

52F04SW0001 OM92-028 MENARY

1992 EXPLORATION PROGRAMME ON THE MENARY TOWNSHIP PROPERTY DISTRICT OF KENORA ONTARIO Prepared by: , Christopher A. Wagg Wayne E. Holmstead January 31, 1993

-- -- -

WESTERN TROY CAPITAL RESOURCES

010

				_			
•	52E	14	SMA	001	OM92	2-028	MENAR

010C

TA	BL	Æ	0	F
----	----	---	---	---

NTRODUCTION	1
PROPERTY DESCRIPTION	3
Location and Access	3
Claims and Ownership	4
REGIONAL GEOLOGY	5
PREVIOUS WORK	7
1992 EXPLORATION PROGRAMME	9
Geological Mapping	10
Mafic to Intermediate Metavolcanics	12
Felsic to Intermediate Metavolcanic Rocks	13
Granitic Intrusive Rocks	14
Mafic Intrusive Rocks	15
Overburden Geology	15
Prospecting and Sampling	16
North Property	17
	19
South Property	21
Mechanical Outcrop Stripping	
Dillman Shear Zone Showing	21
Dillman 1 and Dillman 2 Showings	21
Agassiz West Showings	22
Wagg North Area	23
Diamond Drilling	25
Bulk Sample	26
DISCUSSION	29
CONCLUSIONS	32
RECOMMENDATIONS	34
BIBLIOGRAPHY	35
CERTIFICATE	36

.

APPENDICES

Appendix 1: Assay Results

Appendix 2: Diamond Drill Logs

Appendix 3: Metallurgical Report

FIGURES

- Figure 1. Property Location
- Figure 2. Location of Claim groups
- Figure 3. Regional Geology
- Figure 4. Lithostratigraphic Subdivisions of Metavolcanic Rocks
- Figure 5. Gold Showings and 1992 Mechanical Stripping Locations
- Figure 6. Dillman Shear Zone, Geology and Sampling
- Figure 7. Dillman #1 Gold Showing, Geology and Sampling
- Figure 8. Dillman #2 Gold Showing, Geology and Sampling
- Figure 9. Agassiz West Gold Showings, Trench 1
- Figure 10. Agassiz West Gold Showings, Trench 2
- Figure 11. Agassiz West Gold Showings, Trench 3
- Figure 12. Wagg North Area
- Figure 13. Bulk Sample Trench Plan

TABLES

- Table 1.
 Original Claim Group Information
- Table 2.
 New Claim Group Information
- Table 3.Lithologic Units

MAPS

- Map 1. Geology: Northern Property, East Part
- Map 2. Geology: Northern Property, West Part and Southern Property, North Part
- Map 3. Geology: Southern Property, South Part
- Map 4. Sample Locations: Northern Property, East Part
- Map 5. Sample Locations: Northern Property, West Part and Southern Property, South Part
- Map 6. Sample Locations, Southern Property, South Part

INTRODUCTION

Western Troy Capital Resources optioned 30 mining claims in Menary Township early in 1989 from Rick Roy and Joe Lariviere of Thunder Bay, Ontario. The property is located in an area along the western flank of the Off-Burditt Lake greenstone belt, where a metamorphosed mafic sequence of Archean age, subaqueous flows and tuffs are in contact with the Sabaskong Batholith. The area lies within the Kenora Mining Division and is located a few kilometres east of Provincial Highway 71, about midway between the village of Finland and the town of Nestor Falls, in northwestern Ontario.

The company presently holds 215 claim units comprising approximately 3,440 hectares (8,600 acres) in total. Two groups of claims are located within the townships of Menary, Claxton, McLarty, Senn, and Potts. Work in the immediate area by various mining interests had previously identified several low grade zones of zinc and copper mineralization hosted within tuffaceous units. One gold showing, consisting of a small quartz vein hosted within sheared metavolcanics, had been discovered during the mid 1980's, but had seen no further work until Western Troy began exploration in 1989.

An initial group of thirty claim units, located in the northeastern portion of Menary Township, was geologically mapped and covered by ground magnetometer and VLF-EM surveys during 1989 by Western Troy. A follow-up programme of prospecting and geophysical anomaly investigation, initiated in May of 1991, resulted in the discovery of three zones of native gold bearing quartz veins early in the year.

Additional claims were subsequently staked in order to expand the company's land position around the most prospective of the new showings. Two additional zones of gold bearing veining were discovered on the new claims shortly after staking began (Galbraith A and B gold showings). Meanwhile, a stripping and sampling programme underway at the Wagg showing revealed the presence of high-grade native gold mineralization. The stripping uncovered six somewhat interconnected bodies of quartz which appear to be the result of folding and faulting of a single larger structure (Wagg and Holmstead, 1991). Claimstaking has since been extended in both directions along the strike of the batholith contact, for a total distance of about 18 kilometres around the initial discoveries.

The 1992 exploration programme consisted of reconnaissance geological mapping and prospecting of all claim units acquired since the completion of the 1989 programme. This was followed by a period of mechanical stripping and bedrock sampling at several of the gold showings. Initial stripping was undertaken at three newly discovered gold showings located within the southern claim group, and at the Agassiz West gold showing, which was discovered during 1991 on the original property. A limited amount of stripping was also completed immediately north of the Wagg showing at the margin of an area of thick overburden.

At the same time as reconnaissance mapping and prospecting was being conducted over the newly acquired claims, a 250 ton bulk sampling programme was begun at the Wagg showing on claim 1079876. The claim was surveyed in the spring and an application to bring the claim to lease was made on September 13, 1992. Three short diamond drill holes totalling approximately 120 feet were drilled by the milling contractor prior to the mill start-up date. The logs for the holes are included in the appendix.

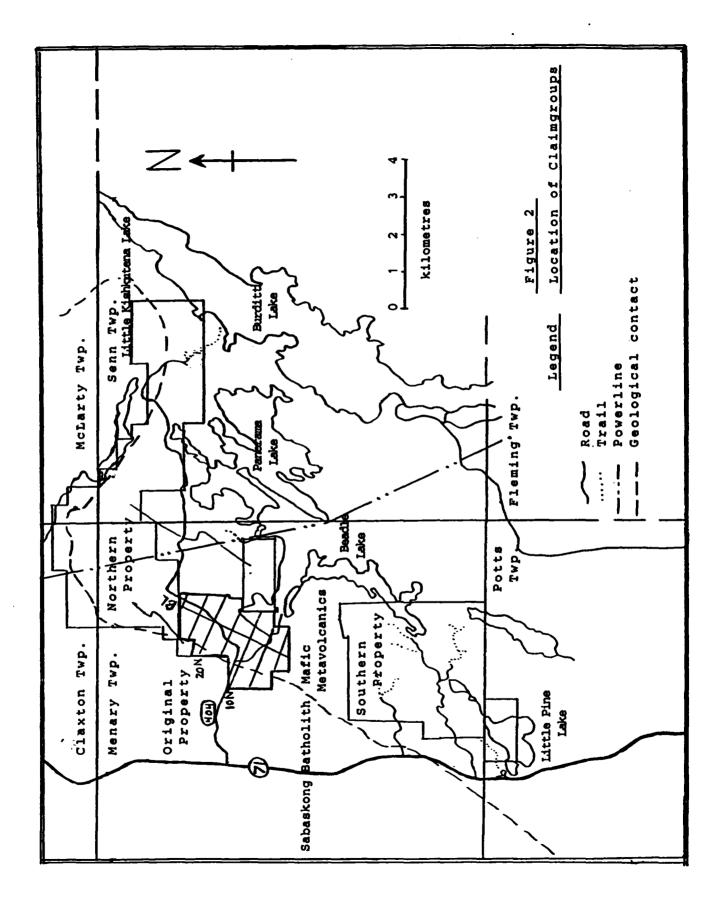
The objectives of the 1992 property reconnaissance were to produce a preliminary geological map of the new claims, and to identify gold bearing structures on the property where subsequent geophysical, geological, or geochemical surveying is warranted.


PROPERTY DESCRIPTION

Location and Access

The Menary Township area properties are located about fifty kilometres northwest of Fort Frances, Ontario, within the Kenora Mining Division (Figure 1). The properties lie within the Ministry of Natural Resources Administrative District of Fort Frances, and are situated within N.T.S. Map Area 52 C/13. The geographic centre of the company's holdings is located at approximately 48 59 00 N latitude, 93 51 40 W longitude. Figure 2 shows the boundaries of the property in relation to township boundary lines and significant bodies of water.

Access to the northern property is obtained via the 404 Road, which departs from Highway 71 about midway between the village of Finland and the town of Nestor Falls. The 404 Road crosses nearly the entire property in an east-west direction, and all portions of the property are readily accessible from it or from a number of spur roads which are in varying stages of overgrowth or disrepair.


Access to the southern property is obtained via either of two logging roads, both of which depart eastward from Highway 71 within the first few kilometres north of the boundary between Menary and Potts townships. Some timber harvesting activity has taken place in this vicinity in the past, and both roads are presently in good shape. The most southerly portion of the property, consisting of eight claim units in Potts Township, is best accessed via a system of partially overgrown bush trails which are reached by crossing privately owned land located immediately north of Little Pine Lake.

The northern claim group, which includes the original property, consists of 140 contiguous units covering a portion of the townships of Menary, Claxton, McLarty, and Senn. The southern claim group consists of 75 contiguous units covering a portion of Menary and Potts Townships. (See Figure 2)

All mining claims presently held by Western Troy in the vicinity of Menary Township are unpatented mining claims on Crown Land except for claim 1079876. This claim was surveyed in the spring of 1992 and an application to bring the claim to lease was made on September 13, 1992. The company holds a 100% interest in the claim groups subject to a 3% Net Smelter Return, and all claims are presently in good standing with regard to assessment work requirements.

The group of thirty claims which were recorded in 1989, and which were the subject of the 1989 and 1991 exploration programmes, were not substantially re-examined during the 1992 reconnaissance programme. These claims have been included in the Tables below, however, because a limited amount of follow-up sampling was completed in several areas where 1991 work had returned anomalous gold or base metal values. In addition, mechanical stripping and bedrock sampling was undertaken on two of the claims after the completion of the reconnaissance portion of the present programme.

* * **

TABLE 1: ORIGINAL CLAIM GROUP INFORMATION

CLAIM	# UNITS	DATE RECORDED	TOWNSHIP
1092633	1	17-Jan-89	MENARY
1092634	1	17-Jan-89	MENARY
1092635	1	17-Jan-89	MENARY
1092636	1	17-Jan-89	MENARY
1092637	1	17-Jan-89	MENARY
1092638	1	17-Jan-89	MENARY
1092639	1	17-Jan-89	MENARY
1092640	1	17-Jan-89	MENARY
1092641	1	17-Jan-89	MENARY
1120258	1	07-Jul-89	MENARY
1120259	1	07-Jul-89	MENARY
1120260	1	07-Jul-89	MENARY
1120261	1	07-Jul-89	MENARY
1120262	1	07-Jul-89	MENARY
1120263	1	07-Jul-89	MENARY
1120264	1	07-Jul-89	MENARY
1120265	1	07-Jul-89	MENARY
1120266	1	07-Jul-89	MENARY
1079868	1	07-Jul-89	MENARY
1079869	1	07-Jul-89	MENARY
1079870	1	07-Jul-89	
1079871	1	07-Jul-89	MENARY
1079872	1	07-Jul-89	MENARY
1079873	1	07-Jul-89	MENARY
107987 4	1	07-Jul-89	
1079875	1	07-Jul-89	MENARY
1079876	1	07-Jul-89	
1079877	1	07-Jul-89	
1079878	1	07-Jul-89	
1079879	1	07-Jul-89	MENARY

. _____

•

TOTAL 30 CLAIMS

- -----

- _____

_. . .

TABLE 2: NEW CLAIM GROUP INFORMATION

NORTH CLAIM GROUP						
CLAIM	# UNITS	DATE RECORDED	TOWNSHIP			
1149481	1	09-Jul-91	MENARY			
1149482	1	09-Jul-91	MENARY			
1149483	1	09-Jul-91	MENARY			
1149484	1	22-0ct-91	MENARY			
1149485	1	22-0ct-91	MENARY			
1149486	1	22-0ct-91	MENARY			
1149487	1	22-0ct-91	MENARY			
1149488	1	22-0ct-91	MENARY			
1149489	2	22-0ct-91	MENARY			
1149492	8	22-0ct-91	MENARY-CLAXTON			
1149493	4	12 -N ov-91	CLAXTON			
1149494	4	12-Nov-91	CLAXTON			
1149495	2	12-Nov-91	CLAXTON			
1149496	9	12-Nov-91	MENARY-CLAXTON			
1149497	3	12-Nov-91	CLAXTON-MCLARTY			
1149498	3	12-Nov-91	MCLARTY			
1149499	4	12-Nov-91	SENN-MCLARTY			
1149500	2	12-Nov-91	MCLARTY			
1149501	2	12-Nov-91	MENARY			
1149502	12	12-Dec-91	SENN			
1149503	2	12-Dec-91	SENN			
1149504	2	12-Dec-91	SENN			
1149505	12	12-Dec-91	SENN			
1149506	16	12-Dec-91	SENN			
1149509	2	12-Dec-91	CLAXTON			
1149510	2	12-Dec-91	CLAXTON			
1149512	10	29-Jan-92	MENARY			
1149513	1	29-Jan-92	MENARY			

•

TOTAL 110 CLAIM UNITS

SOUTH	CLAIM	GROUP
-------	-------	-------

CLAIM	# UNITS	DATE RECORDED	TOWNSHIP
1149514	4	07-Feb-92	POTTS
1149515	4	07-Feb-92	POTTS
1149516	8	31-Jan-92	MENARY
1149517	10	31-Jan-92	MENARY
1149518	16	31-Jan-92	MENARY
1149520	12	23-Apr-92	MENARY
1149529	12	18-Jun-92	MENARY
1149530	6	09-Jul-92	MENARY
1149521	2	23-Apr-92	MENARY
1149522	1	23-Apr-92	MENARY
TOTAL	75	CLAIM UNITS	

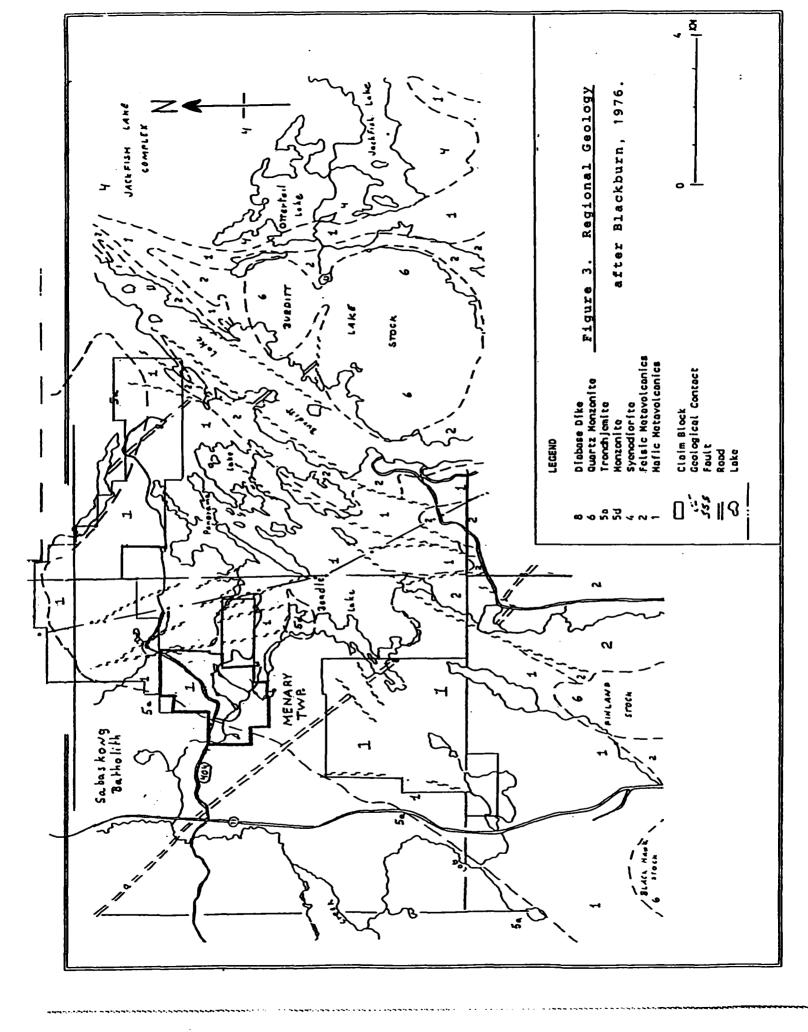
-

·----

TOTAL ALL 215 CLAIM UNITS GROUPS

REGIONAL GEOLOGY

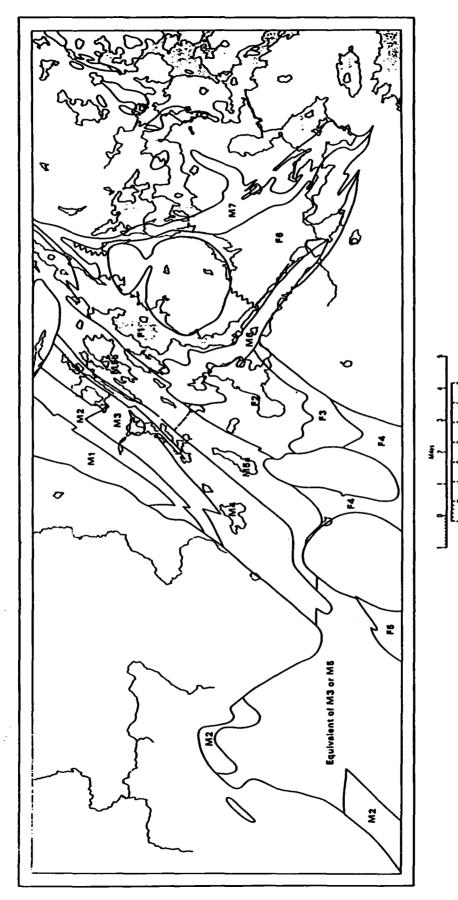
The Western Troy properties are situated along the margin of a greenstone belt which forms part of the Wabigoon Structural Subprovince of the Archean shield. As is typical of most greenstone belts in this district, the grade of metamorphism within volcanic rocks increases from lower greenschist facies in the middle of the belt, to lower amphibolite facies near the felsic intrusions at its margins (Blackburn 1976).


As shown in Figures 1 and 2, the metavolcanic rocks trend northeasterly between two large intrusive complexes. The Sabaskong Batholith, in the northwest, is broadly trondhjemitic in composition, while the Jackfish Lake Complex, in the southeast is predominantly syenodioritic. The metavolcanics maintain their trend northeast of Burditt Lake, eventually merging with the Pipestone Lake and Kakagi Lake greenstone belts in a "Y"-shaped junction approximately 10 kilometres north of the boundary of Figure 2.

The regional geology, depicted in Figure 3, lies within the area covered by Ontario Division of Mines Geoscience Report 140, and Map 2325 at a scale of 1 inch to 1 mile, (Blackburn, 1976). To the northeast, 1 inch to 1/2 mile mapping was completed by the Ontario Geological Survey in 1975 (Edwards, 1981).

Blackburn's work has identified four felsic stocks which intrude the metavolcanics within the area of Figure 3. These are the late tectonic Burditt Lake, Finland, and Black Hawk stocks, composed of quartz monzonite and granodiorite, and the small, syntectonic body of monzonite at Beadle Lake. An intrusive breccia, which typifies the syntectonic intrusive, occurs sporadically along a lineament extending northerly from the monzonite to the contact of the Sabaskong Batholith.

In the vicinity of the properties the metavolcanic succession has been interpreted to be homoclinal and southeastward facing, and to consist of two distinct cycles (Blackburn, 1976). An upper sequence of mixed mafic to felsic metavolcanics overlies an older sequence of massive, pillowed, and porphyritic mafic flows. The lower sequence is host to numerous dykes, sills, and small stocks of felsic porphyry, believed to be have been emplaced concurrent with the second cycle of volcanism.


The metavolcanic stratigraphy has been further subdivided by Blackburn (1976) into a number of geologically distinct zones, as shown in Figure 4. Each zone is characterized by one or more predominant rock types. Both Western Troy properties encompass a portion of each of the five zones constituting the lower volcanic cycle, and a small portion of the upper cycle, F1 felsic zone is included in the easternmost claim of the northern property. Each of these zones will be discussed in further detail later in this report.

.....

-

Northwest trending diabase dykes postdate regional metamorphism and all felsic intrusive activity. Northeast-southwest shearing likely accompanied dyke emplacement, as indicated by the minor offsets of some dykes along northeasterly trending lineaments.

Unconsolidated Pleistocene deposits, consisting of boulder and cobble dominated sandy tills, occur as a thin discontinuous layer of bedrock cover in the area northwest of Burditt Lake. Sands and clays are present in minor amounts in low lying, well drained areas. Recent sediments consist of organic debris which has been accumulating in swamps and bogs.

PREVIOUS WORK

The first recorded exploration work in the region dates from the 1930's, when a copper-gold showing was discovered in a metavolcanic xenolith within the Jackfish Lake Complex. Sporadic diamond drilling, which has been carried out since the mid 1950's in search of base metals, has been directed primarily toward chalcopyrite mineralization in felsic metavolcanic rocks. No mineral production had been recorded from the Off-Burditt Lake area prior to 1992.

A reconnaissance overburden geochemistry programme was completed in Off-Burditt Lake area and surrounding region by A.F. Bajc, and the results published in 1988 by the Ontario Geological Survey. Till samples returning anomalous gold grain counts are located on and adjacent to the property.

An airborne magnetometer and VLF-EM survey, which covers portions of topographic map sheets 52C/13 and 52F/4, includes the Off-Burditt Lake area. The survey was flown for the Ontario Geological Survey, and the maps published in 1990. Most of the conductors shown as occurring within the boundaries of the Western Troy properties have been investigated to some degree by previous operators or the current property owners. The work has revealed numerous zones of stratabound pyrite-pyrrhotite mineralization locally containing several percent sphalerite and chalcopyrite (Wagg and Holmstead, 1991).

Within the boundaries of the Western Troy properties, the only significant previous exploration work was undertaken during the early 1970's and 1980's.

In 1974, Hudson Bay Exploration and Development drilled two diamond drill holes totalling 509 feet near the northwest corner of current claim 1120265, within the gridded portion of the property. The holes intersected pyrite, pyrrhotite, minor sphalerite, and trace chalcopyrite across ten feet (Sullivan, 1974).

Between 1983 and 1985, Agassiz Resources explored claims on and around the gridded portion of the current property in search of base metals. Magnetometer, VLF-EM, geological, and bedrock geochemistry surveys were completed, and follow-up horizontal loop (EM) work and overburden stripping examined disseminated sulphide mineralization associated with tuffaceous horizons Studemeister, 1985). The Agassiz gold showing was discovered during this programme.

An initial group of thirty claim units, located in the northeastern portion of Menary Township, was geologically mapped and covered by ground magnetometer and VLF-EM surveys during 1989 by Western Troy. A follow-up programme of prospecting and geophysical anomaly investigation, initiated in May of 1991, resulted in the discovery of three zones of native gold bearing quartz veins early in the year. Additional claims were subsequently staked in order to expand the company's land position around the most prospective of the new showings. Two additional zones of gold bearing veining were discovered on the new claims shortly after staking began (Galbraith A and B gold showings). Meanwhile, a stripping and sampling programme underway at the Wagg showing was revealing the presence of high-grade native gold mineralization. The stripping uncovered six somewhat interconnected bodies of quartz which appear to be the result of folding and faulting of a single larger structure (Wagg and Holmstead, 1991). Claimstaking has since been extended in both directions along the strike of the batholith contact, for a total distance of about 18 kilometres around the initial discoveries.

1992 EXPLORATION PROGRAMME

The 1992 exploration programme was conducted by C.A. Wagg (geologist), Mr. Robert Dillman (geologist) and Mr. Mel Galbraith (prospector) under the supervision of W.E. Holmstead. The reconnaissance mapping and prospecting portion of the programme was completed from early May to August.

The mechanical stripping portion of the programme was completed in August. Five separate gold showings were stripped, mapped, and sampled. A skidder mounted backhoe, owned and operated by Norman Alexander of Stratton, Ontario, was employed.

A bulk sample consisting of 250 tons was extracted from Veins A, D, DE and F of the Wagg Showing on Claim 1079876 and three short diamond drill holes were drilled by Nighthawk Diamond Drilling in the vicinity of Vein F at the Wagg showing in order to define tonneage for the bulk sample programme.

Geological Mapping

The reconnaissance mapping phase of the 1992 exploration programme commenced in early May on the northern Western Troy claim block. As mapping and prospecting were carried out concurrently, regularly spaced, linear traverses were not the rule. Instead, the property was divided into a series of blocks separated from each other by topographic features such as roads, powerlines, creeks, and bodies of water. Within each block, an attempt was made to examine all significant bedrock outcrops. Important geological contacts or units were frequently traversed at right angles, or were more commonly traced along strike, in order to ensure the accuracy of their placement.

Adequate control on the placement of outcrops on maps was achieved by means of pace and compass measurements from notable topographic features or claim posts, or by means of direct observation of topography, using both air photos and contoured 1:20 000 scale base maps derived from air photos. Outcrops were plotted in the field directly onto 1:20,000 scale base maps, produced by the Surveys and Mapping Branch of the Ontario Ministry of Natural Resources, and published in 1984.

In general, mapping progressed from west to east across the northern claim group, and from northwest to southeast across the southern claim group. Table 3 presents a list of the lithologic units which were encountered, and Maps 1 to 3 display the geology of the properties. The legend used on the maps was modified only slightly from that developed by Blackburn (1976) for the Off Lake -Burditt Lake Area. Table 3: Lithologic Units

PHANEROZOIC

Pleistocene and Recent

till, sand, gravel, clay, organic debris

Unconformity

PRECAMBRIAN Proterozoic

Mafic Intrusive Rocks

Diabase dykes

Intrusive Contact

Archean

Intermediate to Felsic, Syntectonic, Intrusive Rocks

Equigranular trondhjemite, granitic dykes, equigranular monzonite and intrusive breccia

Intrusive Contact

Felsic Metavolcanic Rocks

Medium grained to porphyritic rhyolite and dacite, quartz feldspar porphyry dykes

Mafic to Intermediate Metavolcanic Rocks

Fine to medium grained basalt and andesite, gabbro, pillowed basalt, porphyritic basalt, pillowed and porphyritic basalt, pillowed variolitic basalt, spherulitic basalt, tuff, tuff breccia, and lapilli tuff As Maps 1-3 illustrate, the subdivision of the metavolcanic rocks into the zones shown in Figure 4 is a logical and practical way of describing the metavolcanic succession. Each of the zones found on the properties constitutes a coherent block of metavolcanic strata, differing markedly from the zones adjacent to it. Compositional and textural variations within each zone are either negligible, as in zones M2 and M4, or are on such a scale that detailed mapping of individual flows would be necessary in order to further subdivide the zone, as in the M1, M3, and M5 zones.

Top determinations by Blackburn (1976) and others indicate a younging direction to the southeast. No unconformable relationships were observed, either within or between zones, during the mapping. Foliations in the metavolcanics generally strike between 210 and 230 degrees, with dips varying from vertical to 70 degrees southeast. To the south of Little Kishkutena Lake, foliations vary considerably as the Sabaskong Batholith is approached, tending to parallel the contact in its immediate vicinity.

Metamorphic grade within the metavolcanics appears to be in the range of upper greenschist to lower amphibolite facies across most of both groups of claims. Pervasive chloritization observed near Burditt Lake on the northern property, and throughout most of the southeastern half of the southern property, indicates a grade of mid to lower greenschist facies in these areas. No major folds or faults were observed during the reconnaissance mapping, other than the previously known fault trending northwesterly through the southwest corner of claim 1149520. Conclusive evidence of two separate deformational events was observed at only one location, in the southeast corner of claim 1149521, west of Beadle Lake. Here, a foliation in chloritized gabbro of the M4 zone strikes northeasterly at 40 degrees, and dips subvertically to steeply southeast. An S2 fabric, consisting of a crenulation in the S1 foliation, strikes 85 degrees and dips southerly at 80 degrees.

Mafic to Intermediate Metavolcanics

The M1 zone underlies a portion of four claim units in the northwestern corner of the southern property, and underlies about half the area of the northern property, where it occurs as a two kilometre wide band over about six kilometres of strike length. This zone is characterized by thin, fine to medium grained, pillowed and massive flows.

Medium to coarse grained massive units, likely representing metamorphosed, subvolcanic stocks and sills, were encountered in this zone on both properties. Fine grained, pillowed flows exhibit variable degrees of stretching parallel to the northeasterly regional foliation trend. Poorly developed variolitic textures were observed relatively frequently in the most northwesterly pillowed flows on the northern property, but were not observed on the southern property. Mafic to intermediate volcaniclastic rocks, ranging from agglomerate to tuff, occur as thin units near the contact with the younger M2 zone to the east.

The boundary between zones M1 and M2 is marked by the abrupt transition from nonporphyritic to porphyritic lavas. The M2 rocks are characterized by the presence of 10 to 40 percent subhedral to euhedral feldspar phenocrysts ranging from 1 to 5 centimetres in diameter. The flows within this zone consist primarily of large, undeformed pillows, although massive sections are not uncommon.

The M3 zone is marked on its northwest by the reappearance of pillowed and massive, nonporphyritic metavolcanics. Southeastward toward the boundary with zone M4, pillowed units occur less frequently, and massive units become progressively coarser grained. An amphibolite unit, with several percent fine grained garnet and local migmatitic features, was observed in the central part of the southern property along the boundary with the M4 zone.

The M4 metagabbro zone underlies 50 to 60 percent of the southern property, and less than 5 percent of the northern property. The northern portion of the zone consists entirely of a series of medium grained flows or sills. In contrast, on the southern property, a great many sills and dykes of medium grained felsic porphyry are present within the metagabbro, and massive, pillowed, and spherulitic basalts have been observed in a few outcrops to the south and southwest of Beadle Lake.

The metagabbro is characterized by a spotted appearance on both fresh and weathered surfaces, due to the presence of 30 to 70 percent uniformly sized, evenly distributed, hornblende pseudomorphs after pyroxene. The relict phenocrysts range in size from 1 to 10 millimetres in diameter. In virtually all outcrops of this zone, the groundmass has been completely altered to a fine grained, schistose, chloritic matrix.

The lower boundary of zone M5 is marked by the reappearance of fine grained pillowed and massive flows in the sequence. The zone underlies about seven claim units in the southeastern corner of the southern property, where pillowed, fine grained, and medium grained flows are about equally abundant.

In contrast, the zone M5 rocks on the northern property are predominantly medium to coarse grained, with lesser fine grained, pillowed, and rare pillowed, porphyritic flows occurring along the margins of the zone. As the boundary with the felsic to intermediate F1 zone is approached, poorly exposed mafic to intermediate pyroclastic rocks were observed at several locations within the sequence. Pervasive shearing and chloritization are prominent features of this portion of zone M5.

Felsic to Intermediate Metavolcanic Rocks

The only rocks of this group which were encountered during the survey were found along the shore of Burditt Lake, in the southeastern corner of claim 1149506, on the northern property.

In this area, felsic lapilli tuff and medium grained quartz-feldspar porphyries, which may be either sheared dykes or banded flows, occur with minor chlorite rich tuff-breccia.

The contact with zone M5 rocks does not outcrop on the property, but was observed to occupy a linear topographic low about 10 metres wide. Although shearing and chloritization are well developed on both sides of the contact, no sulphide mineralization was observed in the immediate area.

Granitic Intrusive Rocks

Rocks of the Sabaskong Batholith underlie the margin of the northern property along its northwestern and northern boundaries. The batholith's trondhjemitic composition and equigranular, weakly foliated texture, show very little variation across the property. A notable exception to this occurs in the most northwesterly portion of the property, where some assimilation of the metavolcanics has occurred, and no dominant foliation orientation is evident. Contorted mafic xenoliths alternate rapidly with irregular bands of contaminated trondhjemite. The rock was mapped as a granitic intrusive breccia on the northwest of the contact, and as a gabbroic textured hornfels containing numerous felsic dykes to the southeast of the contact.

Narrow, granitic textured, offshoots and dykes, striking subparallel to the metavolcanicbatholith contact are found all across the northern property within a few hundred metres of the batholith boundary.

The only significant zone of alteration found within the batholith is located near the northwest corner of claim 1149506. In this area replacement of mafic minerals by iron carbonate occurs in association with a northerly trending zone of quartz veining.

Portions of the northern property are underlain by a zone of intrusive breccia, which extends from a brecciated monzonite plug underlying the northern end of Beadle Lake, northerly across claim 1149512 and claims 1149484 to 1149487. In most exposures of this unit, unaltered xenoliths of metavolcanic country rock are separated from each other by an interconnected network of white weathering, granitic textured stringers. The monzonitic groundmass rarely constitutes more than 10 to 20 percent of the volume of the breccia.

On claims 1149484 to 1149487, in proximity to the Sabaskong batholith, the breccia is monolithic, and occurs only in places along a major topographic lineament. On claim 1149512, only a few kilometres north of the monzonite, the breccia becomes locally heterolithic, and occupies a zone 500 to 600 metres in width. Gabbroic xenoliths are predominant at its centre, with pillowed and porphyritic, pillowed, and fine grained massive xenoliths becoming predominant near its margins.

Mafic Intrusive Rocks

Post-tectonic diabase dykes occur in a number of areas on the properties. The dykes weather to a brownish-orange colour, and are composed primarily of plagioclase and pyroxene (Blackburn, 1976). Most diabase exposures located during the mapping appear to belong to dykes already identified by Blackburn.

On the northern property, one wide and apparently continuous dyke crosscuts mafic volcanics and the Sabaskong Batholith southeast of Little Kishkutena Lake. A second narrower and apparently discontinuous dyke outcrops on claims 1149483 and 1149512. On the southerly claim the dyke appears to have intruded along the eastern contact between brecciated and non-brecciated metavolcanics. Numerous small, randomly oriented dykes are also present in this area.

On the southern property, a single fairly wide diabase dyke was observed on claim 1149529, near the south end of Beadle Lake. In contrast to those on the northern property, this medium grained dyke weathers a speckled white and brown. Its relatively unaltered subophitic texture is evidenced by radiating whitish plagioclase laths intergrown with grains of relict pyroxene.

Overburden Geology

As Maps 1 to 3 illustrate, outcrop exposure is good to excellent across both properties. Surficial deposits appear to rarely exceed several metres in thickness, other than in areas of extensive swamp. Overburden consists primarily of sandy, boulder and cobble tills, within which locally derived subangular to angular rock fragments predominate. A few areas where abundant sand and gravel were encountered are shown on the geology maps. Clay rich soils of lacustrine origin were encountered only on the southern property in the vicinity of Little Pine Lake.

Prospecting and Sampling

Thorough prospecting of the Western Troy properties was carried out concurrently with reconnaissance mapping from May to August. Although vein hosted gold mineralization was the primary target of the prospecting, sampling included zones of shearing and/or alteration related disseminated sulphides, whether or not any associated veining or silicification was present. Due to space constraints, it was not possible to plot every quartz vein which was observed or sampled on the geology maps. However, over 95 percent of the samples shown on the sample locations maps are from quartz veins, and areas of abundant veining are indicated on the geology maps. (See Appendix 1)

A total of 565 rock samples were collected from the properties, including 143 samples from areas where mechanical stripping was undertaken. Sample locations are shown on Maps 4, 5, and 6 (back pocket). Not all samples from the vicinity of stripped areas are shown on the maps due to space constraints, however, all samples from these areas are shown in Figures 6 through 12, and are discussed under the heading Mechanical Stripping in the next section. Figure 5 is an index map presenting gold showing locations and identifying areas where bedrock stripping was completed in 1992.

For the purposes of discussion, anomalous sample results are presented in three categories: those from the original (gridded) property, those from elsewhere on the northern property, and those from the southern property. Several areas are mentioned where quartz veins are abundant, but where no gold mineralization has as yet been discovered. Identifying and delineating these areas where hydrothermal fluids were preferentially channelled may allow for a clearer understanding of the factors governing the location of quartz vein and shear zone development. Comparison of areas of barren veining to zones of gold bearing veining may yield valuable data to guide future exploration on the property.

Samples assaying in excess of 1000 ppb (0.03 oz./ton) gold are considered anomalous. Because samples containing native gold commonly show high variability in grade when subjected to repeat analyses, "check" assays were requested for samples returning anomalous gold values. All samples collected during the programme were analyzed by Accurassay Labs, of Thunder Bay, a Division of Assay Laboratories Services Inc. Gold assays were performed using a traditional fire assay with an atomic absorption finish. Samples from sulphide zones where copper or zinc values might be expected to occur, were analyzed for gold by the method mentioned above, and for 29 other elements by the ICAP (geochemical) method.

During the fieldwork, an anomalous sample result warranted a return to the sample site, thorough resampling, and further prospecting in the immediate vicinity. Initial sampling of the most promising appearing quartz veins was generally by means of a selected grab sample, and a representative chip or composite sample. All the samples collected were relatively large, typically weighing 1.5 to 2.5 kilograms, due to tendency of native gold mineralization to be erratically distributed.

North Property

Several locations on the gridded portion of the northern property were re-examined in the early stages of the 1992 exploration programme. On claim 1092641 at the roadside vein, a showing discovered in 1991, sample 77694 assayed about 0.36 oz./ton gold across 30 cm from. Grab sample 77773 assayed 1550 ppb gold, from stringers hosted by the same structure. The weakly sheared structure occurs within massive to pillowed metabasalt, and hosts a discontinuous vein which has been traced about 30 metres south from sample 77694. The vein is widest at its north end where the structure disappears under overburden.

Immediately west of the Agassiz West showing, on claim 1092637, two samples were collected from a sugary, fine grained, silicious body. In 1991, grab sampling had returned one value of 1467 ppb from three samples (Wagg and Holmstead, 1991). The highly weathered quartz pod approaches 2.5 metres wide where exposed, and is associated with granitic and porphyry dykes. The two grab samples collected, 77775 and 77776, assayed 945 and 438 ppb gold respectively from weathered quartz containing less than one percent pyrite.

At the Wagg showing on claim 1079876, samples 77735 to 77738 were collected from the "A" vein. The area was previously unsampled due to being flooded during the autumn of 1991.

None of the samples analyzed by ICAP returned anomalous base metal values, from this or any other portion of the property.

Elsewhere on the northern property, preliminary chip sampling at the Galbraith A showing, on claim 1149485 returned one anomalous value of 0.034 oz./ton gold across 0.4 metres. Grab sampling in 1991 had returned values of 2418 ppb and 3.038 oz./ton gold from two separate veins (Wagg and Holmstead, 1991). Seven samples were collected from the area in order to determine if mechanical stripping was warranted. Although the values obtained from the recent sampling are surprisingly low, the veins in the area appear promising, and the presence of porphyry dykes resembling those at the Wagg showing is encouraging. Further work will be necessary to property evaluate the significance of the showing.

No resampling was completed at the Galbraith B showing, which is located 400 metres north of the #3 post on claim 1149492. The narrow vein/stringer within which native gold has been observed assayed 2.859 and 1.868 oz./ton gold from 1991 grab samples (Wagg and Holmstead, 1991). Many relatively small veins and pods occur within a few hundred metres of the showing, but none of those sampled during the 1992 programme returned anomalous values. One grab sample numbered 77829, which was collected about 350 metres south-southeast of the Galbraith B assayed 1146 ppb (0.033 oz./ton) gold. The sample was obtained from a 1 metre wide, weakly sheared zone hosting several narrow quartz stringers. As both this zone and the Galbraith B vein strike about east-west, further work in the area should pay particular attention to structures crosscutting the northeasterly trend of metavolcanic units.

Approximately 450 metres north-northwest of the Galbraith B showing, just north of the south boundary of claim 1149489, prospecting uncovered an odd shaped (stocklike) body of quartz measuring about 2 metres by 5 metres. The body has highly irregular fracture controlled contacts, with many finger-like splays along its north side, and is in contact with a contorted porphyry dyke along its eastern side. The occurrence was named the Galbraith C showing. Of the seven samples collected from the exposure, numbered 8154-8156 and 218853-218856, grab sample 8155 assayed 5050 ppb (0.153 oz./ton) from a grab sample taken near the porphyry contact, and grab sample 218856 assayed 33,267 ppb (1.008 oz./ton) from a grab sample of quartz rubble uncovered about 3 metres south of the exposure. The other samples all assayed less than 750 ppb gold. Traces of pyrite were the only mineralization observed within any of the samples.

Despite spending several days prospecting the area for additional veins, which are common to the areas east and southeast of the showing, no additional anomalous values were obtained. One vein which strikes about east-west, located on claim 1149492 about 250 metres southeast of the Galbraith C showing, displayed virtually all of the characteristics observed in the veins at the Wagg showing. The vein occurs within a variolitic pillowed flow, appears podiform, and is well fractured perpendicular to its contacts. On surface it is sugary to glassy textured, weathers a mottled white to red, and was observed to contain up to 1 percent pyrite and chalcopyrite, with traces of covellite and malachite. Samples 218532 and 218533, however, both ran only about 80 ppb gold.

No other anomalous results were obtained from the sampling conducted on the northern property, although several areas of frequent veining are worthy of mention.

Within the easternmost unit of claim 1149497, numerous northeasterly to northwesterly striking quartz veins are exposed. The largest half dozen range from 0.3 to 0.5 metres in width. The veins in this area strongly resemble those which host gold mineralization elsewhere on the property. About two hundred metres to the north, a small area in the south-central portion of claim 1149495 was also observed to host a number of sugary textured veins of varying widths within pillowed metavolcanics.

Within the east-central portion of claim 1149496, about 400 metres west of the #3 post of claim 1149499, a number of quartz veins of promising appearance were encountered. One poorly exposed vein in the vicinity of samples 8145-8147 was estimated to be up to 2.0 metres wide. This area is located about one kilometre south of the veins in claim 1149497, at the same position in the metavolcanic sequence.

Thin pillowed and massive mafic flows are the most common rock types and are host to the veins in all three areas, while infrequent mafic to intermediate tuffaceous horizons occur nearby, they do not appear to have any direct relationship to the veining.

The two more southerly areas are situated just west of (below) the transition from nonporphyritic to porphyritic volcanism. This transition marks the boundary between the M1 and M2 lithostratigraphic zones. All of the showings and areas of barren veining mentioned previously occur within the M1 zone.

The M2 through F1 zones were largely barren of both veining and sulphide zones across the remainder of the northern property. The porphyritic M2 zone and the gabbroic M4 zone were found to be particularly devoid of any features of interest, which may indicate that the more heterogeneous M3 and M5 zones offer a slightly higher potential to host mineralization. No veining, alteration, or sulphide mineralization was observed within the felsic metavolcanic F1 zone.

South Property

On the southern property, a rather similar pattern was observed in the distribution of quartz veins across the various zones in the metavolcanic succession. Quartz veining was found to be most abundant within the M1 zone, which underlies the northwest corner of the property. The M2 zone was essentially devoid of both veining and sulphide zones, and a few quartz veins were found scattered throughout zones M3, M4, and M5.

Aside from the Dillman 1 and 2 showings located in zone M1, and the Dillman shear zone located in zone M4, all of which are discussed in the Mechanical Stripping section to follow, only two samples returned anomalous gold values. Both samples were obtained from narrow easterly striking quartz veins occurring within the M4 gabbro zone.

Sample 218127 assayed 1123 ppb (0.034 oz./ton) gold from a 5 to 10 centimetre wide stringer located near the south boundary of claim 1149521. No other veins were observed in the area, but an east-west trending swamp-filled valley, located a short distance to the north, may hold some potential.

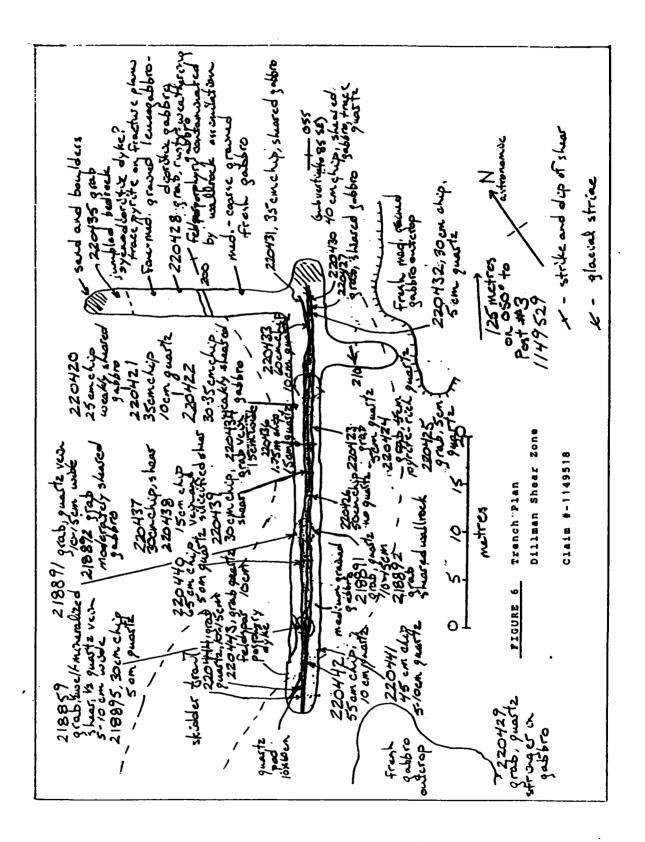
About 300 metres southwest of the Dillman shear zone, within claim 1149518, sample 218770 assayed 1622 ppb (0.049 oz./ton) gold. The sample was obtained from a small, iron stained, quartz stringer hosted by a sheared quartz-feldspar porphyry dyke. The dyke occurs alongside and parallel to a major lineament extending southwesterly from Beadle Lake. The lineament is coincident with a major swamp to the southwest of sample 218770. No evidence of movement or intense deformation was observed in outcrops along the edge of the lineament, however, the subparallel orientation and close proximity of the Dillman shear zone to the lineament, suggest that the shear may be related to movement along the larger structure. The lineament itself may therefore hold some potential for gold mineralization.

One additional area of veining on the southern property is worthy of mention. The area is located on claim 1149520, about 500 metres southwest of the Dillman 1 and 2 showings. Two east-west striking veins, situated just northwest of the boundary between zones M1 and M2, exhibit textures and mineralization similar to that found at the Wagg showing. The larger of the veins is up to 0.5 metres wide and was traced for about 15 metres. Of the ten samples taken from the veins, the highest assay was 465 ppb gold, from sample 218115.

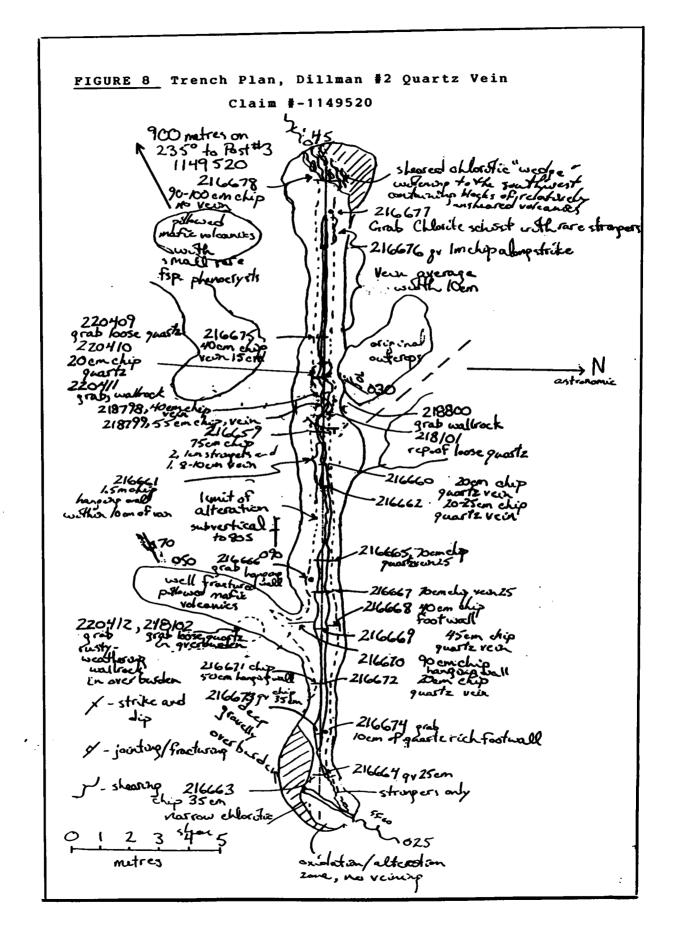
Mechanical Outcrop Stripping

Mechanical stripping and outcrop washing was completed in five areas of the property where vein hosted gold mineralization had been found. The three gold showings on the southern property were discovered during the 1992 prospecting, and visible gold had been observed in all three. The two areas on the northern property had been the subject of preliminary manual stripping during 1991, and the recent work was undertaken in order to extend the strike lengths of the mineralized zones.

Dillman Shear Zone Showing


At the Dillman Shear Zone, located in the east-central part of claim 1149518, stripping revealed a 5 to 15 centimetre wide quartz vein heavily mineralized with pyrite, which was traced for about 40 metres along strike. The vein occurs within a zone of sheared and chloritized gabbro averaging 0.5 metres or less

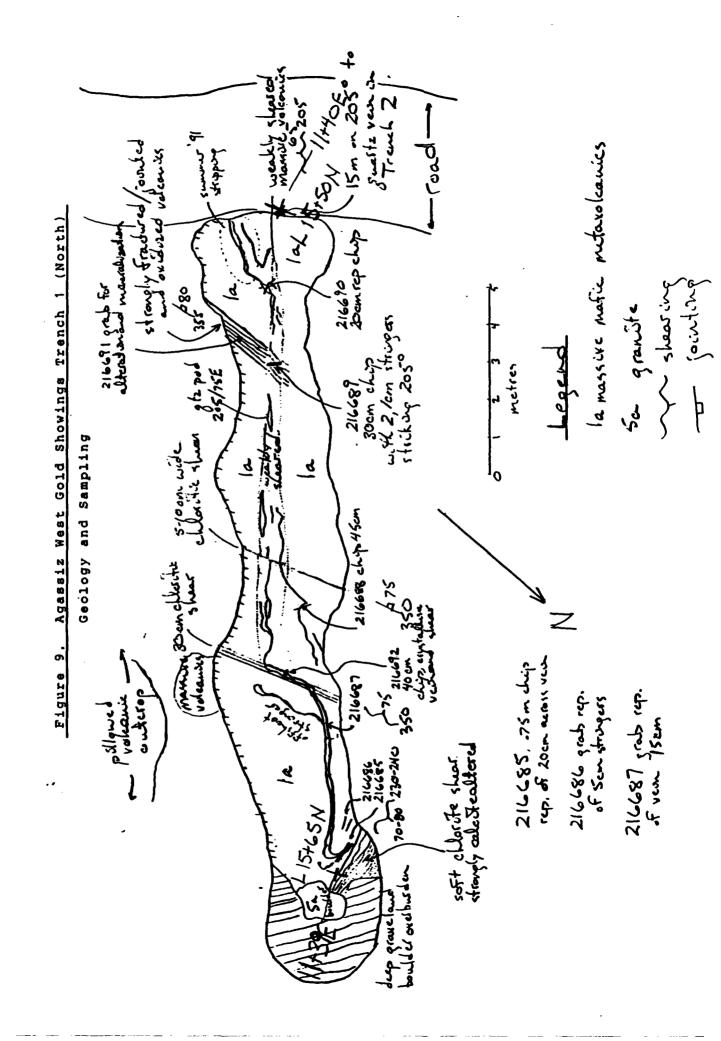
in width, striking 055 degrees and dipping between vertical and 85 degrees to the southeast. Very fine native gold was observed at several places within the quartz-pyrite vein. As shown in Figure 6, the shear and vein appear to pinch out at the eastern end of the trench, but to continue beneath overburden at the western end of the trench.

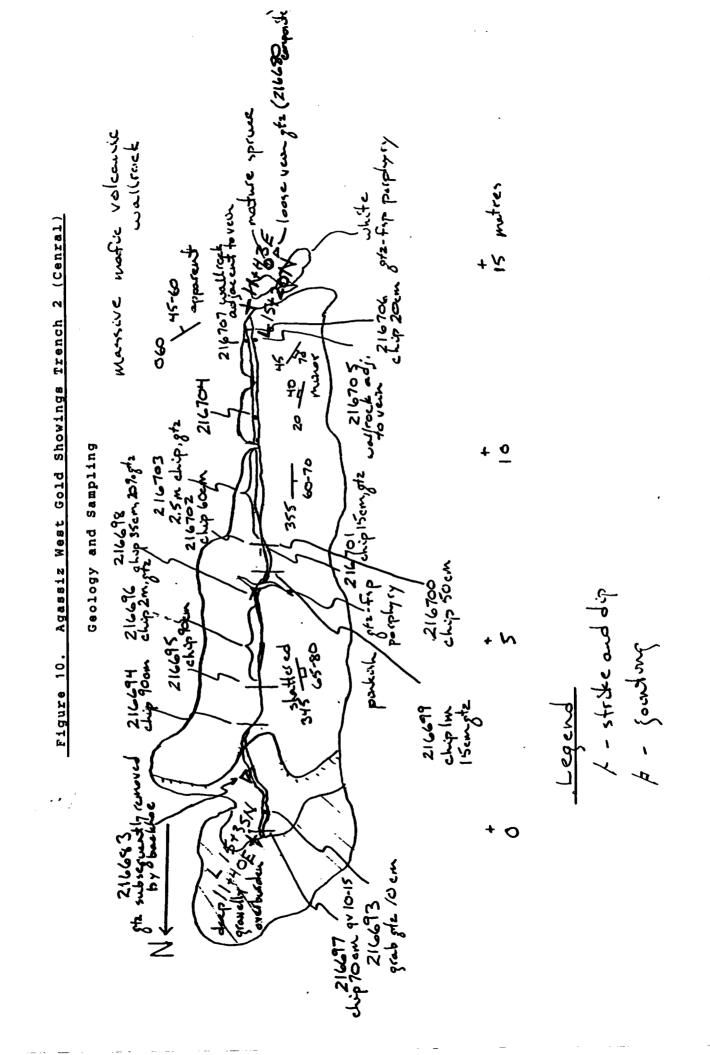

Assay results range from below detection to 0.03 oz./ton gold in grab and chip samples of sheared wallrock. Chip samples across the shear and vein assayed from 0.004 to 0.587 oz./ton gold, with most falling between 0.02 and 0.138 oz./ton. Analysis of grab and chip samples consisting entirely of quartz and pyrite returned gold values ranging from 0.006 to 1.578 oz./ton, with most samples assaying about 0.50 oz./ton. One sample from the area (sample 220435) returned a value of 0.081 oz./ton gold from loose dioritic bedrock containing a few percent disseminated pyrite as smears along joint planes.

Dillman 1 and Dillman 2 Showings

At the Dillman 1 and 2 gold showings on claim 1149520 (Figures 7 and 8) stripping revealed two quartz vein exposures which may be parts of a single structure. The veins both fill fracture/jointing controlled dilation zones, and both maintain a strike of 080 to 090 degrees despite containing a series of small open folds. The two veins are separated by about 100 metres of intervening ground where outcrop is sparse. Both showings are hosted within pillowed to massive mafic volcanics, and both display similar, varying degrees of oxidation and alteration of wallrock for a distance of up to 0.5 metres on either side of the vein. Wallrock alteration consists of variable silicification, chloritization, and a peculiar banding due to "gneissic" segregation of feldspar and mafic silicates.

Average trend of verned zone +70 apparent with is due to bedjock topography. neitand water 800 metres on 233° to Post #3 -220446,20 cm chip, quarter vernand contacts 090 -220447,25 cha chip, 15 cm puastz -220448, grab puartz, 10 cm wide 1149520 220449 200 chip, gueste 1218135, grab puste, 12 cm wide 218136, grab wallrock, alt. across 15 cm ,218137, 50 cm chip, wallrock 218(38, 15 cm chip, wallrock 220450 grab, gaarte ver 10 en wide 218775 218/38, 15 cm chip, quarte vein 218/38, 15 cm chip, quarte vein 218/10 60 cm chip, 15 cm guarte 218/11, 45 cm chip, 15 cm guarte 218817 30 cm e / 2/8878/6 30 cm e / ip, 20 cm 9 w -218142, 65 en chip 10cm guartz -218142, 65 en chip 10cm guartz -218143, 60cm chip 10cm guartz -218144 chip wallrock 30cm -218146 chip wallrock 30cm 218146 chip wallrock 30cm quastz ing stifte 2997 Chiradan 1945 cm rep. of these quests grab 218794 218H17 grab, queste ven 15 cm wide qrab. seguast grab, alt. welleck 218149 2m chip along strike, av. width 50-10 52 035 040 220445 grab quartz vein, 10-15cm wide - 218148, 70 cm chip, 2 guestz strugers debros astro -216651, 70 cm chip, 10 cm quartz Massive matic 216652, 90 cm chip, trace guarte metavolcanic outcrop 216656 246653, 50 em chip, no guartz rep. of loose quaster of dislodged by backhoc 216654, grab wallrock, 10 cm either side of 216655, grab quarte pod, 10 cm wide deep graxelly overburden - Oxidetion, and alteration Onsisting of verying degrees of silvetication, chloritization, \mathcal{O} 10 15 20 and previsive segregation (Fip. vs. matrice) is developed for an average of SOCM on either side of the ver metres PIGURE 7 p - dominant jourting/fracturing within stripped area Trench Plan Y - strike and dip of zone; Dillman #1 Quartz Vein vern vasiable Claim #-1149520 0 - vein quaste rubble


At the more easterly of the showings, a 5 to 20 centimetre wide quartz vein has been traced for a distance of about 38 metres. At both ends of the stripped area the vein disappears, and may be offset beneath relatively deep overburden. Grab samples of altered wallrock have returned gold values ranging from 0.002 to 0.081 oz./ton. Chip samples including wallrock and quartz have assayed from 0.002 to 3.043 oz./ton gold, most commonly returning values around 0.20 oz./ton. Chip and grab samples consisting solely of quartz have assayed between 0.001 and 8.837 oz./ton gold, with most values occurring between 0.20 and 0.75 oz./ton.


At the westerly showing, a 5 to 45 centimetre wide quartz vein has been traced for a distance of about 20 metres along strike. At both ends of the stripped area, the vein appears to pinch out against northeasterly trending zones of shearing, at the edge of areas covered by relatively thick overburden and jumbled bedrock. Assays here ranged between 24 ppb and 1366 ppb (0.033 oz./ton) gold for altered wallrock, with most values below 100 ppb (0.003 oz./ton). Representative samples across the altered wallrock and vein returned values ranging from 713 ppb (0.023 oz./ton) to 0.431 oz./ton gold. Grab and chip samples consisting entirely of quartz returned assays ranging from 0.03 to 2.822 oz./ton gold, with most assays falling between 0.30 and 0.70 oz./ton.

Agassiz West Showings

Within the initial group of thirty claims on the northern property, three trenches were dug to expose bedrock in the area which has come to be known as the Agassiz West showing. As shown in Figures 9, 10, and 11, stringers, small lenses, and contorted veins of quartz occur in association with zones of fracturing and chloritic shearing. Country rock in the area consists of massive and pillowed metamorphosed mafic flows, which are intruded by a number of quartz-feldspar porphyry and granitic dykes striking subparallel to foliation in the metavolcanics.

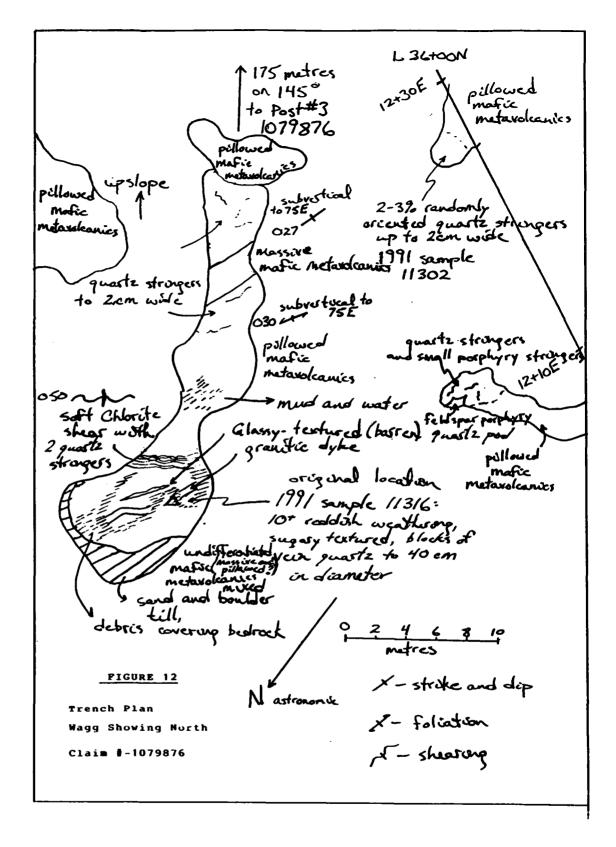
The northern and central trenches, shown in Figures 9 and 10, expose what appears to be a single structure, within which quartz has filled fracture controlled dilation zones. Wallrock and small stringers returned anomalous gold values ranging from below detection to about 0.032 oz./ton. Grab and chip samples consisting entirely of quartz, and obtained from within the main structure, assayed between 0.036 and 1.47 oz./ton gold. Representative samples including both quartz and wallrock returned gold values ranging from a low of 46 ppb at the north end of the northern trench, to a high of 2.99 oz./ton in the centre of the central trench. The highest assay came from a 0.9 metre chip which included only one 5 centimetre wide stringer of quartz. This result is indicative of the highly erratic nature of gold distribution in the area of the three trenches.

150 216681 grab ste atringers steep 1500H ,216682 20cm rep 30-502 ptz up slope 11+25E - VGL X, O metres wallrock chip bith rides Ngrab gte Ber 216727 been for soen nutres 1215 cha - shearing <u>se</u>p Buider も :U tranger/ventet 1 216728 216724 Der chiz ven 1.pm chip 9/2- fip po S along strike 216725 grab strangerlike 1/2 synform offshoots with fip -rich narouns 216723 prob 2t2 rep. 15 cm steep 216717 chip 30cm ghe, 40 cm chlischirt, 45 cm ghz_ Geology 216715 chip 60cm row 216716 216714 chip 20 cm ptz 50 cm chipgte. 216713 chip 40 cm ZIL 710 rep. of ven 10cm and stru /0 216711 10 em of , fogtupil, competent chlorite schist Sampling -216712 grad reportiven 10-15 cm ١G VG - notive 040 216729 chip weakly aftered walkrock 1.2708 35cm sta 216730 chip / Sm along strike mud water 216721 60 cm chip > 50 % st. 216707 Plob sab 15 216720, 13 = 50 2 3te pulled by pacehoe beneath water fr .216.719 Den chip stroper/veniction resembles 216724 Stronger 216731 135 cm chup : = 4070 gtz 216718 50cm chip stringers/vesslets in chlorite schiet 216722 30 enchij 20-59 70 % in Ņ 20 metres labbreter shear 220 stronger a , Sycofera) matic volcante interp peringspe a highly n to britises L15+20M a Volcenses 111+07E

Figure 11. Agassiz West Gold Showings Trench 3 (South)

Within the southernmost of the three trenches, shown in Figure 11, two subparallel quartz veins trending northwest-southeast are cut by several quartz feldspar porphyry dykes. Visible gold has been observed at several locations within each vein. Mineralization and textures exposed in this trench resemble those observed in the previous trenches, and assay results suggest a similarly erratic distribution of gold. The trench is approximately 20 metres long, and each vein has been exposed for a length of about 11 metres.

Samples consisting entirely of wallrock assayed from around 50 ppb up to 435 ppb (0.013 oz./ton) gold. One sample of silicified chlorite schist occurring adjacent to the northern vein assayed 0.780 oz./ton gold, however, other samples of rocks adjacent to vein contacts returned uniformly low gold values. Grab samples of vein material returned values ranging from a low of 76 ppb to highs of 2.06 and 2.36 oz./ton. Results of chip sampling across the veins and adjacent wallrock suggests that gold mineralization is most abundant in the central and southeastern parts of the exposure. Northwest of the westernmost porphyry dyke, assays of quartz typically ran less than 0.075 oz./ton, while southeast of the dyke assays were typically between 0.075 and 0.20 oz./ton, with occasional higher values.


Wagg North Area

In the area immediately north of the Wagg showing, 1991 work had uncovered more than a dozen angular blocks of vein quartz in the vicinity of grid co-ordinate 36+25 N, 12+15 E, on the margin of an area covered by deep overburden (Figure 12). A representative sample, numbered 11316, and composed of chips obtained from most of the blocks, assayed 0.328 oz./ton gold (Wagg and Holmstead, 1991). The area is directly along strike from the northern tip of the "F" vein at the Wagg showing, and quartz stringers and porphyry dykes characteristic of the showing had been observed in metavolcanic outcrops in the intervening 25 metres. Given the southerly direction of ice advance during glaciation, it was assumed that the source of the float was a previously unexposed vein lying under the overburden near sample 11316.

The area exposed by the 1992 stripping measures 3 to 5 metres wide, and extends about 30 metres downslope from L 36+15 N, 12+30 E to L 36+30 N, 12+10 E. As shown in Figure 12, the exposure consists primarily of pillowed mafic metavolcanics containing infrequent quartz stringers. The northern half of the trench was difficult to examine in detail because irregularities in the bedrock surface prevented thorough cleaning.

Although the stripping unearthed several scattered blocks of "showing type" quartz from within overburden, the programme was unsuccessful in locating the source of the float.

Overburden removal had progressed from south to north, down a moderate slope through an increasingly thick sand and boulder till. Stripping was suspended a short distance north of the location of sample 11316, where large metavolcanic boulders are stacked against a north facing cliff in the bedrock topography. The boulders could not be dislodged by the relatively light equipment being utilized.

The two veins shown to occur near the middle of the trench are of a different texture, and are far too narrow to be the source of the vein quartz debris. The two veins carry minor feldspar and pyrite, and resemble barren veins occurring elsewhere in the area, which have been interpreted to postdate gold mineralization. The dyke which crosses the stripped exposure is granitic textured, and intermediate to felsic in composition. It is grouped with rocks of the Sabaskong Batholith as map unit 5, and is not considered related to the quartz feldspar porphyries occurring within the Wagg showing. No samples were collected from this exposure.

Diamond Drilling

Three short holes totalling 120 feet were drilled in May of 1992, at the Wagg gold showing, located on claim 1079876. The holes were drilled in order to test the width of the "F" Vein, in an area where it was proposed to remove a portion of the bulk sample. Because of the inconclusive results, the drilling was abandoned.

As indicated on the drilling plan map, a two metre deep trench has since removed the vein in the area targeted by the drilling. As blasting progressed across the area in early September of 1992, it became evident that the vein was complexly folded downdip as well as along strike. It is now apparent that the vein was cut off just below surface in the vicinity of the drilling, by a porphyry dyke encountered in hole WT-92-01.

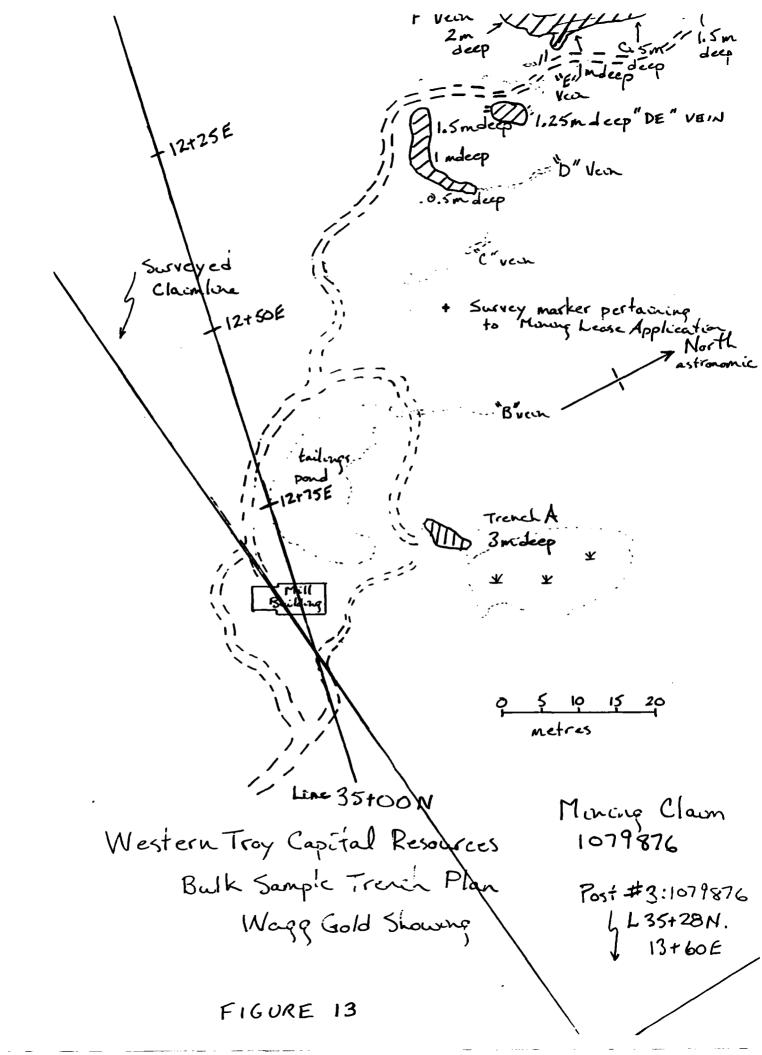
The holes intersected metamorphosed pillowed basalts which displayed a weakly variolitic texture around pillow margins, and exhibit a weak to moderate foliation. A narrow, weakly foliated, feldspar porphyry dyke was intersected in hole WT-92-01. Several narrow quartz veins, largely barren of mineralization, were intersected in holes WT-92-01 and WT-92-03. The geology and structure of the holes are diagrammed in the drill sections.

It is apparent from an examination of outcrops in the vicinity, that the foliation strikes about 025 degrees and dips subvertically to 70 degrees westerly, becoming variable near the margins of veins. Pillows have been flattened subparallel to the foliation, and appear to have been stretched to a slightly greater degree downdip than along strike. The porphyry dyke which crosses the area strikes about 020 degrees and appears to dip near vertically.

Detailed Diamond Drill Logs with a plan and sections are included in Appendix 2.

1 -

Bulk Sample


A 250 ton bulk sample was collected from Veins A, D, DE and F at the Wagg Showing on Claim 1079876 (Figure 13).

Preliminary metallurgical work was completed in February 1992 by Edward Ludwig of Nighthawk Diamond Drilling. (see Appendix 3) He examined reject material from seven samples collected from the Wagg Showing in 1991. He concluded that the gold bearing quartz at the Wagg Showing was "a very free milling ore which will require grinding to approximately 100% minus 100 mesh".

The quartz was found to be annealed with intense hairline fracturing. Gold was found to surround individual quartz grains and as wires protruding from larger pieces of quartz. Digestion of the sulphides by nitric acid did not yield any gold suggesting gold is contained only in the quartz vein material. Under the microscope, about 67% of the gold was found to be between -60 mesh and +100 mesh. The silver content was found to be very low, averaging about 0.05 oz/ton.

Ore was removed from the trenches by blasting from holes produced by a hand plugger powered by a 175 CFM Compressor. The ore was moved to the mill area by a Davis Front End Loader. Some ore was removed from the trenches with the help of a Case Backhoe. Preliminary crushing was done with a 10x12 inch Jaw Crusher. The mill feed crushed to about 0.25 inches was then transferred to a one ton ore bin by a small bucket elevator. The 6'x3' mill was fed by a rheostat controlled vibrating chute that could be adjusted to control the feed rate of the ore. The ore that entered the ball mill was then mixed with water and ground into a slurry. The fine overflow from the ball mill flowed into a 6' sluice lined with 3M Nomad carpeting. Material too coarse for the sluice was separated by a screen classifier and collected in a wooden box to be fed back into the ball mill. The carpeting was found to be very effective for catching gold grains. Discharge from the sluice box emptied into a 2" slurry pump where it was pumped to a 6" cyclone classifier. The fine fraction was discharged to the tailings shuice which was also lined with Nomad carpeting in order to catch any remnants of gold remaining in the tailings. The tailings were then discharged to a holding pond where they would settle out of the water. The coarse fraction from the cyclone classifier would then be recycled back into the ball mill for further size reduction.

Water for operation was taken from the tailings pond therefore the water used was constantly being recycled. The crusher, bucket elevator, vibrating chute, ball mill and slurry pump were all powered by a 75 KW diesel generator. The cyclone was powered by water pressure from the slurry pump. Other water pumps were gasoline powered.

The top piece of Nomad carpet in the sluice at the end of the ball mill was washed into a 5 gallon plastic pail every hour when the mill was in operation. It was found that most of the gold was caught on this carpet. The remaining carpets in the ball mill sluice and the carpets in the tailings sluice were cleaned at the end of the day in the same manner.

The concentrate from the carpets was then screened into different size fractions and the heavy portion was removed by hand panning or with a mechanical spiral panner. Reject material from the panning was then returned to the mill for further processing. The heavy portion recovered in the panning was dried and the magnetic portion was removed by the use of a magnet to be saved for gold removal at a later date. The dried, nonmagnetic, heavy fraction could then be hand panned to a concentrate that consists of about 90% gold. This step was found to be facilitated by the use of a suction device for separating the pure gold from the remaining waste material.

The 90% gold concentrate was then mixed with a flux consisting of borax, potassium nitrate, soda ash and silica in a clay crucible and melted in an oven capable of maintaining a temperature of about 2,000 degrees F.

To date all of the gold has not been removed from the concentrate therefore exact figures of gold recovery from the bulk sample are not available at the time of this report. To date about 75 troy ounces of gold have been recovered. A total of 247 tons of material were processed by the mill; 42% from Vein A, 32% from Vein F, 14% from Vein D, 5% from Vein DE and 7% composite material from all of the veins.

Three tailings samples (920708, 920721A and 920721B) were subjected to ICP analysis at Bondar Clegg in Ottawa with the following average results;

Gold (ppb)	2651
Aluminium (%)	0.24
Iron (%)	1.22
Manganese (ppm)	129
Magnesium (%)	0.21
Calcium (%)	0.38
Sodium (%)	0.04
Potassium (%)	0.05
Scandium (ppm)	<5
Vanadium (ppm)	9
Chromium (ppm)	39
Cobalt (ppm)	9
Nickel (ppm)	22
Copper (ppm)	110
Arsenic (ppm)	<5
Strontium (ppm)	2
Yttrium (ppm)	<1

Molybdenum (ppm)	4
Silver (ppm)	<0.2
Cadmium (ppm)	<0.2
Tin (ppm)	<20
Antimony (ppm)	<5
Tellurium (ppm)	< 10
Barium (ppm)	3
Lanthanum (ppm)	<1
Tungsten (ppm)	<20
Lead (ppm)	11
Bismuth (ppm)	<5
Zinc (ppm)	8
Mercury (ppb)	<5

•

DISCUSSION

The work by Western Troy Capital Resources in the vicinity of Menary Township has been carried out across an area which has seen little or no previous exploration. Prior to 1989, only one relatively insignificant gold showing was known within the boundaries of the company's claims. The 1991 exploration programme resulted in the discovery of the Agassiz West, Galbraith A, Galbraith B, Roadside vein, and Wagg gold showings, bringing to six the total number of gold occurrences in northeastern Menary Township.

The 1992 first phase mapping and prospecting, across 180 claim units, resulted in the discovery of the Galbraith C, Dillman shear zone, Dillman #1, and Dillman #2 gold showings. This totals 10 previously undiscovered gold occurrences and is testament to the excellent potential of the property for further gold discoveries.

Mechanical stripping was undertaken on four separate areas of the property, and some form of further work appears to be justified in each area. Initial stripping at the three Dillman showings (two areas), and at the Agassiz West area, revealed anomalous to ore-grade gold values over significant strike lengths. At the Wagg showing area, stripping did not reveal any veining, but further stripping in search of a northern extension remains a high priority.

The Roadside vein and Galbraith A, B, and C gold showings remain relatively untested. Narrow widths and/or erratic gold values, as well as budget constraints, are the reasons for not stripping these areas in 1992. There is little doubt, however, that as work progresses on the property, they will each be the subject of some sort of further work.

Geological mapping at a scale of 1:20,000 has produced a preliminary geological map of the properties, and has refined the locations of outcrops and geological contacts shown on Blackburn's 1976 map at a scale of 1:63,360. The mapping has revealed that there is a definite spatial association between gold bearing and barren veining, and certain geological units.

With the exception of the Dillman Shear Zone, all of the showings discovered to date on the Western Troy properties are situated within the lowermost M1 lithostratigraphic subdivision of the mafic metavolcanics. Similarly, quartz veins and small zones of shearing and alteration are far more abundant within the M1 zone than within any of the succeeding zones.

The M1 zone consists primarily of thin pillowed, massive, and pillowed variolitic flows. No one rock type hosts all of the showings, and in fact rapidly alternating sequences may be preferred areas for vein formation. There appears to be some correlation between areas containing variolitic textured pillowed flows, and areas containing abundant veining. However, this relationship may be only a function of the detail of investigation into the areas hosting numerous veins.

The showings hosted within rocks of the M1 zone all contain quartz veins of a similar appearance, texture, and mineralogy. Wallrock to the veins is essentially unaltered, with the exception of the Dillman #1 and #2 veins, and at most showings shearing is present, but not particularly prominent, and not apparently significant in terms of vein emplacement.

The veins all appear to have filled fracture controlled dilation zones. In some areas, such as at the Roadside vein and the Agassiz West #1 and #2 trenches, and possibly at the Dillman #1 and #2 veins, a single reasonably planar structure has been interpreted. Elsewhere, such as at the Galbraith A and Wagg showings, and at the Agassiz West #3 trench, multiple dilation zones developed. These showings have been subjected to significantly more post-emplacement deformation than the single vein showings. This may not reflect a greater absolute age for the highly deformed veins, but it likely indicates that vein formation continued over a longer period, and seems to indicate a greater potential for gold mineralization to occur within them.

The showings which consist of multiple veins, the Agassiz West, Wagg, and Galbraith A, are the closest of the many showings to the contact of the Sabaskong Batholith. The showings' position within the lower portion of the M1 zone is interpreted to be due to conditions prevailing at the time of initial vein formation, rather than to conditions prevailing during the intrusion of the Sabaskong Batholith. Veins relating directly to the intrusion of the batholith are uniformly white, glassy to crystalline, are associated with zones of granitic dykes, and return negligible gold values. Clusters of barren veins formed prior to the intrusion of porphyry dykes, and found within the upper portions of the M1 zone, are in some cases closer to the batholith than many of the single vein showings. The barren veined areas appear to have undergone considerably less deformation than the areas of multiple vein showings.

Evidence of post-emplacement brittle and ductile deformation was observed at all of the showings within the M1 zone. In addition, porphyry dykes are present in the immediate vicinity of all the showings, and frequently crosscut quartz veins. The dykes are relatively undeformed, and no evidence was observed to indicate that they may have had any role in the introduction of gold mineralization, other than that of causing local remobilization. The porphyries are interpreted to occur in association with both gold bearing and barren veins because of pre-existing zones of weakness in the areas of veining. If as the author believes, Blackburn's interpretation of the origin and timing of the porphyry intrusions is correct, and they are the intrusive equivalent of the metamorphosed felsic volcanics located along Burditt Lake, then it appears that gold bearing vein formation had largely concluded prior to the commencement of the second cycle mafic to felsic volcanism. This interpretation suggests that, the veining may be the result of hydrothermal fluids moving through a cooling volcanic pile, and that although the Batholith might be the initial source of the fluids and gold at depth, the present distribution of veins and gold mineralization is essentially unrelated to the intrusion of the Batholith and concurrent regional metamorphism.

The Dillman Shear Zone, located within the mixed pillowed to gabbroic textured M3 zone, contains a small bluish grey quartz vein which is heavily mineralized with pyrite, and contains traces of very fine native gold. The different nature of the quartz and mineralization may be due to having a different host rock than the other showings, however, this is the only showing in which shearing crosscutting the regional foliation is prominent. The showing may be related to a major topographic lineament, and is tentatively interpreted to be younger than the other known showings. It is notable that a porphyry dyke, occurring alongside a portion of the zone of shearing, is somewhat folded, while the chloritic shear itself is a linear structure. While this is by no means conclusive evidence for the following interpretation, it is postulated that the Dillman Shear Zone formed during the late stages of the regional metamorphic event.

Although all of the showings on the property have returned at least one anomalous value from sampling, the erratic nature of native gold distribution prevents an accurate determination of grade without exhaustive sampling. In addition, the relatively small size of individual veins, and the complex deformation which most of the showings display, presents a substantial challenge to diamond drilling programmes. Consequently, overburden stripping and rock trenching may be the most efficient and cost effective means of making a preliminary evaluation of the gold showings on the property.

• :

CONCLUSIONS

The results of the 1992 reconnaissance mapping and prospecting programme clearly indicate that the pillowed and massive metabasalts of the M1 lithostratigraphic zone represent the area of the Western Troy properties with the highest potential to host gold bearing quartz veins. Nine of the ten gold showings known to exist on the property occur within the M1 zone, which occurs along the northwestern margin of both Western Troy properties.

Eight of the nine showings contain quartz veins filling fracture-related dilation zones, and all have undergone varying degrees of brittle and ductile deformation. A greater degree of deformation seems to correspond with more consistent gold values along strike of a vein, and occasionally correspond to higher gold grades.

Of the ten known showings, seven are known to contain visible gold, and nine have returned at least one assay in excess of 1 oz./ton gold. Four of the showings have yet to be tested by mechanical stripping, and six occur in areas not covered by the 1989 ground geophysical surveys.

Although both veining and sulphide mineralization are uncommon to the southeast within the overlying zones of the metavolcanic sequence M2-F1, the area should not be dismissed as totally without potential. The Dillman shear gold showing occurring in the central portion of the southern property has been interpreted as being younger than the group of zone M1 showings, and as having been formed under a different set of prevailing tectonic conditions. The showing occurs within the M3 zone of mafic metavolcanics, from which two anomalous gold samples were collected on the southern property. Limited potential also exists within the M2 to F1 metavolcanic zones for shear zones to occur along a number of major topographic lineaments within which bedrock is largely obscured by overburden.

The rocks of the Sabaskong Batholith do not appear to have been a particularly favourable site for the development of quartz veins. The few samples collected from veins within the granite all returned uniformly low gold values, however this type of mineralization has not been thoroughly investigated and can not be completely ruled out. Similarly, it appears that no veining or mineralization occurs in association with diabase dykes.

The results of the limited diamond drilling are inconclusive. Because only three short holes were drilled, all collared within an area less than 8 metres in diameter, it is judged unreasonable to apply the results obtained at the southern end of the "F" vein to the remainder of the vein, or to the other veins at the showing.

The bulk sample programme was successful in demonstrating that the gold at the Wagg Showing was free milling and that a gravity separation circuit could be set up to remove the gold with little or no significant impact to the surrounding environment. The process of extracting the gold from the concentrates is ongoing at the time of this report, therefore the total gold recovered is not known at the time of writing. It is known, however, that the majority of the gold was free milling and very little gold was being lost to the tailings therefore the final gold recoveries are expected to be satisfactory.

RECOMMENDATIONS

- 1. All of the present claim groups should be retained in good standing.
- 2. A grid with lines spaced 100 metres apart should be cut over the portion of the properties underlain by rocks of the metavolcanic M1 zone. The lines should be extended 100 to 200 metres beyond the contact with the M2 zone, and a similar distance into the Sabaskong Batholith on the northern property.
- 3. Geological mapping, soil geochemistry, and magnetometer and VLF-EM surveys with a 25 metre station spacing should be completed over the gridded area.
- 4. Mechanical stripping, outcrop washing, mapping and detailed sampling should be completed at the four previously unstripped gold showings.
- 5. Additional mechanical stripping should be completed at the Dillman #1 and #2, and the Agassiz West gold showings. Bedrock trenching should be completed, and large representative samples collected, prior to commencing exploratory diamond drilling.
- 6. Prospecting, and ground magnetometer and VLF-EM surveys should be completed over a flagged grid at the Dillman Shear Zone gold showing, and over selected portions of several major lineaments located within zones M2 to M5.

Several areas of abundant quartz veining which returned negligible gold values from within the M1 zone on the northern property should be examined further. Gold bearing veins may be found within or peripheral to the areas, and further study may reveal critical factors governing the localization and emplacement of gold bearing quartz veins.

Detailed diamond drilling should be done on the veins of the Wagg showing in order to define the down dip continuity and consistency of gold grades in the veins.

The bulk sample programme should continue with sampling of veins that were not sampled in 1992. Larger, more representative samples should be taken from the veins that were sampled in 1992. The existing mill on site should be upgraded to a minimum 10 ton per day set-up by improving the efficiency of the grinding circuit.

BIBLIOGRAPHY

Bajc, A.F.

1988: Reconnaissance Till Sampling in the Fort Frances-Rainy River District, in Summary of Fieldwork and Other Activities 1988, Ontario Geological Survey Miscellaneous Paper 141, pp. 417-420.

Blackburn, C.E.

1976: Geology of the Off Lake-Burditt Lake Area, District of Rainy River; Ontario Division of Mines Geoscience Report 140, 62p. Accompanied by Map 2325, scale 1 inch to 1 mile (1:63 360).

Clarke, J.G.

1989: Evaluation of the Exploration Potential of the Menary Township Property, District of Kenora, for Western Troy Capital Resources Inc., 20 p.

Edwards, G.R.

1981: Bethune Lake; Ontario Geological Survey Map 2430, Precambrian Geology Series, scale 1 inch to 1/2 mile. Geology 1975.

Ontario Geological Survey

1990: Airborne Electromagnetic and Total Intensity Magnetic Survey, Rainy River Area.

Studemeister, P.A.

1985: Report on the Hodge Property, Menary Township, Ontario, for Agassiz Resources Ltd., Assessment Files, Kenora Ministry of Northern Development and Mines.

Sullivan, J.R.

• :

1974: Diamond Drill Logs of Perkins Option Drill Program, Assessment Files, Kenora Ministry of Northern Development and Mines, 8 p.

Wagg, C.A., and Holmstead, W.E.

1991: Exploration Programme on the Menary Township Property, Menary Township, District of Kenora, Ontario, for Western Troy Capital Resources Inc., 25 p.

CERTIFICATE

I, Christopher Anthony Wagg, residing at R.R. 1, village of Denbigh, in the Province of Ontario, KOH 1LO, do here by certify that:

- 1... I hold a Bachelor of Science degree (Honours Geology) received at the University of Western Ontario in 1989.
- 2... I have been employed as a consulting geologist since 1987, and have been practising my profession continuously since 1989.
- 3... My report on the Menary Township Area Properties of Western Troy Capital Resources Inc. is based upon a review of published and unpublished information concerning the property and surrounding area, and upon personal knowledge of the geology of the property obtained over the course of approximately three months of fieldwork completed between May and August of 1992.
- 4... My report on the Menary Township Area Properties has been written entirely, and in all respects, as an independent consultant.
- 5... I hold no interest, direct or indirect, in the properties or securities of Western Troy Capital Resources Inc., or in any adjacent properties, nor do I intend to acquire any such interest.

Dated at Denbigh, Ontario, this 31st day of January, 1993,

• .

Christopher A. Wagg, B.Sc.

CERTIFICATE

I, Wayne E. Holmstead, of the City of Kingston in the Province of Ontario, DO HEREBY CERTIFY THAT:

1. I am a Consulting Geologist with address at 1074 Dillingham Street, Kingston, Ontario, Canada.

2. I graduated from the University of Toronto with a Bachelor of Science in Geology in 1976 and have been practising my profession since.

3. I am a Director of Western Troy Capital Resources Inc. and I hold a 1% Net Smelter Return on the property that is the subject of this report.

4. This report is based upon the sources listed in the Bibliography and from my personal experience on the property as Managing Consultant for the exploration programme.

Dated at Kingston, Ontario, this 31st day of January, 1993. Wayne E, Holmstead, B.Sc.

• :

APPENDIX 1

ANALYSES

•

.

NUMBER	CLAIM	WIDTH (CM)	DESCRIPTION
	1149484	GRAB	
	1149484		
	1149484		-
	1149484		
	1149484		-
	1149484		QV 10-15 CM
	1149487		LARGE QV IN SOFT CHL SH AT OR NEAR GR CONTACT
	1149487		LARGE OV IN SOFT CHL SH AT OR NEAR GR CONTACT
	1149489		LARGE OV IN SOFT CHL SH AT OR NEAR GR CONTACT
	1149489		LARGE OV IN SOFT CHL SH AT OR NEAR GR CONTACT
	1149489		LARGE QV IN SOFT CHL SH
	1149489		SOFT CHLORITE SHEAR
	1149489		QV IN AREA OF 657-661
77664	1149487	GRAB	DISS. PY IN BASALT
77665	1149487	GRAB	DISS. PY IN BASALT
77666	1149486	GRAB	QV TR CHLORITE
77667	1149492	GRAB	QV SMOKEY QUARTZ 1-3% CHL
77668	1149492	GRAB	QV 2x15M TR PY CP
77669	1149492	GRAB	SAME AS 668
77670	1149492	GRAB	QV 15-20CH TR PY CP
77671	1149492	GRAB	QV 6Mx20-30CM 20M SW OF 670
77672	1149492	GRAB	STRINGER ZONE 3M WIDEX5M TR COARSE PY
77673	1149492	GRAB	QV 10Mx30-40CM
77674		GRAB	QV 3Mx30CM
77675		GRAB	QV 10-30CHx3M TR EPIDOTE
77676	1149496	GRAB	FELSIC SHEAR QTZ SER MINOR PY CHL
	1149496		SAME AS 676
	1149496		STRINGERS IN SHEAR
	1149496		QTZ PODS IN FEL-INT SH
	1149496		QTZ STRINGERS IN GABBROIC VOLC
	1149496		QV 2Mx30-50CM TR PY CP
	1149492		QV 20CMx4M TR PY
	1149492		SMOKEY QUARTZ PODS
	1149492		QV NARROW FOLDED
	1149492 1149492		LOOSE QTZ
	1149492		SMOKEY QTZ STRONG HEMATITE STAIN
	1079871		QTZ POD
77699	1140402	CRAD	QTZ POD 30CM WIDE TR PY CP MINOR CHL
77690	1149492 1149492	CPAR	QV NOSE OF FOLD
77601	1149492	CRAD	QTZ FLOAT
	<u> </u>		QTZ STRINGER IN GABBRO
	1149492		QV 25 CM WIDE
	1092641		QV NORTH END ROADSIDE VEIN
77695	1092641	CPAR	ROUNDED QTZ BOULDER
77696	1149497		QV 75CMx10M TR PY VARIOLITIC WALLROCK
77697	1149497	CRAR	QTZ FLOAT LOCAL ORIGIN
	1149497		QV 2-3% PY+CP
	1149497		SAME AS 698
	1149497		QTZ STRINGER ZONE IN HORNFELSED GABBRO
	1149497		QTZ POD WITH COARSE CALCITE
	1149494		QV 1M WIDE TR PY
	1149497		QV 30CMx10M TR PY CP

·

- ---

- ----

. .

NUMBER	CLAIM	WIDTH(CM)	DESCRIPTION
	1149497		QTZ STRINGER ZONE IN VOLC
77705	1149496	GRAB	QV
77706	1149497	GRAB	ABUNDANT QV DEBRIS 30-50CM
	1149497		
	1149497		-
	1149496		QTZ RUBBLE 20 CM
77710	1149496	GRAB	INT-FEL TUFF/SED 3-5% PY TR CP
77711	1149496 1149496	GRAB	
77712	1149496	GRAB	QV
77713	1149496		ABUNDANT QV FLOAT
	1149496	GRAB	QV EXPOSED WIDTH 50CM
77715	1149496	GRAB	QV OR PODS
77716	1149496	GRAB	QTZ FLOAT JUST N OF 77714
77717	1149496	GRAB	QV NO MIN
77718	1149497	GRAB	RESAMPLE 77706
	1149497		RESAMPLE 77706
	1149495		QV 10-25CMx2M
	1149495		POSSIBLE EXTENSION TO 721
	1149495		QTZ FLOAT TR PY VUGGY
	1149495		WALLROCK TO 721
	1149495		QTZ POD 20M NE OF 722 723
	1149495		QV 20M E OF 724
	1149495		QV 20CM WIDE
	1149495		QTZ FLOAT
	1149494		
77729			90% QTZ TR PY
	1149497		QV WEAKLY SHEARED TR PY CP
	1149497		STRINGERS/PODS SMOKEY BLUE QTZ
	1149506		QTZ FLOAT 40CM
	1149505		STRONGLY CARBONATED ALTERED GABBRO
	1149506 1079876		QTZ FLOAT TR PY CP 30CM
	1079876		VEIN A WAGG SHOWING VEIN A WAGG SHOWING
	1079876		VEIN A WAGG SHOWING
			N END VEIN A
	1149505		n Bad vein a
77740	1149505		FE-CARB FUCHSITE CALCITE IN FLOAT
77741	1149505		IRREGULAR QTZ LENSES
77742	1149505		QTZ STRINGER ZONE IN CHLOR SHD GABBRO
77743	1149505	GRAB	QV IN SHEAR ZONE IN GAB MINOR PY CP
77744	1149505	GRAB	QV IN SHEAR ZONE IN GAB MINOR PY CP
	1149505		QV IN SHEAR ZONE IN GAB MINOR PY CP
77746	1149505	GRAB	QV IN SHEAR ZONE IN GAB MINOR PY CP
77747	1149505	GRAB	QV IN SHEAR ZONE IN GAB MINOR PY CP
77748	1149505	GRAB	QV IN SHEAR ZONE IN GAB MINOR PY CP
77749	1149502		QTZ STRINGERS IN FELD PORPH DIKE
77750	1149502		QV AND FLOAT 30CM
77751	1149502		QV 10-15CM IN WK SHD VOLC
77752			QTZ STRINGERS IN ALTERED VOLC 1-2% PY
	1149502		QTZ CEMENTED VOLC 1-2% PY
	1149502		ALTERED VOLC
	1149505		
77756	1149505	GRAB	WEAKLY SIL SHEAR

- ----

--- ---

- ----

		WIDTH(CM)DESCRIPTION
	1149502	100 STRINGER SHEAR ZONE
	1149502	
	1149506	
	1149502	
	1149506	
	1149506	
11163	1149506	GRAB QV AND WALLROCK
///04	1149506	GRAB QTZ FLOAT POSSIBLE SILVER OR ARGENTITE
	1149506	
	1149506	
77767	1000641	GRAB PORPH-QTZ-VOLC FLOAT 2-3% CP
	1092641	
	1092641	
	1092642	
77771	1149505 1092641	GRAB QTZ STRINGER ANGULAR FLOAT
77772	1092641	GRAB QV STRINGER ZONE 10-15CM WIDE
	1092641	
	1092641	~
	1092637	
	1092637	
	1149496	
	1149496	
	1149496	
	1149496	
	1149496	
	1149496	
	1149496	-
	1149496	
	1149497	
	1149497	
	1149497	
	1149497	-
	1149497	
	1149497	
	1149497	
	1149497	
77793	1149497	
77794	1149497	
	1149497	
	1149497	
	1149495	
	1149495	
	1149496	
77800	1149497	
77801	1149497	
	1149497	
77803	1149497	
77804		
77805	1149497	
	1149497	
	1149496	
	1149496	
11809	1149496	GRAB QV WHITE

77810 1149496 GRAB GV WHITE-RED 77811 1149496 GRAB MARCOW QV 77812 1149496 GRAB GYZ STR IN VOLC 77813 1149496 GRAB ABUNDANT 5-10CM QTZ FLOAT 77814 1149499 GRAB ABUNDANT 5-10CM QTZ FLOAT 77815 1149499 GRAB ABUNDANT 5-10CM QV 77816 1149496 GRAB IS-30CM QV 77817 1149495 GRAB SMALL QV 77818 1149495 GRAB SMALL QV 77820 1149495 GRAB SMALL QV 77821 1149495 GRAB ALTERED VOLC FLOAT TR 77821 1149495 GRAB ALTERED VOLC FLOAT TR 77823 1149495 GRAB QV 77824 1149501 GRAB QTZ FLOAT GREY CHEATT 77825 1149501 GRAB QTZ FLOAT GREY CHEATT 77826 1149492 GRAB QTZ STR 10CM WIDE 77827 1149492 GRAB QTZ STR 10CM WIDE 77828 1149492 GRAB QTZ STR 10CM WIDE 218501 1149485 GRAB QTZ STR 10CM WIDE 218502 1149485 GRAB QTZ STR 10CM WIDE 218503 11	NUMBER	CLAIM	WIDTH(CM)	DESCRIPTION
77811 1149496 GRAB MARCM QV 77812 1149496 GRAB INT-FEL SHD SIL TUFF TR PY 77813 1149496 GRAB ADUNDANT 5-10CM QTZ FLOAT 77814 1149496 GRAB ADUNDANT 5-10CM QTZ FLOAT 77815 1149496 GRAB 15-30CM QV 77816 1149496 GRAB 15-30CM QV 77817 1149496 GRAB QV 77818 1149496 GRAB ADUNDANT 5-10CM QTZ FLOAT 77817 1149496 GRAB QV 77818 1149495 GRAB ADUNDANT S-10CM QV 77819 1149495 GRAB ADUNDANT S-10CM QV 77820 1149495 GRAB SMALL QV 77821 1149495 GRAB QV SOCM WIDE TR PY CHL 77822 1149495 GRAB QTZ STR FORTH MIMOR PY 77823 1149495 GRAB QTZ STR IN GRZ COME IN WIDE 77824 1149492 GRAB QTZ STR INGCR COME IN WIDE 77825 1149492 GRAB QTZ STR IN COCM WIDE 77826 1149492 GRAB QTZ STR INCGR COME IN WIDE 77830 1149485 GRAB QTZ STR INCGR COME IN WIDE 71830 1149485 GRAB ALTERED WALLROCK			• •	
77812 11434496 GRAB INT-FEL SHD SIL TUFF TR PY 77813 11434499 GRAB QTZ STR IN VOLC 77814 11434499 GRAB ABUNDANT 5-10CM QTZ FLOAT 77815 11434499 GRAB 15-30CM QV 77816 11434496 GRAB 15-30CM QV 77817 1143496 GRAB QTZ STR IN VOLCANICS 77818 1143498 GRAB RUSTY VOLCANICS 77820 1143495 GRAB SMALL QV 77821 1143495 GRAB SMALL QV 77822 1143495 GRAB SMALL QV 77823 1143495 GRAB RUSTY PORPH MINOR PY 77824 1143501 GRAB QTZ STPOPH MINOR PY 77825 1143501 GRAB QTZ PLOAT GRY CHERTY 77826 1143492 GRAB QTZ STR IOCH WIDE 218501 1149492 GRAB QTZ STR IOCH WIDE 218501 1149485 GSAB QTZ STR IOCH WIDE 218502 1149485 GRAB QTZ STR IOCH WIDE 218503 1149485 GRAB QTZ STR IN FELD PORPH 218504 1149485 GRAB QTZ STR IN CP 218505 1149485 GRAB QTZ STR IN PELD PORPH <				
77813 1149496 GRAB QTZ STR IN VOLC 77814 1149499 GRAB ABUNDANT 5-10CM QTZ FLOAT 77815 1149499 GRAB 15-30CM QV 77816 1149496 GRAB 15-30CM QV 77817 1149496 GRAB QTZ STR IN VOLCANICS 77818 1149498 GRAB RUSTY VOLCANICS 77820 1149495 GRAB SMALL QV 77821 1149495 GRAB SMALL QV 77822 1149495 GRAB SMALL QV 77823 1149501 GRAB RUSTY PORPH MINOR PY 77824 1149501 GRAB QTZ POD 30CM IDE TR PY CHL 77825 1149501 GRAB QTZ POD 30CM IM GAB VOLC 77826 1149501 GRAB QTZ STR IN GRE ZONE IM WIDE 77828 1149492 GRAB QTZ STR IN COM WIDE 77829 1149492 GRAB QTZ STR IN COM WIDE 77820 1149492 GRAB QTZ STR IN PORPH 77821 1149492 GRAB QTZ STR IN PORPH 77828 1149492 GRAB QTZ STR IN PORPH 77830 1149492 GRAB QTZ STR IN PORPH 218501 1149485 GS QV 65CM 218503	77812	1149496	GRAB	
77814 1149499 GRAB ABUNDANT 5-10CM QTZ FLOAT 77815 1149496 GRAB 15-30CM QV 77816 1149496 GRAB 15-30CM QV 77817 1149496 GRAB QV 77818 1149498 GRAB RUSTY VOLCANICS 77820 1149495 GRAB SMALL QV 77821 1149501 GRAB RUSTY PORPH MINOR PY 77823 1149501 GRAB ALTERED VOLC FLOAT TR PY 77826 1149501 GRAB QTZ POD 30CH13M+ 77827 1149501 GRAB QTZ STR INGER ZONE IM WIDE 77828 1149492 GRAB QTZ STR INGER ZONE IM WIDE 77829 1149492 GRAB QTZ STR INGER ZONE IM WIDE 218501 1149485 65 QV 65CM 218502 1149485 GRAB QTZ STR IN FELD PORPH 218503 1149485 GS QV 50CM 218504 1149485 GS QV 50CM 218505 1149485 GS QV 50CM 218506 1149485 GS QT 20CM </td <td>77813</td> <td>1149496</td> <td></td> <td></td>	77813	1149496		
77815 1149499 GRAB 15-30CH QV 77816 1149496 GRAB 15-30CH QV 77816 1149496 GRAB 15-30CH QV 77818 1149496 GRAB QV 77819 1149495 GRAB SMALL QV 77821 1149501 GRAB RAB RUSTY PORPH MINOR PY 77824 1149501 GRAB QTZ FODAT GRETY PY 77825 1149501 GRAB QTZ STAINGER ZONT TPY 77826 1149492 GRAB QTZ STAINGER ZONT TRETY 77828 1149492 GRAB QTZ STAINGER ZONT TRETY 77830 1149485 GS QV 65 QV 65 QU 65 218505 1149485 GS <td>77814</td> <td>1149499</td> <td>GRAB</td> <td></td>	77814	1149499	GRAB	
77816 1149496 GRAB 15-30CM QV 77817 1149496 GRAB QV 77818 1149498 GRAB RUSTY VOLCANICS 77820 1149495 GRAB SMALL QV 77821 1149495 GRAB SMALL QV 77822 1149495 GRAB SMALL QV 77823 1149501 GRAB QV 50CM WIDE TR PY CHL 77824 1149501 GRAB QV 30CM IN GAB VOLC 77825 1149501 GRAB QV 30CM IN GAB VOLC 77826 1149501 GRAB QTZ PLOAT GREY CHERTY 77827 1149501 GRAB QTZ STRINGER ZONE IM WIDE 77828 1149492 GRAB QTZ STR INCHERTY 77829 1149492 GRAB QTZ STR INCHERTY 77829 1149492 GRAB QTZ STR INCHERTY 77829 1149485 GSAB QTZ STR INCHERTY 77820 1149485 GRAB QTZ STR INCHERTY 71828 1149492 GRAB QTZ STR INCH WIDE 218501 1149485 GSAB QTZ STR INCH WIDE 218502 1149485 GSAB QTZ STR IN PELD PORPH 218503 1149485 GRAB SHD PILLOW VOLC 218504 114	77815	1149499		
77817 1149496 GRAB QV 77818 1149498 GRAB QV 77819 1149498 GRAB SMALL QV 77820 1149495 GRAB SMALL QV 77821 1149495 GRAB SMALL QV 77822 1149495 GRAB SMALL QV 77823 1149501 GRAB QN SOCH WIDE TR PY CHL 77824 1149501 GRAB QV SOCH WIDE TR PY CHL 77825 1149501 GRAB QT FLOAT GREY CHERTY 77826 1149501 GRAB QTZ FDOJ SOCMX3M+ 77827 1149492 GRAB QTZ STR INGER ZONE IN WIDE 77828 1149492 GRAB QTZ STR 5-10CM WIDE 218501 1149485 GGRAB QTZ STR 5-10CM WIDE 218502 1149485 GRAB QTZ STR 10 CM WIDE 218503 1149485 GRAB ALTERED WALLROCK 218504 1149485 GRAB MARROW QV 5% PT TR CP 218505 1149485 GRAB MARROW QV 5% PT TR CP 218506 1149485 GRAB QTZ STR IN PORPH 218507 1149485 GRAB MARROW QV 5% PT TR CP 218508 1149492 GRAB SIL ZONE IN HANG WALL TO 508 2185	77816	1149496	GRAB	
77820 1149495 GRAB SMALL QV 77821 1149495 GRAB SMALL QV 77821 1149495 GRAB SMALL QV 77823 1149501 GRAB RUSTY PORPH MINOR PY 77824 1149501 GRAB QV 50CM WIDE TR PY CHL 77824 1149501 GRAB QTZ FLOAT GREY CHEATY 77826 1149501 GRAB QTZ FOAT GREY CHEATY 77827 1149501 GRAB QTZ STR INGER ZONE IM WIDE 77828 1149492 GRAB QTZ STR 10CM WIDE 77829 1149492 GRAB QTZ STR 5-10CM WIDE 218501 1149485 GFAB ALTERED WALLROCK 218502 1149485 GRAB ALTERED WALLROCK 218503 1149485 GFAB SIL ZONE IN HELD PORPH 218504 1149485 75 QV 70-75CM 218505 1149485 GFAB SIL ZONE IN HANG WALL TO 508 218506 1149485 55 QV 55CM 218507 1149485 GFAB SIL ZONE IN HANG WALL TO 508 218509 1149492 GRAB SUP ZONE VOLC 218510 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510	77817	1149496	GRAB	
77820 1149495 GRAB SMALL QV 77821 1149495 GRAB SMALL QV 77821 1149495 GRAB SMALL QV 77823 1149501 GRAB RUSTY PORPH MINOR PY 77824 1149501 GRAB QV 50CM WIDE TR PY CHL 77824 1149501 GRAB QTZ FLOAT GREY CHEATY 77826 1149501 GRAB QTZ FOAT GREY CHEATY 77827 1149501 GRAB QTZ STR INGER ZONE IM WIDE 77828 1149492 GRAB QTZ STR 10CM WIDE 77829 1149492 GRAB QTZ STR 5-10CM WIDE 218501 1149485 GFAB ALTERED WALLROCK 218502 1149485 GRAB ALTERED WALLROCK 218503 1149485 GFAB SIL ZONE IN HELD PORPH 218504 1149485 75 QV 70-75CM 218505 1149485 GFAB SIL ZONE IN HANG WALL TO 508 218506 1149485 55 QV 55CM 218507 1149485 GFAB SIL ZONE IN HANG WALL TO 508 218509 1149492 GRAB SUP ZONE VOLC 218510 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510	77818	1149498	GRAB	
77820 1149495 GRAB SMALL QV 77821 1149495 GRAB SMALL QV 77821 1149495 GRAB SMALL QV 77823 1149501 GRAB RUSTY PORPH MINOR PY 77824 1149501 GRAB QV 50CM WIDE TR PY CHL 77824 1149501 GRAB QTZ FLOAT GREY CHEATY 77826 1149501 GRAB QTZ FOAT GREY CHEATY 77827 1149501 GRAB QTZ STR INGER ZONE IM WIDE 77828 1149492 GRAB QTZ STR 10CM WIDE 77829 1149492 GRAB QTZ STR 5-10CM WIDE 218501 1149485 GFAB ALTERED WALLROCK 218502 1149485 GRAB ALTERED WALLROCK 218503 1149485 GFAB SIL ZONE IN HELD PORPH 218504 1149485 75 QV 70-75CM 218505 1149485 GFAB SIL ZONE IN HANG WALL TO 508 218506 1149485 55 QV 55CM 218507 1149485 GFAB SIL ZONE IN HANG WALL TO 508 218509 1149492 GRAB SUP ZONE VOLC 218510 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510	77819	1149498	GRAB	
77821 1149495 GRAB SNALL QV 77822 1149495 GRAB SNALL QV 77824 1149501 GRAB SNALL QV 77824 1149501 GRAB RNBSTY PORPH MINOR PY 77824 1149501 GRAB QV 50CM WIDE TR PY 77825 1149501 GRAB QV 30CM IN GAB VOLC 77826 1149501 GRAB QTZ FUADAT GREY CHERTY 77828 1149492 GRAB QTZ STRINGER ZONE IM WIDE 77827 1149501 GRAB QTZ STRINGER ZONE IM WIDE 77828 1149492 GRAB QTZ STRINGER ZONE IM WIDE 77820 1149485 GRAB QTZ STRINGER ZONE IM WIDE 218501 1149485 GRAB QTZ STR IM POCH ZONE 218502 1149485 GRAB QTZ STR IN PELD PORPH 218503 1149485 GRAB	77820	1149495	GRAB	
77822 1149495 GRAB SNALL QV 77823 1149501 GRAB RUSTY PORPH MINOR PY 77824 1149501 GRAB QV SOCM WIDE TR PY 77825 1149501 GRAB QV SOCM WIDE TR PY 77826 1149501 GRAB QTZ FLOAT GREY CHENTY 77827 1149501 GRAB QTZ FLOAT GREY CHENTY 77828 1149492 GRAB QTZ STR INGER ZONE IM WIDE 77828 1149492 GRAB QTZ STR INGER ZONE IM WIDE 77830 1149492 GRAB QTZ STR 5-10CM WIDE 218501 1149485 GFAB QTZ STR 5-40CM 218502 1149485 GRAB QTZ STR 5-40CM 218503 1149485 GRAB QTZ STR FPLD PORPH 218504 1149485 GRAB QTZ STR <td>77821</td> <td>1149495</td> <td></td> <td></td>	77821	1149495		
77823 1149501 GRAB RUSTY PORPH MINOR PY 77824 1149501 GRAB QV 50CM WIDE TR PY CHL 77825 1149501 GRAB QV 30CM IN GAB VOLC 77826 1149501 GRAB QTZ FLOAT GREY CHERTY 77827 1149501 GRAB QTZ STRINGER ZONE IN WIDE 77828 1149492 GRAB QTZ STRINGER ZONE IN WIDE 77828 1149492 GRAB QTZ STRINGER ZONE IN WIDE 77830 1149492 GRAB QTZ STR 10CM WIDE 218501 1149485 GRAB QTZ STR 10CM WIDE 218502 1149485 GRAB QTZ STR 10CM WIDE 218503 1149485 GRAB QTZ STR IN FELD PORPH 218504 1149485 GRAB ALTERED WALLROCK 218505 1149485 GRAB SIL ZONE IN HANG WALL TO 508 218506 1149485 SE QV 55CM 218507 1149485 SE QV 10-15CM 218508 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218509 1149492 GRAB QTZ STR IN PORPH 218509 1149492 GRAB ABUNDANT QTZ FLOAT 218510 1149492 GRAB ABUNDANT QTZ FLOAT 218511 1149492 <	77822	1149495	GRAB	
77824 1149501 GRAB QV 50CM WIDE TR PY CHL 77825 1149501 GRAB ALTERED VOLC FLOAT TR PY 77826 1149501 GRAB QTZ FLOAT GREY CHERTY 77828 1149492 GRAB QTZ STRINGER ZONE IN WIDE 77828 1149492 GRAB QTZ STRINGER ZONE IN WIDE 77828 1149492 GRAB QTZ STRINGER ZONE WIDE 77829 1149492 GRAB QTZ STRINGER ZONE IN WIDE 77820 1149492 GRAB QTZ STRINGER ZONE WIDE 218501 1149485 GRAB QTZ STR 10CM WIDE 218502 1149485 GSAB QTZ STR 5-10CM WIDE 218503 1149485 GSAB QTZ STR IN FELD PORPH 218504 1149485 GRAB ALTERED WALLROCK 218505 1149485 GSAB QTZ STR IN FELD PORPH 218506 1149485 75 QV 70-75CM 218507 1149485 55 QV 55CM 218508 149492 GRAB SHL ZONE IN HANG WALL TO 508 218509 1149492 GRAB GTZ FT IN PORPH 218501 1149492 GRAB QTZ STR IN PORPH 218512 1149492 GRAB SHD PILLOW VOLC 218513 1149492 <	77823	1149501	GRAB	
77825 1149501 GRAB ÅLTERED VOLC FLOAT TR PY 77826 1149501 GRAB QV 30CM IN GAB VOLC 77827 1149501 GRAB QTZ FLOAT GREY CHERTY 77827 1149492 GRAB QTZ PLOAT GREY CHERTY 77827 1149492 GRAB QTZ STRINGER ZONE IM WIDE 77829 1149492 GRAB QTZ STR 10CN WIDE 218501 1149485 GRAB QTZ STR 10CN WIDE 218502 1149485 GRAB QTZ STR 5-10CM WIDE 218503 1149485 GRAB ALTERED WALLROCK 218504 1149485 GRAB QTZ STR IN FELD PORPH 218505 1149485 75 QV 70-75CM 218506 1149485 75 QV 70-75CM 218507 1149485 55 QV 55CH 218508 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510 1149492 GRAB MARCW QV 5% PY TR CP 218511 1149492 GRAB QTZ POD 218512 1149492 GRAB QTZ POD 218513 1149492 GRAB SIL PORPH ADJ TO QV 218514 1149492 GRAB STREAM SED 1 218515 1149492 GRAB STREAM SED 1				
77826 1149501 GRAB QV 30CM IN GAB VOLC 77827 1149501 GRAB QTZ FLOAT GRET CHERTY 77828 1149492 GRAB QTZ FDOD 30CMx3M+ 77828 1149492 GRAB QTZ STRINGER ZONE IM WIDE 77830 1149492 GRAB QTZ STR 10CM WIDE 218501 1149485 GAB QTZ STR 5-10CM WIDE 218502 1149485 GAB QTZ STR 5-40CM 218503 1149485 GRAB QTZ STR IN FELD PORPH 218504 1149485 GRAB QTZ STR IN FELD PORPH 218505 1149485 GRAB QTZ STR IN FELD PORPH 218506 1149485 75 QV 70-75CM 218507 1149485 55 QV 55CM 218508 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510 1149485 75 QV 70-75CM 218509 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510 1149492 GRAB QTZ STR IN PORPH 218511 1149492 GRAB QTZ STR IN PORPH 218512 1149492 GRAB ADUNDANT QTZ FLOAT 218513 1149492 GRAB ABUNDANT QTZ FLOAT 218514 1149492 GRAB STREAM SED 1				
77827 1149501 GRAB QTZ FLOAT GREY CHERTY 77828 1149492 GRAB QTZ STRINGER ZOD 30CMx3M+ 77829 1149492 GRAB QTZ STRINGER ZOD MIDE 77820 1149492 GRAB QTZ STRINGER ZOD MIDE 218501 1149485 GRAB QTZ STR 10CM WIDE 218502 1149485 GRAB QTZ STR 50CM WIDE 218503 1149485 GGAB QTZ STR IN PELD PORPH 218504 1149485 GRAB QTZ STR IN PELD PORPH 218505 1149485 GSAB QTZ STR IN PELD PORPH 218505 1149485 JS QV 70-75CM STR ISTR PTR CP 218506 1149485 GSAB SIL ZONE IN HANG WALL TO 508 218510 1149492 GRAB STZ STR IN PORPH 218511				
77828 1149492 GRAB QTZ FOD 30CMX3M+ 77829 1149492 GRAB QTZ STRINGER ZONE IM WIDE 77830 1149492 GRAB QTZ STRINGER ZONE IM WIDE 218501 1149485 GRAB QTZ STR 5-10CM WIDE 218502 1149485 GRAB QTZ STR 5-10CM WIDE 218502 1149485 GRAB QTZ STR 5-10CM WIDE 218503 1149485 GRAB QTZ STR IN PELD PORPH 218504 1149485 GRAB QTZ STR IN PELD PORPH 218505 1149485 GS QV OV 5% PY TR CP 218506 1149485 GRAB SIL ZONE IN HANG WALL TO 508 218507 1149492 GRAB SIL ZONE 5% PY TR CP 218510 1149492 GRAB QTZ				
77829 1149492 GRAB QTZ STRINGER ZONE 1M WIDE 77830 1149492 GRAB QTZ STR 10CM WIDE 218501 1149485 GRAB QTZ STR 5-10CM WIDE 218502 1149485 GRAB QTZ STR 5-10CM WIDE 218503 1149485 GCAB QTZ STR 5-10CM WIDE 218503 1149485 GCAB QTZ STR 10 CCM WIDE 218504 1149485 GCAB QTZ STR IN FELD PORPH 218505 1149485 GRAB QTZ STR IN FELD PORPH 218506 1149485 GCAB QTZ STR IN FELD PORPH 218507 1149485 GCAB QTZ STR IN FELD PORPH 218508 1149492 GRAB NARROW QV 5% PY TR CP 218509 1149492 GCAB SHL ZONE IN HANG WALL TO 508 218510 1149492 GRAB QTZ STR IN PORPH 218512 1149492 GCAB QTZ STR IN PORPH 218513 1149492 GCAB QTZ STR IN PORPH 218514 1149492 GCAB QTZ STR IN PORPH 218515 1149492 GCAB ABUNDANT QTZ FLOAT 218516 1149492 GCAB STREAM SED 1 218517 1149493 GCAB STREAM SED 2 218518 1149498				
77830 1149492 GRAB QTZ STR 10CM WIDE 218501 1149485 GGAB QTZ STR 5-10CM WIDE 218502 1149485 G5 QV 65CM QU 65CM 218503 1149485 40 FOLD NOSE 35-40CM 218504 1149485 GRAB ALTERED WALLROCK 218505 1149485 GFAB QTZ STR IN FELD PORPH 218506 1149485 75 QV 70-75CM 1149485 55 QV 508 218507 1149485 75 QV 70-75CM 1149492 GRAB SIL 20NE IN HANG WALL TO 508 218508 1149492 GRAB SHD PILLOW VOLC 218510 1149492 GRAB GRAB QTZ FTR IN PORPH 218510 1149492 GRAB ABUNDANT QTZ FLOAT 218513 1149492 GRAB ABUNDANT QTZ FLOAT				
218501 1149485 GRAB QTZ STR 5-10CM WIDE 218502 1149485 40 FOLD NOSE 35-40CM 218503 1149485 40 FOLD NOSE 35-40CM 218504 1149485 GRAB QTZ STR IN FELD PORPH 218505 1149485 GRAB QTZ STR IN FELD PORPH 218506 1149485 75 QV 70-75CM 218507 1149485 55 QV 55CM 218508 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510 1149492 GRAB QTZ STR IN PORPH 218509 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510 1149492 GRAB QTZ STR IN PORPH 218511 1149492 GRAB QTZ POD 218512 1149492 GRAB ABUNDANT QTZ FLOAT 218513 1149492 GRAB ABUNDANT QTZ FLOAT 218514 1149492 GRAB STREAM SED 1 218515 1149492 GRAB STREAM SED 2 218516 1149498 GRAB STREAM SED 1 218517 1149498 GRAB STREAM SED 3 218520 1149506 GRAB QV 10-15CM WIDE 218521 1149506 GRAB STREAM SED 3 21852				
218502 1149485 65 QV 65CM 218503 1149485 40 FOLD NOSE 35-40CM 218504 1149485 GRAB ALTERED WALLROCK 218505 1149485 GRAB QTZ STR IN FELD PORPH 218506 1149485 75 QV 70-75CM 218507 1149485 55 QV 55CM 218508 1149492 GRAB NARROW QV 5% PY TR CP 218509 1149492 GRAB SHD PILLOW VOLC 218510 1149492 GRAB QTZ STR IN PORPH 218511 1149492 GRAB QTZ STR IN PORPH 218512 1149492 GRAB QTZ STR IN PORPH 218513 1149492 GRAB QTZ STR IN PORPH 218513 1149492 GRAB QTZ STR IN PORPH 218513 1149492 GRAB ABUNDANT QTZ FLOAT 218513 1149492 GRAB ABUNDANT QTZ FLOAT 218514 1149493 GRAB SIL PORPH ADJ TO QV 218515 1149498 GRAB STREAM SED 1 218516 1149498 GRAB QV IM WIDE 218519 1149506 GRAB QV IM WIDE 218520 1149506 GRAB QTZ FLOAT 218521 1149506 <td></td> <td></td> <td></td> <td></td>				
218503 1149485 40 FOLD NOSE 35-40CM 218504 1149485 GRAB ALTERED WALLROCK 218505 1149485 GRAB QTZ STR IN FELD PORPH 218506 1149485 75 QV 70-75CM 218507 1149485 55 QV 55CM 218508 1149492 GRAB NARROW QV 5% PY TR CP 218509 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510 1149492 GRAB QTZ STR IN PORPH 218510 1149492 GRAB QTZ STR IN PORPH 218511 1149492 GRAB QTZ POD 218512 1149492 GRAB QV 10-15CM WIDE 218513 1149492 GRAB ABUNDANT QTZ FLOAT 218514 1149492 GRAB STREAM SED 1 218515 1149492 GRAB STREAM SED 1 218516 1149493 GRAB STREAM SED 2 218517 1149498 GRAB QV 1M WIDE 218518 1149498 GRAB QV 10-15CM WIDE 218520 1149506 GRAB QRA STREAM SED 2 218519 1149506 GRAB STREAM SED 3 218521 1149506 GRAB STREAM SED 3 218522				
218504 1149485 GRAB ALTERED WALLROCK 218505 1149485 GRAB QTZ STR IN PELD PORPH 218506 1149485 75 QV 70-75CM 218507 1149485 55 QV 55 PY TR CP 218508 1149492 GRAB NARROW QV 5% PY TR CP 218508 1149492 GRAB SHD PILLOW VOLC 218510 1149492 GRAB SHD PILLOW VOLC 218511 1149492 GRAB QTZ STR IN PORPH 218512 1149492 GRAB QTZ STR IN PORPH 218512 1149492 GRAB QTZ STR IN PORPH 218513 1149492 GRAB BUNDANT QTZ FLOAT 218514 1149492 GRAB STREAM SED 1 1 218515 1149498 GRAB STREAM SED 2 2 1 <t< td=""><td></td><td></td><td></td><td></td></t<>				
218505 1149485 GRAB QTZ STR IN FELD PORPH 218506 1149485 75 QV 70-75CM 218507 1149485 55 QV 55CM 218508 1149492 GRAB NARROW QV 5% PY TR CP 218509 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510 1149492 GRAB QTZ STR IN PORPH 218511 1149492 GRAB QTZ STR IN PORPH 218512 1149492 GRAB QTZ POD 218513 1149492 GRAB ABUNDANT QTZ FLOAT 218514 1149492 GRAB SIL PORPH ADJ TO QV 218515 1149492 GRAB STREAM SED 1 218516 1149492 GRAB STREAM SED 1 218517 1149498 GRAB STREAM SED 1 218518 1149498 GRAB STREAM SED 1 218519 1149506 GRAB QV 10-15CM WIDE 218521 1149506 GRAB QV 10-15CM WIDE 218521 1149498 GRAB STREAM SED 1 218519 1149506 GRAB QV 10-15CM WIDE 218521 1149506 GRAB QTZ FLOAT 218522 1149506 GRAB STREAM SED 3 218523 1149500<				
218506 1149485 75 QV 70-75CM 218507 1149485 55 QV 55CM 218508 1149492 GRAB NARROW QV 5% PY TR CP 218509 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510 1149492 GRAB QTZ STR IN PORPH 218511 1149492 GRAB QV 10-15CM WIDE 218513 1149492 GRAB ABUNDANT QTZ FLOAT 218514 1149492 GRAB SIL PORPH ADJ TO QV 218515 1149492 GRAB STREAM SED 1 218516 1149493 GRAB STREAM SED 2 218517 1149498 GRAB STREAM SED 2 218518 1149498 GRAB STREAM SED 2 218519 1149506 GRAB QV 10-15CM WIDE 218521 1149506 GRAB QV 10-15CM WIDE 218521 1149506 GRAB QV 10-15CM WIDE 218521 1149506 GRAB QV 10-15CM WIDE 218522 1149506 GRAB QTZ FLOAT 218523 1149500 GRAB STREAM SED 3 218524 1149500 GRAB STREAM SED 4 218525				
218507 1149485 55 QV 55CM 218508 1149492 GRAB NARROW QV 5% PY TR CP 218509 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510 1149492 GRAB SHD PILLOW VOLC 218511 1149492 GRAB QTZ STR IN PORPH 218512 1149492 GRAB QTZ STR IN PORPH 218513 1149492 GRAB QV 10-15CM WIDE 218514 1149492 GRAB ABUNDANT QTZ FLOAT 218515 1149492 GRAB ABUNDANT QTZ FLOAT 218516 1149492 GRAB STREAM SED 1 218517 1149498 GRAB STREAM SED 2 218518 1149498 GRAB STREAM SED 2 218519 1149506 GRAB QV 1M WIDE 218520 1149506 GRAB QTZ FLOAT 218521 1149506 GRAB QTZ FLOAT 218522 1149506 GRAB STREAM SED 3 218523 1149500 GRAB STREAM SED 4 218524 1149500 GRAB STREAM SED 4 218525 1149499 GRAB QTZ FDO 20CMx2M 218526 1149499 GRAB QTZ POD 20CMx2M 218527 1149503 <td></td> <td></td> <td></td> <td></td>				
218508 1149492 GRAB NARROW QV 5% PY TR CP 218509 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510 1149492 GRAB SHD PILLOW VOLC 218511 1149492 GRAB QTZ STR IN PORPH 218512 1149492 GRAB QTZ POD 218513 1149492 GRAB QV 10-15CM WIDE 218514 1149492 GRAB ABUNDANT QTZ FLOAT 218515 1149492 GRAB SIL PORPH ADJ TO QV 218516 1149492 GRAB STREAM SED 1 218517 1149498 GRAB STREAM SED 2 218518 1149498 GRAB STREAM SED 2 218519 1149506 GRAB QV 1M WIDE 218520 1149506 GRAB QV 10-15CM WIDE 218521 1149506 GRAB QV 10-15CM WIDE 218522 1149506 GRAB QTZ FLOAT 218523 1149506 GRAB STREAM SED 3 218524 1149500 GRAB STREAM SED 4 218525 1149499 GRAB QTZ FLOAT 218526 1149499 GRAB QTZ STR 10CM 218526 1149499 GRAB QTZ POD 20CMx2M <				
218509 1149492 GRAB SIL ZONE IN HANG WALL TO 508 218510 1149492 GRAB SHD PILLOW VOLC 218511 1149492 GRAB QTZ STR IN PORPH 218512 1149492 GRAB QTZ POD 218513 1149492 GRAB QV 10-15CM WIDE 218514 1149492 GRAB ABUNDANT QTZ FLOAT 218515 1149492 GRAB SIL PORPH ADJ TO QV 218516 1149492 GRAB STREAM SED 1 218517 1149498 GRAB STREAM SED 2 218518 1149498 GRAB STREAM SED 2 218519 1149506 GRAB SHD ALT VOLC 218521 1149506 GRAB QV 10-15CM WIDE 218521 1149506 GRAB QTZ FLOAT 218522 1149506 GRAB QTZ FLOAT 218523 1149506 GRAB QTZ FLOAT 218524 1149500 GRAB STREAM SED 3 218525 1149499 GRAB QTZ FDD 20CMx2M 218526 1149499 GRAB QTZ STR 10CM 218527 1149499 GRAB QTZ STR 10CM 218528 1149499 GRAB QTZ STR 10CM 218528 1149499 <td< td=""><td></td><td></td><td></td><td></td></td<>				
218510 1149492 GRAB SHD PILLOW VOLC 218511 1149492 GRAB QTZ STR IN PORPH 218512 1149492 GRAB QTZ STR IN PORPH 218513 1149492 GRAB QTZ POD 218513 1149492 GRAB QV 10-15CM WIDE 218514 1149492 GRAB ABUNDANT QTZ FLOAT 218515 1149492 GRAB SIL PORPH ADJ TO QV 218515 1149492 GRAB SIL PORPH ADJ TO QV 218516 1149492 GRAB SIL PORPH ADJ TO QV 218517 1149498 GRAB SIL PORPH ADJ TO QV 218518 1149498 GRAB SIL PORPH ADJ TO QV 218520 1149506 GRAB SIL POLC C 218523 1149506 GRAB QTZ FLOAT				
2185111149492GRAB QTZ STR IN PORPH2185121149492GRAB QTZ POD2185131149492GRAB QV 10-15CM WIDE2185141149492GRAB ABUNDANT QTZ FLOAT2185151149492GRAB ABUNDANT QTZ FLOAT2185161149492GRAB SIL PORPH ADJ TO QV2185171149498GRAB STREAM SED 12185181149498GRAB STREAM SED 22185191149506GRAB QV 1M WIDE2185201149506GRAB QV 10-15CM WIDE2185211149506GRAB QTZ FLOAT2185231149506GRAB QTZ FLOAT2185241149500GRAB STREAM SED 32185251149499GRAB QTZ STR 10CM2185261149499GRAB QTZ POD 20CMx2M2185271149503GRAB WEAK SHD INT-FEL TUFF2185281149512GRAB QTZ FLOAT AND SOURCE2185291149496GRAB QTZ FLOAT AND SOURCE2185301149496GRAB QTZ FLOAT TO 15CM				
218512 1149492 GRAB QTZ POD 218513 1149492 GRAB QV 10-15CM WIDE 218514 1149492 GRAB ABUNDANT QTZ FLOAT 218515 1149492 GRAB ABUNDANT QTZ FLOAT 218516 1149492 GRAB SIL PORPH ADJ TO QV 218517 1149498 GRAB STREAM SED 1 218518 1149498 GRAB STREAM SED 2 218519 1149506 GRAB QV 1M WIDE 218520 1149506 GRAB QV 10-15CM WIDE 218521 1149506 GRAB QTZ FLOAT 218523 1149506 GRAB QTZ FLOAT 218524 1149506 GRAB STREAM SED 3 218525 1149500 GRAB STREAM SED 4 218526 1149500 GRAB STREAM SED 4 218525 1149500 GRAB STREAM SED 4 218526 1149499 GRAB QTZ STR 10CM 218526 1149499 GRAB QTZ POD 20CMx2M 218527 1149499 GRAB QTZ POD 20CMx2M 218528 1149499 GRAB QTZ POD 20CM 20M 218529 1149496 GRAB QTZ FLOAT AND SOURCE 218530 1149496				QTZ STR IN PORPH
2185141149492GRABABUNDANTQTZFLOAT2185151149492GRABABUNDANTQTZFLOAT2185161149492GRABSILPORPHADJTOQV2185161149498GRABSTREAMSED12185171149498GRABSTREAMSED22185181149498GRABSTREAMSED22185191149506GRABQVIMWIDE2185201149506GRABQV10-15CMWIDE2185211149506GRABQTZFLOAT2185231149506GRABSTREAMSED32185241149500GRABSTREAMSED42185251149499GRABQTZSTR10CM2185261149499GRABQTZPD20CMx2M2185271149503GRABWEAKSHDINT-FELTUFF2185281149512GRABQTZFLOATANDSOURCE2185291149496GRABQTZFLOATANDSOURCE2185301149496GRABQTZFLOATTO15CM2185311149488GRABQTZFLOATTO15CM	218512	1149492		
2185141149492GRABABUNDANTQTZFLOAT2185151149492GRABABUNDANTQTZFLOAT2185161149492GRABSILPORPHADJTOQV2185161149498GRABSTREAMSED12185171149498GRABSTREAMSED22185181149498GRABSTREAMSED22185191149506GRABQVIMWIDE2185201149506GRABSHDALTVOLC2185211149506GRABQV10-15CMWIDE2185221149506GRABQTZFLOAT2185231149500GRABSTREAMSED32185241149500GRABSTREAMSED42185251149499GRABQTZSTR10CM2185261149499GRABQTZPOD20CMx2M2185271149503GRABWEAKSHDINT-FELTUFF2185281149512GRABQVZONE20CMWIDE2185291149496GRABQTZFLOATANDSOURCE2185301149496GRABQTZFLOATTO15CM2185311149488GRABQVZONEINGABBRO				
218516 1149492 GRAB SIL PORPH ADJ TO QV 218517 1149498 GRAB STREAM SED 1 218518 1149498 GRAB STREAM SED 2 218519 1149506 GRAB QV 1M WIDE 218520 1149506 GRAB SHD ALT VOLC 218521 1149506 GRAB QV 10-15CM WIDE 218522 1149506 GRAB QTZ FLOAT 218523 1149500 GRAB STREAM SED 3 218524 1149500 GRAB STREAM SED 4 218525 1149499 GRAB QTZ STR 10CM 218526 1149499 GRAB QTZ POD 20CMx2M 218527 1149503 GRAB QV ZONE 20CM WIDE 218528 1149499 GRAB QTZ FLOAT AND SOURCE 218529 1149496 GRAB QTZ FLOAT TO 15CM 218523 1149496 GRAB QTZ FLOAT TO 15CM				ABUNDANT QTZ FLOAT
218517 1149498 GRAB STREAM SED 1 218518 1149498 GRAB STREAM SED 2 218519 1149506 GRAB QV 1M WIDE 218520 1149506 GRAB SHD ALT VOLC 218521 1149506 GRAB QV 10-15CM WIDE 218522 1149506 GRAB QTZ FLOAT 218523 1149506 GRAB STREAM SED 3 218524 1149500 GRAB STREAM SED 4 218525 1149500 GRAB STREAM SED 4 218525 1149500 GRAB STREAM SED 4 218525 1149499 GRAB QTZ STR 10CM 218526 1149499 GRAB QTZ POD 20CMx2M 218527 1149490 GRAB QV ZONE 20CM WIDE 218528 1149512 GRAB QV ZONE 20CM WIDE 2	218515	1149492	GRAB	ABUNDANT QTZ FLOAT
218518 1149498 GRAB STREAM SED 2 218519 1149506 GRAB QV 1M WIDE 218520 1149506 GRAB SHD ALT VOLC 218521 1149506 GRAB QV 10-15CM WIDE 218522 1149506 GRAB QTZ FLOAT 218523 1149500 GRAB STREAM 218524 1149500 GRAB STREAM 218525 1149500 GRAB STREAM 218524 1149500 GRAB STREAM 218525 1149499 GRAB QTZ 218526 1149499 GRAB QTZ 218527 1149503 GRAB QTZ 218528 1149503 GRAB QV 218529 1149503 GRAB QV 218529 1149496 GRAB QTZ 218529 1149496 GRAB QTZ 218530 1149496 GRAB QTZ 218531 1149488 GRAB QV	218516	1149492	GRAB	SIL PORPH ADJ TO QV
218519 1149506 GRAB QV 1M WIDE 218520 1149506 GRAB SHD ALT VOLC 218521 1149506 GRAB QV 10-15CM WIDE 218522 1149506 GRAB QTZ FLOAT 218523 1149500 GRAB STREAM SED 3 218524 1149500 GRAB STREAM SED 4 218525 1149500 GRAB QTZ STR 10CM 218525 1149499 GRAB QTZ STR 10CM 218526 1149499 GRAB QTZ POD 20CMx2M 218527 1149503 GRAB QTZ POD 20CMx2M 218528 1149490 GRAB QV ZONE 20CM WIDE 218529 1149496 GRAB QTZ FLOAT AND SOURCE 218530 1149496 GRAB QTZ FLOAT TO 15CM 218531 1149488 GRAB QV ZONE IN	218517	1149498	GRAB	STREAM SED 1
218520 1149506 GRAB SHD ALT VOLC 218521 1149506 GRAB QV 10-15CM WIDE 218522 1149506 GRAB QTZ FLOAT 218523 1149500 GRAB STREAM SED 3 218523 1149500 GRAB STREAM SED 3 218524 1149500 GRAB STREAM SED 4 218525 1149499 GRAB QTZ STR 10CM 218526 1149499 GRAB QTZ POD 20CMx2M 218527 1149503 GRAB WEAK SHD INT-FEL TUFF 218528 1149512 GRAB QV ZONE 20CM WIDE 218529 1149496 GRAB QTZ FLOAT AND SOURCE 218530 1149496 GRAB QTZ FLOAT TO 15CM 218531 1149488 GRAB QV ZONE IN GABBRO	218518	1149498	GRAB	STREAM SED 2
218521 / 1149506 GRAB QV 10-15CM WIDE 218522 1149506 GRAB QTZ FLOAT 218523 1149500 GRAB STREAM SED 3 218524 1149500 GRAB STREAM SED 4 218525 1149499 GRAB QTZ STR 10CM 218526 1149499 GRAB QTZ POD 20CMx2M 218527 1149503 GRAB WEAK SHD INT-FEL TUFF 218528 1149512 GRAB QV ZONE 20CM WIDE 218529 1149496 GRAB QTZ FLOAT AND SOURCE 218530 1149496 GRAB QTZ FLOAT TO 15CM 218531 1149488 GRAB QV ZONE IN GABBRO	218519	1149506	GRAB	QV 1M WIDE
218522 1149506 GRAB OTZ FLOAT 218523 1149500 GRAB STREAM SED 3 218524 1149500 GRAB STREAM SED 4 218525 1149499 GRAB OTZ STR 10CM 218526 1149499 GRAB OTZ POD 20CMx2M 218527 1149503 GRAB WEAK SHD INT-FEL TUFF 218528 1149512 GRAB QV ZONE 20CM WIDE 218529 1149496 GRAB QTZ FLOAT AND SOURCE 218530 1149496 GRAB QV ZONE IN GABBRO	218520	1149506		
218523 1149500 GRAB STREAM SED 3 218524 1149500 GRAB STREAM SED 4 218525 1149499 GRAB QTZ STR 10CM 218526 1149499 GRAB QTZ POD 20CMx2M 218526 1149499 GRAB WEAK SHD INT-FEL TUFF 218527 1149503 GRAB WEAK SHD INT-FEL TUFF 218528 1149512 GRAB QV ZONE 20CM WIDE 218529 1149496 GRAB QTZ FLOAT AND SOURCE 218530 1149496 GRAB QTZ FLOAT TO 15CM 218531 1149488 GRAB QV ZONE IN GABBRO				QV 10-15CM WIDE
218524 1149500 GRAB STREAM SED 4 218525 1149499 GRAB QTZ STR 10CM 218526 1149499 GRAB QTZ POD 20CMx2M 218527 1149503 GRAB WEAK SHD INT-FEL TUFF 218528 1149512 GRAB QV ZONE 20CM WIDE 218529 1149496 GRAB QTZ FLOAT AND SOURCE 218530 1149496 GRAB QV ZONE IN GABBRO	218522	1149506	GRAB	qtz float
218525 1149499 GRAB QTZ STR 10CM 218526 1149499 GRAB QTZ POD 20CMx2M 218527 1149503 GRAB WEAK SHD INT-FEL TUFF 218528 1149512 GRAB QV ZONE 20CM WIDE 218529 1149496 GRAB QTZ FLOAT AND SOURCE 218530 1149496 GRAB QTZ FLOAT TO 15CM 218531 1149488 GRAB QV ZONE IN GABBRO				
218526 1149499 GRAB QTZ POD 20CMx2M 218527 1149503 GRAB WEAK SHD INT-FEL TUFF 218528 1149512 GRAB QV ZONE 20CM WIDE 218529 1149496 GRAB QTZ FLOAT AND SOURCE 218530 1149496 GRAB QTZ FLOAT TO 15CM 218531 1149488 GRAB QV ZONE IN GABBRO	-			
218527 1149503 GRAB WEAK SHD INT-FEL TUFF 218528 1149512 GRAB QV ZONE 20CM WIDE 218529 1149496 GRAB QTZ FLOAT AND SOURCE 218530 1149496 GRAB QTZ FLOAT TO 15CM 218531 1149488 GRAB QV ZONE IN GABBRO				
218528 1149512 GRAB QV ZONE 20CM WIDE 218529 1149496 GRAB QTZ FLOAT AND SOURCE 218530 1149496 GRAB QTZ FLOAT TO 15CM 218531 1149488 GRAB QV ZONE IN GABBRO		1149499	GRAB	
218529 1149496 GRAB QTZ FLOAT AND SOURCE 218530 1149496 GRAB QTZ FLOAT TO 15CM 218531 1149488 GRAB QV ZONE IN GABBRO				
218530 1149496 GRAB QTZ FLOAT TO 15CM 218531 1149488 GRAB QV ZONE IN GABBRO				
218531 1149488 GRAB QV ZONE IN GABBRO				
	218530	1149496	GRAB	
218532 1149488 GRAB QV 30CM WIDE PY CP (CV)	218531	1149488		
	218532	1149488	GRAB	QV 30CM WIDE PY CP (CV)

·· ~-- ---

· ---

· ----

_

NIMDED	CT B TM	WIDTH(CM)DESCRIPTION
	1149488	
	1149492	
	1149492	
	1149489	
210537	1149492	
210530	1149492	GRAB SIL ZONE IN VOLC 3-4% PY
210539	1149492	GRAB SHD GAB VOLC 5-44 PI
210540	1149489	GRAB SHD VOLC
210541	1149486	GRAB SHEAR IN GABBRO
210542	1149506	GRAB QV IN ALT SHD GABBRO
210545	1149506	GRAB RUSTY SCHIST
210544	1149506 1149512	GRAB BRECC VOLC
210545	1149512	GRAB QV 30CM WIDE
210540	1149512 1149512	GRAB QV 20-50CM WIDE
218548	1149518	GRAB FLOAT ALT GABBRO 5% PY
210540	1149516	GRAB FLOAT 1-2CM QTZ STR IN VOLC
218550	1149514	GRAB NARROW QV
218751	1149514	GRAB QV 15CM
218752	1149515	GRAB QV FLOAT CHERTY
218753	1149518 1149516 1149514 1149514 1149515 1149515	GRAB QV FLOAT 15CM
218754	1149515	GRAB WALL TO 752
218755	1149515 1149514	GRAB QV 10CM AND STR
218756	1149514	GRAB QTZ STR IN GABBRO
218757	1149514	GRAB QV 15CM
218758	1149514	GRAB QV 10-15CM WIDE
218759	1149514	GRAB QV IN GABBRO
218760	1149489	GRAB QV 10-20CM WIDE CHL PY CP
	1149518	
	1149518	
218763		GRAB QTZ FLOAT
218764		GRAB QV 10-15CM WIDE
218765		GRAB QV 20CM WIDE
218766		GRAB QTZ STRINGERS IN SHD GABBRO
218767	1149529	GRAB QTZ FLOAT
218768	1149518	GRAB QV IN PORPH FLOAT PY MO GRAPHITE
218769	1149518	GRAB WALL TO 768
218770	1149518	GRAB QTZ STR IN PORPH DIKE
218771	1149518	GRAB ALT GAB FLOAT 2-3% PY
	1149518	GRAB QV 5-20CM WIDE
218773		GRAB WALL TO 772
	´ 114951 7	GRAB QV 10-15CM WIDE
	1149517	GRAB SHD VOLC 1-2% PY
	1149517	GRAB QTZ FLOAT TR PY
	1149517	GRAB QTZ POD TR PY CP
218778	1149529	GRAB QTZ STR IN VOLC
218779	1149529	
218780	1149529	GRAB SHD PORPH FLOAT
218781	1149520	GRAB QTZ STR IN SHD VOLC
218782	1149520	GRAB QV 10-15CM WIDE
218783	1149520	GRAB SAME VEIN
	1149520	GRAB SAME VEIN
218785	1149520	GRAB SAME VEIN

NUMBER	CLAIM	WIDTH(CM)	DESCRIPTION
218786	CLAIM 1149520	GRAB	PY PO CP TRACED 30M
218787	1149520	GRAR	SAME VEIN
218788	1149520	GRAR	SAME VEIN
218789	1149520 1149520	CRAR	SAME VEIN
210705	1149520	CPAR	QV 30CM IN SHD VOLC
210790	1149520 1149520 1149520	CDAD	QV 30CM IN SHD VOLC
210791	1149520	CRAD	QV 30CM IN SHD VOLC
210732	1149520	CRAD	QV 10-20CM WIDE TRACED 30M
210/93	1149520	GRAD	DILLMAN 1 20CM
210/34	1149520		DILLMAN 1 20CM
	1149520		
210/90	1149520	GRAB	QV IN SHD ALT VOLC
218/9/	1149520		QV IN SHD VOLC
			DILLMAN 2
	1149520		DILLMAN 2
	1149520		DILLMAN 2 WALLROCK
218851	1149489	GRAB	QV 10-50 CM WIDE
218852	1149489		QV 10-50 CM WIDE
	1149489		GALBRAITH C TR PY CP
	1149489		GALBRAITH C CHIPS ALONG STRIKE
	1149489		GALBRAITH C CHIPS ALONG STRIKE
	1149489		PIT 5M S OF VEIN QV 30CM WIDE
	1149518		LARGE QTZ FLOAT
	1149518		ALT VOLC FLOAT
	1149518		CHLOR SHEAR IN GABBRO DILLMAN SHEAR
	1149518		QTZ STR IN VOLC
	1149517		QV 15CM
	1149517		LARGE ALT VOLC FLOAT
	1149517		QV 10CM IN PORPH VOLC
	1149518		SHEAR IN GABBRO 5-10CM QV
218865	1149521	GRAB	SHEAR IN GABBRO
218866	1149517	GRAB	SHEAR 30CM WIDE IN VOLC
218867	1149517	GRAB	QV 15CM IN SHEAR
218868	1149529	GRAB	QV 20CM IN SHD GABBRO
218869	1149518	GRAB	CHERTY NON-LOCAL FLOAT
218870	1149529	GRAB	SHEAR IN GABBRO
	1149529		SHEAR IN GABBRO
218872	1149529	GRAB	SHEAR IN GABBRO
218873		GRAB	BIOTITIC FLOAT QTZ STR TR PY
218874	1149529	GRAB	QV 10CM WIDE
	1149529		QV 15CM WIDE
	1149529		QTZ STR ZONE
	1149529		WALL TO 876
	1149529		QTZ IN SAME SHEAR AS 877
	1149529		QTZ IN SAME SHEAR AS 877
218880	1149529	GRAB	QTZ IN SAME SHEAR AS 877
218881	1149529	GRAR	RUSTY VOLC
218882	1149520	GRAB	
	1149520		QTZ CALC STRINGERS
	1149520		SAME AS 882 883
218885	1149520	GRAR	QV 20CM WIDE
218886	1149520		QV AND STR IN SHD GABBRO
218887	1149520	GRAR	DILLMAN QTZ AND WALL
218888	1149520		QTZ AND CALCITE SAME SHEAR AS 887
T10000	1143340	UNAD	ATT THE AUGULTS DUME SHEAV US 001

- --

- ----

NIIMBER	CLATM	WIDTH(CM)DESCRIPTION
218889	1149520	WIDTH(CM)DESCRIPTION GRAB QV 20CM GRAB QV 20CM MINOR PY TR CP GRAB DILLMAN SHEAR FIG 6 GRAB QTZ FLOAT
218890	1149520	GRAB OV 20CM MINOR PY TR CP
218891	1149518	GRAB DILLMAN SHEAR FIG 6
218892	1149518	GRAB DILLMAN SHEAR FIG 6
218893	1149518	GRAB DILLMAN SHEAR FIG 6
218894	1149518	GRAB DILLMAN SHEAR FIG 6
218895	1149518	GRAB DILLMAN SHEAR FIG 6
218896	1149520	GRAB OTZ FLOAT
218897	1149520	GRAB DILLMAN 1 FIG 7
218898	1149520	GRAB DILLMAN 1 FIG 7
218899	1149520	GRAB DILLMAN 1 FIG 7
218900	1149520	GRAR DILLMAN 1 FIG 7
218101	1149520	GRAB DILLMAN 2 LOOSE QTZ GRAB DILLMAN 2 LOOSE QTZ
218102	1149520	GRAB DILLMAN 2 LOOSE OTZ
218103	1149520	GRAB QV 15CM
218104	1149520	GRAB NARROW SHEAR IN VOLC
218105	1149520	GRAB SHD ALT VOLC
	1149520	
218107	1149520	GRAB SHD ALT VOLC
218108	1149520	GRAB QTZ AND CALC IN SHD ALT VOLC
218109	1149529	GRAB OTZ FLOAT
218110	1149529	GRAB SHEAR IN GABBRO
218111	1149529	GRAB CALCITE ON GABBRO SHEAR
218112	1149529	GRAB QTZ FLOAT
	1149529	
	1149520	
	1149520	
	1149516	
	1149516	
	1149516	
	1149516	
218120	1149516	GRAB QV 40CM WIDE
218121	1149531	GRAB QV 15CMx20M
218122	1149531	GRAB QV 15CMx20M
218123	1149531	GRAB FLOAT QTZ STR IN VOLC
	1149531	GRAB FLOAT QTZ STR IN VOLC
	1149531	
218126	1149529	
218127		
210120	1149529	100 STRINGERS AND SHEAR 100 STRINGERS AND SHEAR
	1149529	
210130	1149529	GRAB FLOAT ALT BASALT WITH QTZ STR
210131	1149529	GRAB QV 15CM WIDE CRAB OV 5-20CM SAME AS 120 131
218132	1149529 1149529	GRAB QV 5-20CM SAME AS 130 131 Grab QV 25M N of 132
218133		
218134		
218136	1149520	
218137	1149520	
	1149520	
	1149520	
	1149520	
218141		

· • • • • • •

.....

-

NUMBER	CLAIM	WIDTH(CM)DESCRIPTION
218142	1149520	GRAB DILLMAN 1 FIG 7
	1149520	GRAB DILLMAN 1 FIG 7
	1149520	GRAB DILLMAN 1 FIG 7
210144	1149520	GRAB DILLMAN 1 FIG 7
210145	1149520	GRAB DILLMAN 1 FIG 7
210140	1149520	GRAB DILLMAN 1 FIG 7 GRAB DILLMAN 1 FIG 7
21014/	1149520	GRAB DILLMAN 1 FIG 7 GRAB DILLMAN 1 FIG 7
	1149520	GRAB DILLMAN 1 FIG 7 GRAB DILLMAN 1 FIG 7
	1149520	GRAB DILLMAN 1 FIG 7 GRAB DILLMAN 1 FIG 7
	1149520	
		GRAB QV 1M WIDE
	1149496	GRAB BRECC WALL TO 8106
	1149496	GRAB QV 1M WIDE
	1149496	-
	1149496	
	1149496	
	1149496	
	1149496	
	1149496	
	1149496	GRAB QV 10CM IN PORPH VOLC
	1149496	GRAB ALT VOLC
	1149492	
	1149492	
8119	1149492	GRAB QV 1M WIDE
8120	1149493	GRAB QV 1.5M WIDE
	1149492	
	1149492	GRAB QTZ VEIN AND PORPH DIKE
	1149492	GRAB LARGE QTZ FLOAT
	1149509	GRAB QV 30CM
8125	1149509	GRAB OV 30CM
8126	1149509	GRAB OTZ FLOAT
8127	1149509	GRAB OV 30CM
8128	1149509	GRAB OV 30CH
8129	1149509	GRAB QV 5-10CM
8130	1149509	GRAB QV 40CM
8131	1149509 1149489 1149489	GRAB QTZ POD
8132	1149489	GRAB QTZ STR ZONE
8133	1149489	
	1149489	
8135	1149506	GRAB ALT VOLC
8136	1149506	GRAB QV MINOR PY
8137	1149506	GRAB QV 70CM WIDE
8138	1149506	GRAB OTZ FLOAT
9130	1149503	GRAB QV 40CM WIDE
8140		
014U 0141	1149499 1149512	GRAB QV
0141 0140	1149512	GRAB ALT PORPH VOLC
0142 0142	1149512	-
8143	1149512 1149496	
ŏ⊥44 0345	1149496	
	1149496	
	1149496	-
	1149496	-
8149	1149496	GRAB QTZ FLOAT

. .

. . .

.

NUMBER	CLAIM	WIDTH (CM) DESCRIPTION
	1149496	GRAB QV 40CM IN SHD VOLC
	1149496	
8152	1149492	GRAB QTZ FLOAT 20CM
8153	1149489	GRAB QV ON PORPH DIKE CONTACT
8154	1149489	
8155	1149489	GRAB QV 80CM FOLDED
8156	1140400	
0157	1149489	GRAB QV 20CM
0150	1140402	GRAB QV 35CM
0150	1149492 1149492 1149488	GRAB QV 10CM TR PY
0100	1149400	GRAB QV IOCH IR PI GRAB QV 10CM
0100	1149506	GRAB QV 10CM GRAB QV 50CM IN SHEAR
0101	1149508	
0102	1149512	
8103	1149512	
0104	1149512	
8103	1149512	
	1149512	
810/	1149518	
	1149518	
	1149516	
	1149516	
	1149516	
	1149516	
	1149516	
	1149516	
	1149516	
	1149516	
	1149516	
	1149515	-
	1149515	
	1149515	
	1149516	
0103	1149518	GRAB QV 10CM IN SHD GABBRO
	1149518	
	1149518	
8186		
	1120258	
	1149520	
	1149520	
	1149516	
	<u> 1149516 </u>	
	1149516	
	1149529	
	1149529	
220408		
220409		
220410		
	1149520	
	1149520	
	1149520	
	1149529	GRAB SIL SHD QTZ PORPH
220415	1149521	GRAB DISS PY CP IN VOLC

......

._ ...

_ .. _....

_ .. .___.

NUMBER	CLAIM	WIDTH (CM) DESCRIPTION
220416	1149521	GRAB QTZ POD WITH PORPH DIKE
220417	1149520	GRAB QV IN PORPH 100M S OF DILLMAN 2
220418	1149520	GRAB QV IN PORPH 100M S OF DILLMAN 2
220419	1149520	GRAB QV IN PORPH 100M S OF DILLMAN 2
220420	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
220421	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
220422		GRAB DILLMAN SHEAR ZONE FIG 6
220423		GRAB DILLMAN SHEAR ZONE FIG 6
220424		GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
-	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
	1149518	GRAB DILLMAN SHEAR ZONE FIG 6
220444		GRAB DILLMAN SHEAR ZONE FIG 6
	1149520	GRAB DILLMAN 1 FIG 7
220446	1149520	GRAB DILLMAN 1 FIG 7
220447	1149520	GRAB DILLMAN 1 FIG 7
220448	1149520	GRAB DILLMAN 1 FIG 7
220449	1149520	GRAB DILLMAN 1 FIG 7
220450	1149520	GRAB DILLMAN 1 FIG 7
216651	1149520	GRAB DILLMAN 1 FIG 7
216652	1149520	GRAB DILLMAN 1 FIG 7
216653	1149520	GRAB DILLMAN 1 FIG 7
216654	1149520	GRAB DILLMAN 1 FIG 7
216655	1149520	GRAB DILLMAN 1 FIG 7
216656	1149520	GRAB DILLMAN 1 FIG 7
216657 '	1149520	GRAB ALT VOLC W OF DILLMAN 1
216658	1149520	GRAB
216659	1149520	GRAB DILLMAN 2 FIG 8
216660	1149520	GRAB DILLMAN 2 FIG 8
216661	1149520	GRAB DILLMAN 2 FIG 8
216662	1149520	GRAB DILLMAN 2 FIG 8
216663	1149520	
216664	1149520	
216665	1149520	
216666	1149520	
216667		
216668	1149520	GRAB DILLMAN 2 FIG 8

- --

NIIVDED			
NUMBER 216669	1149520	WIDTH(CM)DESCRIPTION GRAB DILLMAN 2 FIG 8	
216670	1149520	GRAB DILLMAN 2 FIG 8 Grab Dillman 2 Fig 8	
216670	1149520	GRAB DILLMAN 2 FIG 8 GRAB DILLMAN 2 FIG 8	
216672	1149520	GRAB DILLMAN 2 FIG 8 GRAB DILLMAN 2 FIG 8	
216673	1149520	GRAB DILLMAN 2 FIG 8 GRAB DILLMAN 2 FIG 8	
216674	1149520		
216674	1149520		
216675	1149520	GRAB DILLMAN 2 FIG 8 Grab Dillman 2 Fig 8	
216677	1149520	GRAB DILLMAN 2 FIG 8 GRAB DILLMAN 2 FIG 8	
216678	1149520	GRAB DILLMAN 2 FIG 8 GRAB DILLMAN 2 FIG 8	
216678	1092637	GRAB AGASSIZ WEST FIG 9-1	
216680	1092637		
216681	1092637		
216682	1092637		
216683	1092637		
216684			
216685	1092637		_
216686	1092637 1092637		
216687		GRAB AGASSIZ WEST FIG 9-1 GRAB AGASSIZ WEST FIG 9-1	
	1092637 1092637		
216688 216689	1092637		
216690			
216690	1092637 1092637		
216692	1092637		
216692	1092637		
216693	1092637	GRAB AGASSIZ WEST FIG 9-3 Grab Agassiz West Fig 9-3	
216695	1092637	GRAB AGASSIZ WEST FIG 9-1 GRAB AGASSIZ WEST FIG 9-1	
216695	1092637	GRAB AGASSIZ WEST FIG 9-1 GRAB AGASSIZ WEST FIG 9-1	
216697	1092637	GRAB AGASSIZ WEST FIG 9-3 GRAB AGASSIZ WEST FIG 9-3	
216698	1092637	GRAB AGASSIZ WEST FIG 9-1	
216699	1092637	GRAB AGASSIZ WEST FIG 9-1	
216700	1092637	GRAB AGASSIZ WEST FIG 9-1	
216701	1092637	GRAB AGASSIZ WEST FIG 9-1	
216702	1092637	GRAB AGASSIZ WEST FIG 9-1	
216703	1092637	GRAB AGASSIZ WEST FIG 9-1	
216704	1092637	GRAB AGASSIZ WEST FIG 9-1	
216705	1092637	GRAB AGASSIZ WEST FIG 9-1	
216706	1092637	GRAB AGASSIZ WEST FIG 9-1	
216707	1092637		
216708	1092637	GRAB AGASSIZ WEST FIG 9-1	
216709	1092637		
216710		GRAB AGASSIZ WEST FIG 9-1	
216711	1092637		
216712	1092637		
216713	1092637		11
216714	1092637		
216715	1092637		
216716	1092637		
216717	1092637		
216718	1092637		
216719	1092637	GRAB AGASSIZ WEST FIG 9-2	
216720	1092637	GRAB AGASSIZ WEST FIG 9-1	11
216721	1092637	GRAB AGASSIZ WEST FIG 9-1	11

and an end of the second

- -

_ _ _

NUMBER	CLAIM	WIDTH(CM)DESCRIPTION
216722	1092637	GRAB AGASSIZ WEST FIG 9-11
216723	1092637	GRAB AGASSIZ WEST FIG 9-11
216724	1092637	GRAB AGASSIZ WEST FIG 9-11
216725	1092637	GRAB AGASSIZ WEST FIG 9-11
216726	1092637	GRAB AGASSIZ WEST FIG 9-11
216727	1092637	GRAB AGASSIZ WEST FIG 9-11
216728	1092637	GRAB AGASSIZ WEST FIG 9-11
216729	1092637	GRAB AGASSIZ WEST FIG 9-11
216730	1092637	GRAB AGASSIZ WEST FIG 9-11
216731	1092637	GRAB AGASSIZ WEST FIG 9-11
216951	1149509	GRAB QV 25CM
216952	1149509	GRAB QV 40CM
216953	1149509	GRAB LARGE QTZ FLOAT
216954	1149509	GRAB QTZ STR ZONE IN ALT GABBRO
216955	1149486	GRAB QTZ STR IN VOLC NEAR GALBRAITH B

• .

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4 15-Jun-92

Page:		1
Copy:	1 of	1
Set :		1

Attn: Mr. Wayne Holmstead Project: Received: 4-Jun-92 10:37

Job: 924207T

PO #:

<u>Status: Final</u>

Rock Samples

Sample	Au FA/AA3 ppb	Au Calc.
8106	12	(0.001
8107	34	(0.001
8108	24	<0.001
8109	18	(0.001
8110	(5	<0.001
8111	197	0.006
8112	190	0.006
8113	5)	(0.001
8114	42	0.001
8115	(5	<0.001
8116	<5	<0.001
8121	53	0.002
8123	31	(0.001
8124	238	0.007
8125	110	0.003
8126	85	0.002
8127	389	0.011
8128	, 13	<0.001
8129	302	0.011
8130	232	0.007
8131	453	0.013
8132	18	(0.001
8133	19	<0.001
8134	6	(0.001
218501	7	(0.001
218502	214	0.006
218503	514	0.015
218504	13	<0.001

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 107) 623-6448 FAX 623-6820 PHONE (807) 623-6448

15-Jun-92

1074 Dillingham Street

Page: 2 Copy: 1 of 1 Set : 1

Attn: Mr. Wayne Holmstead Project:

HOLMSTEAD

K7P 2P4

Kingston, ON

Job: 924207T

PO #:

Status: Final

Received: 4-Jun-92 10:37

Rock Samples

	Au	Au
	FA/AA3	Calc.
<u>Sample</u>	ppb	<u>oz/T</u>
218505	6	(0.001
218506	177	0.005
218507	1182	0.034
218508	19	<0.001
218509	120	0.004
218510	612	0.018
218511	46	0.001
218512	64	0.002
218513	6	<0.001
218514	6	<0.001
218515	13	(0.001
218516		(0.001
218517	6	(0.001
218951	<5	(0.001
218952	6	(0.001
77785	6	<0.001
77786	6	<0.001
77787	(5	(0.001
77788	(5	<0.001
77789	<5	<0.001
77790	7	<0.001
77791	12	(0.001
77792	15	(0.001
77793	(5	(0.001
77794	<5	(0.001
77795	13	(0.001
77796	6	(0.001
77797	9	<0.001

ACCURASSAY LABORATORIES

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4 15-Jun-92

Page:		3
Copy:	1 of	1
Set :		1

Attn: Mr. Wayne Holmstead Project: Received: 4-Jun-92 10:37

Job: 924207T

PO #:

<u>Status: Final</u>

Rock Samples

Sample	Au FA/AA3 <u>PPb</u>	Au Calc.
77798	7	(0.001
77799	(5	(0.001
77800	6	<0.001
77801	(5	(0.001
77802	<5	(0.001
77803	(5	<0.001
77804	10	<0.001
77805	10	(0.001
77806	9	<0.001
77807	6	(0.001
77808	15	<0.001
77809	6	<0.001
77810	9	<0.001
77811	6	(0.001
77812	16	(0.001
77813	59	0.002
77814	7	<0.001
77815	, (5	<0.001
77816	5	(0.001
77817	6	<0.001
77818	7	(0.001
77819	15	(0.001
8117	10	<0.001
8118	34	<0.001
8119	9	(0.001
8120	16	(0.001
8122	70	0.002
218518	6	<0.001

- - - - -----

____.

ACCURASSAY LABORATORIES

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4 15-Jun-92

 Page:
 4

 Copy:
 1 of
 1

 Set:
 1

Attn: Mr. Wayne Holmstead Project:

Job: 924207T

PO #:

Status: Final

Received: 4-Jun-92 10:37

Rock Samples

<u>Sample</u>	Au FA/AA3 ppb	Au Calc. oz/T
77820	(5	(0.001
77821	30	<0.001
77822	13	(0.001
77823	16	<0.001
77824	6	(0.001
77825	7	<0.001
77826	9	(0.001
77827	7	<0.001
77828	9	<0.001
77829	1146	0.033
77830	10	(0.001

15-Jun-92

1 of

5

1

2

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4

Attn: Mr. Wayne Holmstead Project:

- - -

Received: 4-Jun-92 10:37

Page:

Set :

Copy:

PO #:

Job: 924207T

Status: Final

<u>Sample</u>	Mo ICAP PPM	Cu ICAP 	Pb ICAP PPM	Zn ICAP 	Ag ICAP 	Ni ICAP PPM .	Co ICAP
8111	7	109	8	13	0.5	44	17
8112	5	128	3	10	0.6	44	16
8116	4	370	6	31	0.6	72	27
8121	4	791	<1	92	1.4	92	41
8123	2	1991	4	10	2.2	30	15
77798	6	2160	21	481	1.5	147	137
77812	22	673	28	3200	1.2	122	79
77819	6	232	3	202	0.3	69	36
Sample	Mn ICAP PPm	Fe ICAP %	AS ICAP PPM	Hg ICAP PPM	Sr ICAP PPM	Cd ICAP	Sb ICAP PPM
		·					
8111	109	1.24	4	1	1	<1	5
8112	129	1.22	4	2	2	(2	4
8116	407	3.81	6	1	19	<1	1
8121	944	9.18	6	<1	61	1	<3
8123	118	1.65	2	1	5	<1	4
77798	, 319	17.62	6	1	2	5	10
77812	189	4.75	4	2 2	5	8	3
77819	375	4.31	3	2	10	<1	2
Sample	Bi ICAP PPM	V ICAP PPM	Ca ICAP %	P ICAP る	La ICAP PPM	Cr ICAP PPM	Mg ICAP %
<u></u>			·	·	<u> </u>		¥
8111	589	20	0.12	(0.01	2	424	0.22
8112	797	19	0.14	(0.01	3	393	0.29
8116	19	40	1.64	0.02	3	243	0.32
8121	2	69	3.72	0.02	2	164	2.24

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4

Attn: Mr. Wayne Holmstead Project:

15-Jun-92

Page: 6 Copy: 1 of 1 Set : 2

PO #:

Status: Final

Job: 924207T

Rock Samples

Sample .	Bi ICAP PPM	V ICAP PPM	Ca ICAP %	P ICAP	La ICAP PPM	Cr ICAP 	Mg ICAP X
8123	<4	13	0.47	0.01	3	326	0.14
77798	2	32	0.23	0.03	<1	150	0.37
77812	1	22	0.57	0.06	18	234	0.17
77819	3	55	0.68	0.03	5	201	0.45
Sample	Ba ICAP PPM	Ti ICAP	B ICAP PPM	Al ICAP	Na ICAP %	Si ICAP %	W ICAP PPM
8111	6	0.02	21	0.32	0.01	0.05	(2
8111 8112	6 7	0.02 0.02	21 21	0.32 0.37	0.01 0.01	0.05 0.04	(2 2
8112	7	0.02	21	0.37	0.01	0.04	2
8112 8116	7 14	0.02 0.10	21 66	0.37 1.70	0.01 0.18	0.04 0.06	2 8
8112 8116 8121	7 14 29	0.02 0.10 0.05	21 66 564	0.37 1.70 1.71	0.01 0.18 0.02	0.04 0.06 0.08	2 8 2
8112 8116 8121 8123	7 14 29 13	0.02 0.10 0.05 0.09	21 66 564 118	0.37 1.70 1.71 0.12	0.01 0.18 0.02 0.02	0.04 0.06 0.08 0.01	2 8 2 (1

	, Be ICAP
Sample	PPM
8111	1
8112	1
8116	1
8121	2
8123	<1
77798	1
77812	1
77819	2

- --

-

Received: 4-Jun-92 10:37

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4 16-Jun-92

Page:		1
Copy:	1 of	1
Set :		1

Attn: Mr. Wayne Holmstead Project: Received: 10-Jun-92 11:57

Job: 924230T

P0 #:

<u>Status: Final</u>

Sample	Au FA/AA3 ppb
218519	24
218520	12
218521	13
218522	209
218525	39
218526	39
218527	25
218528	28
218529	39
218530	9
218531	18
218532	89
218533	82
218534	9
218535	15
218536	12
218537	146
218538	/ 12
218539	15
218540	7
218541	7
218542	9
218543	31
218955	102
218956	65
218957	15
218958	10
8136	58

		16-Jun-92
HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4		Page: 2 Copy: 1 of 1 Set: 1
Attn: Mr. Wayne Holmstead Project:	P0 #:	Received: 10-Jun-92 11:57
Job: 924230T		Status: Final

Rock Samples

Sample	Au FA/AA3 ppb
8137	65
8138	111
8139	9
8140	7
8141	13
8142	34
8143	9
8144	18
8145	28
8146	21
8147	9
8148	13
8149	9
8150	(5
8151	₹5
8152	28
8153	24
8154	' 99
8155	5050
8156	324
8157	9
8158	9
8159	(5
8160	154
8161	39
8135	107

Sediment Samples

16-Jun-92

HOLMSTEAD 1074 Dillingham Street Page: З Kingston, ON Copy: 1 of 1 Set : K7P 2P4 1 Attn: Mr. Wayne Holmstead Received: 10-Jun-92 11:57 PO #: Project: Final Job: 924230T Status: Sediment Samples Au FA/AA3 Sample ppb

218524 <5

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

	16-Jun-92			
HOLMSTEAD 1074 Dillingham Street	Page: 4			
Kingston, ON	Copy: 1 of 1			
K7P 2P4	Set: 2			

Attn: Mr. Wayne Holmstead Project:

Rock Samples

Received: 10-Jun-92 11:57

Job: 924230T

Status: Final

<u>Sample</u>	Mo ICAP 	Cu ICAP ppm	Pb ICAP 	Zn ICAP 	Ag ICAP PPm	Nİ ICAP 	Co ICAP PPM
218527	6	1560	19	475	0.8	149	123
218533	5	396	28	88	2.4	59	38
218539	11	1128	23	7392	1.7	125	95
218540	5	558	22	218	1.3	91	45
218541	14	154	24	64	1.2	29	38
218542	7	41	23	91	1.3	25	42
8141	4	193	19	19	0.5	69	24
8156	8	289	40	128	1.1	78	48
8135	6	9	25	42	1.6	23	65
	Mn	Fe	As	Hg	Sr	Cd	Sb
	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP
Sample	<u>PPM</u>	<u> </u>	<u>ppm</u>	<u>₽₽</u> @	<u>ppm</u>	<u>ppm</u>	PPM
218527	232	9.59	8	(3	9	4	3
218533	911	6.40	22	(3	9	2	14
218539	310	6.26	35	(3	22	21	18
218540	420	4.01	19	(3	10	1	16
218541	722	5.33	21	(3	25	2	5
218542	1646	10.52	24	(3	27	5	24
8141	196	2.35	10	(3	8	<1	6
8156	637	4.63	18	(3	4	. 1	7
8135	473	12.38	20	(3	10	3	7
	Bi	v	Ca	Р	La	Cr	Mg
	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP
<u>Sample</u>	ppm	ppm	<u> </u>	<u> </u>	PPM	PPM	*
218527	<3	33	0.42	0.04	2	290	0.42
218533	(3	106	1.31	0.03	<1	181	1.96

PO #:

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

	16-Jun-92			
HOLMSTEAD 1074 Dillingham Street	Page: 5			
Kingston, ON	Copy: 1 of 1			
K7P 2P4	Set: 2			

Attn: Mr. Wayne Holmstead Project:

-- - - - - - . ..

-

PO #:

Received: 10-Jun-92 11:57

Job: 924230T

Status: Final

Rock \$	Samples
---------	---------

<u>Sample</u>	Bi ICAP 	V ICAP PPM	Ca ICAP %	P ICAP	La ICAP PPM	Cr ICAP PPM	Mg ICAP X
218539	<3	79	0.72	0.08	4	124	1.20
218540	(3	40	1.60	0.03	1	163	1.41
218541	(3	115	3.09	0.09	15	85	1.92
218542	(3	290	4.60	0.03	<1	62	3.13
8141	(3	41	0.52	0.02	<1	170	0.66
8156	(3	92	0.35	0.03	<1	393	1.65
8135	(3	178	0.82	0.04	<1	120	1.36
	Ba ICAP	Ti ICAP	Al ICAP	Na ICAP	Si ICAP	W ICAP	B o ICAP
<u>Sample</u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u>PPM</u> .	PPM
218527	21	0.10	0.03	0.01	0.03	18	1
218533	32	0.15	2.49	(0.01	0.04	11	3
218539	51	0.01	2.01	0.06	0.06	215	2
218540	20	0.11	1.64	0.03	0.04	12	1
218541	23	0.09	2.26	0.05	0.06	4	3
218542	22	0.16	4.72	(0.01	0.04	14	7
8141	15	0.06	1.21	0.04	0.02	2	1
8156	27	0.12	1.97	(0.01	0.02	9	3
8135							

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4

Page: 1 Copy: 1 of 1 Set: 1

16-Jun-92

Attn: Mr. Wayne Holmstead Project:

A...

PO #:

Received: 22-May-92 07:59

Job: 924157T

Status: Final

16-Jun-92

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4

 Page:
 2

 Copy:
 1 of
 1

 Set:
 1

Attn: Mr. Wayne Holmstead Project:

P0 #:

Status: Final

Received: 22-May-92 07:59

Rock Samples

 Au

 FA/AA3

 Sample
 ppb

 77783
 <5</td>

 77784
 10

 77785
 <5</td>

Job: 924157T

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4

16-Jun-92

Page:		3
Сору:	1 of	1
Set :		2

Attn: Mr. Wayne Holmstead Project:

P0 #:

Received: 22-May-92 07:59

Job: 924157T

Status: Final

Rock Samples

Sample	Au FA/AA3 ppb	Mo ICAP PPM	Cu ICAP PPM	Pb ICAP PPM	Zn ICAP PPM	Ag ICAP <u>PPM</u>	Ni ICAP PPM
77747	85	15	31	6	31	1.5	37
77752	36	13	63	14	50	<0.1	69
77753	<5	8	61	17	30	0.2	81
77754	13	3	83	17	56	0.6	135
77756	5)	1	119	5	103	<0.1	79
77761	174	7	10	2	6	7.2	42
77762	(5	2	5	2	3	(0.1	19
77763	5)	2	9	2	5	<0.1	11
77764	12	5	14	11	3	0.3	43
77765	5)	6	6	27	19	1.5	30
77766	85	97	7	19	5	0.6	27
77767	67	7	2911	17	150	1.5	55
77779	12	4	1446	15	55	0.6	80
77780	(5	35	130	9	18	0.2	33
77781	(5	3	206	21	52	0.6	22
	_		-	_	-		~

	Co	Mn	Fe	As	Sr	Cd	Sb
	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP
<u>Sample</u>	<u> </u>	<u>ppm</u>		PPM	<u>ppm</u>	<u>PPM</u>	PPM
77747	22	452	7.74	9	7	1	3
77752	17	1070	4.09	(2	134	1	10
77753	24	1014	3.95	(2	34	1	10
77754	13	1059	5.09	6	121	1	7
77756	18	1139	6.65	8	7	1	(2
77761	7	55	0.56	4	1	1	5
77762	5	21	0.26	(2	1	<1	9
77763	18	59	0.68	<2	5	<1	(2
77764	10	2650	1.44	7	4	<1	(2

- -----

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4 16-Jun-92

Page:		4
Copy:	1 of	1
Set :		2

Attn: Mr. Wayne Holmstead Project:

P0 #:

Received: 22-May-92 07:59

Status: Final

Job: 924157T

<u>Sample</u>	Co ICAP 	Mn ICAP 	Fe ICAP 	AS ICAP PPM	Sr ICAP PPm	Cd ICAP PPM	Sb ICAP PPM
77765	11	606	1.39	12	76	<1	4
77766	25	47	0.69	6	7	<1	(2
77767	25	119	1.50	11	9	<1	(2
77779	8	504	3.30	11	5	<1	(2
77780	6	197	2.49	7	3	<1	(2
77781	4	182	3.77	7	10	<1	(2
	Bi Icap	V ICAP	Ca ICAP	P ICAP	La ICAP	Cr ICAP	Mg ICAP
Sample	PPm	<u>ppm</u>	<u> </u>	<u> </u>	PPM .	<u> </u>	<u> </u>
							• • • •
77747	12	125	1.15	0.03	(1	141	0.64
77752	(3	26	6.87	0.01	1	77	2.54
77753	(3	31	6.27	0.01	1	111	1.97
77754	(3	39	5.14	0.01	1	93	2.46
77756	(3	148	0.35	0.03	1	184	2.60
77761	(3	17	0.02	(0.01	<1	489	0.04
77762	5	8	0.01	<0.01	<1	244	0.01
77763	(3	4	0.03	0.02	10	100	0.07
77764	· (3	19	0.01	(0.01	<1	568	0.02
77765	(3	10	2.04	0.03	12	176	0.70
77766	(3	12	0.06	0.02	4	324	0.02
77767	(3	12	0.54	(0.01	1	288	0.16
77779	(3	63	0.93	0.01	(1	334	1.32
77780	(3	49	0.24	0.01	(1	206	0.81
77781	(3	65	0.47	0.03	2	121	0.58

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4 16-Jun-92

Page	:		5
Сору	: 1	of	1
Set :	:		2

Attn: Mr. Wayne Holmstead Project:

P0 #:

Received: 22-May-92 07:59

Job: 924157T

Status: Final

<u>Sample</u>	Ba ICAP 	Ti ICAP X	Al ICAP 3	Na ICAP %	Si ICAP %	W ICAP PPM	Be ICAP PPM
77747	14	0.27	1.07	0.02	0.07	2	3
77752	11	0.01	1.33	0.01	0.04	9	1
77753	12	(0.01	1.47	0.03	0.05	3	1
77754	20	0.01	1.80	0.06	0.07	4	1
77756	14	0.14	2.77	0.01	0.04	(2	4
77761	12	<0.01	0.05	<0.01	0.02	(2	<1
77762	3	<0.01	0.02	<0.01	0.01	<2	<1
77763	18	<0.01	0.21	<0.01	0.02	<2	<1
77764	17	<0.01	0.08	(0.01	0.05	<2	1
77765	23	<0.01	0.20	0.06	0.04	(2	1
77766	14	<0.01	0.09	0.05	0.04	<2	1
77767	4	0.01	0.59	<0.01	0.03	<2	1
7777 9	7	0.07	1.61	0.02	0.05	(2	2
77780	6	0.12	0.98	0.03	0.08	<2	2
77781	18	0.21	1.05	0.04	0.07	(2	2

	Hg ICAP
<u>Sample</u>	PPM
77747	(3
77752	(3
77753	(3
77754	(3
77756	(3
77761	(3
77762	(3
77763	<3
77764	(3

16-Jun-92

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4

 Page:
 6

 Copy:
 1 of
 1

 Set:
 2

Attn: Mr. Wayne Holmstead Project: Received: 22-May-92 07:59

PO #:

<u>Status: Final</u>

Rock Samples

	Hg ICAP
Sample	PPM
77765	(3
77766	(3
77767	(3
77779	(3
77780	(3
77781	(3

۰.

---- -

. .

Job: 924157T

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 07) 623-6448 FAX 623-6820 PHONE (807) 623-6448

18-Jun-92

Page: 1 Copy: 1 of 1 Set : 1

HOLMSTEAD 1074 Dillingham Street

Attn: Mr. Wayne Holmstead Project:

PO #:

Status: Final

Received: 12-May-92 16:58

Rock Samples

<u>Sample</u>	Au FA/AA3 ppb	Au Calc. oz/T
77651	(5	(0.001
77653	(5	<0.001
77654	147	0.004
77655	5)	<0.001
77656	5 ا	(0.001
77657	5 \	(0.001
77660	(5	<0.001
77661	9	<0.001
77663	(5	(0.001
77666	(5	(0.001
77667	<5	(0.001
77668	171	0.005
77669	29	(0.001
77670	42	0.001
77671	8	(0.001
77672	8	<0.001
77673	(5	<0.001
77674	28	<0.001
77675	6	(0.001
77678	12	(0.001
77680	6	<0.001
77681	1141	0.033
77682	11	<0.001
77683	16	<0.001
77684	7	<0.001
77685	<5	(0.001
77686	7	<0.001
77687	(5	(0.001

Kingston, ON K7P 2P4

Job: 924123T

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 07) 623-6448 FAX 623-6820 PHONE (807) 623-6448

HULMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4

18-Jun-92

Page:		2
Copy:	1 of	1
Set :		1

Attn: Mr. Wayne Holmstead Project:

Job: 924123T

PO #:

Final Status:

Received: 12-May-92 16:58

Sample	Au FA/AA3 ppb	Au Calc. oz/T
77689	7	<0.001
77690	<5	<0.001
77691	<5	<0.001
77692	<5	(0.001
77693	28	<0.001
77694	12356	0.360
77696	(5	<0.001
77697	<5	(0.001
77698	(5	(0.001
77699	<5	<0.001
77700	<5	(0.001
77701	144	0.004
77702	(5	<0.001
77703	11	(0.001
77704	8	(0.001
77705	8	<0.001
77707	<5	<0.001
77708	<5	<0.001
77709	(5	<0.001
77712	۲5	<0.001
77713	(5	(0.001
77714	9	(0.001
77715	9	(0.001
77716	<5	<0.001
77717	7	(0.001
77718	6	<0.001
77719	(5	(0.001
77720	(5	<0.001

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

18-Jun-92

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4

Page:		З
Copy:	1 of	1
Set :		1

Attn: Mr. Wayne Holmstead Project:

P0 #:

Received: 12-May-92 16:58

Job: 924123T

______S

Status: Final

Sample	Au FA/AA3 	Au Calc. oz/T
77721	11	<0.001
77722	(5	<0.001
77724	5)	(0.001
77725	(5	(0.001
77726	(5	(0.001
77727	9	(0.001
77728	(5	(0.001
77729	(5	(0.001
77731	(5	(0.001
77732	60	0.002
77734	287	0.008
77735	1901	0.055
77736	118020	3.442
77737	57188	1.668
77738	97426	2.842

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 107) 623-6448 FAX 623-6820 PHONE (807) 623-6448

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4

18-Jun-92

Page: 4 Copy: 1 of 1 Set : 2

Attn: Mr. Wayne Holmstead Project:

PO #:

Final

Received: 12-May-92 16:58

Job: 924123T

Rock Samples

<u>Sample</u>	Au FA/AA3 ppb	Au Calc. 	Mo ICAP PPM	Cu ICAP PPM	Pb ICAP PPM	Zn ICAP PPM	Ag ICAP PPM
77652	42	0.001	2	156	4	14	0.1
77658	15	(0.001	41	154	(2	23	0.3
77659	80	0.002	(1	1367	(2	25	0.8
77662	(5	(0.001	<1	23	2	87	0.2
77664	6	(0.001	<1	181	(2	30	0.3
77665	7	(0.001	3	114	2	5	0.1
77676	12	(0.001	<1	433	32	344	0.5
77677	9	(0.001	2	186	(2	1063	0.6
77679	(5	(0.001	3	39	9	27	0.2
77688	6	<0.001	7	36	4	19	0.2
77695	<5	<0.001	<1	49	(2	8	0.1
77710	7	<0.001	4	877	<2	955	0.3
77711	7	<0.001	2	187	5	211	0.2
77723	<5	<0.001	2	161	<2	163	0.6
77730	12	(0.001	3	769	<2	47	0.3
77733	<5	(0.001	2	39	<2	18	0.4
77739	45860	1.338	4	56772	(2	563	72.9
	' Ni	Со	Mn	Fe	As	Hg	Sr
	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP
<u>Sample</u>	<u>PPM</u> _	<u></u>	<u>ppm</u>	<u> </u>	<u>PPM</u>	PPM	<u>ppm</u>
77652	26	13	232	3.02	2	<3	3
77658	57	33	151	3.15	(2	(3	16
77659	90	95	172	7.81	(2	(3	36
77662	213	19	440	3.05	5	(3	11
77664	85	43	275	4.27	(2	(3	16
77665	34	20	71	2.04	2	(3	23
77676	31	14	258	3.86	5	(3	4

Status:

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4 18-Jun-92

Page	•=			5
Copy	/:	1	of	1
Set	:			2

Attn: Mr. Wayne Holmstead Project:

PO #:

Received: 12-May-92 16:58

Job: 924123T

Status: Final

	Nİ	Со	Mn	Fe	As	Hg	Sr
	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP
<u>Sample</u>	PPM	PPM	<u>ppm</u>	<u> </u>	<u>PPM</u>	<u></u>	PPM
77677	49	16	322	6.20	4	(3	3
77679	20	6	60	1.90	<2	(3	10
77688	38	16	53	0.95	2	(3	2
77695	19	31	158	4.04	<2	(3	9
77710	61	41	68	3.80	<2	(3	7
77711	36	16	137	3.07	(2	(3	6
77723	28	17	607	6.99	(2	(3	6
77730	15	8	299	4.15	(2	(3	3
77733	70	19	1759	4.09	(2	(3	28
77739	85	36	93	12.15	(2	(3	1
	Cd	Sb	Bi	V	Ca	Ρ	La
	1040	TO 40			7 ~ ^ ~		
	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP
Sample	<u>PPM</u>	PPM	PPM	1CAP 	1CAP		PPM
	PPM	ppm	PPM	<u>ppm</u>	%		ppm
77652	PPm	<u>ppm</u> 4		<u>ppm</u>	% 0.25	* 0.02	<u>pom</u> 1
77652 77658	PPm (1 (1	<u>ppm</u> 4 5	<u>ppm</u> (3 (3	<u>ppm</u> 30 30	% 0.25 0.21	0.02 0.03	<u>PPM</u> 1 (1
77652 77658 77659	PPM	<u>ppm</u> 4 5 (2	PPM (3 (3 (3 (3	<u></u>	% 0.25 0.21 0.36	0.02 0.03 0.06	PPM 1 (1 (1
77652 77658 77659 77662	PPM (1 (1 (1 (1	<u>ppm</u> 4 5 (2 (2	PPM (3 (3 (3 (3 (3 (3	<u>ppm</u> 30 30 59 66	% 0.25 0.21 0.36 0.32	\$ 0.02 0.03 0.06 0.08	PPM 1 (1 (1 12
77652 77658 77659 77662 77664	PPM (1 (1 (1 (1 (1	<u>ppm</u> 4 5 (2 (2 (2 (2	PPM (3 (3 (3 (3 (3 (3)	<u>ppm</u> 30 30 59 66 64	% 0.25 0.21 0.36 0.32 0.36	\$ 0.02 0.03 0.06 0.08 0.02	PPM 1 (1 (1 12 (1
77652 77658 77659 77662 77664 77665	PPM (1 (1 (1 (1 (1 (1 (1	ppm 4 5 (2 (2 (2 3	ppm (3 (3 (3 (3 (3 (3 (3) (3)	<u>ppm</u> 30 30 59 66 64 20	% 0.25 0.21 0.36 0.32 0.36 0.21	\$ 0.02 0.03 0.06 0.08 0.02 0.03	PPM 1 (1 (1 12 (1 (1
77652 77658 77659 77662 77664 77665 77676	PPM (1 (1 (1 (1 (1 (1 (1 (1 2	ppm 4 5 (2 (2 (2 3 (2	ppm (3 (3 (3 (3 (3 (3 (3 (3) (3)	<u>ppm</u> 30 30 59 66 64 20 44	% 0.25 0.21 0.36 0.32 0.36 0.21 0.11	2 0.02 0.03 0.06 0.08 0.02 0.03 0.03 0.03	PPM 1 (1 (1 12 (1 (1 (1 5
77652 77658 77659 77662 77664 77665 77676 77677	PPM (1 (1 (1 (1 (1 (1 (1 2 3)	ppm 4 5 (2 (2 (2 3 (2 3 (2 2 (2	ppm (3 (3 (3 (3 (3 (3 (3 (3 (3 (3)	<u>ppm</u> 30 30 59 66 64 20 44 84	% 0.25 0.21 0.36 0.32 0.36 0.21 0.11 0.22	2 0.02 0.03 0.06 0.08 0.02 0.03 0.03 0.03 0.03	PPM (1 (1 12 (1 (1 5 (1
77652 77658 77659 77662 77664 77665 77676 77677 77679	PPM (1 (1 (1 (1 (1 (1 (1 2 3 (1	PPM 4 5 (2 (2 (2 (2 3 (2 (2 (2 (2)	ppm (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3) (3)	<u>ppm</u> 30 30 59 66 64 20 44 84 29	% 0.25 0.21 0.36 0.32 0.36 0.21 0.11 0.22 0.07	2 0.02 0.03 0.06 0.08 0.02 0.03 0.03 0.03 0.03 0.03	PPM 1 (1 (1 12 (1 (1 5 (1 2
77652 77658 77659 77662 77664 77665 77676 77677	PPM (1 (1 (1 (1 (1 (1 (1 2 3)	ppm 4 5 (2 (2 (2 3 (2 3 (2 2 (2	ppm (3 (3 (3 (3 (3 (3 (3 (3 (3 (3)	<u>ppm</u> 30 30 59 66 64 20 44 84	% 0.25 0.21 0.36 0.32 0.36 0.21 0.11 0.22	2 0.02 0.03 0.06 0.08 0.02 0.03 0.03 0.03 0.03	PPM (1 (1 12 (1 (1 5 (1
77652 77658 77659 77662 77664 77665 77676 77677 77679 77688	PPM (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	PPM 4 5 (2 (2 (2 3 (2 3 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	ppm (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3	PPM 30 30 59 66 64 20 44 84 29 16	% 0.25 0.21 0.36 0.32 0.36 0.21 0.11 0.22 0.07 0.04	2 0.02 0.03 0.06 0.08 0.02 0.03 0.03 0.03 0.03 0.02 0.01	PPM 1 (1 (1 12 (1 (1 5 (1 2 1
77652 77658 77659 77662 77664 77665 77676 77677 77679 77688 77695	PPM (1 (1 (1 (1 (1 (1 (1 2 3 (1 1 (1	ppm 4 5 (2 (2 (2 3 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	ppm (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3	<u>ppm</u> 30 30 59 66 64 20 44 84 29 16 46	% 0.25 0.21 0.36 0.32 0.36 0.21 0.11 0.22 0.07 0.04 0.55	2 0.02 0.03 0.06 0.08 0.02 0.03 0.03 0.03 0.03 0.02 0.01 0.07	PPM 1 (1 (1 12 (1 (1 5 (1 2 1 (1 (1
77652 77658 77659 77662 77664 77665 77676 77677 77679 77688 77695 77710	PPM (1 (1 (1 (1 (1 (1 2 3 (1 1 1 (1 3	ppm 4 5 (2 (2 (2 3 (2 (2 (2 (2 (2 (2 (2 (2	ppm (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	ppm 30 30 59 66 64 20 44 84 29 16 46 20	% 0.25 0.21 0.36 0.32 0.36 0.21 0.11 0.22 0.07 0.04 0.55 0.13	2 0.02 0.03 0.06 0.08 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.01 0.07 0.04	PPM 1 (1 (1 12 (1 (1 5 (1 2 1 (1 7
77652 77658 77659 77662 77664 77665 77676 77677 77679 77688 77695	PPM (1 (1 (1 (1 (1 (1 (1 2 3 (1 1 (1	ppm 4 5 (2 (2 (2 3 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	ppm (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3	<u>ppm</u> 30 30 59 66 64 20 44 84 29 16 46	% 0.25 0.21 0.36 0.32 0.36 0.21 0.11 0.22 0.07 0.04 0.55	2 0.02 0.03 0.06 0.08 0.02 0.03 0.03 0.03 0.03 0.02 0.01 0.07	PPM 1 (1 (1 12 (1 (1 5 (1 2 1 (1 (1

JRASSAY LABORATORIES

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4 18-Jun-92

 Page:
 6

 Copy:
 1 of
 1

 Set:
 2

Final

La

ICAP

PPM

Si

<1

<1

1

Attn: Mr. Wayne Holmstead Project:

Cd

ICAP

Cr

<1

<1

3

ACCI

PO #:

Received: 12-May-92 16:58

Job: 924123T

Sample ppm

77730

77733

77739

Status:

Sb ICAP PPM	Bi ICAP 	V ICAP PPM	Ca ICAP	P ICAP
<2	‹ 3	29	0.30	0.03
(2	(3	28	0.43	0.21
<2	2180	10	0.05	0.01
Mg	Ba	Ti	Al	Na

	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP
<u>Sample</u>	<u>ppm</u>	<u> </u>	<u>₽₽</u> @		<u> </u>	<u> </u>	
77652	347	0.22	15	0.07	0.34	0.01	0.01
77658	341	0.41	90	0.11	0.45	0.01	0.01
77659	187	0.44	17	0.14	0.67	0.01	0.01
77662	528	2.46	204	0.17	1.36	0.01	0.01
77664	192	1.89	23	0.13	1.13	0.01	0.01
77665	212	0.19	22	0.07	0.33	0.02	0.01
77676	168	1.26	14	0.16	1.36	0.01	0.01
77677	360	1.17	13	0.10	1.46	0.01	0.01
77679	322	0.13	10	0.07	0.25	0.01	0.01
77688	461	0.06	3	0.03	0.10	0.02	0.01
77695	196	0.29	15	0.19	0.45	0.03	0.01
77710	268	0.26	13	0.10	0.42	0.01	0.01
77711	356	0.32	14	0.13	0.52	0.01	0.01
77723	118	1.71	33	0.12	2.38	0.04	0.01
77730	79	0.46	14	0.14	0.84	0.01	0.01
77733	113	0.89	75	0.01	0.85	0.01	0.01
77739	222	0.16	6	0.01	0.23	0.01	0.01

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4

Job: 924123T

18-Jun-92

Page:		7
Copy:	1 of	1
Set :		2

Attn: Mr. Wayne Holmstead Project:

P0 #:

<u>Status: Final</u>

Received: 12-May-92 16:58

Sample_	W ICAP 	Be ICAP
77652	3	1
77658	7	1
77659	4	1
77662	3	2
77664	5	1
77665	(2	<1
77676	(2	1
77677	<2	1
77679	<2	<1
77688	<2	(1
77695	(2	1
77710	<2	<1
77711	(2	1
77723	(2	1
77730	<2	1
77733	<2	1
77739	(2	<1

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4 18-Jun-92

Page:8Copy:1 ofSet:3

Attn: Mr. Wayne Holmstead Project: Received: 12-May-92 16:58

Job: 924123T

Status: Final

Soil Samples

<u>Sample</u>	Au FA/AA ppb	Mo ICAP PPM	Cu ICAP PPM	Pb ICAP PPM	Zn ICAP ppm	Ag ICAP 	Ni ICAP PPM
#01	22	1	128	(2	22	0.3	4
#02	13	2	67	(2	32	0.2	5
#03	10	3	91	9	72	0.2	13
#04	15	2	105	(2	50	0.3	11
#05	8	<1	85	5	223	0.2	42
#06	12	<1	162	<2	193	0.2	98
#07	(9	<1	14	7	53	0.1	11
#08	17	<1	17	10	47	0.1	9
#09	(6	1	63	(2	67	0.2	29
#10	(8)	<1	17	10	49	0.3	4
#11	<6	<1	54	10	65	0.2	12
#12	۲6	<1	54	6	42	0.1	10
#13	8	1	76	7	37	0.1	4
#14	32	2	42	6	53	0.2	13
#15	8	2 2	73	10	44	0.1	4
#16	14		137	17	41	0.3	14
#17	12	<1	72	4	33	0.2	23
#18	. 10	2	91	14	87	0.4	23
#19	12	3	73	13	71	0.2	19
#20	(9	1	33	16	49	1.3	7
#21	(16	3	45	9	77	0.4	51
#22	10	2	199	3	68	0.2	53
#23	13	1	184	11	112	0.4	35
#24	9	1	74	7	73	0.3	27
#25	(6	<1	46	< 2	115	0.1	53
#26	6۷	1	10	10	30	0.3	9
#28	12	1	59	3	61	0.2	18
#29	8	<1	93	7	36	0.3	15

P0 #:

HOLMSTEAD 1074 Dillingham	Street
Kingston, ON	
K7P 2P4	

Mo

ICAP

9 Page: Copy: 1 1 of

Set : З

Ni

ICAP

10

<1 <1

<1

<1

2

<1

1 1

1 1

1

1 1

<1

<1

<1

1

1

1

2

1

(1

4

4

4

7

8

6

4

8

13

18-Jun-92

Attn: Mr. Wayne Holmstead Project:

Au

9

5

9

18

13

12

42

26

6

114

66

55

179

111

93

152

1476

884

FA/AA

PO #:

Received: 12-May-92 16:58

Job: 924123T

#14

#15

#16

#17

#18

#19

#20

#21

#22

Ag

ICAP

<u>Sample</u>	dqq	<u>ppm</u>	PPM	<u></u>	Ppm	<u>PPM</u>	
#30	۲6	2	35	5	30	0.4	1
	Co ICAP	Mn ICAP	Fe ICAP	As ICAP	Hg ICAP	Sr ICAP	Cd ICAP
Sample			10AF		<u>PPM</u>		
#01	<1	38	2.50	(2	(3	4	
#02	<1	41	4.17	<2	(3	4	
#03	3	95	2.90	6	(3	5	(
#04	5	47	3.02	3	(3	4	
#05	16	430	3.88	<2	(3	9	
#06	77	3628	5.20	(2	(3	10	
#07	14	1215	1.34	<2	(3		
#08	11	634	1.24	(2	(3	9 8	
#09	12	220	2.52	5	(3	11	
#10	3	145	1.77	<2	(3	6	
#11	8	88	2.31	4	(3	4	
#12	6	62	2.53	(2	<3	3	
#13	′ : 5	78	1.57	3	(3	3	

3.19

2.92

2.69

2.67

2.78

3.61

1.15

3.14

3.05

5

6

10

4

6

7

10

8

5

(3

(3

(3

(3

(3

(3

(3

(3

(3

Pb

ICAP

Soil Samples

Cu

ICAP

Final

Status:

Zn

ICAP

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P78 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4 Page: 10

Copy: 1 of 1 Set: 3

18-Jun-92

Attn: Mr. Wayne Holmstead Project: Received: 12-May-92 16:58

Job: 924123T

PO #:

Status: Final

Soil Samples

<u>Sample</u>	Co ICAP PPM	Mn ICAP PPM	Fe ICAP	AS ICAP PPM	Hg ICAP PPM	Sr ICAP 	Cd ICAP PPM
#23	142	1016	3.87	<2	(3	8	<1
#24	29	3563	2.53	2	(3	8	(1
#25	29	1494	4.41	<2	(3	3	<1
#26	8	104	1.88	(2	(3	7	2
#28	15	316	3.11	5	(3	6	<1
#29	49	935	2.36	(2	(3	7	1
#30	10	291	1.39	3	(3	5	1
	Sb	8i	v	Ca	Ρ	La	Cr
	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP
<u>Sample</u>	<u>ppm</u>	<u>pem</u>	PPM	<u>*</u>	<u> </u>	<u>ppm</u>	<u>ppm</u>
#01	<2	(3	45	0.04	0.03	5	18
#02	(2	(3	66	0.04	0.05	5	24
#03	3	(3	52	0.06	0.07	7	26
#04	6	(3	52	0.04	0.09	7	25
#05	3	(3	70	0.13	0.11	5	64
#06	5	(3	74	0.17	0.09	11	47
#07	3	(3	25	0.18	0.03	7	17
#08	′ ′ ′ ′ ′ ′ ′ ′ ′ ′	(3	25	0.11	0.02	10	19
#09	(2	<3	55	0.15	0.03	4	44
#10	(2	(3	37	0.06	0.05	7	16
#11	(2	(3	39	0.05	0.06	13	20
#12	(2	(3	52	0.04	0.01	6	31
#13	7	6	30	0.05	0.08	9	14
#14	4	(3	63	0.05	0.04	6	34
#15	4	(3	50	0.06	0.06	7	20
#16	2 2	6	31	0.04	0.05	10	28
#17	2	3	67	0.23	0.01	7	53

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4

Attn: Mr. Wayne Holmstead Project:

0.17

0.19

#10

#11

99

154

0.03

0.02

1.11

1.93

0.01

0.01

0.01

0.01

(2

<2

Received: 12-May-92 16:58

Status: Final

Job: 924123T

Soil Samples

Sample .	Sb ICAP PPM	Bi ICAP 	V ICAP PPM	Ca ICAP %	P ICAP %	La ICAP 	Cr ICAP ppm
#18	2	5	31	0.10	0.03	7	26
#19	2	3	71	0.06	0.04	6	44
#20	2	6	26	0.07	0.06	7	14
#21	2	3	51	0.16	0.04	4	50
#22	2	(3	58	0.38	0.06	18	38
#23	2	(3	54	0.17	0.08	10	35
#24	<2	(3	43	0.24	0.05	8	28
#25	<2	(3	98	0.11	0.02	2	132
#26	(2	3	23	0.11	0.01	4	22
#28	3	(3	69	0.12	0.03	8	37
#29	7	(3	40	0.15	0.04	9	19
#30	2	(3	31	0.10	0.02	4	14
	Mg ICAP	Ba ICAP	Ti ICAP	Al ICAP	Na ICAP	Si ICAP	W ICAP
Sample .		<u>ppm</u>		<u> </u>	_ *	<u> </u>	PPM
#01	0.13	100	0.01	2.01	0.01	0.01	(2
#02	0.09	115	0.03	1.92	0.01	0.01	(2
#03	0.24	78	0.04	2.73	0.01	0.01	(2
#04	0.16	104	0.03	2.97	0.01	0.01	(2
#05	0.83	135	0.14	3.20	0.01	0.01	(2
#06	0.26	227	0.05	2.98	0.01	0.01	<2
#07	0.21	87	0.03	0.71	0.01	0.01	(2
#08	0.28	83	0.04	1.01	0.01	0.01	(2
#09	0.76	64	0.12	2.10	0.01	0.01	(2

18-Jun-92

Page: 11 Copy: 1 of 1 Set: 3

P0 #:

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4 18-Jun-92

 Page:
 12

 Copy:
 1 of
 1

 Set:
 3

Attn: Mr. Wayne Holmstead Project: Received: 12-May-92 16:58

Job: 924123T

PO #:

Status: Final

Soil Samples

Sample .	Mg ICAP 2	Ba ICAP PPM	TI ICAP 3	Al ICAP 	Na ICAP 2	Si ICAP 	W ICAP PPM
#12	0.25	71	0.04	1.39	0.01	0.01	(2
#13	0.08	90	0.01	1.54	0.01	0.01	(2
#14	0.36	49	0.05	2.30	0.01	0.01	4
#15	0.13	91	0.02	1.97	0.01	0.01	<2
#16	0.19	133	0.02	2.70	0.01	0.01	5
#17	1.03	45	0.04	1.77	0.01	0.01	2
#18	0.29	136	0.05	2.85	0.01	0.01	(2
#19	0.41	99	0.06	2.70	0.01	0.01	3
#20	0.12	72	0.01	0.85	0.01	0.01	(2
#21	0.65	142	0.04	2.25	0.01	0.01	2
#22	0.22	225	0.03	3.42	0.01	0.01	4
#23	0.14	146	0.03	2.25	0.01	0.01	(2
#24	0.34	155	0.04	1.83	0.01	0.01	(2
#25	1.76	116	0.12	3.15	0.01	0.01	<2
#26	0.30	54	0.03	0.69	0.01	0.01	(2
#28	0.41	119	0.06	2.23	0.01	0.01	(2
#29	0.21	111	0.04	1.44	0.01	0.01	(2
#30	0.21	89	0.03	1.06	0.01	0.01	<2

Be ICAP

<u>Sample</u>	PPM
#01	1
#02	2
#03	1
#04	2
#05	2
#06	2

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4 18-Jun-92

Page:		13
Сору:	10	f 1
Set :		З

Attn: Mr. Wayne Holmstead Project:

P0 #:

Job: 924123T

<u>Status: Final</u>

Received: 12-May-92 16:58

Soil Samples

Sample _	B o ICAP
Sambia -	<u></u>
#07	1
#08	1
#09	1
#10	1
#11	2
#12	1
#13	1
#14	2
#15	1
#16	2
#17	2
#18	2
#19	2
#20	1
#21	1
#22	2
#23	2
#24	1
#25	′ <u>2</u>
#26	1
#28	2
#29	1
#30	1

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 107) 623-6448 FAX 623-6820 PHONE (807) 623-6448

HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4

Page: 14

Copy: 1 of 1 Set : 4

18-Jun-92

Attn: Mr. Wayne Holmstead Project:

Received: 12-May-92 16:58

Job: 924123T

PO #:

Status: Final

Humus Samples

Sample .	Au NA ppb	Na NA X	Ca NA 	SC NA PPM	Cr NA PPM	Fe NA %	Co NA PPM
BG01	6	(0.01	0.7	(0.2	2	(0.05	<1
BG02	2	(0.01	<0.5	(0.2	1	(0.05	<1
BG03	2	(0.01	0.7	(0.2	1	<0.05	<1
8G04	3	(0.01	<0.5	(0.2	2	<0.05	<1
BG0 5	10	0.11	1.8	4.5	18	0.39	4
BG06	24	0.79	1.0	9.6	80	1.51	16
	NÌ NA	Z n NA	AS NA	S o Na	Br NA	Rb NA	Mo NA
Sample	PPM	PPM	PPM	PPM	PPM	Ppm	PPm
BG01	(20	41	<1	(2	1	(20	‹0.5
8G02	(20	56	<1	(2	2	(20	(0.5
8G03	(20	22	<1	<2	2 3	(20	<0.5
8G04	<20	43	<1	(2	2	(20	(0.5
8G05	<20	(20	1	8	10	<20	1.0
8G06	51	(20	4	(2	3	30	<0.5
	Ag	Cd	Sb	Ba	La	Ce	Sm
	Í NA	NA	NA	NA	NA	NA	NA
<u>Sample</u>	<u></u>	<u>₽₽</u> @	<u> </u>	<u>ppm</u>	PPM	<u>ppm</u>	<u>PPM</u>
BG01	(2	<2	<0.1	(100	<1	<1	<0.1
BG02	(2	(2	0.1	(100	<1	<1	<0.1
BG03	<2	<2	0.2	<100	<1	<1	<0.1
BG04	<2	(2	<0.1	100	<1	<1	<0.1
BG05	(2	(2	0.4	140	23	34	3.4
BG06	(2	<2	0.5	680	44	53	5.1

A DIVISION OF ASSAY LABORATORIES SERVICES LTD.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 PHONE (807) 623-6448 FAX 623-6820

18-Jun-92

HOLMSTEAD		•
1074 Dillingham Street	Page:	15
Kingston, ON	Copy:	1 of 1
K7P 2P4	Set :	4

Attn: Mr. Wayne Holmstead Project:

PO #:

Received: 12-May-92 16:58

Job: 924123T

Final Status:

Humus Samples

<u>Sample</u>	Ta NA PPm	W NA PPM	Ir NA PPD	Hg NA PPM	Th NA 	U NA PPM
BG01	(0.5	(1	(10	(0.5	(0.5	(0.1
8G02	(0.5	<1	<10	<0.5	(0.5	<0.1
BG03	(0.5	<1	<10	(0.5	(0.5	<0.1
BG04	(0.5	<1	<10	(0.5	<0.5	(0.1
BG0 5	(0.5	2	<10	(0.5	3.3	1.6
BG06	1.0	1	<10	<0.5	6.6	2.7

> 1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

> > 8-Ju1-92

Page: 1 Copy: 1 of 1 Set: 1

HULMSTEAD 1074 Dillingham Street Kingston, UN K7P 2P4

Received: 24-Jun-92 11:44

2

Attn: Mr. Wayne Holmstead Project:

Job: 9242891

PO #:

<u>Status: Final</u>

Sample	Au Fa/aa3 b
~8162	150
8163	7
8164	55
8165	126
8166	15
8167	(5
8168	₹5
8169	64
8170	5\
8171	31
8172	(5
8173	< 5
8174	496
8175	/
8176	(5
8177	< 5
8178	, (5
8179	(5
8180	24
8181	9
8182	27
8183	13
8184	24
_8185	6
3186	7
8187	(5
218544	10
218545	9

> 1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

> > 8-Jul-92

 Page:
 2

 Copy:
 1 of
 1

 Set:
 1

K7P 2P4 Attn: Mr. Wayne Holmstead

Au

1074 Dillingham Street

Received: 24-Jun-92 11:44

Job: 9242891

HULMSTEAD

Project:

Kingston, ON

Status: Final

Rock Samples

PO #:

	nu
	FA/AA3
<u>Sample</u>	ppb
<u>~ 218546</u>	(5
218547	(5
218548	24
218549	13
218550	(5
218751	<5
218752	<5
218753	<5
218754	6
218755	7
218756	10
218757	<5
218758	7
218759	5 ا
218760	12
218761	(5
218762	, (5
218763	ć (5
218764	367
218765	(5
218766	6
218770	1622
218771	15
218772	<5
218773	(5
218774	(5
218775	40
218776	(5

6-Ju1-92

HULMSILAD 1074 Dillingham Street	Page:	з
Kingston, UN	Copy: 1 of	1
K7P 2P4	Set :	1

Attn: Mr. Wayne Holmstead Project:

P0 #:

Received: 24-Jun-92 11:44

Job: 9242891

Status: Final

Rock Samples

	Au FA/AA3	
<u>Sample</u>		
218777 218851 218852	(5 22 9	
218853 218853 218854	49 /1/	
218855	560 33267	
218857 218858	107 52	
218859	25545	- 745
218860 218861	49 10	
218/6/ 218768	5» 215	
218/69	12	

• :

6-Ju1-92

1 of

4

1

2

HULMSTEAD 1074 Uillingham Street Kingston, UN K7P 2P4

Received: 24-Jun-92 11:44

Page:

Set :

Copy:

Attn: Mr. Wayne Holmstead Project:

Job: 9242891

Status: Final

Rock Samples

PO #:

Sample	Mo LCAP PPM	Cu 1CAP 	РЬ 1САР 	Zn ICAP PPM	Ag ICAP 	NÍ ICAP 	Co ICAP
8166	<1	37	17	32	(0.1	33	16
8174	(1	982	54	28	<0.1	9	4
8175	4	248	51	300	0.4	40	22
8176	3	151	28	95	<0.1	62	23
8181	1	185	17	74	<0.1	36	22
8184	6	1365	16	50	0.6	24	21
218544	3	264	23	69	<0.1	24	13
218545	25	240	2	40	<0.1	285	41
218548	2	431	4	42	(0.1	53	53
218858	10	409	3	30	0.2	51	59
	Mn ICAP	Fe Icap	AS ICAP	Hg 1CAP	ST ICAP	Cd ICAP	Sb ICAP
<u>Sample</u>		<u>*</u>	PPM	PPM		PPm	Ppm
8166	1395	6.00	(2	(3	2	<1	(2
8174	555	13.62	10	(3	4	<1	6
8175	362	4.75	16	(3	20	1	11
8176	407	4.62	9	(3	11	<١	3
	6 0	6.33	6	(3	25	<1	(2
8181				(3	13	<1	5
8181 8184	432	6.26	7	13	*~		•
		6.26 5.47		(3	18	<1	
8184	432						4
8184 218544	432 323	5.47	/	(3	18	<1	4 (2 (2

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 507) 623-6448 FAX 623-6820 (807) 623-6448

HULMSTEAD 1074 Dillingham Street Kingston, UN K7P 2P4

Received: 24-Jun-92 11:44

Status: Final

Attn: Mr. Wayne Holmstead Project:

Job: 9242891

Rock Samples

PO #:

	Sample .	<u>рр</u> ш ТСАЬ Вј	V ICAP PPM	Са Ісар 	р Ісар <u>*</u>	La ICAP PPM	Ст 1сар 	Mg ICAP
-	8166	(3	. 61	4.98	6./9	1	66	0.07
	8174	(3	137	0.91	4.43	(1	54	0.81
	8175	8	38	0.67	3.25	1/	450	1.09
	8176	ខ	54	0.60	3.44	2	. 239	1.32
	8181	(3	106	1.03	4.6/	4	230	1.71
	8184	8	202	0.49	3.15	1	139	1.08
	218544	(3	/5	0.33	3.00	11	310	1.12
	218545	(3	97	9.43	15.7	1	590	7.97
	218548	(3	375	5.16	11.0	<1	162	3.63
	218858	ម	91	1.33	3.69	2	178	0.91
	<u>sample</u>	Ba ICAP 	Ti ICAP %	Al lcap %	Na 1CAP 	Si ICAP <u>* </u>	W ICAP PPM	Be ICAP
	8166	24	0.02	0.70	(0.01	0.05	(2	2
	8174	3	0.13	1.65	(0.01	0.03	81	4
	8175	1/	0.19	0.18	0.06	0.07	26	2
		· 5	0.2/	1.8/	0.05	0.04	1	2
	8176	· 5	V.2/	1.07				
	8176 8181	1 ·				0.06		3
	8181	16	0.24	2.60	0.01	0.06 0.04	5	3 5
	8181 8184	16 45	0.24 0.32	2.60 1./5	0.01 0.03	0.04		5
	8181 8184 218544	16 45 42	0.24 0.32 0.30	2.60 1./5 1.63	0.01 0.03 0.07	0.04 0.06	5 3 7	5 2
	8181 8184	16 45	0.24 0.32	2.60 1./5	0.01 0.03	0.04	5 3	5

6-Ju1-92

Page: 5 Copy: 1 of 1 Set : 2

> 1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

> > 16-Ju1-92

HULMSTEAD	10 004 /S
1074 Ullingham street	Page: 1
Kingston, UN	Copy: 1 of 1
K7P 2P4	Set: 1
Attn: Mr. Wayne Holmstéad	Received: 7-Jul-92 07:41

Attn: Mr. Wayne Holmstéad Project:

Job: 9243321

.

PO #:

<u>Status: Final</u>

		AU FA/AA3
	Sample	
	Sample	
-	218778	30
	218779	42
	218780	(5
	218781	27
	218782	24
	218/83	30
	218784	15
	218/85	48
	218786	306
	218/8/	31
	218788	22
	218789	269
	218790	25
	218791	97
	218752	251
	218793	62
	218862	. 25
	2188637	15
	218864	432
	218865	1764
	218866	88
	218867	15
	218868	(5
-	218869	∢5
	218870	28
	218871	12
	218872	.37
	218873	16

> 1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

						16	9-Ju1-9	92
HULMSTEA								• •
	lingham :	street				Page: Copy:	1	2
KINGSLOF	I, UN					Set :	1 of	1 1
к7Р 2Р4						3 6 1 •		T
Attn: Mr Project:		Hoimstead		YÚ #:	Received:	7–Jul	1-92 07	7:41
FIUJect.			F	· · ·				
Job: 5	243321				<u>Statı</u>	<u>IS:</u>	Final	
			Rock Sa	amples				
	Au							
o 1 -	FA/AA3							
Sample _	_ppb							
218874	31							
218875	21							
218876	248							
218877	82							
218878	719							
218879	108							
218880	104							
218881	62							
218882	/6							
519983	134							
218884	68							
218885	64							
218886	76							
216887	49							
218888	58							
218889	94							
218890	82	_						
218891 🕻	7248	•211						
218892	86/3	·253						
218893	956	.028						
218894	31129	·908						
	1580	•						

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

						10	6-Ju1-92
HULMSILA	AD Llingnam S	troot				Page:	3
Kingstor)(/ G el				Copy:	1 of 1
K7P 2P4	, O N					Set :	2
\/F 2F4						560 .	2
	r. Wayne ł	loimstead			Receive	ed: 7-Ju	1-92 07:4
Project:	•			PO #:			
<u>)op: 9</u>	243321				S1	tatus:	Final
			Rock :	amples			
	Mo	Cu	Ро	Zn · ·	Ag	Ni	Co
	1CAP	ICAP	1CAP	1CAP	ICAP	1CAP	ICAP
Sample		<u>PPm</u>	<u></u>	PPM	PPm	PPM	PPM
218862	<1	167	(2	61	1.6	48	35
218871	<1	3/6	(2	37	1.6	32	31
218877	1	180	5	94	(0.1	33	14
218/80	1	40	ě	39	<0.1	.30	25
218869	3	22	5	22	0.1	15	2
218881	2	241	6	56	0.1	23	27
	Mn	⊦е	As	Hg	Sr	Üđ	sb
	ICAP	1CAP	TCAP	1CAP	1CAP	ICAP	ICAP
<u>sample</u>	<u></u>	<u> </u>	<u>PPm</u>	ppm	ppm	PPM	PPM
218862	929	8.37	15	(3	26	1	2
218871	529	9.06	10	(3	12	1	6
218877	1369	8.96	2	(3	16	<1	2
218780	935	10,48	4	(3	16	<1	2
218869	241	2.27	23	(3	2	1	7
218881	723	7.78	5	(3	12	<1	(2
	81	v	Ca	Ŕ	La	Cr	Mg
	ICAP	ICAP	ICAP	ICAP	ICAP	1CAP	ICAP
Sample	PPm	PPM			<u> 990 </u>	<u>ppm</u>	<u> </u>
218862	/	161	1.14	0.09	4	427	1.13
218871	ខ	189	0.40	0.04	3	44	0.66
2188/7	(3	305	2.69	0.05	2	112	2.26
218780	(3	95	2.22	0.06	12	454	0.77
218869	(3	9	0.20	0.01	2	60	0.06
218881	< ع	178	Ú./2	0.07	1	21/	1.09

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

HULMSTEAD	16-Jul-92
1074 Dillingham Street	Page: 4 Copy: 1 of 1
KINGSTON, UN K/P 2P4	Set : 2
Attn: Mr. wayne Holmstead	Received: 7-Jul-92 07:41

Attn: Mr. wayne Holmstead Project: PO #:

Job: 9243321

.

Status: Final

Rock Samples

<u>Sample</u>	Ba ICAP 	ן ן וכאף ג	AÌ ICAP ~~	Na 1CAP 	51 ICAP 	W 1CAP 	Be ICAP
218862	3	0.47	2.11	(0.01	(0.01	7	5
2188/1	/	0.36	1.48	(0.01	<0.01	3	6
218877	93	0.28	3.27	(0.01	(0.01	4	9
218/80	21	Ó.07	2.34	Ú.Ú4	(0.01	7	4
218869	8	0.01	0.20	(0.01	(0.01	(2	<1
218881	55	0.32	1.95	0.02	<0.01	<2	6

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

1

1

1

28-Jul-92 HOLMSTEAD 1074 Dillingham Street Page: Kingston, ON Copy: 1 of -K7P 2P4 Set : Received: 13-Jul-92 11:40

Attn: Mr. Wayne Holmstead Project:

Au

PO #:

Job: 924343T

Status: Final

Rock Samples

		PIC.
		Fa/aa3
	<u>Sample</u>	ppb
$\widehat{}$	218101	93140
	218102	474
	218103	33
	218104	15
	218105	151
	218106	336
	218107	28
	218108	10
	218109	236
	218110	9
	218111	18
	218112	< 5
	218113	16
	218114	36
	218115	465
	218116	6
	218117	, [,] 135
	218118	181
	218119	7
	218120	9
	218121	702
	218122	22
	218123	68
$\widehat{}$	218124	49
	218125	7
	218896	163
	218897	65820
	218898	60110

ACCURASSAY LABS A DIVISION OF ASSAY LABORATORIES SERVICES INC.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

.

Page: 2 Copy: 1 of 1 Set: 1
ceived: 13-Jul-92 11:40
Status: Final

220402	2/
220403	114
220404	500
220405	511
220406	16
220407	7
220408	116100
220409	30230
220410	16270
220411	1366
220412	65
218794	2127
218795	36830
218796	. 861
218797	15
218798	10570
218799	11580
218800	166

A DIVISION OF ASSAY LABORATORIES SERVICES INC.

1070 LITHUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

	28-Jul-92
HOLMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4	Page: 3 Copy: 1 of 1 Set: 2

Attn: Mr. Wayne Holmstead Project:

P0 #:

Received: 13-Jul-92 11:40

Status:

Final

Job: 924343T

Rock Samples Mo Cu Pb NI Zn Ag Co ICAP ICAP ICAP ICAP ICAP ICAP ICAP Sample PPM **22**M PPM **PP** PPR PPM PPM 218107 9 268 20 41 0.9 43 21 218114 5 969 6 44 0.3 108 51 218115 3 709 0.8 16 13 68 31 220409 5 135 11 6 2.1 42 18 220411 3 359 29 11 1.0 65 25 220412 3 498 9 20 1.1 93 42 Mn Fe As Hg Cd Sb Sr ICAP ICAP ICAP ICAP ICAP ICAP ICAP Sample * PPM PPM PPR PPD PP# PPM 218107 96 2.71 18 (3 7 <1 29 218114 253 3.21 17 (3 5 <1 7 218115 84 2.36 14 (3 <1 <1 24 220409 76 0.87 20 (3 <1 <1 21 220411 3.89 З 219 14 (3 (1 <2 220412 202 10 (3 З 4.20 <1 6 Bi ν Ca Ρ Cr La Mg ICAP ICAP ICAP ICAP ICAP ICAP ICAP Sample PPM PPR z 2 PPM **201** 2 218107 0.10 7 (3 44 0.11 34 0.35 0.70 218114 4 79 0.46 0.06 **{1** 139 218115 0.03 5 16 0.02 (1 35 0.15 220409 8 16 0.08 0.01 1 131 80.0 220411 (3 32 0.31 0.05 90 <1 0.53 220412 (3 33 0.32 0.05 <1 108 0.44

A DIVISION OF ASSAY LABORATORIES SERVICES INC.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6620

	28	-Jul-9	2	
HOLMSTEAD 1074 Dillingham St Kingston, ON K7P 2P4	treet	Page: Copy: Set :		4 1 2

Attn: Mr. Wayne Holmstead Project: Received: 13-Jul-92 11:40

Job: 924343T

• :

Status: Final

PO #:

Sample .	Ba ICAP 	TI ICAP	Al ICAP	Na ICAP	Si ICAP	W ICAP	Be ICAP
218107	18	0.16	0.44	0.04	0.02	7	1
218114	32	0.14	1.16	0.06	0.02	24	2
218115	8	0.02	0.24	(0.01	0.02	3	<1
220409	10	0.02	0.13	(0.01	0.02	18	<1
220411	54	0.19	0.93	(0.01	0.02	7	1
220412	53	0.17	0.78	<0.01	0.02	17	1

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario K1J 9G2 Tel: (613) 749-2220 Fax: (613) 749-7170

Geochemical Lab Report

REPORT: 092	REPORT: 092-41761.0 (COMPLETE)						DATE PRINTED: <u>10-AUG-92</u> Project: None Page 1A					
SAMPLE NUMBER	ELEMENT UNITS	A1 PCT	Fe PCT	N n PPN	Ng PCT	Ca PCT	Na PCT	K PCT	Sc PPN	V PPN	Cr PPN	Co PPN
920708 920721A 920721B		0.08 0.23 0.41	1.03 1.04 1.58	94 110 183	0.04 0.20 0.38	0.05 0.38 0.70	0.04 0.04 0.04	0.03 0.03 0.08	<5 <5 <5	4 9 15	33 30 53	4 10 14
									•			
,							·					
											- <u></u>	

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario K1J 9G2 Tel: (613) 749-2220 Fax: (613) 749-7170

Geochemical Lab Report

REPORT: 092-	41761.0 (COM		DATE_PRINTED: <u>10-AUG-92</u> Project: None									
SAMPLE NUMBER	ELEMENT	Ni PPN	Cu PPN	Zn PPN	As PPN	Sr PPN	Y PPM	No PPN	Ag PPN	Cd PPN	Sn PPN	Sb PPN
920708 920721A 9207218		9 21 35	65 147 119	4 9 11	<5 <5 <5	1 2 4	্ব ব ব	5 2 5	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<20 <20 <20	ও ও ও
	<u></u>											
				<u> </u>								
,												
					<u> </u>							

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario K1J 9G2 Tel: (613) 749-2220 Fax: (613) 749-7170

.

Geochemical Lab Report

REPORT: 092-	-41761.0 (CON	IPLETE)					DA PS	NTE PRINTI Roject: N	PAGE	10	
SAMPLE NUMBER	ELEMENT UNITS	Te PPN	Ba PPN	La PPN	N PPN	Pb PPN	Bi PPN	Hg PPB	Au PP8		
920708 920721A 9207218		<10 <10 <10	4 2 4	ব ব ব ব	<20 <20 <20	10 9 14	<5 <5 <5	ও ও ও	1554 2969 3430		
		- <u></u>		<u> </u>		<u> </u>					
	- <u></u>										<u></u>

-

A DIVISION OF ASSAY LABORATORY SERVICES INC.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

Page: 1 Copy: 1 of 1 Set: 1

1074 Dillingham Street Kingston, ON K7P 2P4

Attn: W.E. Hoimstead

PO #:

Received: 10-Aug-92 09:22

Job: 924463T

HOLMSTEAD

Project:

Status: Final

Rock Samples

		Au	Au
		FA/AA3	Calc.
	Sample	PPb	oz/T
	220413	19	(0.001
	220414	9	(0.001
-	220415	6	<0.001
	220416	10	(0.001
	220417	380	0.011
	220418	7	(0.001
	220419	7248	0.211
	220420	147	0.004
	220421	17529	0.511
	220422	25	(0.001
	220423	16235	0.474
	220424	54118	1.578
	220425	34455	1.005
	220426	206	0.006
	220427	91	0.003
	220428	16	(0.001
	220429	12	(0.001
	220430	1735	0.051
	220431	88	0.003
	220432	<i>20118</i>	0.587
	220433	4500	0.131
	220434	1894	0.055
	220435	2762	0.081
	220436	701	0.020
	220437	91	0.003
_	220438	1051	0.031
	220439	27	(0.001
	220440	123	0.004

.

A DIVISION OF ASSAY LABORATORY SERVICES INC.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

13-Aug-92

Page:	4 . E	2
Copy: Set :	1 of	1 1

1074 Dillingham Street Kingston, ON K7P 2P4

Attn: W.E. Holmstead

PO #:

Received: 10-Aug-92 09:22

Job: 924463T

HOLMSTEAD

Project:

<u>Status: Final</u>

Rock Samples

	Au	Au
	FA/AA3	Calc.
Sample		oz/T
Jampio		
220441	4723	0.138
220442	677	0.020
220443	5198	0.152
220444	195	0.006
220445	2531	0.074
220446	8911	0.260
220447	8257	0.241
220448	10099	0.295
220449	25129	0.733
220450	6416	0.187
218126	42	0.001
218127	1123	0.033
218128	149	0.004
218129	16	<0.001
218130	19	(0.001
218131	22	(0.001
218132	24	<0.001
218133	13	(0.001
218134	12	(0.001
218135	´ 302970	8.837
218136	5257	0.153
218137	195	0.006
218138	3921	0.114
218139	62	0.002
218140	55604	1.622
218141	4218	0.123
218142	282	0.008
218143	104317	3.043

A DIVISION OF ASSAY LABORATORY SERVICES INC.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

Page: 3 Copy: 1 of 1 Set : 1

HULMSTEAD 1074 Dillingham Street Kingston, ON K7P 2P4

Received: 10-Aug-92 09:22

Attn: W.E. Holmstead Project:

PO #:

Job: 924463T

<u>Status: Final</u>

Rock Samples

Sample	Au FA/AA3 ppb	Au Calc. oz/T
218144	255	0.007
218145	22158	0.646
218146	5733	0.167
218147	1117	0.033
218148	77	0.002

.

A DIVISION OF ASSAY LABORATORY SERVICES INC.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

	31	-Aug-92
HULMS (EAU		
1074 Ullingnam Street	Page:	1
Kingston, UN	Copy:	1 of 1
K7P 2P4	Set :	1
Attn: Mr. W. Hoimstead	Received: 24-Aug	-92 06:43
Project:	PO #:	
JOD: 9245291	Status:	Final

Rock Samples

		Au
		FA/AA3
	Sample	090
	218149	9327
	218150	2/1/
~	216951	42
	216952	653
	216953	117
	216954	40
	210955	ý
	216651	9208
	216652	56
	216653	104
	216654	1586
	216655	2597
	216656	18
	216657	59
	216658	21
	216659	1426
	216660	24230
	216661	293
	216662	2038
	216663	66/
	216664	3149
	216665	1743
	216666	135
	210607	/13
	216568	30
_	216667	11160
	216670	65
	2100/1	/6

1

A DIVISION OF ASSAY LABORATORY SERVICES INC.

2

1

1

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 107) 623-6448 FAX 623-6820 (807) 623-6448

31-Aug->2 HULMSTEAD 1074 Dillingham Street Page: Copy: 1 of Kingston, UN Set : K/P 2P4

Attn: Mr. W. Holmstead Project:

PO #:

Received: 24-Aug-92 06:43

JOD: 9245291

-

<u>Status: Final</u>

Rock Samples

	Au
	FA/AA3
<u>sample</u>	dqq
216672	84950
2100/3	16150
216674	8614
216675	14790
216676	91
2166//	79
2166/6	24
216679	28
216680	2109
216681	81030
216682	2881
216683	695
216684	416
216685	46
216086	(5
216687	5525
216588	1640
216689	545
216690	1//0
216691	' 8 5
216692	15500
216693	1230
216674	742
216595	102400
216696	5.565
516031	303
216078	7051
くえっち・ナダ	3057

A DIVISION OF ASSAY LABORATORY SERVICES INC.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

31-Aug-92 HULMSIEAU Page: 1074 Dillingham Street З Copy: 1 of Kingston, UN 1 Set : K7P 2P4 1 Received: 24-Aug-92 06:43

Attn: Mr. W. Holmstead Project:

P0 #=

JOD: 9245291

Status: Final

Rock Samples

		Au
		FA/AA3
	Sample	O
	216/00	/4
	216701	8851
\sim	216/02	144
	216703	54Vp
	216704	12230
	216705	267
	216706	50370
	216707	1099
	216708	435
	216709	9208
	216/10	70570
	216/11	26730
	216/12	6089
	216/13	. 68
	216/14	217
	216/15	402
	216/16	4084
	510/1/	5495
	216/18	59
	216/19	364
	216/20	126
	216/21	879
	216/22	2627
	216723	16
	216/24	3.376
	216725	53
$\widehat{}$	216725	3208
	210/2/	2706

A DIVISION OF ASSAY LABORATORY SERVICES INC.

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

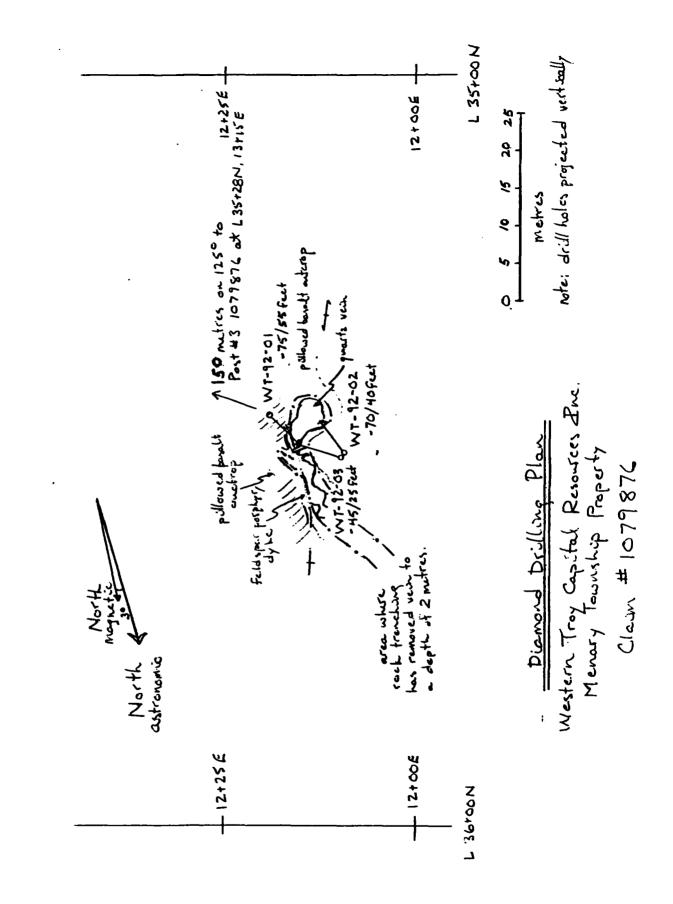
	31-Aug-92
BULMETERD 1074 DIIIIngham Street	Page: 4
Kingston, UN	Copy: 1 of 1
к7Р 2Р4	Set: 1
Attn: Mr. W. Holmstead	Received: 24-Aug-92 06:43

Attn: Mr. w. Molmstead Project:

PU #:

JOD: 9245291

<u>Status: Final</u>


Rock Samples

<u>Sample</u>	Au FA/AA3
216728	5495
216729	1485
216/30	234/
216/31	655

• .

APPENDIX 2

DIAMOND DRILL LOGS

5,77

HOLE # WT-92-01

TOWNSHIP:	Menary	PROPERTY : Menary Township Area, North NTS MAP #: 52 C/13 e 35+45 N, Stn. 12+18 E
AZIMUTH:	330 degrees	INCLINATION: -75 degrees
LENGTH :	55 feet	OVERBURDEN : nil
CASING :	AGX core 1 3/1	6" ELEVATION : surface
DATE DRIL	LED : May, 199	2
		Diamond Drilling, Timmins Ontario
DATE LOGO	SED : January 2	9, 1993
	C.A. Wag	
CORE LOCA	TION: Denbigh	, Ontario
From(ft)	To(ft) Field Na	me (lesend)
0.0	1.0 Casing, 1	
0.0	1.0 Casilig, I	OUSC DOMOCK
1.0	Vi 34 Vi m	c, Pillowed Basalt /eakly to moderately foliated at 20 to 0 degrees to core axis. Foliation and arioles best developed near pillow hargins. Pillow cores rather massive, ne to medium grained.
5.66	F	eldspar Porphyry Dyke ine grained. Weakly foliated at 40 to 0 degrees to core axis
10.1	55.0 V	ariolitic Pillowed Basalt
End of Hole		

SAMPLES

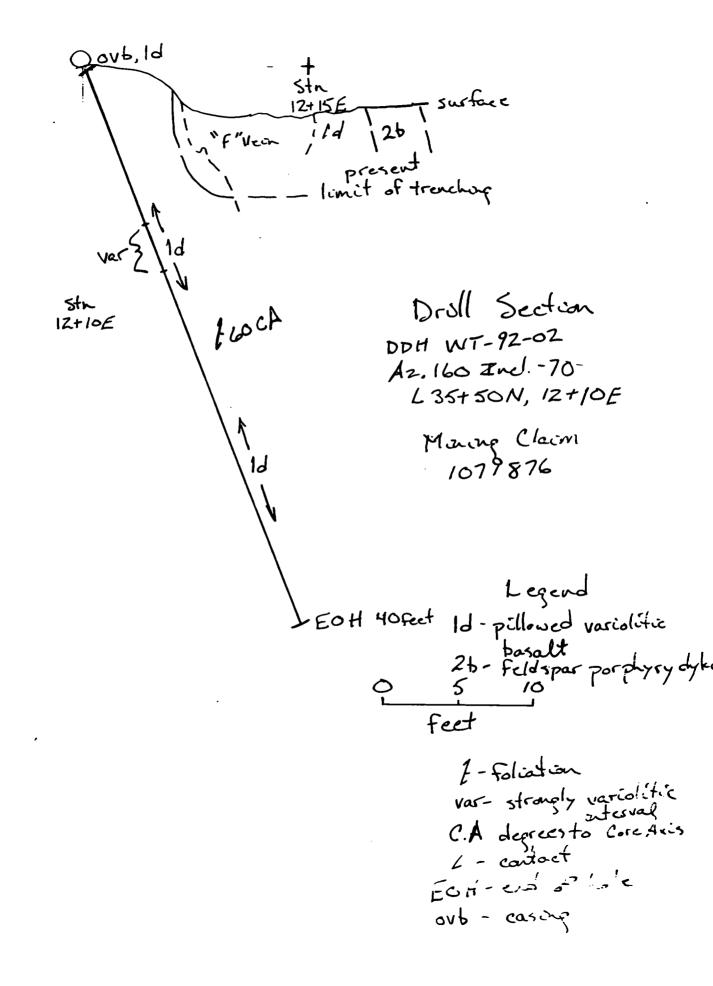
Sample #	From	То	Width Description
77726 2.65	2.80	0.15	2 inch wide quartz vein.
			No mineralization.
77727 10.0	10.5	0.5	Wedge shaped intersection of "F"
			vein. Sample 60% quartz with trace
			fine gold.

,

_

,

HOLE # WT-92-02


CLAIM #: 1079876PROPERTY: Menary Township Area NorthTOWNSHIP: MenaryNTS MAP #: 52 C/13GRID CO-ORDINATES: Line 35+50 N, Stn. 12+10 EAZIMUTH: 160 degreesINCLINATION: -70 degreesLENGTH: 40 feetOVERBURDEN : nilCASING : AGX core 1 3/16"ELEVATION : surfaceDATE DRILLED : May , 1992DRILLED BY : Nighthawk Diamond Drilling, Timmins OntarioDATE LOGGED : January 30, 1993LOGGED BY : C.A. Wagg, B.Sc.CORE LOCATION: Denbigh, Ontario

From(ft)	To(ft)	Field Name (legend)
0.0	0.5	Casing, loose bedrock
0.5 End of Hole	40.0	Variolitic, Pillowed Basalt Weakly to moderately foliated at 60 degrees to core axis. Moderate to strong foliation and abundant varioles developed near pillow margins. Pillow cores rather massive, fine to medium grained.

SAMPLES

Sample #	From	То	Width	Description

No Samples

HOLE # WT-92-03

CLAIM #: 1079876PROPERTY: Menary Township Area NorthTOWNSHIP: MenaryNTS MAP #: 52 C/13GRID CO-ORDINATES: Line 35+51 N, Stn. 12+11 EAZIMUTH: 125 degreesINCLINATION: -45 degreesLENGTH: 25 feetOVERBURDEN : nilCASING: AGX core 1 3/16"ELEVATION : surfaceDATE DRILLED : May , 1992DRILLED BY : Nighthawk Diamond Drilling, Timmins OntarioDATE LOGGED : January 30, 1993LOGGED BY : C.A. Wagg, B.Sc.CORE LOCATION: Denbigh, Ontario

From(ft)	To(ft) Fie	eld Name (legend)
0.0	1.0	Casing
		Loose bedrock.
1.0	25.0	Variolitic, Pillowed Basalt
		Weakly to moderately foliated at 60
		degrees to core axis. Moderate to
		strong foliation and abundant
		varioles developed near pillow
		margins. Pillow cores rather massive,
		fine to medium grained.

End of Hole

SAMPLES

Sample #	From	То	Width Description
77728 11.0	11.6	0.66	Contorted 2 inch wide quartz vein
			at 30 to 40 degrees to core axis,
			and altered wallrock.
77729 13.3	14.2	0.9	6 to 7 inch wide quartz vein at
			about 45 degrees to core axis.
			Trace pyrrhotite.

APPENDIX 3

METALLURGICAL REPORT

- -

,

Nighthawk Drilling

CONTRACT DIAMOND DRILLING

BOX 599, PORCUPINE, ONTARIO PON 1CO

Mr. Wayne Holmstead Western Troy Capital Inc. 1074 Dillingham Street Kingston, Ontario K7P 2P4 February 28, 1992

Dear Wayne:

Re: Metallurgical Test Work Vein F - Wagg Showing

The following are the preliminary results of test work performed on samples 11462, 11467-11472. Results of the work to date suggest a very free milling ore which will require grinding to approximately 100% minus 100 mesh. This will be verified when all work is complete and a larger sample is examined in the future.

Preliminary Test Work: Processes

- Each sample (Assay Reject approximately minus 10 mesh) is split into two equal parts, using a shoot riffler. Part one of the sample is sent for assay as part of the head grade calculation. The second part of the sample is screened into 4 fractions: i) plus 35 mesh, ii) minus 35 mesh - plus 60 mesh iii) minus 60 mesh - plus 100 mesh iv) minus 100 mesh
- 2) Each screen fraction is examined dry for mineralogy and gangué under binocular microscope, and weighed.
- 3) Gold is removed from each fraction by Wilfley Table or Gravity Trap Gold Pan. Concentrate produced from the above process is examined under binocular microscope for size of gold and sulfide composition. Gold is then removed from the minus 60 mesh fraction, isolating sulfides.
- 4) Sulfides are then placed in teflon crucibles and digested by nitric acid and checked for any liberated gold
- 5) All fraction tails are assayed for gold content.

Results:

In general, quartz material was extremely anealled with intense hairline fracturing. Gold was found surrounding individual quartz grains and as wires protruding from larger pieces of quartz. The nitric acid did not yield any gold upon the complete digestion of the sulfides, suggesting the gold is contained only in the quartz vein material. Under microscope, an average of 67.2% of the gold was between minus 60 mesh, plus 100 mesh, with 9 large flakes being greater than 35 mesh. Coarser gold was generally observed with samples grading larger than 1 oz/ton.

Sample #	Notes and Observations
11462	 no coarse reject remaining, ground to minus 150 mesh by pulveriser, all coarse gold shredded,
7.0 oz/T	- dark gray sample - up to 3% sulfides - gold not split into size fractions
11467	 abundant gold in all size fractions (over 25 grains) less than 1% sulfides, only pyrite observed
1.3 oz/T	 gold observed in quartz material at plus 35 mesh size one flake +20 mesh quartz material extremely anealled
11468	 coarse gold found in crystals and wires 1% sulfides - pyrite, chalcopyrite, bornite, trace zinc
1.0 oz/T	- quartz material extremely limonite stained - over 35 grains of gold counted
11469	- 35% wall rock material, 65% quartz vein material - 6 grains of gold observed all minus 100 mesh
0.03 oz/ ton	- less then 0.5% sulfides - no limonite staining
11470	 54 grains of gold counted , 6 grains plus 35 mesh 1-2% sulfides, pyrite, chalcopyrite, 75% gold minus 60 mesh,
2.33 oz/ ton	plus 100 mesh, gold in wires and crystals - quartz totally anealled into sugar grains, gold interstitial to quartz grains, only 3-4% minus 100 mesh gold
1,1471	- 2 grains gold plus 35 mesh, 19 grains gold counted - sample 40% wall rock material (andesite)
0.81 oz/ ton	 sulfides at 4% - due to higher content in wallrock all sulfides oxidized, quartz anealled and highly fractured
11472	 9 grains of gold counted, 5% wall rock material all gold minus 60 mesh, plus 100 mesh 1% sulfides
0.08 oz/ ton	

A balance with accruacy of + .001 gram was used to weigh screened fractions of gold separated from sulfides during microscope work.

Weighed Fractions

..... 0.11 gram 1) Plus 35 mesh 2) Minus 35 mesh, Plus 60 mesh ... 0.19 gram 3) Minus 60 mesh, Plus 100 Mesh 0.72 gram 4) Minus 100 mesh 0.05 gram Total: 1.07 gram

Percentages of Fractions

To	tal:	100%
4)	Minus 100 mesh	4.77%
3)	Minus 60 mesh, Plus 100 mesh	67.287
2)	Minus 35 mesh, Plus 60 mesh	17.75
1)	Plus 35 mesh	10.2%

The above total are evidence of an extremely high grade of ore. Tailings assays of the above fractions will determine actual recovery in the mill. Assays are pending, and a final report will be forwarded within a weeks time. Note: These results are extremely encouraging, but these result could change when a higher volume of ore material is tested.

Yours very truly

Eduard H. Ludwig Tech. H.BSc.

Swastika Laboratories

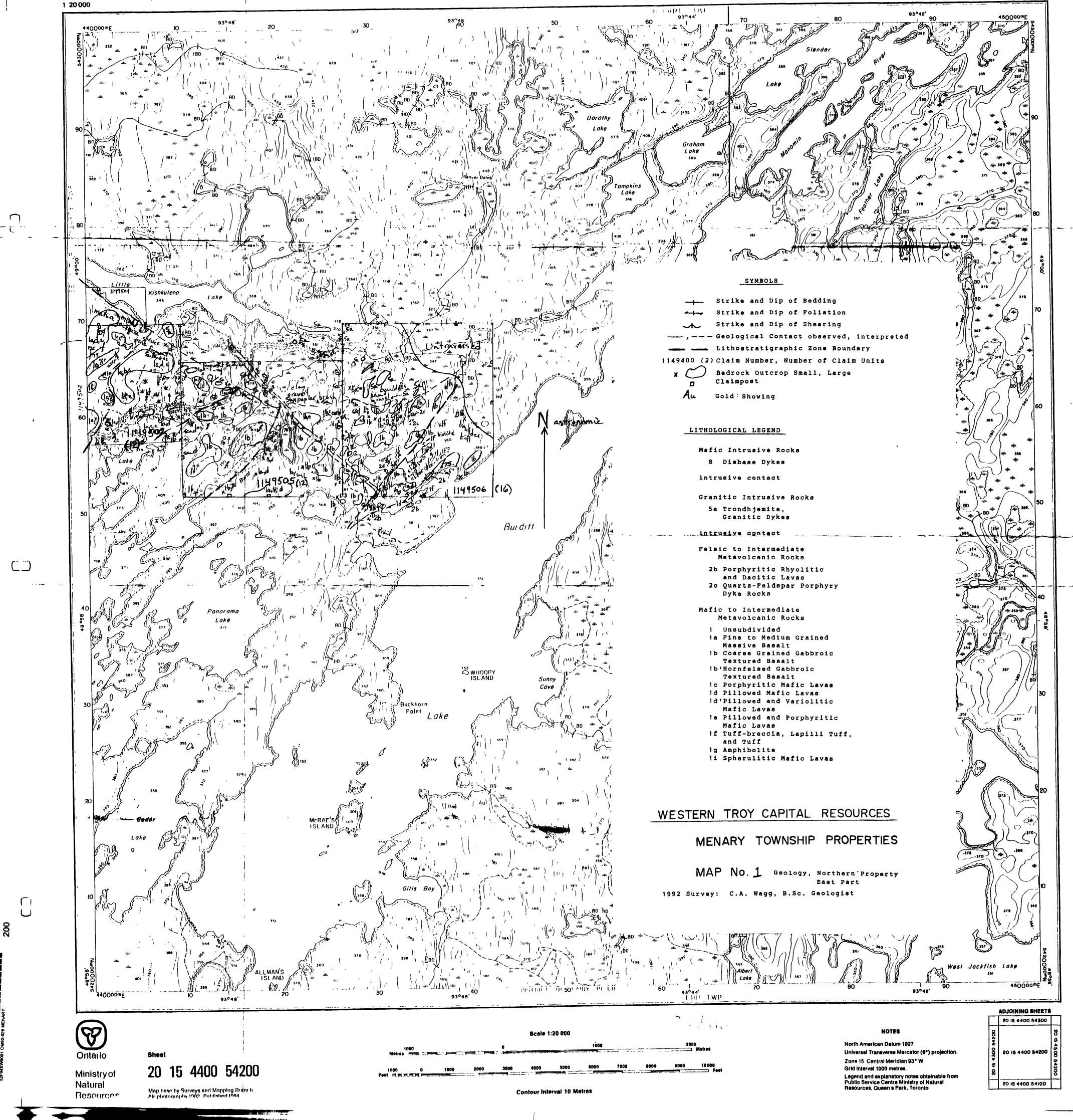
A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

2W-0240-RA1

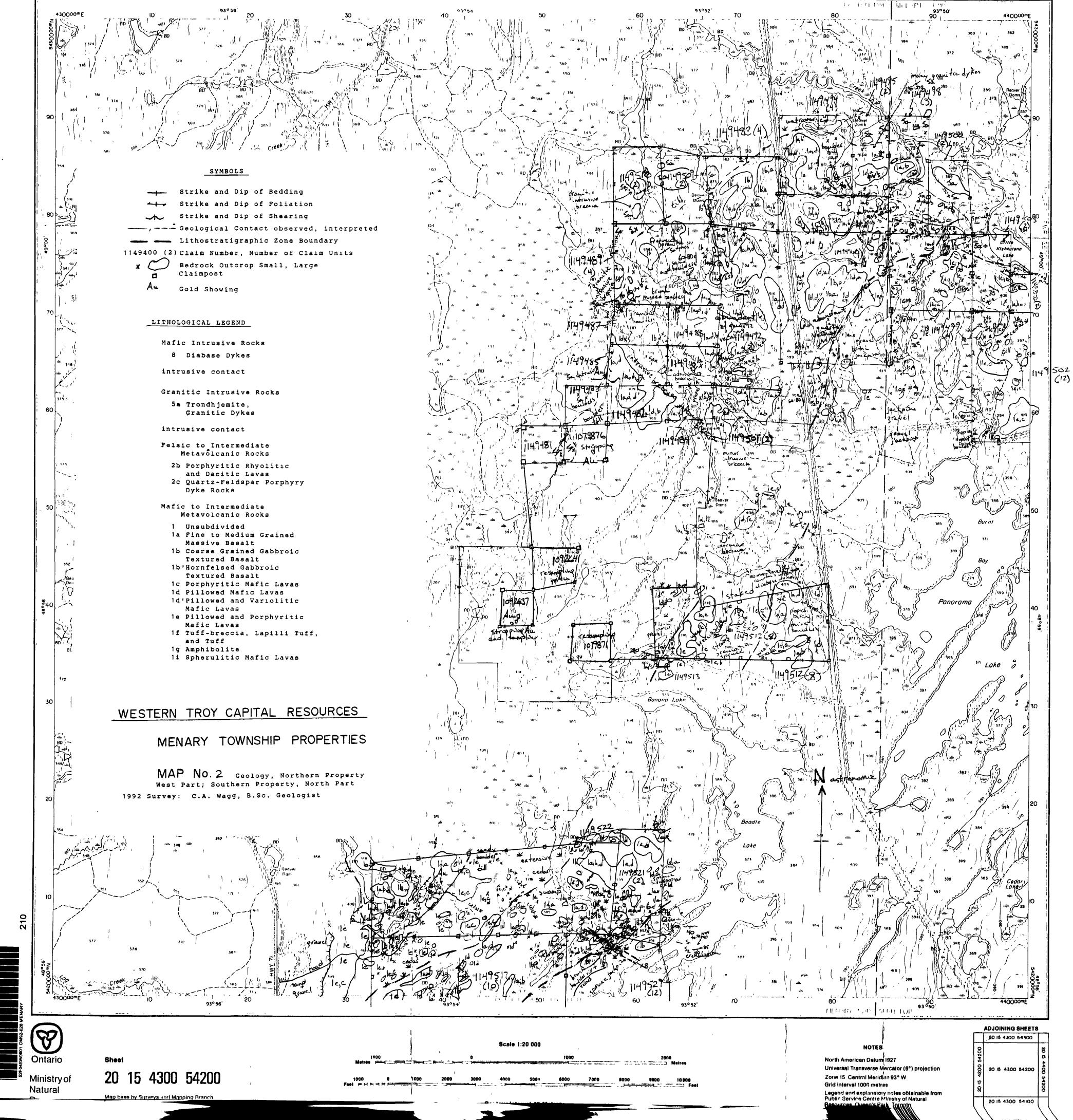
Company:	WESTERN TROY CAPITAL INC
Project:	C/O W.E. HOLMSTEAD & ASSOC
Attn:	


Date: MAR-13-92 Copy 1. 104 DILLINGHAM STREET,KINGSTON,K7P2P4 2. BOX 599, PORCUPINE, ONT PON ICO

We hereby certify the following Assay of 4 MILL PRODUCTS samples submitted MAR-05-92 by E. LUDWIG.

Sample Number	Au oz/ton	Au check oz/ton	Ag oz/ton	Weight grams	
11468-68A SPLIT	0.980	1.058	0.05	258.56	
11468-68B +35 MESH	0.929	0.946	0.07	109.51	
11468-68C -35+65	2.529			36.75	
11468-68D -65+100	1.623			28.80	
11468-68E -100 MESH	0.408			85.82	
11470-70A SPLIT	0.768	0.880	0.08	390.95	
11470-70B +35 MESH	0.464			195.86	
11470-70C -35+65	0.922	0.836		48.93	
11470-70D -65+100	0.601			30.10	
11470-70E -100 MESH	1.060	1.394	0.19	118.82	
11471-71A SPLIT	0.626	0.549	0.03	253.60	
11471-71B +35 MESH	0.471			151.37	
11471-71C -35+65	1.153			32.12	
11471-71D -65+100	0.889			15.15	
11471-71E-100 MESH	0.650	0.626	0.04	55.03	
11472-72A SPLIT	0.273			484.00	
11472 +35 MESH	0.221			195.06	
11472-72C -35+65	0.078			57.78	
11472-72D -65+100	0.382			34.53	
11472-72E -100 MESH	0.151			174.81	
*******			• • • • • • • • • • • • • • •		

Certified by Unna Harcing

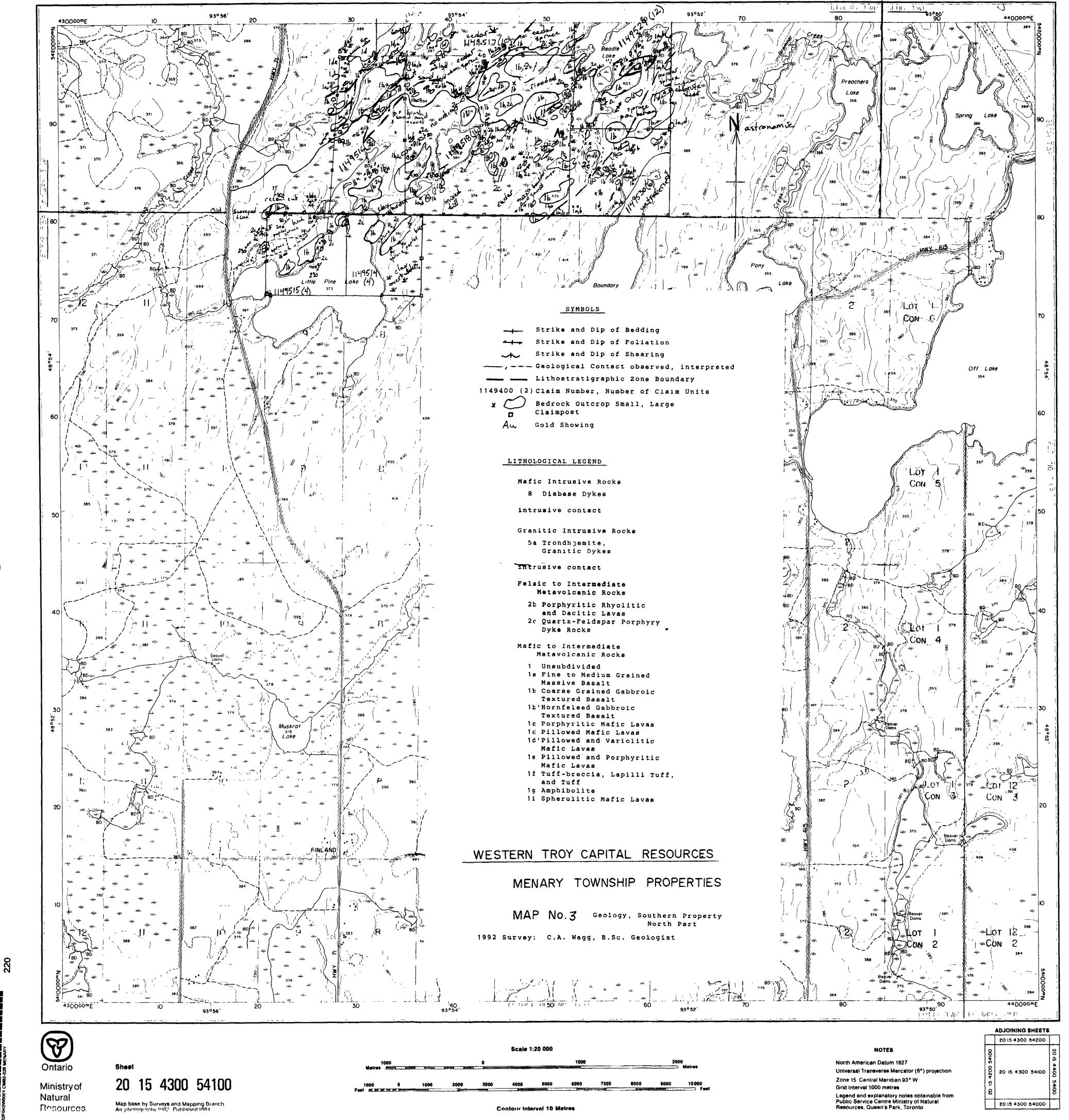

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

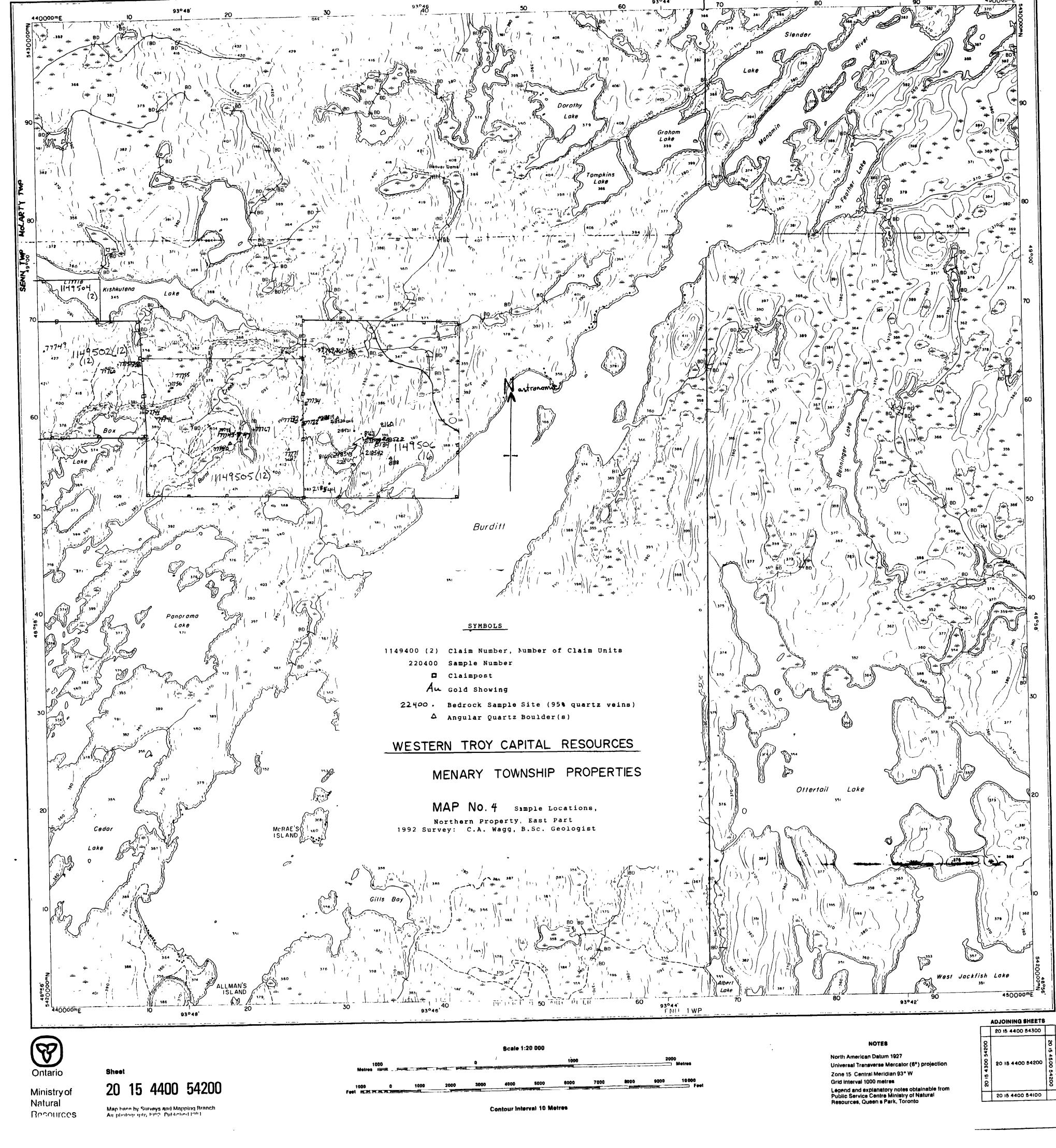
•

1

 $\bigcap_{i=1}^{n}$

1 BB 41011 H 11 1 8 81 1


1 1


()

 \bigcirc

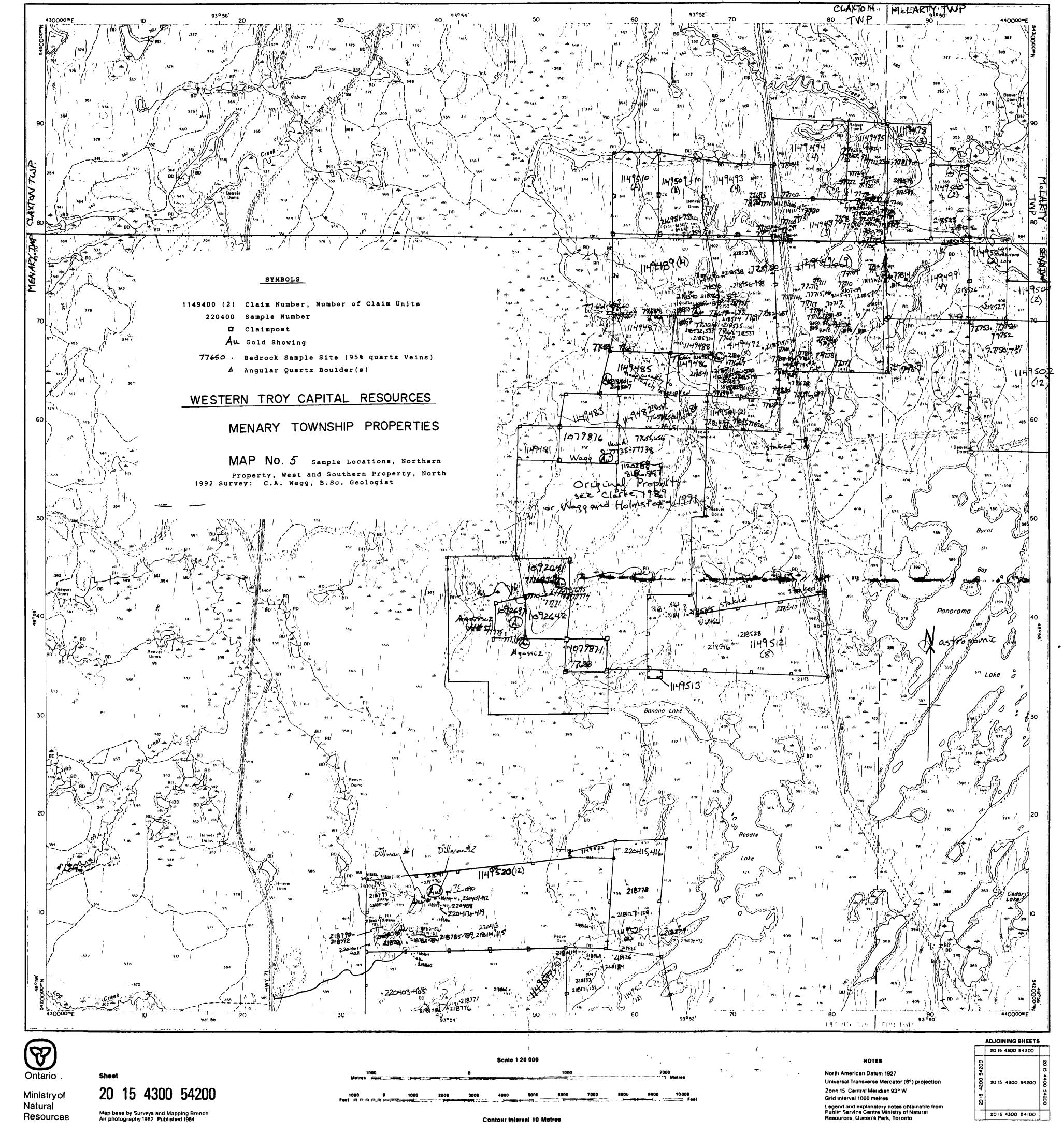
20 15 4300 54100

~``

 \Box

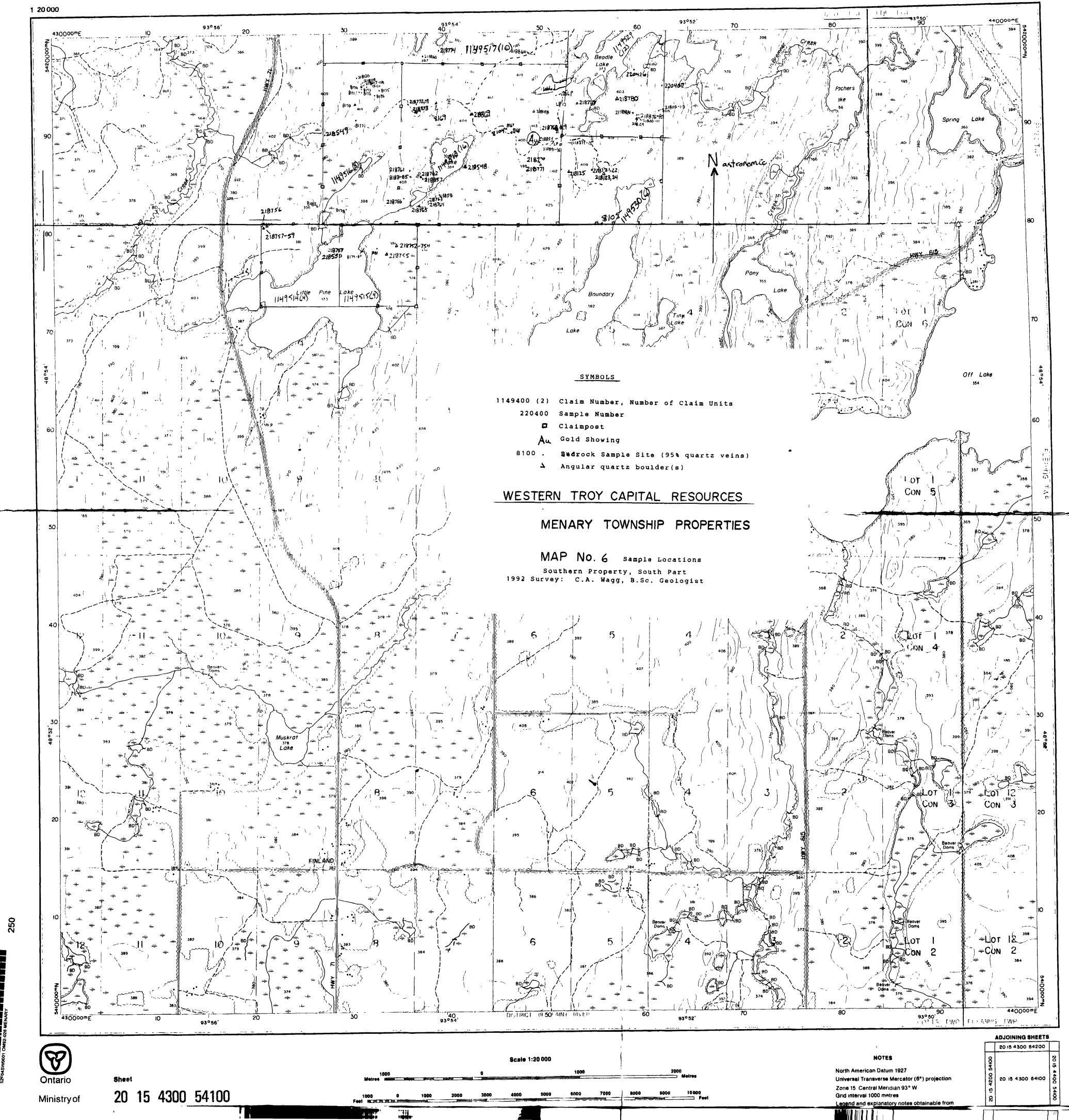
<u>ج</u> ج

230


j

1 1

 \Box


20 15 4300 54200

240

 Sample hocations

20 15 4300 54100

 \square

1