< 5	90	73	< 0.2						
491421	205 294	< 5	85	74	< 0.2						
491422 491423	205 226 205 226	< 5	73	53	< 0.2 < 0.2		1			······································	
491424	205 226	< 5	65	92	< 0.2						
491425	205 226	< 5	79	70	< 0.2	1					
491426	205 226	< 5	75	70	< 0.2			r.			
491427 491428	205 226 205 226	< 5 < 5	71	55 72	< 0.2		T				
491429	205 226	< 5	71	60	< 0.2						
491430	205 226	< 5	82	94	< 0.2						
491431	205 226	< 5	92	86	< 0.2						
491432	205 294	< 5	82	77	< 0.2						T
491433	205 294	< 5	82	76	< 0.2						
491434 491435	205 226	< 5	71 86	80 76	< 0.2						
491436	205 226	< 5	98	70	< 0.2						
491437	205 226	< 5	104	70	< 0.2		1				<u> </u>
491438 491439	205 226	< 5	83	76	< 0.2						
491440	205 294	< 5	75	70	< 0.2						
491441	205 226	< 5	43	70	< 0.2						
491442 491443	205 226	< 5	41 28	83	< 0.2	1	1				1
491444	205 226	< 5	28	70	< 0.2		1		1		
491445	205 226	\$ 5	12	60	< 0.2		1		1	1	
491446	205 226	< 5	23	33	< 0.2	1					
491447 491448	205 226 205 226		7	48 51	< 0.2	T					
491449	205 226		18	44	0.2						
491450	205 226		13	53	< 0.2						
	- B		.					CERTIFICATIO	11-	1.0.0	<u>.</u>

Project: P.O. # :

CHEMEX CODE

205

226

294

3202

238

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 253 PHONE: 905-624-2806 FAX: 905-624-6163 To: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE **ANALYTICAL PROCEDURES** A9720418 (LVY) - NUINSCO RESOURCES LIMITED DETECTION UPPER CHEMEX NUMBER SAMPLES METHOD LIMIT LIMIT DESCRIPTION CODE 10000 983 101 Au ppb: Fuse 30 g sample FA-AAS 5 Samples submitted to our lab in Vancouver, BC. 101 Cu ppm: HNO3-aqua regia digest AAS 1 10000 2 This report was printed on 21-APR-97. 10000 5 101 Zn ppm: HNO3-aqua regia digest AAS 1 100.0 0.2 6 101 Ag ppm: HNO3-aqua regia digest AAS-BKGD CORR SAMPLE PREPARATION NUMBER SAMPLES DESCRIPTION 101 Geochem ring to approx 150 mesh 86 0-3 Kg crush and split 15 4-7 Kg crush and split 101 Rock - save entire reject 101 Nitric-aqua-regia digestion

A9720418

Ā

Fran

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd.,

Ontario, Canada

Mississauga L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Pas Jumber :1 Total Pages :3 Certificate Date: 21-APR-97 Invoice No. :19720418 P.O. Number Account :LVY

A9720418

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS

PREP Au ppb Cu Zn Ag ppm SAMPLE CODE FA+AA DDW ppm Aqua R < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2

> tart Bully **CERTIFICATION:**

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Pag .umber :2 Total Pages :3 Certificate Date: 21-APR-97 Invoice No. : 19720418 P.O. Number LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9720418 **CERTIFICATE OF ANALYSIS**

-*

	SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
R91-30	491491 491492 491493	205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>	9 19 13	47 48 60	< 0.2 < 0.2 < 0.2						
	491494 492097	205 226 205 226	< 5 < 5	9 26	35 34	< 0.2 < 0.2	:					
	492098 492099	205 226 205 226	< 5 < 5	135 43	152 130	< 0.2 < 0.2						
	492100 492101 492102	205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>	454	50 43 46	< 0.2 < 0.2 < 0.2						
	492103 492104 492105	205 226 205 226 205 226	< 5 40 < 5	6 22 4	45 38 72	< 0.2 < 0.2 < 0.2						
	492106 492107	205 226 205 226 205 226	<pre>< 5 < 5 < 5</pre>	5	68 57	< 0.2 < 0.2 < 0.2						
	492108 492109 492110	205 226 205 226 205 226	< 5 < 5	5 4	48 52 78	< 0.2 < 0.2						
	492111 492112	205 226 205 226 205 226	10 < 5 < 5	4 3 3	50 58	< 0.2 < 0.2 < 0.2						
28	492113 492114	205 226 205 226	< 5 25	3 17	63 55	< 0.2 < 0.2						
LPAN	492115 492116 492117	205 226 205 226 205 226	< 5 < 5 < 5	4 5 5	68 50 58	< 0.2 < 0.2 < 0.2 < 0.2						
	492118 492119	205 226 205 226	< 5 < 5	5	55 58	< 0.2 < 0.2						
	492120 492121 492122	205 226 205 226 205 226	< 5 5 10	10 20 11	60 62 64	< 0.2 < 0.2 < 0.2						
	492123 492124	205 226 205 226	10 < 5	7 11	73	< 0.2						<u> </u>
	492125 492126 492127	205 226 205 226 205 226	15 < 5 5	8 4 4	57 64 68	< 0.2 < 0.2 < 0.2						
	492128 492129	205 226 205 226	90 < 5	5 9	53 102	< 0.2 < 0.2						
l	492130 492131 492132	205 226 205 226 205 226	35 30 10	10 11 16	60 48 52	0.3 < 0.2 < 0.2				Ŧ		
				I	L			<u> </u>	1		ABrd	

Analytical Chemists * Geochemists * Registered Assayers Mississauga L4W 2S3

Т

5175 Timberlea Blvd., Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163

Т

To: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Pasaumber :3 Total Pages :3 Certificate Date: 21-APR-97 Invoice No. : 19720418 P.O. Number : Account :LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS A9720418

~*

	SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R					
	492133 492134 492135 492136 492137	205 226 205 226 205 226 205 226 205 226 205 226	20 < 5 < 5 < 5 < 5 < 5	19 11 7 4 12	44 40 48 41 45	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	:				
~	492138 492139 492140 492141 492142	205 226 205 226 205 226 205 226 205 226 205 294	30 < 5 < 5 10 5	7 22 16 36 30	30 37 32 36 40	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2					
NR97-28	492143 492144 492145 492146 492147	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 20 20 125 45</pre>	12 5 63 63 10	44 32 30 30 26	< 0.2 < 0.2 < 0.2 < 0.2 0.8 < 0.2					
~	492148 492149 492150 492351 492352	205 294 205 226 205 226 205 226 205 226 205 226	35 10 25 < 5 < 5	9 16 48 12 22	27 28 31 34 42	0.2 < 0.2 < 0.2 < 0.2 0.2 < 0.2					
Ļ	492353	205 226	< 5	20	36	0.2					
1											
						<u> </u>		CERTIFICATION	Ha	HBack	ler

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 .o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9720747

CERTIFICATE **ANALYTICAL PROCEDURES** A9720747 (LVY) - NUINSCO RESOURCES LIMITED DETECTION UPPER CHEMEX NUMBER SAMPLES CODE METHOD LIMIT LIMIT DESCRIPTION Project: P.O. # : 983 106 Au ppb: Fuse 30 g sample FA-AAS 5 10000 Samples submitted to our lab in Vancouver, BC. 106 Cu ppm: HNO3-aqua regia digest ANS 1 10000 2 This report was printed on 23-APR-97. 5 106 Zn ppm: HNO3-aqua regia digest AAS 1 10000 Ag ppm: HNO3-aqua regia digest 100.0 6 106 AAS-BKGD CORR 0.2 SAMPLE PREPARATION CHEMEX NUMBER CODE SAMPLES DESCRIPTION 205 106 Geochem ring to approx 150 mesh 226 89 0-3 Kg crush and split 17 294 4-7 Kg crush and split 3202 106 Rock - save entire reject 238 106 Nitric-aqua-regia digestion

Analytical Chemists * Geochemists * Registered Assavers

5175 Timbertea Blvd... Mississauga Ontano, Canada 14W 253 PHONE: 905-624-2806 FAX: 905-624-6163 .o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page uber 1 Total Pages :3 Certificate Date: 23-APR-97 Invoice No. :19720747 P.O. Number :LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

CERTIFICATE OF ANALYSIS A9720747 PREP Au ppb Cu Zn Ag ppm CODE SAMPLE FA+AA Aqua R ppm DDM < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 , 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 Б < 5 < 0.2 < 5 < 0.2 ď < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 5 < 0.2 < 0.2 < 5 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 Г < 5 < 0.2 ģ < 5 < 0.2 Q < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 205 294 < 5 < 0.2 tart Brickler

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Ontario, Canada

Mississauga L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 io: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page ...ber :2 Total Pages :3 Certificate Date: 23-APR-97 Invoice No. : [9720747 P.O. Number • Account LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS A9720747

~*

PREP CODE	Au ppb FA+AA	Cu	Zn	Ag ppm						
205 226		ppm	ppm	Aqua R						
205 226 205 226 205 226 205 226 205 226	<pre></pre>	6 7 11 27 13	51 46 40 49 52	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	;					
205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 </pre>	11 22 14 8 8	54 58 48 46 54	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5 < 5 15</pre>	16 16 8 8 84	44 48 56 160 250	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 2.1				1		
205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>	2 3 17 13 10	42 40 62 54 40	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5 15 < 5</pre>	23 9 9 4 13	48 120 92 46 40	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	,					
205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>	5 17 34 8 20	43 82 184 72 52	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
205 226 205 294 205 226 205 226 205 226 205 226	<pre>< 5 < 5 </pre>	11 23 18 24 20	44 110 72 140 90	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>	15 14 13 25 12	141 124 98 120 74	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2					_	
	205 226 205 2	205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 205 226 < 5 </td <td>205$226$$<$$5$$11$$205$$226$$<$$5$$22$$205$$226$$<$$5$$14$$205$$226$$<$$5$$14$$205$$226$$<$$5$$16$$205$$226$$<$$5$$16$$205$$226$$<$$5$$8$$205$$226$$<$$5$$8$$205$$226$$<$$5$$8$$205$$226$$<$$5$$8$$205$$226$$<$$5$$2$$205$$226$$<$$5$$13$$205$$226$$<$$5$$13$$205$$226$$<$$5$$23$$205$$226$$<$$5$$13$$205$$226$$<$$5$$13$$205$$226$$<$$5$$13$$205$$226$$<$$5$$13$$205$$226$$<$$5$$23$$205$$226$$<$$5$$23$$205$$226$$<$$5$$21$$205$$226$$<$$5$$11$$205$$226$$<$$5$$23$$205$$226$$<$$5$$14$$205$$226$$<$$5$$14$$205$$226$$<$$5$$14$$205$$226$$<$$5$$14$$205$$226$$<$</td> <td>205$226$$< 5$$11$$54$$205$$226$$< 5$$22$$58$$205$$226$$< 5$$14$$48$$205$$226$$< 5$$14$$48$$205$$226$$< 5$$16$$44$$205$$226$$< 5$$16$$44$$205$$226$$< 5$$8$$56$$205$$226$$< 5$$8$$160$$205$$226$$< 5$$8$$160$$205$$226$$< 5$$2$$42$$205$$226$$< 5$$2$$42$$205$$226$$< 5$$2$$42$$205$$226$$< 5$$13$$40$$205$$226$$< 5$$13$$54$$205$$226$$< 5$$13$$54$$205$$226$$< 5$$13$$40$$205$$226$$< 5$$9$$92$$205$$226$$< 5$$13$$40$$205$$226$$< 5$$13$$40$$205$$226$$< 5$$13$$40$$205$$226$$< 5$$11$$44$$205$$226$$< 5$$11$$44$$205$$226$$< 5$$11$$44$$205$$226$$< 5$$11$$44$$205$$226$$< 5$$11$$44$$205$$226$$< 5$$11$$44$$205$$226$$< 5$</td> <td>205$226$$< 5$$11$$54$$< 0.2$$205$$226$$< 5$$22$$58$$< 0.2$$205$$226$$< 5$$14$$48$$< 0.2$$205$$226$$< 5$$8$$46$$< 0.2$$205$$226$$< 5$$8$$54$$< 0.2$$205$$226$$< 5$$8$$54$$< 0.2$$205$$226$$< 5$$8$$56$$< 0.2$$205$$226$$< 5$$8$$160$$< 0.2$$205$$226$$< 5$$8$$160$$< 0.2$$205$$226$$< 5$$2$$42$$< 0.2$$205$$226$$< 5$$2$$42$$< 0.2$$205$$226$$< 5$$17$$62$$< 0.2$$205$$226$$< 5$$10$$40$$< 0.2$$205$$226$$< 5$$23$$48$$< 0.2$$205$$226$$< 5$$9$$92$$< 0.2$$205$$226$$< 5$$13$$40$$< 0.2$$205$$226$$< 5$$17$$82$$< 0.2$$205$$226$$< 5$$17$$82$$< 0.2$$205$$226$$< 5$$17$$82$$< 0.2$$205$$226$$< 5$$17$$82$$< 0.2$$205$$226$$< 5$$11$$446$$< 0.2$$205$$226$$< 5$$23$$1100$$< 0.2$</td> <td>205 226 < 5</td> 11 54 < 0.2	205 226 $<$ 5 11 205 226 $<$ 5 22 205 226 $<$ 5 14 205 226 $<$ 5 14 205 226 $<$ 5 16 205 226 $<$ 5 16 205 226 $<$ 5 8 205 226 $<$ 5 8 205 226 $<$ 5 8 205 226 $<$ 5 8 205 226 $<$ 5 2 205 226 $<$ 5 13 205 226 $<$ 5 13 205 226 $<$ 5 23 205 226 $<$ 5 13 205 226 $<$ 5 13 205 226 $<$ 5 13 205 226 $<$ 5 13 205 226 $<$ 5 23 205 226 $<$ 5 23 205 226 $<$ 5 21 205 226 $<$ 5 11 205 226 $<$ 5 23 205 226 $<$ 5 14 205 226 $<$ 5 14 205 226 $<$ 5 14 205 226 $<$ 5 14 205 226 $<$	205 226 < 5 11 54 205 226 < 5 22 58 205 226 < 5 14 48 205 226 < 5 14 48 205 226 < 5 16 44 205 226 < 5 16 44 205 226 < 5 8 56 205 226 < 5 8 160 205 226 < 5 8 160 205 226 < 5 2 42 205 226 < 5 2 42 205 226 < 5 2 42 205 226 < 5 13 40 205 226 < 5 13 54 205 226 < 5 13 54 205 226 < 5 13 40 205 226 < 5 9 92 205 226 < 5 13 40 205 226 < 5 13 40 205 226 < 5 13 40 205 226 < 5 11 44 205 226 < 5 11 44 205 226 < 5 11 44 205 226 < 5 11 44 205 226 < 5 11 44 205 226 < 5 11 44 205 226 < 5	205 226 < 5 11 54 < 0.2 205 226 < 5 22 58 < 0.2 205 226 < 5 14 48 < 0.2 205 226 < 5 8 46 < 0.2 205 226 < 5 8 54 < 0.2 205 226 < 5 8 54 < 0.2 205 226 < 5 8 56 < 0.2 205 226 < 5 8 160 < 0.2 205 226 < 5 8 160 < 0.2 205 226 < 5 2 42 < 0.2 205 226 < 5 2 42 < 0.2 205 226 < 5 17 62 < 0.2 205 226 < 5 10 40 < 0.2 205 226 < 5 23 48 < 0.2 205 226 < 5 9 92 < 0.2 205 226 < 5 13 40 < 0.2 205 226 < 5 17 82 < 0.2 205 226 < 5 17 82 < 0.2 205 226 < 5 17 82 < 0.2 205 226 < 5 17 82 < 0.2 205 226 < 5 11 446 < 0.2 205 226 < 5 23 1100 < 0.2	205 226 < 5	205 226 < 5 11 54 < 0.2 205 226 < 5 14 48 < 0.2 205 226 < 5 14 48 < 0.2 205 226 < 5 8 46 < 0.2 205 226 < 5 8 54 < 0.2 205 226 < 5 8 54 < 0.2 205 226 < 5 8 56 < 0.2 205 226 < 5 8 160 < 0.2 205 226 < 5 8 160 < 0.2 205 226 < 5 3 40 < 0.2 205 226 < 5 13 54 < 0.2 205 226 < 5 13 54 < 0.2 205 226 < 5 13 40 < 0.2 205 226 < 5 13 40 < 0.2 205 226 < 5 13 40 < 0.2	205 226 < 5 11 54 < 0.2 205 226 < 5 14 48 < 0.2 205 226 < 5 14 48 < 0.2 205 226 < 5 8 46 < 0.2 205 226 < 5 8 54 < 0.2 205 226 < 5 8 54 < 0.2 205 226 < 5 8 56 < 0.2 205 226 < 5 8 166 44 < 0.2 205 226 < 5 16 44 < 0.2 < 0.2 205 226 < 5 8 160 < 0.2 < 0.2 205 226 < 5 17 62 < 0.2 < 0.2 205 226 < 5 13 54 < 0.2 < 0.2 205 226 < 5 13 54 < 0.2 < 0.2 205 226 < 5 13 40 < 0.2 </td <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>205 226 < 5 211 54 < 0.2 205 226 < 5 212 58 < 0.2 205 226 < 5 14 48 < 0.2 205 226 < 5 14 48 < 0.2 205 226 < 5 8 54 < 0.2 205 226 < 5 16 44 < 0.2 205 226 < 5 16 44 < 0.2 205 226 < 5 8 160 < 0.2 205 226 < 5 8 160 < 0.2 205 226 < 5 3 40 < 0.2 205 226 < 5 3 40 < 0.2 205 226 < 5 17 62 < 0.2 205 226 < 5 17 62 < 0.2 205 226 < 5 17 62 < 0.2</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	205 226 < 5 211 54 < 0.2 205 226 < 5 212 58 < 0.2 205 226 < 5 14 48 < 0.2 205 226 < 5 14 48 < 0.2 205 226 < 5 8 54 < 0.2 205 226 < 5 16 44 < 0.2 205 226 < 5 16 44 < 0.2 205 226 < 5 8 160 < 0.2 205 226 < 5 8 160 < 0.2 205 226 < 5 3 40 < 0.2 205 226 < 5 3 40 < 0.2 205 226 < 5 17 62 < 0.2 205 226 < 5 17 62 < 0.2 205 226 < 5 17 62 < 0.2

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd. Mississauga Ontario, Canada L4W 2Š3 PHONE: 905-624-2806 FAX: 905-624-6163 NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page .iber :3 Total Pages :3 Certificate Date: 23-APR-97 Invoice No. :19720747 P.O. Number :LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

_*

CERTIFICATE OF ANALYSIS A9720747 PREP Au ppb Cu Zn Ag ppm SAMPLE CODE FA+AA ppm ppm Aqua R 491185 205 226 < 5 12 46 < 0.2 205 205 491186 226 < 5 10 44 < 0.2 491187 294 < 5 34 45 < 0.2 • 491188 205 226 < 5 6 43 < 0.2 205 491189 226 < 5 8 22 < 0.2 491190 50 205 226 12 < 0.2 < 5 491191 205 226 < 5 57 < 0.2 10 491192 205 294 < 5 14 50 < 0.2 491193 205 294 < 5 16 55 < 0.2 491194 205 226 < 5 20 < 0.2 56 491195 57 205 226 < 5 22 < 0.2 491196 205 294 < 5 < 0.2 20 43 đ 491197 205 294 < 5 < 0.2 15 41 < 0.2 491198 205 226 < 5 15 45 r 5 491199 205 226 < 5 20 70 < 0.2 7 491200 205 226 < 5 22 83 < 0.2 < 5 < 0.2 491201 205 226 174 24 491202 < 5 < 0.2 205 226 19 70 491203 < 0.2 < 5 72 205 226 15 491204 < 5 64 < 0.2 205 294 13 491205 205 226 < 5 15 64 < 0.2 491206 205 226 < 5 17 58 < 0.2 491207 < 5 < 0.2 205 226 8 60 491208 205 226 20 27 95 1.0 491209 205 226 < 5 12 65 < 0.2 491210 205 226 < 5 17 83 < 0.2 1 4 1 1

CERTIFICATION:_

.

34

5175 Timberlea Blvd., Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163

Analytical Chemists * Geochemists * Registered Assayers Mississauga L4W 2S3

To: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9720748

CERTIFICATE A9720748 **ANALYTICAL PROCEDURES** (LVY) - NUINSCO RESOURCES LIMITED DETECTION UPPER CHEMEX NUMBER CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT Project: P.O. # : 5 10000 983 100 Au ppb: Fuse 30 g sample FA-AAS Samples submitted to our lab in Vancouver, BC. 10000 Cu ppm: HNO3-aqua regia digest ЛЛS 1 2 100 This report was printed on 23-APR-97. 10000 100 Zn ppm: HN03-aqua regia digest λλS 5 1 Ag ppm: HNO3-aqua regia digest AAS-BEGD CORR 0.2 100.0 6 100 SAMPLE PREPARATION CHEMEX NUMBER CODE DESCRIPTION 205 100 Geochem ring to approx 150 mesh 226 0-3 Kg crush and split 84 294 16 4-7 Kg crush and split 100 3202 Rock - save entire reject 238 100 Nitric-aqua-regia digestion

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2 Pag. ..mber : 1 Total Pages :3 Certificate Date: 23-APR-97 Invoice No. : 19720748 P.O. Number : Account : LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

				·	<u>l</u>	CERTIFICATE O		A9720748		
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R					
491211	205 226	< 5	13	61	< 0.2					
491212	205 226	< 5	10	68	< 0.2	{ [[
491213	205 294	< 5	13	58	< 0.2				ł	
491214	205 226	< 5	15	67	< 0.2					
491215	205 226	< 5	22	97	< 0.2					
491216	205 294	< 5	30	140	0.2	1				
491217	205 226	< 5	64	204	0.5				4	
491218	205 226	< 5	19	108	< 0.2			{		
491219	205 226	< 5	16	70	< 0.2		1		1	
491220	205 226	40	26	275	0.2					
491221	205 226	< 5	15	64	< 0.2					
491222	205 226	< 5	27	23	< 0.2					
491223	205 294	< 5	28	86	< 0.2		1		4	
491224	205 294	< 5	15	134	< 0.2					
491225	205 294	< 5	18	57	< 0.2					
491226	205 294	< 5	14	114	< 0.2					
491227	205 226	< 5	23	245	< 0.2	4 1				
491228	205 226	< 5	28	35	< 0.2					
491229	205 226	< 5	23	93	< 0.2					
491230	205 226	< 5	17	130	< 0.2					
491231	205 294	< 5	20	86	< 0.2					
491232	205 226	< 5	32	166	< 0.2		l l	1		
491233	205 226	< 5	32	170	< 0.2					
491234 491235	205 294 205 294	< 5	26	74	< 0.2					
491235	205 294	< 5	14	58	< 0.2					
491236	205 226	< 5	12	42	< 0.2			T		
491237	205 226	< 5	11	46	< 0.2	, ,				
491238 491239	205 226	10	19 13	48	< 0.2					
491240	205 226	< 5 < 5		48	< 0.2					
			L		L					
491241	205 226	< 5	15	78	< 0.2					
491242	205 226	< 5	16	84	< 0.2			1		
491243	205 226	< 5	10	35	< 0.2					
491244 491245	205 226	< 5	17	62 55	< 0.2					
*714*2	403 440	< 5	13	>>	< 0.2					
491246	205 226	< 5	16	52	< 0.2					
491247	205 226	< 5	16	48	0.3			i)	
491248 491249	205 226	< 5	12	50	< 0.2			ł	1	
491250	205 226	< 5	15	90 170	< 0.2			l	ļ	
#>\$&\$V	A 4 2 0	1 5	C 2	1 1/0	1			1	. 1	
			1		1	1 1	1 1	tout		

E

R

-527

Г je z z

Chemex Labs Ltd.

To: NUINSCO RESOURCES LIMITED

908 THE EAST MALL

ETOBICOKE, ON

~*

Pac mber :2 Total rages :3 Certificate Date: 23-APR-97 Invoice No. :19720748 P.O. Number Account :LVY

A9720748

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Ontario, Canada

Mississauga L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

M9B 6K2 Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS

PREP Au ppb Zn Cu Ag ppm SAMPLE CODE $F\lambda + \lambda\lambda$ ppm DDD Aqua R < 5 < 0.2 < 5 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 0.2 < 0.2 0.2 0.6 < 5 < 0.2 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 0.2 205 226 < 5 < 0.2 205 226 < 5 < 0.2 205 226 < 5 < 0.2 205 226 < 5 < 0.2

CERTIFICATION:

Hart Buchler

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: NUINSCO RESOURCES LIMITED

~*

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Pag umber : 3 Total Pages : 3 Certificate Date: 23-APR-97 Invoice No. : 19720748 P.O. Number • Account LVY

Project : Comments: ATTN: PAUL JONES FAX: JIM WILSON

		· · · · · · · · · · · · · · · · · · ·	.			CERTIFIC	A97	20748			
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R	·					
492191 492192 492193 492193 492194 492195	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 25 20 10 << 5</pre>	17 44 27 17 18	72 292 76 52 46	< 0.2 1.0 0.4 < 0.2 < 0.2						
492196 492197 492198 492199 492299 492200	205 226 205 226 205 294 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 10</pre>	23 15 16 14 17	75 46 32 55 54	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
492201 492202 492203 492204 492205	205 226 205 226 205 226 205 226 205 226 205 226	5 < 5 < 5 < 5 < 5 15	22 39 21 10 15	53 23 23 54 35	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
492206 492207 492208 492209 492210	205 226 205 226 205 226 205 294 205 294	10 40 < 5 < 5 < 5 < 5	16 110 110 102 154	38 148 60 112 100	< 0.2 0.3 < 0.2 < 0.2 < 0.2						
							1	CERTIFICATION	[]	<u> </u>	In

Project: P.O. # :

CHEMEX CODE

205

226

294

3202

238

90

80

10

90

90

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga L4W 2\$3 Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163

.o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9720880

CERTIFICATE A9720880 **ANALYTICAL PROCEDURES** (LVY) - NUINSCO RESOURCES LIMITED UPPER CHEMEX NUMBER DETECTION CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT 983 90 Au ppb: Fuse 30 g sample FA-AAS 5 10000 Samples submitted to our lab in Vancouver, BC. Cu ppm: HNO3-aqua regia digest 1 10000 2 90 AAS This report was printed on 25-APR-97. Zn ppm: HNO3-aqua regia digest λλs 10000 5 90 1 AAS-BEGD CORR 100.0 6 90 Ag ppm: HNO3-agua regia digest 0.2 SAMPLE PREPARATION NUMBER SAMPLES DESCRIPTION Geochem ring to approx 150 mesh 0-3 Kg crush and split 4-7 Kg crush and split Rock - save entire reject Nitric-aqua-regia digestion

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd.,	Mississauga L4W 2S3
Ontario, Canada	L4W 2Š3
PHONE: 905-624-2806	FAX: 905-624-6163

io: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page .iber : 1 Total Pages : 3 Certificate Date: 25-APR-97 Invoice No. :19720880 P.O. Number Account :LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

							CATE OF	A9720880			
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
491051	205 226	< 5	38	53	< 0.2						
491052 491053	205 226	< 5	7	48	< 0.2						
491053	205 226 205 226	< 5	11	44 34	< 0.2						
491055	205 294	< 5 < 5	11	48	< 0.2			1 1			
491056	205 226	< 5	9	63	< 0.2		-+				
491057	205 226	< 5	36	58	< 0.2		1				Į
491058	205 226	< 5	27	70	< 0.2						
491059 491060	205 226	< 5	18	55 80	0.4					1	
	- _	ļ								<u></u>	
491061	205 226	< 5	16	120	0.2					Ì	
491062 491063	205 226 205 226	< 5	18 20	102	< 0.2						}
491064	205 226 205 226	< 5	20	92	< 0.2						
491065	205 226	< 5	11	42	< 0.2						
491066	205 294	< 5	13	52	< 0.2					+	+
491067	205 226	< 5	12	67	< 0.2		- {				1
491068	205 226	< 5	17	380	< 0.2		1				
491069 491070	205 226 205 226	< 5	15 15	95 55	< 0.2						
491071	205 226	< 5	22	52	< 0.2						+
491072	205 226	< 5	13	54	< 0.2						1
491073	205 226	< 5	12	54	< 0.2						Ĩ
491074	205 226	< 5	38	70	< 0.2		Ì				
491075	205 226	< 5	16	66	< 0.2						
491085	205 226	< 5	14	125	< 0.2					1	
491086 491087	205 226 205 226	< 5	15	146	< 0.2						
491088	205 226	< 5	12 18	60 40	< 0.2	1					
491089	205 226	< 5	22	98	< 0.2						
491090	205 226	< 5	30	105	< 0.2	<u> </u>				+	1
491091	205 226	< 5	24	135	< 0.2]	1			1	1
491092 491093	205 226	< 5	26	170	< 0.2					1	
491094	205 294	< 5	22	49	< 0.2						
491095	205 226	< 5	15	42	< 0.2					+	
491096	205 226	< 5	15	67	< 0.2	1	1				1
491097	205 226	< 5	13	56	< 0.2	•	}			4	
491098	205 226	< 5	22	34	< 0.2	l	ļ			1	
491099	205 226	< 5	22	56	< 0.2						
	- L	J	I	L	.L	L				APre	N. Ja-
								CERTIFICATION	140	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- LLL

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Ontario, Canada

Mississauga L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 (o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page .iber :2 Total Pages :3 Certificate Date: 25-APR-97 Invoice No. :19720880 P.O. Number Account LVY

٦

Project :

r

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

491101 2 491102 2 491103 2 491104 2 491105 2 491105 2 491126 2 491128 2 491129 2	PREP CODE 205 226 205 294 205 226 205 226 205 226 205 226 205 226 205 226 205 226	Au ppb FA+AA < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Cu ppm 13 14 14 11 17 9 72	Zn ppm 74 50 52 37 50	Ag ppm Aqua R < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	·			
491101 2 491102 2 491103 2 491104 2 491105 2 491105 2 491126 2 491128 2 491129 2	205 294 205 294 205 226 205 226 205 226 205 226 205 226 205 226 205 226 205 226 205 226 205 226	555 55 55 55 55 55 55	14 14 11 17 9	50 52 37 50	< 0.2 < 0.2 < 0.2	:			
491126 2 491127 2 491128 2 491129 2	205 226 205 226 205 294	< 5			-				
491130 2		< 5	72 56 100	62 120 72 70 77	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2				
491132 2 491133 2	205 226 205 226 205 226 205 226 205 226 205 226	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	78 48 11 43 70	68 53 37 40 95	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2				
491304 2 491305 2 491306 2	205 226 205 226 205 294 205 226 205 226	<pre>< 5 < 5 </pre>	63 80 73 130 16	73 70 78 122 50	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2				
491309 2 491310 2 491311 2	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>	27 42 50 64 40	72 54 103 75 46	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2				
491335 2 491336 2 491337 2 491338 2	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5 10 < 5</pre>	52 40 80 51 65	207 190 107 140 146	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2				
491340 2 491341 2 491342 2	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>	62 80 24 16 26	147 155 50 42 105	<pre>< 0.2 < 0.2</pre>				
491355 2 491356 2 491357 2	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>	22 56 1320 104 73	67 72 70 90 70	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2				

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

.o: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page iber :3 Total Pages :3 Certificate Date: 25-APR-97 Invoice No. :19720880 P.O. Number : Account LVY

Project : Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE OF ANALYSIS

A9720880

_*

											20000	
i	SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
97-27	491359 491360 491361 491362 491362 491495	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	62 57 65 80 25	58 98 92 50 58	< 0.2 0.3 < 0.2 < 0.2 < 0.2 < 0.2	;					
NR41-30	491496 491497 491498 491499 491500	205 226 205 226 205 294 205 294 205 226	<pre>< 5 < 5</pre>	27 14 10 13 13	48 65 42 46 50	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
								c	CERTIFICATIO	N:		

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

A9720881

Comments: ATTN: PAUL JONES FAX: JIM WILSON

CERTIFICATE

A9720881

(LVY) - NUINSCO RESOURCES LIMITED

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 26-APR-97.

SAM	PLE PREPARATION
	DESCRIPTION
146	Geochem ring to approx 150 mesh
1112	0-3 Kg crush and split
34	4-7 Kg crush and split
146	Rock - save entire reject
146	Nitric-aqua-regia digestion
	NUMBER SAMPLES 146 112 34 146

ANALYTICAL PROCEDURES

HEMEX CODE	NUMBER SAMPLES		DES	CRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
983 2 5 6	146 146 146 146	Cu ppm: Zn ppm:	HNO3-aqua	sample regia digest regia digest regia digest	FA-AAS AAS AAS AAS-BKGD CORR	5 1 1 0.2	10000 10000 10000 100.0
					. т		

Chemex Labs Ltd.

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

5: NUINSCO RESOURCES LIMITED

Certificate Date: 26-APR-97 Invoice No. : 19720881 P.O. Number : Account ELVY

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

Project : Comments: ATTN: PAUL JONES FAX: JIM WILSON

							C	ERTIFIC	ATE OF A	NALYSIS	A97	20881	
SAMPLE		REP DDE	Au ppb FA+AA	Cu ppm		Ag ppm Aqua R							
492211 492212 492213 492214 492215	205 205 205 205 205 205	226 226 226 226 226 226	5555 222 255 255 255 255 255 255 255 25	64 60 84 110 47	82 98 56 87 90	< 0. < 0. < 0. < 0. < 0.	2 2 2						
492216 492217 492218 492219 492220	205 205 205 205 205 205	294 294 294 294 294 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5<</pre>	103 120 118 175 76	70 66 77 93 60	< 0. < 0. < 0. < 0. < 0.	2 2 2						
492221 492222 492223 492224 492224	205 205 205 205 205 205	226 226 226 294 294	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	158 193 116 120 112	170 156 104 120 92	<pre></pre>	2 2 2						
492226 492227 492228 492229 492230	205 205 205 205 205 205	226 226	<pre>< 5 < 5</pre>	114 125 95 120 75	145 105 352 285 106	<pre>< 0.</pre>	2 2 2						
492231 492232 492233 492234 492234 492235	205 205 205 205 205 205	226 226 226	<pre>< 5 < 5 < 5 < 5 30 < 5</pre>	38 160 100 550 134	180 148 406 100 400	 < 0 < 0 < 0 < 0 < 0 < 0 	2						
492236 492237 492238 492239 492240	205 205 205 205 205 205	226 226 226	<pre></pre>	205 70 23 18 92	322 920 475 85 198	0 < 0 < 0							
492241 492242 492243 492244 492245	205 205 205 205 205 205	226 226 226	<pre></pre>	21 10 206 245 245	83 55 1100 2100 1300	< 0 0 0	. 2 . 2 . 3 . 9 . 1						
492246 492247 492248 492249 492250	205 205 205 205 205 205	226 226 226	20 15 20 10 < 5	192 148 104 76 104	850 700 455 300 570	0 0 0	.7 .7 .8 .7 .7						
L		L	J	.l		L		I	L		.L	_ _	

CERTIFICATION:

Start Brichles

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Ontario, Canada

Mississauga L4W 2\$3 PHONE: 905-624-2806 FAX: 905-624-6163 J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page Jer :2 Total Pages :4 Certificate Date: 26-APB-97 Invoice No. :19720881 P.O. Number Account ELVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

A9720881 **CERTIFICATE OF ANALYSIS** PREP Au ppb Cu Zn Ag ppm SAMPLE CODE FA+AA Aqua R ppm ppm < 5 0.3 < 5 0.3 < 5 0.3 1.0 0.9 0.8 0.4 < 5 0.4 < 5 0.5 0.8 < 5 0.3 < 0.2 < 5 0.3 < 0.4 < 5 0.6 < 5 0.7 < 5 0.3 < 5 < 0.2 < 5 0.5 1.0 < 5 < 5 0.5 LPAJ < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < < 1 < 0.2 < 0.2 CERTIFICATION: Html. Buchler

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page . .oef :3 Total Pages :4 Certificate Date: 26-APR-97 Invoice No. : 19720881 P.O. Number : Account :LVY

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

--*

o: NUINSCO RESOURCES LIMITED

		_				CERTIFICATE OF ANALYSIS A972					
SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
492291 492292 492293 492294 492295	205 226 205 294 205 226 205 226 205 226 205 226	<pre></pre>	102 54 75 86 60	80 57 92 94 66	0.5 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2						
492296 492297 492298 492299 492300	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>	37 88 80 60 72	50 110 72 75 60	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
492301 492302 492303 492304 492305	205 226 205 226 205 226 205 226 205 226 205 226	<pre></pre>	43 34 82 86 50	42 56 102 82 67	<pre> < 0.2 < 0.2 </pre>						
492306 492307 492308 492309 492309	205 226 205 226 205 294 205 226 205 226 205 226	<pre></pre>	58 72 46 40 70	37 55 65 44 77	<pre> < 0.2 < 0.2</pre>						
492311 492312 492313 492314 492315	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>	106 80 62 107 125	96 155 154 88 125	<pre> < 0.2 < 0.2</pre>						
492316 492317 492318 492319 492320	205 226 205 226 205 226 205 226 205 226 205 226	<pre></pre>	34 19 36 25 70	122 52 116 63 212	<pre>< 0.2 < 0.2</pre>						
492321 492322 492323 492323 492324 492325	205 226 205 226 205 294 205 294 205 294	<pre></pre>	48 90 21 33 63	44 88 44 60 105	<pre> < 0.2 < 0.2 </pre>						
492326 492327 492328 492329 492330	205 294 205 226 205 294 205 294 205 226	<pre></pre>	80 88 82 64 33	82 92 85 82 65	<pre>< 0.2 < 0.2</pre>						
			<u> </u>			<u> </u>		CERTIFICATIO	N. Ke	Li. Sin	200

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Page 1er :4 Total Pages :4 Certificate Date: 26-APR-97 Invoice No. : 19720881 P.O. Number ٠ LVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~*

							CERTIFICA	TE OF A	NALYSIS	A972	20881	
	SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	2n ppm	Ag ppm Aqua R						
	492331 492332 492333 492333 492334 492335	205 226 205 226 205 226 205 294 205 294	<pre>< 5 < 5</pre>	80 75 93 67 63	82 80 110 85 95	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
R97-33	492336 492337 492338 492339 492340	205 294 205 294 205 294 205 294 205 294 205 294	<pre></pre>	72 82 75 70 77	77 78 82 73 82	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
Ż	492341 492342 492343 492344 492345	205 294 205 226 205 294 205 294 205 294	<pre></pre>	73 92 75 82 80	86 90 87 84 82	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
	492346 492347 492348 492349 492350	205 294 205 294 205 226 205 294 205 294 205 226	<pre></pre>	88 70 106 74 20	75 70 60 52 52	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2						
N891-34	492401 492402 492403 492404 492404	205 226 205 226 205 226 205 226 205 226 205 294	<pre></pre>	63 82 40 155 90	78 50 42 65 50	<pre>< 0.2 < 0.2</pre>						
	492406	205 226	< 5	82	47	< 0.2						
										1.1	. 6	

CERTIFICATION:

Have B. D.P.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

 5175 Timberlea Blvd.,
 Mississauga

 Ontario, Canada
 L4W 2S3

 PHONE: 905-624-2806
 FAX: 905-624-6163

J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2

Comments: ATTN: PAUL JONES FAX: JIM WILSON

A9721464

CERTIFICATE

A9721464

(LVY) - NUINSCO RESOURCES LIMITED

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 1-MAY-97.

SAMPLE PREPARATION								
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION						
205 226 294 3202 238	43 22 21 43 43	Geochem ring to approx 150 mesh 0-3 Kg crush and split 4-7 Kg crush and split Rock - save entire reject Nítric-aqua-regia digestion						

Hemex	NUMBER SAMPLES		DESC	RIPTION	METHOD	DETECTION	UPPER LIMIT
983 2 5 6	43 43 43 43	Cu ppm:	MNO3-amia	regia digest	FA-AAS AAS AAS AAS-BKGD CORR	5 1 1 0.2	10000 10000 10000 100.0
					,		

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers

5175 Timberlea Blvd.	Mississauga
Ontario, Canada	L4W 2Š3
PHONE: 905-624-2806	FAX: 905-624-6163

a: NUINSCO RESOURCES LIMITED.

908 THE EAST MALL ETOBICOKE, ON M98 6K2

Page 1. Jer :1 Total Pages :2 Certificate Date: 01-MAY-97 Invoice No. : 19721464 P.O. Number ELVY Account

Project :

Comments: ATTN: PAUL JONES FAX: JIM WILSON

~

A9721464 **CERTIFICATE OF ANALYSIS** PREP Au ppb Cu Zn Ag ppm SAMPLE CODE FA+AA Aqua R ppm ppm < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0,2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 ጽ < 5 < 0.2 ÷ < 5 < 0.2 Ċ < 0.2 < 5 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 0.2 < 5 < 0.2 < 5 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 tarti Sichler

CERTIFICATION:

1

i.

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timbertaa Blvd Mississauga

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 J: NUINSCO RESOURCES LIMITED

908 THE EAST MALL ETOBICOKE, ON M9B 6K2 Page I. Jer: 2 Total Pages: 2 Certificate Date: 01-MAY-97 Invoice No. : 19721464 P.O. Number: Account: LVY

7

Project :

С

Comments: ATTN: PAUL JONES FAX: JIM WILSON

_							CERTIFICATE OF ANALYSIS	A9721464
	SAMPLE	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R		
1-34 [492447 492448 492457	205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>	46 54 62	82 90 82	< 0.2 < 0.2 < 0.2		
								Aran Son 200

Nuinsco Resources Rainy River Project

APPENDIX V

EXPLORATION DATA

LAKEFIELD RESEARCH REPORT

An Investigation of The Recovery of Gold from samples submitted by Nuinsco Resources Limited Progress Report No. 1

Project No. LR5045

NOTE:

This report refers to the samples as received.

The practice of this Company in issuing reports of this nature is to require the recipient not to publish the report or any part thereof without the written consent of Lakefield Research Limited.

LAKEFIELD RESEARCH LIMITED

185 Concession Street Lakefield, Ontario, K0L 2H0 Tel: (705) 652-2000 Fax: (705) 652-6365

March 6, 1997

Introduction

This report summarizes the results of testwork conducted on gold ore samples as requested by Mr. P. Jones, Nuinsco Resources Limited. The purpose of the test program was to investigate the recovery of gold by gravity separation, flotation and cyanidation. The Bond work index was also determined. The test results were sent to Mr. Jones as they became available.

Lakefield Research Limited

I Jackemen

I. Jackman, P.Eng. Senior Project Metallurgist

K.J. Shitt.

K.W. Sarbutt Manager - Mineral Processing

Experimental work by: J. Stankovic Report preparation by: B.J. Scobie

Summary

1. Head Analyses

Two samples were received for metallurgical testwork and a third sample was received for Bond work index determination. Samples 1 and 2 were crushed and head samples were prepared for assaying. The direct head analyses and the average calculated gold head assays from testwork are shown in Table 1.

Table 1: Head Analyses

Element	Sample 1	Sample 2		
Au, g/t (direct)	1.01	6.14		
Au, g/t (calc)	1.29	7.29		
S, %	2.36	2.27		

2. Bond Work Index

A standard Bond ball mill closed circuit grindability test was performed on Sample 3 with the following results.

Work Index (metric)	:	15.9	
Work Index (imperial)	:	14.4	
Feed K ₈₀ , μm	:	1227	
Product K ₈₀ , μm	:	75	

3. Gravity Separation Testwork

A single test was conducted on Samples 1 and 2 to investigate the recovery of gold by gravity separation. Each sample was ground and fed over a laboratory Wilfley table. The table concentrate was cleaned on a Mozley mineral separator. The results are given in Table 2.

Test	Comp	K ₈₀	%-200	Product	Wt	Assay	% Dist'n
No.		μm	mesh	mesh		Au, g/t	Au
GS1	1	109	70	70 Mozley Conc		57.6	14.6
				Table Conc	11.9	6.10	72.0
				Table Tail	88.1	0.32	28.0
				Head (calc)	100.0	1.01	100.0
GS2	2	132	64	Mozley Conc	0.4	761	37.7
				Table Conc	17.0	35.0	82.4
				Table Tail	83.0	1.53	17.6
				Head (calc)	100.0	7.22	100.0

Table 2: Gravity Separation Test Results

Sample 2 contained a significant amount of free gold. This was confirmed by the variation in the calculated gold head assays from testwork which ranged from 5.8 to 8.2 g/t Au.

4. Flotation Testwork

Initially, rougher flotation tests were conducted to investigate the recovery of gold in a sulphide concentrate. A series of concentrates was recovered with stage additions of potassium amyl xanthate and the Cytec dithiophosphate, R208. Subsequently, a test was conducted on each in which the rougher concentrate was cleaned once in order to produce a concentrate for cyanide leaching. The fineness of grind in the cleaner flotation test on Sample 2 was increased to try and produce a lower grade tailing. The results are summarized in Table 3.

Table 3: Flotation Results

Test	Sample	%- 200	K ₈₀	Product	Wt	Assays	, g/t, %	% Dist	ribution
No.		mesh	μm		%	Au	s	Au	S
F1	1	83	66	Ro Conc 1	6.0	21.3	29.9	80.3	74.4
				Ro Conc 1-3	18.3	8.19	12.9	93.9	97.3
				Rougher Tail	81.7	0.12	0.08	6.1	2.7
				Head (calc)	100.0	1.60	2.42	100.0	100.0
F3	1	83	66	Cl Conc	5.5	19.6		90.5	
				Ro Conc	13.3	8.22		92.6	
				Ro Tail	86.7	0.10		7.4	
				Head (calc)	100.0	1.18		100.0	
F2	2	83	65	Ro Conc 1	4.8	147	34.8	87.5	74.0
				Ro Conc 1-3	18.9	39.9	11.4	93.3	95.0
		i		Rougher Tail	81.1	0.67	0.14	6.7	5.0
				Head (calc)	100.0	8.10	2.27	100.0	100.0
F4	2	94	46	Cl Conc	5.4	101		93.8	
				Ro Conc	15.6	35.3		95.3	
				Ro Tail	84.4	0.32		4.7	
				Head (calc)	100.0	5.76		100.0	

The recovery of gold from Sample 2 was increased by increasing the fineness of grind so that the tailing assay decreased from 0.67 g/t Au to 0.32 g/t Au. The difference in the gold recovery from Sample 1 between Tests F1 and F3 is largely a reflection of the difference in the calculated head assays. Gold losses in the cleaner tailings were approximately 2%.

5. Cyanidation Testwork

5.1 Whole Ore Cyanidation

The recovery of gold by whole ore cyanidation was determined. The effect of fineness of grind was briefly examined. Ground samples were leached at 33% solids maintaining 0.5 g/L NaCN and pH 10.5 - 11 for 48 hours. The results are summarized in Table 4.

Test	Sample	%-200	K ₈₀	Reag. Cons., kg/t		% Recovery	Residue	Head
No.		mesh	μm	NaCN	CaO	Au	Au, g/t	Au, g/t
CN1	1	92	45	0.30	0.50	84.6	0.23	1.50
CN3	1	83	66	0.30	0.34	83.3	0.19	1.14
CN2	2	90	49	0.30	0.44	96.9	0.22	7.15
CN4	2	80	74	0.30	0.44	96.8	0.26	8.24

Table 4: Whole Ore Cyanidation Results

The recovery of gold from Samples 1 and 2 was 84% and 97% respectively. The effect of fineness of grind was not significant within the range investigated. The residue assays were similar from both samples so that the recovery was dependent on the head grade. Further tests should be conducted to confirm the relationship between gold head grade and recovery, and to optimize leach conditions.

5.2 Concentrate Cyanidation

Tests were conducted to investigate the extraction of gold from the flotation concentrate produced in Tests F3 and F4. The concentrates were reground and leached at 25% solids in bottles on rolls. The cyanide concentration was maintained at 1 g/L NaCN and the pH at 11 for 48 hours. Table 5 summarizes the results.

Table 5:	Cyanidation	of the Flotation	Concentrate
----------	-------------	------------------	-------------

Test	Sample	K ₈₀	U		% Extr'n	% O'all	Residue	Feed
No.		μm	Cons.,kg/t*			Rec'y		
			NaCN	CaO	Au	Au**	Au, g/t	Au, g/t
CN5	1	16	2.46	1.51	93.8	84.9	1.22	19.6
CN6	2	14	3.57	1.25	99.1	92.9	0.94	101

*based on cyanidation feed

**gold recovery by flotation + cyanidation of the concentrate

The gold extraction from the concentrates was higher than from the ore, presumably because of the very fine regrind.

6. Comparison of Overall Results

The recovery of gold by whole ore cyanidation compared to flotation-concentrate cyanidation is shown in Table 6.

Table 6: Comparison of Gold Recovery	Table 6:	Com	parison	of	Gold	Recovery
--------------------------------------	----------	-----	---------	----	------	----------

Flowsheet	% Au Recovery		
	Sample 1	Sample 2	
Whole ore cyn.	84	97	
Flotation + conc. cyn.	85	93	

Gold recovery from Sample 1 was similar following both flowsheets under the conditions tested. From Sample 2, gold recovery was higher by direct cyanidation.

Sample Preparation

On December 12, 1996, three boxes of samples were received at Lakefield Research and given our reference number LR9608391. Each box contained one sample. Samples 1 and 2 were crushed to minus 10 mesh. A head sample and test charges were prepared. Sample 3 was crushed to minus 6 mesh for Bond work index determinations.

LAKEFIELD RESEARCH

Standard Bond Ball Mill Grindability Test

Project No. 504	5 Product: Mi	nus 6 Mesh	Date: 20-Jan-97			
Sample: Sample	3					
Purpose:	To determine the ball mill grin work index number.	dability of the sample in term	ns of a Bond			
Procedure:	ture: The equipment and procedure duplicate the Bond method for determining ball mill work indices.					
Test Conditions:	Mesh of grind: Test feed weight (700 mL): Equivalent to : 1833 Weight % of the undersize mat Weight of undersize product for	terial in the ball mill feed	150 mesh 1283 grams 27.8 % 367 grams			
Results:	Average for last two stages = 3	370 g : 247 % circulation loa	d			

CALCULATION OF A BOND WORK INDEX

BWI =
$$\frac{44.5}{P1^{0.23} \times Grp^{0.82} \times \left\{\frac{10}{\sqrt{P}} - \frac{10}{\sqrt{F}}\right\}}$$

P1 = 100% passing size of the product	106 microns
Grp = Grams per revolution	1.26 grams
P80 = 80% passing size of product	75 microns
F80 = 80% passing size of the feed	1227 microns

BWI = 14.4 (imperial)

BWI = 15.9 (metric)

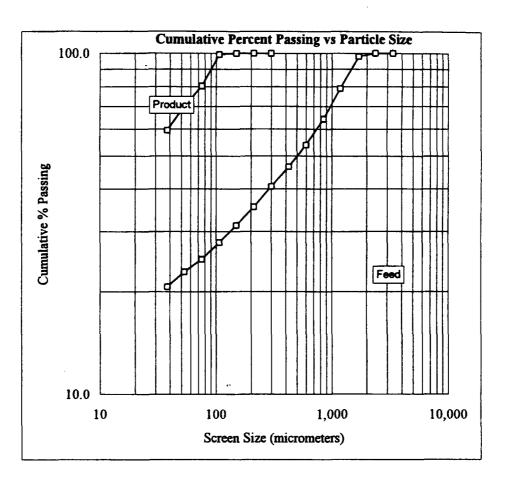
Grindability Test Data

Project No. 5045

Sample: Sample 3

į

			Unde	ersize	U'Size	Undersiz	e Product
Stage No.	Revs	New Feed (grams)	In Feed (grams)	To Be Ground (grams)	In Product (grams)	Total (grams)	Per Mill Rev (grams)
1 2 3 4 5 6 7	150 270 232 226 214 215 207	1,283 486 424 384 383 369 375	357 135 118 107 107 103 104	9 231 248 260 260 264 262	486 424 384 383 369 375 365	129 289 266 276 262 272 261	0.86 1.07 1.15 1.22 1.23 1.27 1.26


Average for Last Two Stages = 1.26

Feed K80

Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
6	3,350	0.0	0.0	0.0	100.0
8	2,360	0.0	0.0	0.0	100.0
10	1,700	10.1	2.0	2.0	98.0
14	1,180	94.1	18.9	21.0	79.0
20	850	73.6	14.8	35.8	64.2
28	600	51.6	10.4	46.2	53.8
35	425	37.1	7.5	53.7	46.3
48	300	28.5	5.7	59.4	40.6
65	212	26.0	5.2	64.6	35.4
100	150	20.5 -	4.1	68.8	31.2
150	106	16.8	3.4	72.2	27.8
200	75	14.9	3.0	75.2	24.8
270	53	10.0	2.0	77.2	22.8
400	38	10.9	2.2	79.4	20.6
Pan	-38	102.5	20.6	100.0	0.0
Total	-	496.6	100.0	-	-
K80	1,227				
L	L	L	I	L	Ll

Product K80

Si	ze	Weight	% Retained		% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
48 65 100 150 200 270 400 Pan Total K80	300 212 150 106 75 53 38 -38 - 75	0.0 0.0 1.6 32.7 18.2 18.1 103.8 174.4	0.0 0.0 0.9 18.8 10.4 10.4 59.5 100.0	0.0 0.0 0.9 19.7 30.1 40.5 100.0	100.0 100.0 99.1 80.3 69.9 59.5 0.0

Purpose: To examine the recovery of gold by gravity separation .

Procedure: The sample was ground to 70 % passing 200 mesh and passed over the Wilfley table. The concentrate was further upgraded by treatment on a Mozley mineral separator. The Mozley concentrate was assayed for gold in its entirety. The Mozley tailing and Wilfley tailing were analyzed for gold. A combined Wilfley and Mozley tailings sample was submitted for size analysis.

Feed: 2 kg minus 10 mesh Sample 1.

Grind: 20 min / 2 kg @ 65% solids in lab ball mill (OB).

Metallurgical Results

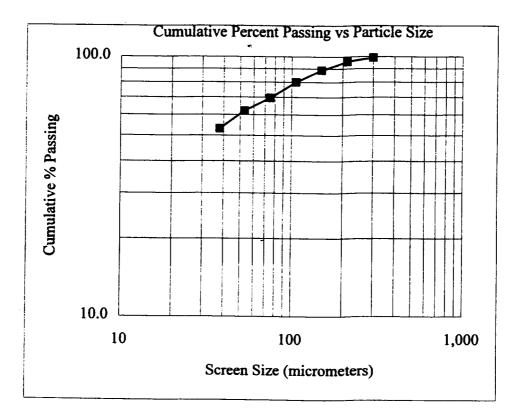
Product	Weight		Assays, g/t	% Distribution	
	grams	%	Au	Au	
Mozley Concentrate	5.0	0.3	57.6	14.6	
Mozley Tailing	229.5	11.7	5.0	57.4	
Wilfley Tailing	1729.8	88.1	0.32	28.0	
Head (calculated) Head (direct)	1964.3	100.0	1.01	100.0	

Combined Product Gradeand Recovery

Wilfley Concentrate	234.5	11.9	6.07	72.0			

=

3


Lakefield Research Size Distribution Analysis

Sample: Con

Comb. Product

Test No.: T1

	Size	Weight	% Retained		% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
1					
48	300	0.9	0.9	0.9	99.1
65	212	3.5	3.5	4.4	95.6
100	150	6.9	6.9	11.3	88.7
150	106	8.9	8.9	20.2	79.8
200	75	10.3	10.3	30.5	69.5
270	53	7.5	7.5	38.0	62.0
400	38	9.0	9.0	47.0	53.0
Pan	-38	53.0	53.0	100.0	0.0
Total	-	100.0	100.0	-	-
K80	109				

Purpose: To examine the recovery of gold by gravity separation .

Procedure: The sample was ground to 64% passing 200 mesh and passed over the Wilfley table. The concentrate was further upgraded by treatment on a Mozley mineral separator. The Mozley concentrate was assayed for gold in its entirety. The Mozley tailing and Wilfley tailing were analyzed for gold. A combined Wilfley and Mozley tailings sample was submitted for size analysis.

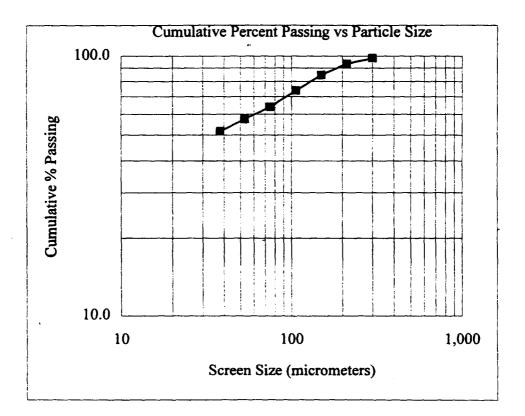
Feed: 2 kg minus 10 mesh Sample 2.

Grind: 20 min / 2 kg @ 65% solids in lab ball mill (OB).

Metallurgical Results

Product	Weight		Assays, g/t	% Distribution	
	grams	%	Au	Au	
Mozley Concentrate	7.1	0.4	761	37.7	
Mozley Tailing	329.7	16.6	19.4	44.7	
Wilfley Tailing	1646.3	83.0	1.53	· 17.6	
Head (calculated) Head (direct)	1983.1	100.0	7.22	100.0	

والمحدد والمتحد والمحدد والمحدد والمحدد والمتحد والمتحد والمحد والمحد والمحد والمحد والمحد والمحد والمحد والمح		يناذ ويبعد التي تكليم وعالمكوم		
Wilfley Concentrate	336.8	17.0	35.0	82.4


Lakefield Research Size Distribution Analysis

Sample: Co

Comb. Product

Test No.: T2

Si	ize	Weight	% Re	% Retained	
Mesh	μm	grams	Individual	Cumulative	Cumulative
48	300	1.8	1.8	1.8	98.2
65	212	· 4.8	4.8	6.6	93.4
100	150	8.9	8.9	15.5	84.5
150	106	10.7	10.7	26.2	73.8
200	75	9.9	9.9	36.1	63.9
270	53	6.5	6.5	42.6	57.4
400	38	5.8	5.8	48.4	51.6
Pan	-38	51.6	51.6	100.0	0.0
Total	-	100.0	100.0	-	-
K80	132				

76

:

-

2

Test No. F1	Project: 5045	J.St.	Dec.17, 1996
Purpose:	To investigate the flotation	of Au from Sample 1.	
Procedure:	As outlined below. Produc	ts were assayed for Au .	
Feed:	2000 grams of minus 10 me	sh Sample 1 ore.	
Grind:	30 minutes/2kg at 65% solid	ls in a lab ball mill. (NB)	
Conditions:			

	Reag	Reagent addition, g/t			Time, minutes			
Stage	*	R		Grind	Cond.	Froth	pН	
	PAX	208	MIBC					
Grind				30			8.1	
Rougher 1	20	20	5		1	3	8.1	
Rougher 2	20	20			1	5	8.1	
Rougher 3	20	20	5		1	5	8.1	
Stage	Rougher	*	Potassi	um amyl	xanthate			
Flotation Cell	1000g D1							

Metallurgical Balance

Speed: r.p.m.

F ?

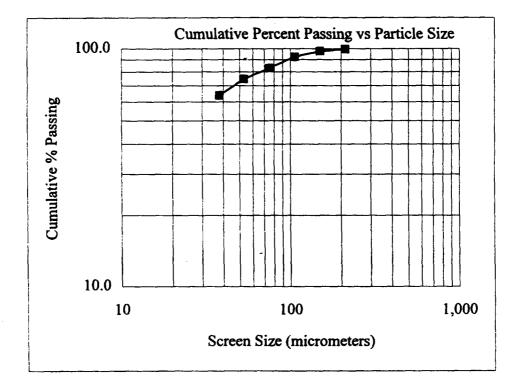
Product	We	ight	Assays g/t, %		% Distribution	
	grams	%	Au	S	Au	S
Rougher Conc. 1	120.2	6.03	21.3	29.9	80.3	74.4
Rougher Conc. 2	115.1	5.77	2.68	8.84	9.7	21.1
Rougher Conc. 3	130.0	6.52	0.96	0.68	3.9	1.8
Rougher Tailing	1628.4	81.68	0.12	0.08	6.1	2.7
Head (Calc)	1993.7	100.00	1.60	2.42	100.0	100.0

1800

Calculated Grades and Recoveries

Rougher Conc. 1 + 2	235.3	11.80	12.2	19.6	90.0	95.5
Rougher Conc. 1 - 3	365.3	18.32	8.19	12.87	93.9	97.3

ł


Lakefield Research Size Distribution Analysis

Sample: Co

Comb. Products

Test No.: F1

Si	ze	Weight	% Re	% Retained	
Mesh	μm	grams	Individual	Cumulative	Cumulative
65	212	0.4	0.4	0.4	99.6
100	150 [°]	2.0	2.0	2.4	97.6
150	106	5.3	5.3	7.7	92.3
200	75	9.4	9.4	17.1	82.9
270	53	8.3	8.3	25.4	74.6
400	38	10.9	10.9	36.3	63.7
Pan	-38	63.7	63.7	100.0	0.0
Total	-	100.0	100.0	-	-
K80	66				

Test No. F2	Project: 5045	J.St.	Dec.17, 1996
Purpose:	To investigate the flotation of	of gold from Sample 2.	
Procedure:	As outlined below. Product	s were assayed for Au.	
Feed:	2000 grams of minus 10 me	sh Sample 2.	
Grind:	30 minutes/2kg at 65% solid	s in a lab ball mill. (NB)	

Conditions:

	Reage	Reagent addition, g/t			Time, minutes			
Stage	*	R		Grind	Cond.	Froth	pН	
	PAX	208	MIBC					
Grind				30			8.1	
Rougher 1	20	20	5		1	3	8.1	
Rougher 2	20	20			1	5	8.1	
Rougher 3	20	20	5		1	5	8.1	
Stage	Rougher	*	Potassi	um amyl	xanthate			

Metallurgical Balance

Flotation Cell

Speed: r.p.m.

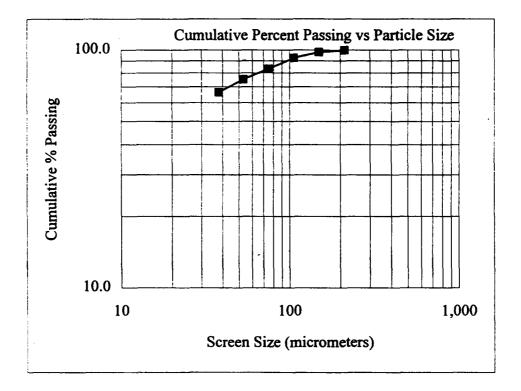
Product	We	ight	Assays g/t, %		% Distribution	
	grams	%	Au	S	Au	S
Rougher Conc. 1	96.2	4.82	147	34.8	87.5	74.0
Rougher Conc. 2	144.6	7.25	5.36	6.04	4.8	19.3
Rougher Conc. 3	137.1	6.87	1.22	0.56	1.0	1.7
Rougher Tailing	1617.0	81.06	0.67	0.14	6.7	5.0
Head (Calc)	1994.9	100.00	8.10	2.27	100.0	100.0

1000g D1

1800

Calculated Grades and Recoveries

Rougher Conc. 1 + 2	240.8 12.07	61.9	17.5	92.3	93.3
Rougher Conc. 1 - 3	377.9 18.94	39.9	11.37	93.3	95.0


Lakefield Research Size Distribution Analysis

Sample: Co

Comb. Products

Test No.: F2

Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
65	212	0.3	0.3	0.3	99.7
100	150	1.8	1.8	2.1	97.9
150	106	5.4	5.4	7.5	92.5
200	75	9.3	9.3	16.8	83.2
270	53	8.0	8.0	24.8	75.2
400	38	8.9	8.9	33.7	66.3
Pan	-38	66.3	66.3	100.0	0.0
Total	-	100.0	100.0	-	-
K80	65				

Test No. F3	Project: 5045	Jan.27,1997
Purpose:	To investigate cleaner flotation of Au from Sample 1.	
Procedure:	As outlined below. Products were assayed for Au.	
Feed:	2000 grams of minus 10 mesh Sample 1 ore.	
Grind:	30 minutes/2kg at 65% solids in a lab ball mill. (NB)	
Conditions:		

	Reagent	Reagent addition, g/t					
Stage	PAX	R 208	Grind	Froth	pН		
Grind			30		8.1		
Rougher 1	20	20		3	8.1		
Rougher 2	20	20		5	7.9		
Rougher 3	20	20		6	7.8		
Cleaner	20	20		6	7.8		
Stage	Rougher						

Stage	Rougher	
Flotation Cell	1000g D1	
Speed: r.p.m.	1800	

Metallurgical Balance

Product	We	ight	Assays g/t, %	% Distribution
	grams	%	Au	Au
Cleaner Conc.	107.4	5.45	19.6	90.5
Cleaner Tailing	154.4	7.83	0.32	2.1
Rougher Tailing	1709.3	86.72	0.10	7.4
Head (Calc)	1971.1	100.00	1.18	100.0

Calculated Grades and Recoveries

Rougher Conc.	261.8	13.28	8.22	92.6
			-	

Test No. F4	Project: 5045	Jan.27,1997
Purpose:	To investigate cleaner flotation of Au from Sample 2.	
Procedure:	As outlined below. Products were assayed for Au.	
Feed:	2000 grams of minus 10 mesh Sample 1 ore.	
Grind:	40 minutes/2kg at 65% solids in a lab ball mill. (NB)	
Conditions		

Conditions:

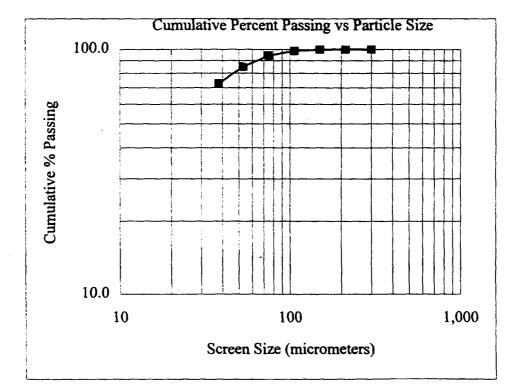
	Reager	nt addition, g/t			
Stage	*	R	Grind	Froth	pН
_	PAX	208			-
Grind			30		8.1
Rougher 1	20	20		3	8.1
Rougher 2	20	20		5	7.9
Rougher 3	20	20		6	7.8
Cleaner	15	15		7	7.8
Stage	Rougher	7			
Flotation Cell	1000g D1	٦.			

Speed: r.p.m. 1800

Metallurgical Balance

Product	We	ight	Assays g/t, %	% Distribution
	grams	%	- Au	Au
Cleaner Conc.	107.6	5.37	100.6	93.8
Cleaner Tailing	204.1	10.19	0.85	1.5
Rougher Tailing	1691.2	84.44	0.32	4.7
Head (Calc)	2002.9	100.00	5.76	100.0

Calculated Grades and Recoveries


Rougher Conc.	311.7	15.56	35.3	95.3
			-	

Lakefield Research Size Distribution Analysis

Sample: Ro. Tail

Test No.: F4

Si	Size		% Re	% Retained	
Mesh	μm	grams	Individual	Cumulative	Cumulative
48	300	0.0	0.0	0.0	100.0
65	212	0.0	0.0	0.0	100.0
100	150	0.3	0.2	0.2	99.8
150	106	2.4	1.2	1.4	98.6
200	75	8.1	4.2	5.6	94.4
270	53	18.1	9.4	15.0	85.0
400	38	23.5	12.2	27.2	72.8
Pan	-38	140.0	72.8	100.0	0.0
Total	-	192.4	100.0	-	-
K80	46				

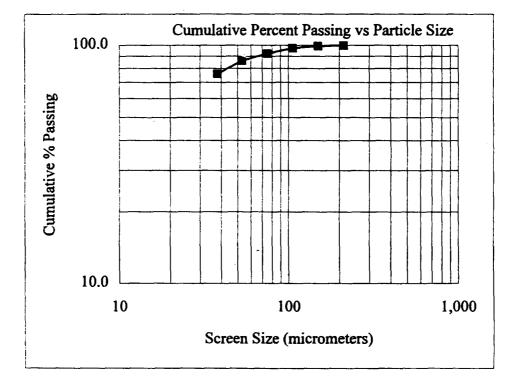
Test No. CN1	Project No5045	J.St.	Dec.16, 1996
Purpose:	To investigate the extraction of gold from	m Sample 1.	
Procedure:	The sample was pulped with water to33 NaCN were added and the leach carried of the leach period the pulp was filtered All products were submitted for Au.	out over 48 hours on rolls.	At the end
Feed:	500 g of minus 10 mesh Composite 1 or	re	
Solution Volume:	1000mi.		
Pulp Density:	33% solids		
Sol'n Composition:	0.5 g/L NaCN		
pH Range:	10.5 - 11.0 with Ca(OH) ₂		
Grind:	25 minutes/kg @ 50% solids in the lab.	ball mill.	

Reagent Consumption (kg/t of cyanide feed) NaCN:

Time Added, Grams Residual Consumed Equivalent Actual Grams Grams pН hours NaCN Ca(OH)₂ NaCN CaO NaCN CaO NaCN CaO 10.T 0.53 0.05 0-2 0.22 0.50 0.16 0.45 11.0-10.3 2-19 0.05 0.21 0.05 0.16 0.45 0.05 11.0-11.0 19-24 0.05 0.00 0.05 0.00 0.45 0.05 11.0-11.0 24-42 0.05 0.00 0.05 0.00 0.50 0.00 11.0-11.0 42-48 0.00 0.00 0.00 0.00 0.50 0.07 0.00 11 0.68 0.43 0.65 0.32 2.35 0.07 Total 0.15 0.25

0.30

CaO:


0.50

Results:

	Amount	Assays, mg/L, g/t	% Distribution
Product	g, mL	Au	Au
48 hour Preg/Wash	1656	0.38	84.6
CN Residue	496.2	0.23	15.4
Head (calc.)	496,2	1.50	100.0

Lakefield Research Size Distribution Analysis

Sample:	Cn		Test No.:	1		
Size		Weight	% Re	% Retained		
Mesh	μm	grams	Individual	Cumulative	Cumulative	
65	212	0.3	0.2	0.2	99.8	
100	150	1.0	0.5	0.7	99.3	
150	106	3.6	1.9	2.6	97.4	
200	75	9.5	5.1	7.8	92.2	
270	53	11.5	6.2	13.9	86.1	
400	38	18.9	10.2	24.1	75.9	
Pan	-38	140.9	75.9	100.0	0.0	
Total	-	185.7	100.0	-	-	
K80	45					

Sample: Cn

Test No.: 1

Test No. CN2	Project No5045	J.St.	Dec.16, 1996				
Purpose:	To investigate the extraction of gold from	n Sample 2					
Procedure:	NaCN were added and the leach carried	The sample was pulped with water to 33 % solids in a 2.5 L bottle. Lime and NaCN were added and the leach carried out over 48 hours on rolls. At the end of the leach period the pulp was filtered and washed several times with water. All products were submitted for Au.					
Feed:	500 g of minus 10 mesh Composite 1 or	re					
Solution Volume:	1000ml.						
Pulp Density:	33% solids						
Sol'n Composition:	0.5 g/L NaCN						
pH Range:	10.5 - 11.0 with Ca(OH) ₂						
Grind:	25 minutes/kg @ 50% solids in the lab.	ball mill.					

Reagent Consumption (kg/t of cyanide feed) NaCN:

0.30

CaO: 0.44

Time	ne Added,		Grams	Grams		Residual		umed	
	Ac	tual	Equiv	valent	Gra	ums	Gra	ams	pH
hours	NaCN	Ca(OH) ₂	NaCN	CaO	NaCN	CaO	NaCN	CaO	
									0.83
0-2	0.53	0.12	0.50	0.09	0.45		0.05		11.0-10.5
2-19	0.05	0.21	0.05	0.16	0.45		0.05		11.0-11.0
19-24	0.05	0.00	0.05	0.00	0.45		0.05		11.0-11.0
24-42	0.05	0.00	0.05	0.00	0.50		0.00		11.0-10.8
42-48	0.00	0.00	0.00	0.00	0.50	0.03	0.00		11.7
									<u> </u>
Total	0.68	0.33	0.65	0.25	2.35	0.03	0.15	0.22	T

Results:

	Amount	Assays, mg/L, g/t	% Distribution
Product	g, mL	Au	Au
48 hour Preg/Wash	1698	2.02	96.9
CN Residue	494.9	0.22	3.1
Head (calc.)	494.9	7.15	100.0

Lakefield Research Size Distribution Analysis

Si	Size		% Re	% Retained		
Mesh	μm	grams	Individual	Cumulative	Cumulative	
65	212	0.3	0.2	0.2	99.8	
100	150	1.6	0.8	1.0	99.0	
150	106	4.9	2.5	3.4	96.6	
200	75	12.3	6.2	9.6	90.4	
270	53	16.6	8.3	17.9	82.1	
400	38	17.4	8.7	26.6	73.4	
Pan	-38	146.7	73.4	100.0	0.0	
Total	-	199.8	100.0	-	-	
K80	49					

Sample: Cn

```
Test No.: 2
```

Test No. CN3	Project No5045	J.St.	Jan.07,1997		
Purpose:	To investigate the extraction of gold from	n Sample 1.			
Procedure:	The sample was pulped with water to33 % solids in a 2.5 L bottle. Lime and NaCN were added and the leach carried out over 48 hours on rolls. At the end of the leach period the pulp was filtered and washed several times with water. All products were submitted for Au.				
Feed:	500 g of minus 10 mesh Composite 1 or	e			
Solution Volume:	1000ml.				
Pulp Density:	33% solids				
Sol'n Composition:	0.5 g/L NaCN				
pH Range:	10.5 - 11.0 with Ca(OH) ₂				
Grind:	15 minutes/kg @ 50% solids in the lab.	ball mill.			

Reagent Consumption (kg/t of cyanide feed) NaCN: 0.30

Time		Added, Grams			Resi	Residual Grams		umed	
	Ac	Actual		Equivalent				ums] pH
hours	NaCN	Ca(OH) ₂	NaCN	CaO	NaCN	CaO	NaCN	CaO	
	1								8
0-2	0.53	0.32	0.50	0.24	0.40		0.10		11.0-11.0
2-4	0.10	0.00	0.10	0.00	0.50		0.00		11.0-11.0
4-21	0.00	0.00	0.00	0.00	0.45		0.05		11.0-10.9
21-24	0.05	0.00	0.05	0.00	0.50		0.00		11.0-11.0
24-48	0.00	0.00	0.00	0.00	0.50	0.07	0.00		11.0
									<u> </u>
Total	0.68	0.32	0.65	0.24	2.35	0.07	0.15	0.17	ר

Results:

	Amount	Assays, mg/L, g/t	% Distribution
Product	g, mL	Au	Au
48 hour Preg/Wash	1640	0.29	83.3
CN Residue	502.9	0.19	16.7
Head (calc.)	502.9	1.14	100.0

CaO:

0.34


1

Lakefield Research Size Distribution Analysis

Sample: Res

Test No.: CN3

Si	Size		% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
65	212	1.7	1.0	1.0	99.0
100	150	4.8	2.8	3.7	96.3
150	106	9.1	5.2	9.0	91.0
200	75	14.5	8.4	17.3	82.7
270	53	13.5	7.8	25.1	74.9
400	38	20.6	11.9	37.0	63.0
Pan	-38	109.4	63.0	100.0	0.0
Total	-	173.6	100.0	-	-
K80	66				

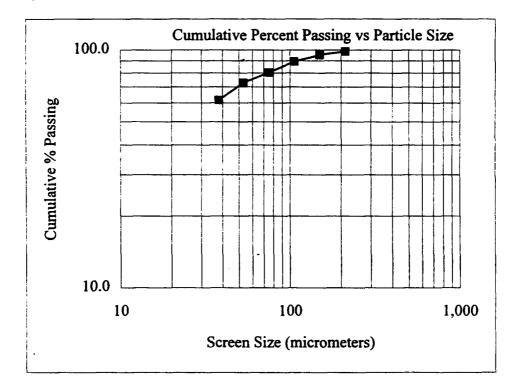
Test No. CN4	Project No5045	J.St.	Jan.07,1997				
Purpose:	To investigate the extraction of gold	from Sample 2.					
Procedure:	NaCN were added and the leach car of the leach period the pulp was filte	The sample was pulped with water to 33 % solids in a 2.5 L bottle. Lime and NaCN were added and the leach carried out over 48 hours on rolls. At the end of the leach period the pulp was filtered and washed several times with water. All products were submitted for Au.					
Feed:	500 g of minus 10 mesh Composite	2ore					
Solution Volume:	1000ml.						
Pulp Density:	33% solids						
Sol'n Composition:	0.5 g/L NaCN						
pH Range:	10.5 - 11.0 with Ca(OH) ₂						
Grind:	15 minutes/kg @ 50% solids in the l	ab. ball mill.					

Reagent Consumption (kg/t of cyanide feed) NaCN:

0.30 CaO: 0.44

Time		Added, Grams			Resi	dual	Const	umed	
	Ac	tual	Equiv	valent	Gra	ams	Gra	ms	pH
hours	NaCN	Ca(OH) ₂	NaCN	CaO	NaCN	CaO	NaCN	CaO	
	T								10.1
0-2	0.53	0.29	0.50	0.22	0.40		0.10		11.0-11.0
2-4	0.10	0.00	0.10	0.00	0.50		0.00		11.0-10.9
4-21	0.00	0.07	0.00	0.05	0.45		0.05		11.0-11.0
21-24	0.05	0.03	0.05	0.00	0.50		0.00		11.0-11.0
24-48	0.00	0.00	0.00	0.00	0.50	0.05	0.00		11.0
	<u> </u>								<u> </u>
Total	0.68	0.39	0.65	0.27	2.35	0.05	0.15	0.22	7

Results:


	Amount	Assays, mg/L, g/t	% Distribution
Product	g, mL	Au	Au
48 hour Preg/Wash	1600	2.51	96.8
CN Residue	503.0	0.26	3.2
Head (calc.)	503.0	8.24	100.0

Lakefield Research Size Distribution Analysis

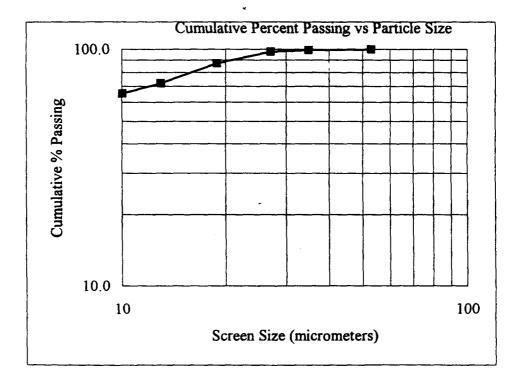
Sample: Res

Test No.: CN4

Si	Size		Weight % Retained		% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
65	212	2.3	1.4	1.4	98.6
100	150	_ 5.6	3.4	4.8	95.2
150	106	9.9	6.0	10.7	89.3
200	75	14.8	8.9	19.6	80.4
270	53	12.8	7.7	27.3	72.7
400	38	18.5	11.1	38.4	61.6
Pan	-38	102.3	61.6	100.0	0.0
Total	-	166.2	100.0	-	· -
K80	74				

Test No. CN5	Project No5045	J.St.	Jan.27,1997
Purpose:	To investigate the extraction of gold from	the flotation concentrate.	
Procedure:	The sample was pulped with water to 25 % NaCN were added and the leach carried of the leach period the pulp was filtered a All products were submitted for Au.	out over 48 hours on rolls. At the end	l
Feed:	107 g Test F3 cleaner concentrate		
Solution Volume:	334 ml		
Pulp Density:	25% solids		
Sol'n Composition:	1.0 gL NaCN		
pH Range:	10.5-11.0 with Ca(OH)2		
Grind:	20minutes @ 50% solids in the lab. pebb	le mill.	

Reagent Consumption (kg/t of cyanide feed) NaCN: 2.46 CaO: 1.51


Time	Added, Grams			Residual		Consumed			
	Actual		Equivalent		Grams		Grams		pН
hours	NaCN	Ca(OH) ₂	NaCN	CaO	NaCN	CaO	NaCN	CaO	
	1								6.8
0-2	0.35	0,18	0.33	0.13	0.23		0.10		11.0-11.0
2-5	0.11	0.00	0.10	0.00	0.30		0.03		11.0-109
5-20	0.03	0.01	0.03	0.01	0.25		0.08		11.0-103
20-24	0.09	0.05	0.08	0.03	0.33		0.00		11.0-11.0
24-29	0.00	0.00	0.00	0.00	0.28		0.05		11.0-10.9
29-48	0.05	0.01	0.05	0.00	0.33		0.00		11.1-10.3
48	0.00		0.00			0.01			
Total	0.63	0.25	0.60	0.17	1.73	0.01	0.26	0.16	

Results:

	Amount	Assays, mg/L, g/t	% Distribut	O'all
Product	g, mL	Au	Au	
48 hour Preg/Wash	758	2.60	93.8	84.9
CN Residue	107.4	1.22	6.2	
Head (calc.)	107.4	19.6	100.0	90.5

Company		Lakefield Research Size Distribution Analysis			LR-5045
Sample:	F3		Test No.:	CN5	
Dry Soli	<u>ds S.G.=</u>	3.91	Water Ten	nperature =	4.50 C°
Si	ze	Weight	% Re	tained	% Passing
Mesh	μm	grams	Individual	Cumulative	Cumulative
270	53 35 27 19 13 10 -10	0.09 0.24 0.64 4.40 6.29 2.80 27.11	0.2 0.6 1.5 10.6 15.1 6.7 65.2	0.2 0.8 2.3 12.9 28.0 34.8 100.0	99.8 99.2 97.7 87.1 72.0 65.2 0.0
Total	-	41.57	100.0	-	-
K80 =	16				

η

Test No. CN6	Project No5045	J.St.	Jan.27,1997
Purpose:	To investigate the extraction of gold from	n the flotation concentrate.	
Procedure:	The sample was pulped with water to 25 NaCN were added and the leach carried of the leach period the pulp was filtered All products were submitted for Au.	out over 48 hours on rolls.	At the end
Feed:	107 g Test F4 cleaner concentrate		
Solution Volume:	342ml.		
Pulp Density:	25% solids		
Sol'n Composition:	1.0 gL NaCN		
pH Range:	10.5-11.0 with Ca(OH)2		
Grind:	20minutes @ 50% solids in the lab. peb	ble mill.	

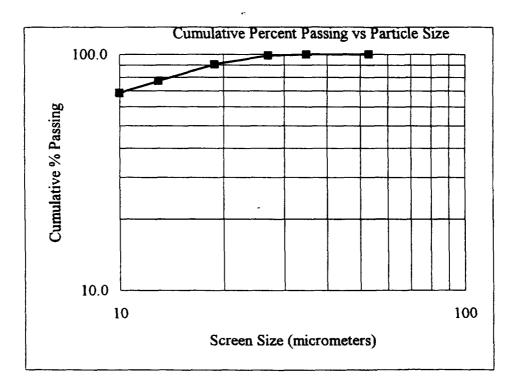
Reagent Consumption (kg/t of cyanide feed) NaCN:

3.57 CaO: 1.25

Time	Added, Grams			Residual		Consumed			
	Ac	tual	Equiv	/alent	Gra	ms	Gra	ims	pН
hours	NaCN	Ca(OH) ₂	NaCN	CaO	NaCN	CaO	NaCN	CaO	_
									7.2
0-2	0.36	0.14	0.34	0.10	0.23		0.10		11.0-10.8
2-5	0.11	0.01	0.10	0.01	0.32		0.01		11.0-10.9
5-20	0.01	0.02	0.01	0.02	0.20		0.13		11.0-10.4
20-24	0.14	0.06	0.13	0.04	0.29		0.05		11.0-11.2
24-29	0.05	0.00	0.05	0.00	0.27		0.09		11.2-11.1
29-48	0.10	0.00	0.09	0.00	0.34		0.00		11-0-10.5
48	0.00		0.00			0.03			
							······		
Total	0.77	0.23	0.73	0.17	1.65	0.03	0.38	0.13	

Results:

	Amount	Assays, mg/L, g/t	% Distribut	O'all
Product	g, mL	Au	Au	
48 hour Preg/Wash	800	13.4	99.1	92.9
CN Residue	107.6	0.94	0.9	
Head (calc.)	107.6	101	100.0	93.8


1

Sample:	F4		Test No.:	CN6	
Dry Solic	ls S.G.=	3.93	Water Ten	4.50 C°	
Siz	Size		% Re	% Retained	
Mesh	μm	grams	Individual	Cumulative	Cumulative
270	53	0.01	0.0	0.0	100.0
	35	0.14	0.4	0.4	99.6
	27	0.32	0.8	1.2	98.8
	19	3.11	8.1	9.3	90.7
1 1	13	5.27	13.7	22.9	77.1
	10	3.31	8.6	31.5	68.5
	-10	26.41	68.5	100.0	0.0
Total	-	38. 57	100.0	-	-
K80 =	14		L		

LR-5045

Company Lakefield Research Size Distribution Analysis

ł

Nuinsco Resources Rainy River Project

APPENDIX VI

-

EXPLORATION DATA

BACK-UP INVOICES – PROOF OF EXPENDITURES

12708 24th Avenue Surrey, B.C. V4A 2E6 (604) 57775756

Feb. 6, 1997

NUINSCO RESOURCES LTD 908 The East Mall Etobicoke, Ont.

Drill Hole NRX 97-02 Abandonned in BOULDERS NW casing 0 to 150 ft N/C BW Casing 0 to 168 ft = 168 @ \$17/ft \$2,876.00 Consummed in boulders 1 heavy duty NW shoe 330.00 2 heavy BW shoes \$235 ea 490.00 1 BQ core bit 410.00 1 BQ reaming shell 385.00 Drilling mud 11 bags @ \$16 ea 176.00 Moving time less than 40 man hours N/C All casing recovered N/C 4,667.00 GST 326.69 \$4,993.69

FF8 - 7 227

144999 - 499369

S.R. AppRova-FEBY 7/97 prim

.

(Fax. 0.0. order). Approved by teleptrone four Jone.

Es 07,1997.

· .

P.01 P. 01

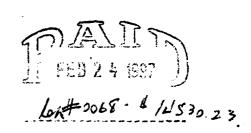
.

12708 24th Avenue Surrey, B.C. VAA 200 (604) 807×0180 538-0244

INVOICE

D.

FEB 24,1997


2

NUINSCO RESOURCES LTD 908 The East Mall Etobicoke Ont.

Drill Hole NR 97-14 -50

NW casing 0 to 140 ft	N/C
BN caping 0 to 152 ft = $152 \text{ e} \frac{17}{\text{ft}}$	\$ 2,584.00
BTW core 152 to 735 ft	
Total cored footage 583 ft # \$17/ft	9,911.00
BW heavy duty casing shoes consummed or left in	· · · · · · · · ·
2 🗣 \$300 e	a 600.00
NW casing shoo consummed 1	300.00
Drilling mud 9 bags @ \$16 ea	144.00
BW casing left in to be replaced by Nuinsco	N/C
Noving time less than 40 man hours	N/C
	13,589.00
GST	951.23
	\$14,530.23

Appned GAAulteli Pr. Koning Mobb

TOTAL P.01

12708 24th Avenue Surney, B.C. V4A 266 (604) 538125(89) 538-0244

INVOICE

Mar. 4, 1997

÷

NUINSCO RESOURCES LTD. 908 The East Mall Etobicoke, Ont.

Drill Hole NR 97-16 -50

NW casing 0 to 140 ft	\$ N/C	
BW casing 0 to 150 = 150 @ \$17/ft	2,550.00	
BTW core 150 to 525		
Total cored footage 375 ft 🛛 \$17/ft	6,375.00	
Sperry Sun Tests	200.00	
Drilling mud consummed 8 bags @ \$16 ea	128.00	
BW heavy casing shoe consumed-Reg shoe left	in 525.00	
NW heavy casing shoe consumed	325.00	
BW casing left in to be replaced	N/C	
MOVING time less than 40 man hours	N/C	\$10,103.00
	\$10,103.00	\$10,103.00

Drill Hole NR 96-67 clean out cave, deepen-leave 130ft of rods to cut off cave.

BTW core 789 to 918 Total cored footage 129 ft @ \$19/ft 2,341.00 Move rods and tools-move pump shack-string and bury water line-drill out cave-wash out 50 feet of settled cuttings in hole-3men 36hrs @ \$25 <u>900.00</u> \$3,241.00 13,344.00

GST

934.08 \$14,278.08

12708 24th Avenue Surrey, B.C. V4A 2E6 (604) 538-0244

\$12,857.12

INVOICE

March 7, 1997

NUINSCO RESOURCES LTD. 908 The East Mall Etobicoke, Ont.

Drill Hole NR-97-17 -50

NW casing 0 to 150 ft	N/C
BW casing 0 to 160 ft = 160 @ \$17/ft	\$ 2,720.00
BTW core 160 to 655ft	
Total cored footage 495 ft = 340 @ \$17/ft	5,780.00
	2,945.00
BW heavy casing shoe left in	325.00
Drilling mud used 6 bags @ \$16 ea	96.00
Sperry sun tests	150.00
Moving time less than 40 man hours	N/C
BW casing left in to be replaced by Nuinsco	N/C
	\$12,016.00
GST	841.12

X

12708 24th Avenue Surrey, B.C. V4A 2E6 (604)333(+3180

\$34,400.50

538-0Z44

INVOICE

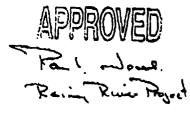
Mar.18,1997

NUINSCO RESOURCES LTD ς. 908 The Bast Mall Etobicoke Ont. Drill Hole NR 97-18 -50 BW casing 0 to 55 w 55 @ \$17/ft \$ 935.00 BTW core 55ft to 845 ft Total cored footage 790 ft=445@ \$17 7,565.00 345@ \$19 6,555.00 225.00 BW standard casing shoe left in BW casing left in to be replaced N/C 150.00 Sperry Sun tests N/C Moving time less than 40 man hours 15,430.00 \$15,430.00 Drill Hole NR 97-19 ~50 NW casing 0 to 200 ft BW casing 0 to 205 ft = 205 @ \$17/ft N/C 3,485.00 BTW core 205 to 905 Et Total cored footage 700 ft = 295 @ \$17 5,015.00 7,595.00 405 @ \$19 BW beavy casing shoe left in 325.00 TRICONE wore out BW casing left in to be replaced N/C 200.00 Sperry sun tests Moving time loss than 40 man hours N/C \$18,720.00 16,720.00 32,150.00 -2;-250:50° GST

Approved Faul Josef. River Project

12708 24th Avenue Surrey, B.C. VAA 200 538-0244

INVOICE


March 26,1997

NUINSCO RESOURCES LTD. 905 The East Mall Stobicoxe, Ont.

26

Drill Hole NR 97-25 ~50

NN casing 0 to 120	N/C
SW casing 0 to 127 ft = 127 \oplus \$17/ft	\$ 2,159.00
BTW core 127 to 577 ft	
Total cored footage 450 Ft = 450 e \$17/Et	7.630.00
All casing and shoe recovered	さくり
Sparry Sun Teste	100.00
Drilling mud used 9 bags 8 \$16 ea	144.00
Moving time 1985 than 40 man hours	N/C
	\$10,053.00
GST	703.71
	\$10,756.71

.

For Approval

Post-it" Fax Note 7671	Date Dages I		
To Jehney	From Paral		
Co/Dept	Co.		
Phone #	Phone #		
Par d	Facil		

TOTAL P.01

×

¥

DIAR OND DRILLING LTD. 12708 24th Avenue Surrey, B.C. V4A 266 (604),5731,597

\$18,550.22

538-0244

INVOICE

April 8, 1997

6

NUINSCO RESOURCES LTD 908 The East Mall Etobicoke, Ont.

Drill Hole NR 97-28

NW casing 0 to 80 ft	N/C
BW casing 0 to 90 ft # 90 & \$17/ft	1,530.00
BTW core 90 to 905 ft	
Total cored footage 815ft = 410 @ \$17/ft	6,970.00
400 @ \$19/ft	7,600.00
Sperry sun tests	250.00
Drilling mud 6 bags 2 \$16ea	96.00
All casing and shoe recovered to	N/C
Moving time less than 40 man hours	N/C
	\$17,346.00
GST	15214122/

, **1**

Date:	March 31, 1997
Invoice No.:	000562
Page:	1 of 5
Job:	R1768

. To:

NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2

COPY

			EMO 2	AREA			
		From	March 16	to 31,	1997		
Hole No.			N. C				
			N C	ore			
NR97-20	148.13 150.00	$150.00 \\ 221.28$		metres metres		\$59.25 61.25	\$110.8 4,365.9
NR97-21	$0.00 \\ 14.02 \\ 150.00$	14.02 150.00 221.28	135.98	metres metres metres	piping	59.25 59.25 61.25	830.6 8,056.8 4,365.9
NR97-22	$\begin{array}{r} 0.00 \\ 15.00 \\ 30.00 \\ 45.00 \\ 50.60 \\ 150.00 \end{array}$	15.0030.0045.0050.60150.00221.28	15.00 15.00 5.60 99.40	metres metres metres metres metres metres	piping piping	59.25 64.25 74.25 87.25 59.25 61.25	888.7 963.7 1,113.7 488.6 5,889.4 4,365.9
NR97-23	$\begin{array}{r} 0.00 \\ 15.00 \\ 30.00 \\ 45.00 \\ 61.57 \\ 150.00 \end{array}$	15.00 30.00 45.00 61.57 150.00 181.66	15.00 15.00 16.57 88.43	metres metres metres metres metres metres	piping piping	59.25 64.25 74.25 87.25 59.25 61.25	888.7 963.7 1,113.7 1,445.7 5,239.4 1,939.1
NR97-10	154.23	199.95	45.72	metres		61.25	2,800.3
NR97-25	0.00 15.00 30.00 45.00 56.08 150.00	15.00 30.00 45.00 56.08 150.00 196.90	15.00 15.00 11.08 93.92	metres metres metres metres metres metres	piping piping	59.25 64.25 74.25 87.25 59.25 61.25	888.7 963.7 1,113.7 966.7 5,564.7 2,872.6
NR 97 - 27	0.00 15.00 30.00 40.84 150.00	15.00 30.00 40.84 150.00 199.95	15.00 10.84 109.16	metres metres metres metres metres	piping	59.25 64.25 74.25 59.25 61.25	888.79 963.79 804.8 6,467.73 3,059.44

98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

	adley Bros.		IN Date: <u>March 3</u> Invoice No.: 000562	VOICE 1, 1997
7			Page: 2 of 5	
To: .		·	Job: R1768	
	NUINSCO RESOURCES LIN 908 The East Mall Etobicoke, Ontario M9B 6K2	IITED	СОРУ	T
ļ		EMO AREA		
1	From M	March 16 to 31, 199	7	
NR97-29	$\begin{array}{cccc} 0.00 & 15.00 \\ 15.00 & 30.00 \\ 30.00 & 37.80 \\ 37.80 & 150.00 \\ 150.00 & 199.95 \end{array}$	15.00 metres pip 15.00 metres pip 7.80 metres pip 112.20 metres 49.95 metres	ing 64.25	\$888.75 963.75 579.15 6,647.85 3,059.44
NR97-30	$\begin{array}{ccccc} 0.00 & 15.00 \\ 15.00 & 30.00 \\ 30.00 & 45.00 \\ 45.00 & 49.99 \\ 49.99 & 150.00 \\ 150.00 & 211.53 \end{array}$	15.00 metres pip 15.00 metres pip 15.00 metres pip 4.99 metres pip 100.01 metres 61.53 metres	ing 64.25 ing 74.25	888.75 963.75 1,113.75 435.38 5,925.59 3,768.71
NR97-31	$\begin{array}{cccc} 0.00 & 15.00 \\ 15.00 & 30.00 \\ 30.00 & 44.50 \\ 44.50 & 150.00 \\ 150.00 & 248.72 \end{array}$	15.00 metres pip 15.00 metres pip 14.50 metres pip 105.50 metres 98.72 metres	ing 64.25	888.75 963.75 1,076.63 6,250.88 6,046.60
	Cost to pull casing NR97-29 -	3.00 man hours 1.00 machine ho		108.00 26.00
!	Casing left in hole NR97-20 - NW casing NW shoe bit	25.60 metres 1.00	52.00 280.00	1,331.20 280.00
	NR97-21 - NW casing NW shoe bit	14.02 metres 1.00	52.00 280.00	729.04 280.00
]	NR97-22 - NW casing NW shoe bit	50.60 metres 1.00	52.00 280.00	2,631.20 280.00
}	NR97-23 - NW casing NW shoe bit	61.57 metres 1.00	52.00 280.00	3,201.64 280.00
1				

Q.S.T.: #1017522805

CONTRACT DIAMOND DRILLING 98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

Date:	March 31, 1997
Invoice No.:	000562
Page:	3 of 5
Job:	R1768

NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2

adley Bros.

Limited

ſo:

COPY

	EMO AREA		
From Ma	arch 16 to 31, 1997		
NR97-25 - NW casing NW shoe bit	56.08 metres 1.00	\$52.00 280.00	\$2,916.16 280.00
NR97-27 - NW casing NW shoe bit	40.84 metres 1.00	52.00 280.00	2,123.68 280.00
NR97-30 - NW casing NW shoe bit	49.99 metres 1.00	52.00 280.00	2,599.48 280.00
Cost to move on old hole NR97-10 - 20 man hours 6 machine hours 2 tractor hours			
	Plus 20% 198.40		1,190.40
Cost to move to hole NR97-25 -	92.00 man hours 14.00 tractor hours 9.00 muskeg hours 5.00 truck float hrs	58.00	3,312.00 812.00 477.00 375.00
Sperry Sun Tests – NR97–20 – 91–152–213 m	1.50 hour	98.00	147.00
NR97-21 - 30-99-160-221 m	2.00 hours	98.00	196.00
NR97-22 - 38-61-152-219 m	2.00 hours	98.00	196.00
NR97-23 - 76-128-146-174 m	2.00 hours	98.00	196.00

G.S.T.: #R140192204 **Q.S.T.:** #1017522805

CONTRACT DIAMOND DRILLING

98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

Tel.: (819) 797-0755 • Fax: (819) 797-0916

March 31, 1997
000562
4 of 5
R1768

COPY

NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2

well the second

To:

adley

Bros.

From March 1 NR97-10 - 200 m 0.5 NR97-25 - 61-122-183 m 1.5 NR97-27 - 61-122-200 m 1.5 NR97-29 - 61-137-198 m 1.5	0 hour 0 hour 0 hour	997 \$98.00 98.00 98.00 98.00	\$49. 147. 147.
NR97-25 - 61-122-183 m 1.5 NR97-27 - 61-122-200 m 1.5 NR97-29 - 61-137-198 m 1.5	0 hour 0 hour	98.00 98.00	147. 147.
61-122-183 m1.5NR97-27 - 61-122-200 m1.5NR97-29 - 61-137-198 m1.5	0 hour	98.00	147.
61-122-200 m1.5NR97-29 -61-137-198 m1.5			
61-137-198 m 1.5	0 hour	98.00	
NTD 07 30			147.
NR97-30 - 198-198-61-128 m 2.0	0 hours	98.00	196.
Muds used - NR97-21 - OBC Polydrill 10.0 133X Polydrill 10.0	0 litres 0 litres	8.00 8.00	80. 80.
NR97-22 - OBC Polydrill 8.0 133X Polydrill 8.0	0 litres 0 litres	8.00 8.00	64. 64.
NR97-23 - OBC Polydrill 8.0 133X Polydrill 8.0	0 litres 0 litres	8.00 8.00	64. 64.
NR97-25 - OBC Polydrill 40.0 133X Polydrill 40.0	0 litres 0 litres	8.00 8.00	320. 320.
NR97-27 - OBC Polydrill 6.0 133X Polydrill 6.0	0 litres 0 litres	8.00 8.00	48. 48.
NR97-29 - OBC Polydrill 10.0 133X Polydrill 10.0	0 litres 0 litres	8.00 8.00	80. 80.

C.S.T.: #R140192204 **Q.S.T.:** #1017522805

CONTRACT DIAMOND DRILLING

98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

Tel.: (819) 797-0755 • Fax: (819) 797-0916

	adley Bros.	IN	VOICE
	Limited	Date: <u>March</u> Invoice No.: 000562	31, 1997
		Page: 5 of 5	5
To:	· · · · · · · · · · · · · · · · · · ·	Job: R1768	
	NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2	Сору	
[EMO AREA		
	From March 16 to 31, 19	997	
	NR97-30 - OBC Polydrill 10.00 litres 133X Polydrill 10.00 litres	\$8.00 8.00	\$80.00 80.00
	NR97-31 - OBC Polydrill 10.00 litres 133X Polydrill 10.00 litres	8.00 8.00	80.00 80.00
	Trays supplied - 200.00 N Core	6.25	1,250.00
	Demobilization		5,000.00
		G.S.T.	\$143,943.49 10,076.04
			\$154,019.53
1			

CONTRACT DIAMOND DRILLING 98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

		M. MAN				uston Road B.C. V4G 1C2		_	INVO			
	vv.					604) 946-6590 604) 946-6594			DOCUMENTNO		AGE NO.	
.D TO:								l	13954 PAYMZNY TERMS		WOICE D	ATE -
<i>D</i> 10.	NUINS	SCO RESOUR	CES LTD			(00173)			NET 30 DAYS		3/11/9	7 7
	908 1	THE EAST M	ALL			· · · · <u>- · -</u> ,			PICKING NO.		CICING D	
	ETOBI	COKE ON M	9B 6K2									
	CANAI	DA							14072	0	3/11/9	
									ORDER NO.	• • • • •	RDER DA	16
									og har state for the second	1		
D T/2									12903		2/10/9	a statistic and statistical statistics
P TO:	NITTNO	SCO RESOUR	רבכ ודם			(00173)			PURCHASE ORDER			
		FOR PICK				(001/3)			KEITH ALLEN		ANITOU	
		FRANCES OF							SALES REPRESENTA	TIVE P		
	CANAI											
									DOUG SEARLE		X	<u> </u>
									MEMO:		N	
									P.O. KEITH AL	LEN		
Jan Balancia			iller og statenskare	Parenting and	10.25		ADIAN DOLLARS					TAL PRICE
A. Bark	YORD	QTY SHIP	-8/0 -	- PAR	S	S. DESCRIPT		иом	UNIT PRICE	DISC		
1	1 1	1	0	*LAND FI	REIGHT	TRANSPORT CHARGES		EA	487.29	0.00)	487.3
-	-	*				MANITOULIN 543532	5					
						SHIP DIRECT FROM F	OUYN-NORANDA					
						VIA MANITOULIN.						
						PREPAID & CHARGE	,					
						5.3 5	2			1		
						(DAL						
							a					
						MAR 2 4 1	Bet IJ -					
						MAR 24 1 6644155						
						loh#155	· +560 3	8 .				
										1		
						SUB TOTAL:						487.
	DITIONS	on reverse				GST/ <i>TPS</i> : 100617						34.
e cone						- I UNI <i>TIPS</i> - 100617	20181				1	
e cone												38.
e cond						PST/ <i>TVQ</i> :						38.

NUINSCO RESOURCES LTD

ETOBICOKE ON M9B 6K2

908 THE EAST MALL

CANADA

Unit 6 7950 Huston Road Delta, B.C. V4G 1C2

INVOICE

DOCUMENT NO.

Tel.: (604) 946-6590 Fax: (604) 946-6594

(00173)

SHIP TO:

SOLD TO:

NUINSCO RESOURCES LTD HOLD FOR PICK UP FORT FRANCES ON CANADA (00173)

n de Britsen i de constate d'élégie de la const	a dha dha air an 1966 an Annaiste an an Annaiste
13765	1
PAYMENT TERMS	
NET 30 DAYS	02/10/97
PICKING NO.	PICKING DATE
13868	02/10/97
ORDER NO.	ORDER DATE
12903	02/10/97
PURCHASE ORDER NO.	SHIPPED VIA
KEITH ALLEN	MANITOULIN
SALES REPRESENTATIVE	PREPAID COLLECT
DOUG SEARLE	x
MEMO	
P.O. KEITH ALLEN	

PAGE NO.

CANADIAN DOLLARS

NO.	QTY ORD	QTY SHIP	B/O	PART NO.		DESCRIP	TION		UOM	UNIT PRICE	DISC.	TOTAL PRICE
									1-			
1	57	57	0	20-10-310	SW CASING	10'			EA	128.05	0.00	7,298.85
						Let #	040-¥	839	3.6	لا		
SEE C		L	1	<u> </u>	SUB TOTAL			t.				7,298.85
DEEC	CONDITIONS	ON REVERSE			GST/ <i>TPS</i> :	10061	.7281RT					510.92
					PST/TVQ:							583.91
					TOTAL:		<u>, our</u> a an <u>r</u>					8,393.68

	.AN	6 Huston , B.C. N	i Road V4G 1C2				INV		N. 19				
						946-6590 946-6594				DOCUMENT NO.		PACE NO.	
										13856 PAYMENT TERMS		INVOICE (and the second se
	NUINSCO RESOUR 908 THE EAST M				(00173)			NET 30 DAYS		02/25/9 PICKING L	7 ATE
	ETOBICOKE ON M CANADA	9B 6K2								13966		02/25/9	
										ORDER NO		ORDER DA	
SHIP TO:					,		,			12801 PURCHASE ORDER	NO.	01/21/9 SHIPPED V	₩ /1, -1 <u>5</u> -1
	ULTRAMOBILE DI C/O FALLS HARD HOLD FOR PICK	WARE	LING		(00311)			KEITH ALLEN		REIMER PREPAID	
	NESTOR FALLS O CANADA									DOUG SEARLE		x	Mader the second to prove the
										MEMO			
			Press and a second	RT NO.				DIAN DOLLAF	S	UNIT PRICE			TAL DOUCT
	YORD . QTYSHIP	B/O							ULM	UPILI /KILE	Di\$		OTAL PRICE
SEE CONI	DITIONS ON REVERSE	1	1		3	SUB TOTAL	:				J		1,710.82
					1								
						GST/ <i>TPS</i> : PST/ <i>TVQ</i> :	10061728	11RT					119.76

		M. MAN	DLE			ston Road C. V4G 1C2		-				
	•••			-		04) 946-6590 04) 946-6594			DOCUMENT NO. 13927		PAGE NO	1
									PAYMENT TERMS		INVOICE	DATE
ld to						(00172	`					
		CO RESOURC				(00173)		NET 30 DAYS	1,50	03/07/	
		COKE ON MS										
	CANAI	A							14050	- 1	03/07/	97
					-				ORDER NO.			
P TO:									13031 FURCHASE ORDER			VIA
	NUINS	CO RESOUR	CES LTD			(00173)					
		FOR PICK (KEITH ALLEN		MANITO	ULIN
	FORT CANAL	FRANCIS ON	1						SALES REPRESENTA		ci i në	
	CANAL	/6							DOUG SEARLE		N NERS X	
									MEMO			
								-	P.O. KEITH AL			
o. 1 c	OTY ORD	QTY SHUP	B/Q	PARTN	ю.		CANADIAN DOLLAR		SHIP DIRECT F			ORANDA
										1 a. E.		
1	57	57	0	20-10-310		BW CASING :	10'	EA	128.05	0.0	00	7,298.
											ļ	
1			1									
							റെ മറ					
							nal:					
								and the second sec				
							1.2.13 13 13 Latt 115 - # 831	13.0	T.			
							DE 13 07 12:13 07 Lott 115 -# 831	33.0	Ĭ			
							1.2.13 13 1.2.13 13 1017 115 - # 831	3.4	k			
EECO	NDITIONS	ON REVERSE				SUB TOTAL:	DAN 13 TT	3.0	E Contraction of the second seco			7,298.
EE COT	NDITIONS	ON REVERSE				SUB TOTAL: GST/ <i>TPS</i> :	100617281RT	33.6				510.
EE CO	NDITIONS	ON REVERSE				SUB TOTAL:		23.4	E .			7,298. 510. 583.

ΙΝΥΟΙCΕ

Date:	January 31, 1997
Invoice No.:	000443
Page:	1 of 3
Job:	R1768

NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2

		EMO AREA		
	From	January 20 to 31, 1997		
Hole No.				
		N Core		
NR97-03	0.00 15.00 15.00 15.84 15.84 150.00	15.00 metres piping 0.84 metres piping 134.16 metres	\$59.25 64.25 59.25	\$888.75 53.97 7,948.98
	150.00 269.74	119.74 metres	61.25	7,334.08
NR97-04	0.00 15.00 15.00 30.00	15.00 metres piping 15.00 metres piping	59.25 64.25	888.75 963.75
	30.00 45.00 45.00 57.30	15.00 metres piping 12.30 metres piping	74.25	1,113.75 1,073.18
	57.30 150.00	92.70 metres	59.25	5,492.48
	150.00 175.56	25.56 metres	61.25	1,565.55
NR97-05	0.00 15.00 15.00 30.00	15.00 metres piping 15.00 metres piping	59.25 64.25	888.75 963.75
	30.00 45.00	15.00 metres piping	74.25	1,113.75
	45.00 57.30 57.30 150.00	12.30 metres piping 92.70 metres	87.25 59.25	1,073.18 5,492.48
	150.00 160.30	10.30 metres	61.25	630.88
NR97-02	0.00 15.00	15.00 metres piping	59.25	888.75
	15.00 28.65 28.65 93.27	13.65 metres piping 64.62 metres	64.25 59.25	877.01 3,828.74
IR97-06	0.00 15.00	15.00 metres piping	59.25	888.75
	15.00 21.95	6.95 metres piping	64.25	446.54
	Cost to pull casi			
	NR97-02	6.00 man hours 2.00 machine hours	36.00 26.00	$216.00 \\ 52.00$
	Cost of casing le		20.00	52.00
	NR97-03 NW casing	15.84 metres	52.00	823.68
	NW casing shoe	1.00	280.00	280.00

G.S.T.: #R140192204 Q.S

Q.S.T.: #1017522805

CONTRACT DIAMOND DRILLING

98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

Date:	January 31, 1997
Invoice No.:	000443
Page:	2 of 3
Job:	R1768

NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2

See 2

23

	EMO AREA			
From Ja	anuary 20 to 31, 1997			
NR97-04 NW casing NW casing shoe	57.30 metre 1.00	\$52.00 280.00	\$2,979.60 280.00	
NR97-05 NW casing NW casing shoe	57.30 metre 1.00	52.00 280.00	2,979.60 280.00	•
NR97-02 NW casing NW casing shoe	28.65 metre 1.00	52.00 280.00	1,489.80 280.00	
Cost of muds NR97-03 GS-550	2.00 bags	13.75	27.50	
NR97-02 GS-550	3.00 bags	13.75	41.25	
Acid tests NR97-03 15.84 -228.6 - 269.75 m	3.00 acids tests	60.00	180.00	
NR97-04 57.30 - 121.92 - 175.26 m	3.00 acid tests	60.00	180.00	×
NR97-05 56.70 - 68.89 - 114.60 - 160.32 m	4.00 acid test	60.00	240.00	>
NR97-02 29.26 m	1.00 acid test	60.00	60.00	
Sperry Sun tests NR97-03 60.96 - 132.59 m	1.00 hour	98.00	98.00	

G.S.T.: #R140192204

Q.S.T.: #1017522805

CONTRACT DIAMOND DRILLING

98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

Date:	January 31, 1997
Invoice No.:	000443
Page:	3 of 3
Job:	R1768

NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2

aller

Series & S.S.

Stor Land

1

F	rom January 2	0 to 31, 1997		
NR97-02	4	· · · · · · · · · · · · · · · · · · ·		
76.20 m	0.50	hour	\$98.00	\$49.00
Cost to move t NR97-04	0			
16		man hours man hours		
	21.00	man hours	36.00	756.00
le	6.00 4.00	tractor hours tractor hours		
	2.00	tractor hours	58.00	116.00
Core trays	120.00	N core	6.25	750.00
			G.S.T.	\$56,574.25 3,960.20
				\$60,534.45

.T.: #R140192204 **Q.S.T.:** #1017522805

> CONTRACT DIAMOND DRILLING 98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

To:

INVOICE

Limited		Date:	February	15, 1997
		Invoice No.:	000463	
		Page:	3 of 3	
NUINSCO RESOURCES L 908 The East Mall	IMITED	· · · · ·	R1768	
Etobicoke, Ontario M9B 6K2		c	сору	
	EMO AREA			
From 1	Pebruary 1 to 15, 19	97		
NRX97-05 - 78.02-182.88-251.7 121.92 m	76- 2.00 hours	\$98	3.00	\$196.00
NRX97-06 - 76.20-103.63-164.5 225.55 m	59- 2.00 hours	98	3.00	196.00
NR97-10 - 70.10-146.30 m	1.00 hour	98	3.00	98.00
Muds - NRX97-05 - OBC Polydrill 133X Polydrill	20.00 litres 20.00 litres		8.00 8.00	160.00 160.00
NRX97-06 - OBC Polydrill 133X Polydrill	29.00 litres 29.00 litres		8.00 8.00	232.00 232.00
NR97-10 - OBC Polydrill 133X Polydrill	50.00 litres 50.00 litres		8.00	400.00 400.00
NR97-11 - OBC Polydrill 133X Polydrill	5.00 litres 5.00 litres		8.00	40.00 40.00
Work done with tra for Company -	actor			
Feb. 12-13-14 -	6.00 man hours 6.00 muskeg hou		.00	216.00 318.00
Trays supplied -	600.00 N Core	6	.25	3,750.00
		G.S.T.		\$93,452.23 6,541.66
			==	\$99,993.89

CONTRACT DIAMOND DRILLING

98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

Tel.: (819) 797-0755 • Fax: (819) 797-0916

Fadley INVOICE Bros Limited Date: February 15, 1997 Invoice No.: 000463 2 of 3 Page: R1768 Job: NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2 COPY EMO AREA From February 1 to 15, 1997 Casing left in NR97-06 -NW casing 25.60 metres \$52.00 \$1,331.20 280.00 NW casing shoe 1.00 280.00 NRX97-04 -46.94 metres NW casing 52.00 2,440.88 X 1.00 NW casing shoe 280.00 280.00 NRX97-05 -NW casing 67.66 metres 3,518.32 52.00 NW casing shoe 1.00 280.00 280.00 NRX97-06 -70.71 metres NW casing 52.00 3,676.92 NW casing shoe 1.00 280.00 280.00 NR97-10 -NW casing 65.22 metres 52.00 3,391.44 NW casing shoe 1.00 280.00 280.00 Cost to move to NRX97-05 at 610 m -24.00 man hours less 18.00 man hours 6.00 man hours 36.00 216.00 6.00 tractor hours 4.00 tractor hours less 2.00 tractor hours 53.00 106.00 Sperry Sun tests -NR97-06 -

45.72-121.92-194.16 m 1.50 hour NRX97-04 -54.86-109.73-170.69-215.19-260.90 m 2.50 hours

S.T.: #R140192204 **Q.S.T.: #**1017522805

 \mathbf{O} :

CONTRACT DIAMOND DRILLING

98.00

98.00

147.00

245.00 🛛

98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

Tel.: (819) 797-0755 • Fax: (819) 797-0916

Date:	February 15, 1997
Invoice No.:	000463
Page:	1 of 3
Job:	R1768
_	

COPY

To:

NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2

		EMO .	AREA		1.12		\cdot \cdot \cdot		
	From	February	1 to 15	, 1997	MA	R 0 4 19	97		
		N	Core		60000	3-4/54	4,412.22		
21.95 25.60 150.00	25.60 150.00 193.85	124.40	metres	piping	59.	25	7,	370.	70
$\begin{array}{r} 0.00 \\ 15.00 \\ 30.00 \\ 45.00 \\ 46.93 \\ 150.00 \end{array}$	15.00 30.00 45.00 46.93 150.00 260.90	15.00 15.00 1.93 103.07	metres metres metres	piping piping	64. 74. 87. 59.	25 25 25 25	6,	168.3	75 75 39 90
0.00 15.00 30.00 45.00 67.66 150.00	15.00 30.00 45.00 67.66 150.00 251.76	15.00 15.00 22.66 82.34	metres metres metres metres	piping piping	64. 74. 87. 59.	25 25 25 25	1, 1, 4,	963. 113. 977.0 878.0	75 75 09 65
0.00 15.00 30.00 45.00 70.71 150.00	15.00 30.00 45.00 70.71 150.00 225.55	15.00 15.00 25.71 79.29	metres metres metres	piping piping	64. 74. 87. 59.	25 25 25 25	1, 2, 4,	963.7 113.7 243.2 697.9	75 75 20 93
0.00 15.00 30.00 45.00 65.22 150.00	15.00 30.00 45.00 65.22 150.00 154.22	15.00 15.00 20.22 84.78	metres metres metres metres	piping piping	64. 74. 87. 59.	25 25 25 25	1, 1, 5,	963.7 113.7 764.2 023.2	75 75 20 22
0.00 15.00 30.00 45.00	15.00 30.00 45.00 52.43	15.00 15.00	metres metres	piping piping	64. 74.	25 25	1,	963.7 113.7	75
	$\begin{array}{c} 25.60\\ 150.00\\ 150.00\\ 0.00\\ 15.00\\ 30.00\\ 45.00\\ 46.93\\ 150.00\\ 0.00\\ 15.00\\ 30.00\\ 45.00\\ 67.66\\ 150.00\\ 0.00\\ 15.00\\ 30.00\\ 45.00\\ 70.71\\ 150.00\\ 0.00\\ 15.00\\ 30.00\\ 45.00\\ 65.22\\ 150.00\\ 0.00\\ 15.00\\ 30.00\\ 15.00\\ 30.00\\ 0.00\\ 15.00\\ 30.00\\ 0.00\\ 15.00\\ 30.00\\ 0.00\\ 15.00\\ 30.00\\ 0.00\\ 15.00\\ 30.00\\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N Core 21.95 25.60 3.65 metres 25.60 150.00 124.40 metres 150.00 193.85 43.85 metres 0.00 15.00 15.00 metres 30.00 45.00 15.00 metres 46.93 1.93 metres 46.93 1.93 metres 46.93 150.00 15.00 103.07 metres 150.00 260.90 10.90 metres 0.00 15.00 15.00 30.00 15.00 15.00 metres 15.00 10.90 metres 15.00 15.00 metres 15.00 15.00 metres 15.00 15.00 metres 150.00 251.76 101.76 metres 15.00 metres 15.00 30.00 15.00 15.00 metres 150.00 251.76 101.76 metres 150.00 25.01 15.00 15.00 metres 150.00 15.00 metres	21.95 25.60 3.65 metres piping 25.60 150.00 193.85 43.85 metres 150.00 193.85 43.85 metres 0.00 15.00 15.00 metres piping 30.00 45.00 15.00 metres piping 46.93 150.00 103.07 metres piping 46.93 150.00 15.00 metres piping 150.00 260.90 103.07 metres piping 150.00 260.90 15.00 metres piping 30.00 45.00 15.00 metres piping 30.00 45.00 15.00 metres piping 30.00 45.00 15.00 metres piping 30.00 251.76 101.76 metres piping 150.00 25.00 15.00 metres piping 30.00 45.00 15.00 metres piping 30.00 45.00 15.00 metres piping 30.00 <td>N Core M Core 21.95 25.60 3.65 metres piping \$64. 25.60 150.00 124.40 metres 59. 150.00 193.85 43.85 metres 61. 0.00 15.00 15.00 metres piping 59. 15.00 30.00 15.00 metres piping 64. 30.00 45.00 15.00 metres piping 64. 45.00 46.93 1.93 metres piping 87. 46.93 1.93 metres piping 87. 46.93 150.00 103.07 metres 59. 150.00 260.90 110.90 metres 61. 0.00 15.00 15.00 metres piping 64. 30.00 45.00 15.00 metres piping 79. 15.00 30.00 15.00 metres piping 74. 45.00 67.66 22.66 metres piping 79. 15.00 30.00 15.00 metres piping 74. 30.00 45.00 15.00 metres piping 74. 45.00 70.71</td> <td>N Corebc^{1}21.9525.603.65 metres piping\$64.2525.60150.00124.40 metres59.25150.00193.8543.85 metres61.250.0015.0015.00 metres piping59.2515.0030.0015.00 metres piping64.2530.0045.0015.00 metres piping74.2545.0046.931.93 metres piping87.2546.93150.00103.07 metres59.25150.00260.90110.90 metres61.250.0015.0015.00 metres piping64.2530.0045.0015.00 metres piping64.2530.0045.0015.00 metres piping87.2545.0067.6622.66 metres piping87.2567.66150.0082.34 metres59.25150.00251.76101.76 metres61.250.0015.0015.00 metres piping59.25150.00251.76101.76 metres59.25150.0025.5575.55 metres61.250.0015.0015.00 metres piping74.2545.0065.2220.22 metres piping74.2530.0045.0015.00 metres piping59.25150.0025.5575.55 metres61.250.0015.0015.00 metres piping74.2530.0045.0015.00 metres piping59.25150.0015.0015.00 metres piping59.25150.0015.0015.00 metres piping74.25<</td> <td>N Core$b_{1,25}^{+}$$b_{25,60}^{+}$$156,4025$$56,4025$21.9525.60150.00124.40 metres59.257,150.00193.8543.85 metres61.252,0.0015.0015.00 metres piping64.252,30.0045.0015.00 metres piping74.251,45.0046.931.93 metres piping87.256,150.00260.90110.90 metres61.256,0.0015.0015.00 metres piping59.256,150.00260.90110.90 metres61.256,0.0015.0015.00 metres piping59.251,45.0067.6622.66 metres piping74.251,45.00251.76101.76 metres59.254,150.00251.76101.76 metres piping59.254,150.00255.575.55 metres61.256,0.0015.0015.00 metres piping74.251,45.0070.7125.71 metres piping59.254,150.0025.5575.55 metres61.254,0.0015.0015.00 metres piping74.251,45.0070.7125.71 metres piping59.254,150.0025.5575.55 metres61.254,0.0015.0015.00 metres piping74.251,45.0065.2220.22 metres piping74.251,45.0065.2220.22 metres piping74.25<</td> <td>N Core 664 5023 - 4 /5 4.4/3.22 21.95 25.60 3.65 metres piping \$64.25 \$234.1 25.60 150.00 124.40 metres 59.25 7,370.1 150.00 193.85 43.85 metres 61.25 2,685.4 0.00 15.00 metres piping 59.25 963.7 30.00 45.00 15.00 metres piping 87.25 1.68.7 45.00 46.93 1.93 metres piping 87.25 1.68.7 150.00 260.90 110.90 metres 59.25 888.7 150.00 15.00 metres piping 59.25 888.7 150.00 15.00 metres piping 74.25 1.113.7 45.00 67.66 22.66 metres piping 59.25 888.7 150.00 25.00 metres 59.25 4.878.6 150.00 25.00 metres 59.25 4.88.7 30.00 15.00 metres piping 74.25 1.113.7 45.00 67.66 22.66 metres 59.25 4.878.6</td>	N Core M Core 21.95 25.60 3.65 metres piping \$64. 25.60 150.00 124.40 metres 59. 150.00 193.85 43.85 metres 61. 0.00 15.00 15.00 metres piping 59. 15.00 30.00 15.00 metres piping 64. 30.00 45.00 15.00 metres piping 64. 45.00 46.93 1.93 metres piping 87. 46.93 1.93 metres piping 87. 46.93 150.00 103.07 metres 59. 150.00 260.90 110.90 metres 61. 0.00 15.00 15.00 metres piping 64. 30.00 45.00 15.00 metres piping 79. 15.00 30.00 15.00 metres piping 74. 45.00 67.66 22.66 metres piping 79. 15.00 30.00 15.00 metres piping 74. 30.00 45.00 15.00 metres piping 74. 45.00 70.71	N Core bc^{1} 21.9525.603.65 metres piping\$64.2525.60150.00124.40 metres59.25150.00193.8543.85 metres61.250.0015.0015.00 metres piping59.2515.0030.0015.00 metres piping64.2530.0045.0015.00 metres piping74.2545.0046.931.93 metres piping87.2546.93150.00103.07 metres59.25150.00260.90110.90 metres61.250.0015.0015.00 metres piping64.2530.0045.0015.00 metres piping64.2530.0045.0015.00 metres piping87.2545.0067.6622.66 metres piping87.2567.66150.0082.34 metres59.25150.00251.76101.76 metres61.250.0015.0015.00 metres piping59.25150.00251.76101.76 metres59.25150.0025.5575.55 metres61.250.0015.0015.00 metres piping74.2545.0065.2220.22 metres piping74.2530.0045.0015.00 metres piping59.25150.0025.5575.55 metres61.250.0015.0015.00 metres piping74.2530.0045.0015.00 metres piping59.25150.0015.0015.00 metres piping59.25150.0015.0015.00 metres piping74.25<	N Core $b_{1,25}^{+}$ $b_{25,60}^{+}$ $156,4025$ $56,4025$ 21.9525.60150.00124.40 metres59.257,150.00193.8543.85 metres61.252,0.0015.0015.00 metres piping64.252,30.0045.0015.00 metres piping74.251,45.0046.931.93 metres piping87.256,150.00260.90110.90 metres61.256,0.0015.0015.00 metres piping59.256,150.00260.90110.90 metres61.256,0.0015.0015.00 metres piping59.251,45.0067.6622.66 metres piping74.251,45.00251.76101.76 metres59.254,150.00251.76101.76 metres piping59.254,150.00255.575.55 metres61.256,0.0015.0015.00 metres piping74.251,45.0070.7125.71 metres piping59.254,150.0025.5575.55 metres61.254,0.0015.0015.00 metres piping74.251,45.0070.7125.71 metres piping59.254,150.0025.5575.55 metres61.254,0.0015.0015.00 metres piping74.251,45.0065.2220.22 metres piping74.251,45.0065.2220.22 metres piping74.25<	N Core 664 5023 - 4 /5 4.4/3.22 21.95 25.60 3.65 metres piping \$64.25 \$234.1 25.60 150.00 124.40 metres 59.25 7,370.1 150.00 193.85 43.85 metres 61.25 2,685.4 0.00 15.00 metres piping 59.25 963.7 30.00 45.00 15.00 metres piping 87.25 1.68.7 45.00 46.93 1.93 metres piping 87.25 1.68.7 150.00 260.90 110.90 metres 59.25 888.7 150.00 15.00 metres piping 59.25 888.7 150.00 15.00 metres piping 74.25 1.113.7 45.00 67.66 22.66 metres piping 59.25 888.7 150.00 25.00 metres 59.25 4.878.6 150.00 25.00 metres 59.25 4.88.7 30.00 15.00 metres piping 74.25 1.113.7 45.00 67.66 22.66 metres 59.25 4.878.6

G.S.T.: #R140192204

Q.S.T.: #1017522805

					Unit 6 7950 Hus Delta, B.(ton Road C. V4G 1C2			-	INV	OICE			
		.VI. MAN	UFAUTU	٦C	Tel.: (60)4) 946-6590)4) 946-6594				DOCUMENTINC 14059		CE NO.		
		NSCO RESOUR THE EAST M				(00173)		I	NET 30 DAYS	0	VOICE DA 3/25/97		
		BICOKE ON M							i	14185 CRDÉR MO:	0 0	3/25/97 WER DAT	r r	
SHIP TO	NUIN HOLI	NSCO RESOUR D FOR PICK T FRANCES O	UP			(00173)			12954 PURCHASE ORD KEITH ALLEN	02/19/97 DER NO. SHIPPED VIA N MANITOULIN			
	CAN	ADA								DOUG SEARLE		x X		
							CANADI	AN DOLLARS	5	P.O. KEITH	ALLEN		İ	
NØ	GLIORD	OFTSHE	BAD	PART	NO.		DESCRIPTION			-UNIT PRICE	DISC.	- Tor	ALINCE	
1	1		0	*LAND FR	EIGHT	TRANSPORT	CHARGES		EA	806.1	2 0.00		805.12	
			5			MANITOULIN	6433613			ì				
						SHIP DIREC	T FROM ROUY	N-NORANDA						
						VIA MANITO A.S.A.P.	ULIN.							
			Ļ			A.S.A.F.								
			ļ.											
			l.											
1														
											Į			
						SUB TOTAL:							806.12	
SEE CO	ONDITION	S ON REVERSE				GST/TPS:	100617281RT						56.43	
I.						PST/TVQ:							64.49	
1						TOTAL:							927.04	
L														

			DLE		Tel.: (6	C. V4G 1C2 04) 946-6590			1	INVC	P P	AGE NO	
					Fax: (6	04) 946-6594				14082		WYNCE D	1 WTB
	NUINSCO R 908 THE E ETOBICOKE CANADA	last ma	LL			(00173)			NET 30 DAYS PICKING NO 14208		03/25/9 CRING D 03/25/9	7 ATK 2 2 7
SHIP TO	NUINSCO R	ESOURC	ES LTD			(00173)			ORDER NO 13031 PURCHASE ORDER	NO. 5	10-10-10-10-10-10-10-10-10-10-10-10-10-1	7
	HOLD FOR FORT FRAN CANADA									KEITH ALLEN SALES REFREGENTA Less Doug SEARLE	N FIYE P	ANITOU	LIN
							CANADIAN	DOLLARS	5	MEMO: P.O. KEITH AL			
NO.	OTY OND - COTY	Sig.	. BO		TNO.		DESCRIPTION		UCM	UNIT PRICE	DISC] ÷ re	TALPRICE
				*LAND FI		VIA MANITO	FROM ROUYN-						
						SUB TOTAL:						-	805.33
SEE CC	NDITIONS ON RE	VERSE				GST/TPS:	100617281RT						55.37
1						PST/ <i>TVQ</i> : TOTAL:							64.43 926.13

Date:	April 15, 1997
Invoice No.:	000572
Page:	1 of 3
Job:	R1768

NUINSCO RESOURCES LIMITED

To:

908 The East Mall

Etobicoke, Ontario M9B 6K2

		EMO AREA		
	From	April 1 to 15, 1997		
Hole No.		N Core		
NR97-31	248.72 273.10	24.38 metres	\$61.25	\$1,493.28
NR 97 - 32	$\begin{array}{cccccc} 0.00 & 15.00 \\ 15.00 & 30.00 \\ 30.00 & 45.00 \\ 45.00 & 53.64 \\ 53.64 & 150.00 \\ 150.00 & 273.10 \end{array}$	15.00 metres piping 15.00 metres piping 15.00 metres piping 8.64 metres piping 96.36 metres 123.10 metres	59.25 64.25 74.25 87.25 59.25 61.25	888.75 963.75 1,113.75 753.84 5,709.33 7,539.88
NR97-33	$\begin{array}{ccccc} 0.00 & 15.00 \\ 15.00 & 30.00 \\ 30.00 & 45.00 \\ 45.00 & 46.93 \\ 46.93 & 150.00 \\ 150.00 & 203.00 \end{array}$	15.00 metres piping 15.00 metres piping 15.00 metres piping 1.93 metre piping 103.07 metres 53.00 metres	59.25 64.25 74.25 87.25 59.25 61.25	888.75 963.75 1,113.75 168.39 6,106.90 3,246.25
NR97-34	$\begin{array}{ccccc} 0.00 & 15.00 \\ 15.00 & 30.00 \\ 30.00 & 31.70 \\ 31.70 & 150.00 \\ 150.00 & 236.52 \end{array}$	15.00 metres piping 15.00 metres piping 1.70 metre piping 118.30 metres 86.52 metres	59.25 64.25 74.25 59.25 61.25	888.75 963.75 126.23 7,009.28 5,299.35
	Casing left in hole NR97–31 – NW casing NW casing shoe	44.50 metres 1.00	52.00 280.00	2,314.00 280.00
	NR97-32 – NW casing NW casing shoe	53.64 metres 1.00	52.00 280.00	2,789.28 280.00
		······································		

J.S.T.: #R140192204

Q.S.T.: #1017522805

98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

Date:	April 15, 1997	
Invoice No.:	000572	
Page:	2 of 3	
· Job:	R1768	

To:

NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2

	EMO 2	AREA		
From A	April 1	to 15, 1997		
NR97-33 - NW casing NW casing shoe	46.93 1.00	metres	\$52.00 280.00	\$2, 4 40.36 280.00
NR97-34 - NW casing NW casing shoe	31.70 1.00	metres	52.00 280.00	1,648.40 280.00
Sperry Sun Tests – NR97–31 – 61–121–183–259 m	2.00	hours	98.00	196.00
NR97-32 - 76-137-198-259 m	2.00	hours	98.00	196.00
NR97-33 - 61-121-198 m	1.50	hour	98.00	147.00
NR97-34 - 61-121-183 m	1.50	hour	98.00	147.00
Muds used - NR97-32 - OBC Polydrill 133X Polydrill	20.00 20.00	litres litres	8.00 8.00	160.00 160.00
NR97-34 - OBC Polydrill 133X Polydrill	10.00 10.00	litres litres	8.00 8.00	80.00 80.00

G.S.T.: #R140192204 Q.S.T.: #1017522805

Q.3.1.. #1017 322003

CONTRACT DIAMOND DRILLING 98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

To:

ī

1964

3.

INVOICE

Date:	April 15, 1997
Invoice No.:	000572
Page:	3 of 3
Job:	.R1768

NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2

EMO AREA	
From April 1 to 15, 1997	
Cost for waterline - NR97-34 at 640 m - April 6 - 22 man hours @ \$36.00 = \$ 792.00	
22 man hours@ $$36.00 = 792.00 11 machine hours@ $26.00 = 286.00$ 100 lbs propane@ $0.48 = 48.00$	
\$1126.00	
Your cost: 40 m x \$1126.00/640 m =	\$70.38
G.S.T.	\$56,786.15 3,975.03
	\$60,761.18

C.S.T.: #R140192204 **Q.S.T.:** #1017522805

CONTRACT DIAMOND DRILLING 98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

- --

Date:	March 31, 1997	
Invoice No.:	000562	_
Page:	1 of 5	
Job:	R1768	

To:

NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2

业余望

		EMO 2	AREA			
	From	March 16	to 31,	1997		
		N C	ore			
148.13 150.00	150.00 221.28				\$59.25 61.25	\$110.80 4,365.90
0.00 14.02 150.00	14.02 150.00 221.28	135.98	metres	piping	59.25 59.25 61.25	830.69 8,056.82 4,365.90
$\begin{array}{r} 0.00 \\ 15.00 \\ 30.00 \\ 45.00 \\ 50.60 \\ 150.00 \end{array}$	15.00 30.00 45.00 50.60 150.00 221.28	15.00 15.00 5.60 99.40	metres metres metres metres	piping piping	59.25 64.25 74.25 87.25 59.25 61.25	888.75 963.75 1,113.75 488.60 5,889.45 4,365.90
$\begin{array}{r} 0.00 \\ 15.00 \\ 30.00 \\ 45.00 \\ 61.57 \\ 150.00 \end{array}$	15.00 30.00 45.00 61.57 150.00 181.66	15.00 15.00 16.57 88.43	metres metres metres metres	piping piping	59.25 64.25 74.25 87.25 59.25 61.25	888.75 963.75 1,113.75 1,445.73 5,239.48 1,939.18
154.23	199.95	45.72	metres		61.25	2,800.35
$\begin{array}{r} 0.00 \\ 15.00 \\ 30.00 \\ 45.00 \\ 56.08 \\ 150.00 \end{array}$	15.00 30.00 45.00 56.08 150.00 196.90	15.00 15.00 11.08 93.92	metres metres metres metres	piping piping	59.25 64.25 74.25 87.25 59.25 61.25	888.75 963.75 1,113.75 966.73 5,564.76 2,872.63
0.00 15.00 30.00 40.84 150.00	15.00 30.00 40.84 150.00 199.95	15.00 10.84 109.16	metres metres metres	piping	59.25 64.25 74.25 59.25 61.25	888.75 963.75 804.87 6,467.73 3,059.44
	$\begin{array}{c} 150.00\\ 0.00\\ 14.02\\ 150.00\\ 0.00\\ 15.00\\ 30.00\\ 45.00\\ 50.60\\ 150.00\\ 150.00\\ 150.00\\ 15.00\\ 30.00\\ 45.00\\ 61.57\\ 150.00\\ 154.23\\ 0.00\\ 15.00\\ 30.00\\ 45.00\\ 56.08\\ 150.00\\ 0.00\\ 15.00\\ 30.00\\ 45.00\\ 56.08\\ 150.00\\ 0.00\\ 15.00\\ 30.00\\ 40.84\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccccc} N \ C \ C \ C \ C \ C \ C \ C \ C \ C \$	N Core 148.13 150.00 221.28 71.28 metres 150.00 221.28 71.28 metres 0.00 14.02 14.02 metres 14.02 150.00 135.98 metres 150.00 221.28 71.28 metres 0.00 15.00 135.98 metres 150.00 221.28 71.28 metres 0.00 15.00 15.00 metres 150.00 221.28 71.28 metres 0.00 15.00 15.00 metres 15.00 30.00 15.00 metres 15.00 150.00 metres 150.00 metres 150.00 15.00 metres 15.00 metres 150.00 15.00 metres 15.00 metres 150.00 15.00 metres 15.00 metres 151.00 181.66 31.66 metres 154.23 199.95 45.72 metres 0.00 15.00 15.00 metres 150.00 15.00 metres 15.00 metres 150.00 15.00 metres 10.00 metres	148.13 150.00 221.28 71.28 metres 0.00 14.02 14.02 metres piping 14.02 150.00 135.98 metres piping 14.02 150.00 135.98 metres piping 150.00 221.28 71.28 metres piping 0.00 15.00 15.00 metres piping 30.00 45.00 15.00 metres piping 30.00 45.00 15.00 metres piping 50.60 150.00 99.40 metres piping 50.00 221.28 71.28 metres piping 50.00 221.28 71.28 metres piping 50.00 15.00 metres piping 50.00 15.00 metres piping 15.00 30.00 15.00 metres piping 30.00 45.00 15.00 metres piping 15.00 15.00 metres piping 15.00 15.00 metres piping 15.00 15.00 metres piping 15.00 15.00	N Core 148.13 150.00 1.87 metres \$59.25 150.00 221.28 71.28 metres 61.25 0.00 14.02 14.02 metres piping 59.25 14.02 150.00 135.98 metres 61.25 0.00 15.00 135.98 metres 61.25 0.00 15.00 15.00 metres piping 59.25 15.00 30.00 15.00 metres piping 64.25 30.00 45.00 15.00 metres piping 71.28 50.60 50.60 560 metres piping 725 50.00 221.28 71.28 metres 61.25 0.00 15.00 15.00 metres piping 74.25 50.61 150.00 9.40 metres 59.25 150.00 15.00 metres piping 64.25 0.00 15.00 15.00 metres piping 64.25 150.00 15.00 metres piping 64.25 150.00 181.66 31.66 metres 59.25 150.00 181.66 31.66 metres

CONTRACT DIAMOND DRILLING

98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

Date:	March 31, 1997	
Invoice No.:	000562	
Page:	2 of 5	
Job:	R1768	

To: NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2

	EMO AREA		
	From March 16 to 31, 1997		
NR 97 - 29	0.0015.0015.00 metres piping15.0030.0015.00 metres piping30.0037.807.80 metres piping37.80150.00112.20 metres150.00199.9549.95 metres	\$59.25 64.25 74.25 59.25 61.25	\$888.75 963.75 579.15 6,647.85 3,059.44
NR97-30	0.0015.0015.00 metres piping15.0030.0015.00 metres piping30.0045.0015.00 metres piping45.0049.994.99 metres piping49.99150.00100.01 metres150.00211.5361.53 metres	74.25	888.75 963.75 1,113.75 435.38 5,925.59 3,768.71
NR97-31	0.0015.0015.00 metres piping15.0030.0015.00 metres piping30.0044.5014.50 metres piping44.50150.00105.50 metres150.00248.7298.72 metres	64.25	888.75 963.75 1,076.63 6,250.88 6,046.60
	Cost to pull casing – NR97-29 – 3.00 man hours 1.00 machine hour	36.00 26.00	108.00 26.00
	Casing left in hole – NR97–20 – NW casing 25.60 metres NW shoe bit 1.00	, 52.00 280.00	1,331.20 280.00
	NR97-21 - NW casing 14.02 metres NW shoe bit 1.00	52.00 280.00	729.04 280.00
	NR97-22 - NW casing 50.60 metres NW shoe bit 1.00	52.00 280.00	2,631.20 280.00
	NR97-23 - NW casing 61.57 metres NW shoe bit 1.00	52.00 280.00	3,201.64 280.00
L			

.S.T.: #R140192204

Q.S.T.: #1017522805

CONTRACT DIAMOND DRILLING 98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

To:

INVOICE

Date:	March 31, 1	.997
Invoice No.:	000562	
Page:	3 of 5	
Job:	R1768	

NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2

	EMO AREA		
From M	arch 16 to 31, 1997		
NR97-25 -			
NW casing NW shoe bit	56.08 metres	\$52.00	\$2,916.16
NW shoe bit	1.00	280.00	280.00
NR97-27 -			
NW casing NW shoe bit	40.84 metres	52.00	2,123.68
NW shoe bit	1.00	280.00	280.00
NR97-30 -			
NW casing	49.99 metres	52.00	2,599.48
NW casing NW shoe bit	1.00	52.00 280.00	280.00
Cost to move on old			
hole NR97-10 -			
20 man hours	@ \$36.00 = \$720.00		
6 machine hours	@ 26.00 = 156.00		1
2 tractor hours	@ \$36.00 = \$720.00 @ 26.00 = 156.00 @ 58.00 = 116.00		
	\$992.00		ł
	Plus 20% 198.40		1,190.40
			_,0.40
Cost to move to hol			
NR97-25 -	92.00 man hours		3,312.00
	14.00 tractor hours	58.00	812.00
	9.00 muskeg hours 5.00 truck float hrs	53.00	477.00
	5.00 truck iloat nrs	15.00	375.00
Sperry Sun Tests -			
NR97-20 - 91-152-213 m	1 50 1	00.00	147 00
51-132-213 M	1.50 nour	98.00	147.00
NR97-21 -			
30-99-160-221 m	2.00 hours	98.00	196.00
NR97-22 -			I
38-61-152-219 m	2.00 hours	98.00	196.00
NR97-23 -			
76-128-146-174 m	2.00 hours	98.00	196.00
· · · · · · · · · · · · · · · · · · ·	TIOUTD	20.00	220000

G.S.T.: #R140192204 Q.S.

Q.S.T.: #1017522805

98, 14th Street • P.O. Box 2367 • Rouyn-Noranda, Quebec J9X 5A9 CANADA

ΙΝΥΟΙΟΕ

March 31, 1997	
000562	
4 of 5	
R1768	
	March 31, 1997 000562 4 of 5 R1768

To:

NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6K2

NR97-25 - 61-122-183 m 1.50 hour 98.00 1 NR97-27 - 61-122-200 m 1.50 hour 98.00 1 NR97-29 - 61-137-198 m 1.50 hour 98.00 1 NR97-30 - 198-198-61-128 m 2.00 hours 98.00 1 Muds used - NR97-21 - OBC Polydrill 10.00 litres 8.00				REA	EMO A		
NR97-25 - 61-122-183 m 1.50 hour 98.00 1 NR97-27 - 61-122-200 m 1.50 hour 98.00 1 NR97-29 - 61-137-198 m 1.50 hour 98.00 1 NR97-30 - 198-198-61-128 m 2.00 hours 98.00 1 Muds used - NR97-21 - - - -				to 31, 1997	March 16	From	
61-122-183 m 1.50 hour 98.00 1 NR97-27 - 61-122-200 m 1.50 hour 98.00 1 NR97-29 - 61-137-198 m 1.50 hour 98.00 1 NR97-30 - 198-198-61-128 m 2.00 hours 98.00 1 Muds used - NR97-21 - 7 1 1	\$49.00	\$49.0	\$98.00	hour	0.50	NR97-10 - 200 m	
61-122-200 m 1.50 hour 98.00 1 NR97-29 - - 61-137-198 m 1.50 hour 98.00 1 NR97-30 - 198-198-61-128 m 2.00 hours 98.00 1 Muds used - NR97-21 - - 1	147.00	147.(98.00	hour	1.50		
61-137-198 m 1.50 hour 98.00 1 NR97-30 - 198-198-61-128 m 2.00 hours 98.00 1 Muds used - NR97-21 -	147.00	147.0	98.00	hour	1.50		
198-198-61-128 m 2.00 hours 98.00 1 Muds used - NR97-21 -	147.00	147.0	98.00	hour	1.50		
NR97-21 -	196.00	196.0	98.00	hours	2.00		
	80.00 80.00			litres litres	10.00 10.00	NR97-21 -	
	64.00 64.00		8.00 8.00	litres litres	8.00 8.00	NR97-22 - OBC Polydrill 133X Polydrill	
	64.00 64.00		8.00 8.00	litres litres	8.00 8.00	NR97-23 - OBC Polydrill 133X Polydrill	
NR97-25 - OBC Polydrill 40.00 litres 8.00 3 133X Polydrill 40.00 litres 8.00 3	320.00 320.00	320.0 320.0		litres litres	40.00 40.00	OBC Polydrill	
	48.00 48.00		8.00 8.00	litres litres	6.00 6.00	NR97-27 - OBC Polydrill 133X Polydrill	
	80.00 80.00		8.00 8.00	litres litres	10.00 10.00		

G.S.T.: #R140192204 **Q.S.T.:** #1017522805

Date:	March 31, 1997	
Invoice No.:	000562	
Page:	5 of 5	
Job:	R1768	

To: NUINSCO RESOURCES LIMITED 908 The East Mall Etobicoke, Ontario M9B 6R2

		1
EMO AREA		
From March 16 to 31, 1997		
NR97-30 - OBC Polydrill 10.00 litres \$8.00 133X Polydrill 10.00 litres 8.00	\$80.00 80.00	×
NR97-31 - OBC Polydrill 10.00 litres 8.00 133X Polydrill 10.00 litres 8.00	80.00 80.00	×
Trays supplied - 200.00 N Core 6.25	1,250.00	>
Demobilization	5,000.00	
G.S.T.	\$143,943.49 10,076.04	
	\$154,019.53	
]

J.S.T.: #R140192204

Q.S.T.: #1017522805

No.: 2761

Postal Bag 4300, 185 Concession St., Lakefiel Phone: (705) 652-2000	H LIMITED	2761	2761
Final Phone: (705) 652-2000	ax No. (705) 652-6365	January 15	97
CO RESOURCES LIMITED	G.S.T.	NUMBER 89921 6352	RT
NEFARIO			
PAUL JONES			
Manag	es tor Decembo er : JACKMAN, ode: NRL200		. <u> </u>
CO - GRAVITY SEPARATION, CYAN CATION TESTWORK	IDATION AND		
Charges			
<pre>30 hours at 30.00 hours at</pre>	\$ \$	55.00 75.00	797.50 2,100.00
S.20 hours at	\$	125.00	625.00
			3,522.50
AFT - ROUTINE PULP 1 AFT - ROUTINE SOLUTION		18.00 12.00	324.00 24.00
			348.00
MAI		GST 🖉 7%	3,870.50 270.94
<u>J[</u> FEB 2 0 1			\$ 4,141.44
lon to the state	-#4141.44		
PPROVED			
	Post-II" Fax Note	7671 Dute	#o/ pages ► (
and Jank.	To Jimmy Condeal	From Co.	<u></u>
Area.	Phane #	Phone #	
1 - Keed & Contraction	Fax #	Faxt	

Fax No. (705) 652-6365

2930

February 11 97

TO: NUINSCO RESOURCES LIMITED R.R. 2 EMO, ONTARIO POW 1EO Attn: PAUL JONES

Our Project L.R. 5045 -

: Charges for January Manager : JACKMAN, RENE 1-585 A/R Code: NRL200

GOLD - GRAVITY SEPARATION, CYANIDATION AND RE: FLOTATION TESTWORK

TO Testwork Charges

11.00	hours	at	\$		60.00	660.00
32.00	nours	at	Ş		80.00	2,560.00
4.50	hours	at	\$]	130.00	585.00

TO Analytical Charges

6 AU1	- ROUTINE PULP 1 A.T.	6 \$	18.00	108.00
2 AU3	- ROUTINE SOLUTION	6\$	12.00	24.00
10 51	– TOTAL SULPHUR	6\$	15.00	150.00

GST 분 7%

286.09 -----4,373.09 =================

3,805.00

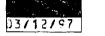
282.00

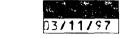
4,087.00

I and Long MAR 13 197) Tank Long Kney Mar 13 197) Rain River Roject Post-ir Fax M MAR 13 197) Post-ir Fax M

Post-it" Fax Note 7671	Date For 7
To Simple	From
Co./Dept.	Co.
Phone #	Phone #
Fax #	Fax #

PLEASE PAY BY INVOICE --- Terms: Net 30 days. 2% service charge per month on overdue accounts.


No.: 2930


G.S.T. NUMBER 89921 6352RT

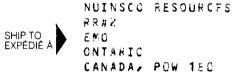
JKS LAMAGE

PHONE (705) 472-3320 FAX (705) 472-6843

ROY

Γ.

17-


INTERNATIONAL INC.

]]

PHONE (705) 476-2705 FAX (705) 474-8573

BOX 197, 640 McKEOWN AVENUE, NORTH BAY, ONTARIO, CANADA P1B 8H2 G S T. #R102659232

	NUIN	sco	RESO	URCES	LTD.
	908	THE	EAST	MALL	
OLD TO ENDU À	ETOS	τοοκ	ε		
ENDU A	ONTA	RIO			
	CANA	D A /	₩96	6K2	

23 PURCLAT		569	390 PAY	(DAVIS	VEREAL		NET 30 DAYS	
C 3 4 1	4 X 095 CORE CUT N'S 72131 72132 ORE 1" STANP CC3		EA	2 0	457.73	0.CO	915.46	64.0
				I A	PR - 7 1997			
				- <u>Let. 4</u>	PR - 7 1997	-		

CUSTOMER'S INVOICE

ETOBICOKE

ONTARIO

NUINSCO RESOURCES LTD.

908 THE EAST MALL

CANADA, M98 6K2

PHONE (705) 472-3320 FAX (705) 472-6843

SOLD TO VENDU À PHONE (705) 476-2705 FAX (705) 474-8573

DATE	
02/19/9/	

RESOURCES

CANADA, POW 1EC

DATE DIPONE

BOX 197, 640 McKEOWN AVENUE, NORTH BAY, ONTARIO, CANADA, P1B 8H2 G S T, #R102659232

	NUINSCO
	R.R. #2
SHIP TO EXPÉDIÉ À	EMO
EXPÉDIÉ À	ONTARIO

JKS LAMAGE

006623 PUROL	ATOR	5616	80	RAY DAV	t s	PAUL		NET 30 D/	YS
STOCK NUMBER	DESCRIPTION	Solumine M. R. S. M.	UME	OTY SHIPPED	A VENIR		DISCO		PRICE GST AMON TENTION 4 4 MONGANT T 73.25 96.1
140950034	14 X 095 CORE CUT G SN'S 71405 71406 714 Bore 1"		EA	3	0	45	7.75	13	73.25 96.1
						MAR 10 F			
						MAR 10 8 64# 130 -*	1579.24		
CATALOGUE WEIGHT PESANTEUR APP		AND NEL 1 1 2 1 1 1	MISCELLANEOUI CHARGES DIVER	site and a state			PS.T. TAXABLE AMOUNT TE MONTANT TAXABLE TYP		MOUNT PUE
0.0	0.00 1:	373.25	0.	00		96.13	1373.2	5 109.80	1579.24

SHIP TO EXPÉDIÉ À

And a Star		CONTRACTOR	134	
and and				
JKS	LAMAGE			
1				

1

NUINSCO RESOURCES LTD. 908 THE EAST MALL ETCBICOKE ONTARIC CANADA, M9B 6K2

5

ILD TO NDU À

NUINSCO RESOURCES R.R. # 2 EMO ONTARIO CANADA, POW 1E0

A NUMBER E DU CLIENT	SHIPPED VIA EXPEDIE PAR	NO	CONMANDE DE JAS	A SALESMAN ST P				CONDITIONS
6623 PUF	ROLATOR		57390 RAY	DAVIS	PAUI	-	NET 30 DAY	5
STOCK NUMBER	DES	CRIPTIÓN	UM OTE EXE	PED A TON BACK ORDE	RED 1 1 State Hundred	HCE CALL AN DISCOMPTE		R a S TRANDUNT
950034	14 X 095 CORE SN'S 70695 70 BORE 1"	E CUT GEN PURPO 3696	DSE EA	2 (.57.75	915.	.50 64.09
					10 200 D			
					FEE 20 67 x#054-f	210566		
DATALOGUE WEIGHT PESANTEUR APP.	DISCOUNT ESCOMPTE	NET AMOUNT MONTANT NET	MISCELLANEOUS CHARGES DIVERS	FREIGHT	G.S.T. AMOUNT	P.S.T. TAXABLE AMOUNT		ABOUNT BUE
0.0	00.00	915.50	0.00		64-09	915.50	73.24	1052.83

INVOICE

EDBIT TO: Sperry-Sun Drilling Services of Canada P.O.Box 2898,Stn M Calgary, AB Canada T2P 3C3

G.S.T.#: R122631443 TERMS: NET 30 DAYS

	CRDER:	CX-DS-32196	INVOICE DATE:	03/25/97 II	NVOICE	NO.:	CX050800	PAGE:	1
SOLD T		co resources The east mai		FIKLD: WELL: RIG:					
	ETOBI	co, on p	19B 6K2	LOCN: MKSEG:	0N 01	L/W:	L		
CUSTOM	KR ORDKR 1	NO.: GEORGE					Canada	(R553)	<u></u>
	NVOICE DA.			BEGIN/FROM:	02/28/	/97	KND/THRU	: 03/30/97	
OTY U	ITS 1	U/M	DESCRIPTION		UN	IT PR		AMOUNT	TAX
	DIR	DODITONAL OPDI	77 020						
		ECTIONAL SERV	TCES						
1		MTH SINGLE	SHOT DIGITIMER		\$	150.	.00 \$	150.00	Т
1	1 1	MTH SINGLE	SHOT DIGITIMER NO: DT-033	NET BEFO	Ŧ		.00 \$ \$	150.00 150.00	T
1	1 1 **REN	MTH SINGLE SERIAL	S SHOT DIGITIMER NO: DT-033 S**		R E TAXE K of	ß	\$		T

ADDRESS ALL CONTESPONDENCE INCANDING THIS INVOICE TO: * 1400 - 5th Street * Nisku, Alberta T9K 7R6 * Tel.(403)955-7606

EMMIT TO: Sperry-Sun Drilling Services of Canada P.O.Box 2898,Stn M Calgary, AB Canada T2P 3C3

G.S.T.#: R122631443 TERMS: NET 30 DAYS

SERVI	CE ORDI	R: CX-	-DS-85595	INVOICE	DATE: 03	/25/97	INVOICE	NO.:	CX050799	PAGE:	1
SOLD			RESOURCES 3 EAST MALL	068	75000	FIELD WELL RIG	:				
	FI	OBICO,	on M9E	3 6K2		LOCN	: ON	L/W:	: L		
CUSTO	MER ORI	ER NO.:				CX - 5 SLS: (Canada	(R553)	·
									-		
	ENCE IN INVOICE		11		1	BEGIN/FROM	: 02/22	/97	KND/THRU	J: 03/21/97	
RBF.				DRSCRIP		BEGIN/FROM		/97 NIT PR	-	1: 03/21/97	
REF.	INVOICE UNITS	DATE:				BEGIN/FROM			-		TA
REF.	INVOICE	DATE: U/M DIRECTI MTH	IONAL SERVIC MAGNETIC CARRY CA	CES SINGLE-SH SE # 265	TION		U	NIT PR		AMOUNT	T
REF.	INVOICE	DATE: U/M DIRECTI MTH	IONAL SERVIC	CES SINGLE-SH SE # 265	TION		U 'B'' \$	NIT PR 1,575		AMOUNT	TA
RBF.	INVOICE	DATE: U/H DIRECTI MTH RENTAL	IONAL SERVIC MAGNETIC CARRY CA	TES SINGLE-SH SE # 265	TION	MENT TYPE '	U 'B" \$ RE TAX % of	NIT PR 1,575 KS	81CR 5.00 \$ \$	AMOUNT 1,575.00	TA

[APR - 7 1997] lof# 202 - # 2009.20

ADDRESS ALL CORRESPONDENCE RESARDING THIS INVOICE TO: * 1400 - 5th Street * Nisku, Alberta T9E 7R6 * Tel.(403)955-7606

SERVICES

OF CANADA

DRILLING

Sperry-Sun Drilling Services of Canada

P.O. Box 2898, Sta H Calgary, AB Canada T2P 3C3

EMIT TO:

G.S.T.#: R122631443 TERMS: NET 30 DAYS

SERVIC	K ORDER	: CX-D	S-08197	IN	VOICE DATE:	03/25	6/97 I	NVOICE	NO.:	CX	050801	PAGE:	1
SOLD 1			Sources East ma		06875000		FIKLD: WKLL: RIG:	**SAI	LE 11	'EMS*			
	ETO	3100, (ON 1	M9B 6K2	2		LOCN: MKSEG:		L/W	I: L			
CUSTO	ier orde	R NO.:	PAUL J	ONES			CX - S SLS: C		Sun c			(R553)	
	INCE INV	DICK:											
REF. I	INVOICE	DATE:	/ /			BKG	IN/FROM:	03/17/	/97	EN.	D/THRU	: 03/17/97	
	INVOICE I	DATE:	/ /		RSCRIPTION	BKG	IN/FROM:			EN. RICE		: 03/17/97 AMOUNT	
	NITS	U/M	/ /	I	RSCRIPTION	BRG	IN/FROM:						
erry U	NITS	U/M IRECTIO	NAL SER	I VICES				U	IT F	RICK		AMOUNT	TA
	NITS	U/M IRECTIO	NAL SER	VICES OF: DEV OF: SIN	ELOPER/FIXER GLE-SHOT TYP DISCS)	COMBI	NATION	U	IIT F		\$		TA
977 U 4	nits Di 1 1	U/M IRECTIO EACH EACH	NAL SER	VICES OF: DEV OF: SIN (50	ELOPER/FIXER GLE-SHOT TYP	COMBI E "B"	NATION FILM	0 \$	lIT F 1 7	<u>RIC</u>	\$	AMOUNT 75.36 77.40	TA T T
977 U 4	nits Di 1 1	U/M IRECTIO EACH EACH	NAL SER SALE (SALE (VICES OF: DEV OF: SIN (50	ELOPER/FIXER GLE-SHOT TYP	COMBI E "B"	NATION	0 \$	lIT F 1 7	<u>RIC</u>	\$	AMOUNT 75.36	TA T T
977 U 4	nits Di 1 1	U/M IRECTION EACH EACH RIEGHT	NAL SER SALE (SALE (I VICES OF: DEV OF: SIN (50 OW**	ELOPER/FIXER GLE-SHOT TYP	COMBI E "B"	NATION FILM	\$ RE TAXI	11 T F	<u>RIC</u>	\$	AMOUNT 75.36 77.40	TA T T
977 U 4	nits Di 1 1	U/M IRECTION EACH EACH RIEGHT	NAL SER SALE SALE TO FOLL	I VICES OF: DEV OF: SIN (50 OW**	ELOPER/FIXER GLE-SHOT TYP DISCS)	COMBI E "B"	NATION FILM NET BEFO	U \$ RE TAXI % of	11 T F	RICX 8.84 7.40	\$	AMOUNT 75.36 77.40 152.76	TA

ADDRESS ALL CORRESPONDENCE REGARDING THIS INVOICE TO: * 1400 - 5th Street * Nisku, Alberta T9K 7R6 * Tel. (403)955-7606

1-5L

S 1

OF CANADA

LING

RVICES

REMIT TO: Sperry-Sun Drilling Services of Canada P.O.Box 2898,Stn M Calgary, AB Canada T2P 3C3

\$

429.40

G.S.T.#: R122631443 TKRMS: NET 30 DAYS

						1 Aru	OT NET	SU DATS		
JERVI	ICE ORD	KR: CX-	DS-73497	INVOICE DATE:	02/26/97	INVOICK	NO.:	CX050425	PACE :	1
SOLD			ESOURCES EAST MALL	06875000		LD: LL: **8A IG:	LE ITE	M6**		
	Eʻ	TOBICO.	on M9B	6K2		CN: ON EG: 01		L		
		DER NO.:				BILLIN - Sperry- : CIN		Canada	(R55 3)	
		NVOICE: E DATE:	1.1		BEGIN/FR	M: 01/29,	/97	RND/THRU	: 01/29/97	
QIY	UNITS	UM		DESCRIPTION		U	NIT PR	ICK	AMOUNT	TA
		DIRECTI	ONAL SERVIC	ES						
4 4	1	EACH EACH		DEVELOPER/FIXER SINGLE-SHOT TYP: (50 DISCS)				.84 \$.40	75.36 309.60	
1	1.	CHRG		RTY - FREIGHT CH R W/B # 255-913-1			16	.35	16.35	۔ شا
	3K	*FILE CL	OSED**							
					NET B	EFORE TAX	ß	\$	401.31	
		CANA	DIAN G.S.T.	GS000	0000 7.0 TOTAL	00 % of TAXES	401	.31	<u>28.0</u> 9 28.09	

TOTAL AMOUNT DUE

SERVICI

OF CANADA

RENIT TO: Sperry-Sun Drilling Services of Canada P.O.Box 2898,Stn M Calgary, AB Canada T2P 3C3

160.50

\$

G.S.T.#: R122631443 TKRMS: NET 30 DAYS

						o. nei	JU LAID	•	
JERVICE	ORDER :	CX-DS-32196	INVOICE DATE:	02/26/97	INVOICE	NO.:	CX050424	PACE:	1
SOLD TO:		CO RESOURCES THE EAST MALL	06875000	WE	LD: LL: LG:				
	ETOBI	co, on M9e	6K2	LO	CN: ON BEG: 01	L/W:	L		
CUSTOMER					BILLIN - Sperry-S : CIN		Canada	(R553)	
REFERENCI				BEGIN/FR	OM: 01/28,	/97	KND/THRU	: 02/27/97	
OTY UNI	TS	U/M	DESCRIPTION		ប	NIT PR	ICE	AMOUNT	TAX
	DIR	ECTIONAL SERVIC	ES						
1	-	SERIAL N	HOT DIGITIMER O: DT-033		\$	150	.00 \$	150.00	1
	REN	TAL CONTINUES		NET D	EFORE TAX	70	\$	150.00	
				NEI D	BRUNE IAA	60	φ	150.00	
		CANADIAN G.S.T.	G5000		00 % of TAXE S	150	.00	<u> 10.5</u> 0 10.50	

TOTAL AMOUNT DUK

	RILLI			INVOICE	REN Sperry-Sun Drili P.O.Sox 2898,Sta Caigary, AB Cana G.S.T.#: R1224 TERMS: NET	H da T2P 303 631443	s of Canada	
SERVICE C	RDER: CX	-DS-85595	INVOICE DATE:	02/26/97	INVOICE NO.:	CX050423	PAGE :	1
SOLD TO:	908 - TH	RESOURCES E EAST MALL ON M9B	06875000 6K2		L:	L		
REFERENCE	ORDER NO. INVOICE: ICE DATE:	-		SLS:	BILLING LOCAT Sperry-Sun of (CIN BID: M: 01/22/37 I	Canada	(R552) : 02/21/97	
GTY UNIT			DESCRIPTION		UNIT PRIC	CE	AMOUNT	TAX
1	DIRECT	IONAL SERVICE	SINGLE-SHOT INS		"D" & 5 675 (5-0 	1 67 6 66	 :
Ŧ		CARRY CAS			FORE TAXES	00 \$ 	1,575.00	÷
Ŧ	**RENTAL	CARRY CAS	E # 265	NET BE	FORE TAXES	\$	-	-

(18 1557) (44#126 -#2275.15

G. F. ARCHIBALD GEOLOGICAL SERVICES LTD 2995 UPLANDS ROAD VICTORIA B. C. V8R 6A9

May 2, 1997

IN ACCOUNT WITH: Nuinsco Resources ltd 908 The East Mall Etobicoke, ON

FEE For March, April 1997

17 days @ \$500.00 per day	\$8,500.00	,4250
GST	\$ 595.00	k

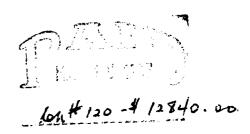
\$9095.00

JUL 1 1 1997)) 1644 - 447-4 12,537.59

G. F. ARCHIBALD GEOLOGICAL SERVICES LTD 2995 UPLANDS ROAD VICTORIA B. C. V8R 6A9

March 2, 1997

•


IN ACCOUNT WITH: Nuinsco Resources ltd 908 The East Mall Etobicoke, ON

FEE For January, February 1997

24 days @ \$500.00 per day GST	\$ \$12,000.00 6,000 Feb
-----------------------------------	--------------------------

\$12,840.00

GJ Anhlels

Paul L. Jones, 27 Briarmoor Crescent, Ottawa, Ontario, K1T 3G7, 613 738 2248

Nuinsco Resources Limited, 908 The East Mall, Etobicoke,ON, M9B 6K2. (03)

Invoice: March, 1997 G.S.T. Registration No:116064940

15 April, 1997

Invoice for professional fees and expenses pertaining to the Nuinsco Resources Limited exploration program in the Rainy River District, northwestern Ontario. Ongoing program supervision, interpretation, report writing, and general duties, March, 1997.

27 days @ \$325/day	•	\$ 8,775.00
G.S.T. @ 7%	-	\$ 614.25
Expenses: As per attached sheet	-	\$ 6,142.90
Total	-	\$15,532.15

Sincerely Paul Jones

Val Level

[MAY - 1 1397] Lew # 254 - # 15.532.15

Paul L. Jones, 27 Briarmoor Crescent, Ottawa, Ontario, K1T 3G7, 613 738 2248

Nuinsco Resources Limited, 908 The East Mall, Etobicoke,ON, M9B 6K2. (02)

Invoice: February, 1997 G.S.T. Registration No:116064940

10 March, 1997

Invoice for professional fees and expenses pertaining to the Nuinsco Resources Limited exploration program in the Rainy River District, northwestern Ontario. Ongoing program supervision, interpretation, report writing, and general duties, February, 1997.

22 days @ \$325/day	-	\$ 7,150.00
G.S.T. @ 7%	-	\$ 500.50
Expenses: As per attached sheet	-	\$ 9,780.80
Total	-	\$17,431.30

Sincerely Paul Jones

Kane Jones.

F.F. 15597 303 16514,45 P.F. 6257, 2655 916.8:

 $\int \frac{A}{18} \int \frac{1}{100} \frac{A}{100} \int \frac{1}{100} \frac{A}{100} \int \frac{1}{100} \frac{A}{100} \int \frac{1}{100} \frac{A}{100} \frac{A}{100} \int \frac{1}{100} \frac{A}{100} \frac{A}{100} \int \frac{1}{100} \frac{A}{100} \frac{A}{100} \int \frac{A}{100} \frac{A}{100} \frac{A}{100} \frac{A}{100} \int \frac{A}{100} \frac{A}{100} \frac{A}{100} \frac{A}{100} \frac{A}{100} \frac{A}{100} \int \frac{A}{100} \frac{A}{10$ Lapt 100 - # 17431.30

MAC Enchosal Stating LIND CUHING a Go.physiks 208 3-1 St East, Font Funances ON T BAA IML

MR. Doug Hume NUINSCO BOSONSCUT LAD 908 the East Mall ETOBICOKE ON F Rei Westowl Gail Deal Doug : Fohlowing is an invoice for hims culting on the Bhack Hourk Baid Richardson Tap LINA 36 +000 - 54+100 DUCL. WAR OUT From att 3-13+15 Line 35 MIN WAR Cut ON Ly Frim 24005 84075 Base home stors was offest to become Those At 46 100 w to should custing through astand of space. BLSHOOW 32+00W - 46+00W BL ?+00W 46+00W - 54+00W Trahines ; 2+015-44+00W - 35+00W 12+105.49+10W - 35+10W thus: CROSShinos aut 19×1100 +1×600 = 21.5Kmi Base Line 32+00 - 54010 2.2 Km Tio Ling 2-36mi Total him at 26 Km RT 380 40 ₱9880.12 15-25 End Goul Lines cut tob Vartace Choop 4+m Mi 2+00 16 For 14 fog --14 00 MI LIMS 600 4 LIZEDS Z+000 - 16 HOW 1400 m 8+00 ~ - 12 00 W AIS LOT / 4 M say 410 M 4.6 Kmi 17 48.00 AT310 2 40 populat owner \$ 11,625 + 617 \$ 12,441.96; GJ Anh Le>

TOTAL P.02

Hac Escher Stating LINA CUHINId Grophysics 208 20 St Fart Font France ONT - POHIME

APRIC 4-1997

HK Doug Human NUINSCU Rosovicos 908 The East Mall ETIBICIKE, ONT Dean Durg! on the Black Hawk Ghid , Richardson Township Lives 5 for To 36 w were cal know 2 LAS - 13 AS LINA 35 Wolf Cut Inly 2 tos & stors Base Line was off-set From Stors to 9 toos To evoid the cutting of Timber. BL 8+005 hurs From 32+000 & 46+000 BL 7+105 NONI FROM 4600 L SYLAW Tre Liver Locatel at: 2+001 44+00W - 35+00W 900 13+005 49HOW - 35HIW Thus: clossline 19 × 1100 ns 20.9Km 1 Bowhar B.tons 32 HONW - 54 MOW 212 Kar Tin hirus 9 Mat N W m 3.3 Km1 Total Cutting 2.5.4 Kms A+8380-0-CK ONKE 12 APR. 8 97. S. 141. 96.

MAC EACHERN STAKING LINECATING & Goophysics 208 2nd St East Font Frances, ONT. PARIMG March 1-1997

8+005

MKDoug Hume: Enchosed ISAN INVOICE for brushing out Lines & chaining Aswell phacing of survey pegs on Liner for the purpose of claustion determination.

LIN0 9+00W OBL -

S IL S C

RA

	10+e1 W	OBL	16005	
	11 +00w	OBL	16005	(
11	12+00 W	aBL	16005	
561 5	13+00 W	OBL	1600 5	
- LL .	14+00~	OBL	16015	
ler to	15toow	OBL	16005	
	16+00W	OBL	1680 5	
	17+100	OBL	16005	
	18+000	OBL	16005	
	19+000	OBL	16005	
and the second	20+00 W	0 BL	16 £105	
nH			18.4 Km15	
	18.4 Kms 2+	250 %/KM		4600.00
201/1	1/Gst			322.00
mar 2.1	- Cal A MIUNT	Daving	- 2	492200
10.4		Thank of	u 1	П. Лжн-т. ET:TT 266T-T0-30W

	₩ ₩	3607 WOLFI TEL.: (905) 270-009	EDALE ROAD, MISSISS 6 • FAX: (905) 270-34	SAUGA, ONTARIO, CANADA L5C 72 • E-MAIL: 102021.1447@com	puserve.com	11813 IVOICE
30	ILD TO:			SHIP TO:		
	908 The	Resources East Mall e, Ontario			S	SAME
	nte n 31/97	SALESMAN CUSTOMER P.		SHIP VIA		TERMS 30 DAYS NE
EM #	QTY.	DESCRIPTION		PERIOD COVERED	UNIT PRICE	AMOUNT
		Borehole PEM Survey Rainy River Project Richardson Grid Emo, Ontario Operator: Denis Jolin Survey Charges:		March 17 - 19/97		
	2 1	Survey Days Mob/demob Day GST (101208858) <u>Expenses</u> : Meals & Accommodation Fuel Miscellaneous 10% Handling Charge	\$ 303.43 63.00 15.50		\$1325.00 400.00	\$2,650.00 400.00 \$3,050.00 213.50 381.93 38.19
			APR - GATOS	10 1387 - +3493.62	TOTAL	\$3.683.62

WAGG Mineral Exploration and Consulting Inc.

RR #1 Denbigh, ON K0H 1L0 ph/fax (613) 333-5228 SBRN: 13135 7840 RT

Date: Mar. 1, 1997.

Invoice # 1997-02

To: Nuinsco Resources Limited

908 The East Mall M9B 6K2 Etobicoke. Ontario

fax: (416) 626-0890

For the period February 1st to March 2nd, inclusive.

Project: <u>Rainv River</u>, Property: <u>Richardson Twp. (Primary Area)</u>.

A total of _____ 28 ____ days worked, broken down as follows:

26 days - Core logging and drill supervision on DDH's NR-97-04 to NR-97-16, and NRX97-05 to NRX97-07 as well as monitoring and assisting S. Warner and K. MacNeil.

About 4 days in total were spent on preliminary calculations of weighted average grades for anomalous intervals within holes drilled between 1994 and the present.

2 days- Travel from Finland, ON to Denbigh, ON. 2137km, \$120 for motel, and \$40 for meals Expenses: Meals and Groceries \$ 499.40, Accommodation \$ 280.00 (to 15/03) Travel \$ 160.00, Housekeeping \$63.00, Misc: Cousineau map copies \$20.13 Mileage: 1460 job-related km, 2137 travel km.

Professional Fees @ \$275.00/day	\$	7700.00
Mileage @ \$0.30/km	\$	1079.10
GST	\$	614.54 -
Total Expenses, includes \$_41.36_GST paid to merchants	\$	1023.70

President. C.A. Wagg, B.Sc., Consulting Project Geologist

Balance Outstanding_S 10 417.34

Please remit payment by wire transfer or mail: Wagg Mineral Exploration and Consulting Inc. Transit 38472-001 Account 1001-169, Attn: The Manager, Bank of Montreal, Hwy. #41 and Peterson Rd., Northbrook, ON, K0H 2G0.

Auh-Ul FAXED Auh-Ul Date Esto 28 **CLIENT COPY**

A by EL # 80! 10, +17.34. TOTAL P+01

RR #1 Denbigh, ON KOH 1L0 SBRN: 13135 7840 RT

ph/fax (613) 333-5228 Date: Apr. 2, 1997.

Invoice # 1997-03

To: <u>Nuinsco Resources Limited</u> 908 The East Mall Etobicoke, Ontario _____ M9B 6K2____ _Fax: (416) 626-0890 __

For the period March 9th to March 31st inclusive.

Project: _____Rainy River____, Property: ___Richardson Jwp. (Primary Area)___

A total of _____ 13.5 ____ days worked, broken down as follows:

2.0 days- Travel from Denbigh. ON 10 Finland ON. 2160km. motel \$70.56. meals \$42.00 ____ 11.5 days- Core logging and drill monitoring for Bradley Bros. hole NR9721, and UMDD holes _____ NR9724 through NR9728 Work related mileage: 693 km Expense summary: _____Accommodation (to Apr. 15) \$310.00. Meals and Groceries\$ 330.51_____ _____ 2 Cleaning lady visits \$32.00 _____ With regard to attendance at the PDAC Convention from Mar. 10th to Mar. 13th, in part on_____ Nuinsco's behalf an expense charge of \$700.00 has been levied, to cuver approximate room_____ parking charges and gratuities at the Royal York for the duration of the convention.

Professional Fees @ \$275.00/day	s <u> </u>
Mileage @ \$0.30/km	\$ <u> 855.90</u>
est	\$319.79
Total Expenses, includes \$ 63.49 GST paid to merchants	s <u>1485.07</u>
on \$1043.07	

Balance Outstanding \$. ____ 6373.26

President, C.A. Wagg, B.Sc.,

Consulting Project Geologist

Please remit payment by wire transfer or mail: Wagg Mineral Exploration and Consulting Inc. Transit 38472-001 Account 1001-169,

Attn: The Manager, Bank of Montreal, Hwy. #41 and Peterson Rd., Northbrook, ON, KOH 2GO.

614181 - # 6373.26

CLIENT COPY

TOTAL P.01

Stephen Warner 510 First Street West Fort Frances, Ontario P9A 2Y5 tel: (807) 274-1065

GST #: R141700674

Nuinsco Resources Limited 908 The East Mall Etobicoke, Ontario M9B 6K2

March 2,1997

For the period February 1st to 28th. Total days worked: 22

Rainy River Project, Nuinsco Resources, Northwestern Ontario.

Professional fees for diamond drill supervision, core logging, database entry, and other related geological tasks.

Travel expenses from Montreal (Que) to Fort Frances (Ont), February 14th to 16th.

Professional Fees @ \$200.00/day	4400.00
GST Ø 7%	308.00
Allowance	500.00
Travel Expenses	398.91

Total

en

\$5,606.9

Warner 171 (AND 14 (337))) 11 AANOL 4 (337))) 24 AANOL 4 (337))

 Post-it* Fax Note
 7671
 Date
 # of pages ▶ 3

 To
 1 mmg
 From
 Poul

 Co/Dept.
 Co.

 Phone #
 Phone #

 Fax #
 Fax #
 Stephen Warner 510 First Street West Fort Frances, Ontario P9A 2Y5 tel: (807) 274-1065

GST #: 141700674 RT

Nuinsco Resources Limited 908 The East Mall Etobicoke, Ontario M9B 6K2

April 1,1997

For the period March 1st to 31st, 1997. Total days worked: 31

Rainy River Project, Nuinsco Resources, Northwestern Ontario.

Professional fees for diamond drill supervision, core logging, database entry, and other related geological tasks.

Total	\$7,134.00
Allowance	500.00
GST @ 7%	434.00
Professional Fees @ \$200.00/day	6200.00

ephen Warner

<u>[APR - 7 1997</u>] les#179-47134.00.

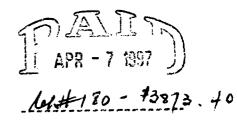
Linda Fisher 510 First Street West Fort Frances, Ontario P9A 2Y5 Tel: (807) 274-1065

GST #: 141700948 RT

Nuinsco Resources Limited 908 The East Mall Etobicoke, Ontario M9B 6K2

April 1, 1997

For the period March 1st to 31st, 1997. A total of 181 hours.


Rainy River Project, Nuinsco Resources, Northwestern Ontario.

Professional fees for computer/drafting services.

Professional Fees @ \$20.00/hour	3620.00
GST @ 7%	
Total	\$3,873.40

tisher Linda Fisher

APPROVED 27 Anh-Lei

P.02

TOTAL P.02

Linda Fisher 510 First Street West Fort Frances, Ontario P9A 2Y5 Tel: (807) 274-1065

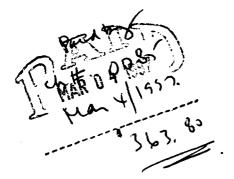
GST # : R141700948

Nuinsco Resources Limited 908 The East Mall Etobicoke, Ontario M9B 6K2

March 2, 1997

For the period February 20th to 28th. A total of 17 hours.

Rainy River Project, Nuinsco Resources, Northwestern Ontario.


Professional fees for computer services.

Professional Fees @ \$20.00/hour	\$340.00
GST @ 7%	<u>\$ 23.80</u>
Total	<u>\$363.80</u>

She

Linda Fisher

ED) neet NUI

P.01

Oscar Burnell, RR. 2, Emo, ON, POW 1EO.

10 April, 1997.

In Account With Nuinsco Resources Limited:

General support duties on the Nuinsco Resources Limited, Rainy River Project during the month of March, 1997.

244hours @ \$17/hr

\$4,148.00

Oscar Burnell

Post-it* Fax Note 7671	Date 15 to y pages > 3
To	From Raul
Co/Dept.	Co.
Phone #	Phone #
Fax #	Fax#

[MAY - 1 1997] leh#256-# 4/168-03

Oscar Burnell R.R.2, Emo, ON, POW 1EO.

7 March, 1997.

in Account With: Nuinsce Resources Limited

For general support duties performed on the Nuinsce Resources Limited, Rainy River Project, northwestern Ontario during February, 1997.

224hrs @ \$17/hr

\$3,808.00

-

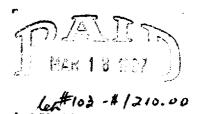
Oscar Burnell

[KAA 18 (SAT) loh#101-\$ 3808-50

Earl Johnson R.R.2, Emo, ON, POW 1EO.

7 March, 1997.

In Account With: Nuinsco Resources Limited


For general support duties performed on the Nuinsce Resources Limited, Rainy River Project, northwestern Ontario during February, 1997.

121 hrs @ \$10/hr

\$1,210.00

-

Earl Johnson

JEFF MEEK & ASSOCIATES LTD. Computer Graphics

.

55 Charles Street West, Suite 2404, Toronto, Ontario, M5S 2W9

<u>Invoice</u>		DATE: P.O. #:	FEB. 28, 1997 P. PITMAN	INVOICE	-	0497 ⁷¹
Client NUINSCO RESOURCES LIMITE 908 THE EAST MALL LOWER LEVEL TORONTO (ETOBICOKE), ONT/ M9B 6K2		RAINY F MAPS A	ESCRIPTION RIVER PROPER ND FIGURES COMPLETED FI			
Labour Charges TOTAL HOURS: 8.	5	RATE:	\$45.00	per hour	\$	<u>382.50</u>
Shipping 1 COURIER			• • • •		\$	<u>15.00</u>
Expenses, Supplies, Prin LASER PRINTING COLOUR INKJET P.COPY, BOND P.COPY, BOND P.COPY, FILM COPY, FILM CRONAFLEX CLEAR FILM CLEAR FILM PHOTO STICK	APER ELLUM LM RSION K Etc.	PLEXIGLASS HARDBOARD FOAMCORE COLOUR SLIL COLOUR OVE COLOUR POS	DES FRHEADS		9.00	
Total Expenses			-		\$	0.00
Provincial Sales Tax			A Charles		\$	0.00
Goods & Services Tax	(G.S.T. # R102	2622503)	11 Mars 1	1 197 J	\$	27.83
TOTAL INVOICE	(NET 30 DAYS	THANKYO	U, JEFF MEEK	-# /144.5	کَّ \$	<u>425.33</u>
• geological & • colour slides • charts & grap • contouring & Tel.: (416) 963-5575	& posters ohs plotting		• pre • ove • des	sentaion figures rhead transpare ign & layout		om

R.L. Tomlinson Drafting & Blueprinting Inc.

107 Cumberland Street North • Thunder Bay, Ontario P7A 4M3 Tel. (807) 345-6375 • Fax (807) 345-4066 • e-mail: ritomlin@microage-tb.com S T A T E M E N T

NUINSCO RESOURCES LTD.Statement Date:Feb 28, 1997908 THE EAST MALLCustomer Number:140500ETOBICOKE, ONTARIO____________

M9B 6K2

Invoice	Date	Туре	Amount / Payment	Total
85511	12/06/96	IN	92.74	92.74
85512	12/06/96	IN	92.74	185.48
85531	12/17/96	IN	116.97	302.45
85630	02/13/97	IN	100.44 🗸	402.89
85631	02/13/97	IN	16.10	418.99
85653	02/18/97	IN	62.20	481.19
85678	02/26/97	IN	253.28 🖊	734.47
3454	02/28/97	IN	457.43	1,191.90

72 25. G.ST 1119.35 # 119190

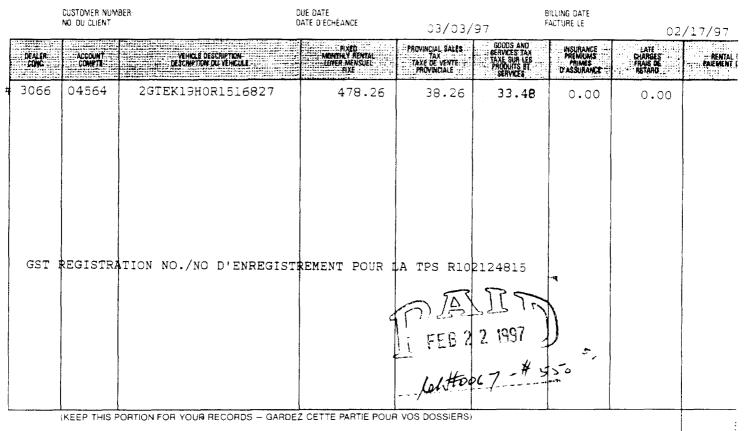
(MAR 1 8 1997) Lottors - + 1191.90

		AMOUNT DUE	1,191.90
Current	31-60 Days	61-90 Days	Over 90 Days
889.45	0.00	302.45	0.00

Drafting & Blueprinting Inc. 107 Cumberland Street North Thunder Bay, Ontario P7A 4M3 Phone (807) 345-6375 Fax (807) 345-4066

R.L. Tomlinson

G.S.T. NO. R104558721


NUINSCO RESOURCES LTD. 908 THE EAST MALL ETOBICOKE, ONTARIO INVOICE NO 3519 INVOICE DATE April 01, 1997 OUR FILE NO 940118

YOUR ORDER NO

M9B 6K2

Date HOURT 志载 法加州 Apr 01 97 111111111111 15 50 135.00 TURCOUT APR 0 1997 loh# 224 - \$ 144 45 135.00 Total before tax : GST 8.45 : PST : 0.0Q Total payable - net 30 days \$144.45

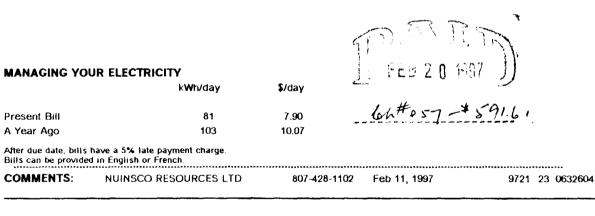
R.L. Tomlinson Drafting & Blueprinting Inc. 107 Cumberland Street North Thunder Bay, Ontario P7A 4M3	INVOICE
Phone (807) 345-6375 Fax (807) 345-4066 G.S.T. NO. R104558721	INVOICE NO 3483 INVOICE DATE March 14, 1997
NUINSCO RESOURCES LTD. 908 THE EAST MALL ETOBICOKE, ONTARIO	OUR FILE NO YOUR ORDER NO
M9B 6K2 Date Mar 14 97 (Stampgraphics Teblet S.N. 0103390029930255925	9ty - Price Amount 1.00 275.00 275.00
	(mar 2 4 1997) (6x.#152 - # 316 25.
Total before tax : GST :	
	lot#152 - # 31625.

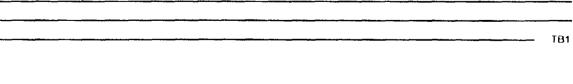
GMAC-CAN 1305 SMTLSE (Rev. 12,90) Primedia Canada (9-96) Imprime au Canada (9-96)

GMAC OF CANADA, LIMITED GMAC DU CANADA, LIMITÉE

GA GA	RDEN LAKE TIME	BER			
	BOX 23, SITE 11 B.R. #16				
	THUNDER BAY, ONTARIO				
	P7B 6B3				
	(807) 683-5352				
Nuinsco Resources		Date	Mar.	17.	97
		Date		. ,	
<u>908 E Mall St.</u>					
Etobicoke, Ontario					
M9B 6K2					

3


.


STATEMENT

ſ

Date	Invoice number	Charges	Credits	Balance
<u>Jan. 29</u>		Pr	evious balance	2309.62
<u>Mar. 5</u>	23369	2309.62	\mathcal{D}	4619.24
		(-	I	
			L	
				~
		- F	7 57 5	L
		II F.J.	24 1997	2
		e		2 G I
		ler #	14	
			-	
			+	

j80 NUINSCO RESOURCES LTD Jurwood Dr Jider Bay ON 4W4	Billing Date NOW DUE After Mar 04, 1997	Feb 11, 1993 \$ 270.55 \$ 283.19	
/ QUESTIONS? Please Call Free 1-800-465-3961 /)346-3800 h-Fri 8:30am-4:30pm EST	Account:	9721 23 0632604	
RVICE: General/1G2-11 CHARDSON TOWNSHIP H836437 eter Readings	MONTHLY BILL		
an 22 4197 an 22 3937 bec 21 3937 2 days 260x mult. 10 = 2600 kWh ESSAGES an 29,97. Thank you!	Service Charge 2600 kWh @8.650¢ GST #R119382901 TOTAL	27.95 224.90 <u>17.70</u> \$270.55	

ev 94-01

9361C (front)

	Page 101 5
ACCOUNT NUMBER	807 487 1140 (881)
BILL DATE	February 28, 1997

NUINSCO RESOURCES LTD

Inquiries ACCOUNT SUMMARY

7487 1140 88104 001

The late payment charge rate of interest

is 1.00% monthly (12.68% per annum)

1 ...

F

n. . .

310-2355	Previous charges		Payments and
	Amount of last bill	139.86	adjustments
	Payment received Feb 5 - Thank You	139.86cr	processed up to
	Adjustments	.00	February 28, 1997
	Balance forward	.00.	are reflected
			on this statement

Current charges 160.10 I GO.10 I GO.1

> Long distance savings and discounts this month with Roll

Bell

ĩċ

	Page 1 of 15
ACCOUNT NUMBER	807 482 1102 (966)
BILL DATE	February 28, 1997

NUINSCO RESOURCES LTD

Inquiries ACCOUNT SUMMARY

Previous charges 310-2355 Amount of last bill 435.36 Payment received Feb 5 - Thank You 435.36cr .00 Adjustments Balance forward .00

7482 1102 96604 001

	Payments and	
	adjustments	-
r	processed up to	
	February 28, 1997	
	are reflected	
	on this statement	

Current charges 486.93 The late payment 6n#10-\$ 486.93 Total amount due 186.93 Please pay Long distance savings and discounts this month with Bell \$ 258.51 See reverse for more information

charge rate of interest is 1.00% monthly (12.68% per annum)

this amount

upon receipt

* * * Detach here * * _____

....

Stress Stre Stress Stress	Billing Date NOW DUE After Mar 25, 1997	Mar 04, 199 \$ 118.53 \$ 123.79	
DUESTIONS? Please Call (ree 1-800-465-3961 546-3800 -Fri 8:30am-4:30pm EST		721 33 0193613	
RVICE: Farm/1F2-11			
93419	MONTHLY	BILL	
eter Readings			
b 12 5786 in 19 <u>5730</u>	Service Charge includes Rate Assistance	15.45 :e CR	
eb 12 5786 in 19 <u>5730</u>	-		

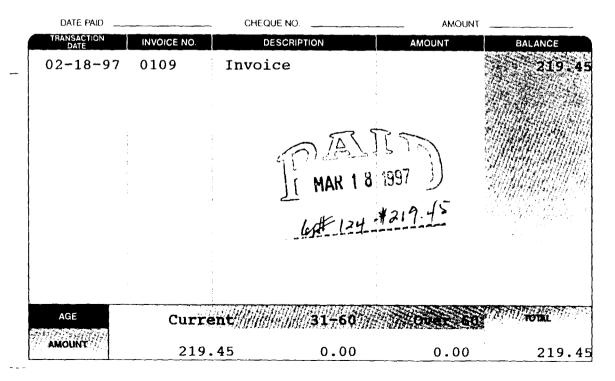
MANAGING YOUR ELECTRICITY kwt/day		\$/day	[MAN 1 8 1997]	
Present Bill	47	4.39	Lift In all	-
A Year Ago	116	9.87	le14-117 -#	17933
	have a 5% late payment charge d in English or French.			•
COMMENTS:	NUINSCO RESOURCES LTD	807-482-1102	Mar 04, 1997	9721 33 0193613

Nuinsco Resources Ltd.	Date	Feb.	14,	97
908 E. Mall St.				
Etobicoke, Ontario				
M9B 6K2				

STATEMENT

Date		Invoice number		Charges	Credits	Balance
Jan.	20			Pre	vious balance	1173.69
Jan.	29	23208		2309.62		3483.31
						2309 62
				63 8		
				<u>//A\.j</u>	in	
				** 13 *	<u>97 </u>]	
				h#123 -	# 2304.6	2
			• ·			

PETRO-CANADA DISTRIBUTOR


PAYMENT DUE ON RECEIPT OF STATEMENT. 2% PER MONTH ON OVERDUE ACCOUNTS.

statement of account

Nuinsco Resources Limited

908 East Mall, Etobicoke, Ontario M9B 6K2

DUNT NO
604

NUINSCO RESOURCES LTD

Box 580 205 Burwood Dr Thunder Bay ON P7C 4W4

ANY QUESTIONS? Please Call Toll Free 1-800-465-3961 (807)346-3800 Mon-Fri 8:30am-4:30pm EST

SERVICE: General/1G2-11

RICHARDSON TOWNSHIP H836437

Meter Readings

Mar 23	4697 Estimated
Feb 21	4447
30 days	250x mult. 10 - 2500 kWh

MESSAGES Paid \$261.30 Mar 20,97. Thank you!

Billing Date	Apr 11, 1997
NOW DUE	\$ 261.30
After May 02, 1997	\$ 273.51

Account:

9721 23 0632604

MONTHLY BILL

Service Charge	27.95
2500 kWh @8.650¢	216.25
GST #R119382901	<u> </u>
TOTAL	\$261.30

(m. - 1 :257) - buttan 7 - × 20130

MANAGING YOUR ELECTRICITY kWh/dav

	kWh/day	\$/day
Present Bill	83	8.14
A Year Ago	95	9.18

After due date, bills have a 5% late payment charge. Bills can be provided in English or French.

COMMENTS: NUINSCO RESOURCES LTD

õ 5 è

93610 (front)

807-428-1102 Apr 11, 1997

9721 23 0632604

TB1

Box 580 Ontario Hydro	
205 Burwood Dr	Billing Date Apr 03, 1997
Thunder Bay ON P7C 4W4	NOW DUE \$ 209.50
	After Apr 24, 1997 \$ 219.01
ANY QUESTIONS? Please Call Toll Free 1-800-465-3961 (807)346-3800 Mon-Fri 8:30am-4:30pm EST	Account: 9721 33 0193613
SERVICE: Farm/1F2-11	
J593419	MONTHLY BILL
Meter Readings Mar 14 5895 Estimated	
Feb 12 5786	
$\frac{-5700}{30 \text{ days}} = \frac{109 \text{ x}}{109 \text{ x}} \text{ mult. } 20 = 2180 \text{ kWh}$	Service Charge 15.45 includes Rate Assistance CR
MESSAGES	2180 kWh @8.020¢ 174.84
Paid \$118.53 Mar 20,97. Thank you!	Water Heater Rental 5.50
1 als gilly, 35 hat 29, 342 haak fun	GST #R11938290113.71

Present Bill

A Year Ago

COMMENTS:

~
' - TATA
O ALLIN
91
1 APR 1 0 1997 J
I AINTO BEL

2 MANAGING YOUR ELECTRICITY 66# 225 - 209 50 kWh/day \$/day 73 6.34 7.56 88 After due date, bills have a 5% late payment charge. Bills can be provided in English or French. NUINSCO RESOURCES LTD 807-482-1102 Apr 03, 1997

TOTAL

9721 33 0193613

\$209.50

0.46 Š

TB1

	I PKINS'	FAX 482: Everything for HOME H HINGLES - SPORTING FURNITU	Building	P.O. BOX 1				
GST REGISTRATIC R 10531090 NAME ADDRESS	EMO, ON	TARIO, POW 1E0 POSTA DESCRIPTION	March S Ltx L CODE PRICE	AMOUN	97			
93/03/97)5/03/97 J8/03/97 17/03/97 11/03/97 11/03/97 26/03/97	J-18500 J-19304 J 19121 J 19033 J-19683 5.47	Balance For Payment Sale Sale Sale Payment Sale Sale	20 9 2 GS 322.82 343.14	111 93	.19 .21 .09 .69 .55	60.62 33.33 <u>[</u>][APR	93.95 33.33 73.52 184.73 277.82 244.49 322.18 343.74 10 1997	
TOMPKINS'	343.74 HARDWARE LII	MITEBAYMENT I Spring feve	D.00 DUE 15th of J IR DAY'S, Apr OUR IN-HOUST	-11 17,1	THANK YOU 8,19 199 RADE SHOU	97	343.74 Thank You	

B	ell

	Page	<u>l of</u>	4
ACCOUNT NUMBER	807 48	7 1140 ((881)
BILL DATE	Ma	r ch 28 ,	<u>1997</u>

NUINSCO RESOURCES LTD

Inquiries ACCOUNT SUMMARY

7487 1140 88104 001

Payments and

processed up to

March 28, 1997

are reflected on this statement

adjustments

310-2355

Previous charges Amount of last bill 160.10 Payment received Mar 20 - Thank You 160.10cr Adjustments .00 Balance forward .00

Current charges 145.14 APR - 9 1997 Lot \$ 2.9 - \$ 145.11 145.14 Total amount due Please pay

The late payment charge rate of interest is 1.00% monthly

(12.68% per annum)

this amount

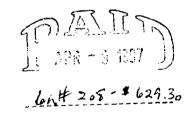
upon receipt

Long distance savings and discounts this month with Bell \$ 11.86

* * * Detach here * * *

Bell			Page 1 of 12
	ACCOUNT NUMBER		807 482 1102 (966)
	BILL DATE		March 28, 1997
	NUINSCO RESOURCES LTD		
Inquiries	ACCOUNT SUMMARY		7482 1102 96604 001
-		·	Deverante and
310-2355	Previous charges Amount of last bill	486.93	Payments and adjustments
	Payment received Mar 20 - Thank You	486.93cr	processed up to
	Adjustments	.00	March 28, 1997
	Balance forward	.00	are reflected
			on this statement
	Current charges	392.49	The late payment
			charge rate of interest
			is 1.00% monthly
		•	(12.68% per annum)
	Total amount due		
Please pay	Total amount due	392.49	
this amount upon receipt			
upon receipt			
	Long distance savings and discounts this month with Bell \$ 171.36		
			Nacyclesi papar 🖉

* * * Detach here * * *


Imperial Oil Esso L'Impériale

Account Num Numéro de Co		Statement Date Payment Due By Date du Relevé Payable Le MAR 25 97 APR 19 97			Days in Billing Period Jours dans une période de facturation		
251 771 1	38 4				28		
urchase Date Card No Date d Achat No de Carte	Invoice No No de Facture		Description Description		Amount Montant		
		RECEIVED A FULL PP PAYMENT WAS SENT, DATE, IT WILL APPE THANK YOU. YOU HAVE EARNED YO LOOK INSIDE!	600.00 47.59 ETOBICOKE TORONTO WESTON 001 491.35 THIS STATEMENT, WE HAN YMENT FOR LAST MONTH. BUT RECEIVED AFTER THI AR ON YOUR NEXT STATES DUR ESSO REWARD THIS HO SUR ESSO REWARD THIS HO	IF YOUR E DUE MENT. ONTH.	33.51 14.08 33.02 37.25 421.08		

For account enquiries, please write to: Les questions sur votre compte doivent être adressées à:

P.O. BOX 3815 MIP MARKHAM, ON L3R 0Y2

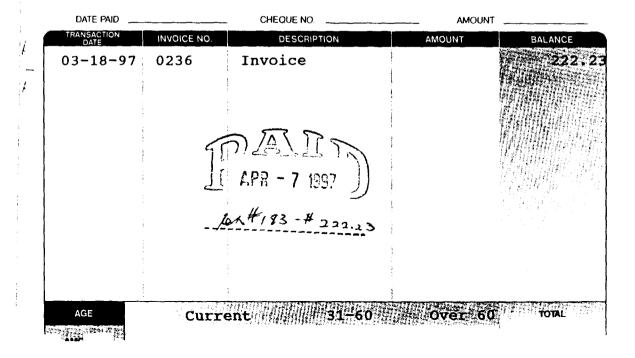
For account information, address change, or to report lost or stolen card call: Pour nous informer d'un changement d'adresse, une perte de carte, ou si vous avez besoin de renseignements sur votre compte, veuillez appeler:

Previous Balance Solde Precedent	88.59
Payments Credits Palements Credits	. 00
Finance Credit Charges Frais de Credit +	1.77
Purchases Charges Achats Frais +	538.94
Debits Adjustments Redressements	. 00
New Balance Nouveau Solde =	629.30
Minimum Payment Paiement Ginimum	50.00

1-800-454-3919

ł

PETRO-CANADA DISTRIBUTOR


PAYMENT DUE ON RECEIPT OF STATEMENT. 2% PER MONTH ON OVERDUE ACCOUNTS.

STATEMENT OF ACCOUNT

Nuinsco Resources Limited

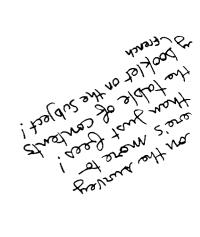
908 East Mall, Etobicoke, Ontario M9B 6K2 STATEMENT DATE ACCOUNT NO. 03-31-97 604

CREDIT LIMIT:

15-1-0382816 FOR CUSTOMER SERVICE CALL 1-887-482-.

YR MTH DAY	INVOICE		Description		UserTS/CREDITS
97 03 04 97 03 07 97 03 07 97 03 07 97 03 17 97 03 17 97 03 17 97 03 17	409806 660879 958945 958944 383887 383888 383888 383869 925979 780882	PETROLEUM BALANCE FROM PRE PETROLEUM PURCHAS PAYHENT - THANK PETROLEUM PURCHAS PETROLEUM PURCHAS PETROLEUM PURCHAS PETROLEUM PURCHAS PETROLEUM PURCHAS PETROLEUM PURCHAS PAYHENT - THANK	SE YOU SE SE SE SE SE SE		2892.66 272.78 - 68.36CR 24.1477.97 - 24x 3022.90 70.58 291.91 - 24.90 481.01 - 2983.04CR 5483.31
	660879 780882	AGENT'S OWN Balance from prey Payment - Thank Payment - Thank Agent's own sub-1	YOU		56.63 31.39CR 25.24CR .00
		TOTAL GST INCLUD	ED IN SALES Ur honthly purchase	368.84	
		Camerin Lake 4 GST R.L. 6	13.44 MPR -	7 1997 J) 185- + 54 8 3-31	
ACCOUNT NUMBER		ACCOUNT NAME	STATEMEN DATE	PAYMENT DUE DATE	PRYMENT DUE
55423 01707	7 NU	INSCO	MAR 26,1997	APR 21,1997	\$5483.31
		CTION APPLIES TO BUD	OFT DUAL CURTOWEDE		PAYABLE AFTER DUE DA
DELIVERIES THIS M		DELIVERIES TO DATE	PAYMENTS TO DATE	BALANCE	\$5592.98 AMOUNT PAID
					2590.05
	l I				
TATEMENT. THE	LATE PAYM	PR 21,1997 WILL AP Ent charge of 2.0% Fective rate of 26.	PER HONTH, COMPOUND	DED	903872
TATEMENT. THE ONTHLY, RESULT	LATE PAYM S IN AN EF	FECTIVE RATE OF 2.0%	PER HONTH, COMPOUND	DED	903872 PAGE 1 OF
TATEMENT. THE	LATE PAYH S IN AN EF & Sons (19 Imper	FECTIVE RATE OF 2.0%	PER HONTH, COMPOUND 824% PER ANNUM. Imperial Oil Esso	DED Pétrolière Impérial Division Produits p	PAGE 1 OF
TATEMENT. THE CONTHLY, RESULT	LATE PAYH S IN AN EF & Sons (19 Imper	IENT CHARGE OF 2.0% FECTIVE RATE OF 26.4 193) LTD. Tial OH LCTS Division	PER HONTH, COMPOUNE 824% PER ANNUH. Imperial Oil Esso L'Impériale	Pétrolière Impérial	PAGE 1 OF
TATEMENT. THE CONTHLY, RESULT: J. J. KAEMINGH	LATE PAYH S IN AN EF & Sons (19 Imper	IENT CHARGE OF 2.0% I FECTIVE RATE OF 26.3 93) LTD. rial ON Justs Division	PER HONTH, COMPOUND 824% PER ANNUM. Imperial Oil Esso	Pétrolière Impérial	PAGE 1 OF

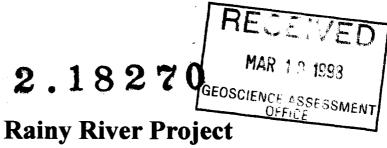
MAP POCKET EXPLORATION DATA


CROSS SECTIONS DIAMOND DRILL PLAN MAP

Rainy River Project Richardson Township

(January 26 - April 7 1997 Diamond Drilling)

Rainy River District Kenora Mining Division N.T.S. 52 C/13 and 52D/16


Section	Holes
900W	NR97-06
950W	NR97-18
1000W	NR97-04
1050W	NR97-05
1075W	NRX97-02, NRX97-04
1100W	NR97-14, NR97-16
1150W	NR97-17
1400W	NR97-19
2700W	NR97-28
2800W	NR97-24, NR97-26
3800W	NR97-33
3900W	NR97-34
4100W	NR97-30, NR97-31, NR97-32
4200W	NR97-29
4300W	NR97-27
4400W	NR97-25

Nuinsco Resources Rainy River Project

VOLUME III EXPLORATION DATA

Richardson Township

(January 26 - April 7 1997 Diamond Drilling)

Rainy River District Kenora Mining Division N.T.S. 52 C/13 and 52D/16

MAP POCKET EXPLORATION DATA

CROSS SECTIONS DIAMOND DRILL PLAN MAP

Rainy River Project Richardson Township

(January 26 - April 7 1997 Diamond Drilling)

Rainy River District Kenora Mining Division N.T.S. 52 C/13 and 52D/16

NUINSCO RESOURCES LIMITED

· · ·

Rainy River Project Richardson Township

(Winter 1997 Diamond Drilling)

Rainy River District Kenora Mining Division N.T.S. 52 C/13 and 52D/16

> Paul Pitman Consulting Geologist February 9, 1998

Ontario	Ministry of Northern Development and Mines	Performed	of Assession on Mining L action 65(2) and 66	and	Transaction Number (office use) <u> </u>
			> review the asse	sement work and co stry of Northern [e Mining Act. Under section 8 of the rrespond with the mining land holder. Development and Mines, 6th Floor,
- Pleas	RICHARDSON work performed on Cr se type or print in ink	ς.	ore recording a		3 2 7 0 m 0240.
Name NU、へい Address	(s) (Attach a list if n $C \circ \mathcal{R} \subseteq S \circ J$	RCES		Client Number	76866
	065 0457 N		B6 K2	Fax Namber Client Number	6) 626 0470 6) 626 0890
Address		RECOF MAR 1 8	1998	Telephone Number Fax Number	
2. Type of work per	rformed: Check () and report on		are gnivoliqi et	ups for this declaration.
Geotechnical: pro assays and work	ospecting, surveys, under section 18 (re	egs) X	Physical: drilling renching and a	, stripping, ssociated assay	Rehabilitation
Work Type DI Amo	NO PRILLIN	6	1		Office Use
-	UNICAL ST		÷.	Commodity Total \$ Value o Work Claimed	489 435

Dates Work Performed From 26 9 Day Month	7 To 7 4 97 /	NTS Reference
Global Positioning System Data (if available)	RICHAROSUN TONNSHIP	Mining Division Kenara
/~/A	M or G-Plan Number M. Z//5	Resident Geologist District Kennara
- provide prop - complete an	rk permit from the Ministry of Natural I ber notice to surface rights holders bef id attach a Statement of Costs, form 0 ap showing contiguous mining lands t	ore starting work; 212;

Dates Work

489, 435

 - include two copies of your technical report. 3. Person or companies who prepared the technical report (Attach a list if necessary) 				
Address 903 THE BAST MALL	Fax Rumber (416) 626 0890			
Name	Telephone Number			

ETOBICOLE ON MGB6K2	Fax Number
Name	RECEIVED
Address	Fax Number DA 8:00 - MA3 13 1003
4. Certification by Recorded Holder or Agent	GEOSCIENCE ASSESSMENT
(Print Name)	that I have personal knowledge of the facts set
forth in this Declaration of Assessment Work having caused the work or after its completion and, to the best of my knowledge, the annexe	

Signature of Recorded Holder or Agent		Date March 16 1998
Agent's Address BTDBICCV-B B	Telephone Number 416 626 04 70	Fax Number
nous (none)	L16 198	

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to, the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

work was done on other eligible mining land, show in this		Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of wor to be distributed at a future date.
eg	TB 7827	16 ha 🗤	\$26, 825	N/A [®]	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568	2	\$ 8, 892	\$ 4,000	0	\$4,892
1	61000 169	64.02	190, 580			190,590
2	6-1000 143'	64.25	30 476			30, 476
3	G1000 154'	64.75	65,925			65,925
4	G1000148'	31.31	30,426			30,426
₀ 5	ARDA LIC IYAZS	353.09	39,805			39,805
6	610001531	32.37	53,503	en e		53,503
7	61000 156'	32. 0	78720	•		78,720
8			· · ·			
9	RECO	DRDEP	7			
10	MAR	1 8 1998				
11		10 1330				·
12	· • • • • • • • • • • • • • • • • • • •					
13						
14					· · · ·	
15						
		Column Totals	489,435			48 9,435

(Print Full Name) subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing

Date March 16, 1998

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\sim) in the boxes below to show how you wish to prioritize the deletion of credits:

1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

2. Credits are to be cut back starting with the claims listed last, working backwards; or

3. Credits are to be cut back equally over all claims listed in this declaration; or

4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only		
Received Stamp	Deemed Approved Date	Date Notification Sent
	Date Approved	Total Value of Credit Approved
	Approved for Recording by Mining I	Recorder (Signature)
0241 (02/96)		

Nuinsco Resources **Rainy River Project**

11.9810.00266

Table 3

EXPLORATION EXPENDITURES

DDH 97-27

DDH 97-28

DDH 97-29

DDH 97-30

NRX 97-02

NRX 97-04

DDH 97-31 to 34

A) Direct Diamond Drilling Costs:

Drilling (Ultra Mobile) i)

DDH 97-04 \$31,040.74 ind 97-05,06 \$13,589 **DDH 97-14** \$10,103 **DDH 97-16** \$12,016 DDH 97-17 \$15,430 **DDH 97-18** \$16,720 **DDH 97-19** \$20,542.53 **DDH 97 -25** \$10,053 **DDH 97 -26**

- Bradley Bros. (Casing) \$19,879.85 (**ii**) **Demobilization of drills** \$5,000.00 \$4.004.07 Sperry Sun Rental \$49,542.00
- Assaying: 2,154 samples @ \$23/sample **(ii)**

(iii)	Core Saw	\$988.70
``	Core Racks	\$ 5,722.05
	Core Trays	\$1,483.11

Total Direct Drilling Costs

(B) Geological Expenditures:

G. Archibald (V.P. Exploration), on-site work \$6,000 \$15,925 P. Jones (Senior Geologist) C. Wagg (Project Geologist) \$11,412.5 S. Warner (Geologist) \$11,600 \$7,956 O. Burnell (Core Grabber) E. Johnston, B. Burnell (Helpers) \$1,210

2.18270

RECORDED MAR 1 8 1993

\$ 86,619.78

\$ 54,103.50

\$12,579.94 \$16,051.41 \$56,786.15 \$15,386.61 \$4,667 \$19,000.05

\$14,831.22

\$17,346

\$ 286,142.65

EXPLORATION EXPENDITURES (continued)

(C) Other Field Services

Line cutting	\$16,228.	
Drafting (autocad)	\$5,688.40	
Lakefield Research	\$8,927.50	
Crone Geophysics	\$3,470.12	
Totai		\$ 34,314.02

(D) Camp/Transport Support Costs & Services

Camp and field expenses	\$19,175.12
GMC Truck rentals \$550 x 2 for 2.0 months	\$2,200
Gasoline	\$3,041
House (camp) rental	\$1,400
Phone	\$1,184.66
Fuel oil	\$441.68
Hydro	\$8 17.31

Total

\$ 28,259.78

Total Exploration Costs = \$ 489,435 or \$110.48/metre

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

July 3, 1998

Paul Pitman NUINSCO RESOURCES LIMITED 908 THE EAST MALL ETOBICOKE, ONTARIO M9B 6K2 🐨 Ontario

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9846 Fax: (705) 670-5881

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mismnpge.htm

Dear Sir or Madam:

Submission Number: 2.18270

 Subject: Transaction Number(s):
 W9810.00066
 Approval After Notice

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Bruce Gates by e-mail at gatesb2@epo.gov.on.ca or by telephone at (705) 670-5856.

Yours sincerely,

~ Ha

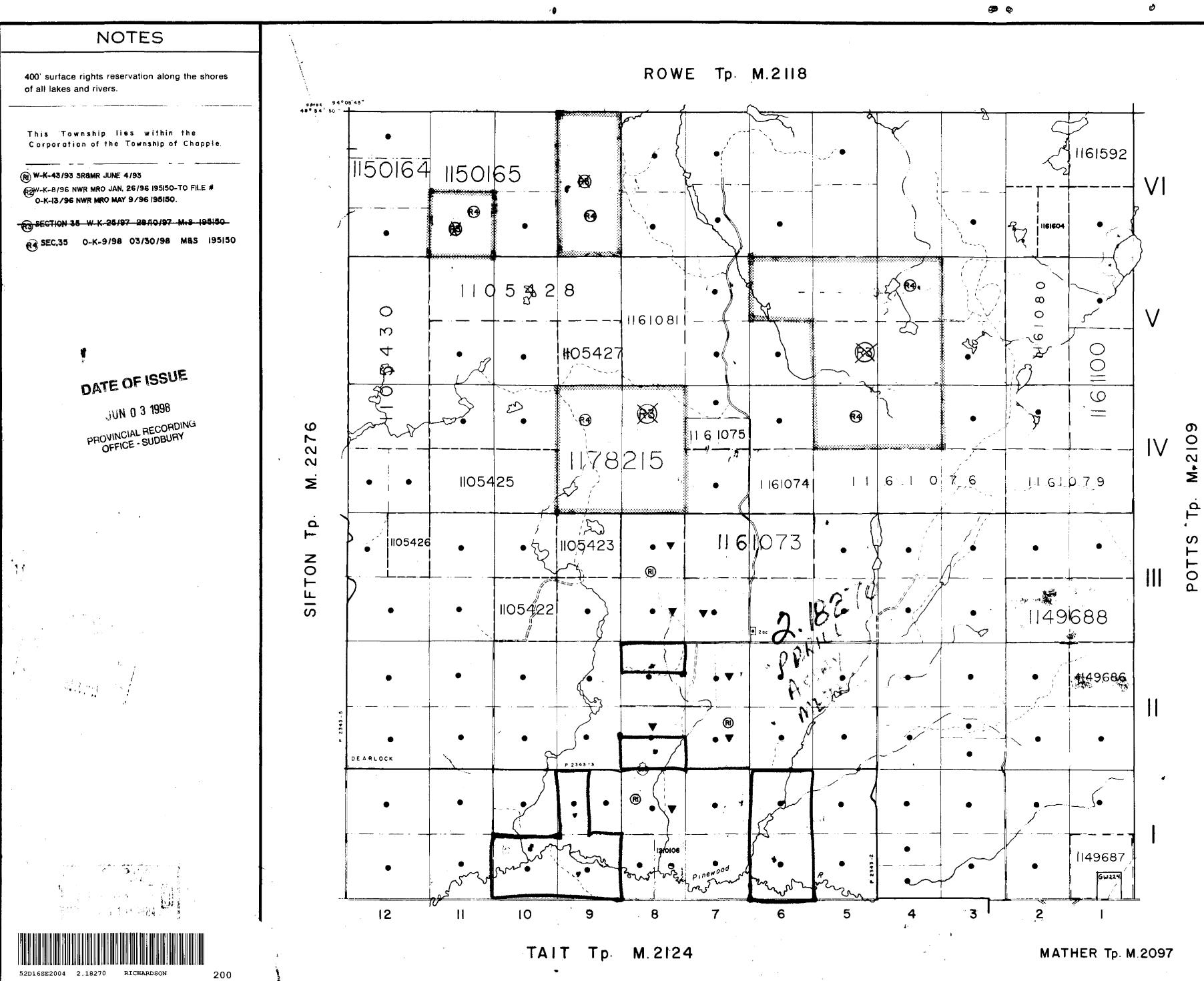
ORIGINAL SIGNED BY Blair Kite Supervisor, Geoscience Assessment Office Mining Lands Section

Correspondence ID: 12514 Copy for: Assessment Library

Work Report Assessment Results

Submission Nun	n ber: 2.18270			
Date Correspond	dence Sent: July 03	, 1998	Assessor:Bruce Gates	
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date
W9810.00066	G.1000169	RICHARDSON	Approval After Notice	July 03, 1998
Section: 17 Assays ASSA 16 Drilling PDRIL 18 Other METAL				
	lined in the Notice dana the Notice dana the neutrition is available		ed. The costs associated with the Pl	EM survey (\$3,470) have been removed as no
Assessment work	credit has been app	proved as outlined on the attached Dis	stribution of Assessment Work Cred	it sheet.
Correspondence	e to:		Recorded Holder(s)	and/or Agent(s):
Resident Geologi	st		Paul Pitman	
Kenora, ON			NUINSCO RESOURC ETOBICOKE, ONTAR	
Assessment Files	Library			
Sudbury, ON				

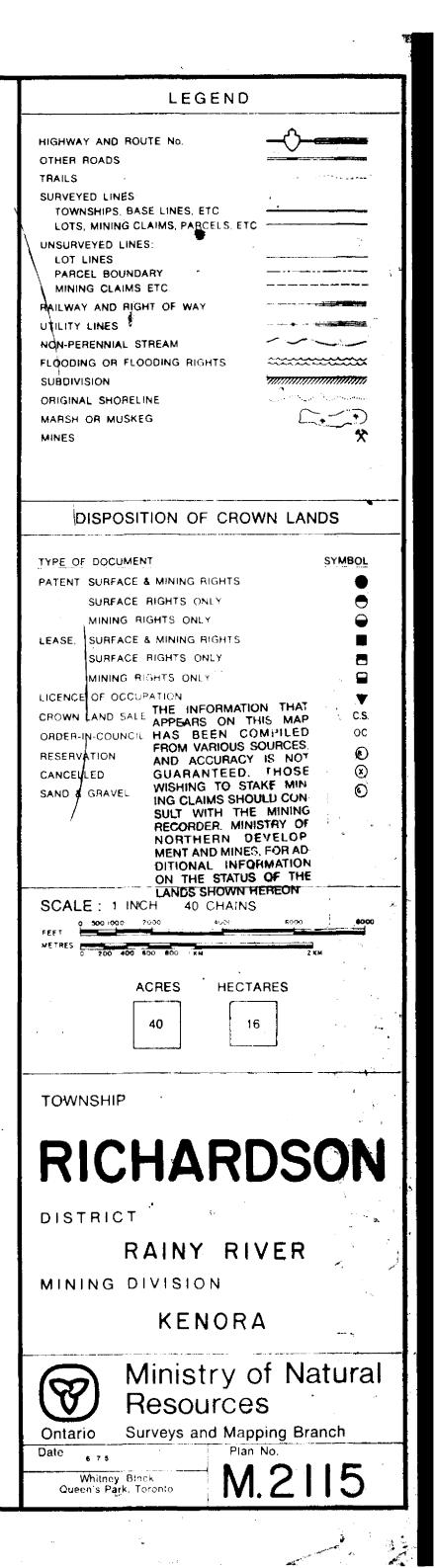
Distribution of Assessment Work Credit

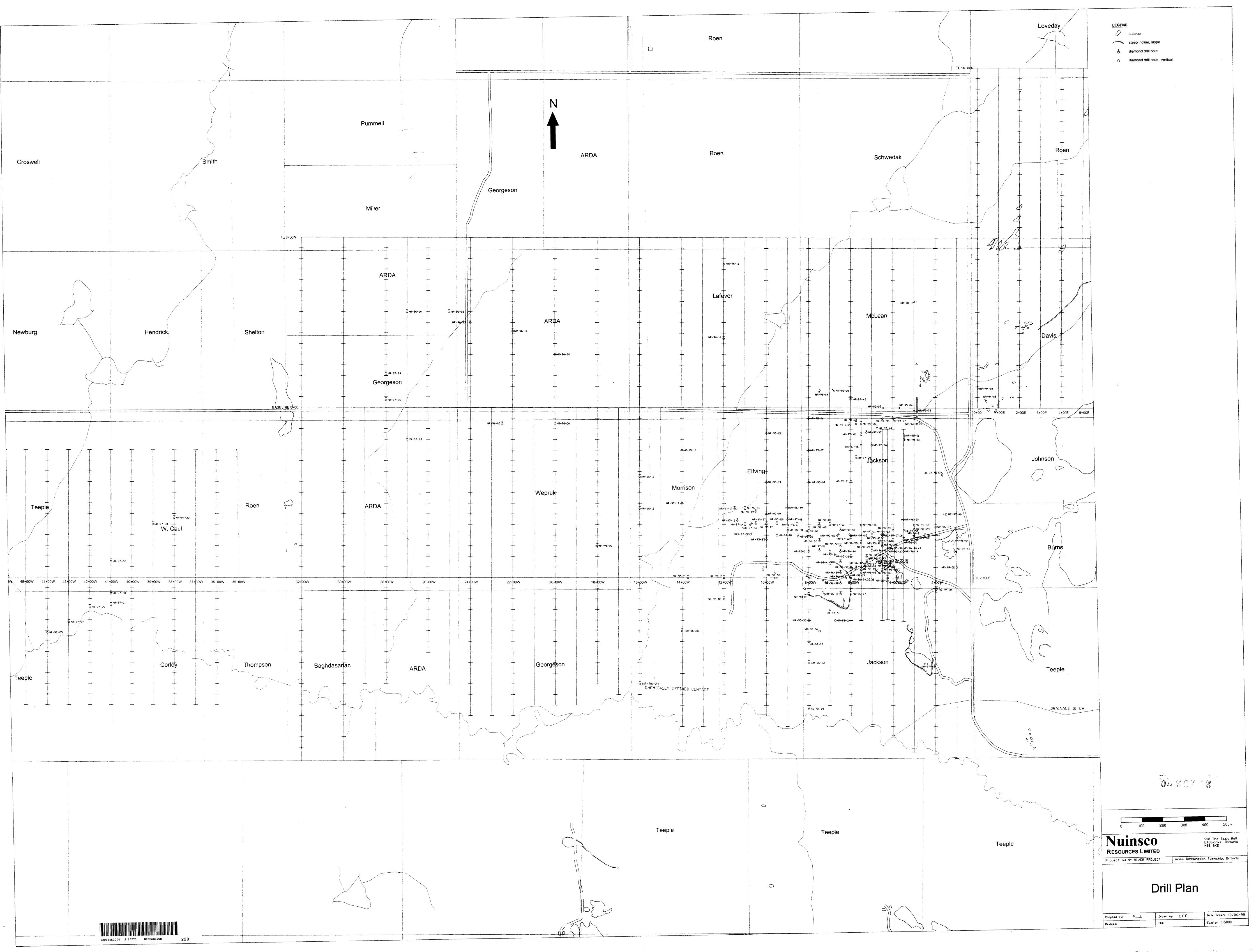

The following credit distribution reflects the value of assessment work performed on the mining land(s).

Date: July 03, 1998

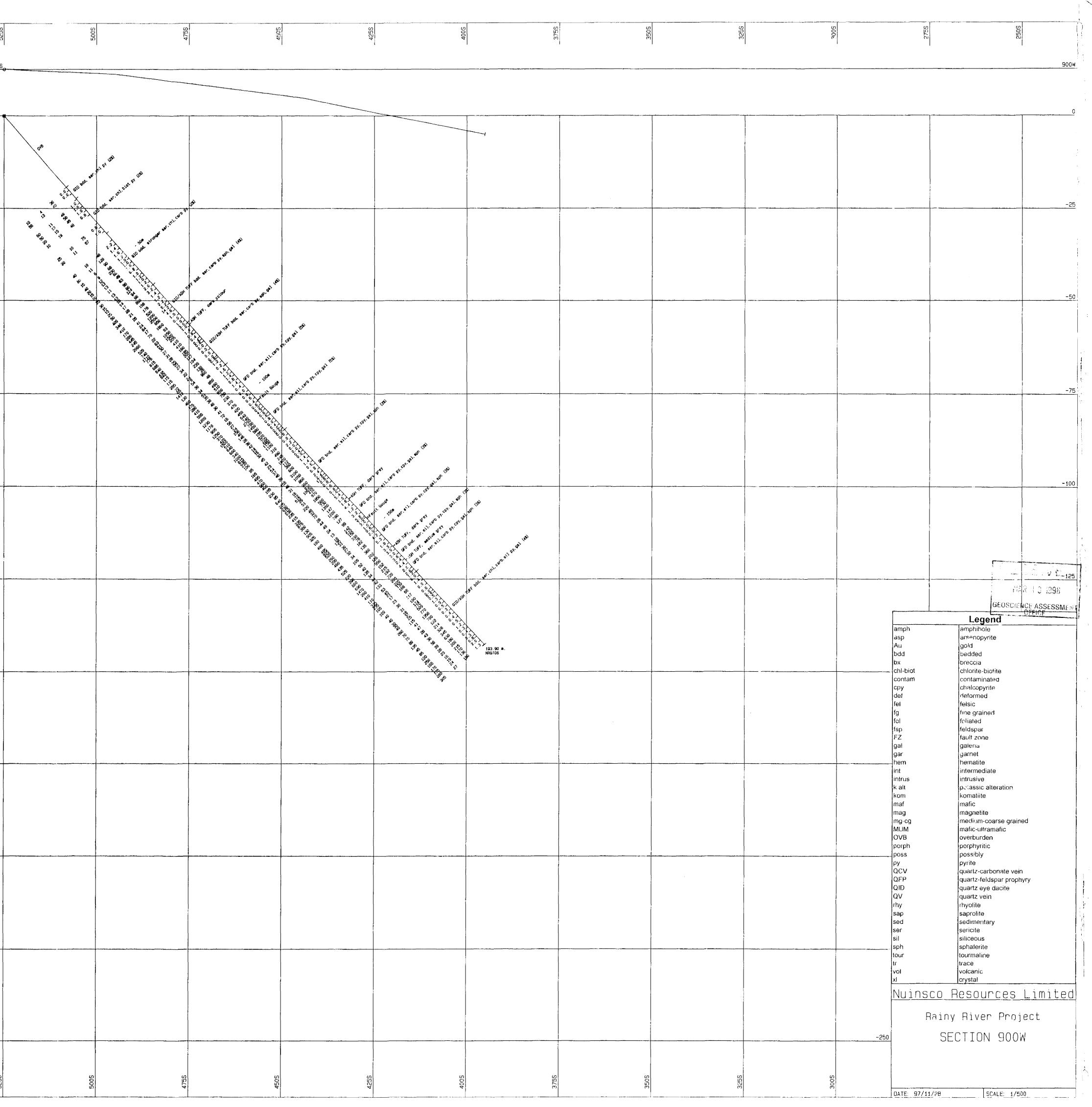
Submission Number: 2.18270

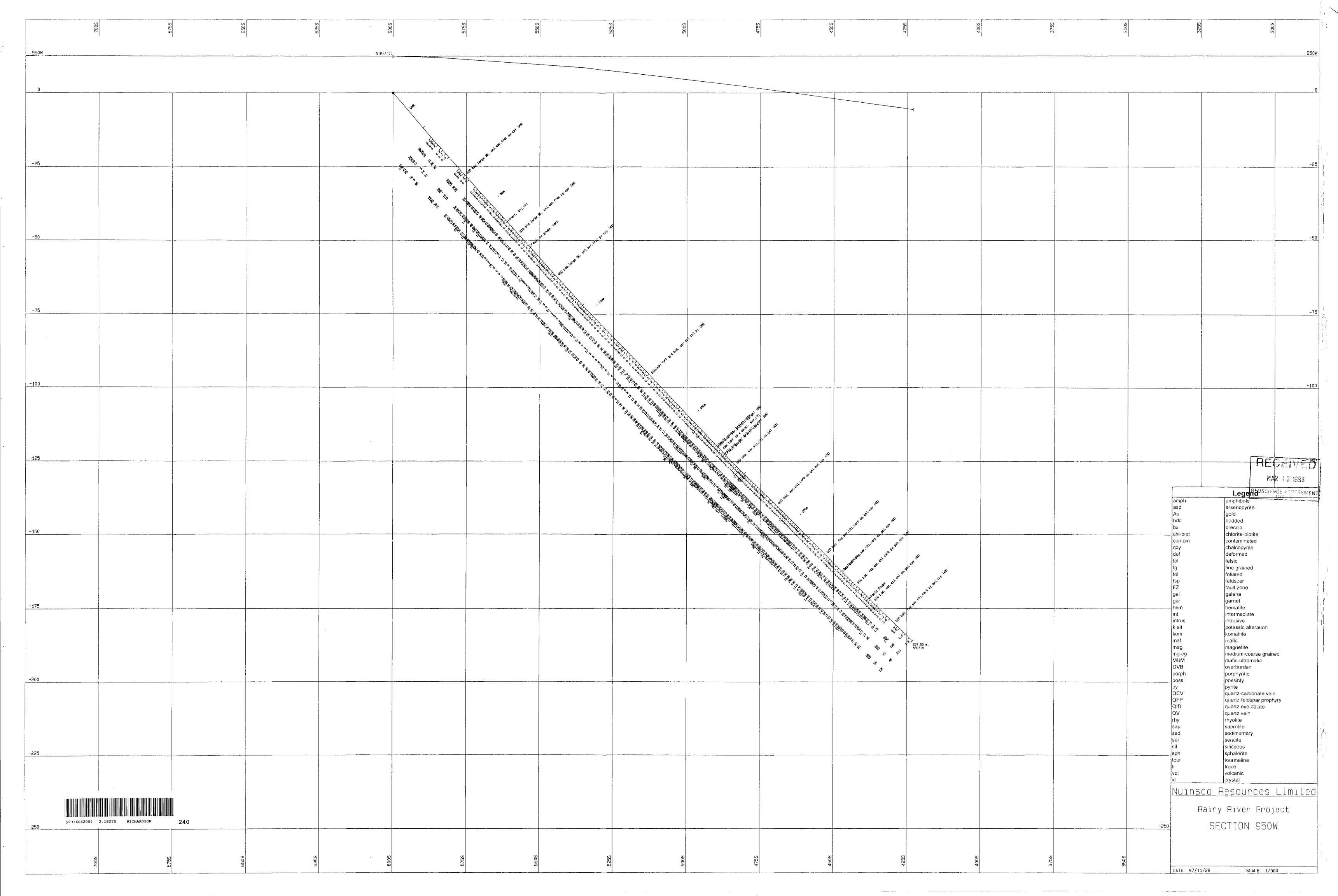
Transaction Number: W9810.00066

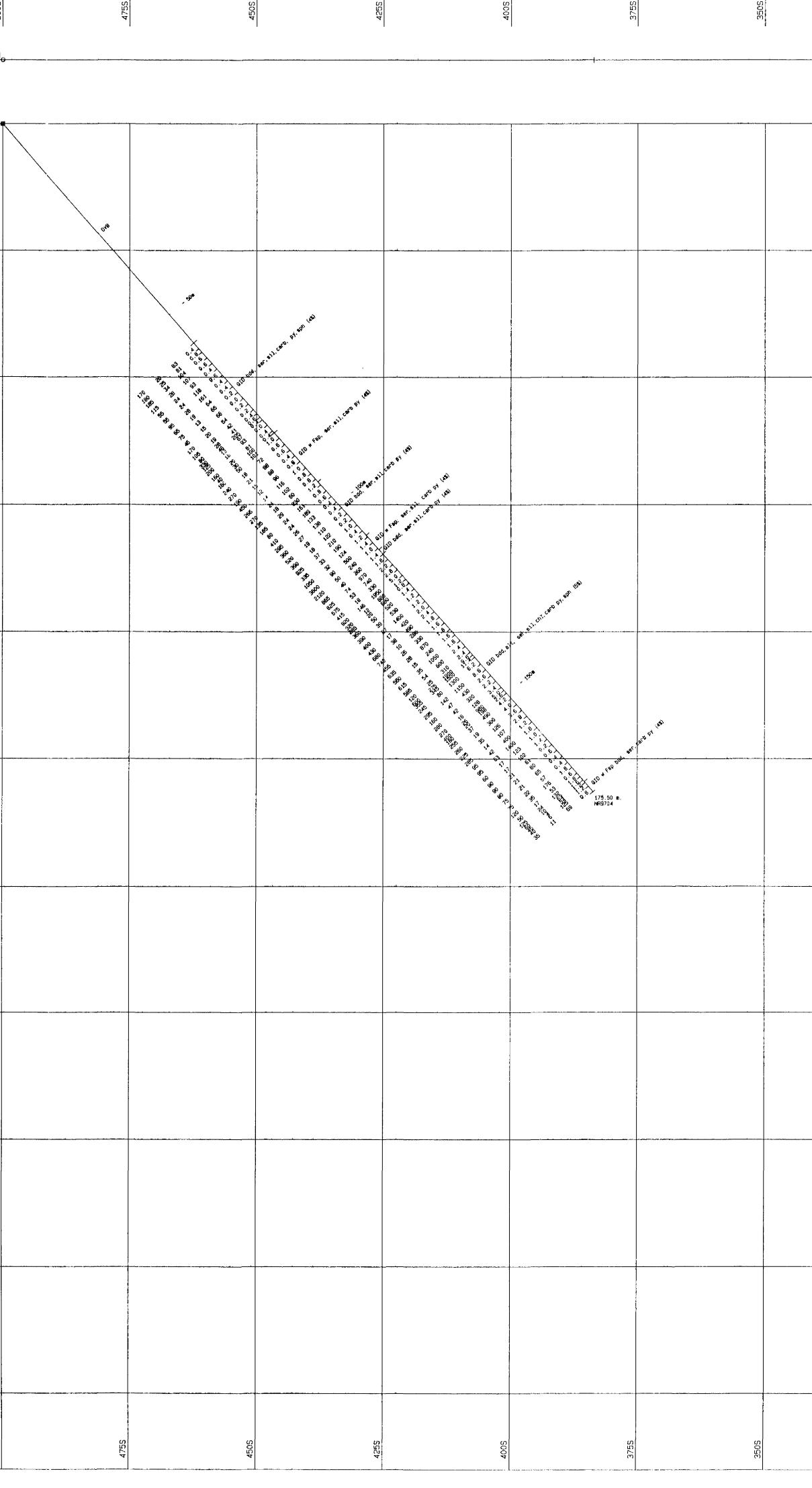

Claim Number	Value	e Of Work Performed
1000143		30,255.00
1000148		30,205.00
1000150		39,516.00
1000153		50,810.00
1000154		59,490.00
1000156		78,148.00
1000169		185,820.00
	Total: \$	474,244.00


. 1

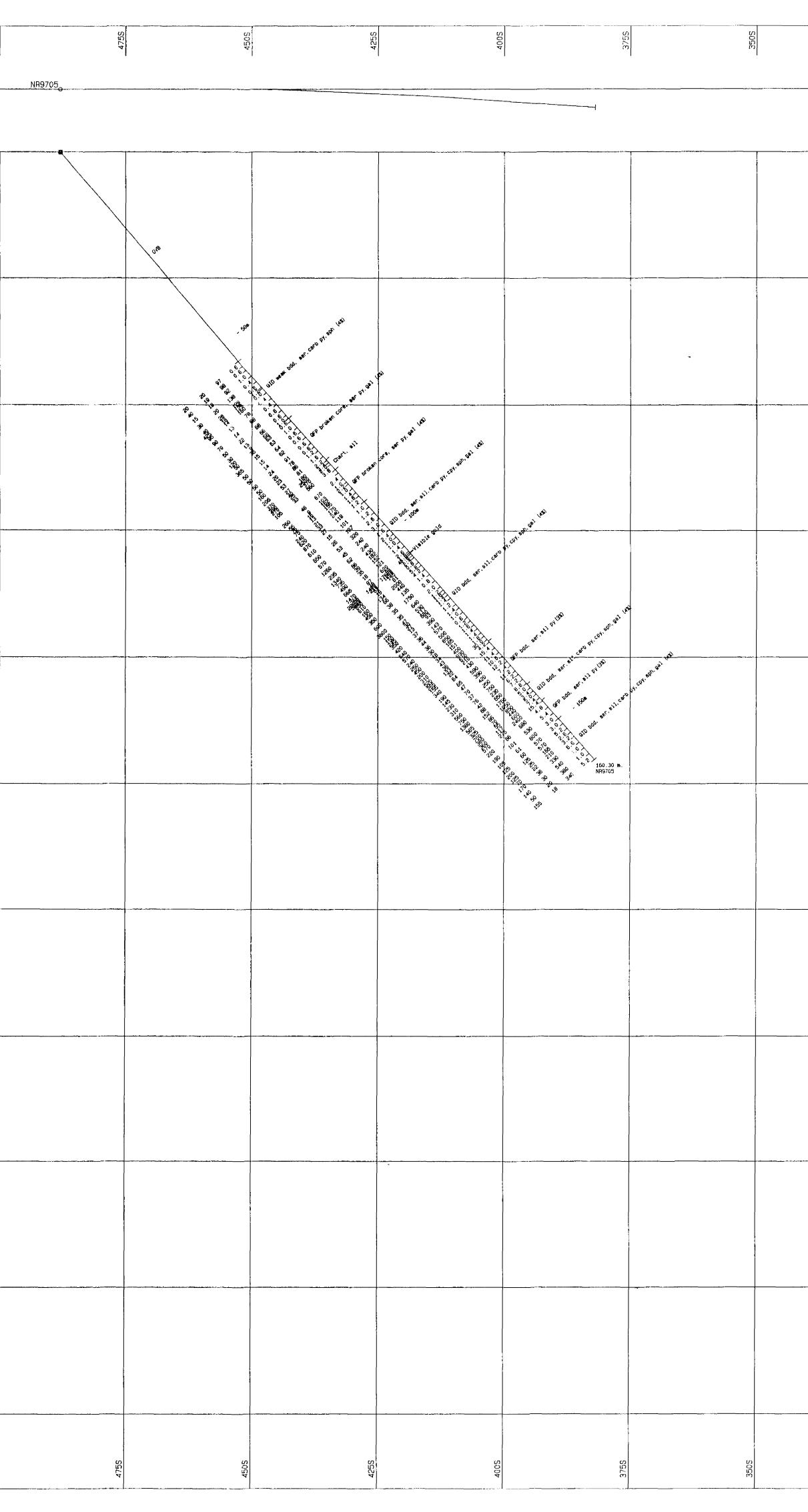
.


νĭ

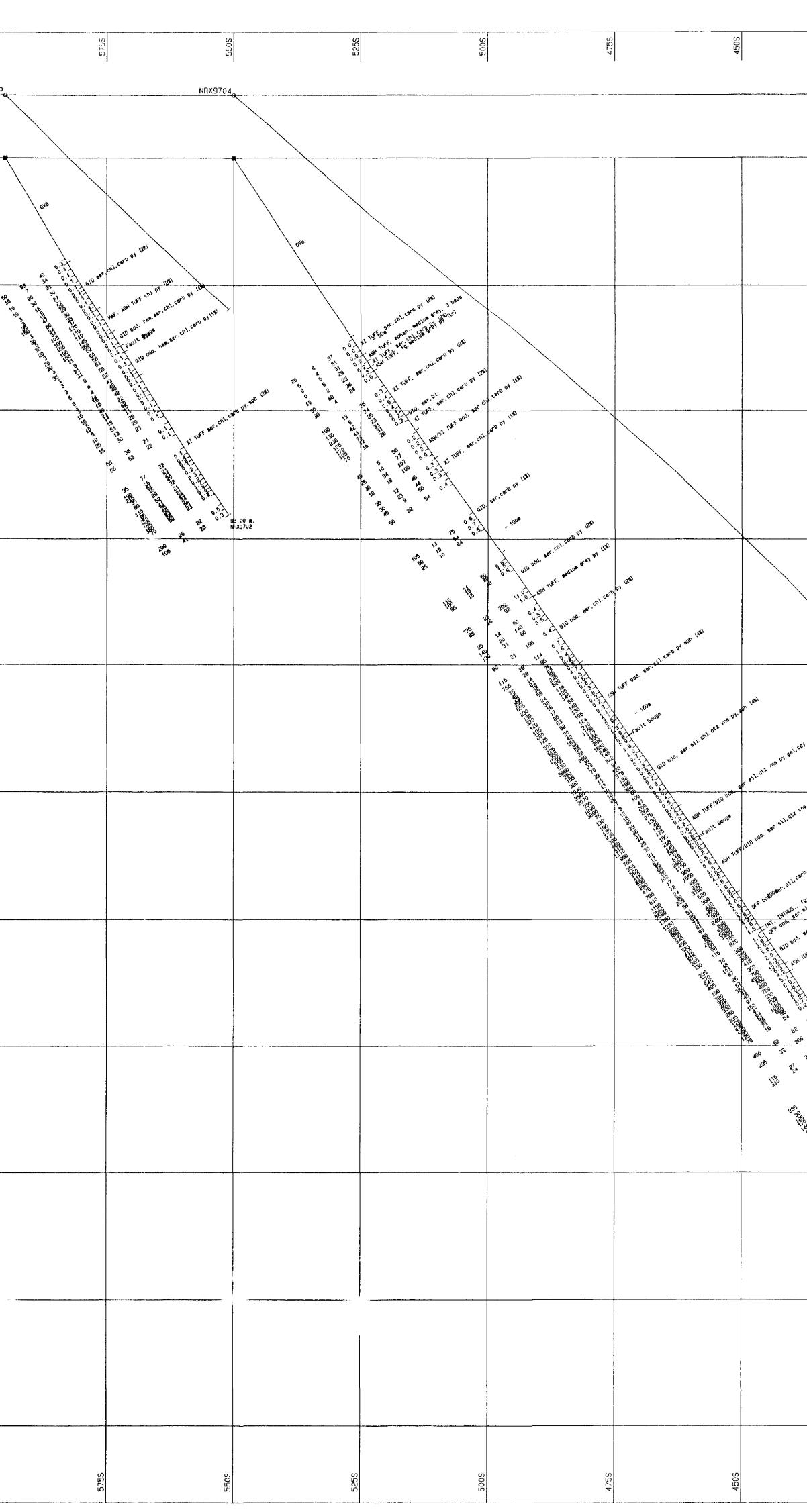




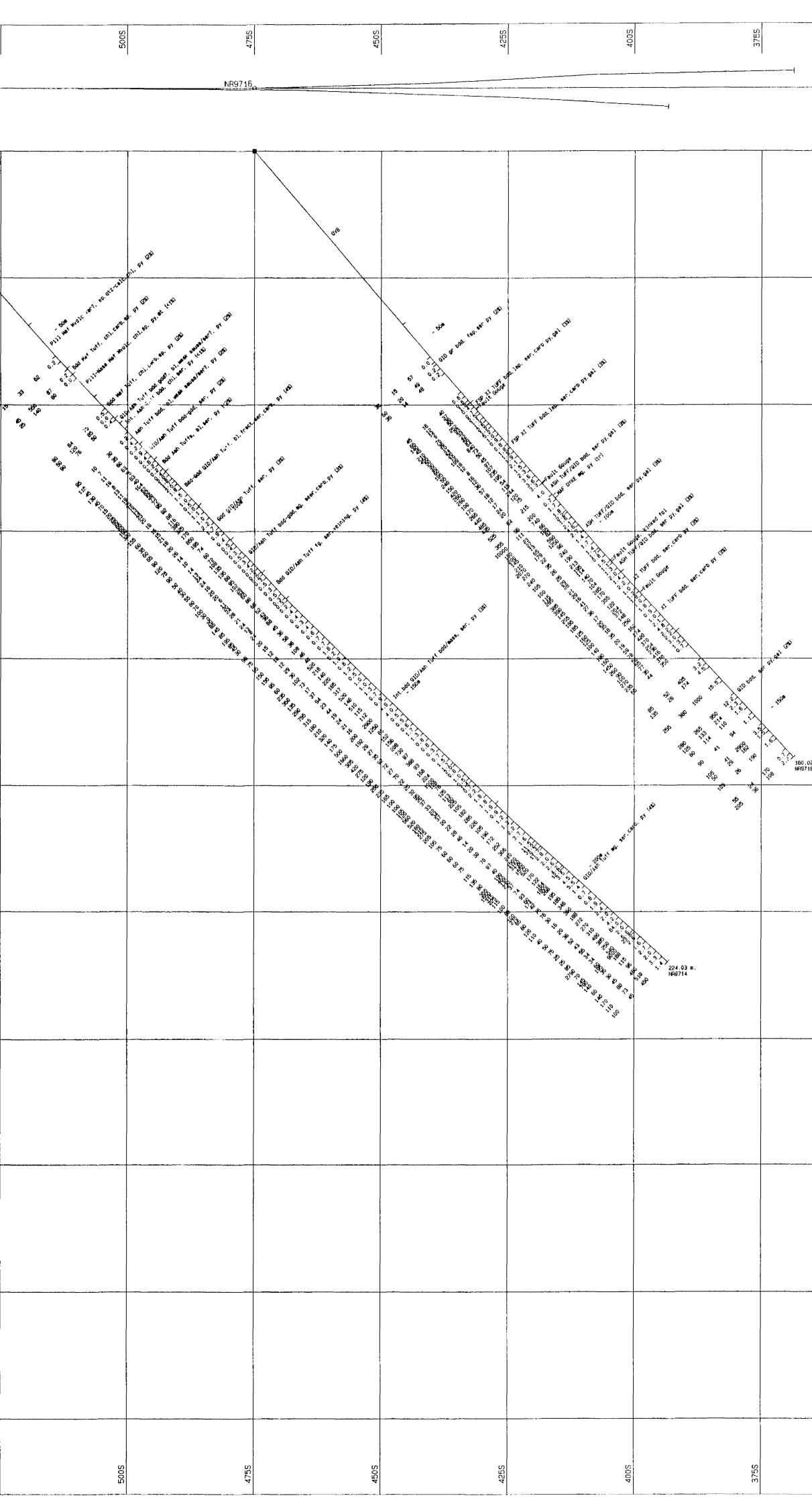
	C C L L L		Soci	S375	ری C L	1
	900W 0					NR9706
	-25					
	-50					
	-75					
	-100					
	-125					
	-150					
					· · · · · · · · · · · · · · · · · · ·	
	- 175					
-	-200					
-	-225					
	52D16SE2004 -250	2.18270 RICHARDSON	230			
	ດ ດ ຍ ຍ	ນ ເບ ບ ຍ	S O O	575S	ດ ວິດ ນີ	525S



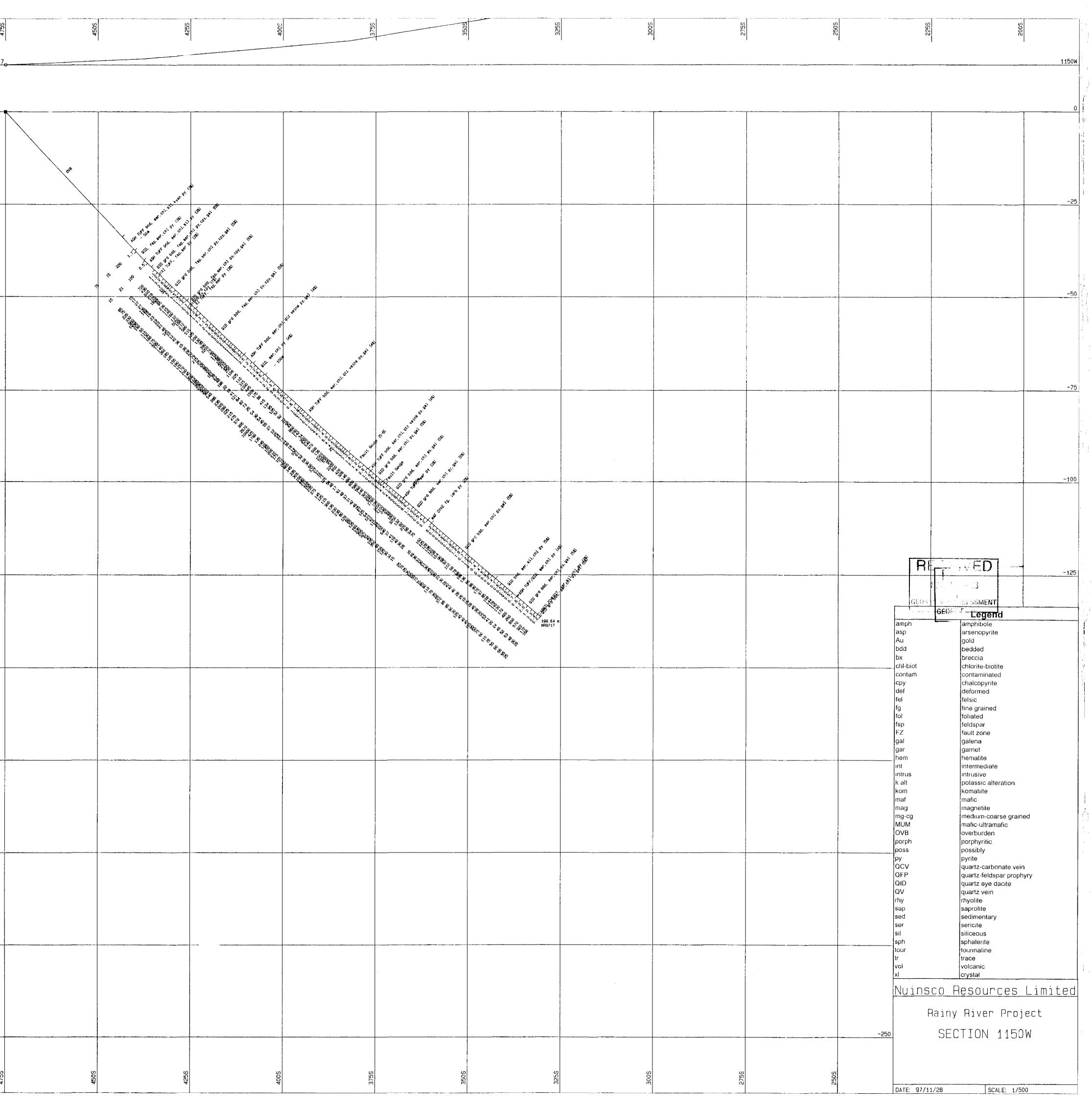
400011	E255 AMA	2 2 2 2 2	20 21 21	ល ប្រ ប	1
1000W			······································		NR9704
-25					
-50				×	
-75					
-100					
-125					
~150					
-175					
200				х	
-225					
52D16SE2004 -250	2.18270 RICHARDSON	250			
	625\$ 5005	575S	550S	5292 	500S


555 225	SOOE	2755		250S	5255	
					1000	WC
						25
						75
			· ·		-10	00
						ED
				asp a Au g bdd b bx b chl-biot cl contam co	Legend GEOSCIENCE ASSESS mphibole rsenopyrite old edded reccia hilorite-biotite pontaminated	
				defdufelfelfgfufolfolfspfeFZfagalgagargahemhuintintintrusintk altpukomkommagintmg-cgmMUMmOVBpuporphpo	nalcopyrite eformed elsic he grained elated eldspar hult zone alena arnet ematite termediate trusive otassic alteration omatiite afic lagnetite edium-coarse grained afic-ultramafic verburden orphyritic	
				py py QCV qu QFP qu QID qu QV qu rhy rh sap sa sed se sil si sph sp tour to tr vol	ossibly vrite Lartz-carbonate vein Lartz-feldspar prophyry Lartz eye dacite Lartz vein hyolite aprolite edimentary ericite liceous bhalerite urmaline ace	
				<u>Nuinsco Re</u> Rainy f	<u>ystal</u> <u>Sources Limited</u> River Project ION 1000W	
325S 325S	SOOE	575S		DATE: 97/11/28	SCALE: 1/500	

	ី ភូមិ ស	900S	575S	250S	ע ע ר ע ע	200S
	1050W					1
	25					
-	-50					
	-75					
	-100					
	-125					
	-150					
	-175					
	~200					
	200					
	-225					
	-250	2004 2.18270 RICHARDSON	260			
	52 22 22	600S	575S	ខ 22 21	2 2 2 2 2	500S


א נו ע ת	U U U U U	275S	2505	2255	1050W
 					-25
					-50
					-75
					-100
			amph asp Au bdd bx	Legend Amphibole arsenopyrite gold bedded breccia	3 1998
			-chl-biot contam cpy def fel fg fol fsp FZ gal gar	chlorite-biotite contaminated chalcopyrite deformed felsic fine grained foliated feldspar fault zone galena garnet	
			hem int intrus k alt kom maf mag mg-cg MUM OVB	hematite intermediate intrusive potassic alteration komatiite mafic magnetite medium-coarse grained mafic-ultramafic overburden porphyritic	· ,
			poss py QCV QFP QID QV rhy sap sed ser	possibly pyrite quartz-carbonate vein quartz-feldspar prophyry quartz eye dacite quartz vein rhyolite saprolite sedimentary sericite siliceous	
		×	sph tour tr vol xl NUINSCO R	sphaterite tourmaline trace volcanic <u>crystal</u> <u>ESOUNCES Lim</u> Riven Project	ited
SSE	SO SO E	-250 -252	SEC Date: 97/11/28	TION 1050W	

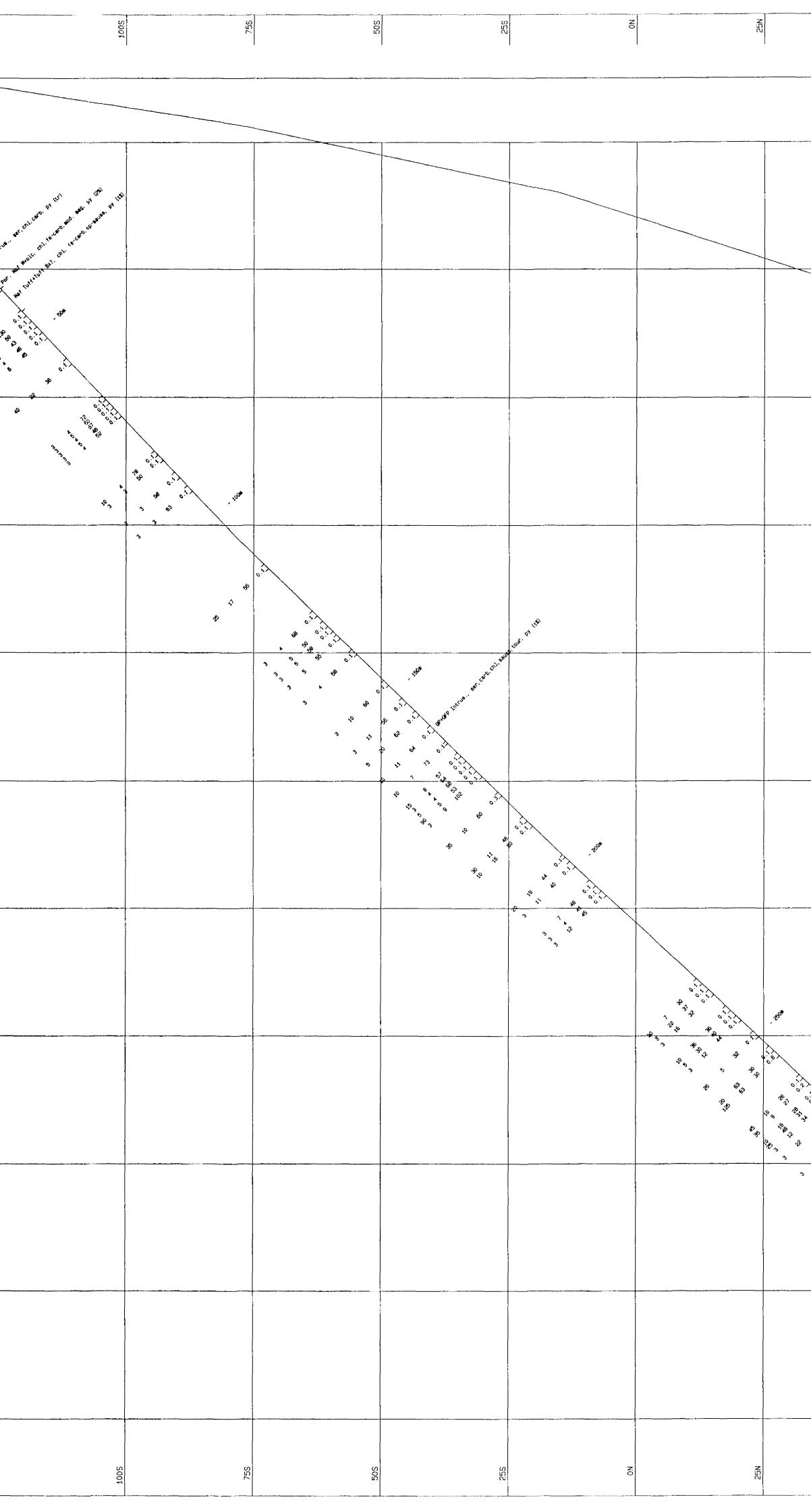
7255	7005	675S	EEOS	22 ម្ភភ្ល	900S
1075W0					NRX970
-25					
-50					
-75					
-100					
-125					
-150					
-175					
-200					
-225					
-250	RICHARDSON 27	70			
7255	7005	6755	650S	625S	6005


4 2055 2055	4 00S	375S		3505	හ සි සි 1075w	۳ ۱۰۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰۰ - ۱۰
					1075w	
					-25	5
					50	<u>o</u>
					-75	<u>5</u>
					-100	
13%) (3%)						
, p1, 92, cal (21,				amph	MAR I 8 1998	
1. 2010 01 1/10 V. 001 (4%)	· · · · · · · · · · · · · · · · · · ·			asp Au bdd bx chl-biot contam	arsenopyrite gold bedded breccia chlorite-biotite contaminated	
yer. carb a ser. sil. carb o	.02] (AN)			cpy def fel fg fol fsp FZ	chalcopyrite deformed felsic fine grained foliated feldspar	
2.0. 1 00 000. eer.	5.4 at even			gal gar hem int intrus	fault zone galena garnet hematite intermediate intrusive	
A CLARK A MARKET A CLARK A CLA	2500 per. +1. ceru 3. ou buu. 4. e 4. e			k aft kom maf mg-cg MUM OVB	potassic alteration komatiite mafic magnetite medium-coarse grained mafic-ultramafic overburden	-
	9			porph poss py QCV QFP QID	porphyritic possibly pyrite quartz-carbonate vein quartz-feldspar prophyry quartz eye dacite	
				QV rhy sap sed ser sil	quartz vein rhyolite saprolite sedimentary sericite siliceous	
				sph tour tr vol xt	sphalerite tourmaline trace volcanic crystal	
			-250	Rainy	<u>River Project</u> River 1075W	
425S	400S	375S		DATE: 97/12/02	SCALE: 1/500	

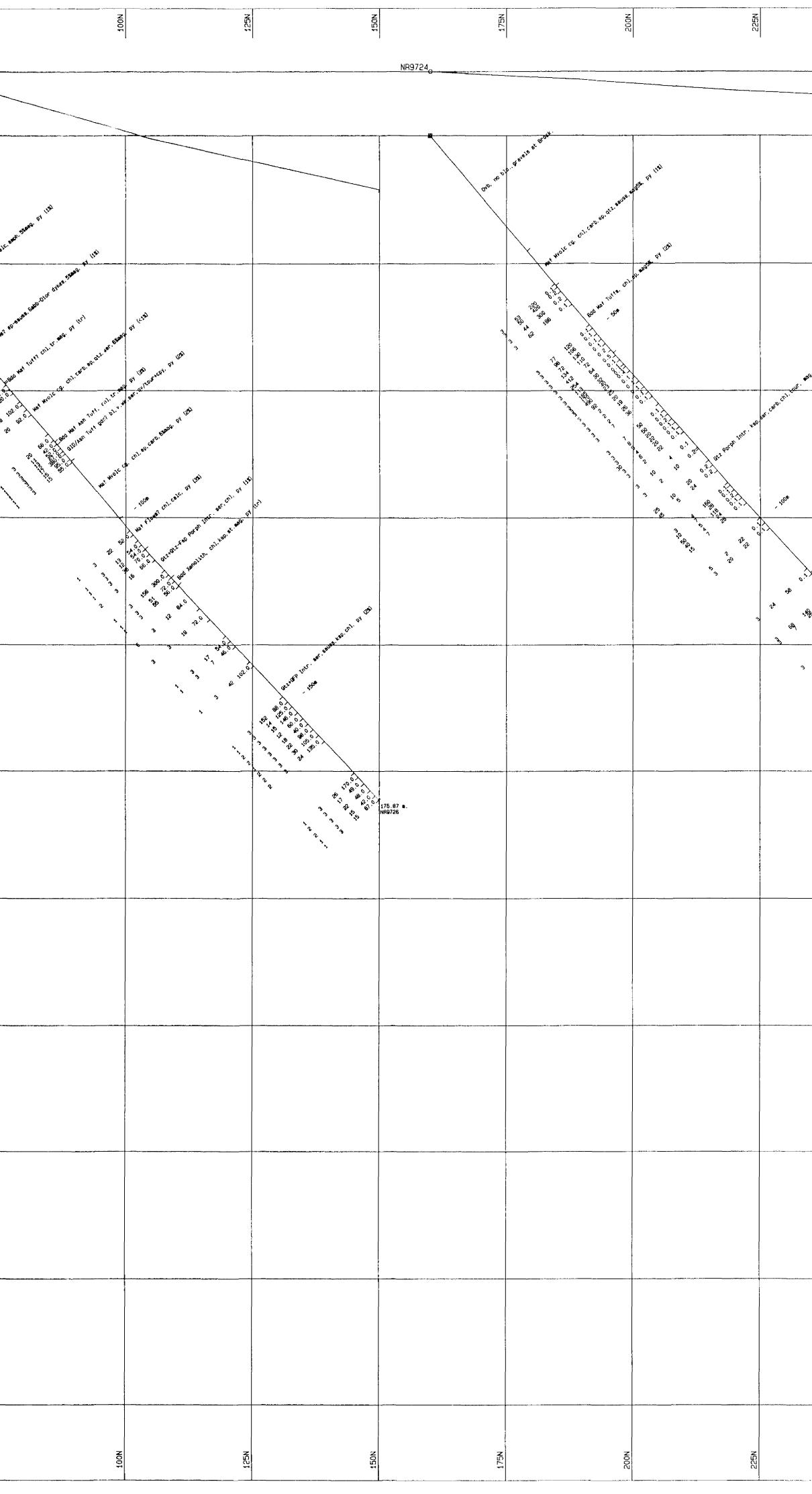
110	MO.	6255	9003	275S	ល ភ្ល NA9714	1 1
	0					
						510 510
-2	5					
5	0					
-7	5					
-10	0					
-12	5					
-15	0					
-17	5					
-20	0					
-22	5					
-25	52D16SE2004	2.18270 RICHARDSON	280			
	650S	625S	500S	575S	20 21 21	525S

11004	250 S	275S	SOOE	ល ល ទ ទ	350S
0					
-25					
50					
-75					
-100					
1958 SESSMENT	Alternative MAIL of MAIL of SECTION 1100				0.02 m. 3715 m.
0	/28 SCALE: 1/50	DATE: 97/11	300S	3255	3505

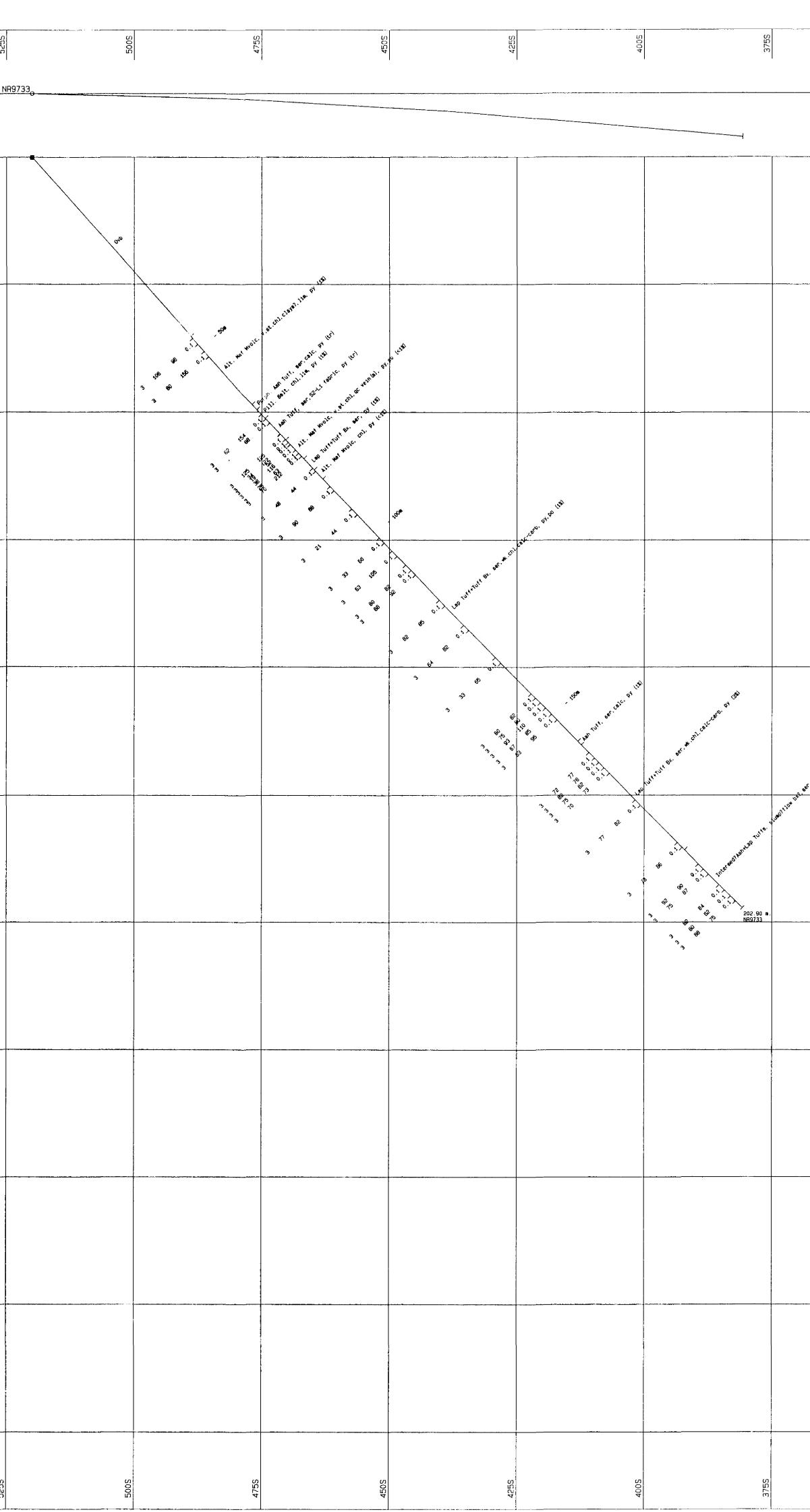
성 영 1150₩	5755	20 2 2 0 8	555 2755	Store L	NR9717
0					
-25					
-50					
-75					
-100				-	
-125					
-150					
-175					
-200					
-225					
52D16SE2		1 - I I - E - F I I - E - E - I - E - E - E - E - E - E	525S	500S	475S


ខ្ល រដ្ឋ 1400พ	5 5 2 2	200S	4 75S	NR9719	
0					°
-25					01 ¹⁰
-50					
-75					
-100					
-125					
150					
-175					
-200					
-225					
52D16SE200					
250S	5255	200S	475S	450S	4255

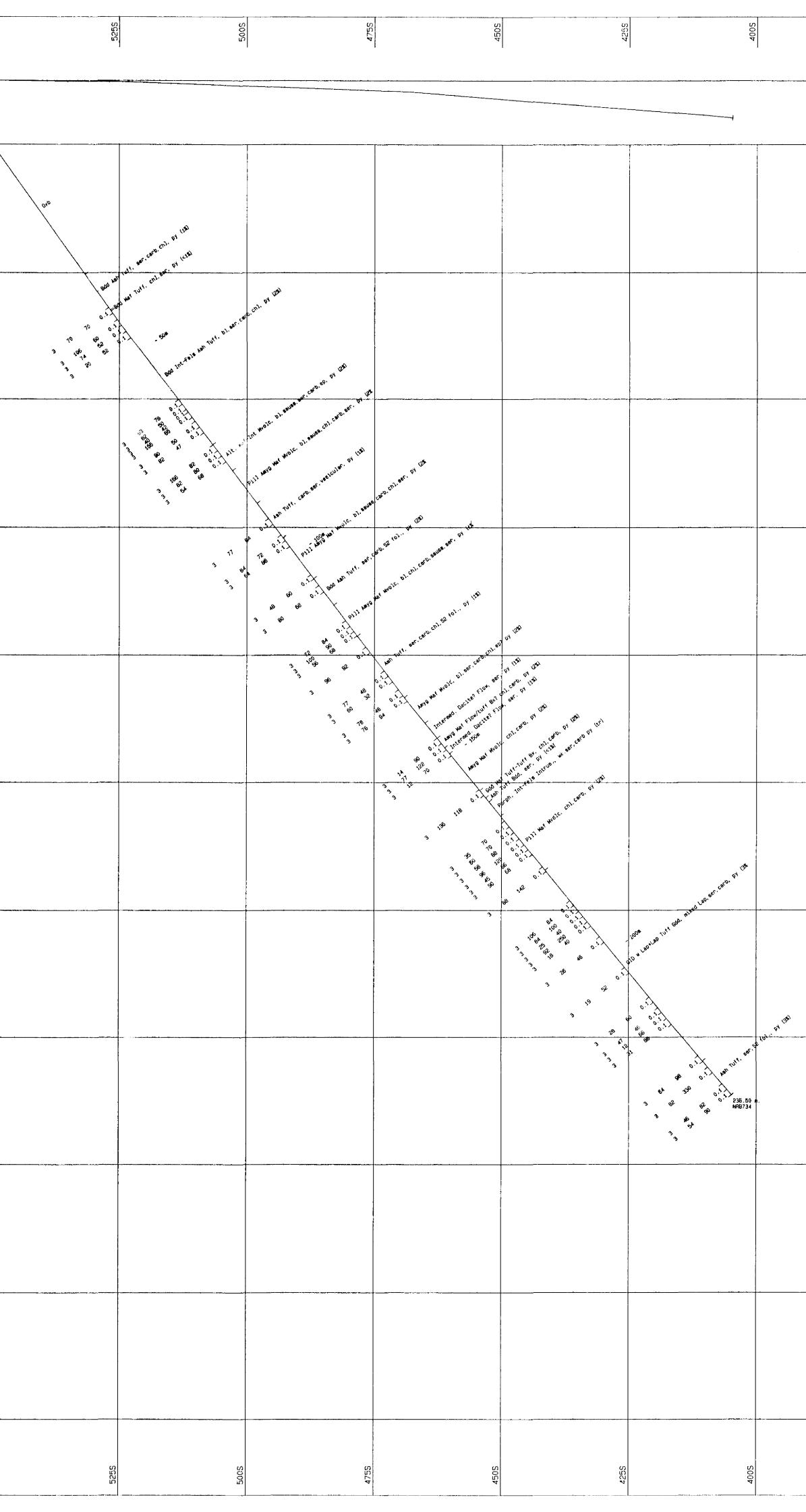
250S	225S	500S		1755	150S		
	, 	'		I	I	1400W	
						0	
							:
				100 Part - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		-25	
				• • • • • • • • • • • • •		-50	
						-75	
						-73	
						-100	n N
						-125	
				amph asp Au	Legend amphibole arsenopyrite gold MAf	<u>− 1 v ED</u> R 1 8 1998	
				bdd bx -chl-biot contam		CE ASSESSMENT	
				cpy def fel fg	chalcopyrite deformed felsic fine grained		 -
of city and				fol fsp FZ	foliated feldspar fault zone		
	\$			gal gar -hem int	galena garnet hematite intermediate		.
a over al. or al. or al.				intrus k alt kom maf	intrusive potassic alteration komatiite mafic		\sim
48 ¹ 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				mag mg-cg MUM OVB	magnetite medium-coarse graine mafic-ultramafic overburden	d	
275.84 m. NR9719				porph poss py QCV	porphyritic possibly pyrite quartz-carbonate vein		
				QFP QID QV rhy	quartz-feldspar prophy quartz eye dacite quartz vein rhyolite		
				sap sed ser	saprolite sedimentary sericite		•
				sil sph tour tr	siliceous sphalerite tourmaline trace		· :
				vol xi Nuinsco	volcanic crystal Resources	Limited	
				Rai	ny Aiver Proj	ect	,
			-250	l SI	ECTION 1400	W	
250S	2255	2005		DATE: 97/11/28	SCALE: 1/50	0	. A
				JUNE 3//11/60	JUALE, 1/30	×	1



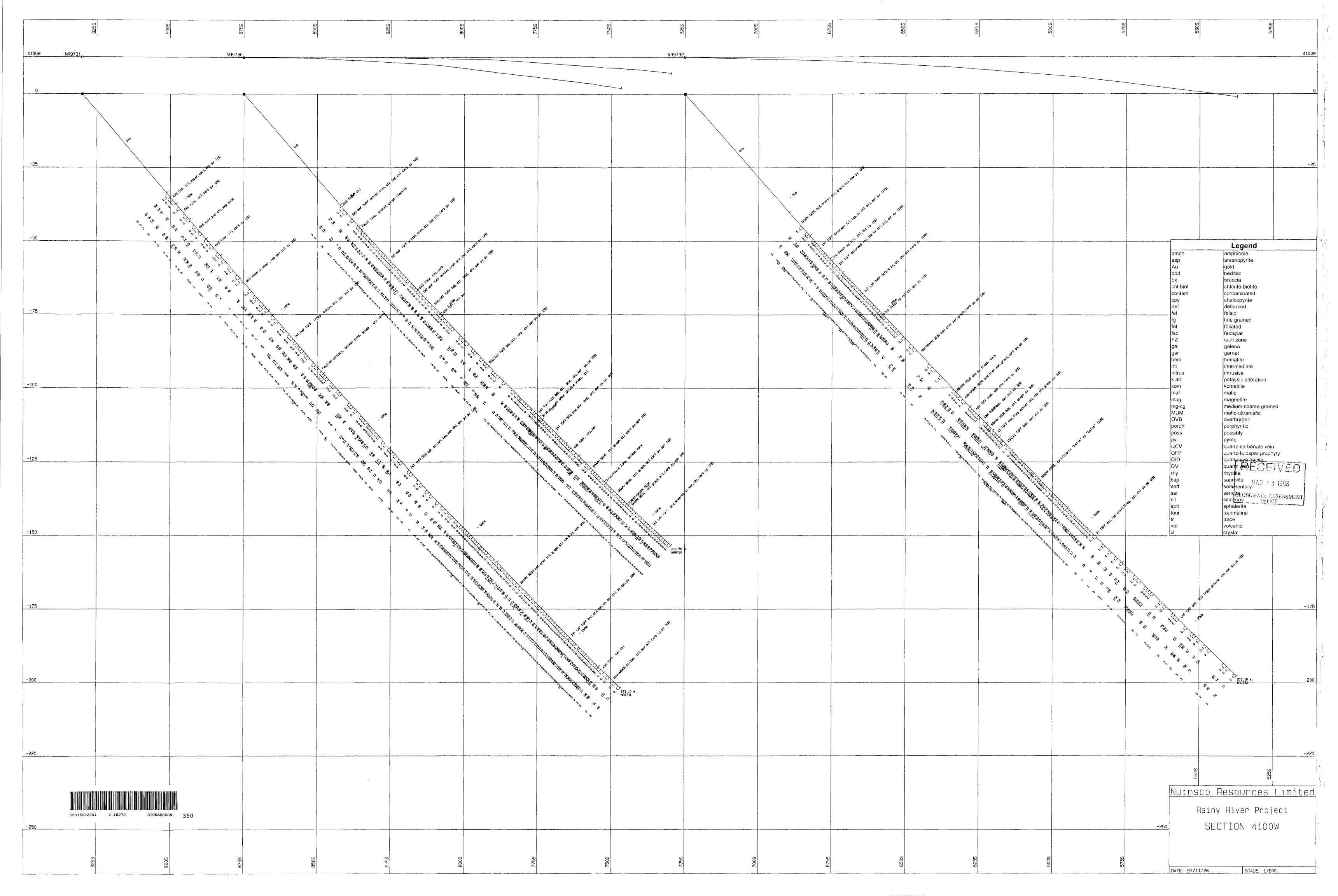
ଥିମ 2700พ	S55 S25	ମ ୧୦୦ ୦୦	55 75 75	NR9728	I
0					
					010 010 010
-25					3 1 ⁴⁰ 1 ⁴⁰
-50					333 333 33
-75					
-100					
-125					
-150					
-175					
-200					
-225					
52p16SE2004 -250	2.18270 RICHARDSO	N 310			
S50S	2255	500S	175S	150S	1255


ע מ נו		100N		125N	150N	
	 				2	700W
	 			·····		o
						-25
						-50
	 		<u> </u>			-75
			,			-100
			Benefative stars a second			-125
			1	CELVED Art 1 3 1938		
			GEOSCI	NOPASSESSMENT AQFFICE Au	Legend amphibole arsenopyrite gold	
				bdd bx -chl-biot contam	bedded breccia chlorite-biotite	
				contain cpy def fet	contaminated chalcopyrite deformed felsic	
				fg fol fsp FZ	fine grained foliated feldspar fault zone	
	 			gal gar them	galena gamet hematite	
				int intrus k alt kom	intermediate intrusive potassic alteration komatiite	
° 275.84 m.				maf mag mg-cg	mafic magnetite medium-coarse grained	
275.84 m. NA9726				MUM OVB porph poss	mafic-ultramafic overburden porphyritic possibly	
				py QCV QFP	possibly pyrite quartz-carbonate vein quartz-feldspar prophyry	
				QID QV rhy	quartz eye dacite quartz vein rhyolite	
				sap sed ser sil	saprolite sedimentary sericite sificeous	
				sph tour tr vol	sphalerite tourmaline trace volcanic	
				×I	Resources Limite	e d
				Rainy	/ River Project	
			-250	SE	CTION 2700W	
		1		1		1

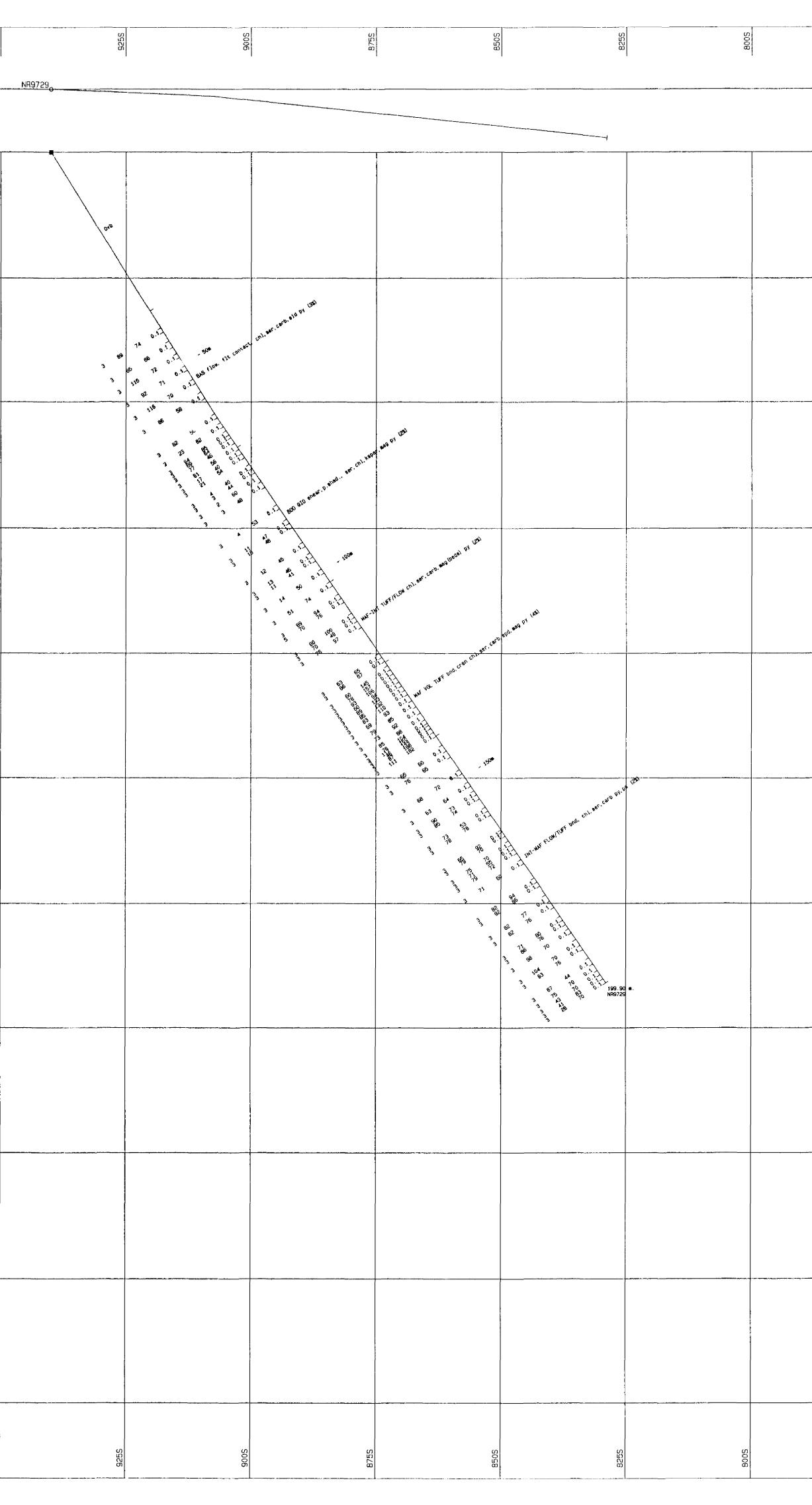
5800M	25S	S	Z IG Q	NR9726	75N
0					
				0,0	
-25					58.0 1 12. 1500 1745 . 19 00 12.10
~50					3 2 ¹⁰ 00 1 50 10 10 10 10 10 10 10 10 10 10 10 10 10
					24,00 ×
-75					
~100					
-125					
-150					
-175					
-200					
-225					
52D165E2004 -250	2.18270 RICHARDSON	320			
Dos	255	8	20 20 20	SON	75N


550N 25	L L L L L L L	NOO E		325N	2800 [°]	
						0
					-2	D
. 100 FV						0
	ur				-7	5
and the second the second the	to the lot pill and the constant				-10	0
ى بە بە بە بە بە بە بە بە بە بە بە بە بە	ert of the office of the offic	ser. cnl. py light				
		0.5	MAR 18 GEOSCIENCE AS OFFIC		-12 Legend amphibole arsenopyrite gold bedded breccia chlorite-biotite contaminated chalcopyrite deformed felsic fine grained	5
				fsp FZ gal gar hem int intrus k alt kom maf mag mg-cg MUM OVB	foliated feldspar fault zone galena garnet hematite intermediate intrusive potassic alteration komatiite mafic magnetite medium-coarse grained mafic-ultramafic overburden	
				porph poss py QCV QFP QID QV rhy sap sed ser sil sph	porphyritic possibly pyrite quartz-carbonate vein quartz-feldspar prophyry quartz eye dacite quartz vein rhyolite saprolite sedimentary sericite siliceous sphalerite	
				Rainy	tourmaline trace volcanic crystal esources Limitec River Project TION 2800W	1
250N	275N	ZOOM		DATE: 97/11/28	SCALE: 1/500	

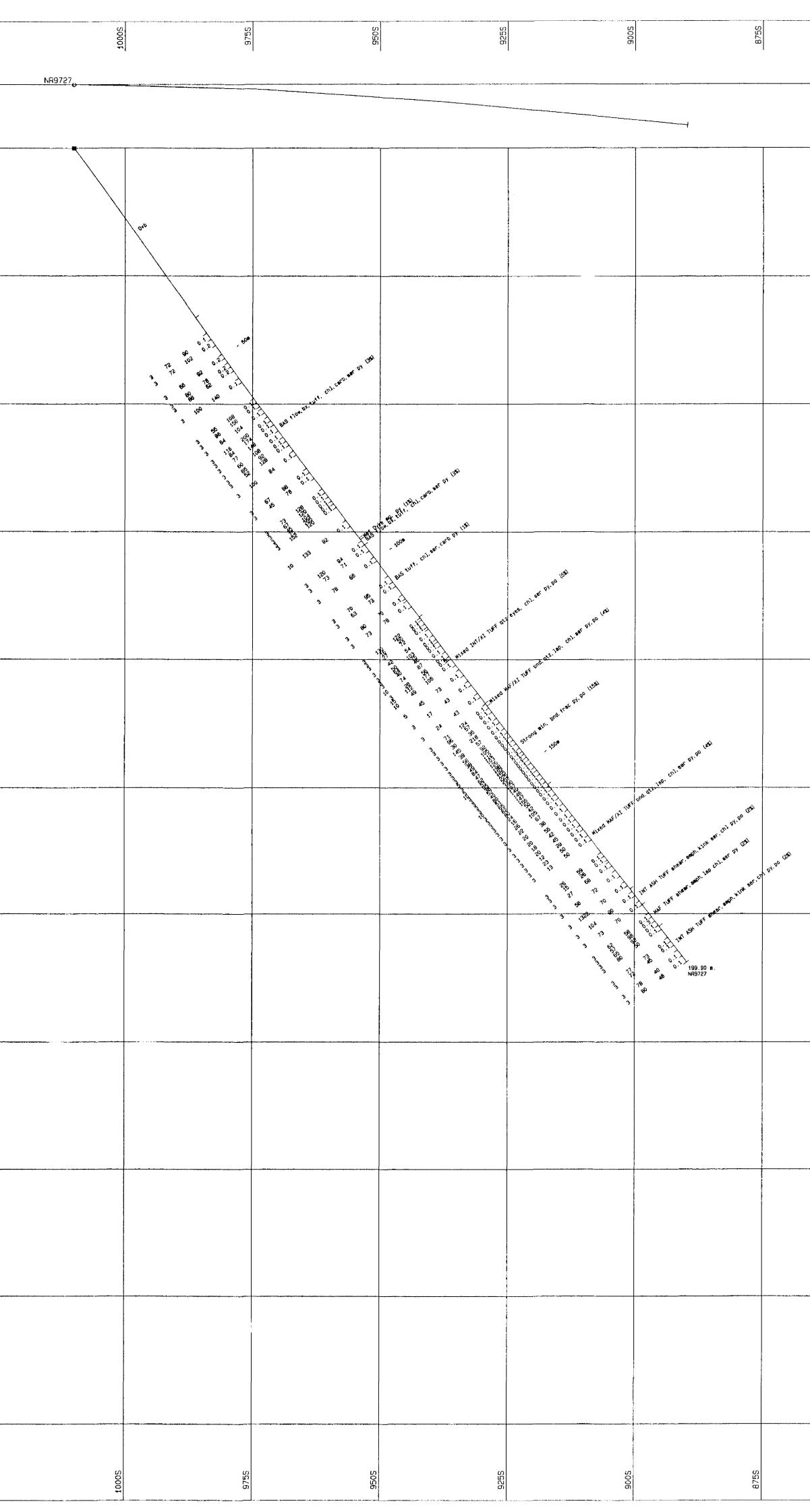
	3800 M	ទា ប្រ ទ	S00 G	5 2 2 2	0 01 11	5255 5255 Z
	0					
	-25					
	-50					
	-75					
	-100					
	-125					
	-150					
	-175					
	-200					
	225					
	- <u>250</u>	170112 UNA 4410 UNA 52004	2.18270 RICHARDSON	330		
	ប 00 ប្រ ប	ល ជួប ប្រ	S009	ວ 255 2	ง 00 ยา 1	22 25 2



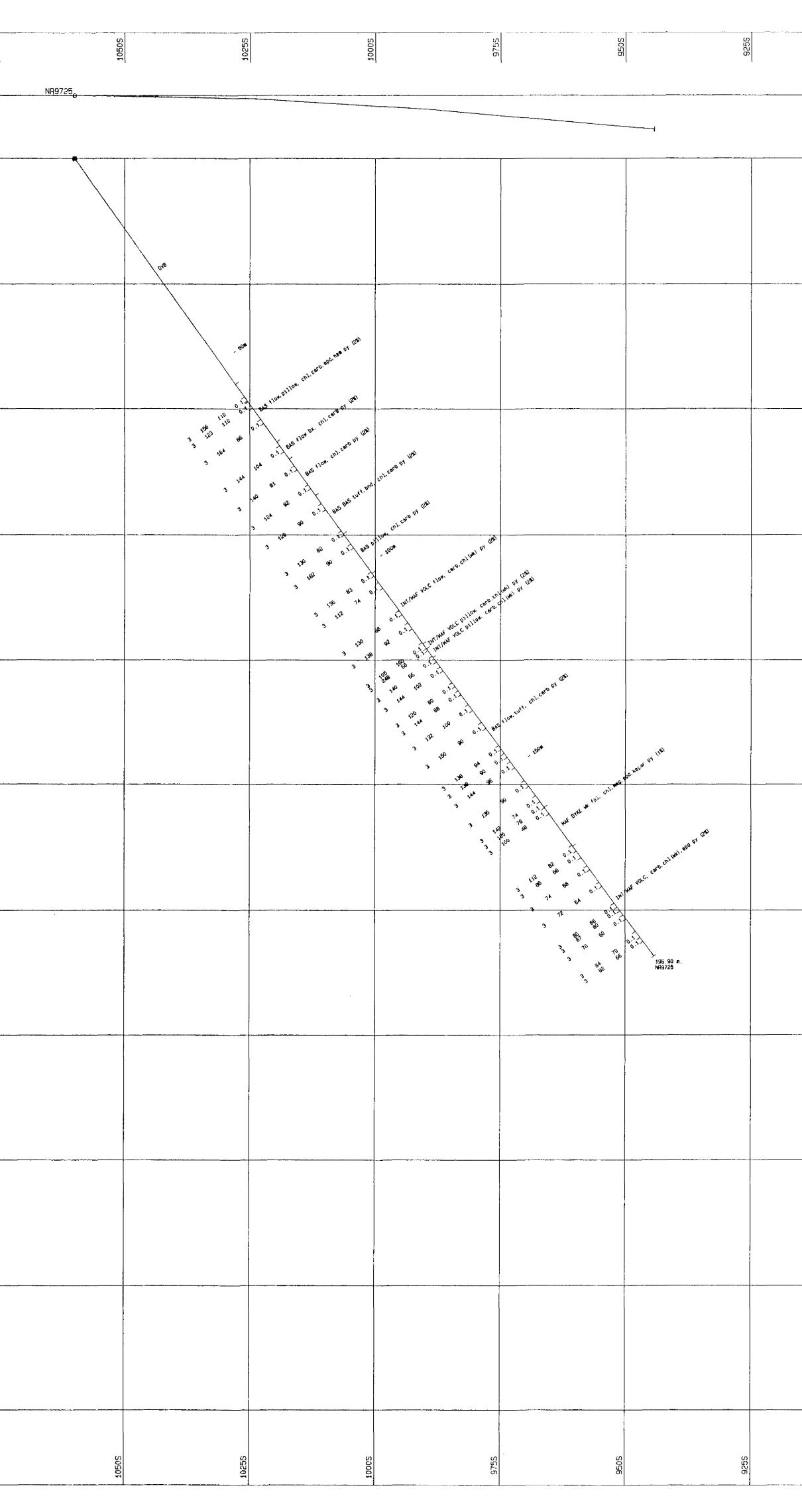
350S	3 2 2 2 2 2 2 2 3 3 2 2 3 3 2 2 3 3 3 3	SOOE		2755	52CS	
					38004	N
	, a 1954 - 1 974 - 197					
					-25	<u>5</u> 1
					-50	
					-75	<u>5</u>
					-100	<u>,</u>
с. 					-125	5
						4
				amph	Legend amphibole	
				asp Au bdd bx	arsenopyrite gold bedded breccia	
				- chl-biot contam cpy	chlorite-biotite contaminated chalcopyrite	
				def fel fg fol	deformed felsic fine grained foliated	
				fsp FZ gal	foldsnar	
				gar hem int intrus	fault zone galena garnet hematite intermediate intrusive BEOSCIENCE ASSESSMENT potassic alteration_OFFICE	
				k alt kom maf	komatiite mafic	1
				mag mg-cg MUM OVB	magnetite medium-coarse grained mafic-ultramafic overburden	
				porph poss py	porphyritic possibly pyrite	
				QCV QFP QID QV	quartz-carbonate vein quartz-feldspar prophyry quartz eye dacite quartz vein	
				rhy sap sed	rhyolite saprolite sedimentary	
				ser sil sph tour	sericite siliceous sphalerite tourmaline	
				tr vol xl	trace volcanic crystal	
					Resources Limited	
			-250		y River Project CTION 3800W	
350S	325S	SOOE		DATE: 97/11/28	SCALE: 1/500	_


675S	550S	625S		ታ 	550S
MODE					NR9734
0					
-25					
-50					
-75					
-100					
-125					
-150					
- 175					
-200			<u> </u>		
-225					
52D16SE2004 -250 52D16SE2004 -250 52D16SE2004	2.18270 RICHARDSON	340 	 900S	575S	550S

375S	350S	325S		3002	2755	
						<u>₩008</u>
						0
						-25
						-50
						-75
						-100
						-125 **
					Legend	Ē
				amph asp Au bdd bx chl-biot contam	amphibole arsenopyrite gold bedded breccia chlorite-biotite contaminated	CL ASSESSMENT
				cpy def fel fg fol fsp	chalcopyrite deformed felsic fine grained foliated feldspar	
				FZ gal gar hem int intrus	fault zone galena garnet hematite intermediate intrusive	
				k alt kom maf mag mg-cg MUM	potassic alteration komatiite mafic magnetite medium-coarse grained mano-ultramafic	
				OVB porph poss py QCV QFP QID	overburden porphyritic possibly pyrite quartz-carbonate vein quartz-feldspar prophyry quartz eye dacite	y .
				QV rhy sap sed ser sil	quartz vein rhyolite saprolite sedimentary sericite siliceous	
				sph tour tr vol xl	sphalerite tourmaline trace volcanic crystal	i mitod
			-250	Rainy	<u>Resources L</u> y River Proje CTION 3900W	ct
375\$	SOGE	595 17 17		DATE: 97/11/28	SCALE: 1/500	



4200₩	1 050S	1025S	1000S	275S	950S
0					
-25					
50					
-75					
-100					
-125					
-150					
-175					
-200					
-225					
-250	04 2.18270 RICHARD	son 360			
10755	1050S	10255	1000S	52S	950S


7755	750S	7255		S007	6755	
					42	<u>00</u> W
						······································
						-25
						<u>-50</u>
						<u>-75</u>
<u> </u>						100
						125
				amph asp	Legend MASSimplified GEOSCIENCIESSES	}
				Au bdd bx -chl-biot contam cpy def	gold <u>OFICE</u> bedded breccia chlorite-biotite contaminated chalcopyrite	
				def fel fg fol fsp FZ gal	deformed felsic fine grained foliated feldspar fault zone galena	
				gar _hem int intrus k alt kom	garnet hematite intermediate intrusive potassic alteration komatiite	
				maf mag mg-cg MUM OVB porph	mafic magnetite medium-coarse grained mafic-ultramafic overburden porphyritic	
				_poss py QCV QFP QID QV rhy	possibly pyrite quartz-carbonate vein quartz-feldspar prophyry quartz eye dacite quartz vein rhyolite	
				sap sed ser sil sph tour	saprolite sedimentary sericite siliceous sphalerite tourmaline	
				tr vot ×I Nuinsco F	trace volcanic crystal Resources Limite	d
			-250		River Project CTION 4200W	
7755	750S	7255		DATE: 97/11/28	SCALE: 1/500	

4300W	155S	1100S	1075S		10505	10255
0]		<u> </u>
-25						
~50						
-75						
-100						
-125						
150						
-175						
-200						_
-225						
-250	04 2.18270 RICHARE	^{SON} 370				
1150S	1 12 12 12 12 12	1100S	SEC 0 +		1050S	10255

ې کې ش		c C C C C C C C C C C C C C C C C C C C	775S	750S
		,,,,,,,,	 ,	4300W
				-25
				-50
				-75
				-100
				Legend
			bdd bx chl-biot contam cpy def fel fg fol fsp FZ	goldbeddedbrecciachlorite-biotitecontaminatedchatcopyritedeformedfelsicfine grainedfoliatedfeldsparfault zone
			gar hem int intrus k alt kom maf mag mg-cg MUM OVB porph	galena garnet hematite intermediate intrusive potassic alteration komatiite mafic magnetite medium-coarse grained mafic-ultramafic overburden porphyritic
			py QCV QFP QID QV rhy sap sed ser sil sph tour	possibly pyrite quartz-carbonate vein quartz-feldspar prophyry quartz eye dacite quartz vein rhyolite saprolite sedimentary sericite siliceous sphalerite tourmaline
			tr ×ot ×I Nuinsco R Rainy	trace volcanic <u>crystal</u> <u>esources Limited</u> River Project TION 4300W
20 82 92	B25S	SOOS	DATE: 97/11/28	SCALE: 1/500

	4400W	11755	1150S			10755
	0					
	-25					
	~50					
	-75					
-	-100					
	-125					
	~150					
	-175				- - -	
	-200					
	-225					
	-250					
	2002 s	1175S	1150S	1125S	11005	10755

	800S	B25S	850S	8 35 8	SOOG
<u>4400</u>	44(
-25					
-50					
-75					
-100					
	RECEIVED				
:NT	MAR I 3 1998 BEOSCIENCE ASSESSMEN Legend OFFICE amphibole arsenopyrite gold bedded	amph asp Au bdd			
	breccia chlorite-biotite contaminated chalcopyrite deformed felsic fine grained foliated	bx chl-biot contam cpy def fel fg fol			
	feldspar fault zone gatena garnet hematite intermediate intrusive potassic alteration	fsp FZ gal gar hem int int k alt			
	komatiite mafic magnetite medium-coarse grained mafic-uitramafic overburden porphyritic possibly	kom maf mag mg-cg MUM OVB porph poss			
	pyrite quartz-carbonate vein quartz-feldspar prophyry quartz eye dacite quartz vein rhyolite saprolite sedimentary	py QCV QFP QID QV rhy sap sed			
ed	sericite siliceous sphałerite tourmaline trace volcanic crystal	ser sil sph tour tr vol xl NUINS			
-1 .	ainy River Project SECTION 4400W				
	/28SCALE: 1/500	DATE: 97/11	850\$	875S	SOOE