2.2448

010 RECEIVED

JUL. 131977
MINING LANDS SECTION

Geophysical Report
VLF \& Magnetic Survey
Babe Lake, Ontario

Respectfully Submitted,
Chris D. Anderson, Ph.D., P.Eng.

Location: Northwestern quadrant at the Ewart township in northwestern Ontario located on the southside of the Trans Canada Highway on the west side of Baubee Lake.

The grid is readily accessible from the Trans Canada by one gravel road and numerous trails. The grid lines themselves reach the highway in some places. (see Figures 1 and 2).

Property Holder: Dr. Chris D. Anderson 826 Dorchester Avenue, Winnipeg, Manitoba.

Party Submitting Assessment Work: Same as above.
Claim Numbers 439295, 439296, 439297, 439298, 439299, 439300
Covered by Survey 439301, 439302, 430303, 439402, 439403
Dates of Survey: May 8 - May 16, 1977 inclusive
The VLF and magnetic data and plotted profiles are shown on the maps accompanying this report.

VLF SURVEY

Instrument: Geonics EM-16 VLF unit, Serial \#166, Freq. 18.6 KHz $\begin{aligned} \text { Sensitivity: } & \text { In-phase, } \pm 0.5 \% \text { from }-70 \% \text { to }+70 \% \\ & \text { Ellipse } \\ & 1 \% \text { from } \pm 70 \text { to } \pm 150 \%\end{aligned}$ Ellipse Ratio: $\pm 0 . \overline{5} \%$

Method of Surveying: The standard VLF surveying technique was employed:

- at each 50 ft . Station the readings were taken in the northwest direction, independant of the direction of travel, at right angles to the station location. In this case, the Seattle, Washington station, broad-casting at 18.6 KHz , was used.
- a best null was then obtained by adjusting the in-phase and/or quadrature settings. The reading was taken when this null was achieved.

Note - the contour map accompanying this report uses Fraser Filtered data.

MAGNETIC SURVEY

Instrument: Scintrex Flux Gate Magnetoneter, model MF-2 serial number 002104 Scale Sensitivity: ± 5 gammas

Nethod of Surveying:

- upon entering and leaving grid area, or after completing a days work, and roughly every three hours, the magnetic field was micasured at the base station (location as specified on accompanying maps).
- at each station the instrument was held a constant distance from the body and the ground to reduce error, station interval $=50 \mathrm{ft}$.
- after leveling, the scale was then read with the multiplying factor noted.
- the time of sampling was recorded.

Number of Established Stations: 1083
Lines: 10.26 line miles.

Results and Conclusions:

- 2 major anomalous zones were observed to be present on the Baubee Lake grid area,
I - the strongest of the two extends from $L 51=00 E / 15+00 N$ to $115+00 E / 5+O O N$ and continues through grid into Baubee Lake on the east side. Strike is approximately N8OW.
II - the second most prominant anomaly extends from $\mathrm{L} 15+00 \mathrm{~L} / 10+00 \mathrm{~S}$ to $\mathrm{L} 30+00 E / 19+005$ and continues out both ends of the grid.

Other numerous anomalous zones were found scattered throughout the grid.
The conductor locations are shown in Figure 3.

Summary of Anomalous Areas $(C M)$:

LINE	LOCATION	FRASER NUMBER (see appendix)
$15+\mathrm{OOE}$	$16+50 S$	50-100
	$10+25 S$	50-100
	$5+00 S$ to $5+75 S$	150
$18+$ OOE	$18+\operatorname{OOS}$ to $19+00 \mathrm{~S}$	50-100
	$12+505$ to $13+50 \mathrm{~S}$	50-100
	$5+25 N$ to $5+50 \mathrm{~N}$	150
$21+$ OOE	$18+00 S$ to $18+75 S$	50-100
	$13+25 S$ to $13+75 S$	100-150
	$5+50 \mathrm{~N}$ to $6+00 \mathrm{~N}$	100-150
$24+\mathrm{OOE}$	$18+$ OOS to $19+00 \mathrm{~S}$	50-100
	$14+505$	
	$6+50 \mathrm{~N}$ to $7+00 \mathrm{~N}$	150
$27+00 \mathrm{E}$	$18+00 \mathrm{~S}$ to $18+50 \mathrm{~S}$	50-100
	$16+$ OOS to $16+50 \mathrm{~S}$	150
	$7+75 \mathrm{~N}$ to $8+25 \mathrm{~N}$	150
$30+00 \mathrm{E}$	$18+505$ to $20+00 S$	100-150
	$16+25 S$ to $17+00 \mathrm{~S}$	50-100
	$7+50 \mathrm{~N}$ to $8+\mathrm{OON}$	150
$33+$ OOE	$8+00 \mathrm{~N}+9+00 \mathrm{~N}$	150
$36+00 E$	$0+50 \mathrm{~S}$ to $0+50 \mathrm{~N}$	50-100
	$9+50 \mathrm{~N}$ to $10+50 \mathrm{~N}$	150

$39+00 \mathrm{E}$	$1+00 \mathrm{~N}$ to $2+00 \mathrm{~N}$	50-100
	$4+50 \mathrm{~N}$ to $5+50 \mathrm{~N}$	50-100
	$10+75 \mathrm{~N}$ to $11+50 \mathrm{~N}$	150
$42+00 E$	$1+00 \mathrm{~N}$ to $2+00 \mathrm{~N}$	100-150
	$7+$ OON to $8+$ OON	150
	$11+50 \mathrm{~N}$ to $13+75 \mathrm{~N}$	50-100
$45+00 E$	$1+00 \mathrm{~N}$ to $1+50 \mathrm{~N}$	100-150
	$13+00 \mathrm{~N}$ to $13+50 \mathrm{~N}$	100-150
	$15+$ OON	100-150
$48+00 \mathrm{E}$	$0+00 \mathrm{~N}$ to $0+50 \mathrm{~N}$	100-150
	$13+00 \mathrm{~N}$ to $13+50 \mathrm{~N}$	100-150
	$15+25 \mathrm{~N}$ to $16+00 \mathrm{~N}$	100-150
$51+$ OOE	$15+00 \mathrm{~N}$ to $16+00 \mathrm{~N}$	100-150
$54+$ OOE	$2+00 \mathrm{~N}$ to $3+00 \mathrm{~N}$	100-150
	$4+00 \mathrm{~N}$ to $4+50 \mathrm{~N}$	100-150

In general, three anomalous magnetic zones were observed:

$$
\begin{aligned}
& \text { i) strike N80W } \mathrm{L} 48+00 \mathrm{E} / 15+00 \mathrm{~N} \text { to } \mathrm{L} 27+00 \mathrm{E} / 8+00 \mathrm{~N} \\
& \text { ii) strike N7OW } \mathrm{L} 36+00 \mathrm{E} / 0+00 \text { to } \mathrm{L} 54+00 \mathrm{O} / 2+\mathrm{OON} \\
& \text { iii) strike N25W } 118+00 E / 10+00 S \text { to } L 27+00 S / 16+00 S
\end{aligned}
$$

These anomalies correlate with the EM responses indicated by the VLF Survey.

The magnetic response tends to diminish as one progresses west along the anomalies, whereas the level of EM response remains more uniform.

The three magnetic zones observed involve a wide range of magnetic field strengths, ranging from $+26,000$ gammas to $-15,000$ gammas.

APPENDIX
Fraser filtering of VLF Data:
Fraser filtering of the VLF data results in a phase shift at 90° and a gain of 4 , as illustrated below:

The slope at point x of curve " c " can be approximated by

$$
\frac{\left(R_{-2}+R_{-1}\right)}{2}-\frac{\left(R_{+1}+R_{+2}\right)}{2}
$$

slope=
2
and the "Fraser number" is defined by $\left(R_{-2}+R_{-1}\right)-\left(R_{+1}+R_{+2}\right)$ and the units are "\% slope of major axis", thus the point of maximum curvature of " C " is given by the maximum Fraser number. By convention in this report, a positive Fraser number indicates proper cross-over, whereas a negative indicates an improper cross-over.

Figure 1 - Location Map.

Figure 2 - Property Map.

Figure 3 - EM Conductor Map.

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
 FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.
 LANDS SECTION

Type of Survey_ Magnetics / VLF EM
Township or Area_Ewart township
Claim holder (s) Dr. C. D. Anderson

Author of Report __Dr. C. D. Anderson
Address 826 Dorchester Avenue, Winnipeg, Manitoba.
Covering Dates of Survey $\frac{\text { May } 8 \text {-May } 16}{\text { (linecutting to office) }}$
Total Miles of Line cut
10.26

SPECIAL PROVISIONS CREDITS REQUESTED

ENTER 40 days (includes line cutting) for first survey.
ENTER 20 days for each additional survey using same grid.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer Electromagnetic
 PROJECTS SECTION LD.
Res. Geol. \qquad Qualifications \qquad
Previous Surveys \qquad

Checked by \qquad date \qquad

GEOLOGICAL BRANCH \qquad

Approved by \qquad date

GEOLOGICAL BRANCH

Approved by date

GEOPHYSICAL TECHNICAL DATA

GROUND SURYEYSNumber of Stations1083
\qquad Number of Readings $3 \times 1083=30159$
Station interval_ 50 ft .
Line spacing300 ft.
Profile scale or Contour intervals _MAG
$\frac{\text { and VLF Data valves written_on_maps. }}{\text { (specify for each type of survey) }}$
MAGNETICInstrumentScintrex Flux Gate Magnetometer, Model MF-2, Serial \#002104Accuracy - Scale constant ± 5 Gammas. Scale reading accuracy.Diurnal correction method graphical
Base station location 24 feet west of $24+00 \mathrm{E}$ along base line
ELECTROMAGNETIC
Instrument Geonics EM-16 VLF unit, Serial \#166
Coil configuration
Coil separation

\qquad
Accuracy $\pm 0.5 \%$, both values.
Method: [X Fixed transmitterShoot backIn lineParallel lineFrequency $\quad 18.6 \mathrm{KHz}$Seattle, Washington(specify V.L.F. station)
Parameters measured \% slope of major axis: ellipge ratio in \%.
GRAVITY
Instrument
\qquad
Scale constant
Corrections made \qquad
Base station value and location
Elevation accuracy

INDUCED POLARIZATION - RESISTIVITY

Instrument

Frequency Range.
PowerElectrode arrayElectrode spacing.
\qquad
Type of electrode

2.2448

