

SECTION 1

MINING LANDS SECTION

INTRODUCTION

This report is presented to fullfill the requirements of The Ontario Mineral Exploration Program Act, 1980 in Application for Grant or Certificate of Entitlement to Tax Credit for Designated Program OM84-3-C-180.Application is made in the name of:

> SPARTON RESOURCES INC 520-25 ADELAIDE STREET EAST TORONTO, ONTARIO

LOCATION and ACCESS

The Scouten claim group is located north and south of the Manitou Stretch on claim map M-2469 (Area of Napanee Lake) and M-2429 (Area of Vista Lake). The claims are recorded in the Kenora Mining Division.

The property is located midway between Dryden and Fort Frances.It is approximately 100 km from Fort Frances via highways #11 and #517 to the Cedar Narrows Road. The Cedar Narrows Road provides access to boat landings at Essox Lake and South Bay. From either landing access to the property is by boat.Float planes can be chartered from Dryden or Fort Frances. Camp was established at Camp Manitou.

PROPERTY

The Scouten property consists of two claim blocks. The "Peep Bay" claim block consists of 20 claims and is located north of the Manitou Stretch and northwest of Peep Bay. The 20 unpatented claims in this claim block are :

K728668		K728684	17
K728691			1
K728689	-	K728690	2

The "Sorry Mac" claim group consists of 39 unpatented claims and is located south of Peep Bay and south of the Manitou Stretch. The "Sorry Mac" claim group consists of the following claims:

K728662 -	K728667	6
K727137 -	K727164	30
K728685 -	K728687	3

39

20

010

GRID-LINECUTTING

An exploration grid totalling 85 km. has been established to cover all claims on land. Line spacing is 100 meters with station intervals of 25 metres. The baseline on both claim groups trends 39 degrees. The "Peep Bay" baseline extends from L-00 to L-18E. The "Sorry Mac" baseline is offset to 3+00S on L-4W and extends from L-00 to L-23W. A tieline at 12+00S extends from L-14W to L-7E on the "Sorry Mac" claim group southeast of Hailstone Bay.

SUMMARY OF EXPLORATION

This report details the results of a major exploration program undertaken by Sparton Resources Inc. Surveys performed include linecutting_VLF-EM, magnetometer, geology and soil geochemistry surveys.

Geological mapping is complete on the "Peep Bay" group. Mapping on the "Sorry Mac" group is complete North of TL-12S.

A detailed trenching/sampling program was performed on both claim groups. Trenches on the "Peep Bay" were originally created by Sylvanite Mines in the 1940's. These trenches were cleaned and resampled by Sparton. Five new trenches were created on the "Sorry Mac".

PREVIOUS WORK

1940- Sylvanite Gold Mines Ltd. The north shore of the Manitou Stretch was explored resulting in the discovery of several gold showings.Most of there work was concentrated to the east of Peep Bay.

1941- A.M. Bell reported 10 feet grading 0.08 oz/ton Au in a rusty zone rich in quartz on a claim to the southwest of the "Peep Bay". This occurance is referred to as the Gates Lake Occurance.

1983- Peep Bay Prospector's Report.

1983- Sorry Mac Prospector's Report.

SECTION 2

MAGNETIC SURVEY

Instrumentation

The survey was performed by Phanton Exploration Services Ltd. using a Scintrex MP-2 portable proton-precession magnetometer.A Scintrex MBS-2 magnetic base station was used to record and correct for diurnal variations.

The MP-2 has an accuracy of +/-1 gamma in a field of 50,000 gammas. Actual survey accuracy is proportional to the degree of care used in applying diurnal corrections.

Theory of Operation

Magnetic variations are caused by variations in magnetization of bedrock from station to station. This magnetization exists because of the presence of minerals with high magnetic susceptability. The most common minerals to affect the earths magnetic field are magnetite, pyrrhotite, and ilmenite. Magnetometers are used to measure this variation.

The MP-2 is a proton precession magnetometer. This magnetometer utilizes the precession of spinning protons in a volume of kerosene to measure the total magnetic field intensity.

When the hydrocarbon is subjected to an electric current the spinning protons are temporarily polarized. When the current is removed the spin of the protons causes them to precess about the direction of the ambient magnetic field. The signal generated by the precessing protons is directly proportional to the intensity of the total magnetic field. The magnetic intensity measured is the magnitude of the earths magnetic field vector independant of its direction. A change in the total field intensity is referred to as an anomaly.

Survey Procedure

Data was collected at 25m intervals using a Scintrex MP-2 proton magnetometer.Field data was then referred to the log of a base station recorder(Scintrex MBS-2) which operated continuously 'throughout the survey for correction.The corrected data is plotted at a scale of 1:2500 and contoured.

Discussion of Results

Very few magnetic anomalies were identifed over the Scouten property. Eight anomalies on thr "Peep Bay" and ten anomalies on the "Sorry Mac" are described in terms of location, length, strength, possible source and EM association in the following tables.

× .				,	17
NAG. PEEP BAY	LOCATION	STRIKE LENGTH (METERS)	VLF - EM RESPONSE	MAGNETICS (GAMMAS)	REMARKS
PB-1	0E-3E 3 + 00N	300	None	2-3,000+	Mafic Volcanic o/c, possible magnetite bearing flow
PB-2	3e 1 + 75N	0	None	1,600	Weakly magnetic Mafic Flow Bull's eye high
PB-3	1E-4E BL-0	300	None	2,000 +	Spotty high within an anomalous zone
PB-4	3E-5E 4 + 75S	200	Weak	2-3,000 +	VLF-EM + Mag. coincident within a mafic volcanic. Probably py,po and magnetite
PB-5	4E-10E 3 + 75S	600	None	3,000 +	Intermediate volcanic with magnetite enrichment
PB-6	7E-13E 1 + 75S	600	None	1-2,000 +	Weak values within a broad zone
PB-7	14E-17E 1 + 00S	300	None	1,000+	Weak spotty values within a weak zone.
PB-8	13-17E BL-0	400	None	1-2,000+	SAME AS PB-7
		1	4	1	

,				·	18
MAG SORRY MAC	LOCATION	STRIKE LENGTH	VLF - EM RESPONSE	MAGNETICS (GAMMAS)	REMARKS
SM-1	14W-16W 4 + 50N	200 ¹	None	1,-3,000 +	Mag high along shoreline No o/c
5M-2	6W-8W 2 + OON	200	Weak	1-4,000 +	Bull's Eye high may be a gabbro intrusive with magnetite enrichment. Flanking EM
SM-3	17W-19W 0 + 75S	200	Weak	1,000+	Weak mag anomaly that runs into weak VLF EM to West. Intermediate volcanic with no explanation for anomalies
SM-4	18W-22W 9 + 25S	400	None	1,000 +	High magnetic anomaly, possible B.I.F. but not evident in the field. No exposure.
SM-5	18-21W 7 + 75S	300	None	1-3,000 +	Broad/short strike high value anomaly. Course grained may be an intrusive
SM-6	13W 10 + 25S	< 200m	Flanks to North	1-3,000 +	Bull's eye at shoreline may join SM-4
SM-7	13W 8 + 00S	< 200m	None	3,000 +	Bull's eye mag high
SM-8	3W-11W 6 + 25S	800	Flanking Strong	1-5,000+	Long weak mag anomaly with two high zones, a mafic volcanic with schistose zone that maybe enriched in magnetite and pyrrhotite
SM-9	8W-12W 5 + ooS	400	Coincident	1-3,000 +	f.gm.g.mafic volcanic possible flowrich in magnetite
SM-10	13W 6 + 50S	< 200m	Strong		Bull's eye high VLF + Mag associate possible py + po VLF may be OB
					The may be ob

SECTION 3

ELECTROMAGNETIC SURVEY

Instrumentation

The VLF-EM survey was performed by Sparton Resources Inc. using a Crone Radem VLF-EM.

Theory of Operation ECRONE RADEMJ

The Radem is a radio receiver utilizing the radiation from powerful military transmitters as the primary signal. The radiation contains both magnetic and electrical components, however, only the magnetic component is of concern because the subsurface carries the bulk of the signal energy.

The polarized magnetic field is roughly the shape of an ellipsoid around the transmitter and the transmitted field is horizontal and perpendicular to the geological strike

A station in the same direction as the geological strike is chosen to give a maximum coupling with the conductor. The direction of the magnetic component of the transmitted field is horizontal and perpendicular to the geological strike.

The Radem measures the secondary field, generated by conducting bodies when they are subjected to the transmitted field. The reading taken is the angle from the horizontal of the secondary magnetic field. The point of inflection associated with a reversal in measured dip angles (crossovers) from the direction of traverse to the opposite direction usually occurs directly over the conductor. Survey Procedure

Readings were taken at 25m intervals over the entire grid. The transmitting station used was Cutler, Maine.

Discussion of Results

A total of 28 VLF-EM anomalies were identified on the claim group.The following tables provide the location,strike length,filter response (Fraser Filter),magnetic response,and remarks on possable source.

Many EM conductors are due to topographic features such as drainage and cliffs.However,the VLF-EM did detect numerous bedrock conductors.The VLF-EM detected a number of conductive zones with no associated magnetic response

The VLF responses were weak to moderate with very few strong conductors.

4					21
EM PEEP BAY	LOCATION	(meters) Strike Length	VLF-EM RESPONSE	MAQNETICS (GAMMAS)	"REMARKS"
PB-1	2E-5E 7 + 00N	300	Moderate-good	None	Volcanic flow possible magnetite enrichment
PB-2	0E-2E 4 + 75N	200m	Poor-moderate	None	SWAMP
PB-3 ·	2E-6E 4 + 00N	400m	Poor	None	Cedar Swamp
PB-4	9E 2 + 50N	> 200m	Poor	None	Bulls-eye No o/c possible conductive overburden
PB-5	16E 2 + 25N	> 200m	Poor-moderate	None	Same as above
PB-6	6E-13E	700	Good	None	Cedar Swamp
PB-7	7E-13E	600	Good	Flanking	Swamp/topography
PB-8	L 18E 3 + 00 S	> 200m	Poor	None	Shear/mineralized with pyrit to west (assume same on strike)
PB-9	9E-10E 3 + 25S	100	Poor	None	Possibly topography steep ridge
PB-10	4E-5E 2 + 00S	100	Modgood	None	Bull's eye high/swamp
PB-11	3E-5E 3 + 75S	300	GOOD	Some mag coin cident on the eastern 100m	-Swamp/topography
PB-12	0E-3E 1 + 00S	300	Poor-moderate	None	Swamp/conductive overburden
•					

					22
EN SORRY MAC	LOCATION	STRIKE LENGTH	MAGNETICS (GAMMAS)	VLF - EM RESPONSE	REMARKS
SM-1	10-13W 2 + 00 - 3 + 00	300	Weak	Moderate	No o/c ^{or} surface expression to justify, possible sulphide facies, possible O/B conductor
SM-2	9W 2 + 25N	< 200m	None	Poor	Same as above
SM-3	OW - 6W	700	None	Moderate- poor	Same as above
SM-4	7W 2 + 00N	< 200m	Flanking	Poor	EM conductor flanks/mag. bull's eye but is not confor- mable
SM-5	5W - 7W 2 + 50N	200	Flanking	Poor	Broad EM conductor may be and/ or related to overburden/topo but does flank mag.bull's eye.
SM-6	ow-3w	300	None	Poor	May be related to SM-5
SM-7	4W - 5W 2 + 50S	100	None	Poor	Bolder till and possible O/B
SM-8	1W - 3W 3 + 75S	200	None	Moderate	Pyrite mineralization within volcanics
SM-9	1W - 14W 5 + 50S	800	None	Poor - moderate	Ass. with felsic volcanic sulphide mineralization with Felsics (stratabound) up to 30% py,
SM-10	8W - 10W 0 to 2 + 00S	200	None	Poor-modera- te	May be fault related (shearing
SM-11	6W - 11W 7 + 25S	500	None	Moderate- good	Possible swamp conductor
SM-12	8W - 13W 8 + 00S	500	None	Moderate - good	Possible swamp conductor
SM-13	11W - 12W 8 + 25S	100	None	Poor	Topographic/swamp contact
SM-14	10W - 13W 9 + 75S	300 .	None Flanking	Poor - Moderate	Swamp contact/possible sulphides with felsic volcanics
<u>.</u>			. i	, [· · · · · · · · · · · · · · · · · · ·

·					23
EM SORRY MAC	LOCATION	STRIKE LENGTH	MAGNETICS (GAMMAS)	vlf–em Response	REMARKS
SM-15	17W-20W 5 + 00S	300 None Poor H		None Poor Pyrite locally sulphide	
SM-16	17W-21W	900	None	Good	Swamp conductor
					•
стана К					
•					
	на страна и страна и При страна и страна и При страна и				· · · · · · · · · · · · · · · · · · ·

SECTION 4

GEOLOGICAL SURVEY

REGIONAL GEOLOGY

The Peep Bay Property occurs in the Kakagi-Manitou Lakes greenstone belt and lies north of the Manitou Stretch fault. The area consists mainly of mafic and intermediate volcanics. The regional strike is northeast- southwest.

"PEEP BAY" GROUP

All land claims on the "Peep Bay" group were mapped during the 1984 field season. The "Peep Bay" group is situated north of the Manitou Stretch and is characterized by variable topography. A number of small steep ridges trend in a northeast to southwest direction roughly parallel to the Manitou Fault. Geological variation within major lithological units is more probably more complex than indicated on the geological map. However, the major geological units have been identifed and are clearly outlined on the geological map appended to this report.

The most common rock types on the claim group are intermediate and mafic volcanics. These rock types may in some instances represent the same lithology and may be alteration phases. These phases are mapped independently for better geological control and definition throughout the claim group.

The general strike trends northeast to southwest with geology steeply dipping north to vertical. Outcrop is more abundant south of the baseline. North of the baseline outcrop exposure is moderate to poor.

The following page is the legend from the "Peep Bay" geology map. The geological units represented on the legend will be discussed in the same order as they appear on the legend.

PEEP BAY GEOLOGY

A Volconic

8 Tuff

C Crystol tuff

D Lopilli tuff

E Flow

2

INTERMEDIATE METAVOLCANIC A Volconic

B Tuff

- C Crystol tuff
- D Lopilli tuff
- E Flow

J FELSIC METAVOLCANIC

A Volconic

- B Tuff
- C Crystol tuff
- D Lopilli tuff

METASEDIMENTS

A'Sillstone

B Wocke

5

4

INTRUSIVES

9

A Quartz feldspar porphory

MAFIC VOLCANICS

Mafic volcanics comprise the second most abundant rock type on the property.No distinct features characterize these volcanics. The variability within mafic units is very complex. One feature that is common to all mafic volcanics is their stratabound nature. This is most evident north of the baseline and may be the same south of the baseline except on a larger scale.

A large stratabound mafic volcanic unit occurs south of the baseline and extends from L-8E to L-18E. Exposure through this area is very good. The unit is for the most part massive and fine-grained. Zones within this area are locally carbonatized (L-17E to L14E at 3+50S). This zone is traced along the shoreline. Other mineralization and alteration include quartz-carbonate veining (L7E-L9E at 1+75S) and pyrite (L11E at 1+50S).A large outcrop central to this zone is coarser grained this may be attributed to cooling during formation with finer grained and possible chill margins near the contacts.

Another large area of mafic volcanics is found to the west from L-0 to L-4E. This fine grained unit is pillowed indicating a volcanic flow. These rocks are locally carbonatizd and reveil some sulphide mineralization near the inferred contact with intermediate volcanics to the north (LOE at 1+00N). A zone of crystalline tuffs is observed north of the baseline on L-2E, rocks to the west appear siliceous.

South of and possibly related to the same unit a relatively thin band (ie.25 meters wide) may connect these two large mafic units. This zone is characterized by fine grained, carbonitized mafic volcanics that are locally sheared. Shearing occurs in the thinnest part of the unit where the unit is less resistant to deformation. A shistose zone also occurs adjacent to an intermediate contact, south of the main area of outcrop. Three parallel zones or bands occur north of the baseline between L-0 and L-6E. The first of these units is approximately 200 metres north of the baseline and is characterized as a medium grained volcanic which appears crystalline near the lower or southern contact. The second unit is approximately 100 metres north of the first. This unit is more massive and is locally silicifed and carbonatized. There is minor pyite mineralization evident in outcrop (L-2E at 2+50N). The third mafic volcanic unit consists of mafic flows. Within this unit pillow salvages are observed as well as lappilli size fragments. Tops can not be determined due to deformation of pillows.

On the eastern part of the property (L-13E to L-18E) and south of the baseline is a large zone of massive mafic volcanics. There appears to be a gradational change in grain size from east to west. To the west grain size is usually coarser. Locally near the contact with intermediate volcanics to the north (L-16E) shearing and quartz-carbonate fracture filling occurs.

Other areas of mafic volcanic exposure are isolated zones, generally north of the baseline in the central to eastern portion of the property. Rock types appear to be similar to the stratabound units described above.

Mafic volcanics on the southern portion of the claim group are generally foliated/schistose and are carbonitized with little mineralization or alteration .

INTERMEDIATE VOLCANICS

Intermediate volcanics on the "Peep Bay" group are the most common lithology observed. These volcanics are generally layered.

The intermediate volcanics north of the baseline occur as conformable stratabound units. South of the baseline the intermediate volcanics occurr as large bodies interfingered with mafic volcanics.

There is a general difference in intermediate volcanics between the eastern and western portions of the claim group north of the baseline. The western intermediate volcanics appear to be more orderly and stratigraphic. This maybe a result of more exposure. The units also appear to follow topography (ie.ridges and swamps). These rocks are predominantly fine grained and crystalline. This series of crystalline intermediate volcanics does exist in the eastern portion of the claim group and are observed on the south shore of Grant Lake.

Intermediate units south of the south shore of Grant Lake are more tuffaceous. A large area of intermediate tuff between L-14E L-18E was mapped from the baseline and north approximately 200 meters. These rocks are locally carbonatized and appear siliceous in zones usually associated with a mafic volcanic contact. Some outcrops display a schistose deformation while other outcrops show no deformation and contain quartz eyes. No specific zones are outlined but this may be a result of the scale of mapping. A more detailed mapping program will outline the variabilty within this unit more clearly.

South of the baseline from L-18E to L-10E, a fine grained intermediate tuff/crystalline tuff grades to a felsic volcanic. Within this foliated intermediate to felsic volcanic pyrite mineralization and carbonate alteration are observed. The entire unit is carbonatized not just locally as in most other units. Also,pyrite mineralization is not isolated to contact zones as in other units.

The largest zone of intermediate volcanics occurs between L-2E and L-9E and extends from the baseline to 4+50S. These fine grained volcanics are generally massive to weakly foliated. Local carbonatization and pyrite and arsenopyrite mineralization occurs. As suggested previously this intermediate unit is more complex than outlined. Evidence for this exists within trenches in this unit where mineralization and alteration vary over very small widths.

South of this zone intermediate to felsic volcanics appear as thin bands, interbedded with mafic and felsic volcanics. These foliated volcanics are carbonatized and contain pyrite mineralization.

FELSIC VOLCANICS

ないたちないであるというないのがなったが、ころう

Few felsic volcanics are exposed on the claim group. Felsic • volcanics appear in small zones which can not be traced along strike. This suggests that felsic volcanics may be small lenticular bodies or possible pinch swell features. They are not significant in terms of there areal distribution.

The importance of felsic volcanics is there degree of mineralizaton. All felsic outcrops are carbonatized with local pyrite mineralization. Although there is relatively minor exposure their economic potential should not be underestimated.

QUARTZ-FELDSPAR PORPHYRY

Between L-13E and L-14E at 2+50N there are a number of quartz feldspar porphyry exposures that are intrusive in origin. This quartz feldspar porphyry is some distance from the batholiths to the north and south of the greenstone belt but, is assumed to be related to both or one of these. Other porphyries are identifed within this greenstone belt. This small plug is thought to be a good area for further prospecting based on the fact that an adjacent outcrop to the north contains pyrite mineralization. The contact zone of metamorphism is a good exploration target.

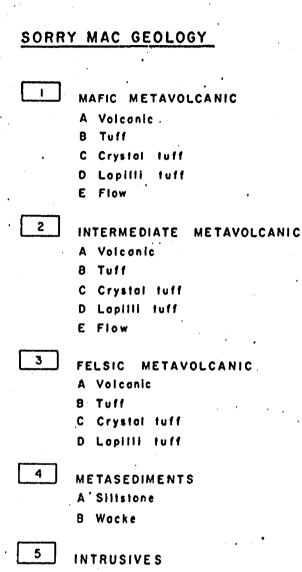
STRUCTURE

The "Peep Bay" geology is generally massive to foliated and is steeply dipping to the north or vertical. There is evidence for faulting in a number of trenchs. Several trenchs display the results often intense strike-slip faulting. The VLF-EM survey did not detect any of the fault zones in the trench areas. Rocks north of the baseline are conformable except in the area around the intrusive. South of the baseline rocks appears more massive and blocky.

SORRY MAC GEOLOGY

The "Sorry Mac" claim group has been mapped north of TL-1200S. The property is characterized as gently rolling with little topographic variation. Variation within major lithological units is probably more complex than is indicated on the geology map. However, the main geological units have been identified and are outlined on the geological map appended to this report.

The most abundant rock type on the property is tuffaceous mafic volcanic rock comprising 60% of the observed exposure. This rock type varies little throughout the property. Intermediate volcanics represent 30% of the observed exposure. In some instances intermediate volcanics may be an altered phase of mafic volcanics. These phases are mapped as independent lithologies for better geological control.


The general strike trends northeast to southwest and the geology is steeply dipping to the north or vertical. Much more outcrop is identified south of the baseline, with very little exposure on lines to the north.

The following page is the legend from the "Sorry Mac" geology map. The geological units will be discussed in the same order as they appear on the legend.

MAFIC VOLCANICS

Mafic volcanics are observed throughout the claim group. These fine-grained volcanics are locally carbonatized and are generally foliated. Pyrite mineralization is observed in some outcrops. Assay results are generally low but three seperate grab samples from South of Hailstone Bay returned anomalous values.

Greater geological variation occurs south of Hailstone Bay where a schistose zone with quartz-carbonate fracture fill occurs (L-3W to L-9W). Anomalous assays of 373 ppb and 156 ppb were obtained from grab samples in this area. Another area of mafic volcanic rocks North of trench C returned an assay of 459 ppb from one grab sample. Within these units more siliceous rocks were observed which are generally found closer to the southern contact with intermediate volcanics (L-4W to L-6W).

C.K.M

A Quartz feldspor porphory

Another area of interest occurs north of the baseline on Lines 7,8 and 9 West. An area outlined as foliated intermediate tuffs that are foliated and contain pyrite mineralization is identified close to an inferred fault (see map). The significance of the pyrite and possible accessory mineralization has not yet been determined.

INTERMEDIATE VOLCANICS

Intermediate volcanics are the second most abundant rock type exposed on "Sorry Mac" group. This rock type tends to be stratabound and appears more foliated than the mafic volcanics. It is beleived that the intermediate volcanics in some instances are altered mafic volcanics that are more foliated and siliceous. No significant economic mineralization has been observed within intermediate volcanics during the mapping program.

Composition, structure, mineralization and alteration vary significantly within intermediate volcanic units. Although no clear relationship was established by mapping at this scale, it is beleived that more follow-up mapping and prospecting should be performed. Better definition and understanding of the intermediate volcanic units may result in additional encouraging results.

FELSIC VOLCANICS

Felsic volcanics are the most significant rock type on the claim group in terms of economic potential (see trench results). Two main zones have been identified as felsic volcanics based on geological mapping. The more important of the two zones is located between Hailstone Bay and Hidden River Bay and on the eastern shore of Hailstone Bay one kilometer to the northeast. Although it is not known if these units define a single statagraphic horizon one may assume they are related because they host similar types of mineralization. The felsic volcanics are characterized as strongly foliated or sheared

with quartz-carbonate stringers and pyrite and arsenopyrite mineralization. Because of the high degree of alteration primary rock type identification is not possible. Results from trenching within this horizon have returned the following results :

> Trench C 0.207 oz/ton Au over 3.0 metres Trench D 0.35 oz/ton Au over 1.0 metres Trench E 0.15 oz/ton Au over 1.0 metres Trench F 0.05 oz/ton Au

Another band of felsic volcanics lies north of Hailstone Bay between L-00 and L-9W. This unit is thought to be offset by a fault near L-6W. Rocks within this stratigraphic horizon as in the C-D-E-F horizon are locally altered. Trenches A and B display mineralization that is similar to the C-D-E-F felsic zone. This horizon has limited exposure and is inferred to follow along the strike of a VLF-EM anomaly.

METASEDIMENTS

A small band of sediments is located bewteen Hailstone Bay and Hidden River Bay. The sediments are metasiltstones and argillite. Alteration includes carbonatization with pyrite mineralization. This unit is poorly exposed. Because of the proximity of this lithological sequence to the felsic volcanics to the north, additional prospecting can be easily justified.

STRUCTURE

The "Sorry Mac" property is generally massive to foliated and steeply dipping to the north to vertical. Faulting is geophysically infered through Hailstone Bay and continues to the Hidden Bay River in an east-west direction. This fault may be a splay from the Manitou Fault. Another fault is geophysically and geologically infered by an offset in a felsic volcanic unit between L-6W and L-10W.

The geology is conformable with the general trend of the Manitou fault zone. All geological units follow this trend in a northeast to southwest direction. The strike of all units turns northwards from L-6W to LOW. This trend is conformable with the Manitou Stretch. SECTION 5

TRENCHING

PEEP BAY

Ten old trenches were encountered during geological mapping and prospecting on the "Peep Bay". Although no record of these trenches was located in the assessment files it is believed they were established by Sylvanite Mines in the 1940's. The Scouten Prospectors Report details the results of sampling by Scouten et al. A much more detailed follow-up program by Sparton consisting of blasting and trenching on these trenches was carried out during the summer of 1984. The following pages detail the results of the trenching program.

SORRY MAC

_ _ ~ ~ ~ _ _ _ _ _

All trenches on the Sorry Mac claim group are on new showings. Furthermore, there is no evidence of previous work having been performed on the property. All trenches (A,B,C,D,E,F,) are associated with felsic volcanics and appear to be stratabound. Results from blasting and trenching are listed on the following pages.

2 of SORRY MAC TRENCH DESCRIPTIONS

5

i,

Š.

1

Page

T	FROMI	T 00	LENGTH	DESCRIPT	AUIN	AUINOZ	AG INOZ	TAG	
A	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0100	0.000	9437	
	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0100	0.000	9438	
	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0100	0.000	9439	
	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0100	0.000	9440	
	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0100	0.000	9441	
	0.00	0.00		BANDED SEDIMENT, OTZ-PY-CHL-+BIOT	0	0.0300	0.000	9725	

3 of SORRY MAC TRENCH DESCRIPTIONS

TRut	FROMI	T 00	LENGTH	DESCRIPT	AUIN	AUINOZ	AG INOZ	TAG
B	0.00	0.00	0.00	WHITE OTZ VEIN WITH PARALLEL PY-ASPY BND	0	0.0680	0.000	4868
	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0300	0.000	9442
	0.00	0.00		NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0200	0.000	9443 '
	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0100	0.000	9444
	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0050	0.000	··· 9445
	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.1200	0.000	9447
	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0800	0.000	9448
	0.00	0.00	0.00	SHEARED QTZ RICH SEDIMENT, FUCHISITE ??	0	0.0001	0.000	9729
	0.00	0.00	0.00	SEDIMENT, 3-5% ASPY	0	0.0100	0.000	9730
	0.00	0.00	0.00	QUARTZ-SERICITE SHEAR IN SEDIMENTS, PY	. 0	0.0400	0.000	9731
	0.00	0.00	0.00	SHEAR ZONE ,QV,2-5%PYRITE	0	0.1350	0.000	9909
	0.00	0.00	0.00	QUARTZ VEIN	255	0.0000	0.000	9910
	0.00	1.00	1.00	STRONG FOLIATED INT-MAFIC VOL, NO SULPH	0	0.0000	0.000	11627
	0.00	0.00	0.00	SELECTED OTZ VEIN IN ZONE+BNDED VOL.	0 '	0.0400	0.000	11788
	0.00	0.00	0.00	SELECTED SAMPLE-35% SULP IN INT-FEL, ASPY	0	0.1100	0.000	11789
	1.00	2.00	1.00	STRONG FOLIATED INT-MAFIC VOL, NO SULPH	0	0.0000	0.000	11628
	2.00	3.00	1.00	STRONG FOLIATED INT-MAFIC VOL, NO SULPH	0	0.0000	0.000	11629
	3.00	4.00	1.00	STRONG FOL.INT-MAF VOL,NO SULPH,QTZ-CO3	0	0.0000	0.000	11630
	4.00	5.00	1.00	OTZ-CO3-SIDERITE; MAF VOL<5% PY; FEL VOL SH	0	0.0230	0.400	11631
	4.00	5.00	1.00	FG BNDED INTERM-FELSIC VOLC, 57PY-ASPY	984	0.0000	0.040	11786
	5.00	6.00	1.00	QTZ-SIDER-ASPY; INTERM 5%ASPY; QTZ-SID-ASP	• 0	0.0160	0.200	11632
	5.00	6.00	1.00	FG BNDED INT/FEL VOL,25%ASPY-PY,6"OTZ V.	0	0.0500	0.010	11787
	6.00	7.00	1.00	OIZ-SIDER-ASPY; INTERM VOL 5% ASPY, PLATY	0	0.0350	0.200	11633
	6.00	7.00	1.00	FG BNDE INT/FEL VOL,25% PY-ASPY+OTZ VEIN	0	0.0500	0.000	11790
	7.00	8.00	1.00	0.V. WITH 12ASPY, 22PY, SHEARED INT /SIO2	Û	0.0220	0.000	11634
	7.00	8.00	1.00	INT/MAFIC VOLC,QTZ VEINING,WEATHERED	0	0.1000	0.000	11791
	8.00	8.50	0.50	SILIC INT-FEL VOL <42ASPY-PY, SHEARED	60	0.0000	0.000	11635

1:

Page

4 of SURRY MAC TRENCH DESCRIPTIONS

TRE	FROMI	T 00	LENGTH	DESCRIPT	AUIN	AUINOZ	AGINOZ	IAG
C	0.00	0.00		QV BRECCIA, FEL-INT VOL WALL RX, SER, 32PY	0	0.2600	0.000	4867
	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0100	0.000	9449
	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0800	0.000	9450
	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.2700	0.000	9501
	0.00	0.00	0,00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0500	0.000	9502
	0.00	0.00	0.00	NO DESCRIPT, VALUES TAKEN FROM REPORT	0	0.0900	0.000	9503
	0.00	0.00	0.00	WHITE OTZ VEIN NO VIS.SULPH.	0	0.0100	0.000	9726
•	0.00	0.00	0.00	WALL ROCK, PY-ASPY, SEDIMENT OR FEL VOLC.	0	0.0600	0.000	9727
	0.00	0.00	0.00	AT WATERLINE W OF TRENCH, PY IN BNDED SED	0	0.0200	0.000	9739
	0.00	0.00	0.00	OTZ RICH ZONE OF SULPHIDES PY-ASPY	0	0.2500	0.000	9743
	0.00	0.00	0.00	SHEARED FEL VOL, 2% SULPH	35	0.0000	0.000	9913
	0.00	0.00	0.00	INTERM VOLC, 10% SULPH	0	0.2900	0.000	9914 .
	0.00	0.00	0.00	FEL VOLC, SERICITE RICH, 2-3% SULPHIDES	35	0.0000	0.000	9915
	0.00	0.00	0.00	FEL.VOLC,10% PY,1%ASPY	0	0.0650	0.000	9916
	0.00	1.00	1.00	HIGH.FOL. MAF VOL,OTZ STRINGS,2% PY	40	0.0000	0.000	11636
	1.00	2.00	1.00	HIGH.FOL. MAF VOL,OTZ STRINGS,2% PY	10	0.0000	0.000	11637
	2.00	3.00	- 1.00	HIGH.FOL. MAF VOL,OTZ STRINGS,2% PY	30	0.0000	0.000	11638
	3.00	4.00	1.00	HIGH.FOL. MAF VOL, QTZ STRINGS, 22 PY	310	0.0000	0.000	11639
	4.00	5.00	1.00	HIGH.FOL. MAF VOL, QTZ STRINGS, 27 PY	140	0.0000	0.000	11640
	5.00	5.50	0.50	INTERM VOL, 1-22PY, BNDED WITH OTZ STRINGS	0	0.0000	0.010	11526 🗠
	5.00	6.00	1.00	HIGH.FOL. MAF VOL, QTZ STRINGS, 22 PY	100	0.0000	0.000	11641
	5.50	6.00	0.50	INTERM VOL, OTZ STRINGERS, 22 PYRITE	30	0.0000	0.020	11527 🔍
	6.00	6.50	0.50	INTERM VOL, 102 PYRITE	823	0.0000	0.020	11528
	6.00	7.00	1.00	HIGH.SHEARED, ALTERED INT, 5% SULPHIDES	0	0.1500	0.000	11642
	6.50	7.00	0.50	INTERM VOL, OTZ-CARB STRINGERS, 5% PYRITE	1495	0.0440	0.010	11529
	7.00	7.50	0.50	FELSIC SHEAR ZONE, WEATHERED, 10% PYRITE	2634	0.0770	0.060	11530
	7.00	8.00	1.00	HIGH.SHEARED, ALTERED INT, 102SULPHIDES	0	0.1300	0.000	11643
	7.50	8.00	0.50	FELSIC VOLC,>= 20% ASPY	2840	0.0830	0.030	11531
	8.00	8.50	0.50	FELSIC VOLC,>= 20% ASPY	3128	0.0910	0.040	11532
	8.00	9.00	1.00	HIGH.SHEARED MINERAL.ZONE 10-40% SULPH	0	0.3440	1.800	11644
	8.50	9.00	0.50	FELSIC VOLC,>= 30% ASPY, QTZ STRINGERS	4336	0.1260	0.040	11533
	9.00	9.50	0.50	OTZ VEIN AND WEATHERED FELSIC VOLC	1797	0.0520	0.030	11534
	9.00	10.00	1.00	HIGH.SHEARED AND SILIC INT VOL, 10% SULPH	0	0.0800	1.800	11645
	9.50	10.00	0.50	QTZ VEIN AND QTZ CARB.	303	0.0000	0.010	11535
	9.50	10.00	0.50	GOLD CHECK	260	0.0000	0.000	11535
	9.50	10.00	0.50	GOLD CHECK #2	345	0.0000	0.000	11535
•.	10.00	10.50	0.50	QUARTZ VEIN	46	0.0000	0.020	11536
	10.00	11.00	1.00	OTZ VEIN WITH ZONES UP TO 102 SULPHIDES	40	0.0000	0.000	11646
	10.50	11.00	0.50	FELSIC VOL, QTZ-CARB FILLED FRACTURES	543	0.0000	0.030	11537
	11.00	11.50	0.50	QTZ-CARB	1811	0.0530	0.010	11538
	11.00	12.00	1.00	OTZ STOCKWORK, RELICS OF COUNTRY RX BXSUL	70	0.0000	0.000	11647
	11.50	12.00	0.50	OTZ-CARB	37	0.0000	0.000	11539
	12.00	12.50	0.50	FELSIC VOLC WITH QTZ STRINGERS	16	0.0000		-11540 -
	12.00	13.00	1.00	AS 11647 RELICS ARE EPIDOTIZED	30	0.0000		11648
	12.50	13.00		FELSIC VOLC WITH OTZ STRINGERS	48	0.0000		11541 .
	13.00	13.50		FELSIC VOLC WITH OTZ STRINGERS	23	0.0000		11542
	13.50	14.00		FELSIC VOLC WITH QTZ STRINGERS	14	0.0000		11543

Page

「ない」では、「ない」のない。

5 of SORRY MAC TRENCH DESCRIPTIONS Page

なるになるのなどでないたななないというためないです。

TR		FROMI	TOO	LENGTH	DESCRIPT	AUIN	AUINOZ	AGINOZ	IAG i
D		0.00	0.00	0.00	t opp	0	0.0580	0.010	804
		0.00	0.00	0.00	FEL VOL, QIZ, PY, ASPY,	906	0.0000	0.000 (41	575
		0.00	0.00	0.00	FEL VOL, OTZ STRINGERS, <= 10% PY VEINLETS	237	0.0000	0.000 %11	1748
	ļ	0.00	0.00	0.00	FEL-INTERM VOLC, OTZ STRINGERS <= 10% PY	0	0.0400	0.000 -11	744
		0.00	0.00		GOLD CHECK	0	0.0500	0.000 11	744
		0.00	0.00		GOLD CHECK	0	0.0300	0.000 - 11	744
		972.00	973.00		INTERM SEDIMENTS WITH PYRITE STRINGERS	14	0.0000	0.010 11	1
	•	973.00	974.00	1.00	BNDED INTERM-FEL SEDS, 1-2% PYRITE	28	0.0000	0.000 -11	567
		974.00	975.00	1.00	BNDED INTERM-FEL SEDS, PYRITE STRINGERS	16	0.0000	0.240 11	1568
		975.00	976.00	1.00	BNDED INTERN-FEL SEDS	25	0.0000	0.250 11	569
		976.00	977.00	1.00	BNDED INTERM-FEL SEDS	92	0.0000	0.060 11	570
		977.00	978.00	1.00	FEL VOL, STRON FOLIATED, PY, OTZ-CARB STR.	460	0.0000	0.210 11	571
		978.00	979.00	1.00	FEL VOL, STRON FOLIATED, PY, OTZ STRINGERS	191	0.0000	0.030 11	1572
		979.00	980.00	1.00	FEL VOL, QTZ-CARB-PYRITE STRINGERS	159	0.0000	0.000 11	1573
		980.00	981.00	1.00	FEL VOL, QTZ, PY, ASPY,	0	0.3550	0.020 1	1574
		980.00	981.00	1.00	GOLD CHECK#1	0	0.3230	0.000 11	1574
		980.00	981.00	1.00	GOLD CHECK#2	0	0.3800	0.000 1	1574
		982.00	983.00	1.00	FEL-INTERM WITH PYRITE	219	0.0000	0.020 11	576

ł

Page 6 of SORRY MAC TRENCH DESCRIPTIONS

	FROM1	T 00	LENGTH	DESCRIPT	AUIN	AUINOZ	AG INOZ	TAG 🔩
	0.00	0.00	0.00	FELSIC VOLC, OTZ STRINGERS, 2% PY VEINLETS	262	0.0000	0.000	11746
	0.00	0.00	0.00	INTER VOL, PY, OTZ VEINS	191	0.0000	0.030	11577
	0.00	0.00	0.00	INTER VOL. PY, QTZ STRINGERS, ASPY	728	0.0000	0.020	11578
	0.00	0.00	0.00		700	0.0000	0.000	11578
	0.00	0.00	0.00	GOLD CHECK#2	755	0.0000	0.000	11578
	0.00	0.00	0.00	FEL-INTERN VOLC, 12 PYRITE	104	0.0000	0.000	11747
	0.00	0.00	0.00	INTERM VOLC, 1% PYRITE	39	0.0000	0.000	11742
•	0.00	0.00	0.00	INTERM VOLC, QTZ STRINGERS, <= 10XASPY, SI02	0	0.1400	0.000	11743
	0.00	0.00	0.00	GOLD CHECK	0	0.1600	0.000	11743
	0.00	0.00	0.00	GOLD CHECK	0	0.1270	0.000	11743

TR

E

なるは、方は、など、ないないないで、

Page 7 of SORRY MAC TRENCH DESCRIPTIONS

TREN	EROMI	T 00	LENGTH	DESCRIPT	AUIN	AUINOZ	AGINOZ	TAG
F	0.00	0.00	0.00	QTZ CARB ROCK WITH <1% SULPHJIDES	37	0.0000	0.000	11579
	0.00	0.00	0.00	FELSIC VOLC.WELL FOLIATED, PY+QTZ STRINGS	212	0.0000	0.000	11580
	0.00	0.00	0.00	FEL VOLC WITH OTZ-CARB STRINGERS	62	0.0000	0.000	11738
	0.00	0.00	0.00	· · · · · · · · · · · · · · · · · · ·	205	0.0000	0.000	11739
	0.00	0.00	0.00	GOLD CHECK	212	0.0000	0.000	11739
· r	0.00	0.00	0.00	GOLD CHECK	198	0.0000	0.000	11739 🔩
	0.00	0.00	0.00	FEL-INT VOL, QTZ STRINGERS, PY, ASPY	0	0.0100	0.000	11739
t	0.00	0.00	0.00	ZONE OF OTZ STRIGERS, PY, ASPY	0	0.0500	0.000	11740
	0.00	0.00		GOLD CHECK	0	0.0510	0.000	11740
	0.00	0.00	0.00	GOLD CHECK	- 0	0.0490	0.000	11740
	0.00	0.00	. 0.00	SILTSTONE ARGILLITE, TR PYRITE	60	0.0000	0.000	11 73 7 [*]

FALSE

1 of PEEP BAY TRENCH DESCRIPTIONS

TREN	FROM1	T00	LENGTH	DESCRIPT	AUIN	AUINOZ	AGINOZ	TAG
1	0.00	1.00	1.00	CARB.FELSIC VOLC,TR CPY	0	0.0000	0.000	11652
	2.00	4.00	2.00	SHRED FEL TUFF, OTZ EYES, CO3 STRINGERS	Û	0.0010	0.000	11653
	5.00	8.00	3.00	CARB. INTERM INTRUSIVE, TR CPY	250	0.0000	0.000	11654
	8.00	11.00	3.00	MG INTERM INTRUSIVE, CO3, 1% PY	0	0.0000	0.000	11655
	11.00	13.00	2.00	INTERM VOLC, CO3, AT 12m .3m OF ASPY-PY	276	0.0000	0.000	9982
	11.00	13.00	2.00	INTERM. INTRUSIVE, HIGH. CARB, 57PY, 17ASPY	0	0.0270	0.000	11656
	13.00	15.00	2.00	INTERM.VOLC, HIGH.CARE <1% PY	230	0.0000	0.000	11657
	15.00	17.00	2.00	INTERM INTRUSIVE, MG.	30	0.0000	0.000	11658
	17.00	20.00	3.00	INTERMEDIATE, CARBONATIZED, <12PY	50	0.0000	0.000	11659
	20.00	23.00	3.00	CARB. INTERM. INTRUSIVE, 12 PY	30	0.0000	0.000	11660
	23.00	26.00	3.00	CARB. INTERN. VOLC, QTZ EYES	30	0.0000	0.000	11661
•	26.00	29.00	3.00	CAXB. INTERM. INTRUSIVE	10	0.0000	0.000	11662
	29.00	31.00	2.00	QV IN RUSTYFG-MG FEL, TR PY	100	0.0000	0.000	11663
	31.00	33.00	2.00	FG-MG MASS, FEL-INTERM VOLC	10	0.0000	0.000	11664
	33.00	34.00	1.00	INTERM VOLC, CO3, SILICIFIED	0	0.0000	0.000	9983
	33.00	35.00	2.00	FEL-INT VOLCKG, <= 10% ASPY-PY IN A ZONE	0	0.0840	0.000	11665
	34.00	35.00	1.00	INTERM VOLC, CO3, OTZ VEIN	0	0.4200	0.000	9984
	35.00	36.00	1.00	INTERM VOLC,CO3,QTZ VEIN,AS 9984	0	0.0800	0.000	9985
	35.00	36.00	1.00	FEL VOL, <= 10% ASPY-FY, VERY OXID. IN PLACES		0.1250	0.500	11666
	35.50	35.80	0.30	30cm ZONE OF ALTERATION, 202 SULPHIDES	0	0.1300	0.000	9986
	36.00	37.00	1.00	INT VOL, RUSTED, 5% PY, 5% ASPY, QV, CO3	140	0.0000	0.000	11667
	37.00	38.00	1.00	VERY RUSTED INTERM VOL, QV	40	0.0000	0.000	11668
	38.00	40.00	2.00	VERY RUSTED INTERM VOL, QV	60	0.0000	0.000	11669
	40.00	43.00	3.00	VERY RUSTED INTERM VOL, MASS-SHRED, NO SUL	30	0.0000	0.000	11670
	43.00	46.00	3.00	VERY RUSTED INTERM VOL	30	0.0000	0.000	11671
	46.00	50.00	4.00	VERY RUSTED INTERM VOL	30	0.0000	0.000	11672
	47.00	47.00	0.00	SILICIFIED INTERM VOL, 5% SULPHIDES	74	0.0000	0.000	9987
	50.00	53.00	3.00	VERY RUSTED INTERM VOL	10	0.0000	0.000	11673

• Page • 2 of PEEP BAY TRENCH DESCRIPTIONS

I	FROM1	T00	LENGTH	DESCRIPT	AUIN	AUINOZ	AGINOZ	TAG
2	0.00 3.00	3.00 5.00		WEAK.FOL.INTERK VOL,QIZ VEINS WEAK.FOL.INTERM VOL,WITH DIZ		0.0000		

	FROMI	100	LENGTH	DESCRIPT	AUIN	AUINOZ	AGINOZ	TAG	
3	0.00	1.00	1.00	FEL VOL 32PY,52ASPY	o	0.0120	0.000	11601	
	1.00	2.00	1.00	MASS.FEL VOL TR PY, ASPY, 2.5cm QTZ VEIN	220	0.0000	0.000	11602	
	2.00	3.00	1.00	RUSTY FEL VOL TR PY, MANY FINE RTZ STRING	140	0.0000	0.000	11603	
	3.00	4.00	1.00	MASS FEL VOLC, DEEP RUSTY WEATHERING, PY	20	0.0000	0.000	11604	
	4.00	5.00	1.00	FEL VOL, MASS-SHEARED (SER SCH), DEEP WEATH	50	0.0000	0.000	11605	
	5.00	6.00	1.00	MASS-SCH FEL VOL <=3% PY-ASPY	70	0.0000	0.000	11606	
	6.00	7.00	1.00	MASS-SCH FEL VOL,OV STRINGS,1% ASPY-PY	20	0.0000	0.000	11607	

.

' Page ' 4 of PEEP BAY TRENCH DESCRIPTIONS

-		+							
I	FROMI	T 00	LENGTH	DESCRIPT	AUIN	AUINOZ	AGINOZ	TAG	
4	0.00	0.00	0.00	OTZ WITH 20%ASPY IN FEL VOLC	0	0.0400	0.020	11560	
	0.00	0.00	0.00	GOLD CHECK #1	0	0.0350	0.000	11560	
	0.00	0.00	0.00	GOLD CHECK #2	0	0.0400	0.000	11560-	
	0.00	3.00	3.00	HASS FG-HG FELSIC VOLC, TR PY	10	0.0000		11608	
	3.00	5.00	2.00	MASS FG-MG FELSIC-INTERM VOL, MIN.SCHIST	0	0.0000		11609	
	5.00	7.00	2.00	MASS.MG.INT.VOL,TR PY,MIN.SCH,	0	0.0000		11610	
	7.00	9.00	2.00	MASS.NG.INT.VOL,QTZ STRINGS,MIN.CO3,PY	0	0.0000	0.000		
•	11.00	13.00	2.00	INTERH VOLC, <12 PYRITE	78	0.0000		11554	
	13.00	15.00	2.00	INTERM VOLC, <12 PYRITE	60	0.0000	0.000	11555	
	15.00	17.00	2.00	FELSIC VOLC, 2% PYRITE	36	0.0000	0.000	11556	
	17.00	21.00	4.00	FEL VOL, MASS, MIN.SCH, TR PY-ASPY, 2cm QV	50	0.0000		11612	
	21.00	23.00	2.00	INTERM VOLC,QTZ-CARB STRINGERS	55	0.0000		11557	
	21.00	23.00	2.00	FEL VOL.MIN SHR,ZONE OF CO3,ASPY-PY 157	0	0.0110		11613	
	23.00	25.00	2.00	OTZ WITH 40X ASPY IN INTERN VOLC	755	0.0000		11558	
	23.00	25.00	2.00	FEL VOL.2.5 cm QV, <=10% PY-ASPY,? GREY	0	0.0160	0.200		
	25.00	27.00	2.00	OTZ WITH 40% ASPY	453	0.0000		11559	
	25.00	27.00	2.00	FEL VOL.CUT BY OTZ VEIN, <10% ASPY-PY	0	0.0600		11615	
	27.00	29.00	2.00	INT.VOL.<=15%ASPY-PY,MASS-SHEARED	0	0.0400		11616	,
	29.00	31.00	2.00		290	0.0000		11617	
	32.00	34.00	2.00	FELSIC WITH 40X ASPY CUT BY Q.STRINGERS	0	0.0450	0.040		
	32.00	34.00	2.00	GOLD CHECH#1	. 0	0.0410		11561	
	32.00	34.00	2.00	GOLD CHECK#2	0	0.0500		11561	
	32.00	33.00	1.00	Mass-Sheared, Int-Fel,<10%aspy-py,0V	0	0.0250		11618	
	33.00	34.00	1.00	FEL VOL, MASSIVE, 7% ASPY-PY	0	0.0390	0.200	11619	
	34.00	36.00	2.00	FELSIC WITH 40% ASPY	0	0.1050	0.030	11562	
	34.00	36.00	2.00	GOLD CHECK#1	0	0.1040	0.000	11562	
	34.00	36.00	2.00	GOLD CHECK#2	0	0.1100	0.000	11562	
	34.00	35.00	1.00	XTALLINE OV IN FEL VOL, 15%ASPY-PY, MASS.	0	0.0540	0.200	11620	
	35.00	36.00	1.00	INT VOL,2ZASPY-PY,FEL VOL 10ZASPY-PY	Û	0.0550	0.000	11621	
	36.00	37.00	1.00	FELSIC WITH 40% ASPY,QTZ STRINGERS	0	0.2200	0.020	11563	
	36.00	37.00	1.00	GOLD CHECK #1	0	0.2010	0.000	11563	
	36.00	37.00	1.00	GOLD CHECK #2	0	0.2300	0.000	11563	
	36.00	37.00	1.00	FEL VOL <=15% ASPY-PY	0	0.1260	0.300	11622	
	37.00	38.00	1.00	INTERM VOLC, 5% PYRITE	662	0.0000	0.000	11564	
	37.00	38.00	1.00	FG-HG FEL VOL 15% ASPY-PY	0	0.0550	0.000	11623	
	38.00	39.00	1.00	INT.VOL,WITH QV,32 PY IN VOLC	330	0.0000	0.000	11624	
	39.00	40.00	1.00	INTERM VOLC,82 PYRITE	607	0.0000	0.000	11565	
	39.00	40.00	1.00	FEL-INT VOLC.TR ASPY-PY,	0	0.0150	0.000	11625	
	40.00	41.00	1.00	FEL-INT VOLC, FG, TR PY	189	0.0000	0.000	11626	

ļ

「「「「「「「」」」」」

• Page • 5 of PEEP BAY TRENCH DESCRIPTIONS

の時間には、「「「

I	FROM1	T 00	LENGTH	DESCRIPT	AUIN	AUINOZ	AGINOZ	TAG
5	0.00	1.00	1.00	SHERED FG FEL VOL,22ASPY,VERY WEATHERED	242	0.0000	0.000	11674
	1.00	2.00	1.00	VERY SHRED AND MASS FEL VOL, 1ZASPY, TR PY	0	0.0100	0.000	11675
	2.00	3.00	1.00	SHRED VFG, FEL VOL, 2% ASPY	55	0.0000	0.000	11676
	21.00	24.00	3.00	MASS FEL XTAL TUFF, BESIDE PIT, NOT IN PIT	14	0.0000	0.000	11677
	24.00	25.00	1.00	VERY SHERED FEL XIAL TUFF, OV 20cm WIDE	0	0.0150	0.000	11678
	25.00	26.00	1.00	SHERED FEL XTAL TUFF, <2% ASPY-PY, OV	272	0.0000	0.000	11679
	26.00	27.00	1.00	SHERED FEL XTAL TUFF, <2% ASPY-PY, QV	0	0.0100	0.000	11680
	27.00	28.00	1.00	SGHERED-MASS XTAL TUFF, QTZ EYES, 6% ASPYPY	143	0.0000	0.000	11681

• Page - 6 of PEEP BAY TRENCH DESCRIPTIONS

TR	FROM1	T 00	LENGTH	DESCRIPT	AUIN	AUINOZ	AGINOZ	TAG
6	0.00	1.00	1.00	MASS-SHERED, EEL XTAL TUFF 1%ASPY-PY	71	0.0000	0.000	11682
	1.00	2.00	1.00	VERY SHERED FEL XTAL TUFF, ZONE OF 5XASPY	140	0.0000	0.700	11683
	2.00	3.00	1.00	FELSIC VOLC WITH OTZ VEINS, HEM, WEATHERED	361	0.0000	0.000	11544
	2.00	3.00	1.00	VERY SHRED FELSIC TUFF, LARGE QV	0	0.0200	0.000	11684
	3.00	4.00	1.00	FELSIC VOLC WITH DTZ VEINS, HEM. STAINED	494	0.0000	0.010	11545 -
	3.00	4.00	1.00	SHRED-VERY SHRED FEL TUFF, QV.	0	0.0200	0.000	11685
	4.00	5.00	1.00	QTZ-CARB VEIN	258	0.0000	0.020	11546
•	4.00	5.00	1.00	QV HEAVILY RUSTED, EDGES VERY SHEARED	0	0.0600	0.000	11686
	8.00	9.00	1.00	QV BOUNDED BY SHEARED FEL VOL <aspy-py< td=""><td>186</td><td>0.0000</td><td>0.000</td><td>11687</td></aspy-py<>	186	0.0000	0.000	11687
	12.00	13.00	1.00	FELSIC VOLCANIC	62	0.0000	0.000	11547
	12.00	13.00	1.00	GOLD CHECK #1	92	0.0000	0.000	11547
	12.00	13.00	1.00	GOLD CHECK #2	115	0.0000	0.000	11547
	12.00	14.00	2.00	FEL XTAL TUFF,QTZ EYES,QV,>3XASPY,<=1XPY	0	0.0100	0.000	11688
	13.00	14.00	1.00	FELSIC VOLCANIC WITH <5% ASPY	285	0.0000	0.010	11548
	14.00	15.00	1.00	FELSIC VOLCANIC WITH <52 ASPY, PYRITE	0	0.0500	0.000	11549
	14.00	15.00	1.00	GOLD CHECK#1	0	0.0600	0.000	11549
	14.00	15,00	1.00	GOLD CHECK#2	0	0.0400	0.000	11549
	14.00	15.00	1.00	FEL XTAL TUFF, OTZ EYES, OV, VERY WEATHERED	0	0.0750	0.000	11689
	15.00	15.50	0.50	FELSIC VOLCANIC WITH <52 ASPY, PYRITE	0	0.0400	0.000	11550
	15.00	15.50	0.50	GOLD CHECK#1	0	0.0360	0.000	11550
	15.00	15.50	0.50	GOLD CHECK#2	. 0	0.0400	0.000	11550
	15.00	17.00	2.00	SHRED FEL XTAL TUFF,Q EYES,<12%ASPY-PY	0	0.1500	1.400	11690
	15.50	16.00	0.50	FELSIC VOLCANIC WITH <5% ASPY, PYRITE	649	0.0000	0.000	11551
	16.00	16.50	0.50	FELSIC VOLCANIC WITH <5% ASPY, PYRITE	0	0.0500	0.000	11552
	16.00	16.50	0.50	GOLD CHECK#1	0	0.0460	0.000	11552
	16.00	16.50	0.50	GOLD CHECK#2	0	0.0600	0.000	11552
	16.50	17.00	0.50	QTZ-CARB VEIN IN FEL VOL	182	0.0000	0.000	11553
	17.00	18.00	1.00	RUSTY QV, IN SHRED FEL VOL, SAMPLE QV	110	0.0000	0.000	11691
	18.00	19.00	1.00	QV ,MINOR SERICITE,PY,CHLORITE	130	0.0000	0.000	11692
	19.00	20.00	1.00	OV AND MASS.FEL TUFF,Q EYES,SHRED,2XASPY	380	0.0000	0.000	11693
	20.00	22.00	2.00	FEL TUFF, FEL-INT TUFF, MASS, <=2%ASPY	10	0.0000	0.000	11694

Page - 7 of PEEP BAY TRENCH DESCRIPTIONS

TREA	FROM1	T 00	LENGTH	DESCRIPT	AUIN	AUINOZ	AGINDZ	TAG
7	0.00	3.00	3.00	OTZ VEIN WITH RELICS OF COUNTRY RX 12SUL	10	0.0000	0.000	11651

Page" B of PEEP BAY TRENCH DESCRIPTIONS

e e

4

	FROMI	T 00	LENGTH	DESCRIPT	AUIN	AUINOZ	AG INDZ	TAG
8	0.00	0.00	0.00	SHEAR FROM BOTH SIDE TR,FEL? VOL,WEATH.		0.0000		
	0.00	0.00	0.00	35cm QV IN SHRED FEL VOL, BND OF ? MINER.	0	0.0300	0.700	11696
	0.00	0.00	0.00	2 QV IN SHRED FEL VOLC, RUSTED	106	0.0000	0.000	11697

P.T98 9 OF PEEP BAY TRENCH DESCRIPTIONS

I	FROMI	T 00	LENGTH	DESCRIPT	AUIN	AUINOZ	AGINOZ	TAG	
9	0.00	1.00	1.00	SHRED ,SIL, FEL TUFF, 1XASPY, 1XPY	200	0.0000	0.000	11698	
	1.00	2.00	1.00	SHRED FEL VOL, RUSTY, 1ZASPY, 15cm QV, CO3	35	0.0000	0.000	11699	
	2.00	4.00	- 2.00	SHEARED FEL VOLC, ZONES OF 1-2% ASPY	18	0.0000	0.000	11700	
	4.00	6.00	2.00	SHERED FEL VOL, RUSTY, WEATHERED	14	0.0000	0.000	11714	

SECTION 7

CONCLUSIONS

- 1.) Magnetometer and VLF-EM surveys on both the "Peep Bay" and "Sorry Mac" claim groups has not provided enough detail or reliability for follow-up prospecting.
 - 2.) The trenching program that was performed in the latter part of the summer of 1984 established a number of good gold values on surface. Further follow-up work is definately needed to define the subsurface expressions of these horizons.
 - 3.) The geology of this property is probably more complex than shown on the geological map. Abrupt changes in lithological units over small distances occur within some areas. These changes may have resulted in possible mineralized zones being overlooked during the mapping. The mapping program has outlined areas that are worthy of prospecting especially felsic volcanic units.
 - 4.) The "Sorry Mac" property holds a great deal of potential and much more follow-up work is needed to fully test the felsic volcanics that have been identified thusfar. The "Peep Bay" although not as encouraging warrents further follow-up work.

RECOMMENDATIONS

- 1.) It is recommended that an I.P. survey be conducted to determine the extent of the mineralized sulphide zones.
- 2.) Subsequent to I.P. a diamond drill program should be initiated to fully test areas that have responded well to the survey.

SECTION 8

REFERENCES

Ontario Department of Mines, report Thompson 1934. Scouten's prospectors report for Sorry Mac and Peep Bay. Resident Geologists Files, Kenora and Thunderbay. 1.)

2.) 3.)

MAP REFERENCES

Map 2443 Kenora-Fort-Frances Sheet (Blackburn, 1973-78). 1.)

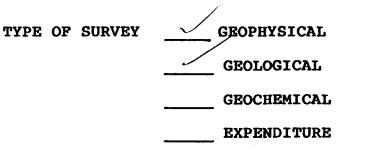
2.) M-2443 Napanee Lake

3.) M-2469 Vista Lake

4.) Map no. 43a, Straw-Manitou Lakes 1934.

Submitted by: Koul Van

Peter Mordaunt


APANEE LAKE

900

Mining Lands Section Control Sheet

File No 2.8530

70

MINING LANDS COMMENTS:

Ð

Signature of Assessor

•

Date

1 N			ß		<i>O</i> č	X IM
Mil. atryof	Report of Work		DP ~30ins		Please type or print.	10-85
Resource	(Geophysical, Geological,		K Mysi		If number of mining clain exceeds space on this form,	attach a list.
Ontario	Geochemical and Expend	itures)	2.0		Only days credits calcula "Expenditures" section may	/ be entered
			Mining Act		in the "Expend, Days Cr Do not use shaded areas belo	
Type of Survey(s)	A			Township or		A LK,
Linecutting Claim Holder(s)	Magnetomet	ar ULF.	EM, Geolayy	626	90 and 62	701
Soctor	Reconcer	Jnc.	· · · · · · · · · · · · · · · · · · ·	IVHIMNE	E T 1172	
Address	111	······································	- 1			
1420 - 25 Survey Company	Adelaide J	4. <u>Ľ</u> .	loron to	MSC	192 Total Miles of line	
Sparton Rec.	and CM	$\lfloor 2 \lfloor 2 \rfloor$	E A Date of Survey	4 27 0	285 60	Cut
	thor (of Geo Technical report)	of man	tom Egg) Day Mo. 1	n. j Day j w		
	uley 1420-		elandre St. E	loren		12.
Credits Requested per I Special Provisions	Each Claim in Columns at 1		Mining Claims Traversed (L Mining Claim		ical sequence) Mining Claim	TExnand
	Geophysical	Days per Claim	Prefix Number	Expend. Days Cr.	Pretix Number	Expend. Daγs Cr.
For first survey: Enter 40 days. (Th	- Electromagnetic	20	K 727140		K 728669	
includes line cuttin		20	727141		728670	
For each additional su	- Radiometric		727142		728671	
using the same grid:	- Other	 	_	····· • •••	728672	
Enter 20 days (for	each)		727143			-
	Geological	40	727144		728673	
A REDUCED T		+	727145		728674	
	Geophysical	Days per Claim	727146.		728675	
Complete reverse side and enter total(s) here	- Electromagnetic		727147		728676	
			727148	-	728677	
RECEN	· Radiometric		727152		728679	
	Other			· · · · · · · · · · · · · · · · · · ·		
	Other		727153	F	728680	
· · · · · · · · · · · · · · · · · · ·			727154	*	728681	
MINING LANG	Geochemical		727155		728683	
Airborne Credits		Days per Claim	727156		728684	
Note: Special provisio	-		727157		728689	
credits do not a to Airborne Su			727158		728690	
	Radiometric		727159		728691	
Expenditures (exclude	s power stripping)					
Type of Work Performed			7271608			
Performed on Claim(s)	······		7271614		K.E.N.O.R.A	
			727162	K	DEGEIVE	
			727166	F		
Calculation of Expenditu	re Davs Credits		728664		AUG 1 2 1985	
Total Expenditures		Total /s Credits	728668		M 718191101111211.9.9.4	M
\$	÷ 15 =		4		Total number of mining	1 010
Instructions			727/3	7	claims covered by this report of work.	40
Total Days Credits ma	y be apportioned at the claim		For Office Use O	L		
in columns at right.	of days credits per claim selec		Total Days Cr. Date Recorded Recorded	12/	Mining Reforder	
	Rechrided/Holder or Agent	Sinnatural	luna.	14/85 AS Bloordood	Branch Director	
Dage / 1985	Agent Agent	oignature)	2980 Date Approfed	53 HELUTUED		
Certification Verifying	Report of Work	J	L <u></u>		· · · ·	J
I hereby certify that I	have a personal and intimate	-	he facts set forth in the Report of	of Work annex	ed hereto, having performed	the work
or witnessed same dur Name and Postel Address	ing and/or after its completion of Person Certifying	and the annes	keo report is true.	1		
Rond		420 - 2	5 Adelande	21.	Egst	
· · ·))		Date Certified	(Certified by (Sighature)	
1362 (81/9)	mse i	42	Hug 7	1985	Men Ven	<u> </u>

Ì

a series and series and the series of the se

1

ł

1985 12 04

Your File: 170-85 Our File: 2.8530

Mining Recorder Ministry of Northern Development and Mines 808 Robertson Street Box 5080 Kenora, Ontario P9N 3X9 .

Dear Sir:

RE: Notice of Intent dated November 1, 1985 Geophysical (Electromagnetic & Magnetometer) on Mining Claims K 717140, et al, in the Areas of Napanee and Vista Lakes

The assessment work credits, as listed with the above-mentioned Notice of Intent, have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

S.E. Yundt Director Land Management Branch

Whitney Block, Room 6643 Queen's Park Toronto, Ontario M7A 1W3 Phone:(416)965-4888

SH/mc

Encl.

cc: Sparton Resources Inc Suite 1420 25 Adelaide Street East Toronto, Ontario M5C 1Y2 Attention: Randy Crowley Mr. G.H. Ferguson Mining & Lands Commissioner Toronto, Ontario

Resident Geologist Kenora, Ontario

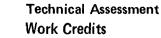
Northern Affairs

and Mines

Technical Assessment Work Credits

				File
				2.8530
Date	1985	11	01	Mining Recorder's Report of Work No. #170-85

SPARTON RESOURCES	INC	
Township or Area AREAS OF NAPANEE A	ND VISTA LAI	KES .
Type of survey and numbe		
Assessment days credit per d	claim	Mining Claims Assessed
Geophysical Electromagnetic	davia	
-		
Magnetometer 16	days	K 727140 to 148 incl 727152 to 162 incl
Radiometric	days	727166 728664
Induced polarization	days	728668 to 6 77 incl 728679 to 681 incl
Other	days	728683-84 728689-90-91
Section 77 (19) See "Mining Claims A	ssessed" column	
Geological31	days	
Geochemical	days	
Man days [Airborne	
Special provision 🔀	Ground	
Credits have been reduced because coverage of claims.	e of partial	
Credits have been reduced because to work dates and figures of applic		
Special credits under section 77 (16)	for the following mi	ning claims
	for the following fill	
No credits have been allowed for the	following mining cla	ims
not sufficiently covered by the su	rvey	insufficient technical data filed


The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geologocal - 40; Geochemical - 40; Section 77(19) - 60.

Ministry of

and Mines

Northern Affairs

Date			
1985	11	01	

2.8530 Mining Recorder's Report of Work No.

#170-85

File

AREAS OF NAPANEE AND VISTA	A LAKES
Type of survey and number of Assessment days credit per claim	Mining Claims Assessed
Geophysical Electromagnetic 1.6 Magnetometer days Radiometric days Induced polarization days Other days Section 77 (19) See "Mining Claims Assessed" column Geological days Geochemical days	K 727140 to 147 incl 727153 to 161 incl 727166 728664 728668 to 677 incl 728679-80-81 728683-84-89-90-91
Man days Airborne Airborne Special provision X Ground X	
 Credits have been reduced because of partial coverage of claims. Credits have been reduced because of corrections to work dates and figures of applicant. 	
pecial credits under section 77 (16) for the following m	vining claims

No credits have been allowed for the following mining claims

x not sufficiently covered by the survey

insufficient technical data filed

K 727148-52-62

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geologocal - 40; Geochemical - 40; Section 77(19) - 60.

Ministry of Natural Resources

nov.18/85

1985 11 01

Your File: 170-85 Our File: 2.8530

Mining Recorder Ministry of Northern Affairs and Mines 808 Robertson Street Box 5080 Kenora, Ontario P9N 3X9 Dear Sir:

Enclosed are two copies of a Notice of Intent with statements listing a reduced rate of assessment work credits to be allowed for a technical survey. Please forward one copy to the recorded holder of the claims and retain the other. In approximately fifteen days from the above date, a final letter of approval of these credits will be sent to you. On receipt of the approval letter, you may then change the work entries on the claim record sheets.

For further information, if required, please contact Mr. R.J. Pichette at 416/965-4888.

Yours sincerely,

.E. Yundt Director

Land Management Branch

Whitney Block, Room 6643 Queen's Park Toronto, Ontario M7A 1W3

R. J.SH/mc

Encls.

cc: Sparton Resources Inc Suite 1420 25 Adelāide Street East Toronto, Ontario M5C 1Y2 Attention: Randy Crowley Mr. G.H. Ferguson Mining & Lands Commissioner Toronto, Ontario

Ministry of Natural Resources Notice of Intent

for Technical Reports

1985 11 01

2.8530/170-85

An examination of your survey report indicates that the requirements of The Ontario Mining Act have not been fully met to warrant maximum assessment work credits. This notice is merely a warning that you will not be allowed the number of assessment work days credits that you expected and also that in approximately 15 days from the above date, the mining recorder will be authorized to change the entries on his record sheets to agree with the enclosed statement. Please note that until such time as the recorder actually changes the entry on the record sheet, the status of the claim remains unchanged.

If you are of the opinion that these changes by the mining recorder will jeopardize your claims, you may during the next fifteen days apply to the Mining and Lands Commissioner for an extension of time. Abstracts should be sent with your application.

If the reduced rate of credits does not jeopardize the status of the claims then you need not seek relief from the Mining and Lands Commissioner and this Notice of Intent may be disregarded.

If your survey was submitted and assessed under the "Special Provision-Performance and Coverage" method and you are of the opinion that a re-appraisal under the "Man-days" method would result in the approval of a greater number of days credit per claim, you may, within the said fifteen day period, submit assessment work breakdowns listing the employees names, addresses and the dates and hours they worked. The new work breakdowns should be submitted direct to the Land Management Branch, Toronto. The report will be re-assessed and a new statement of credits based on actual days worked will be issued. REGISTERED

...

+

October 1, 1985

Report Of Work #170

Sparton Resources Inc Suite 1420 25 Adelaide Street East Toronto, Ontario M5C 1Y2

Attention: Randy Crowley

Dear Sirs:

RE: Mining Claims K 727140, et al, in the Areas of Napanee and Vista Lakes

I have not received the reports and maps (in duplicate) for **Be**ophysical (Electromagnetic & Magnetometer) and Geological Surveys on the above-mentioned claims.

As the assessment "Report of Work" was recorded by the Mining Recorder on August 12, 1985 the 60 day period allowed by Section 77 of the Mining Act for the submission of the technical reports and maps to this office will expire on October 11, 1985.

If the material is not submitted to this office by October 11, 1985 I will have no alternative but to instruct the Mining Recorder to delete the work credits from the claim record sheets.

For further information, please contact Mr. Arthur Barr at (416)965-4888.

Yours sincerely,

S.E. Yundt Director Land Management Branch

Whitney Block, Room 6643 Queen's Park Toronto, Ontario M7A 1W3 Phone:(416)965-4888

AB/mc

cc: Mining Recorder - Kenora, Ontario

Ø
Ontario

Ministry of Natural Resources

File_

GEOPHYSICAL – GEOLOGICAL – GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) Geological (Magnetic / Electro magn	etic.	
Township or Area Areas of Uista Lake / Napan a Lake, Claim Holder(s) Sparton Resources Inc. 1420-25 Adelasshe St. East.	MINING CLAIMS List num	
Survey Company Sparton Resources	K 727140	K 728668
Author of Report Randy Crew en	(prefix) 72714	(number) 728669
Address of Author 1420-25 Adela, de East Toron to	727142	728670
Covering Dates of Survey July 84 to 5-pt 84.	727143	728671
Total Miles of Line Cut	***************************************	• • • • • • • • • • • • • • • • • • • •
	727144	728672
SPECIAL PROVISIONS DAYS CREDITS REQUESTED Coophysical per claim	727145	728673
<u>CREDITS REQUESTED</u> Geophysical -Electromagnetic 20	727146	728674
ENTER 40 days (includes	727147	728 675
line cutting) for firstMagnetometerComment surveyRadiometric	727148	728676
ENTER 20 days for eachOther	727 152	728677
additional survey using Geological <u>4-0</u> same grid.		
Geochemical	727153	728679
AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)	727154	728680
MagnetometerElectromagneticRadiometric	727155	728681
DATE: Oct 7/85 SIGNATURE: Law Um.	727156	728683
Author of Report or Agent	727157	728684
Res. Geol Qualifications 2.3117	727158	728689
~ ~ ~	727159	728690
Previous SurveysFile No.TypeDateClaim Holder	727160	728691
	727161	
	727/62	
	727166	
	728664	
	TOTAL CLAIMS_	40

OFFICE USE ONLY

GEOPHYSICAL TECHNICAL DATA

<u>GROUND SURVEYS</u> – If more than o	ne survey, specify data	for each type of survey
--	-------------------------	-------------------------

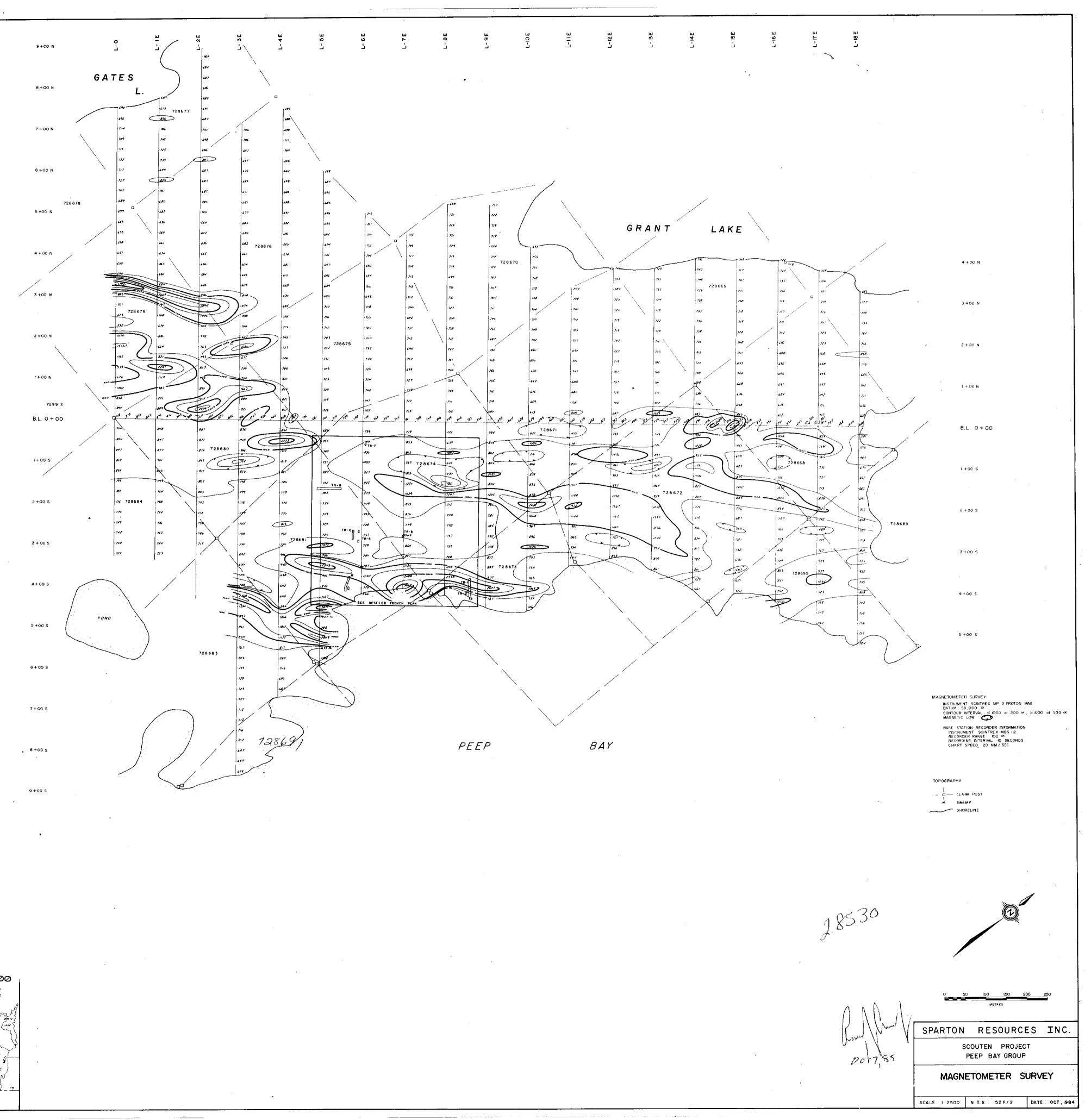
INDUCED POLARIZATION

N	umber of Stations	Nun	ber of Readings
S	tation interval 25 m	Line	spacing 100 m
P	rofile scaleEM		
С	ontour intervalMag		
r si	Instrument <u>M?-2</u>	·····	
UII.	Accuracy – Scale constant	ganna	125.
MAGNETIC			des.
MA	Base Station check-in interval (hou	irs) 8 hours	Manuton at South Bay
	4	Henry have 1	Maniton at South Bang
	handing '		J
	01		
2	Instrument Rachen		
NEJ NEJ	Coil configuration \underline{NA} .		
AG	Coil separation $\frac{NA}{2}$		
ELECTROMAGNETIC	Accuracy <u>2°</u>		
Ĕ	Method:	transmitter 🗆 Shoot ba	hck \Box In line \Box Parallel line
SLE	Frequency <u>Curter</u>	(specify V.L.F. stat	iop)
	Parameters measured	from Hosizonal	0 KHz, ion) 2 rd Magnetre Field.
			× ·
	Instrument		
ы	Scale constant		
RAVITY	Corrections made		
RA	<u></u>	······································	
ତା	Base station value and location	·····	
		······································	
	Elevation accuracy		
	Instrument		
	Method Time Domain		Frequency Domain
	Parameters – On time		• •
H I			Range
	•	· · · · · · · · · · · · · · · · · · ·	
RESISTIVITY	0		
RE			· · · · · · · · · · · · · · · · · · ·
	•		· · · · · · · · · · · · · · · · · · · ·
8			
	Type of electrode		

SELF POTENTIAL

Instrument	Range
Survey Method	
,	
Corrections made	

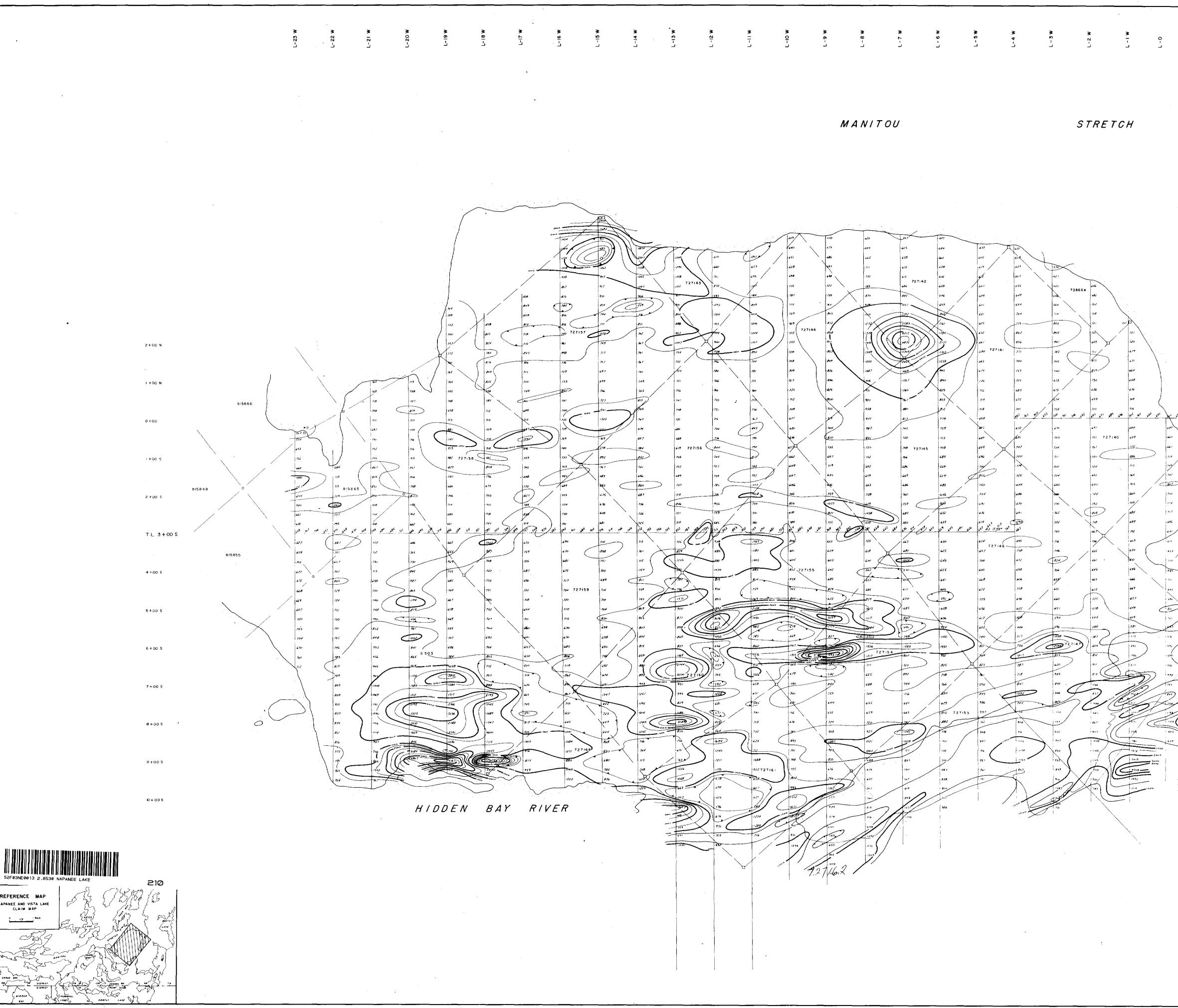
RADIOMETRIC

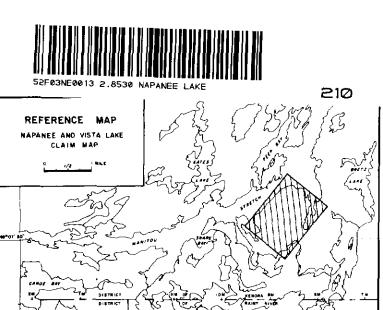

Instrument		
Values measured		
Energy windows (levels)		
Height of instrument	Background Count	
Size of detector		
Overburden	· · · · · · · · · · · · · · · · · · ·	
(type, depth – include	outcrop map)	
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)		
Type of survey		
Instrument	*	
Accuracy		
Parameters measured		
Additional information (for understanding results)		
AIRBORNE SURVEYS		
Type of survey(s)		
Instrument(s)		·····
(specify for each type of Accuracy	survey)	
(specify for each type of		
Aircraft used		
Sensor altitude		
Navigation and flight path recovery method		á
Aircraft altitude	• •	
Miles flown over total area	Over claims only	

Numbers of claims from which samples taken_____

Total Number of Samples		ANALYTICAL METHODS						
Type of Sample(Nature of Material)		per cent						
Average Sample Weight		p. p. m. p. p. b.						
Method of Collection	Cu, Pb, Zn, Ni, Co,	Ag, Mo,	As,-(circle)					
Soil Horizon Sampled	Others							
Horizon Development	Field Analysis (tests)					
Sample Depth	Extraction Method	·····						
Terrain	Analytical Method							
	Reagents Used							
Drainage Development								
Estimated Range of Overburden Thickness			•					
	Extraction Method							
	Analytical Method							
	Reagents Used							
SAMPLE PREPARATION (Includes drying, screening, crushing, ashing)	Commercial Laboratory (_		tests					
Mesh size of fraction used for analysis.	Name of Laboratory	······································	<u></u>					
	Name of Laboratory Extraction Method							
	Analytical Method							
	Reagents Used							
General	General							
	<u></u>							
	······································	- <u></u>						
		···						
			·····					

	<u> </u>	EDT	<u>G</u> L		<u>m</u> .#	Em	Gt:	2 -8530			
127140			V	728664	34		3/4				
41	\checkmark	1	V	6.68	V	V	~	4			
42	1/2.	++		69	1/4	1/2-	~				
1/3	1/2	-1/2.	1/2	.10	44	2	14				
44/	/	$\overline{2}$	\checkmark	71	V	V	\mathcal{V}				
1/5-	~	┨────┤	\checkmark	12	14.	14.	114				·
16	\checkmark	\checkmark	\mathbf{V}	13	3/4 -	3/4	3/4				
47	\checkmark	1/4.		74	V	V	V				
		NC	1/2		\checkmark	V	\checkmark				
1.52	342	łł	3/4		V	V	\checkmark				
53		3/4-	<u> </u>		12	1/2-	1/2				
54	/	\checkmark	\checkmark	679	1/2	1/2-	1/2				
	\checkmark	\checkmark	\checkmark	80	V	V	~				
1 1	/	\checkmark	\checkmark	8/	V	V					
	\checkmark	V	/	683	3/4	3/4	3/4.				
58	~		~	84	1/2		3/4				
	~	Ľ		. 689	3/4	3/21	13/4				
ĘŬ		\checkmark	\checkmark	90	3/4	3/4.	3/4				
61	/	\checkmark	1	91	3/1	3/4	3/4				
62		NC.	A second second			\bot					
166	1/2-	1/2	1/2			\bot					
m						\downarrow					
103/4				G.L. INC		\downarrow					
40×20=800				40×40=1600		\downarrow					
800:50:15= 15.7	6			1600:51 (31)		\bot					
(16)						1					
						\bot					
EM S'/2NC	31	VC	\Box								
37 × 20 = 740				······································							
37 × 20 = 740 740: 45:5-16	2					\Box					
Ű						Ţ	Γ				
						1	T		T	1	
			<u></u>		<u>L</u>	1	1	1	1	1 1	1





DOOFLY

1400

4 + 00 N

3+00 N 2+00 N

I + 00 N B.L. 0+00

I + 00 S 2+00 S

T.L. 3+00 S 4+00 S

5+00 5 6+00 S

7 + 00 S

8 + DD S

121148

TOPOGRAPHY

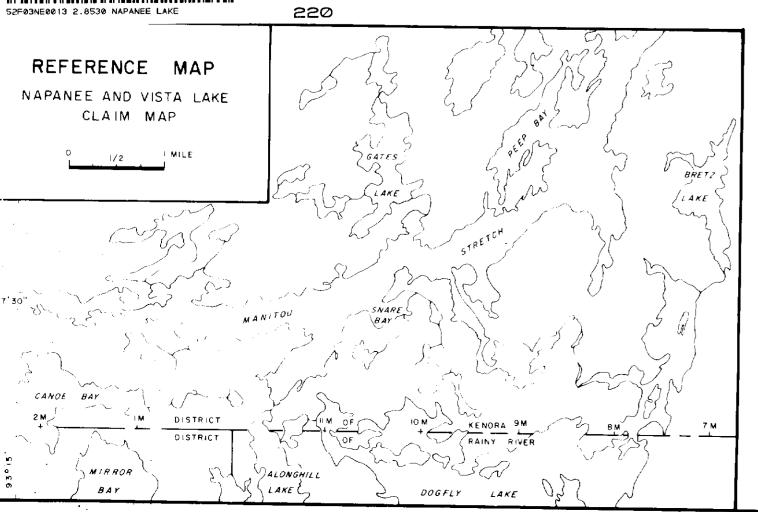
_____C___ CLAIM POST SWAMP SHORELINE

MAGNETOMETER SURVEY

MAGNETIC LOW - CONTROL - CONTON MAG INSTRUMENT SCINTREX MP-2 PROTON MAG DATUM - 59,000 & CONTOUR (INTERVAL: < 1000 at 200 x, >1000 at 500 x MAGNETIC LOW - CONTOUR (INTERVAL)

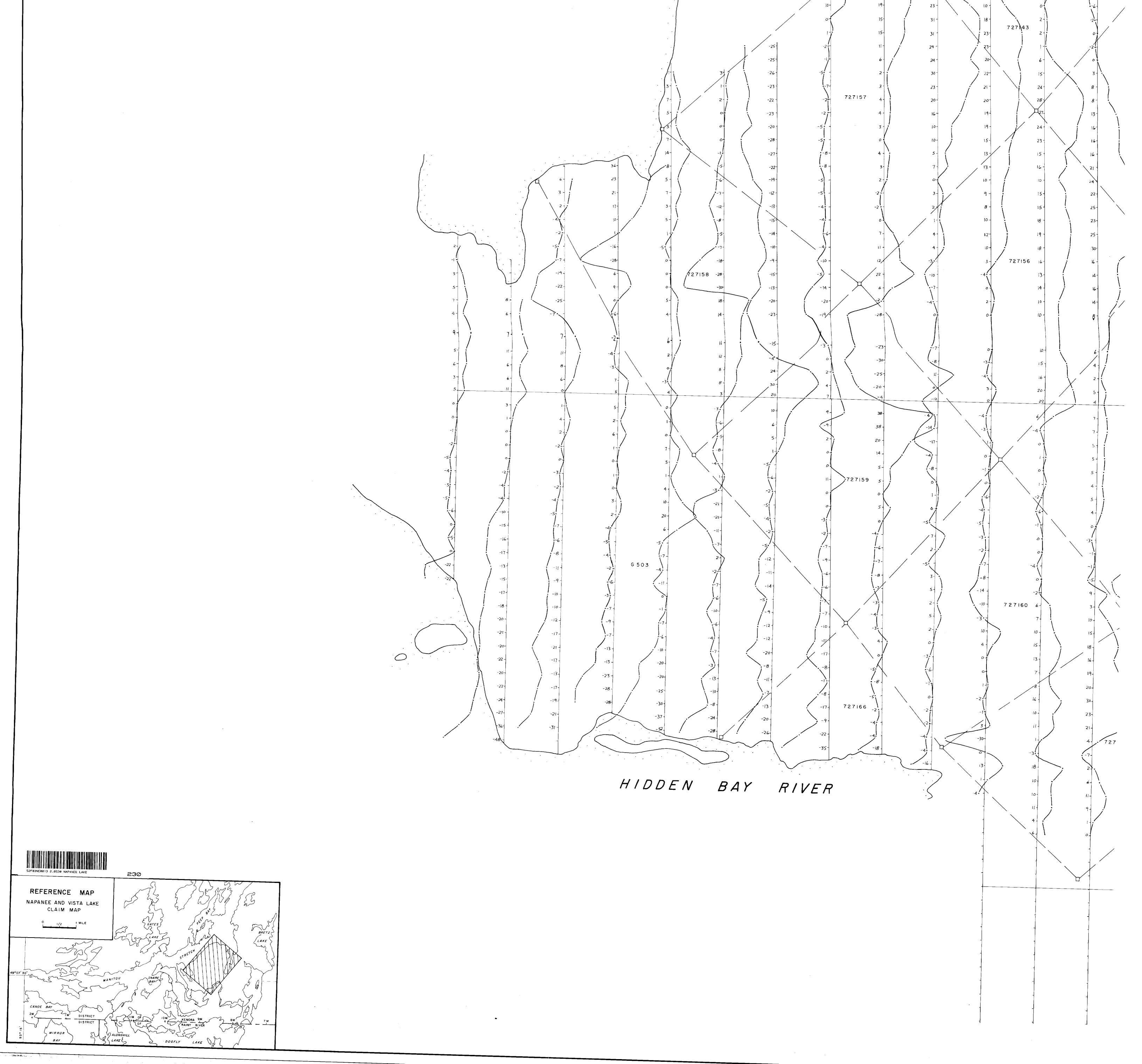
BASE STATION RECORDER INFORMATION INSTPUMENT. SCINTREX MBS-2 RECORDER RANGE. 100 M RECORDING INTERVAL: 10 SECONDS CHART SPEED. 20 MM / SEC

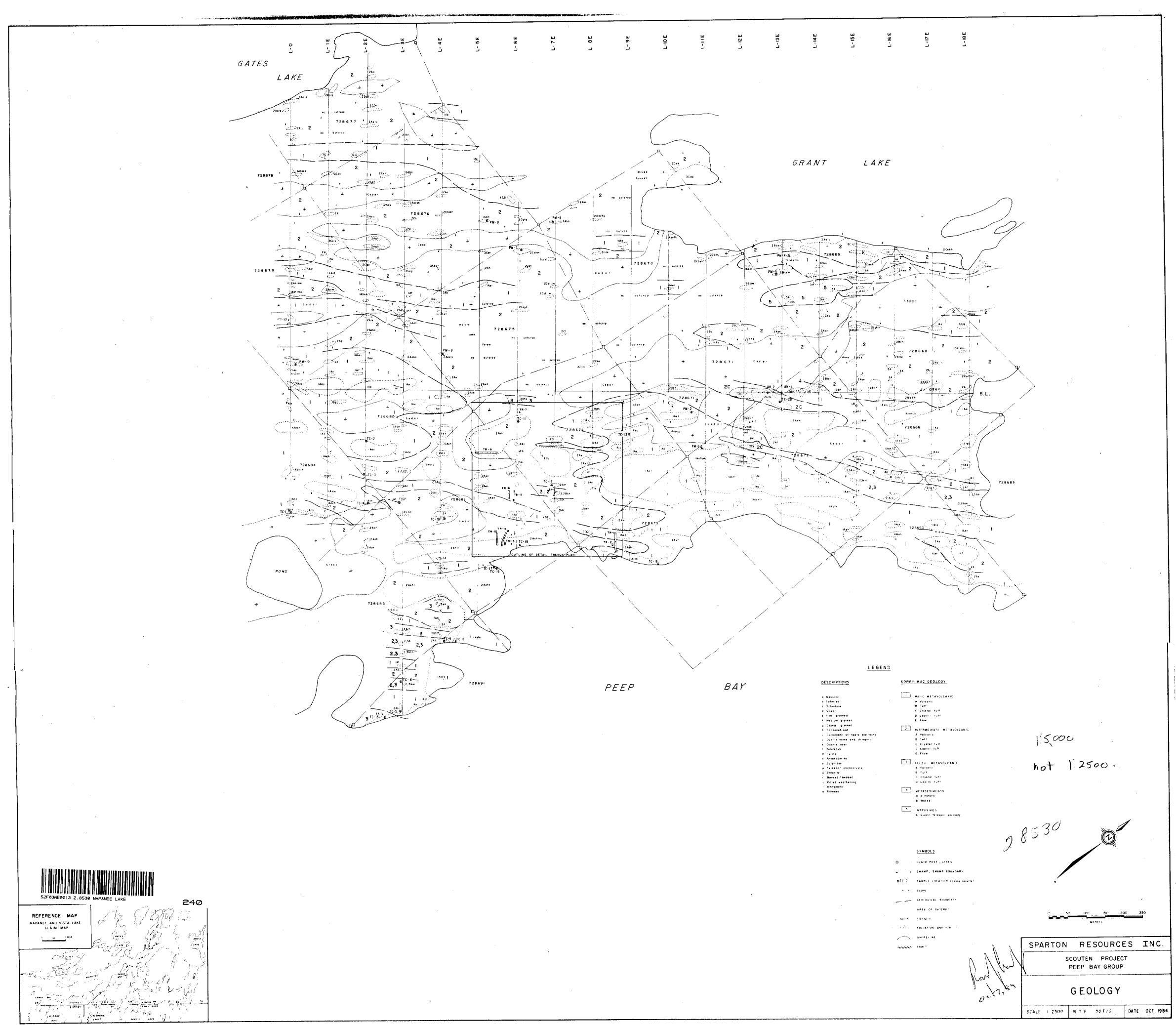
Octa iss

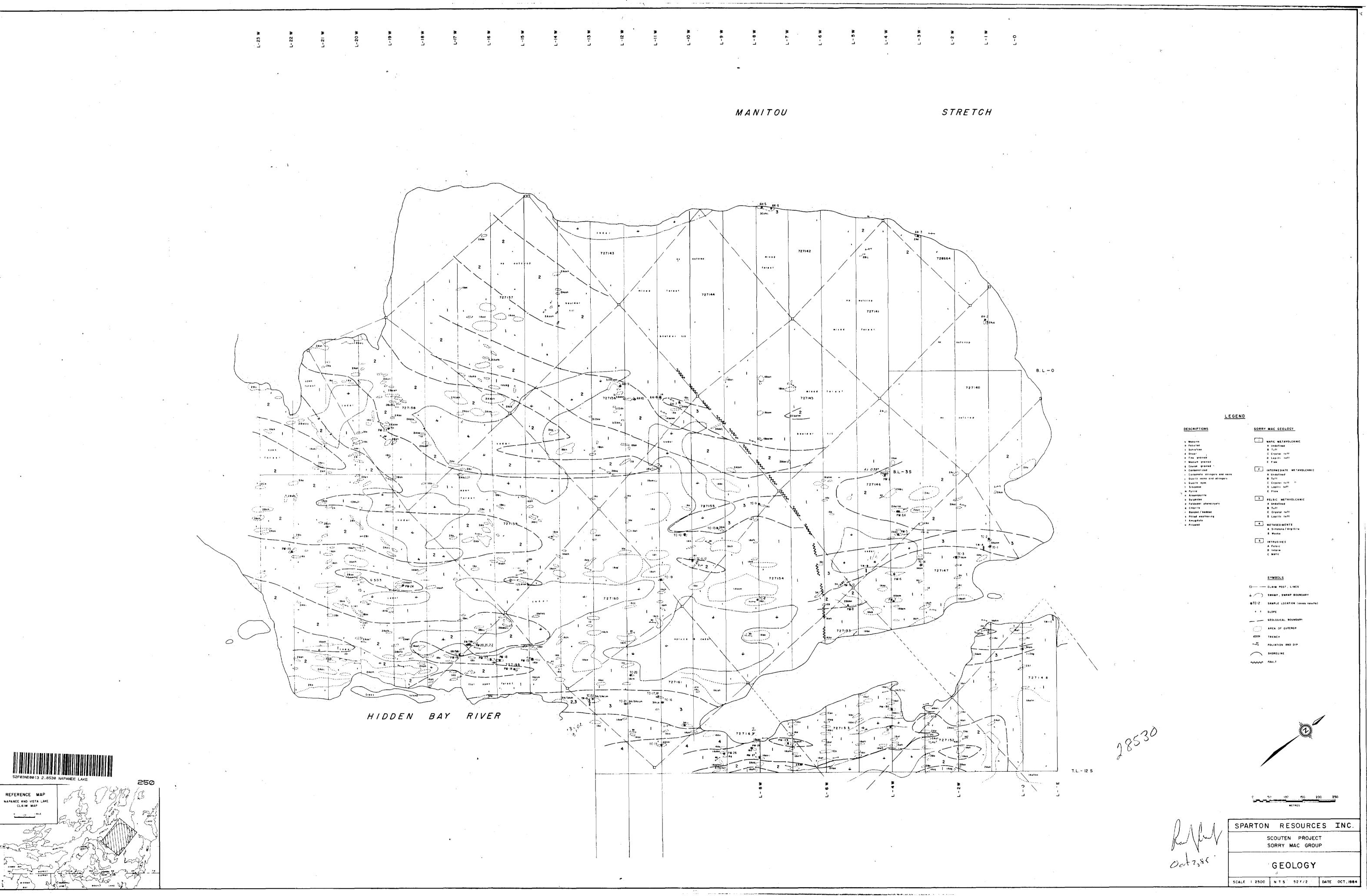

SPARTON RESOURCES INC. SCOUTEN PROJECT SORRY MAC GROUP MAGNETOMETER SURVEY SCALE: 1:2500 N.T.S : 52 F/2 DATE : OCT., 1984 [..._

.....

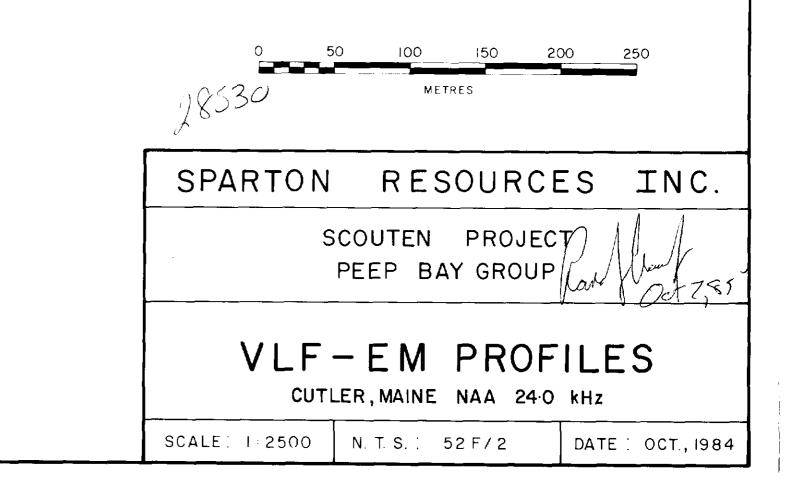
.

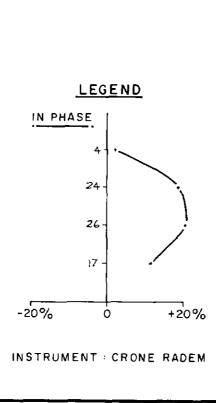



.


.

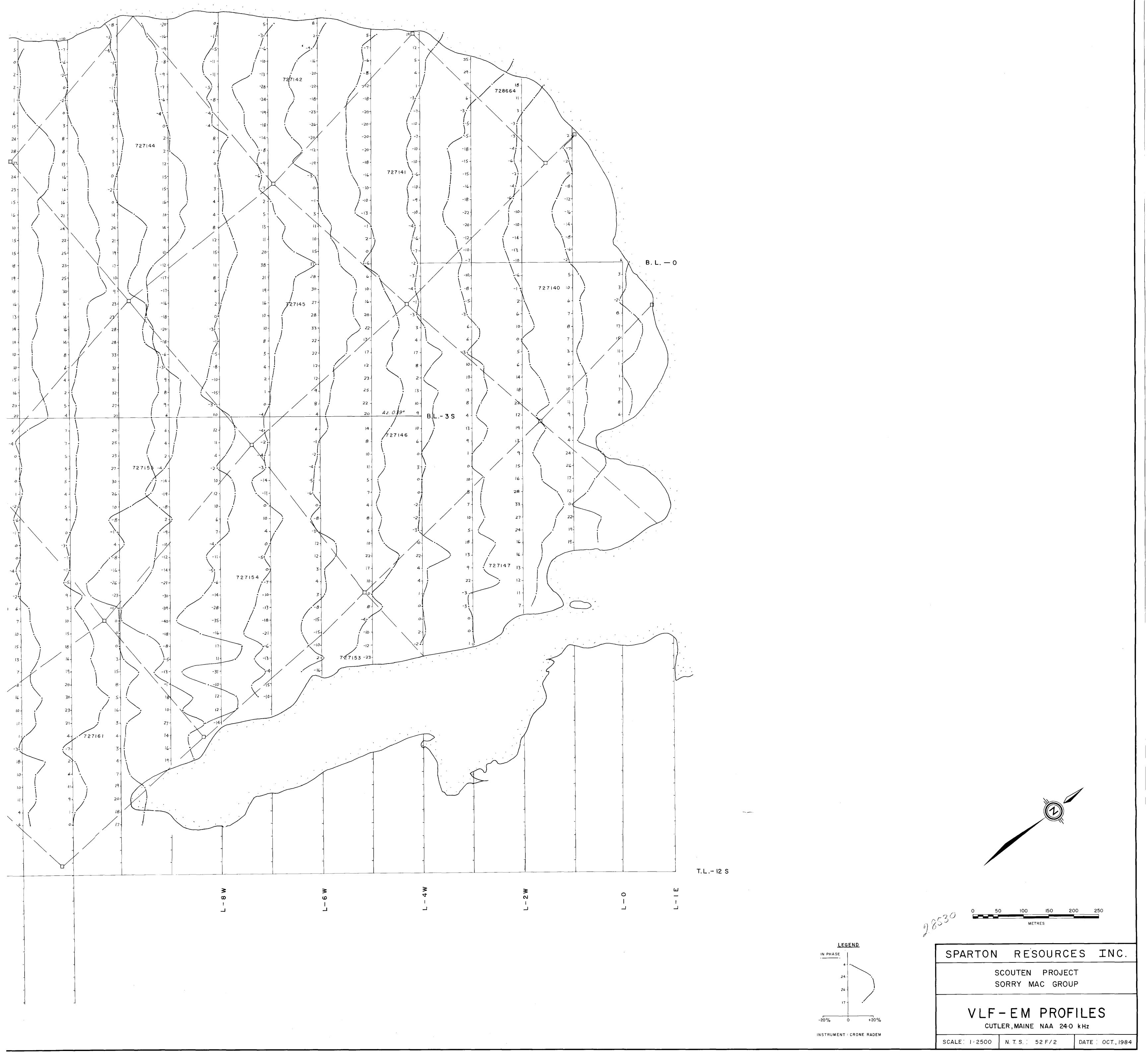
•





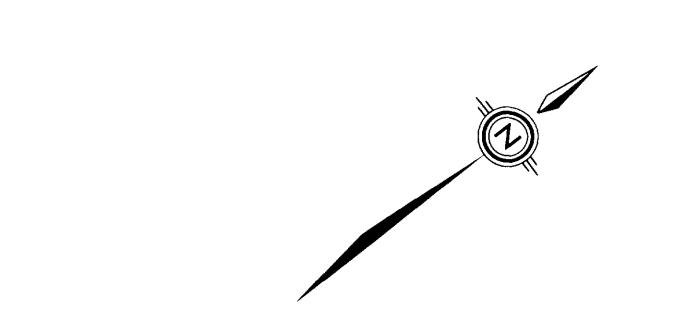
PEEP BAY

. . . .



•

L


MANITOU

STRETCH

•

.

