63.4802 (pt.1)

2F05SE0009 63.4802 ROWAN LAKE

010

REPORT ON THE

1985-1986 DIAMOND DRILL PROGRAM

ROWAN LAKE PROPERTY

KENORA DISTRICT, ONTARIO

FOR GUARDSMAN RESOURCES INC.

NTS: 52 F/6

DERRY, MICHENER, BOOTH & WAHL

Com Reddick.

J. Reddick, B.Sc.

Ref: 86-07

B. & C. LTD.

Toronto, Canada February 3, 1986

This report may not be reproduced, in whole or in part, without the written consent of Derry, Michener, Booth & Wahl.

OM 85-3-C- 190

TABLE OF CONTENTS

Ø10C

Page

SUMMARY	(i)
INTRODUCTION	1
LOCATION AND ACCESS	1
TOPOGRAPHY, DRAINAGE, VEGETATION AND OVERBURDEN	4
PROPERTY DESCRIPTION	4
REGIONAL GEOLOGY	6
PROPERTY GEOLOGY	8
PREVIOUS WORK	9
1985-1986 PROGRAM	11
Introduction Observations Results	11 14 19
CONCLUSIONS	22
RECOMMENDATIONS	22
REFERENCES	26
CERTIFICATE OF QUALIFICATIONS	27
APPENDIX I: ANALYTICAL DATA	After Page 27
APPENDIX II: DIAMOND DRILL LOGS	After Page 27

63.4802

NOTE TO FILE:

Drill holes RL 85-1 to RL 85-7 were also submitted for Assessment CREDIT under Report of Work *104-86, Toronto file * LAWRENCE LAKE DDR *11. The material submitted for credit did not contain assay values (Au-ppb) or X-sections as do the logs in this report.

RC0 Nov. /88

TABLE OF CONTENTS (Continued)

Page

LIST OF FIGURES

Figure 1:	Location Map	2
Figure 2:	Access Map	3
Figure 3:	Property Map	5
Figure 4:	Claim Map	7
Figure 5:	Geological and Diamond Drilling Plan (In Map Packet)	4 9

LIST OF TABLES

Table 1	1:	Diamond Drill Hole Data	14
Table 2	2:	Core Samples With Values in Excess of 100 ppb Au	20

LIST OF PLATES

Plate 1	l:	Drill	24
Plate 2	2:	Silicified Zone	24
Plate 3	3:	Foliated Section	25
Plate 4	4:	Mineralized Section	25

TABLE OF CONTENTS (Continued)

LIST OF MAPS (In Map Pocket)

Мар	86-07-01:	Rowan	Lake,	Section	9+00W,	Scale 1	1:500
Мар	86-07-02:	Rowan	Lake,	Section	12+00W,	Scale	1:500
Мар	86-07-03:	Rowan	Lake,	Section	17+00W,	Scale	1:500
Мар	86-07-04:	Rowan	Lake,	Section	18+00W,	Scale	1:500
Мар	86-07-05:	Rowan	Lake,	Section	19+00W,	Scale	1:500
Мар	86-07-06:	Rowan	Lake,	Section	20+00W,	Scale	1:500
Мар	86-07-07:	Rowan	Lake,	Section	21+00W,	Scale	1:500

B. & C. LTD.

SUMMARY

3. & C. LTC

During December 1985 and January 1986, a seven hole, 950 m diamond drill program was undertaken on Dejour Mines Limited - Rowan Lake property in northwestern Ontario. This was the result of an agreement between that company, Nova-Co Exploration Limited (Nova-Co), Brinco Limited and Guardsman Resources Inc. Derry, Michener, Booth & Wahl (DMBW) were the operators of the project on behalf of Guardsman Resources Inc., who provided the funding.

The property is situated on the northeast corner of Rowan Lake, District of Kenora. Previous work on the property includes geological mapping, geophysical and geochemical surveys, trenching and diamond drilling, all undertaken by DMBW on behalf of Dejour Mines Limited (Dejour) and its joint venture partners since 1983.

Located within the Wabigoon Volcanic Belt of the Superior Province, the property is underlain primarily by Archean mafic metavolcanic rocks. Local intermediate to felsic metavolcanics occur in the central and northern parts of the property. Quartz-feldspar porphyry, granitic and gabbroic intrusions occur throughout the property.

The "Central Zone" of the property, as defined by earlier geophysical work, was the focus of the 1985-1986 diamond drill program. The mafic metavolcanics encountered display variable foliation and local alteration in the form of variable intensities of carbonatization, silicification and sericitization. The only other rock type encountered was quartz-feldspar porphyry, which occurs as narrow dykes.

(i)

B. & C. LTD.

(ii)

Narrow quartz and quartz-carbonate veins and stringers and locally abundant pyrite, pyrrhotite, magnetite and hematite with minor chalcopyrite and tourmaline occur within the altered rocks. Visible gold within a quartz-carbonate vein was cored in diamond drill hole RL-85-2 and it assayed 12,665 ppb Au over 0.5 m. The western end of the Central Zone, which includes the area in the vicinity of RL-85-2, has been more intensly altered than other areas drilled.

INTRODUCTION

On behalf of Guardsman Resources Inc., DMBW supervised a diamond drill program on Dejour Mines Ltd. - Rowan Lake property. The intent of the program was to further evaluate the Central Zone, which was demonstrated, by earlier work, to be a favourable host for gold mineralization.

The prospect of a relatively small, but good grade, gold prospect being present is suggested by the similarity of the Central Zone alteration to that seen at the Monte Cristo gold prospect 6.0 km west and the Cameron Lake deposit 16.5 km west (Figure 1). Both these properties are currently being evaluated by Nuinsco Resources Ltd. and Echo Bay Mines Ltd.

LOCATION AND ACCESS

The Rowan Lake property consists of 56 contiguous unpatented mining claims near the northeast corner of Rowan Lake in the District of Kenora at approximately $93^{\circ}29'W$ longitude and $49^{\circ}21'N$ latitude. NTS map 52 F/6 covers the area.

The property is accessible by travelling 16 km south of Dryden along Highway 502 to Century Road, a primary logging road established by Great Lakes Forest Products of Dryden (Figure 2). This logging road extends to the northeast boundary of the property, a distance of about 65 km from the junction of Highway 502 and Century Road. A rough drill road extends a further 3 km to the west boundary of the property. The camp for the 1985 program was located near the west end of

this drill road (Figure 3). The camp was approximately 75 km by air from the Dryden airport where rotary-wing charter aircraft are available.

- 4 -

TOPOGRAPHY, DRAINAGE, VEGETATION AND OVERBURDEN

The area has a rolling topography, typical of post-glacial Canadian Shield terrain. Numerous lakes, rivers, streams and swamps are to be found. One lake, about 1 km in length, is situated at the east end of the property. A permanent core shack has been erected at the north end of this lake. A series of connected swamps and ponds is drained by a stream at the west end of the property. This stream flows into Rowan Lake. Rugged relief is common over most of the area.

The northeastern corner of the property and an extensive area to the north falls within Great Lakes Forest Products timber limits and has recently been logged. The remainder of the property is covered by mature jack pine, red pine, white pine, spruce, balsam, poplar and birch.

Overburden is thin over most of the property. Clay covers the lowlying areas. Sand, clay and glacial erratics cover the areas of higher relief.

PROPERTY DESCRIPTION

The claims are shown on the Lawrence Lake and Rowan Lake sheets of the District of Kenora Division of the Kenora Mining District. A compilation of all

the claims is shown on Figure 4 and they are listed below. Sufficient assessment credits have been filed to maintain the claims in good standing until June 12th, 1986.

- 6 -

K-696726	-	K-696736	inclusive
K-696738	-	K-696744	inclusive
K-765975	-	K-765994	inclusive
K-765996	-	K-766000	Inclusive
K-772001	-	K-772013	inclusive

Previous to the 1985-1986 program, the property was jointly held by Dejour Mines Limited (47.8%), Brinco Ltd. (35%) and Nova-Co Exploration Limited (18.2%). Upon expenditures of \$120,000, Guardsman Resources Inc. will earn a 20% interest and Brinco Ltd. will drop to a 15% interest.

Claim K-765995, part of the original property, but principally over Rowan Lake, was allowed to lapse on December 14th, 1984.

REGIONAL GEOLOGY

The property lies in the Wabigoon metavolcanic belt of the Superior Province. These Archean age rocks are generally found to be sequences of mafic metavolcanic rocks overlain by intermediate to felsic, predominantly pyroclastic, rocks. Intrusive rocks within the belt range from ultramafic to felsic compositions. It is thought that the property falls within the Brooks Lake volcanics; a lower mafic metavolcanic flow sequence.

-7-

Major faults that cut the Wabigoon belt seem to be the loci for much of the gold mineralization found. Ductile shear zones related to these major faults host many gold deposits in the immediate area. Most of these shear zones display subvertical orientation, vertical foliation, abundant chemical and mechanical alteration and have a central core of gold-bearing quartz veins.

- 8 -

As discussed in more detail later, the Central Zone of the property appears to be typical of this type of shear zone. Nuinsco Resources Ltd. and Echo Bay Mines Ltd. - Monte Cristo deposit, 6.0 km west of the property on the south shore of Rowan Lake, is a similar deposit and 16.5 km west, the Cameron Lake deposit is also similar. On the north shore of the eastern part of Rowan Lake, another gold prospect, the Errington Prospect, is situated. There, some auriferous quartz veins up to 3 ft. wide are associated with felsic and intermediate dykes that intrude metabasalt and associated dacitic breccia zones.

PROPERTY GEOLOGY

& C. LTD

The property is underlain predominantly by mafic volcanic metavolcanic rocks, probably flows, with local lenses of intercalated intermediate to felsic pyroclastic rocks. In the northern and southern portions of the property, the mafic flows are generally massive whereas in the central portion they are weak to strongly foliated with local shear zones. This central zone is marked by a prominent regional east-northeast trending magnetic high.

Alteration present on the property includes carbonatization, silicification, quartz-carbonate veining and sericitization. This alteration is generally stronger

within the central zone as compared to the enclosing northern and southern massive mafic volcanics where alteration is minor or absent. There is a noticeable increase in the intensity of alteration in zones which are strongly sheared. Variable amounts of pyrite ranging from trace to 10% are typically present in these altered zones.

Several geophysically inferred faults and lineaments cut the property and all rocks within the central horizon have been foliated and locally sheared. These zones of shearing with associated alteration and mineralization are comparable to those of the Monte Cristo and Cameron Lake gold occurrences.

PREVIOUS WORK

3. & C. LTD

No records exist for work done on the property prior to acquisition by Dejour and Nova-Co in 1983. Several old trenches and pits were found on claims K-765979and K-69730. The region was the focus of gold exploration around the turn of the century and again in the 1930's.

Since 1983, Dejour, with its joint venture partners, have carried out an extensive exploration program. As outlined below, this has involved linecutting, various geophysical surveys, a geochemical sampling program, geological mapping, a stripping and trenching program and diamond drilling.

During the fall of 1983 and early 1984, a grid was established on the property. The baseline of this grid has a bearing of 070° and is subparallel to the inferred geological trend. Lines were cut perpendicular to the baseline at 100 m intervals. All the lines were chained and picketed at 25 m intervals.

In early 1984, magnetometer and VLF surveys were conducted using the recently completed grid. These surveys detailed three zones with east-northeast trending magnetic anomalies and coincident VLF conductors. The strongest zone occurs near the baseline from L21+00W to L13+00W and has been designated the Central Zone. The other anomalies occur to the north and south of this and are termed the North and South Zones.

The entire property was mapped in the spring and summer of 1984. It was apparent from this mapping that the Central Zone consisted of foliated and altered mafic metavolcanics with abundant pyrite. An induced polarization survey was performed over the Central Zone concurrently with the mapping. This detected a polarizable zone attributed to the presence of disseminated pyrite. An associated low resistivity horizon is thought to reflect the presence of a shear zone.

On the basis of the aforementioned work, a bulldozer stripping program was implemented during the late summer of 1984. Trenching, sampling and detailed mapping followed. Intense shearing and alteration, abundant pyrite and gold values up to 805 ppb were revealed by this work.

3. & C. LTD

In the fall of 1984, ten diamond drill holes totalling 940 m were drilled, principally to test IP targets. Gold values obtained during this program include:-

(1) A 2.3 m interval in hole RL-84-3 from 68.7 m to 71.0 m in which two mineralized intersections were sampled. These returned 3,345 ppb Au over 1.0 m from 70 m to 71 m and 3,300 ppb Au over 0.5 m from 68.7 m to 69.2 m. The intervening 0.8 m was sampled during the current program and assayed less than 5 ppb. The

- 10 -

mineralization is associated with pyrite-bearing quartz-carbonate veins which cut mafic metavolcanic rocks.

- (2) 2,503 ppb Au over 0.5 m at a depth of 61.75 m in hole RL-84-1.
 Here the mineralization is associated with pyrite-bearing quartzcarbonate veinlets cutting weakly altered mafic metavolcanics.
- (3) 2,914 ppb Au over 0.5 m at a depth of 51.0 m in hole RL-84-1
 within moderately altered and foliated mafic metavolcanic rocks.
- (4) 1,275 ppb Au over 1.0 m at a depth of 125 m in hole RL-84-10 associated with a quartz-carbonate vein cutting moderately altered foliated metavolcanics.

1985-1986 PROGRAM

B. & C. LTD.

Introduction

The firm of Derry, Michener, Booth & Wahl was contracted by Guardsman Resources Inc. to supervise a seven hole diamond drill program. N. Morissette of Haileybury was contracted to perform the drilling. The intent of the program was to further evaluate the Central Zone in light of the results of the 1984 drill program and in hopes of intersecting a gold deposit similar in geological characteristics to that of the Monte Cristo and Cameron Lake deposits.

Drilling began on December 9th, 1985 using a Boyles Bros. 35 machine, which retrieved BQ core (Plate 1). The drilling was suspended on December 18th, 1985 for Christmas and resumed on January 17th, 1986. The final hole was completed on January 22nd, 1986.

The core was logged and selected intervals were split on site. Core samples were shipped to Bondar-Clegg Ltd. in Ottawa for analysis. A total of 335 samples were taken. The core is stored at the permanent core shack located on the property.

Most core samples were taken over 1.5 m intervals or were defined by geological contacts such as quartz veins.

At Bondar-Clegg, the split core was crushed and a portion then pulverized to -200 mesh. The gold analysis were done by the one assay ton fire assay method with the resultant bead digested in aqua-regia solution. The gold content was then determined by atomic absorption methods.

3. & C. LTD

The results of the analysis are presented in Appendix I. Gold values in excess of 100 ppb are indicated on the diamond drill sections, maps 86-07-01, 86-07-02, 86-07-03, 86-07-04, 86-07-05, 86-07-06 and 86-07-07 and they are also presented in Table 2.

Seven holes totalling 950 m were drilled. These holes were intended to undercut, fill-in and extend the zone of mineralization outlined in the 1984 diamond drill program. Information relating to the 1985-1986 drill holes is listed in Table 1. The drill logs are presented in Appendix II. Figure 5 shows the surface geology

- 12 -

of the Central Zone and the location of the 1984 and 1985-1986 diamond drill holes. Plates 2, 3 and 4 show some of the core.

<u>Table 1</u> Diamond Drill Hole Data

Hole Number	Co-ordinates	Dip	<u>Azimuth</u>	Length (m)
RL-85-1	21+00W, 0+85S	-50 ⁰	340 ⁰	101
RL-85-2	20+00W, 1+20S	-50 ⁰	340 ⁰	157
RL-85-3	19+00W, 1+00S	-500	340 ⁰	155
RL-85-4	18+00W, 0+85S	-50°	340 ⁰	149
RL-85-5	17+00W, 0+65S	-50 ⁰	3400	148
RL-85-6	12+00W, 0+10N	-550	340 ⁰	122
RL-85-6	9+00W, 0+10N	-500	340 ⁰	<u>118</u>

TOTAL

B. & C. LTD.

<u>950</u>

Observations

The Central Zone has been the focus of the recently completed diamond drill program and was also examined by trenching and diamond drilling during 1984. Gold values in the 100 ppb to 3,000 ppb range occur throughout the zone in association with quartz-carbonate veins and stringers. The only visible gold noted was in DDH RL85-2 near the western end of the area drilled.

The Central Zone contains variably altered and foliated mafic metavolcanics. Some narrow quartz-feldspar porphyry dykes were encountered in holes RL-85-6 and RL-85-7 at the eastern end of the zone.

Foliation is ubiquitous but ranges widely in intensity. Little broken core, mylonite or fault gouge was encountered. This suggests that the Central Zone is a shear zone in which deformation has been principally ductile.

Much of the Central Zone has been chemically altered. Both the nature and intensity o⁺ ...e alteration is highly variable; the rocks having been subjected to a combination of sericitization, carbonatization and silicification. Mineralization in the form of pyrite, magnetite, hematite, pyrrhotite, chalcopyrite, tourmaline and free gold occurs in the altered rocks.

The extreme variability of foliation and alteration of rocks within the Central Zone mitigates against a simplified description of the geology. However, certain salient features that are apparent include:-

- (a) changes in the colour of the rock that vary more or less systematically in response to certain types and degrees of alteration;
- (b) the occurrence of certain minerals (pyrite, pyrrhotite, magnetite, hematite, chalcopyrite, tourmaline and free gold) in association with certain types and degrees of alteration;
- (c) areas of intense alteration that are mostly coincident with areas exhibiting the strongest foliation;

 (d) alteration that is localized over narrow widths; there is little evidence of intense pervasive alteration.

The colour of the mafic metavolcanics for the most part reflects the abundance of chlorite. Very dark green, chloritic green, pale green and bleached grey are the typical varieties. Generally, these contrasting types grade from one into another and occasionally mixed combinations of two types occur.

The very dark green variety of rock is often highly magnetic over 10% to 30% of its length. The presence of fine to medium-grained disseminated and banded magnetite accounts for this. In addition, 1% to 2% disseminated pyrite also occurs in this rock. Up to 15% carbonate occurs as stringers along planes of foliation. This type of rock is commonly peripheral to the more strongly bleached and altered pale green and grey varieties described below.

Both fresh, relatively unaltered mafic metavolcanics and weakly to moderately carbonatized mafic metavolcanics are chloritic green in colour. The carbonatized type is weakly to strongly foliated and often has up to 15% carbonate as stringers parallel to foliation.

The pale green rock type has considerably less chlorite and up to 15% carbonate as stringers and veins, commonly parallel to foliation. The light colour is attributed to partial bleaching of the rock by fluids, which have also given rise to general weak carbonatization and very weak local silicification. Quartz-carbonate and to a lesser extent quartz veins and stringers occur in this rock (Plate 2).

3. & C. LTD

It appears as though the grey variety of rock is similar to the pale green type but has been subjected to a greater intensity of alteration by siliceous fluids. The result is a bleached, weakly silicified rock with local intense silicification. This type of altered rock contains the greatest abundance of quartz and quartz-carbonate veins and stringers Plates 2, 3 and 4).

None of the minerals found occur exclusively in conjunction with any one type of alteration. However, the following relationships are apparent:-

- tourmaline, chalcopyrite and gold are confined to quartz and quartzcarbonate veins within the more strongly altered rocks;
- (2) pyrrhotite occurs in the more strongly altered pale green and grey coloured rocks. It occurs as disseminations in the rock and occasionally as massive seams along the margins of, and within, quartz-carbonate veins;

3. & C. LTD

- (3) magnetite occurs for the main part in the dark green variety of rock. Hematite occurs elsewhere but is not found where magnetite is present;
- (4) pyrite occurs throughout the Central Zone but is most abundant in the more strongly altered rocks. It is commonly disseminated throughout the rock and occurs as fine to medium-grained euhedral crystals. Like pyrrhotite massive pyrite sometimes occurs along vein margins.

Almost all the rocks cored in the Central Zone exhibit some degree of foliation. Foliation is vertical to subvertical and elongate parallel to the strike of the Central Zone along an east-northeast axis. The foliation in the darker, more chloritic core is accentuated by carbonate stringers along the planes of foliation. Often the rocks that exhibit the greatest degree of foliation are also the most intensely altered. Sericite is common in these areas.

Alteration of any one type usually persists over only narrow widths. Most drill holes encountered several different strongly altered intervals across their length. The grey most strongly altered variety of rock is frequently flanked by either the pale green or very dark green variety of less altered rocks. The carbonatized chloritic green rock is peripheral to the above varieties. The most abundant variety of rock encountered in the Central Zone is the carbonatized chloritic green mafic metavolcanic.

& C. LTD

In summary, the Central Zone is comprised of variably foliated mafic metavolcanics that exhibit several types and degrees of alteration. The presence of some minerals seems to be related to the type and degree of alteration to which the rock has been subjected. The best gold values appear to be confined to quartzcarbonate veins in the more intensely altered rocks. These rocks are characterized by partial bleaching due to carbonatization and weak silicification and contain abundant pyrite<u>+</u> pyrrhotite. As one proceeds west along the Central Zone, the rock appears to be increasingly altered. It was in this area that the only visible gold noted during the program was found in DDH RL-85-2.

- 18 -

3. & C. LTD

A total of 16 samples returned values in excess of 100 ppb Au. These are presented in Table 2 along with all the samples from the 1984 drill program that were in excess of 100 ppb Au.

Two samples returned values in excess of 1,000 ppb Au. These were:-

- (1) in hole RL-85-2 where visible gold in a narrow quartz-carbonate vein accounts for an assay of 12,665 ppb Au over a 0.5 m interval;
- (2) in hole RL-85-5 where a 1.6 m interval returned a value of 2,905 ppb. This section included several quartz-carbonate stringers with abundant pyrite within bleached silicified rock.

Diamond drill holes RL-85-1, RL-85-2 and RL-85-3 accounted for 13 of the 16 assays greater than 100 ppb Au. The greater number of samples with gold in these holes is consistent with the greater degree of alteration observed in them. These holes are located at the western end of the Central Zone.

All intervals that assayed 100 ppb Au or more are shown on the diamond drill hole sections, maps 86-07-01, 86-07-02, 86-07-03, 86-07-04, 86-07-05, 86-07-06 and 86-07-07.

Table 2

Core Samples With Values in Excess of 100 ppb Au

Hole	Interval (m)	Au (ppb)
RL85-1 (21+00W, 0+85S)	34.8 - 36.3 $41.3 - 41.8$ $43.0 - 43.3$ $52.9 - 53.5$	250 285 310 290
RL85-2 (20+00W, 1+20S)	57.9 - 59.4 70.1 - 71.6 79.6 - 80.1	130 195 12,665
	$113.3 - 113.8 \\ 126.3 - 126.8 \\ 127.8 - 128.3 \\ 104.5 - 105.2 \\ 105.$	130 270 165
RL85-3 (19+00W, 1+00S)	104.5 - 105.3 105.8 - 106.3	430 155
RL85-3	117.7 - 118.4	245
RL85-4 (18+00W, 0+85S)	No values over 100 ppb	
RL85-5 (17+00W, 0+65S)	35.7 - 37.2 53.3 - 54.9	300 2,905
RL85-6 (12+00W, 0+10N)	No values over 100 ppb	
RL85-7 (9+00W, 0+10N)	58.8 - 60.3	160
RL84-1 (17+00W, 0+15S)	44.0 - 44.5 51.0 - 51.5 52.0 - 52.5 52.5 - 53.0 61.75 - 62.25	175 2,914 190 265 2,503
RL84-2 (15+00W, 0+15S)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	465 100 680 105
RL84-3 (19+00W, 0+50S)	54.1 - 54.6 56.5 - 56.8 68.7 - 69.2 70.0 - 71.0	185 765 3,300 3,345

B. & C. LTD.

- 21 -

Table 2

Core Samples With Values in Excess of 100 ppb Au (Continued)

Hole	Interval (m)	Au (ppb)
RL84-4 (9+00W, 5+25S)	No values over 100 ppb	
RL84-5 (9+00W, 7+00N)	No values over 100 ppb	
RL84-6 (7+00E, 0+75N)	No values over 100 ppb	
RL84-7 (7+00W, 0+50N)	52.3 - 53.0	1,235
RL84-8 (13+50W, 0+15S)	35.0 - 35.4 52.0 - 53.5 59.6 - 60.1 60.1 - 61.6	115 100 110 485
RL84-9 (16+00W, 0+95S)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	440 145 610 105 225 260
RL84-10 (15+00W, 1+00S)	35.5 - 37.0 40.0 - 41.0	305 180
RL84-10	125.0 - 126.0 150.7 - 151.0	1,275 250

Note:

Includes results from 1984 diamond drill program.

B. & C. LTD.

CONCLUSIONS

A comprehensive picture of the Central Zone geology of the Rowan Lake property has emerged as a result of the 1985-1986 diamond drill program along with the previous work. It is interpreted as a steeply dipping shear zone elongate on a east-northeast axis. Varying intensities of alteration in the form of sericitization<u>+</u>, carbonatization<u>+</u> and silicification occur within the mafic metavoleanies underlying this zone. Abundant pyrite, pyrrhotite, magnetite and hematite and minor amounts of tourmaline, chalcopyrite and gold accompany this alteration. The best gold values are confined to narrow quartz-carbonate veins, which occur in the most intensely altered rocks.

- 22 -

This type of alteration and mineralization within a shear zone is similar to that occurring 6.0 km west of the property at the Monte Cristo gold prospect currently being evaluated by Nuinsco Resources Ltd. with funding by Echo Bay Mines Ltd. The presence of visible gold in hole RL-85-2 and anomalous gold values in the ppb range in other holes establishes that conditions in the Central Zone were favourable for gold deposition even though the observed alteration does not appear to be as pervasive or as extensive as that at the Monte Cristo prospect.

RECOMMENDATIONS

Should further diamond drilling on the Rowan Lake property be considered, it is recommended that efforts be directed at the western end of the Central Zone. This is intimated by the greater degree of alteration observed here, the number of assays greater than 100 ppb in holes RL-85-1, RL-85-2 and RL-85-3 and the presence of visible gold in RL-85-2. A pattern of diamond drill holes on 25 m centres would be sufficient to test for any mineralization that might exist in this area.

15 11

- 24 -

- 25 -W AL SHOULD ~ 2 The super a superior that is showing the superior and the superior a the Brand and Alf to the a bit the I to a read where for the the agt it is a total and e de la service de 1. NY. San AS en la post anna an an (جرزي gita se bie 1 · 1 39 ĝ 148 1. 1. . 1

<u>Plate 3:</u> Well foliated, weakly silicified grey core. Note carbonate stringers along planes of foliation (Hole RL-85-6).

<u>Plate 4:</u> Massive pyrrhotite and pyrite within quartz vein. Core is from second from bottom row, extreme left end in Plate 3.

B. & C. LTD

REFERENCES

Blackburn, C.E. and James, D.A.

1983: Gold Deposits in Northwestern Ontario; in The Geology of Gold in Ontario, edited by A.C. Colvine, Ontario Geological Survey, Miscellaneous Paper 110, pp. 194-210.

- 26 -

Ferguson, S.A., Groen, H.A. and Haynes, R.

1971: Gold Deposits of Ontario: Part I, Districts of Algoma, Cochrane, Kenora, Rainy River, and Thunder Bay; Ontario Division of Mines, MRC 13, p. 169.

Poulsen, K.H.

B. & C. LTD.

1983: Structural Setting of Vein-Type Gold Mineralization in the Mine Centre - Fort Frances Area: Implications for the Wabigon Subprovince; in The Geology of Gold in Ontario, edited by A.C. Colvine, Ontario Geological Survey, Miscellaneous Paper 110, pp. 174-180. CERTIFICATE OF QUALIFICATIONS

- 27 -

I, John Reddick, residing on Lot 15, Broken Front Concession, Sydney Township, Ontario, do hereby certify that:-

- (1) I am a consulting geologist.
- (2) I am a graduate of Queen's University, Kingston, Ontario, with the degree of B.Sc. in 1982.
- (3) I have been practising my profession since graduation.
- (4) I have no interest in, nor do I expect to receive any interest in Guardsman Resources Inc., Dejour Mines Limited or Nova-Co Exploration Limited.
- (5) I carried out the work on the property for the full period of the 1985-1986 program.

Jour Recolicia

J. Reddick, B.Sc.

Toronto, Canada February 3, 1986.

APPENDIX I

B. & C. LTD.

ANALYTICAL DATA

Boodar-Clegg & Company J.4d. 5420 Ca Rd., Ottawa, B, Rd., Canada KJ XX5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 016-0277 (COMPLETE		1		[] []	EFENENCE INFOR	
CLIENT: DEURUS MIN Project: Mone	IES LIMITED	an a			SI O	UBMITTED BY: STAN ROBINS ATE FRIMTED: 3-FEB-86	DN
OFDER	ELEMENT	алан алан алан алан алан алан алан алан	NUMBER OF ANALYSES	LOKER DETECTION LIGIT	EXTRACTION	rethod	
1	Av Gold		101	5 508	ADUA RECIA	FA-44 8 30 om	weight
SAMPL	E TYPES	経営のたち	0120 F	ACTIONE	NUMBER	SAMPLE PREPARATIONS R	UMBED
DR	ILL CORE	101	-2()0	101	CRUSH.PULVERIZE -200	101
renor	KSI K NEANS LS						
96132	T COPIES TO: S	ITAN POBINSON			1446101	E TO: STAM ROSINSON	
and the second sec	n ga sanan sa sa sa Na sanan na sara sa	· · · ·		en e		····	
	an a	n an		· · · · · · · · · · · · · · · · · · ·			
	 				· · · · · · · · · · · · · · · · · · ·	- · · • • •	
	!						
	анан алан алан алан алан алан алан алан		n n Natural na maragana				
		na na sa			1. 1		
							Δ
							(h)
Bondar-Clegg & Company Ltd. 5420 Ca Ottawa Canada Tar 8X5 Phone: (613) 749-2220 Telex: 053-3233

٦٢

<u>J</u>[DAR-CLEGG

.

Geochemical Lab Report

REPORT: 016-0277			PROJECT: NONE		PAGE 1
SAMPLE NUMBER	ELEMENT AV Ukits pro	EAMPLE Number	ELEMENT UNITS	Au PPB	
D001210 D001211 D001212 D001213 D001213 D001214	<5 10 5 5 (5	D001250 D001273 D001273 D001277 D001278 D001279		(5 (5 10 (5 (5 (5) (5)	
D001215 D001216 D001217 D001217 D001218 D001219	(5 55 (5 (5 (2 (2	0001280 0001231 0001292 0001293 0001284	· · · · · · · · · · · · · · · · · · ·	(5) (5) (5) (5) (5) (5)	• • • • • • • • • • • • • • • • • • •
0001220 D001221 D001222 D001223 D001223 D001224	20 (5 15 20 20 20	0001285 2001286 0001287 0001288 0001289		(5 (5 (5 (5 (5	
0001225 0001226 0001227 0001228 0001228 0001229	5 20 (5 20 15	D001290 D001271 D001292 D001293 D001294		<5 5 <5 <5 35	
D001230 D001231 D001232 D001233 D001233 D001234	03 (3) (3) (3) (3) (3)	0001295 0001296 0001297 0001299 0001299		10 20 10 60 10	
0001235 0001237 0001237 0001238 0001239	(5 (5 (5 (5) (5)	D001300 D001301 D001302 D001303 D001304		10 (5 30 10 (5	
0001240 0001241 0001242 - 0001243 0001244	5 60 360 45	0401205 0001305 0001307 0001308 0001309	···· ·	<pre></pre>	
D001245 0001245 - 0001247 0001248 0001249	20 (5 2905 65 (3	D001310 D001311 D001312 D001313 D001313 D001314		(5 (5 (5 (5 (5	

Bondar-Clegg & Company Ltd. 5420 Canotek Rd., Ottawa, io, Canada X5 Phone: (613) 749-2220 Telex: 051-3233

Geochemical Lab Report

REPORT: 016-01	,	· · · · · · · · · · · · · · · · · · ·		PROJECT: NONE	PAGE 2
SANFLE RUMBER	ELEMENT AU UNITS PPC		SAMPLE Number	ELEMENT AU UNITS PPC	
D001315 D001316 D001317 D001318 D001318 D001317	<(5 (5 (5 (5 (5 (5				
D001320 D001321 D001322 D001323 D001324	<5 5 10 5 15		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
D001325 D001326 D001327 D001327 D001328 D001327	160 15 20 30 22			, , , , , , , , , , , , , , , , , , ,	
D001330 D001331 D001332 D001333 D001333	(5 (5 (5 (5 (5				
0001335	() ()				
	1 4 104 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4				

5420 Canotek Ottawa, Canada Phone: (613) Telex: (053-323	Rd., n, 5 49-2220 3			BC		R-CL	EGG	Geochemical Lab Report
REPORT: 015	5-4332 (CO)	PLETE)				F	REFERENCE INFO:	
CLIENT: DER Project: NC	RY, MICHENE	ER BODTH & WA	HL.			2	GUEMITTED BY: DMB AND WAHL Date Frinted: 3-Jan-86	
ensensi in angeliga ngan ka angeloga nga si na angeloga nga si na angeloga nga si na angeloga nga si na angelog	DRDER	ELEMENT	an man man ni inggi yang sa man man man sang a sa	NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	METHOD	
	1	Au Gold		110	5 PPB	ADUA REGIA	FA-AA @ 30 gm weigl	it
	SAMPLE T	YPES	NUNBER	SIZE FR	ACTIONS	NUMBER	SAMPLE PREPARATIONS NUMBER	
	DRILL	CORE	110	-20	10	110	CRUSH, PULVERIZE -200 110	
· • • • • • • • • • • • • • • • • • • •	REPORT CO	C NEANS LESS DPIES TO: DMB	I HAK			INVOIC	CE TO: DMB+WAHL	
			1999 - E. Barran, 19	•				
, 1999-94 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4								
- e en yn 1997 - ee 1	er og forsøt for a som		···	· · · · · · · · · · · · · · · · · · ·		1918 - Low Land Land Land Land		1
		19 19 19 19 19 19 19 19 19 19 19 19 19 1	··· ·· · · · ·			-••• -•• - ••• - • - • •		
			, aa markag strat oo marka i marka sa ka saada			*****	n an	<u>anna - Romania a tan</u> a a sa
							·	4.

Bondar Clegg & Company Ltd.

1

1 ٦

Geochemical Lab Report

-

REPORT: 015	-4332		PROJECT: NONE	PAGE 1
SAMPLE NUMBER	ELEMENT AU UNITS PPB	SAMPLE NUMBER	ELEMENT AU UNITS PPB	
1001	(5	1041	5	
1002	90	1042	5	
1003	<5	1043	35	
1004	(5	1044	55	
1005	<5	1045	<u>.</u>	n na sa
1006	(5	1046	<5	
1007	ŧ,	1047	5	
1008	<5	1048	<5	
1009	<5	- 1049	290	
1010	<5	1050	()	- مەر 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
1011	(5	1051	(5	
1012	<5	1052	<5	
1013	<5	- 1053	130	
1014	<5	1054	<5	
1015	<5	1055		an ta supervision control and tabuta and a supervision of the supervision
1016	<5	1056	<5	** ************************************
1017	<5	1057	5	
1018	<5	. 1058	5	
1019	<5	1059	5	
1020	<5	1060	35	n e man e manuel a manuel e neer a commune de la commune
1021	<5	1061	<5	
1022	<5	- 1052	310	
1023	5	1063	(5	
1024	10	1064	<5	
1025	<5	1065	(5)	กระการสมับสาวอย่าง จากระบบสาย และระวรรมนาณ์ แม่และเอามนณ์เมื่
1026	! (5	1066	<5	
1027	<5	1067	(5	
1028	<5	1068	(5	
- 1029	250	1069	10	
1030	ζ5	- 1070	195	افراد الميواد يواديكم ومان بالمستقدين والروار ال- المعادلات المتواد ويرو المحك 44 هـ .
1031	5	1071	5	
1032	<5	1072	<5	
1033	<5	1073	<5	
- 1034	285	1074	<5	
1035	10	1075	(5	n ann an State and State and State and State and
1036	15	1076	(5	
1037	70	1077	(5	
1038	310	1078	<5	
1039	<5	1079	(5	
1040	<5	1080	<5	

Bondar-Clegg & Company Ltd. 5420 Canota, Rd., Ottawa, Canota, Kd., Canada KS Phone: (613) 749-2220 Telex: 053-3233

THE REPORT OF GRADER P $Q_{i}^{\mathbf{k}} = g_{i}^{\mathbf{k}} = g_{i$ ne ne vigen ne e pope enters at regen DAR-(

ור

EGG

J JŪ

Geochemical Lab Report

REPORT: 015	-4332	99 ya 1999 ya 1 1997 ya 1999 ya			PROJEC	T: NONE	PAGE 2
SAMPLE NUMBER	ELEMENT UNITS	Au PPB	ан ал то сон саналар соносор соно сти 1999 г. – Сан Саналар соности 1997 г. – Сан Сан Сан Сан Сан Сан Сан Сан Сан	SAMPLE NUMBER	ELEMENT UNITS	Au PPB	
1081		<5	ang ng mga ng		,		
1082		<5					
1083		(5					
1084		<5 /5					
1003		\ J			ца, алана и царова и Посто посто пост	· · · · · · · · · · · · · · · · · · ·	
1086		<5	,	1997 - 19			
1087		< 5					
1088		<5 					
1084		() /E					
1070	· · · · · · · · · · · · · · · · · · ·	() ()	a tan sana		an	a south the against south	د. المحمد المحمد المحم المحمد المحمد
1091		<5			Construction of Mandel & Source of Source Street, Source on	ander af skindligheit skille for range party son in some or	
1092		<5					
1093		K5					
1094		<5 					
1043	· · · · · · · · · · · · · · · · · · ·	() 		· · · · · · · · · · · · · · · · · · ·			
1096	n and a second secon	<5	a a an tha tha thaga da an taon an tao tao tao an	· · · · · · · · · · · · · · · · · · ·	48-1984-99 v. v. v		
1097		(5					
1098		<5					
1099		(5					
1109	······	- 35 - 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,				- Alter and Alter	
1101	The provide address of the contract of the second sec	<5	n – S. Sinderstallt deue weginn im demoklikäller derford			nyan darimpinanyan kari berdi dinin yang pangan yang daripi	
1102		<5					
1103		< 5					
1104		<5					
1105		(5			and the constant and a		n no na kanana ing mga kang pada tana ng manang ata makalama na ang mga manana atao.
1106	· · · · · · · · · · · · · · · · · · ·	<u>ر الم الم الم الم الم الم الم الم الم الم</u>	n a de l'a marte ller et lage el gel en de la geller de lager againet la reference				
1107		NJ (5					
1108		<5					
1109		(5					
1110		< 5					
		an an ann an					
P							
an set and any set of the set of	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	an an a suite an	· · · · · · · · · · · · · · · · · · ·			
-							

Bondar-Clegg & Company Ltd. 5420 Ca Ottawa Canada A 8X5 Phone: (613) 749-2220 Telex: 053-3233

Zect in

7

and the strate and the second

يار

EGG

NDAR-

Geochemical Lab Report

REPORT: 015-	-4333			PROJECT: NONE	PAGE 1
SAMPLE NUMBER	ELEMENT AU UNITS PPB		SAMPLE NUNBER	ELEMENT AU UNITS PPB	
1111	ζ5	ar, ograan i oli oon googlaan soor oggange	1151	10	
1112	<5		1152	15	
1113	<5		1153	85	
1114	<5		- 1154	130	
1115		.	1155	5	n 111 marte auna chasacant integagaankacentikentu argaalka (11 Meehandoa oon uur seks) agaa
1116	(5		1156	5	annan an a gunna na an
1117	<5		1157	<5	
1118	<5		1158	<5	
1119	5		1159	<5	
1120	· · · · · · · · · · · · · · · · · · ·	•••• •	1160	40	ار این
1121	<5		- 1161	270	
1122	E.		1162	90	
1123	<5		1163	25	
1124	<5		- 1164	165	
1125	45	a transformation and an and an and an	1165	(5	a a su a
1126	<5		1166	<5	
1127	<5		1167	<5	
1128	<5		1168	<5	
1129	(5		1169	<5	
1130		n an	1170	<u> </u>	
1131	<5		1171	<5	
1132	10		1172	<5	
1133	10		1173	<5	
1134	10		1174	<5	
1135	(5	and a second	1175	(5)	د. مرکز این این از این از این
- 1136	12665		1176	<5	
1137	75		1177	<5	
1138	10		1178	<5	
1139	15 (5		1179	(5)	
	a a a a a a a a a a a a a a a a a a a	na ann anns an san ann an anns an anns an anns an	· · · · · · · · · · · · · · · · · · ·	n na hanna an	a a secondar a secondar A secondar a secondar a
1141	() E		1181	(5 (F	
1142	0 56		1182	(5	
1140	5V 10		1100	\ c \3	
1145	(5		1185	<5 <5	
	но конструкций и на разли и на	an ann an t-ann an t-			
1146	10		1186	(5	
114/	15		1167	<5 (5	
1148	6U F		1188		
1147	រិប វត		1187	() /*	
1130	ل ه۲		1170 	······································	مەرەب بايدار بايدار بايدار مەرەب مەرەب (۱۹۹۱) - ايدار مورد بايدار مەرەب مەرەب مەرەب مەرەب مەرەب مەرەب مەرەب

Bondar-Clegg & Company Ltd. 5420 Canotek Rd., Ottawa, O. Canada K Phone: (613) 749-2220 Telex: D53-3233

.

Geochemical Lab Report

 $\langle \beta \rangle$

REPORT: 015	-4333			PROJECT: N	IONE	PAGE 2
SAMPLE NUMBER	ELEMENT AU UNITS PPR		SAMPLE NUMBER	ELEMENT A Units Pp	lu B	
1191	5	en forse marin narrage og i men i som som en af som en andere som en som en andere en andere en andere en ander	1272	<	5	ann a saona ach a maraiceann agus ann agus ann an Saonann a' Saonann an Saonann an Saonan
1192	<5 (5		1273	ć	(5) / F	
1175	K0 5		1279	()	เอ (5	
1195	(5			۵ 	· · · · · · · · · · · · · · · · · · ·	
1196	25					₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
1197	40					
1198	10					
1199	00 15					
			y - i y - i y - i - i - i - i - i - i -		· · · · · · · · · · · · · · · · · · ·	a an
1201	(5					• ·
1202	(5					
1204	(5					
1205	(5					
	 A set of the set of		n a na se an			
1206	<5 /F					
1207	(0) /5					
1208	(5					
1251	(5 	et 1	n jaken se renas - s	14 11 1 14 14 14 14 14 14 14 14 14	.	n
1252	(5)	nangerin ministri i mingen kangeri nemanangeri beragana anger	. (a)a <u>-a</u> 700 ing a 1986, a ing a constant i constant i a an an an a	ng, general ver anne en den ganne sen agan an de gan an de gan	anter meraja nya dimanet di nya anya diga da	
1253	<5					
1254	<5 (7					
1200	\D /5					
	n and a second a second se		an a			
1257	(5					
1258	5					
- 1259	430 70					
- 1261	155					
		en a se para a se ara a companya a companya a compa		an an agus anna an a		
1262	(5					
1265	(a 75					
1265	<5 (5					
1265	10					
- 1747	245	ی یا				
1268	5					
1265	(5					
1270	<5					
1271	5 			n and the set of the	n an 1111 114	

APPENDIX II

DIAMOND DRILL LOGS

DERRY, MICHENER, BOOTH & WAHL

DERRY, MICHENER, BOOTH & WAHL Page: 1 Co-ords: -85.0N -2100.0E HOLE NO.: RL-85-1 DIAMOND DRILL RECORD Azimuth: 340.0 Deg. Property: DEJOUR MINES LTD Dip: -50.0 Deg. Drill Type: Rowan Lake Property Elevation: 0.0 Core Size: BQ Date Started: December 9/85 101.0 Length: Date Completed: December 11/85 Logged by: JR Purpose: Test Central Zone Date Logged: December 11/85 Dip Tests

(

101.00 -32.0

from	to	Description	Sample	from	to	Length	Au (ppb)
(m)	(m)		No.	(m)	(m)	(m)	

0.00 .90 OVERBURDEN

£

ć

1

ŝ,

.90 41.80 MAFIC METAVOLCANIC. BASALT

From 0.9 to 1.2, broken blocky core with FeOx stain. D001001 <5.000 .90 1.50 .60 From 1.2 to 1.5, weakly foliated basalt with carbonate D001002 1.50 1,80 . 30 90.000 <5.000 stringer at 60 degrees to core axis. D001003 1.80 3.30 1.50 D001004 4.90 1.50 <5.000 3.40 From 1.5 to 2.1m moderately foliation at 60 degrees to D001005 4.90 5.20 . 30 <5.000 <5.000 D001006 5.20 5.50 .30 core axis. At 1.7 there is a 2.54cm quartz-carbonate stringer at D001007 5.50 6.40 .90 5.000 50 degrees to core axis. Minor fine grained disseminated D001008 6.40 7.90 1.50 <5.000 <5.000 pyrite and minor blebs of pyrite less than 0.32 cm D001009 7.90 8.80 .90 with trace amounts of pyrrhotite occuring adjacent to D001010 B.80 9.20 .40 <5,000 the guartz-carbonate stringer. D001011 9.20 9.60 .40 <5.000 From 2.1 to 5.5, moderately foliated core with <5% D001012 9.60 9,90 .30 <5,000 D001013 9.90 1.40 <5.000 carbonate. 11.30 D001014 <5.000 At 5.0 there are three carbonate stringers. One is 11.30 12.80 1.50 parallel to foliation at 60 degrees to the core axis, D001015 12.80 14.30 1.50 <5.000 two cut the foliation and are at 45-D001016 14.30 15.90 1.60 <5.000 and the other degrees to the core axis. Minor irregular blebs of D001017 15.90 1.50 <5.000 17.40 17.40 18.90 1.50 <5.000 pyrite are present near the stringers. D001018 From 5.5 to 6.3, 10% carbonate stringers in a zone of D001019 18.90 20.40 1.50 <5.000 wavy foliation. Some sericite, D001020 <5.000 moderate to strong 20.40 22.00 1.60

Page:

2

					HOLE NO		RL-85-1
rom m)	to (m)	DescriptionDescription	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
		minor quartz-carbonate stringers <0.16 cm wide, and	D001021	22.00	23.50	1.50	<5.000
		medium to coarse grained pyrite throughout. A couple of	D001022	23.50	25.00	1.50	<5.000
		carbonate stringers at 0 to 20 degrees to core axis.	D001023	25.00	26.50	1.50	5.000
		From 6.3 to 8.8, moderately to weakly foliated basalt.	D001024	26.50	26.80	. 30	10.000
		<5% carbonate, trace fine to medium grain pyrite.	D001025	26.80	27.70	.90	<5.000
		From 8.8 to 9.8, moderately foliated section centred on	D001026	27,70	29.00	1.30	<5.000
		sericitic section from 9.2 to 9.5. This section is pale	D001027	29,0 0	30.50	1.50	<5.000
		green with no foliation and appears to be slightly	D001028	30.50	31.10	. 60	<5.000
		brecciated.	D001029	34.80	36.30	1.50	250.000
		At 9.1m a 2.54 cm quartz vein with 10% chloritic	D001030	36.30	37.80	1.50	<5,000
		inclusions. Upper contact at 60 degrees to core axis.	D001031	37.80	39.30	1.50	5.000
		Lower contact at 90 degrees to core axis. Minor fine to	D001032	39,30	40,80	1.50	<5.000
		medium pyrite and pyrrhotite occur along the contact.	D001033	40.80	41.30	.50	<5.000
		At 9.2 a 1.27 cm quartz vein at BO degrees to core axis	D001034	41.30	41.80	. 50	285.000
		with pyrite. A carbonate coated fracture at 15 degrees					
		to core axis offsets this vein by 0.64 cm.					
		At 9.7 an irregular 2.54cm quartz-carbonate stringer at					
		75 degrees to core axis with trace pyrite.					
		From 9.8-22.3m, weakly follated matic volcanic with <5%					
		carbonate. Trace pyrite near the beginning of the					
		section.					
		At JU.2m a U.64 cm Quariz-Cardonale stringer at 60					
		degrees to core axis. Minor medium grained pyrite.					
		At 10.5 a 1.27 cm quartz-carbonate vern at ou degrees					
		At 11.6 a modulately foliated social with 10% carbonate					
		At 11 0 a 0.64 or quarta-carbonate stringer at 60					
		degrees to core suit. Suith 2-2% punits					
		At 16.0 a 0.64 cm carbonate stringer at 40 degrees to					
		ore svie. With minor hematite					
		At 17 A and 17 6 minor quarte-carbonato stringers at 60					
		degrees to core svie with hematile and minor nurite					
		At 10.2 a guarta carbonata stringer at 60 degrees to					
		At 18.2 8 quality larbonate stimpt at to defices to					
		At 10.5 a 0.64 ca carbonate stringer at 70 degrees in					
		At 15:5 a 0.04 Cm carbonact stranger at 10 degrees to					
		From 22.3 to 23.8 up to 10% carbonato in this section					
		Fight 22.5 to 25.6, up to 10% to toblate in this settion					
		Minor disceminated fine and modium grained purits					
		At 22.9 a 0.64 mm quartz-carbonate stringer at 80					
		degrees to core avis					
		Rrom 23.8 to 37.8 moderately foliated chloritic mafic					
		volcanic at 60 degrees to core axis. <5% carbonate	-				
		toround at ou wegield to bore anior to buildulater					

(

Page:

3

1

.

{

í.

X.

۰ ۱

					HOLE NO).:	RL-85-1
from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
		Minor fine grain disseminated pyrite.					
		At 26.6 an irregular quartz-carbonate stringer with up to 25 fine grained number					
		At 26.7 and 26.9 thin guartz-carbonate stringers at 60					
		degrees to core axis.					
		From 27.0-27.6m, well foliated FeOx stained interval					
		with up to 2% fine and medium grained magnetite, and minor purite					
		At 27.1 and 27.5 irregular quartz-carbonate stringers.					
		At 28.1m an irregular 0.64 cm wide quartz-carbonate					
		stringer at 60 degrees to core axis.					
		and quartz-carbonate stringers.					
		At 30.8 a 1.27 cm guartz-carbonate stringer at 60					
		degrees to core axis.					
		From 37.8 to 41.8 the core is pale green in colour. It is moderately foliated at 60 degrees to core axis (5)					
		carbonate, and minor disseminated pyrite.					
		At 41.2 the core becomes light green in colour and the					
		carbonate content increases to about 5%.					
		hematite and minor pyrite.			÷		
41.80	43.30	SILICIFIED MAPIC METAVOLCANIC					
		Core becomes moderately siliceous and less carbonatized.	D001035	41.80	42.40	.60	10.000
		Still moderately follated at 60 degrees to core axis.	D001036	42.40	42.70	.30	15.000
		At 41.9 a couple of guartz stringers at 60 degrees to	D001037	42.10	43.30	.30	310.000
		core axis. 2% pyrite and pyrrhotite.					
		At 42.0 a 1.5 mm seam of pyrrhotite at 60 degrees to					
		core axis. From 42.4 to 43.1 an extremely siliceous section					
		containing 50% quartz as stringers and augens at 60					
		degrees to core axis. Also carbonatized and sericitic.					
		Contains fuchsite plus 1-2% fine to medium grained					
		At 43.2 abundant FeOx stain and pyrite.					
43.30	59.40	MAFIC METAVOLCANIC. BASALT					
		At 43.3 the core becomes progressively less siliceous	D001039	43.30	44.80	1.50	<5.000
		and green in colour. Moderately foliated with up to 5%	D001040	44.80	45.70	,90	<5.000

(

	Page: RL-85-1	4
igth i)	Au (ppb)	
0	5.000	
0	5.000	
0	35.000	

HOLE NO.:

from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
		carbonate and minor disseminated pyrite.	D001041	45.70	46.30	.60	5.000
		At 45.0 a quartz-carbonate stringer at 70 degrees to	D001042	46.30	47.90	1.60	5.000
		core axis,	D001043	47,90	48.50	.60	35.000
		At 46.0 the core is well foliated, 5% quartz stringers	D001044	48.50	49.10	.60	55.00 0
		, 10% carbonate 3% disseminated pyrite and 1%	D001045	49.10	50.60	1.50	<5 .000
		disseminated magnetite.	D001046	50.60	51.50	.90	<5.000
		From 48.8 to 49.1 3 quartz-carbonate stringers at 60	D001047	51.50	51.80	. 30	5.000
		degrees to core axis. Minor fine to medium grained	D001048	51.80	52.90	1.10	<5.000
		pyrite.	D001049	52.90	53.50	.60	290.000
		At 51.5 an irregular 2.5 cm quartz-carbonate vein at 60	D001050	53.50	54.9 0	1.40	<5.000
		degrees to core axis with trace pyrite and fuchsite.	D001051	54.90	56.40	1,50	<5.000
		From 53.0 to 53.5 , a light grey green zone moderately	D001052	56.40	57.90	1.50	<5.000
		foliated. About 15% of the section is guartz-carbonate stringers and veins.	D001053	57.90	59.40	1.50	130.000
		At 53.1 irregular quartz-carbonate stringers at 60 degrees to core axis. Trace pyrite and fuchsite.					
		At 53.3, quartz-carbonate stringers with minor pyrite. At 55.2 quartz-carbonate stringers in moderately foliated grey green core.					
59.40	71.60	 SILICIFIED MAFIC METAVOLCANIC The core becomes light grey in colour with only minor chloritic sections. Moderately foliated at 60 degrees to core axis. Generally weakly carbonatized. Weakly siliceous in places. Minor pyrite. At 66.0 a 2.5 cm brecciated zone with carbonate matrix and chloritic fragments. Hematite in carbonate matrix. From 68.0 to 68.4 a well foliated zone with FeOx stain and irregular quartz-carbonate veins and stringers. At 68.2 a 2.5 cm quartz vein with minor pyrite. Trace hematite and magnetite. At 70.0 a 1.5 mm sear of pyrite parallel to foliation. 	D001054 D001055 D001056 D001057 D001058 D001059 D001060 D001061 D001062	59.40 61.00 62.50 64.00 65.50 67.10 68.00 68.60 70.10	61.00 62.50 64.00 65.50 67.10 68.00 68.60 70.10 71.60	1.60 1.50 1.50 1.50 1.60 .90 .60 1.50 1.50	<5.000 <5.000 <5.000 5.000 5.000 5.000 35.000 <5.000 310.000
71.60	. 81 . 10	MAFIC METAVOLCANIC. BASALT The core becomes progressively more chloritic and green in colour. Moderately foliated and up to 5% carbonate. Trace disseminated fine grained pyrite. At 73.0 a 6.0 mm quartz-carbonate stringer at 60 degrees to core axis. 1-2% pyrite and magnetite in adjacent rock At 73.3 a 1.3 cm band of rock with 10% medium grained euhedral magnetite.	D001063 D001064 D001065 D001066 D001067 D001068 D001069	71.60 73.20 74.70 76.20 77.70 79.30 80.80	73.20 74.70 76.20 77.70 79.30 80.80 81.10	1.60 1.50 1.50 1.50 1.60 1.60 1.50 .30	<5.000 <5.000 <5.000 <5.000 <5.000 <5.000 <5.000 10.000

 \mathbf{C}

1

Í.

	DERRY, NICHENER, BOOTH &	HOLE NO).:	Page: RL-85-1			
from (m)	toDescription (m)	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)	
	At 74.0 a 6.0 mm quartz stringer at 60 degrees to core axis with pyrite along the contact. At 74.2 a 6.0 mm quartz stringer at 75 degrees to core axis. Trace pyrite. From 75.9 to 76.2 a zone consisting of 40% carbonate stringers at 80 degrees to core axis. 2% euhedral medium grained magnetite and minor pyrite. At 77.7 a 1.3 cm quartz-carbonate stringer at 80 degrees to core axis with trace pyrite and 1-2% magnetite. From 78.0 to 78.2 a section with 50% carbonate veins and alteration at 80 degrees to core axis. A 2.5 cm section contains 10% fine to medium grained magnetite.						
81.10	81.70 SILICIFIED MAFIC METAVOLCANIC From 81.3 tO 83.6 a siliceous zone with 30% quartz and carbonate veins and stringers up to 5.0 cms in width. Contacts vary between 60 to 90 degrees to core axis. 2% fine to medium grained pyrite. Trace pyrrhotite and trace fuchsite.	D001070	81.10	81.70	.60	195.000	
81.70	 101.00 MAFIC METAVOLCANIC. BASALT AT 82.3 chloritic green core with up to 5% carbonate. Moderately foliated at 70 degrees to core axis. From 85.4 to 86.3, a section with 15% carbonate and minor quartz-carbonate stringers at 75 degrees to core axis. 1-2% medium grained pyrite. Minor pyrrhotite and magnetite. From 93.6 to 93.9, slightly fractured core, in places a breccia with large chloritic fragments in a carbonate matrix. Minor pyrite. From 93.9 to 101, light green core moderately foliated at 70 degrees to core axis. 5-10% carbonate. Trace fine grained disseminated pyrite. At 101.0g END OF HOLE. 	D001071 D001072 D001073 D001074 D001075 D001076 D001077 D001078 D001079 D001080 D001081 D001082 D001083	81.70 82.30 83.80 85.30 86.30 86.90 88.40 89.90 91.40 93.00 94.50 96.00 97.50	82.30 83.80 85.30 86.30 86.90 88.40 89.90 91.40 93.00 94.50 96.00 97.50 99.00	.60 1.50 1.50 1.00 .60 1.50 1.50 1.50 1.50 1.50 1.50 1.50	5.000 <5.000 <5.000 <5.000 <5.000 <5.000 <5.000 <5.000 <5.000 <5.000 <5.000 <5.000 <5.000 <5.000	

D001084

99.00

100.90

1.90

.

1

t.

1 ζ.

A.

5

<5.000

Co-ords :	-120.0N -2000.0E	DERRY, MICHENER, BOOTH & WAHL	HOLE NO.:	Page: 1 RL-85-2
Azimuth:	340.0 Deg.	DIAMOND DRILL RECORD	Property:	DEJOUR MINES LTD
Dip:	-50.0 Deg.	Drill Type:		Rowan Lake
Elevation:	0.0	Core Size: BQ		Property
Length:	157.1		Date Started: Date Completed: Logged by	December 14/85 December 14/85 JR
Purpose:	Test Central Zone		Date Logged:	December 12-14/85

Dip Tests

157.00 -24.0

from	toDescription	Sample	from	to	Length	Au (ppb)
(m)	(m)	No.	(m)	(m)	(m)	

0.00 2.60 OVERBURDEN

1

t.

ι,

2.60 20.10 MAFIC METAVOLCANIC. BASALT

Grey-green in colour. Moderately to well foliated at 55 D00108 degrees to the core axis. Up to 5% carbonate, often as D00108 stringers along the plane of foliation. Fine grained D00108 disseminated pyrite very rare.

5	D001085	2.60	4.10	1.50	<5.000
5	D001086	11.00	12.50	1.50	<5.000
t	D001087	14.60	16.10	1.50	<5,000

At 11.5m, 0.08cm quartz-carbonate stringer at 60 degrees to core axis.

At 13.1m, 0.08cm quartz-carbonate stringer at 45 degrees to core axis.

At 13.7m, the core becomes slightly more chloritic and is green in colour.

At 14.9m, irregular 0.08cm quartz-carbonate stringers at 55 degrees to the core axis, Trace pyrite.

At 14.9m, 15.2m, and 15.5m quartz-carbonate stringers are similar to stringers at 14.9m. Trace pyrite.

At 15.8m, quartz-carbonate stringers at 45 degrees to core axis.

At 17.5m, quartz-carbonate stringer at 60 degrees to core axis.

At 19.8m, narrow quartz-carbonate stringer.

At 20.1m, the amount of carbonate increases to 5-10% of

		DERRY, MICHENER, BOOTH &	WAHL		HOLE NO	D.:	Page: RL-85-2	2
from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)	
		the core, principally along planes of foliation and as stringers. The amount of pyrite increases, varying from trace amounts as fine disseminated grains to 1-2% pyrite as medium sized grains throughout the basalt.						
20,10	21.10	SILICIFIED MAFIC METAVOLCANIC Altered zone. 10% carbonate and weak silicification. Trace pyrite. Quartz stringers are ~0.08cm wide at 20.5m and at 20.9m, and at 45 degrees to core axis.	D001088	20.10	21.10	1.00	<5.000	
21.10	26.20	MAFIC METAVOLCANIC. BASALT						
		From 21.2-21.6m, 1-2% medium grained pyrite.	D001089	21.10	22.70	1.60	<5.000	
		At 21.8m, minor magnetite with 2.54 cm of a thin	D001090	22.70	23.20	.50	<5.000	
		quartz-carbonate stringer.	D001091	23.20	23.70	.50	<5.000	
		From 22.9-233.0m, several thin quartz-carbonate	D001092	23.70	24 70	1.00	<5.000	
		Orientation of stringers vary from: 1.50 degrees to core axis parallel to foliation. 2.50 Degrees to core axis perpendicular to foliation. 3.15 Degrees to core axis. At 23.5m, 0.08cm quartz stringer at 40 degrees to core axis. Medium grained pyrite, hematite. From 23.8-24.0m, several thin irregular quartz-carbonate	D0103 3	24.10	20.20	1.50		
		stringers. At 24.0m, line to medium grained magnetite seam at 55 degrees to core axis. At 25.6m, minor magnetite and pyrite.						
2 6. 20	4 3. 0 0	SILICIFIED MAFIC METAVOLCANIC			AB 40		15 000	
		From 26.1-26.4m, weakly silicitied section. Well foliated with 28 modium emined munito 14 modium	D001094	20.20	27.20	1.00	<5,000 25,000	
		orained magnetite At 26.2m quartz vein with 0.15cm	D001095	28.30	29.90	1.60	<5,000	
		Bupens and pyrite along contact.	D001097	29.90	30.40	.50	<5.000	
		From 26.5-29.3m, well folisted. Core becomes slightly	D001098	30.40	30.90	.50	<5.000	
		more siliceous. Magnetite and 2% pyrite throughout	D001099	30.90	32.30	1.40	<5,000	
		core. Magnetite is localized. At 27.1m thin quartz and	D001100	32.30	33.30	1.00	<5.000	
		quartz-carbonate stringers (<5% of the core) is at 55	D001101	33.30	34.40	1,10	<5.000	
		degrees to the core axis.	D001102	34.40	34.90	,50	<5.000	

ť

ť

(

C

Ł

ĺ

١,

<5.000 From 27.4-28.0m, the foliation becomes convoluted. Core D001103 34.90 35.40 . 50 D001104 35.40 36.90 1.50 <5.000 is somewhat sericitic with minor pyrite and magnetite. 1/4 to 0.15cm quartz-carbonate stringers at 27.8m, D001105 36.90 38.40 1.50 <5.000

3

from (m)	toDescription (m)	No.	from (m)	to (m)	Length (m)	Au (ppb)
	28.0m, and 28.1m, with contacts v	arying from 50-75 D001106	38.40	39.90	1.50	<5.000
	degrees to core axis.	D001107	39.90	41.50	1.60	<5.000
	At 28.9m, 0.08cm quartz stringer at 7	5 degrees to core D001108	41.50	42.00	.50	<5.000
	exis.	 D001109	42.00	42.50	.50	<5.000
	At 29.0m, 0.08cm quartz carbonate vein.	D001110	42.50	43.00	.50	<5.000
	From 29.3-29.6m, fine grained disseminate	ed magnetite.				

carbonate. At 30.0m, 0.32 cm

siliceous zone with convoluted

to core axis. Some epidote. Minor pyrite, Evidence of brittle fracture with carbonate filling fractures. At 31.4m, core becomes less siliceous and carbonatized. Trace pyrite.

foliation centred on 0.15cm guartz vein at 60 degrees

From 29.9-31.1m, moderately foliated and weakly

quartz stringer at 75 degrees to core axis, with one silicieous section adjacent on both sides. Epidote, minor magnetite, and pyrite. Stringer is offset by brittle fracture, 0.32 cm wide. At 30.2m, carbonate stringers perpendicular to foliation at 35 degrees to core axis. Around 30.5m, abundant medium to coarse

siliceous section. "5%

30.7-30.9m,

grained pyrite.

From

٩

From 32.3-32.6m, weakly silicified section with magnetite, pyrite. Quartz stringer at 32.4m.

At 33.2m, core becomes weakly silicified and grey-green in colour. The amount of carbonate increases to >5%.

At 33.5m, quartz-carbonate stringer at 55 degrees to core axis.

From 33.6-34.0m, moderately siliceous section with quartz, and quartz-carbonate stringers. Epidote and sericite. 1-24 medium to coarse grained pyrite. Foliation slightly convoluted, generally at 60 degrees to core axis.

At 34.1m, 0.15cm quartz-carbonate vein at 60 degrees to core axis.

From 34.4-35.6m, grey, moderately siliceous section.

From 34.5-34.8m, >10% quartz-carbonatc stringers. Sericite, epidote, and pyrite.

Quartz-carbonate stringers in grey-green basalt at 36.3m, 37.4m, 37.9m, 38.7m, and 38.9m.

Prom 40.8-41.0m, highly carbonated and slightly siliceous, Sericitic section. Medium grain pyrite.

From 42.1-42.8m, weakly silicified, sericitic section centred on a 7.62 cm zone of quartz-carbonate stringers

4

ι

١

		DERRY, MICHENER, BOOTH &	WAHL		HOLE NO	Page: RL-85-2	
from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
		at 42.3m. Abundant pyrite and trace chalcopyrite in stringers. Prom 43.0m onwards, core is pale green. Carbonate content >5% in places. ~10% with weak silicification. Minor pyrite throughout. Poliation is at 65 degrees to core axis.					
43.00	46.00	SILICIFIED MAFIC METAVOLCANIC					
		From 43.3-43.4m, weakly silicified section.	D001111	43.00	44.50	1.50	<5.000
		At 44.3m, weakly silicified section with abundant pyrite. From 44.8-45.4m, moderately siliceous section. 10% carbonate, abundant pyrite and sericite. Trace pyrrhotite.	D001112	44.50	46.00	1.50	<5.000
46.00	55.20	MAFIC METAVOLCANIC. BASALT			· .		
		At 46.6m, 0.15cm quartz vein at 75 degrees to core axis,	D001113	46,00	47.50	1.50	<5.000
		Minor sericite. Abundant pyrrhotite and pyrite.	D001114	47.50	49.10	1.60	<5.000
		From 48.2-49.7m, highly carbonatized, weakly siliceous	D001115	49.10	50.60	1.50	<5.000
		zone. Several quartz and quartz-carbonate stringers.	D001116	50.60	52.10	1.50	<5.000
		Abundant pyrrhotite locally. Pyrite and sericite.	D001117	52,10	53.60	1.50	<5.000
		From 40.9-49.0m, quartz stringers with pyrincite. From 50.9-52.0m, siliceous section. Convoluted foliation. 10% carbonate, sericite. Minor pyrite and pyrrhotite.	D001118 D001119	53.80 54.20	55.20	1.00	5.000
		From 53.6-54.3m, siliceous and carbonatized zone. Well foliated at 55 degrees to core axis. Minor pyrite, pyrrhotite, and hematite.					
		Moderately silicified. Several thin quartz stringers at 55 degrees to the core axis. Minor pyrite and hematite. Trace pyrrhotite.					
55.20	56.70	MAFIC METAVOLCANIC. BASALT	D001120	55.20	56.70) .50	<5.000
56.70	57.50	SILICIFIED MAFIC METAVOLCANIC					
		Siliceous section with "10% quartz as thin stringers. Minor pyrite and pyrrhotite. Trace hematite.	D001121	56.70	57.50	, 80	<5.000

Ĺ

		DERRY, NICHENER, BOOTH &	HOLE NO).:	Page: RL-85-2			
from (m)	to {m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)	
57.50	58.20	SILICIFIED MAFIC METAVOLCANIC Weakly siliceous section. 10% quartz and 10% carbonate, Convoluted folistion at 70 degrees to core axis.	D001122	57.50	58.20	.70	5,000	
58.20	61.30	MAFIC METAVOLCANIC. BASALT	D001123 D001124	58.20 59.70	59.70 61.30	1.50 1.60	<5.000 <5.000	
61.30	62.80	SILICIFIED MAFIC METAVOLCANIC Weakly siliceous section with a 2.54 cm quartz-carbonate vein at 75 degrees to core axis at 61.3m. Minor pyrite.	D001125	61.30	62.80	1.50	< 5.0 00	
62.80	64,30	MAFIC METAVOLCANIC. BASALT From 62.8-63.4m moderately carbonatized. Weakly silicified section. Foliation at 65 degrees to the core axis.	D001156	62.80	64.30	1.50	<5.000	
64.30	64.90	SILICIFIED MAFIC METAVOLCANIC Well silicified. Carbonatized section with many quartz stringers. Quartz totals ^20% of the section. Minor fine grain pyrite. Trace e hematite.	D001127	64.30	64.90	. 60	<5,000	
64.90	67.40	MAFIC METAVOLCANIC. BASALT Prom 65.5-65.8m several thin quartz-carbonate stringers. At 60.1m several thin quartz-carbonate stringers at ~10 degrees to the core axis, with hematite along the contacts. Minor pyrite.	D001128 D001129	64,90 65,80	65.80 67.40	.90 1.60	<5.000 <5.000	
67.40	68.90	SILICIFIED MAFIC METAVOLCANIC Weakly silceous section. Several thin quartz stringers. Minor pyrite.	D00113 0	67.40	68.90	1.50	<5.000	
68.90	70.40	MAFIC METAVOLCANIC. BASALT From 68.7-69.0m several thin quartz stringers. Minor pyrite, pyrrhotite, and hematite.	D001131	68.90	70.40	1.50	<5.000	

-

(

(_{, ,}

(

i.

, ,

.

ί.

۰.

		DERRY, NICHENER, BOOTH &	WAHL		HOLE NO).:	Page: RL-85-2
from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
70.40	71.90	SILICIPIED MAFIC METAVOLCANIC From 70.6-70.9m siliceous and carbonatized zone. Minor pyrite. At 70.7m 3.0mm quartz-carbonate stringer at 65 degrees to the core axis. Massive pyrite and abundant magnetite. At 71.8m abundant pyrite in a weakly silicified section.	D001132	70.40	71.90	1.50	10.000
71.90	73.50	FINE Ground and blocky core. Fault?. At 72.1m the core from this point is dark green and well foliated. <5% carbonate and much less siliceous than above units. It also contains 2-5% fine to medium grained magnetite, both as disseminations and as 'seams and bands' from a fraction to several inches in width. Minor amounts of fine to medium grained pyrite throughout. Foliation is at 75 degrees to the core axis.	D001133	71.90	73.50	1.60	10.000
3.50	85.70	MAFIC METAVOLCANIC. BASALT At 72.4m 0.15cm quartz-carbonate stringer. Prom 74.3-74.6m section with ~10% carbonate. Abundant fine to medium grained magnetite (~5%). 1-2% pyrite. At 75.7m irregular quartz-carbonate stringers. Prom 77.7-77.9m up to 5% medium grained magnetite, generally orientated parallel to the foliation at 65 degrees to the core axis. At 78.6m magnetite is no longer present past this footage. The core is dark green with <5% carbonate, moderately foliated, and contains minor disseminated pyrite. Prom 78.8-78.9m quartz vein with hematite stain giving a red colour. Minor pyrite. At 79.6m the core starts to become light green with increasing carbonate content. From 79.7-80.3m highly carbonated section; ~10% with quartz carbonate stringer. At 79.9m there is a 15.2cm siliceous section centred on a 0.61cm quartz vein at 55 degrees to the core axis. Abundant fine to medium grain pyrite, and a few tiny specks of VISIBLE GOLD in the carbonate adjacent to the quartz.	D001134 D001135 D001136 D001137 D001138 D001139 D001140	73.50 78.00 79.50 80.00 81.10 82.60 84.10	75.00 79.50 80.00 81.10 82.60 84.10 85.70	1.50 1.50 .50 1.10 1.50 1.60	10.000 <5.000 12670.000 75.000 10.000 15.000 <5.000

(

ť.

i (

	ζ.		DERRY, MICH	ENER, BOOTH & WAHL		HOLE NO	.: .	Page: 7 RL-85-2
	' 、	from (m)	toDescription (m)	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
·	N		At 80.7m 0.15cm quartz-carbonate stringer a axis. At 81.7m quartz stringer at 65 degrees to cor At 82.7m the core becomes very pale gr carbonate. Moderately to well foliated. At 83.4m 0.46 cm quartz-carbonate vein at 7 core axis. Minor hematite.	t 60 to core e axis. ee with 5% O degrees to				
	ι.	85.70	 88.20 SILICIPIED MAFIC METAVOLCANIC At 86.1m core becomes light grey in constiliceous with 5% carbonate. Moderate to wat 70 degrees to core axis. Trace disseminated pyrite. Prom 87.6-88.2m very siliceous section. 10-1 stringers centred on veins. "50% quartz ar at 87.9m and 88.2m. Minor pyrite. Veins irr degrees to core axis. 	lour. Weakly D001141 ell foliated D001142 fine grain D001143 5% quartz as d 50% basalt egular at 70	85.70 87.20 87.70	87.20 87.70 88.20	1.50 .50 .50	<5.000 5.000 50.000
		88.20	 93.20 MAFIC METAVOLCANIC. BASALT At 86.3m core becomes pale green, with 5 Weakly siliceous. At 88.8m 0.08cm quartz vein at 80 degrees t Minor pyrite and hematite. At 91.1m core becomes light grey ag silicified with increasing numbers of quartz Prom 91.7-92.4m silicieous section with 10% carbonate, and minor disseminated pyrite. At 92.7m core becomes dark green. <5% car very little quartz. Minor disseminated p magnetite throughout. 	% carbonate. D001144 D001145 o core axis. D001146 ain. Weakly stringers. quartz, 15% rbonate with yrite and 1%	88.20 88.70 91.70	88.70 90.20 93.20	.50 1.50 1.50	10.000 <5.000 30.000
		93.20	00.90 SILICIFIED MAFIC METAVOLCANIC At 95.1m core becomes grey in colour wit green sections. From 97.8-97.9m quartz-carbonate vein at 7 core axis. 1-2% pyrite. From 97.8-97.9m quartz-carbonate vein. Abun Minor tourmaline form lath-shaped crys pyrrhotite, galena, fuchsite, and hematite. At 101.5m 0.31cm quartz-carbonate vein with p	h short pale D001147 D001148 O degrees to D003149 D001150 dant pyrite, tals. Trace	96.30 97.80 98.30 99.40	97,80 98.30 99.40 100.90	1.50 .50 1.10 1.50	15.000 60.000 5.000 <5.000

(

(

١.

· · · · (

(

۰,

		DERAT, MICHENER, DUUIN &	WASIL		HOLE NO	.:	RL-85-2
from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb
		From 98.7-100.9m fairly massive, poorly foliated, weakly carbonated core.					
100.90	103.60	MAFIC METAVOLCANIC. BASALT Core is pale green and moderately foliated at 80 degrees to core axis. 5% carbonate. From 101.8-102.0m siliceous section centred on a 0.61cm quartz vein at 75 degrees to core axis. Abundant massive pyrite parallel to and along contacts.	D001151	101.70	102.20	. 50	10.000
103.60	115.80	SILICIFIED MAPIC METAVOLCANIC	0001150	107 00	100 50	1 60	15 000
		At 303.0m core becomes grey in colour. More Biliceous.	D001152	111 60	112 10	1,50	15.000
		5% Carponate and well follated at 75 degrees to the	D001153	112.00	113.10	1.50	120.000
		core axis, irace disseminated pyrite.	0001154	113.30	112.00	. 50	130.000
		Prom 107 9-108 fm 10% carbonato					
		At 100 dm 0 15cm quartz-carbonate stringer with minor					
		nvrite					
		At 111.2m irregular barren guartz-carbonate stringer.					
		From 112.0-112.8m siliceous section. At 112.5m 0.31cm					
		quartz-carbonate vein at 60 degrees to the core axis.					
		5% pyrite locally. Trace fuchsite and hematite. At					
		112.7m 0.08cm quartz-carbonate stringer with massive					
		pyrite along the contact.					
		At 113.1m thin seam of massive pyrite at 70, degrees to					
		the core axis.					
		From 113.4-113.6m siliceous section with several quartz					
		stringers. Massive pyrite along contacts; also 1-2%					
		Regnerate.					
		Trace pyrite.					
115.80	125.80	MAFIC METAVOLCANIC. BASALT	0001165	116 10	117 60	1 50	5 000
		At 110.0M COTE percentes variably grey to pare green. Less	D001155	120.20	120 70	50	5 000
		From 116.6-116.9m 15% carbonate in this section. Minor	D001157	120.70	121.70	1,00	<5.000
		pyrite. pyrrhotite. and magnetite.	D001158	122 10	122.60	,50	<5.000
		From 120.4-120.6m guartz-carbonate vein at 85 degrees to	D001159	125.30	125.80	. 50	<5.000
		the core axis. 1% fine grain disseminated pyrite and					
		minor magnetite in quartz.					

(

B

7

Ę

(·

(

1

٠,

(

(

1

1

×.

from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
		At 120.7m core becomes green in colour. Moderately carbonated. Disseminated pyrite throughout, locally abundant					
		From 121.0-121.1m guartz-carbonate vein. Minor pyrite					
		and 5-10% magnetite, locally.					
		At 122.3m and 122.7m 0.31cm guartz-carbonate veins each					
		with trace pyrite and abundant magnetite.					
		At 124.0% no magnetite past this point.					
		core axis. No sulphides.					
125 80	129 50	STITCTFIED MARIC WETAVOLCANIC					
320.00	120.00	At 125.7m the core becomes grey in colour. Moderately	D001160	125.80	126.30	.50	40.000
		siliceous and moderately foliated. Minor pyrite	D001161	126.30	126.80	. 50	270.000
		throughout. 5% carbonate.	D001162	126.80	127.30	. 50	90.000
		At 125.8m barren quartz-carbonate stringer at 80 degrees	D001163	127.30	127.80	,50	25.00 0
		to the core axis.	D001164	127.80	128.30	. 50	165.000
		From 125.4-125.5% quartz vein at 85 degrees to the core exis with abundant disseminated pyrite (2-5%). Trace					
		IUCHSICE. At 126.5 126.6 and 126.7m quartz veins <0.31cm in					
		width at 70-80 degrees to the core axis. Abundant					
		From 126.8-127.0m siliceous zone with 60% quartz					
		stringers. Trace pyrite and fuchsite.					
		Prom 127.1-127.2m completely silicified section. Well					
		foliated at 85 degrees to the core axis.					
		At 127.3m 0.31Cm section with 10% fine grain pyrite.					
		quartz vein at BO degrees to the core axis. No sulphides					
129 50	140 20	MAFIC METAVOLCANIC. BASALT					
120.00	140.00	At 129.5m core changes from grey to pale green. Only	D001165	132.00	133.50	1.50	<5.000
		very slightly siliceous in a few localities. Weak to	D001166	134.10	135.60	1.50	<5.000
		moderately foliated. <5% carbonate. Trace pyrite. Very	D001167	138.70	140.20	1.50	<5.000
		weakly magnetic with over 10% magnetite.					1
		From 132.3-132.6m Weakly silicified section. 10%					
		carponate and a couple of thin quartz Stringers, No sulphides					
		From 134.4-134.7m very weakly silicified section. 5-10%	-				

carbonate. Minor pyrite.

(

. 1

(

.

λ.

(

1

1

1

١.

						NOLE NO	J.:	KL-85-2
,	from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
			 Prom 135.9-136.3m 5-10% carbonate in this section. Prom 136.8-137.2m slightly fractured core. Minor carbonate. At 138.7m carbonate increases to 10-15% giving the core a banded appearance. Minor hematite. At 139.2m 1.91 cm quartz vein with carbonate alteration around 70 degrees to the core axis. No sulphides. 					
	140.20	140.90	SILICIFIED MAFIC METAVOLCANIC Moderately biliceous grey coloured rock. Weakly carbonatized.	D001168	140.20	140.90	.70	<5.000
	140.90	157.10	MAFIC METAVOLCANIC. BASALT At 140.8m pale green, banded, carbbonatized core as before. Very weakly magnetic in places. From 141.7-141.9m siliceous grey interval. Prom 144.2-145.4m ~15% carbonate in this section. From 144.3-144.4m ~30% quartz, 30% carbonate as stringers at ~80 degrees to the core axis. Trace magnetite. From 145.0-145.1m minor quartz Stringers and carbonate. No sulphides. At 146.2m 0.08cm quartz-carbonate stringers. No sulphides At 147.6m 0.61cm zone with quartz-carbonate vein and stringers. At 148.4m the amount of carbonate decreases to less the 5%. The core is a uniform green colour. Weakly to moderately foliated but not banded. At 149.9m 0.15cm quartz-carbonate stringer at 80 degrees to core axis. At 154.1m the amount of carbonate increases to 10-15% resulting in a banded appearance. Moderately foliated at 80 degrees to core axis. Some local quartz-carbonate alteration. At 155.4m 0.08cm quartz-carbonate stringer. No sulphides. At 155.4m 0.08cm quartz-carbonate stringer. No sulphides. At 155.4m 0.08cm quartz-carbonate stringer at 80 degrees to core axis. At 155.4m 0.08cm quartz-carbonate stringer. No sulphides. At 155.4m 0.08cm quartz-carbonate stringer at 80 degrees to core axis. Barren. At 156.1m 0.08cm quartz-carbonate stringer at 45 degrees to core axis.	D001169 D001170 D001171	144.20 148.40 154.50	145.70 150.00 156.00	1.50 1.60 1.50	<5.000 <5.000 <5.000

.

(

(

4

(

į	Co-ords:	-100.0N -1900.0E	DERRY, MICHENER, BOOTH (WAHL		HOLE N	D.:	Page :
(Azimuth:	840.0 Deg.	DIAMOND DRILL RECORD			Proper	ty:	DEJOUR MINES LTD
(Dip:	-50.0 Deg.	Drill Type:					Rowan Lake
	Elevation:	0.0	Core Size: BQ			_		Property
ξ.	Length:	155.5				Date S [.] Date Co	tarted: ompleted:	December 14/85 December 16/85
Ć.	Purpose: 5	Test Central Zone				Logged Date L	by: ogged:	JR December 14-16/8
í í	• 		Dip Tests					
¢.			91.40 -32.0 155.50 -26.0					
ł	from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
	0.00	2.10 OVERBURDEN						
· · · · · · · · · · · · · · · · · · ·	2.10	29.00 MAFIC METAVOLCANIC. Light green to g stringers along foliated core at magnetite locally. From 2.1 to 2.7m, ba From 4.0 to 4.9m, grinding. At 4.9 m, end of cas At 6.7m, thin, irreg At 9.1m, carbonate Minor quartz - ca Core becomes dark gr At 9.9m, a couple degrees to core axi At 12.3m, barren qua From 13.1 to 13.7m, cm quartz - carbo axis = 60 degrees. N At 13.7m, amount of From 16.2 to 16	BASALT rey. 5% carbonate, principally as planes of foliation. Moderately 55 degrees to core axis Trace dly broken core. badly broken core, 60cm lost due to ing. ular barren quartz-carbonate stringen content increases to approx. 10% rbonate stringers locally (<.1 cm). een. of quartz-carbonate stringers at 70 s. No sulphides. rtz-carbonate stringer. approx. 15% carbonate with several.6 nate stringers in this interval. Core lo sulphides. carbonate decreases to approx. 5%. .5m, a couple of quartz-carbonate	D001172 D001173 D001174 D001175 D001176	6.10 12.20 18.20 24.40 27.10	7.60 13.70 19.80 25.90 27.60	1.50 1.50 1.60 1.50 .50	<5.000 <5.000 <5.000 <5.000 <5.000

(

í

(

Page: 2 HOLE NO.: RL-85-3

from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
		stringers. No sulphides , slightly convoluted foliation. From 16.6 to 16.7m, 10% carbonate, several coarse pyrite grains					
		At 16.8 m, core becomes somewhat lighter green. 5-10% carbonate, well foliated at 55 degrees to core axis.					
		From 18.3 to 18.6m, a couple of barren quartz-carbonate stringers.					
		From 19.5 to 20.4m, interval with 15% carbonate and several guartz and guartz-carbonate stringers at 55					
		degrees to core axis. Barren. From 20.4 to 20.7m,.6 cm quartz-carbonate stringer at 10 degrees to core axis. No sulphides.					
		At 21.5m,.6 cm quartz stringer at 60 degrees to core axis. Minor pyrite adjacent in basalt.		•			
		At 21.6m, 2.5 cm quartz vein at 60 degrees to core axis with many mafic inclusions. No sulphides. At 22.5m, 2.5 cm quartz-carbonate vein, minor purite.					
		From 23.8 to 24.4m, several thin quartz-carbonate stringers. No sulphides.					
		From 24.7 to 25.3m, 15%+ carbonate in this interval centred on very irregular 2.5 - 3.8 cm quartz-carbonate					
		From 25.5 to 25.6m, siliceous interval with 1-2% fine to medium grained magnetite, plus 1-2% pyrite disseminated					
		through adjacent rock. Winor disseminated pyrite occurs throughout the core from this point on.					
		At 27.5m, 5 cm siliceous section centred on a.6 cm quartz stringer at 40 degrees to core axis. Abundant pyrite and magnetite					
		At 28.2m, 1.3 cm wide interval with abundant magnetite. At 28.4m, irregular.6 cm quartz stringer with pyrite.					
		From this point the core is a pale green colour, very weakly silicified, approx 5% carbonate with locally abundant disseminated pyrite.					
29.00	30.50	SILICIFIED MAFIC METAVOLCANIC	D 001485		00 FC		. F 000
		Weakly silicified interval. Minor quartz-carbonate and quartz stringers , convoluted foliation, abundant pyrite, trace magnetite.	DOO1177	29.00	30.50	1.50	<5.000

DERKI, MICHERE

Ţ

(

1

Λ.

t

		DERRY, MICHENER, BOOTH &	WAHL		HOLE NO	D.:	Page: RL-85-3
from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppi
30.50	31.90	MAPIC METAVOLCANIC. BASALT 1.3 Cm quartz vein with strong siliceous alteration adjacent. Abundant pyrite and epidote, approx. 1% magnetite.	D001178	30.80	31.30	, 50	<5.000
31.90	32. 0 0	SILICIFIED MAFIC METAVOLCANIC					
32.00	34.40	MAFIC METAVOLCANIC. BASALT Weakly siliceous zone, quartz-carbonate stringers, abundant pyrite At \$2.8m,.3 cm quartz stringer at 20 degrees to core axis. Barren. Core is grey in this section, weakly silicified, several thin quartz and quartz-carbonate stringers. Minor pyrite, locally abundant.	D001179	32.90	34.40	1.50	<5.000
34.40	36.00	MAFIC METAVOLCANIC, BASALT At 34.4m, core becomes dark green, 5-10% carbonate. Trace disseminated pyrite.					
36.00	36.50	SILICIFIED MAFIC METAVOLCANIC Extremely silicified interval with abundant epidote and minor hematite Lower contact marked by quartz-carbonate stringer at 80 degrees to core axis.	D001180	36.00	36.50	.50	<5.000
36.50	65.00	MAFIC METAVOLCANIC. BASALT At 37.1m, carbonate stringer with abundant hematite. At 38.6m, 1.3 cm of healed breccia (fault) - 60% light green basalt fragments, 40% very dark, very fine grained matrix. Fault concordant to foliation at 55 degrees to core axis. Also a very thin, hematite stained calcite stringer perpendicular to foliation at 35 degrees to core axis - offsets foliation.3 cm. From 39.6 to 39.8m, 10 - 15% carbonate, a thin quartz-carbonate stringer and minor coarse grained pyrite. From 40.5 to 40.9m, 15% carbonate, a couple of	D001181 D001182 D001183 D001184 D001185 D001186 D001187 D001188 D001189 D001190	40.50 45.70 50.30 54.90 56.40 57.90 58.50 61.00 62.50 64.00	42.00 47.20 51.80 56.40 57.90 58.50 61.00 62.50 64.00 65.00	1.50 1.50 1.50 1.50 1.50 2.50 1.50 1.50 1.00	<5,000 <5,000 <5,000 <5,000 <5,000 <5,000 <5,000 <5,000 <5,000 <5,000

C

. (

(

.

C

(

ſ

- F

1

t

Page:

HOLE NO.: RL-85-3 from to -----Description-----Sample from to Length Au (ppb) (m) (m) No. (m) (m) (m) point, principally along planes of foliation, Minor disseminated pyrite, locally 1-2%. At 44.8m, wavy foliation. At 46.0m, 1.3 cm quartz-carbonate stringer. Minor pyrite. At 48.2m, 1.3 cm guartz-carbonate stringer at 60 degrees to core axis. Minor pyrite. At 49.1m, some hematite stain with carbonate stringers. At 49.7m.,6 cm quartz vein approx. 70 degrees to core axis. No sulphides. At 50.8m, 1.9 cm guartz-carbonate vein at 65 degrees to core axis Trace pyrite. At 51.4m, the core becomes weakly foliated at 65 degrees to core axis, very little carbonate, some fine grained feldspar visible. (= S. McRoberts massive ?). No sulphides. At 51.6m, 1.3 cm barren guartz-carbonate vein. From 51.8 to 52.3m, guartz-carbonate stringer with hematite stain at 5 degrees to core axis offsets foliation 1.9 cm At 54.3m, quartz-carbonate stringer at 5 degrees to core axis with hematite stain offsets foliation 1.3 cm. At 54.6m, moderately foliated basalt, 10% carbonate. Minor disseminated pyrite. Foliation at 60 degrees to core axis. From 55.2 to 55.5m, several guartz-carbonate stringers with minor pyrite At 56.3m, abundant fine grained magnetite in otherwise unremarkable core. From 56.4 to 56.7m, 15-20% carbonate. At 57.6m, core becomes pale green, weakly siliceous, 5-10% carbonate. fine grained, disseminated pyrite. From 57.6 to 58.2m, 5 - 10 % guartz in this interval, primarily as quartz and quartz-carbonate stringers. Locally abundant pyrite. At 58.5m, highly carbonated zone, minor pyrite. At 58.9m, 7.6 cm guartz-carbonate vein, approx. 40% guartz. Abundant pyrite along and adjacent to contacts. From 59.9 to 60.1m, highly carbonated zone with a.6 cm quartz stringer at 60.0 m. Trace pyrite. At 60.7, moderately siliceous interval with almost massive pyrite and pyrrhotite along contact. At 63.4m, core becomes paler than before, weak to moderately siliceous at points, 5 - 10 % carbonate. From 63.5 to 63.7m, moderately siliceous, wavy

from	to	Description	Sample	from	to	Length	Au
(m)	(=)	foliation, abundant hematite associated with carbonate stringers, minor pyrite.	NU.	(=)	(=)	(=)	
65.00	66.60	SILICIFIED MAFIC METAVOLCANIC Core is grey, moderately siliceous, well foliated, 10% carbonate , trace pyrite. At 65.0m,.6 cm quartz stringer. From 65.4 to 65.7m, several quartz-carbonate stringers from.6 cm to 1.9 cm in this section. Trace pyrite.	D001191	65.50	66.60	1.10	ł
66.60	£0.50	 MAFIC METAVOLCANIC. BASALT Core becomes very dark green, well foliated at 65 degrees to core axis, 10 - 15 % carbonate, principally along foliation. Minor pyrite and pyrrhotite, and magnetite over 30% of length. Some hematite staining with carbonate, also iron oxide stain to 67.0. From 71.6 to 74.1m, the amount of magnetite decreases to several discrete bands totalling approx. 5% of the core through this section. Trace pyrite. No magnetite past 76.2m. At 74.2m, irregular quartz-carbonate vein at 65 degrees to core axis Minor pyrite adjacent. From 75.0 to 76.2m, extremely carbonated zone, approx. 60% carbonate, mostly along foliation or stringers parallel to foliation at 60 degrees to core axis. Stringers give a distinct, very fine banded appearance. Some sericite, trace pyrite. From 75.3 to 75.5m.6 Cm quartz-carbonate stringer, barren At 77.0m, core becomes lighter green, progressively more siliceous (only weakly so), slightly less carbonated. Moderately foliated at 55 degrees to core axis. Trace disseminated pyrite. At 79.1, quartz-carbonate stringer, minor pyrite. At 79.6m, hematite stain associated with carbonate stringer. From 79.9 to 80.2m, blebs or eyes of carbonate roughly elongate parallel to foliation up to.6 cm in length. 	D001192 D001193 D001194	66.60 67.10 74.70	67.10 68.60 76.20	.50 1.50 1.50	

(

ί.

(

(

ŕ

1

٩.

1

Ĵ,

		DERRI, ALCHENER, BUUIN &	naith		HOLE N	0.:	Page RL-85-3	
from (m)	to (m)	Description		from (m)	to (m)	Length (m)	Au	
80.50	82.00	SILICIFIED MAFIC METAVOLCANIC At 80.5m, core becomes grey, moderately siliceous, <5% carbonate, well foliated at 65 degrees to core axis. Trace pyrite. At 81.6m, 1.9 cm quartz vein with minor carbonate, abundant pyrite.	D001195 D001196	80.50 81.50	81.50 82.00	1.00 .50	<5. 25.	
82.00	84.10	MAPIC METAVOLCANIC. BASAL7 At 82.0m, core becomes green, less siliceous, carbonate approx. 5-10%, minor pyrite, well foliated at 55 degrees to core axis. At 83.2m, thin quartz-carbonate stringer with abundant pyrite.						
84.10	87.80	SILICIFIED MAFIC METAVOLCANI(At 84.1m, core becomes grey in colour, approx. 10% carbonate, very slightly siliceous in spots. At 85.3m, 1.3 cm quartz-carbonate stringers with minor pyrite, trace chalcopyrite, fuchsite. From 85.8 to 86.3m, carbonate increases to 20% as thin stringers parallel to foliation giving a banded appearance. At 87.4, 2.5 cm quartz-carbonate vein sulphides.	D001197	85.00	86.50	1.50	40.	
67.8 0	89,80	MAFIC METAVOLCANIC, BASALT At 87.8m, the core becomes dark green, 10% carbonate, abundant magnetite makes approx. 30% of length highly magnetic.						
89.80	93.90	SILICIFIED MAFIC METAVOLCANIC At 87.9m., irregular quartz-carbonate vein, trace magnetite Bind hematite At 89.9m, the core becomes grey in colour, no longer magnetic, 5%4 carbonate, moderately foliated at 65 degrees to core axis. Minor pyrite At 90.7m, quartz-carbonate stringer at 75 degrees to core axis. Minor pyrite. From 90.9 to 91.3m, quartz-carbonate vein, approx. 35% quartz, 50% carbonate, 15% mafic inclusions. Minor	D001198 D001199 D001200 D001251	89.80 90.80 91.30 92.40	90.80 91.30 92.40 93.90	1.00 .50 1.10 1.50	10. 35. <5.	

L.

(

(

• (

(

(

ί.

ί.

i.

κ.

4 ¹ 4

•										
			DERRY, MICHENER, BOOTH & 1	WAHL HOLE			.:	Page: RL-85-3	7	
	from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)		
			galena.							
	93.90	98.50	MAFIC METAVOLCANIC. BASALT At 93.0m, core becomes green, abundant magnetite makes this section highly magnetic. At 95.1m, core becomes progressively more grey, except for 95.5 to 96.3m, where it is green with abundant carbonate plus some iron oxide stain. At 95.4m, 1.3 cm quartz-carbonate stringer at 80 degrees to core axis. Abundant pyrrhotite, hematite, and	D001252 D001253 D001254	93.90 95.40 96.90	95.40 96.90 98.50	1.50 1.50 1.60	<5.000 <5.000 <5.000		
			fuchsite. Minor pyrite.							
	98.50	108.40	 SILICIFIED MAFIC METAVOLCANIC At 97.5m, core is grey, minor pyrite, 10% carbonate, becoming more siliceous. Well foliated at 65 degrees to core axis. Prom 98.5 to 98.8m, moderately siliceous with abundant hematite along planes of foliation. At 99.9m, 1.9 cm quartz-carbonate vein at 85 degrees to core axis. Minor pyrrhotite and pyrite. At 101.2m, abundant pyrite associated with quartz stringer. At 102.7m, pyrite and pyrrhotite associated with a siliceous band. 1.3 cm quartz-carbonate vein, minor pyrite. From 102.9 to 103m, very siliceous section, several quartz-carbonate vein. Abundant pyrrhotite and pyrite. At 103.3m, several quartz-carbonate stringers in a very siliceous zone. From 103.6 to 103.7m, very siliceous zone with quartz-carbonate and quartz eyes elongated parallel to foliation. Abundant pyrite. At 104.6m, siliceous zone, quartz and quartz-carbonate stringers at 75 degrees to core axis. Abundant pyrite, minor fuchsite. At 105.0m, quartz stringer at 65 degrees to core axis. Abundant pyrite. 	D001255 D001256 D001257 D001258 D001260 D001261 D001262	98.50 100.00 101.50 103.00 104.50 105.30 105.80 106.30	100.00 101.50 103.00 104.50 105.30 105.80 106.30 107.90	1.50 1.50 1.50 1.50 .50 .50 1.60	<5.000 <5.000 <5.000 430.000 30.000 155.000 <5.000		

(

(

.

1

Page: 8 HOLE NO. : RL-85-3

(

ţ

from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
		From 105.3 to 105.6m, guartz vein approx. 20% carbonate, 10% silicified mafic inclusions. Abundant pyrrhotite and pyrite, chiefly along contacts, but also disseminated.					
		At 105.9m, 2.5 cm quartz-carbonate vein with massive pyrhotite and fuchsite					
		At 106.2m, quartz-carbonate stringer. At 106.4m, very siliceous 2.5 cm zone with quartz eyes and massive pyrrhotite. At 106.7m, core becomes grey with pale green intervals,					
		less siliceous than above.					
108.40 116.	116.70	MAPIC METAVOLCANIC. BASALT	5001202	110 00	114 90	1 50	<f 000<="" td=""></f>
		AL 108.4m, Core DCCOMES DERK green with Cerbonate stringers giving a banded effect Some magnetic	D001263	112.80	115 80	1.50	<5.000
		intervals	D001265	115.80	116.70	.90	<5.000
		At 109.7m, core becomes pale green to grey. <5%, carbonate, non-magnetic.	2001200	110100	110.00	100	
		At 112.8m, core becomes dark green, minor pyrite.					
		From 113.4 to 114.5m, quartz-carbonate stringers and					
		veins at 85 degrees to core axis. Minor pyrite. Abundant magnetite plus unidentified salmon coloured					
		From 114.5 to 314.6m, dark green core with 10-20%					
		carbonate stringers giving a banded appearance,					
		foliation at 80 degrees to core axis. Abundant					
		magnetite makes core very magnetic.					
		hands between carbonate bands. Core becomes slightly					
		more siliceous and less carbonated towards 116.7m. Abundant magnetite.					
		At 114.6m, 1.3 cm barren guartz-carbonate vein.					
		From 116.7 to 116.8 m, core becomes very siliceous and well foliated.					
116.70	118,40	SILICIFIED MAFIC METAVOLCANIC					
		From 116.8 to 117.5m, extremely siliceous, altered	D001266	316.70	117.70	1.00	10.000
		interval bounded on upper and lower contact by 3.8 and 7.6 cm quartz veins respectively. Also approx. 30% carbonate. Contains approx. 15% magnetite as fine to	D001267	117.70	118.40	.70	245.000

DERKI, MICH

coarse disseminated grains and massive stringers up to

٤

Å.

1

,

•

L

				DERRY, MICHENER, BOOTH & N	TAHL		HOLE NO). ;	Page: RL-85~3
((_.	from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
٢	I			7.6 cm long and.6 cm wide. Also 5% pyrrhotite and abundant pyrite.					
•	1			From 117.8 to 117.9m, very siliceous interval with 5 cm quartz- carbonate stringers. Pyrite and pyrrhotite. From 118.1 to 118.2m, very siliceous section, abundant pyrrhotite, pyrite, magnetite blus trace fuchsite.					
	!								
· 1		118.40	126.50	MAPIC METAVOLCANIC. BASALT Core becomes pale green, 5-10% carbonate, weakly foliated, non-magnetic.	D001268	118.40	119.20	. 80	5.000
!		126.50	128.20	SILICIFIED MAFIC METAVOLCANIC Grey coloured, very weakly siliceous section, 10%+ carbonate plus a few very thin quartz and quartz-carbonate stringers. Trace pyrite. At 127.5m, 5 cm quartz-carbonate vein, no sulphides.	D001269	126.60	128.10	1,50	<5.000
		128.20	129.50	MAFIC METAVOLCANIC. BASALT At 128.2m, pale green, weakly carbonated core.					
		129.50	131.70	SILICIFIED MAFIC METAVOLCANIC At 129.5m, core becomes grey, very weakly siliceous,	D001270	129.90	131.40	1.50	<5.00 0
;	٠ •			5-10% carbonate. At 130.7m, miliceous zone on both mides of meveral quartz-carbonate stringers with quartz eyes. 1-2% pyrite and pyrrhotite.					
		131.70	148.70	MAFIC METAVOLCANIC. BASALT	DAGES			<u>_</u>	
				At 131.7m, core becomes pale grey, moderately foliated at 75 degrees to core axis. The amount of carbonate increased from 10% at 131.9m to 20% by 134.1m. Carbonate occurs as stringers parallel to foliation giving a banded appearance with male preen hasalt	D001271 D001272 D001273	335.00 141.70 145.10	135.80 143.30 146.60	.80 1.60 1.50	<5.000 <5.000 <5.000
1	:			between carbonate band. No sulphides. At 135.1m, a 1.3 cm wide band parallel to foliation with abundant medium grained magnetite and pyrrhotite. From 135.9 to 135.95m, band with magnetite crystals to.3	-				

i

•

t

(

ſ

Page:

1

					HOLE N	0.:	RL-85-3		
from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (=)	Au	(ppb)	. •
		<pre>cm plus pyrhotite. At 136.2m, the amount of carbonate decreases to 10%, core is pale green. At 138.6m, 1.3 cm quartz vein at 75 degrees to core axis. No sulphides. From 139.3 to 143.5m, amount of carbonate increases to 15% for this interval. From 140.6 to 143m, 15% carbonate, local weak silicification with thin quartz-carbonate stringers. From 141.9 to 142.0m, siliceous zone with a 2.5 cm quartz vein at 456.6m. No sulphides. At 145.1, 145.4, and 145.5 m, barren quartz-carbonate stringers. At 346.0m, the core becomes dark green, J0% carbonate. At 146.5m, 2.5 cm wide magnetite band. At 146.6m, 5 cm carbonate vein with minor quartz, minor pyrite, and magnetite. At 146.9m, core becomes pale green, 10% carbonates. At 147.1m, 3.8 cm barren quartz-carbonate vein.</pre>				-			
348.70	150. 30	SILICIFIED MAFIC METAVOLCANIC At 148.9m, Core becomes grey, moderately foliated, weakly silicified. From 149.0 to 149.2m, very siliceous zone, approx. 30% quartz as stringers +/- quartz-carbonate veins. Barren except for trace pyrrhotite at 149.1m.	D001274	148.70	150.30	1.60	<5.	000	
150.30	155.50	MAFIC METAVOLCANIC. BASALT At 149.4m, core becomes pale green. 10% carbonate, moderately foliated at 75 degrees to core axis. From 150 to 150.4 m, approx. 15% carbonate, carbonate stringers along foliation. At 151.2m, core is green, 5-10% carbonate, weakly to locally moderately foliated. From 151.6 to 351.7m, irregular quartz-carbonate vein.	D001275	150.90	152.40	1.50	<5.	000	

Trace pyrite At 155m, END OF HOLE.

(

(

C

4

1
		and the second		
Co-ords:	-85.0N -1800.0E	DERRY, MICHENER, BOOTH & WAHL	HOLE NO.:	Page: 1 RL-85-4
Azimuth:	840.0 Deg.	DIAMOND DRILL RECORD	Property:	DEJOUR MINES LTD
Dip:	~50.0 Deg.	Drill Type:		Rowan Lake Property
Elevation:	0.0	Core Size: BQ		in open cy
Length:	149.4		Date Started: Date Completed: Logged by:	December 16/85 January 15/86
Purpose:	Test Central Zone		Date Logged:	Dec 16-Jan 15/86

Dip Tests

91.40 -36.0 149.40 -27.0

from	to	Description	Sample	from	to	Length	Au (ppb)
(m)	(m)		No.	(m)	(m)	(m)	

0.00 7.00 OVERBURDEN

7.00 18.00 MAFIC METAVOLCANIC. BASALT

Green colour, moderately foliated at 45 degrees to the D001201 core axis. 5-10% carbonate, chiefly as very thin D001202 stringers along the plane of foliation.

At 8.4m 0.08cm guartz-carbonate vein at 45 degrees to the core axis. Minor hematite in adjacent rock on both sides of the vein; otherwise, no sulphides.

At 10.7m hematite becomes fairly common, principally along fractures parallel to foliation and within carbonate stringers along foliation.

From 16.5-16.7m two irregular quartz-carbonate veins, each "0.61cm wide. Poliation is slightly wavy but strong at 40 degrees to the core axis. Minor hematite and epidote.

At 17.1m irregular 0.31cm quartz-carbonate vein with hematite.

At 17.4m core becomes somewhat fractured along planes of foliation, "12 fractures per metre.

18.00 18.60 FINE

 9.10
 10.70
 1.60
 <5.000</th>

 15.20
 16.80
 1.60
 <5.000</td>

						HOLE NO). :	RL-85-4
(from (m)	to (m)	Description~	Sample No.	from (m)	to (m)	Length (m)	Au (pp)
ξ.			Highly fractured, broken core. Recovery *50% in this interval.					
(18 60	34 30	MARIC METAVOLCANIC BASALT					
4	10.00	04.00	At 18.6m core is as before but there is no hematite bresent.	D001203 D001204	19.8 0 25.9 0	21.30 27.40	1.50	<5.000 <5.000
Į.			At 20.1m and 20.2m a couple of barren quartz-carbonate veins are 0.15cm wide, and parallel to the foliation at	D001205	29.60	31.40	1.80	<5.000
x			45 degrees to the core axis. From 21.5-21.6m barren guartz-carbonate veins at 45					
			degrees to core axis. At 24.4m core becomes pale green, 10% carbonate. Well					
			folisted st 55 degrees to core axis. From 25.8-26.1m slightly fractured, sericitic core.					
ř			At 26.2m a couple of carbonate lined fractures are perpendicular to the foliation at 20 degrees to the					
			core axis. From 26.2-26.3m barren quartz-carbonate vein at 65					
			degrees to core axis. At 26.4m guartz-carbonate stringer. 20% carbonate. Trace					
			At 27.4m core becomes green as before, 5-10% carbonate.					
			At 28.0m 0.61cm carbonate-quartz vein at 65 degrees to core axis.					
			From 29.1-29.4m the amount of carbonte increases to 15%. Minor pyrite.					
			At 29.4m the core becomes dark green. Locally, strongly magnetic where bands of fine to medium grain magnetite					
			occur. 54 carbonate. Minor pyrite, locally up to 1-24					
			Moderately foliated at 55 degrees to core axis.					
			At 30.2m and 30.9m 0.100m quartz-carbonate stringers. Abundant disseminated pyrite in adjacent rock. Trace homotive					
			From 31.2-31.3m abundant disseminated pyrite, centred on very siliceous interval. Abundant magnetite and nurite					
i.			At 32.9m core contains less magnetite after this point. At 34.2m last occurence of magnetite.					
				-				
	34.30	34.40	SILICIFIED MAFIC METAVOLCANIC	-				

(

.

			DERRY, MICHENER, BOOTH &	WAHL		HOLE NO	D.:	Page: RL-85-4
(from (m)	to (m)	Description	Sample No,	from (m)	to (m)	Length (m)	Au (ppb)
			Very siliceous interval. Abundant disseminated pyrite. Well foliated at 60 degrees to core axis.					
	34.40	36.60	MAPIC METAVOLCANIC. BASALT At 35.2m core becomes pale green. Weakly siliceous. At 35.3m 2cm quartz vein at 65 degrees to core axis. Minor pyrite. At 35.7m core becomes grey and moderately siliceous. Noderate foliation at 60 degrees to core axis. Trace pyrite.	D001206	35.00	36.60	1.60	<5.000
	36.60	38.10	SILICIFIED MAFIC METAVOLCANIC From 36.3-37.6m siliceous interval with several quartz veins and quartz-carbonate stringers. Minor pyrite. At 36.7m 0.46cm quartz vein. Trace pyrite. Abundant carbonate and sericite adjacent. From 37.2-37.3m milky white quartz vein. Trace pyrite. Minor carbonate. From 37.8-36.1m core becomes pale green at 37.8m and chloritic green at 38.1m. Minor pyrite. 5-10%	D001207	36.60	38.10	1.50	<5,000
	3 8 , 10	43.60	carbonate. Moderately foliated at 55 degrees to core axis. MAFIC METAVOLCANIC. BASALT From 39.5-39.8m abundant hematite along carbonate-lined	D001208	42.40	42.90	. 50	<5.000
			fractures that parallel the core axis. At 43.8m amount of carbonate increases to 10%. From 41.1-42.9m highly magnetic interval. Fine grain disseminated magnetite throughout. At 42.5m at thin carbonate stringer at 60 degrees to core axis marks a change to very dark green rock from chloritic green. From 42.5-42.9m coarse to very coarse green. Abundant magnetite and abundant coarse grain pyrite. At 43.1m chloritic gree, non-magnetic core. 10% carbonate. Minor pyrite.		42.40	42.00		
	43.60	45.10	SILICIFIED MAFIC METAVOLCANIC From 43.6-44.1m very irregular, highly convoluted foliation. No evidence of brittle deformation. Abundant	D001209	43.60	45.10	1.50	<5.000

(

3

(

(

· · ·

.

DERRY, MICHENER, BOOTH & WAHL

Page: HOLE NO.: RL-85-4

from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)	
		pyrite, At 43.9m 1.91 cm irregular quartz-carbonate vein, Prom 44.4-44.5m very siliceous zone, Some free quartz and abundant carbonate Abundant pyrite and pyrchotite						

Trace fuchsite.

45.10 94.50 MAFIC METAVOLCANIC. BASALT

45.1-45.6m several quartz-carbonate stringers. From D D Abundant pyrite. At 46.3m core becomes pale green. 10% carbonate. Trace D pyrite. Moderately foliated at 50 degrees to core axis. D From 47.5-49.7m 15-20% carbonate, chiefly as thin D stringers along planes of foliation. D From 49.7-50.0m dark green section, 10% carbonate with Ð magnetite. D

At 50.0m pale green core. 10-15% carbonate. Minor D(quartz-carbonate stringers. No sulphides. D(

At 51.0m 0.15cm quartz-carbonate vein at 65 degrees to core axis. Prom here to 51.6m a few quartz-carbonate stringers. No sulphides.

At 52.3m guartz stringer with trace hematite.

At 52.34m a dark hairline fracture, perpendicular to foliation at 10 degrees to core axis, is offset in a left handed sense by carbonate coated fractures at 70 degrees to core axis.

From 53.3-53.4m a few quartz-carbonate stringers. Trace pyrite.

From 55.5-55.9m 15% carbonate. Very weakly siliceous. Trace pyrite.

From 57.3-58.2m weakly siliceous interval. 15% carbonate with quartz-carbonate stringers and veins. Minor pyrite from 57.6-57.9m, otherwise section is barren.

From 58.3-59.0m moderately foliated and weakly siliceous. Quartz stringers. Trace pyrite.

At 59.5 and 59.7m barren 0.08cm quartz stringers.

From 64.3-67.1m the core has a swirly blotchy texture with some vague foliation at 70 degrees to core axis. Minor pyrite and pyrrhotite. Minor magnetite at 65.0m. 20% carbonate. 10-15% mericite. 50% chlorite. Possible healed fault or very altered section. Not siliceous. At 67.1m green coloured core. Chloritic. 10% carbonate, moderately foliated at 65 degrees to core axis.

D001210	47.20	48.80	1.60	<5.000
D001211	54.90	56.40	1.50	10.000
D001212	56.40	57.90	1.50	5.000
D001213	67.90	59.40	1,50	5.00 0
D001214	64.30	65.80	1.50	<5.000
D001215	71.60	73.10	1.50	<5.000
D001216	75.60	77.10	1.50	55.000
D001217	79.30	80.80	1.50	<5.000
D001218	83.80	85.30	1,50	<5.000
D001219	88.40	89.90	1.50	<5.000
D001220	B9 ,90	91.40	1,50	20.000
D001221	91.40	93.00	1.60	<5.000
D001222	93.00	94.50	1.50	15.000

-

DERRY, MICHENER, BOOTH & WAHL

(

110m (m)	to {m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
		From 68.1-68.2m minor fine to medium grained magnetite.					
		From 72.5–72.6m barren guartz-carbonate vein.					
		Prom 74.6-74.8m siliceous interval. A couple of					
		quartz-carbonate stringers. Minor pyrite.					
		At 74.9m quartz-carbonate stringer. Minor pyrite.					
		From 75.0-77.7m 15-20% carbonate over this interval,					
		mostly along the planes of foliation. Moderately					
		foliated at 70 degrees to core axis.					
		From 75.9-76.2m very weakly siliceous over this					
		interval. A few quartz and quartz-carbonate stringers.					
		Minor pyrite and possible pyrrhotite.					
		At 78.4m several quartz-carbonate stringers. No sulphides					
		At 78.5m core becomes dark green, 10% carbonate. Minor					
		disseminated pyrite. Moderately foliated at 70 degrees					
		to core axis.					
		From 79.0-79.1m weakly siliceous interval with abundant					
		sericite and quartz-carbonate stringers. Trace pyrite.					
		From 79.4-82.6m core is extremely magnetic of "30% of					
		this interval. Magnetite occurs as fine to medium					
		grained crystals forming bands from 0.31cm to 30cm in					
		width, that are magnetic.					
		From 80.3-80.6m several thin quartz-carbonate stringers.					
		10% Carbonate. Minor pyrite.					
		At 82.6m no magnetite past this footage.					
		AL B2.7M COTE 15 green and moderately follated. 10-15%					
		carbonate. Trace disseminated pyrite.					
		AL 83.4% U.USCM DEMALILE-FICH QUBILY VEIN. There A2 A A5 2m the core is extremely combunatized					
		(NEST) over this interval giving a gray colour. This					
		(200%) over this interval, giving a grey colour, into					
		aloowhang this section is not cilicified. Moderately					
		foliated at 70 degrees to care sais. Tuess public					
		At 84 5m integrals 0 Size quartz-certonate vein does not					
		cut through core. No sulphides					
		At 84.6m 0.15cm quartz-carbonate vein. No sulphides.					
		At 85.2m the core is still quite carbonated (*20%).					
		otherwise green as above.					
		At 87.4m quartz-carbonate stringer. No sulphides.					
		At 88.4m the core becomes pale green in colour, Moderate					
		to well foliated at 65 degrees to core axis. 5-10%	-				
		carbonate. Trace pyrite.					
		At 89.4 and 89.5m hematite along fractures parallel to					
		foliation.					

(

(

í.

۰ (

(

1

L

:

محربيه -

		DERRY, MICHENER, BOOTH &	WARL		HOLE NO	D. :	Page: RL-85-4
from (m)	to (⊪)	Description	Sample No.	fron (m)	to (m)	Length (m)	Au (pp
		At 91.1m 0.08cm quartz-carbonate vein with hematite and					
		At 91.7m 0.08cm quartz vein at 70 degrees to core axis.					
		No sulphides.					
		At 02.7m amount of carbonate increases to 15%. Minor					
		pyrite. At 94.1m quartz stringer. Minor pyrite in adjacent rock.					
94.50	96.00	SILICIFIED MAFIC NETAVOLCANIC					
		AL 94.5m CORE DECOMES VARIADJY Paje green to grey, 15% carbonate locally weak to moderately silicified Minor	D001223	94.50 95.25	95.25	.75	20.000
		pyrite. Moderately foliated at 60 degrees to core axis.	DOUILLY	00,20	00.00		20.000
		At 94.7m 0.15cm guartz vein. Pyrite and pyrhotite along					
		contacts, and much more abundant in the core now.					
		AL 94.8m 3mm quartz vein with massive pyrite and nurrhotite along contact					
		At 94.9m 0.15cm guartz-carbonate vein. Abundant pyrite					
		and pyrrhotite along contacts.					
		From 94.9-95.0m abundant pyrrhotite as 'seams' along					
		planes of foliation. At 94,95m a 3mm wide band of					
		At 95.0m irregular quartz stringer.					
		From 95.0-95.1m seams of pyrrhotite along planes of					
		foliation.					
		At 95.6m quartz-carbonate stringer. Minor pyrite,					
		pyrrhollie and hemalice.					
96.0 0	103.60	MAFIC METAVOLCANIC. BASALT					
		At 96.6m core becomes green with no grey intervals. 15%	D001225	96.00	97.50	1.50	5,000
		pyrrhotite, moderately follated, minor pyrite and	001226	100.90	102.40	1.50	20.000
		From 97.2-97.5m wavy foliation.					
		Al 98.88 Dark green core. 10% cardonale. Trace pyrile.					
		From 101.9-102.2m highly fractured broken core. Very					
		rusty with gouge. Fractures at 40 to 70 degrees to core					
		axis. Some carbonate and a 0.61cm quartz vein at					
		102.1m. Drill core lost here.					
		At 103.0m the core becomes light green. 5-10% carbonate with 1-2% ownite	-	1			

r

(

ŝ

ł

1

(

DERRY, MICHENER, BOOTH & WAHL Page: HOLE NO.: RL-85-4 to -----Description-----Au (ppb) from Sample from to Length (1) (m) No. **(m)** (m) (m) 103.60 111.90 SILICIPIED MAPIC METAVOLCANIC At 104.2m grey core. Up to 10% carbonate with locally D001227 103.60 105.20 1,60 <5.000 siliceous intervals. Trace pyrite. Foliation at 65 D001228 105.20 106.70 1.50 20.000 degrees to core axis. D001229 106.70 108.20 1,50 15.000 From 107.6-107.9m three 0.32 cm seams of pyrite and D001230 108.20 109.70 1.50 60.000 pyrrhotite. Fine to medium grained crystals, D001231 109.70 111.20 1.50 <5.000 conformable to foliation. From 108.8-109.1m very siliceous, carbonatized section. Quartz stringers and eyes. Trace pyrite. At 109.5m thin seams with abundant pyrrhotite, conformable to foliation at 65 degrees to core axis. At 110.6m core is light green. 10% carbonate. 111,90 114.30 MAFIC METAVOLCANIC. BASALT At 111.9m core becomes dark green. 5-10% carbonate with siliceous sections. Well foliated; locally RODP foliation varies from 65-85 degrees to core axis. Locally abundant magnetite. About 10% of the core is magnetic. At 112.8m abundant magnetite, hematite, pyrite, and pyrrhotite associated with a carbonate stringer. several barren Prom 113.3-113.7m quartz and guartz-carbonate veins. 114.30 115.80 SILICIPIED MAFIC METAVOLCANIC From 114.5-114.8m siliceous altered section with about <5.000 D001232 114.30 115.80 1,50 40% guartz as stringers and veins. Abundant carbonate and sericite. Locally abundant fine to medium grained magnetite. From 114.9-115.2m siliceous section as above with quartz veins and magnetite. Quartz vein is parallel to foliation at 70 degrees to core axis. 115.80 127.70 MAFIC METAVOLCANIC. BASALT From 119.5-119.6m quartz-carbonate vein with >5% medium D001233 118.90 120.40 1.50 5.000 D001234 125.00 <5.000 grain magnetite and minor pyrite. 126.50 1.50 At 120.1m core is pale green. 10% carbonate. Minor pyrite At 126.1m 0.61cm guartz vein with minor carbonate at 70 degrees to core exis. Minor hematite and trace

1

t

ŧ.

ł

Ĺ

٨

÷.

1

							•	
		DERRY, MICHENER, BOOTH & I	WAHL		HOLE NO).:	Page: RL-85-4	8
from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)	
		tourmaline. From 127.1-127.2m quartz vein with minor pyrite and pyrrhotite.						
127.70	129.50	SILICIFIED MAFIC METAVOLCANIC At 127.7m core gradually becomes grey in colour. 5-10% carbonate. At 128.9m core grades back to pale green colour. 10% carbonate. From 129.2-129.3m quartz-carbonate vein. Minor tourmaline. Trace pyrite.	D001235	128.00	129.50	1.50	<5.000	
129.50	132.40	MAFIC METAVOLCANIC. BASALT						
132.40	133.20	FINE Highly fractured and broken core.						·
133.20	149.40	MAFIC METAVOLCANIC. BASALT At 137.2m the core becomes green in colour with 5% carbonate. Moderately foliated at 75 degrees to core axis. At 140.5m pale green core. 5-10% carbonate. Minor quartz-carbonate veining. From 142.9-143.0m quartz-carbonate vein at 50 degrees to core axis, with 30% inclusions of basalt. Minor hematite in adjacent rock. From 143.3-143.4m barren quartz-carbonate vein. At 145.2m several thin quartz-carbonate stringers. At 147.3m core is still pale green but much fresheer and more massive in appearance. Very weak foliation and <5% carbonate. At 149.4m End of Hole.	D001236 D001237	135.60 142.30	137.10 143.80	1.50 1.50	<5.000 <5.000	

(

(

ć

1

(

		· · · · · · · · · ·		
Co-ords:	65.0N -1700.0E	DERRY, MICHENER, BOOTH & WAHL	HOLE NO.:	Page: 1 RL-85-5
Azimuth:	348.0 Deg.	DIAMOND DRILL RECORD	Property:	DEJOUR MINES LTD
Dip:	-52.0 Deg.	Drill Type:		Rowan Lake
Elevation:	0.0	Core Size: BQ		rioperty
Length:	148.0		Date Started: Date Completed: Loggod by:	January 17/86 January 19/86
Purpose:	Test Central Zone		Date Logged:	Jan. 17-19/86

Dip Tests

from	to	Description	Sample	from	to	Length	Au (ppb)
(*)	(m)		No.	(m)	(m)	(m)	

0.00 2.10 OVERBURDEN

{

2.10 46.00 MAFIC METAVOLCANIC. BASALT

From 2.1-9.1m abundant fractures in core, along foliation. Some ground and broken core. At 7.4m rusty, carbonate-coated fracture.

At 9.4m the amount of carbonate increases to 15% of the I core. Trace pyrite.

At 11.6-12.8m a few quartz and quartz-carbonate stringers in this interval.

At 12.8m the amount of carbonate decreases to 5-10%. Minor pyrite.

At 15.2m pale green core. 10% carbonate. Some grey coloured. Slightly more siliceous intervals. Minor pyrite, Well foliated at 55 degrees to core axis.

From 17.9-18.2m a couple of irregular quartz-carbonate veins. Abundant iron oxides. Minor pyrite and tourmaline At 19.5m 0.15cm quartz-carbonate vein in broken core. Minor pyrite.

At 19.8m core becomes dark green and magnetic over 25% of this interval. 2-3% disseminated pyrite. 2% magnetite, but locally up to 10%. 5-10% carbonate. Moderately foliated at 60 degrees to core axis. A few

D001238	6.10	7.60	1.50	<5.000
D001239	11.30	12.80	1.50	5,000
D001240	16.80	18.30	1.50	5.000
D001241	22.90	24.40	1.50	5.000
D001242	29.90	31.40	1.50	60.00D
D001243	35.70	37.20	1.50	300.000
D001244	38.40	39.90	1,50	45.000
D001245	39.90	41.40	1.50	20.000
D001246	43.60	45.10	1.50	<5.000

A.			DERRY, MICHENER, BOOTH &	WAHL		HOLE NO).:	Page: RL-85-5
(from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
(thin quartz-carbonate stringers. At 25.9m very little magnetite past here. Still minor pyrite and 10% carbonate.					
(At 26.8m core gradually becomes pale green. 10% carbonate. Minor pyrite.					
1			From 30.4-30.6m grey coloured section. 1-2% pyrite. At 30.5m quartz-carbonate stringer with abundant pyrite. From 36.4-36.5m broken core. Iron oxide staining. At 36.6m 0.31cm quartz vein at 50 degrees to core axis.					
			At 37.2m core is green and chloritic. 10% carbonate. Moderately foliated at 65 degrees to core axis. At 37.8m 0.61cm quartz vein with abundant carbonate adjacent. Minor pyrite.					
			From 38.6-39.0m quartz-carbonate vein with pink coloured mineral; albite? Abundant pyrite and minor pyrrhotite and tourmaline in the vein. Also 30% mafic inclusions. Contacts at 65 degrees to core axis.					
			From 40.9-41.3m quartz-carbonate vein with massive quartz. Some fuchsite along contacts of quartz. Trace pyrite. At 42.7m core becomes progressively lighter in colour.					
			Mixed pale green and grey. 5-10% carbonate. Minor disseminated pyrite. From 44.0-44.1m irregular quartz-carbonate stringers with abundant pyrite adjacent.					
	46.00	57.30	SILICIFIED MAFIC METAVOLCANIC					
			At 46.0m grey core. 5% carbonate. Minor pyrite. Moderately foliated at 60 degrees to core axis. From 50.1-50.4m siliceous section. At 50.3m quartz stringer with epidote	D001247 D001248	53.30 54.90	54.90 56.40	1.60 1.50	2905.000 65.000
			At 51.2m quartz stringer with abundant pyrite. At 51.7m as above.					
			At 53.7m quartz-carbonate vein with abundant pyrite along contacts. At 54.6m core becomes slightly siliceous with more frequent quartz-carbonate stringers.			•		
			From 55.2-55.3m siliceous section with several quartz and quartz-carbonate stringers, and 5-10% pyrite.					

(

- (

UERKI, MICHENEK, DOUIN & WANL	R, BOOTH & WAHL	MICHENER,	DERRY,
-------------------------------	-----------------	-----------	--------

U

1

٤

HOLE NO. :

from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
57.30	149.40	MAFIC METAVOLCANIC. BASALT					
		At 57.3m core becomes pale green. 5-10% carbonate. Less	D001249	62.50	64.00	1.50	<5.000
		siliceous.	D001250	68.60	70.10	1.50	<5,000
		From 57.4-57.6m a couple of guartz-carbonate veins with	D001280	73.20	74,70	1.50	<5.000
		2-3% pyrite.	D001281	79.3 0	80.80	1.50	<5.000
		At 59.9m core becomes green and chloritic. 5% carbonate.	D001282	87.50	89.00	1.50	<5.000
		Moderately foliated at 50 degrees to core axis.	D001283	91.50	93.00	1.50	<5.000
		At 61.8m 0.76cm quartz-carbonate vein. Irregular	D001284	97.50	99.0 0	1.50	<5.000
		contacts. Some pink albite (?) in the vein.	D001285	103.60	105.10	1.50	<5.000
		At 61.9m dark green core. 5% carbonate. Moderately	D001286	109.70	111.20	1.50	<5.000
		foliated at 65 degrees to core axis. Minor	D001287	117.40	118.90	1.50	<5.000
		quartz-carbonate stringers.	D001288	120.40	121.90	1.50	<5.000
		At 63.3m fine grained disseminated magnetite. 20% of the core is magnetic past this point in intervals from 0.15cm to 15.24 cm.	D001289	144.80	146.30	1.50	<5.000
		At 64.3m 0.46cm quartz-carbonete vein. Somewhat vuggy. Minor pyrite.					
		From 65.1-65.2m quartz-carbonate vein at 60 degrees to					
		core axis, with abundant pyrite. Abundant magnetite adjacent.					
		At 69.8m pale green core, 5-10% carbonate. Moderately foliated. Minor magnetite. Trace pyrite, Foliation 60					
		degrees to core exis.					
		At 72.2m 0.31cm guartz-carbonate vein with trace pyrite.					
		At 73.8m irregular, barren quartz-carbonate vein.					
		Prom 73.8-74.5m about 20% carbonate in this section,					
		principally along planes of foliation; also as stringers					
		At 74.5m some iron oxides along fractures in core.					
		At 77.0m 0.46cm barren quartz-carbonate vein.					
		From 80.0-80.1m irregular quartz-carbonate vein with minor pyrite.					
		At 81.8m less than 5% carbonate past here. Pale green					
		core. Moderately foliated at 65 degrees to core axis.					
		At 84.3m O.61cm carbonate-quartz vein. No sulphides.					
		At 84.7m hematite along carbonate-lined fracture at 20					
		degrees to core axis.					
		At 87.8m amount of carbonate increases to 10%.					
		At 88.0m 0.96cm quartz-carbonate vein with abundant					
		carbonate and epidote (7) adjacent. Barren.					
		AL 94.08 green chiorilic core. 5-10% cardonale, DUI only a very few carbonate stringers.	-				
		At 97.5m mixed green to bale green core, 5% carbonate.					
		Moderately foliated at 60 degrees to core axis.					
		• • • • • • • • • • • • • • • • • • • •					

DERRY, MICHENER, BOOTH & WAHL HOLE NO. : to -----Description-----Sample from to No. (m) (m)

Page:

Au (ppb)

RL-85-5

Length

(11)

At 99.4m guartz-carbonate stringer with minor pyrite. At 100.7m pale green core, 5% carbonate. No sulphides. Pairly fresh appearance--maybe not equivalent to former. pale green variety--very little alteration, especially silicification. No sulpides.

At 103.5m 0.15cm guartz-carbonate vein. No sulphides.

At 104.6m irregular 0.15cm quartz-carbonate vein.

At 107.7m green core. 5-10% carbonate. Chloritic. Moderately foliated at 65 degrees to core axis.

At 109.0m 0.31cm band of magnetite.

At 109.2m magnetite associated with carbonate stringer.

At 109.5m dark green core with 5-10% carbonate.

At 110.0m mixed green and dark green core. Local seam of magnetite. 10% carbonate.

At 110.6m 0.91cm guartz-carbonate vein. Irregular and no sulpides.

At 111.1m 0.31cm carbonate vein with abundant magnetite. At 111.4m magnetite seam.

112.7-112.8m From carbonate vein with abundant magnetite, pyrite, and acicular black mineral (tourmaline?).

At 113.1m magnetite.

At 113.6m magnetite. Core is light green. <5% carbonate. Weakly foliated and has a fresh appearance.

At 116.8m minor magnetite.

At 117.3m core becomes chloritic and darker than the above unit. 10% carbonate. Moderately foliated at 70 degrees to core axis.

At 117.7m irregular locm quartz vein. Minor pyrite and hematite. Trace pyrrhotite.

118.1m a narrow seam with abundant massive At pyrrhotite, conformable to foliation.

118.1-118.7m abundant quartz-carbonate and From carbonate veins and stringers. This section is 50% cárbonate.

At 118.4m 3 0.15cm quartz-carbonate vein at 70 degrees to core axis. Barren.

From 121.5-121.7m grey, very weakly siliceous core. Abundant unidentified black mineral, and trace pyrite.

At 122.8m core is light green and fresh. Weakly foliated with less than 5% carbonate.

125.8-126.0m 10% carbonte in this interval, From primarily along planes of foliation.

(

from

(=)

(m)

DERRY, MICHENER, BOOTH & WAHL

١.

Page: 5 HOLE NO.: RL-85-5

from (m)	toDescriptionDescription	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
	At 126.7m barren 0.15cm quartz-carbonate stringer at 50					
	degrees to core axis.					
	At 128.6m 0.31cm carbonated section. Past here core is					
	fresh. <5% carbonate. Weakly foliated at 65 degrees to					
	core axis.					
	From 137.1-137.5m core becomes grey. 5% carbonate,					
	Weakly foliated in this interval.					
	At 139.0m core becomes mixed grey and light green, 5%					
	carbonate. Moderately foliated at 70 degrees to core					
	axis.					
	At 144.8m core as above but with 10% carbonate.					
	At 145 1m 0 150m guests yein at 90 dognoos to oppo avis					

At 145.1m 0.15cm quartz vein at 80 degrees to core axis.

At 146.0m 0.46cm barren guartz-carbonate vein.

At 149.4m END OF HOLE.

۲

٩,

Co-ords:	10.0N -1200.0E	DERRY, MICHENER, BOOTH & WAHL	Pag Hole No.: RL-85-6	e: 1
Azimuth:	340.0 Deg.	DIAMOND DRILL RECORD	Property: DEJOUR	MINES LTD
Dip:	-55.0 Deg.	Drill Type:	Rowan I Propert	ake v
Elevation:	0.0	Core Size: BQ		
			Date Started: January	20/86
Length:	122.2		Date Completed: January	21/86
Purpose:	Test Central Zone		Logged by: JR Date Logged: Jan 20-	21/86
		Dip Tests		

115.80 -46.0

from	toDescription	Samp]e	from	to	Length	Au (ppb)
(m)	(m) ·	No.	(m.)	(m)	(m)	

0.00 4.90 OVERBURDEN

ı.

£

1

19.80 MAFIC METAVOLCANIC. BASALT 4.90 1.50 Chloritic green, 10-15% carbonate. Trace pyrite. Well D001290 8.50 10.00 <5.000 D001291 16.10 5.000 foliated at 55 degrees to core axis. 14.60 1.50 From 4.9-6.7m some fractured broken core. At 9.0m 0.31cm guartz-carbonate vein at 55 degrees to core axis. Trace pyrite. At 10.6m 0.08cm quartz vein with epidote. At 11.4m several irregular, barren quartz stringers. At 15.4m irregular 0.31cm quartz vein with trace fuchsite. No sulphides. From 17.7-17.9m 50% of this interval is quartz or quartz-carbonate. Contacts *50 degrees to core axis. No sulphides.

19.80 21.30 SILICIFIED MAFIC METAVOLCANIC At 20.3m irregular 0.08cm quartz-carbonate vein with D001292 19.80 21.30 1.50 <5.000 hematite. From 20.7-21.2m core is pale green and weakly siliceous. Some quartz and quartz-carbonate stringers with minor pyrite.

							•
		DERRY, MICHENER, BOOTH & 1	NAHL	HOLE NO.:			Page: 2 RL-85-6
from (m)	to (m)	Description	Sample No.	fron (m)	to (m)	Length (m)	Au (ppb)
21.30	29.90	MAFIC METAVOLCANIC. BASALT From 22.5-23.5m pale green and weakly siliceous. Several quartz stringers with sericite and epidote. 1% pyrrhotite assoc. With the quartz. From 25.5-26.8m 15-20% carbonate in this interval primarily as stringers along planes of foliation at 55 degrees to the core axis. At 26.8m core is variably pale green to darker chloritic gree. 10% carbonate. Moderately to well foliated at 55 degrees to core axis.	D001293	22.30	23.80	1.50	<5.000
29.90	31.40	SILICIFIED MAFIC METAVOLCANIC From 30.4-31.1m moderately siliceous. Abundant quartz stringers and veins <0.31cm wide. Minor hematite. Trace pyrite and fuchsite.	D001294	29.90	31.40	1.50	35.0 00
31.40	32.80	MAFIC METAVOLCANIC. BASALT At 32.2m 0.31cm quartz vein at 55 degrees to core axis. Vein is red due to hematite staining.					
32.80	34.60	FINE Badly broken core. Some fault gouge.					
34.60	44.50	 MAFIC METAVOLCANIC. BASALT At 35.1m pale green core. Well foliated at 50 degrees to core axis. 10-15% carbonate. Trace pyrite. At 38.3m 0.31cm quartz-carbonate vein. Minor pyrite in adjacent rock. From 38.4-39.3m grey core. 10% carbonate. At 38.6m 0.15cm quartz-carbonate vein. No sulphides. At 39.3m core becomes variably chloritic to pale green to grey in colour. 15% carbonate. Trace pyrite. At 39.9m irregular 0.08cm quartz-carbonate vein at 20 degrees to core axis. No sulphides. At 40.2 and 40.5m quartz-carbonate veins. No sulphides. 	D001295	38.70	40.20	3.50	10.000

(

(

í,

: .

			•		,			
		DERRY, MICHENER, BOOTH & D	, MICHENER, BOOTH & WAHL			HOLE NO.:		
from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)	
44.50	46.00	SILICIFIED MAFIC NETAVOLCANIC From 45.0-45.5m miliceous interval centred on quartz and quartz-carbonate veins and stringers, and quartz mugens. Veins at 55 degrees to core maximum Minor pyrite. At 45.3m mbundant pyrrhotite in a meam conformable to foliation.	D001596	44 .50	46.00 v	1.50	20.00 0	
46.00	51.60	MAPIC METAVOLCANIC. BASALT At 49.1m 2cm quartz-carbonate vein at 40 degrees to core axis. Trace fuchsite and pyrite. Past this point there is minor disseminated pyrite in the core. From 50.9-51.5m 5-10% fine grain magnetite disseminated throughout the core.	D001297	48.50	50.00	1.50	10.000	
51.80	62.10	SILICIFIED MAPIC METAVOLCANIC At 51.8m core becomes grey. 10-15% carbonate. Weakly siliceous in places. Trace pyrite. Well foliated at 50 degrees to core axis. From 53.3-53.6m healed fault parallel to core axis, displacing 0.61cm of displacement. From 53.7-54.6m bleached and moderately siliceous section. At 14.0m there is a 0.31cm healed breccia conformable to foliation. At 56.8m 0.61cm quartz-carbonate vein at 50 degrees to	D001298 D001299 D001300	57.30 58.80 60.40	58.80 60.40 61.90	1.50 1.60 1.50	60.000 10.000 10.000	
	ţ	Core axis. Minor pyrite. At 57.2m 0.31cm quartz vein. Barren. At 57.2m 0.31cm quartz vein with massive pyrhotite along the contacts and disseminated in the vein. Abundant pyrhotite for several inches on either side. Minor hematite and fuchsite in the vein. At 59.2m 0.31cm quartz vein with abundant pyrite and pyrhotite. From 61.1-61.4m siliceous section centred on irregular 0.15cm quartz stringers. Abundant disseminated pyrhotite plus a couple of massive blebs of pyrhotite in the quartz vein. Minor chalcopyrite. From 61.6-61.9m siliceous section. Quartz and quartz-carbonate stringers with abundant pyrite and pyrhotite.	-					

(

Í

Ļ

Ç		DERRY, MICHENER, BOOTH & WAHL HOLE N	Page: 10.: RL-85-6
ł	from (m)	to Sample from to (m) No. (m) (m)	Length Au (ppb) (m)
(62.10	64.60 MAFIC METAVOLCANIC. BASALT At 62.1m pale green core. At 62.9m chloritic green core. Trace pyrite. 10% carbonate. At 63.7m 0.91cm quartz-carbonate vein. Minor pyrite.	
(64.60	 66.10 SILICIFIED MAFIC METAVOLCANIC From 64.6-64.8m several quartz-carbonate stringers at 45 D001301 64.60 66.10 degrees to core axis. Barren. At 64.9m 0.31cm zone with fine grain disseminated magnetite. At 65.1m 0.31cm zone with magnetite. Prom 65.2-65.5m very siliceous section with ~65% quartz as veins and stringers. Abundant magnetite. Minor pyrite At 65.7m 0.31cm quartz vein. Barren. Core is mixed dark green and lighter chloritic green colour from here. From 65.8-66.0m magnetic. Winor pyrite. 	1.50 <5.000
	66.10	67.10 MAFIC METAVOLCANIC. BASALT	
•	67.10	 68.60 SILICIFIED MAFIC METAVOLCANIC At 67.4m 0.46cm quartz-carbonate vein with minor pyrite. D001302 67.10 68.60 Core is mixed pale green to dark green past here. Well foliated at 60 degrees to core axis. At 67.8m 0.15cm quartz vein at 60 degrees to core axis. Minor pyrite. From 68.3-66.6m moderately siliceous interval with abundant quartz stringers. Minor pyrite plus magnetite at 68.0m. 	1.50 30.000
	68.60	69.20 MAFIC METAVOLCANIC. BASALT At 69.2m quartz-curbonate stringer. Minor pyrite.	
	69.20	70.70 SILICIFIED MAFIC METAVOLCANIC Prom 69.8-69.9m siliceous interval with quartz and D001303 69.20 70.70 magnetite.	1.50 10.000

(

(

Ć

Ł

e E

DERRY, MICHENER, BOOTH & WAHL Page: HOLE NO. : RL-85-6 -----Description----from to Sample from to Length Au (ppb) (m) (m) No. (m) (m) (m) 92.00 MAPIC METAVOLCANIC. BASALT 70.70 From 71.3-72.3m 5% medium grain disseminated magnetite 77.70 D001304 76.20 1.50 <5.000 throughout this interval. About 30% of the core past D001305 81.10 82.60 1.50 <5.000 this is magnetic. D001306 90.50 92.00 1.50 10.000 At 75.3m no magnetite. Core becomes mixed pale green and grey. From 76.3-76.4m siliceous interval with a couple of quartz stringers and veins. Minor pyrite. At 77.0m 0.15cm quartz vein. No sulphides. At 78.0m 0.61cm guartz-carbonate vein. Minor pyrite. From 78.6-80.8m <5% carbonate. Weakly foliated. Trace pyrite. At 81.2m 0.08cm guartz-carbonate vein. No sulphides. At 81.8m barren 0.31cm quartz vein. Core chloritic green. 10% carbonate. Moderately foliated at 55 degrees to core axis. At 83.2m guartz-carbonate stringer. At 84.8m quartz stringer. At 87.0m magnetite associated with quartz stringer. At 87.8m the amount of carbonate is 10-15% from here. Some dark green intervals present. From 90.2-90.9m abundant magnetite in a dark green section of core. From 91.0-91.1m magnetite. From 91.7-91.9m extremely siliceous section. Contacts at 50 degrees to core axis. No sulphides. 92.00 94.80 MAPIC METAVOLCANIC. BASALT At 92.3m no magnetite past this point. Core is green, chloritic, and weakly foliated. <5% carbonate. 94.80 96.30 SILICIFIED MAFIC METAVOLCANIC From 95.6-96.5m grey, extremely siliceous section. Some D001307 94.80 96.30 1.50 <5.000 stringers. No carbonate. Well foliated at 55 quartz degrees to core axis. Trace pyrite. Contacts sharp. 96.30 97.80 MAFIC METAVOLCANIC. BASALT At 96.5m green chloritic core. Weakly foliated. <5% carbonate.

£

1

(

E

DERRY, MICHENER, BOOTH & WAHL Page: HOLE NO.: RL-85-6 from -----Description-----Sample from to to Length Au (ppb) (m) (m) No. (m) (m) (m) 97.80 99.70 OUARTZ-FELDSPAR PORPHYRY From 97.8-98.7m QUARTZ FELDSPAR POPPHYRY. Sharp upper D001308 98.20 99.70 <5.000 1.50 contact at 75 degrees to core axis. Grey in colour with approximately equal amounts of quartz and feldspar phenocrysts up to 4mm in size. Minor disseminated pyrite throughout. Trace chalcopyrite and pyrrhotite. Fresh with no foliation or carbonate. Contact with Basalt at 98.7m is sharp at 60 degrees to core axis. From 98.7-99.2m BASALT. Green and chloritic. 10% carbonate with 1.8cm guartz vein at 99.1m. From 99.2-99.7m QUARTZ FELDSPAR PORPHYRY. Upper contact sharp at 60 degrees to core axis. Lower contact grades into fine grained well foliated siliceous rock at margin, with a sharp contact at 60 degrees to core axis. 99.70 122.20 MAFIC METAVOLCANIC. BASALT Green chloritic basalt. 5% carbonate and weakly foliated. 102.40 <5.000 D001309 103.90 1.50 At 102.2m core becomes dark green. 15% carbonate. Well D001310 113.20 114.80 <5.000 1.60 foliated at 65 degrees to core axis. D001311 114.80 115.30 . 50 <5.000 At 102.9m quartz and quartz-carbonate stringers. Barren. D001312 115.30 116.30 1.00 <5.000 From 103.1-103.3m several guartz and guartz-carbonate D001313 120.10 120.60 <5.000 .50 D001314 120.60 121.60 1.00 <5.000 stringers. At 104.5m core becomes green, chloritic, and moderately foliated. 5% carbonate. At 105.5m 0.31cm quartz vein with no sulphides. From 110.5-110.6m quartz-carbonate vein with massive tourmaline. At 110.9m quartz-carbonate stringers. Minor pyrite. At 112.5m quartz-carbonate vein. At 112.8m core becomes mixed dark green with some chloritic coloured sections. Moderately to well foliated. 15% carbonate. Foliation at 60 degrees to core axis. At 113.8m 10cm guartz vein. No sulphides. At 114.5m 0.15cm barren guartz vein. At 115.1m 13cm quartz vein at 55 degrees to core axis. Minor chalcopyrite and pyrrhotite in vein plus abundant pyrrhotite in adjacent rock.

DERRY, MICHENER, BOOTH & WAHL

Ç

(

Page: 7 HOLE NO.: RL-85-6

from (m)	toDescription(m)	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
	At 116.0m 0.15cm quartz-carbonate vein. At 118.5m 0.81cm quartz-carbonate vein. Prom 118.7-119.1m section with "75% quartz and quartz-carbonate veins and stringers. No sulphides. Prom 119.9-120.1m section with 80% carbonate. From 120.2-120.5m quartz vein with some carbonate. Abundant massive pyrrhotite plus minor chalcopyrite. Trace fuchsite. At 121.3m core is green and chloritic. Weakly foliated.					
	5% carbonate. At 122.2m END OF HOLE.					

DERRY, MICHENER, BOOTH & WAHL Page: 1 Co-ords: 10.0N -900.0E HOLE NO.: RL-85-7 DIAMOND DRILL RECORD Azimuth: 340.0 Deg. Property: DEJOUR MINES LTD Drill Type: Dip: -50.0 Deg. Rowan Lake Property Elevation: 0.0 Core Size: BQ Date Started: January 21/86 117.7 Date Completed: January 22/86 Length: Logged by: JR Purpose: Test Central Zone Date Logged: Jan 21-22/86 Dip Tests

117.70 -42.0

from	to	Description	Sample	from	to	Length	Au (ppb)
(m)	(m)		No.	(m)	(m)	(m)	

0.00 8.82 OVERBURDEN

(

ł

!

1

(

1

÷

(

8.82 44.10 MAFIC METAVOLCANIC. BASALT

Green, chloritic and moderately folia	ted at 55 degrees	D001315	10.30	11.86	1.56	<5.000
to the core axis. 10% carbonate. Trace	pyrite.	D001316	17.60	19.20	1.60	<5.000
At 10.6m abundant medium grain pyrite fr	om here to 10.8m.	D001317	22.80	24.30	1.50	<5.000
At 15.2m minor fine to medium grain di	sseminated pyrite	D001318	30.10	31.60	1.50	<5.000
througout the core.		D001319	35.40	36.90	1.50	<5.000
At 16.1m a few thin quartz stringers	are apparent past	D001320	39.80	41.40	1.60	<5.000
this point.						
At 18.4m 0.31cm guartz-carbonate vein	at 65 degrees to					
core axis. Minor chalcopyrite.						
At 18.6m 0.15cm barren quartz-carbonate	vein.					
At 19.0m a couple of 0.08cm quartz-cart	onate veins at 65					
degrees to the core axis. Barren.					•	

At 20.5m quartz-carbonate stringer.

At 20.7m core becomes dark green, 5-10% carbonate. Minorpyrite.

From 21.0-21.2m magnetite throughout this interval.

At 21.9m magnetite.

At 22.0m 0.08cm quartz stringer at 50 degrees to core axis. No sulphides.

From 23.2-24.2m grey, weakly silicified core. Well

DERRY, MICHENER, BOOTH & WAHL

ſ

Ţ

×.

к

 (\cdot)

Page: 2 HOLE NO.: RL-85-7

(rom (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
		foliated at 50 degrees to core axis. 1-2% pyrite					
		throughout.					
		At 23.3m Quartz Stringer.					
		At 20.4% a couple of qualiz-carbonate stringers, minor					
		At 24.0m quartz stringer.					
		At 24.1m a couple of guartz-carbonate veins "0.15cm					•
		wide. Trace pyrite.					
		At 24.2m dark green core. Moderately foliated at 50					
		degrees to core axis. 10% carbonate. Minor pyrite.					
		At 24.5m magnetite.					
		From 25.9-26.9m an irregular fault parallel to the core					
		axis. It is lined with carbonate and epidote.					
		At 27.4m 0.61cm quartz-carbonate vein at 40 degrees to					
		Core axis with minor pyrite.					
		FION 21,0~20,9M 13~20% Carbonate over this section.					
		At 28 On green chloritic core 10% carbonate Trace					
		pyrite.					
		At 30.7m a couple of quartz stringers in weakly					
		siliceous core. Pyrite.					
		From 30.9-31.3m weakly siliceous section with several					
		irregular quartz and quartz-carbonate stringers. Minor					
		pyrite.					
		At 32.1m core becomes mixed pale green and chloritic					
		green over this short intervals. 10% carbonate. Weakly					
		biliceous locally. Trace pyrite, well follated at 55					
		degrees to core axis.					
		At 34 Am quartz-carbonate stringer					
		From 35.3-37.9m some weakly siliceous sections with					
		quartz stringers through this interval.					
		At 35.3m 0.08cm quartz-carbonate vein.					
		At 35.8m 0.31cm wide silicified section.					
		At 36.1m 0.15cm quartz vein.					
		From 36.4-36.6m several quartz veins and stringers.					
		At 36.9m 0.15cm quartz vein.					
		Al 37.7m quartz-carbonate stringer.					
		AL SY.OF CERDONELE~CONTED INSCIULE BY 30 DEGREES TO COLE					
		axis, Adundant Rematite. At 40 Sm hematite on carbonate-coated fracture	-				
		At A1 im weakly silicents interval centred on a duarty					
		stringer at 50 degrees to core axis. No sulphides.					
		beinger at to degrees to core base, no buspasoon					

		DERRY, MICHENER, BOOTH & 1	HOLE NO).:	Page: RL-85-7	;		
from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)	
		At 41.7m green chloritic core. 5% carbonate. Weakly foliated at 55 degrees to core axis.						
44.10	4 8.10	SILICIFIED MAFIC METAVOLCANIC At 44.1m the core rapidly becomes grey in colour and weakly siliceous. Well foliated at 65 degrees to core axis. Trace pyrite. At 45.7m 0.31cm quartz vein. Minor pyrite. From 45.8-45.9m several quartz stringers parallel to foliation. At 46.1m 0.31cm quartz-carbonate vein. Trace pyrite. At 46.1m 0.31cm quartz-carbonate vein. At 46.9m 0.31cm quartz-carbonate vein. From 47.3-47.8m many quartz and quartz-carbonate stringers in this interval. Trace pyrite.	D001321 D001322	44.40 45.90	45.90 47.40	1.50	5.000 10.000	
48.10	56.20	MAFIC METAVOLCANIC. BASALT At 48.1m dark green core. 10% carbonate. Moderately foliated. Minor to 2% pyrite. 30% of the core is magnetic. At 50.5m 0.31cm quartz-carbonate vein slightly ground up. At 50.8m green chloritic core. 15% carbonate. Moderately foliated at 65 degrees to core axis. Trace pyrite. At 51.7m 0.08cm quartz-carbonate stringer at 60 degrees to core axis. At 51.9m 0.08cm quartz vein. Red in colour due to hematite. At 52.0m 0.08cm quartz-carbonate vein. Barren. At 54.4m core becomes pale green. 10% carbonate. Moderately foliated. At 54.6m irregular quartz-carbonate stringer. Barren.	D001323	49.40	50.90	1.50	5.000	
56.20	69.10	SILICIFIED MAFIC METAVOLCANIC At 56.2m core becomes grey. 10% carbonate. Locally siliceous with quartz veins. At 58.4m quartz-carbonate stringer with tourmaline. From 59.8-59.9m extremely siliceous section centred on three quartz-carbonate stringers. Massive pyrite and pyrrhotite. At 61.3m 1.91 cm quartz-carbonate vein. Tourmaline and	D001324 D001325 D001326 D001327	57.20 58.70 62.30 66.90	58.70 60.20 63.90 68.40	1.50 1.50 1.60 1.50	15.000 160.000 15.000 20.000	

Ĺ

(

£

DERRY, MICHENER, BOOTH & WAHL

Кφ.

ł

Page: 4 HOLF NO.: RL-85-7

from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
		trace pyrrhotite. From 63.1-63.3m siliceous section centred on 0.76cm quartz-carbonate vein. Minor pyrite, pyrrhotite, tourmaline, and fuchsite. At 63.9m 0.08cm quartz-carbonate stringer. From 643-64.5m several quartz-carbonate stringers. At 66.3m irregular 0.15cm quartz vein. Barren. At 66.3m and 67.2m quartz stringer.					
69.10	74.50	MAFIC METAVOLCANIC. BASALT From 69.1-70.7m pale green core. 10% carbonate. At 70.7m grey core as before. At 72.1m quartz-carbonate stringers. At 72.7m 0.31cm quartz-carbonate vein. Minor pyrite and tourmaline. At 72.9m 0.15cm quartz-carbonate vein with massive tourmaline. Trace pyrite. From 74.7-74.8m quartz-carbonate vein. Trace pyrite. At 74.9m quartz-carbonate stringer in extremely siliceous rock. Minor pyrite. From 74.9-75.3m foliated, fresh looking mafic dyke. Sharp siliceous margins.					
74.50	77.60	SILICIFIED MAFIC METAVOLCANIC At 75.3m grey core. 10% carbonate. Locally siliceous. At 75.9m 0.91cm quartz vein with abundant pyrite and pyrrhotite. At 76.1m quartz-carbonate stringer.	D001328 D001329	74.50 76.00	76.00 77.60	1.50 1.60	30.000 20.000
77.60	83.10	MAFIC METAVOLCANIC. BASALT From 77.3-77.6m siliceous zone with quartz stringers and a 0.46cm quartz-carbonate vein at 77.5m. Minor pyrite, pyrrhotite, and tourmaline. At 77.6m green core. 10% carbonate. Chloritic. Well foliated at 55 degrees to core axis. At 79.7m 0.46cm quartz-carbonate vein at 50 degrees to core axis. Abundant fine grain pyrite and pyrrhotite. Trace fuchsite. At 79.9m 0.61cm quartz-carbonate vein. Minor pyrite and pyrrhotite.	D001330 -	79.10	80.60	1.50	<5.000

		DERRY, MICHENER, BOOTH & V	WAHL		HOLE NO).;	Page: RL-85-7
from (m)	to (m)	Description	Sample No.	from (m)	to (m)	Length (m)	Au (ppb)
		From 80.1-80.4m several quartz stringers. At 81.1m 0.15cm quartz vein. Barren.					
83.10	85.70	SILICIFIED MAFIC METAVOLCANIC At 83.1m core is grey. Moderately foliated. 10% carbonate Prom 84.2-84.4m quartz-carbonte vein with abundant mafic inclusions. Minor pyrite and pyrrhotite. At 84.5m and 85.5m quartz stringers.	D001331	83.60	85.20	1.60	<5.000
6 5.70	99.90	 MAFIC METAVOLCANIC. BASALT At 85.7m green, chloritic core. 10% carbonate. At 85.8m quartz stringer. At 89.1m a couple of quartz-carbonate veins from 1/2-0.31cm in width. At 89.8m quartz-carbonate stringers. At 92.8m core becomes pale green in colour. <5% carbonate Prom 91.1-91.5m grey siliceous section. 10% carbonate over this section. From 91.5-91.7m a couple of 0.61cm wide quartz-carbonate veins. Trace hematite. At 91.8m quartz-carbonate stringer. From 95.7-96.2m weakly siliceous, highly carbonatized zone. From 96.7-96.9m a couple of quartz-carbonate veins. No sulphides. From 97.3-97.4m grey extremely siliceous section with sharp contacts. 	D001332 D001333	93.40 97.00	94.90 98.50	1.50	<5.000 <5.000
99.90	100.10	SILICIFIED MAFIC METAVOLCANIC At 99.9m core becomes grey. 10% carbonate. Locally siliceous. From 100.0-100.1m extremely siliceous core.					
100.10	101.30	QUARTZ-FELDSPAR PORPHYRY Grey miliceoum quartz feldspar porphyry dyke. Sharp contacts at 70 degrees to core axis. Very weakly foliated.					

4

1

· (

([°]

(

£

(

 $\frac{63.4802}{(p+.2)}$

52F05SE0009 63.4802 ROWAN LAKE

020

REPORT ON THE ROWAN LAKE PROPERTY, KENORA DISTRICT, ONTARIO

÷

PREPARED FOR

GUARDSMAN RESOURCES LIMITED

DERRY, MICHENER, BOOTH & WAHL

N. Pearson, Ph D. 1

D. G. Wahl, P.Eng. Consulting Engineer

Ref.: 85-40

August 15, 1985 Toronto, Canada

This report may not be reproduced, in whole or in part, without the written consent of Derry, Michener, Booth & Wahl.

OM85-3-C-190

TABLE OF CONTENTS

Page

	52F05SE0009 63.4802 ROWAN LAKE	020C	
SUMMARY			(i)
INTRODUCTION	Ŋ		1
PROPERTY, LO	OCATION AND ACCESS		1
PREVIOUS WOI	RK		3
REGIONAL GE	OLOGY		6
PROPERTY GE	OLOGY		9
GEOPHYSICS			10
GEOCHEMISTR	Y		12
TRENCHING			13
DIAMOND DRI	LLING		16
CONCLUSIONS	AND RECOMMENDATIONS		18
BUDGET			20
REFERENCES			25
CERTIFICATE	OF QUALIFICATIONS		
W.N. Pe D.G. Wa	earson ahl		26 27

LIST OF FIGURES

Figure	1:	Location Map, Rowan Lake Property.	2
Figure	2:	Claim Map, Rowan Lake Property.	4
Figure	3:	Access Map, Rowan Lake Property.	5
Figure	4:	Simplified Regional Geological Map, Kakagi-Atikwa Lakes area.	7
Figure	5:	Geological and Diamond Drilling Plan Map, Central Zone.	17

LIST OF TABLES

Table 1:	Trenching Data, Rowan Lake Property.	14
Table 2:	Recommended Diamond Drill Holes.	19
Table 3:	Summary Budget, Rowan Lake Project.	21
Table 4:	Detailed Budget, Rowan Lake Project.	22

LIST OF MAPS

Geophysical and Geological Compilation Map,	In Pocket
Rowan Lake Property,	
Scale: 1:5,000.	

SUMMARY

The Rowan Lake property, comprising 57 claims in the Lawrence-Rowan Lakes area, District of Kenora, Ontario, is jointly held by Dejour Mines Limited (47.8%), Brinco Ltd. (35%) and Nova-Co Exploration Limited (18.2%). Guardsman Resources Limited can earn a 20% interest upon expenditures of \$120,000. The property lies about 6.0 km east and, based on regional aeromagnetic data, on apparent geological trend from the Monte Cristo gold prospect, and about 16.5 km east of the Cameron Lake gold deposit.

Over the period October 1st, 1983 to December 31st, 1984, a comprehensive program comprising line cutting, magnetometer, VLF-EM and IP/resistivity surveys, mapping, prospecting, soil and humus sampling, bulldozer stripping, trenching and ten diamond drill holes, totalling 940 m, was carried out by Derry, Michener, Booth & Wahl for Dejour, as operator of the joint venture.

The most prospective area outlined by this work is in the central part of the property ("Central Zone") where the mafic metavolcanics are strongly foliated/sheared with variable alteration zones typically with carbonatization, silicification, sericitization and quartz-carbonate veining with pyrite. This horizon appears to be the eastern extension of the major shear zone which hosts gold mineralization at the Monte Cristo prospect. As well, it coincides with a zone of anomalous induced polarization effect and marked flanking low resistivity zone, which has been traced for about 1,500 m.

Ten diamond drill holes, totalling 940 m, were completed in the fall of 1984 to follow-up target zones outlined by geophysical and geological work. Eight of

these holes (RL-84-01, -02, -03, -06, -07, -08, -09 and -10) were drilled within the Central horizon in order to test the strike length and down-dip extension of the gossan zone and its coincident IP/resistivity anomaly. Two holes, RL-84-04 and RL-84-05, were drilled to test IP/resistivity anomalies in the southern and northern horizons, respectively.

Gold values found in the eight holes testing the Central horizon were erratically distributed throughout the mafic volcanics typically associated with narrow pyritiferous quartz-carbonate veins within weakly to locally strongly altered zones. Two deeper holes, RL-84-09 and RL-84-10, indicate that the alteration extends to a depth of at least 150 m. The IP anomalies drilled in the northern and southern zones are caused by weakly to disseminated pyrite with only background gold values.

The best intersections obtained on the drilling program were as follows:-

(1) A 2.3 m interval in hole #3 from 68.7 m to 71.0 m in which two mineralized intersections were sampled. These returned 3,345 ppb Au (0.096 oz./ton) over 1.0 m from 70 m to 71 m and 3,300 ppb Au (0.096 oz./ton) over 0.5 m from 68.7 m to 69.2 m. The intervening 0.8 m was not sampled. The mineralization is associated with pyritebearing quartz-carbonate veins which cut mafic metavolcanic rocks.

(2) 2,503 ppb Au (0.073 oz./ton) over 0.5 m at a depth of 61.75 m in hole #1. Here the mineralization is associated with pyrite-bearing quartz-carbonate veinlets cutting weakly altered mafic metavolcanics.

- (3) 2,914 ppb Au (0.085 oz./ton) over 0.5 m at a depth of 51.0 m in hole
 #1 within moderately altered and foliated mafic metavolcanic rocks.
- (4) 1,275 ppb Au (0.038 oz./ton) over 1.0 m at a depth of 125 m in hole
 #10 associated with a quartz-carbonate vein cutting moderately
 altered and foliated metavolcanics.

A diamond drill program comprising seven holes totalling 1,050 m is proposed to follow-up the anomalous gold values in the Central Zone. Five of these holes would test the zone along strike to the west and down-dip of the higher grade sections in holes #1 and #3. In addition, two holes are recommended to test the eastern extension of the zone.

The estimated cost of this program, which will take about five weeks to complete, is \$120,000.

Respectfully submitted, DERRY, MICHENER, BOOTH & WAHL

W. N. Pearson, Ph.D.

D. G. Wahl, P.Eng. Consulting Engineer

August 15, 1985 Toronto, Canada

B. & C. LTD.

THE NORTHERN MINER FEBRUARY 23, 1984

21

.

	Gram/	07.1	Gram/	02./	Grem/	02./	Gram/	120	Gram/	02/	Gram/	02.1	Gram/	120)may	Ìè				
	Quue.	ч о.	01110;	ton	10000	ton	torne	ţ	tonne	ton	tonne	ton	tonne	l of	tonne	Ę	tonne	35	enno:	35
••	5	0 003	2.4	0.07	4.7	0.137	20	0.204	5.6	0.272	11.0	0.339	13.0	808 C	CAT		10	0 2 40	020	202
	0	0.005	5.5	0.073	1,0	0.140	1	0.207	4.0	0.274		CAE D	0	01400			4	6420		
• •	0	0.000	ф;	0.076	4.9	0.143	12	0.210	5	0.277		372.0		212				a se		
	0	0.012	2.7	0.079	5.0	0.146	1.1	0 213	80	0.28		775								
	0.5	0.015	2.8	0.032	ι,	0.149	4	0.216	9.7	0.293	12.0	031.0	1				0			
• -	0.0	0.017	2.0	0.085	5.2	0.152	1.5	0.219	9.8	0.286	121	0.353	4	142	18.1	1469	0.61		0.00	716
	0.1	0.02	0.1	0.038	5.3	0.155	2.6	0.222	9.9	0.209	122	0.356	14.5	0.423	16.8	1 E	161	0.558	110	196.0
	ຍ 0	0.023	1.1	0.091	5.4	0.158	7.7	9.225	10.0	0.292	12.3	0.359	14.6	0.426	15.9	194	19.2	0.561	34.0	299.0
	0.0	0.026	3.2	0.093	5,5	0.161	7.8	0.228	10.1	0.295	12.4	0.362	14.7	0.429	17.0	1.496	19.3	0.564	15.0	022
• •	0	0.029	23	0.096	5.6	0.164	6.4	0.231	10.2	0.298	12.5	0.365	14.8	0.432		007	4.6	0.566	36.0	150
		0.032	4	0.099	5.7	0.166	50	0.234	10.3	0.301	12.6	0.368	14.9	0.435	17.2	55	19.5	0.569	37.0	80
-	2	0.035	51	0.102	5.8	0.169	8.1 1	0.237	10.4	0.304	12.7	175.0	15.0	0.438	17.3	525	19.6	0.572	38.0	=
	ņ	0.033	5	0.105	5,9	0.172	8.2	0.239	10.5	0.307	12.8	0.374	15.1	0.441	17.4	3.5.6	19.7	0.575	39.0	601
		0.0.1	3.7	0.108	6.0	0.175	5.3	0.242	10.6	0.310	12.9	0.377	15.2	144	17.5	115.0	19.8	0.578	40.0	.103
	5	2004	3.0	0.11	÷.	0.178	9.6	0.245	10.7	0.312	0.61	0.38	15.3	3.447	17.6	1514	19.9	0.581	45.0	415
-	9	0.047	5	0.114	6.2	0.181	3.5	0.248	10.3	0.315	13.1	0.383	15.4	0.45	17.7	0.517	20.0	0.584	50.0	26
	1.7	0.05	0	0.117	6.3	0.184	0 0 0	0.251	10.9	0.318	13.2	0.305	15.5	0.453	17.8	25	21.0	0.613	55.0	1.600
-	8 0	2.053	4	0.12	6.4	0.187	3.7	0.254	11.0	0.321	13.3	0.338	15.6	0.456	17.9	53.0	22.0	0.642	60.0	1.752
- · · ·	¢.	0.055	4.2	0.123	6.5	0.190	3.8	0.257	1.1	0.324	4.01	0.391	15.7	0.458	18.0	0.526	23.0	0.672	65.0	868.1
• •	52	0.058	0, Y	0.126	6.6	0.193	6.5	0.26	11.2	0.327	13.5	0.394	15.8	0.451	18.1	625-0	24.0	0.701	70.0	2044
• -	2.1	0.001	×,	0.128	6.7	0.196	0.6	0.263	11.3	0.33	13.6	0.397	15.9	0.464	18.2	13	25.0	0.73	75.0	219
- · · ·	2.2	0.00.1	57	0.131	6.B	0.139	9.1	0.268	11.4	0.333	13.7	1.0	16.0	0.467	18.3	2.54	26.0	0.759	103.0	202
• -	2.3	2.967	1.6	0.134	6.9	0.201	9.2	0.269	11.5	0.336	13.8	0.403	:6.1	0.47	18.4	0.517		•	The Kurth	a Miner

20	02/1/20	0.0192	0.0224	0.0256	0.0208	0.032	0.064	0.096	0.126	0.16	0.192.	0.224	0.250	0.205	5.0	
3	-1/	600	202	800	ğ	80.	80%	000	800	2,000	0000	2,000	800	000 6	10,000	
ч	aller a	0.00016	0.00032	0.00064	0.00096	0.00128	0.0016	0.00192	0.00224	0.00256	0.00288	0.0032	0.0064	0.0006	0.0128	200
3	27/10	s	5	8	8	Ś	ŝ	8	20	80	8	8	200	ğ	ģ	8

DERRY, MICHENER, BOOTH & WAHL

INTRODUCTION

At the request of Mr. Bill Paterson, President of Guardsman Resources Limited, Derry, Michener, Booth & Wahl has reviewed and assessed exploration data on the Rowan Lake property located just east of Rowan Lake about 65 km southwest of the Town of Dryden, Ontario (Figure 1). Geologically, the property lies approximately 6 km northeast of and on apparent geological trend of the Nuinsco Resources Limited – Monte Cristo property on which significant gold mineralization has been found in strongly altered and sheared mafic metavolcanics.

- 1 -

The Nuinsco Resources/Lockwood Petroleum-Cameron Lake deposit, which contains published reserves of 1,500,000 tons grading 0.15 oz. Au/ton is located about 16.5 km southwest of the Rowan Lake property (Figure 1).

PROPERTY, LOCATION AND ACCESS

The Rowan Lake property comprises 57 claims held by Dejour Mines Limited and Nova-Co Exploration Limited. Under the terms of a joint venture agreement dated August 9th, 1984, Brinco provided funding to December 31st, 1984 to earn a 35% interest but have declined to further participate. Dejour, as operator, and Nova-Co currently hold an interest of 46.8% and 18.2%. Under a subsequent option agreement with Guardsman Resources, Guardsman can earn a 20% interest in the property by an expenditure of \$120,000 and a cash payment to Dejour/Nova-Co of \$15,000. Following this expenditure, Brinco will be diluted to a 15% interest with Dejour and Nova-Co retaining their 46.8% and 18.2% interests, respectively. An additional \$105,000 expenditure will dilute Brinco's interest to 0% at which point

they retain a 5% net profits interest. Mr. O'Donnell, the prospector who originally staked the claims, also retains a 5% net profits interest.

The majority of the claims covers the extreme northwest quarter of the Lawrence Lake claim map, District of Kenora, Kenora Mining Division, as shown on Figure 2 and listed below:-

K-696726 - K-696736, inclusive.
K-696738 - K-696744, inclusive.
K-765975 - K-766000, inclusive.
K-772001 - K-772013, inclusive.

The property is readily accessible by travelling 16 km from Dryden along Highway #502 to Century Road, a primary logging road established by Great Lakes Forest Products of Dryden, Ontario (Figure 3). This logging road extends to the northeast boundary of the property, a distance of about 65 km from the junction of Highway #502 and Century Road near Dryden. Several bulldozer and drill roads permit access to the remainder of the property.

PREVIOUS WORK

Prior to staking of the property by Dejour and Nova-Co, the only work which appears to have been performed is several trenches and pits excavated some 40 years ago on the present claims, K-765979 and K-696730. No records are available for this work.

- 3 -

Dejour and Nova-Co undertook a multi-phase exploration program which commenced October 1st, 1983 and continued through to the end of 1984.

- 6 -

Line cutting totalling 96 km was carried out from September to January 1984 and covered the entire claim group using a line separation of 100 m and picket intervals of 25 m. This was followed by magnetic and VLF-EM surveys over the completed grid. During the summer of 1984, the entire claim group was prospected and geologically mapped at a scale of 1:2,500. Rock geochemical sampling was carried out on all of the claims west and north of the lake on the east side of the property. In addition, induced polarization/resistivity and humus/soil geochemical surveys covered the central part of the property.

In the fall of 1984, bulldozer stripping was carried out to follow-up several geophysically anomalous areas. This was followed by 940 m of diamond drilling in 10 holes to test several IP/resistivity anomalies.

REGIONAL GEOLOGY

Rowan Lake lies near the western extremity of the Archean Savant Lake-Crow Lake metavolcanic-metasedimentary belt (Trowell et al, 1980). Within the Kakagi-Atikwa Lakes area, the region is divided by the northwest-southeast trending Pipestone-Cameron Fault Zone into two major domains (Figure 4):-

(1) Southwest of the fault, the region is underlain by two sequences: the Lower Snake Bay and Katimiagamak Lake volcanics and the Upper Kakagi Lake volcanics. The Snake Bay volcanics in the

FIGURE 4: Simplified regional geological map, Kakagi – Atikwa Lakes area. Modified from Blackburn and Janes (1983).

northwest are composed of a thick sequence of predominantly pillowed mafic flows. In the south, the Katimiagamak Lake volcanics of similar lithology and thickness have been intruded by gabbroic sills. The Kakagi Lake group consists of intermediate pyroclastics and metasediments that have been intruded by differentiated ultramafic mafic sills.

(2) Northeast of the Pipestone-Cameron Fault Zone, the Rowan Lake volcanics to the north and the Brooks Lake volcanics to the south are overlain by the Cameron Lake volcanics. The Rowan Lake and Brooks Lake volcanic sequences are composed predominantly of pillowed mafic flows whereas the Upper Cameron Lake rocks are a mixed sequence of intermediate and mafic flows and pyroclastics with minor felsic flows and tuffs.

Several younger stocks and batholiths, ranging in composition from felsic to ultramafic, have intruded all rock units.

A major fold structure, the Shinwok anticline, has deformed rocks northeast of the Pipestone-Cameron Fault. The Cameron Lake gold district of Nuinsco Resources Limited and Lockwood Petroleum Incorporated, and the Monte Cristo gold prospects of Nuinsco Resources, both lie on the south limb of the Shinwok anticline within the Brooks Lake volcanics and near to the transition of the Cameron Lake volcanics.

Gold showings on a regional scale in both the Cameron Lake and Rowan Lake areas are associated generally with zones of shearing and alteration. The

- 8 -

zones of shearing may vary in strike direction, but the alteration-mineralization assemblage is consistent, i.e. carbonate-sericite-quartz + pyrite, free gold and rare chalcopyrite (Hunter and Curtis, 1983).

PROPERTY GEOLOGY

The property is underlain predominantly by mafic metavolcanic rocks, probably flows, with local lenses of intercalated intermediate to felsic pyroclastic rocks. In the northern and southern portion of the property, the mafic flows are generally massive whereas in the central portion they are weak to strongly foliated with local shear zones. This central zone is marked by a prominent regional eastnortheast trending magnetic high.

Alteration present on the property includes carbonatization, silicification, quartz-carbonate veining and sercitization. This alteration is generally stronger within the central zone as compared to the enclosing northern and southern massive mafic volcanics where alteration is minor or absent. There is a noticeable increase in the intensity of alteration in zones which are strongly sheared. Variable amounts of pyrite ranging from trace up to locally 10% are typically present in these altered zones.

Several geophysically inferred faults and lineaments cut the property and all rocks within the central horizon have been foliated and locally sheared. These zones of shearing with associated alteration and mineralization are comparable to those of the Monte Cristo gold occurrences.

GEOPHYSICS

Magnetic and VLF electromagnetic surveys, totalling 85 line kilometers each, were performed on the Rowan Lake Property in the winter of 1984. The magnetic survey outlined three magnetic complex zones trending approximately northeast to east-northeast across the property.

- 10 -

These zones are shown on a geophysical and geological compilation map in the pocket and are as follows:-

- (1) in the extreme northwest corner of the northwest sheet,
- (2) as a 500 m wide arcuate zone trending northeast to east-northeast across the central portion of the grid, and
- (3) in the extreme southern portion of the grid lines. The southern feature is only partly delineated where it occurs within the claim block boundaries.

Each magnetic zone was made up of narrow positive amplitude long linear zones thought to be associated with volcanic tuff and/or flow horizons containing magnetite. Complex folding and faulting distorts the magnetic patterns considerably in several areas. The Central Zone magnetic complex may represent the same horizon that hosts the Monte Cristo gold prospect on strike to the southwest.

The northern magnetic domain, designated as the "North Zone", dissipates past line 19+00W reducing to a series of weak isolated magnetic anomalies. To the

- 11 -

west, however, the anomalous zone has two horizons. The north horizon is formed by two magnetic linears, while the south horizon contains both negative and positive linears with the positive linear being to the south. Anomaly trend interruptions and displacements occur in several localities.

The central arcuate magnetic domain, the "Central Zone" which occurs just south of the baseline, contains many positive amplitude narrow magnetic horizons. The highest amplitude area is present on the west side of the area on lines 22+00W to 25+00W. Here, three distinct northeast-trending anomalies are seen. To the east of this feature, the magnetic responses are displaced southwards by 200 m and then weaken further to the east. A complex area of distorted anomaly patterns from lines 18+00W to 11+00W is present just south of the baseline. Past line 11+00W, more distinct uniform anomaly patterns can be seen. A very uniform, narrow horizon near the baseline trending generally east-northeast can be traced for 2,000 m from lines 9+00W to 11+00 E. To the south, about 400 m, a magnetic complex containing two "C-shaped" anomalies parallels the trend just described. The width of the eastern part of this complex increases to about 300 m in the vicinity of line 7+00 E.

The "South Zone" contains a series of narrow negative anomalies interspersed with long, narrow positive amplitude horizons that can be traced for hundreds of metres. The South Zone's characteristics appear to differ slightly from the Central Zone's. A very broad negative amplitude, 100 m wide feature, can be seen at the extreme south end of lines 20+00W to 22+00W.

The VLF electromagnetic survey identified numerous conductive trends generally subparallel to the magnetic strike directions (see map in pocket). Several of the conductive trends having the most extensive continuity were associated with contact horizons interpreted from the magnetics. Other trends may be related to shear zones or conductive volcano-sedimentary type formations such as graphitic slates or tuffs.

An induced polarization survey was carried out to further prospect the Central Zone. In all, 17 line kilometres of reconnaissance and detailed dipole-dipole IP survey was performed.

The IP survey detected several polarizable horizons. The most significant zone occurs near the baseline from line 21+00W to 13+00W. It is associated with a low resistivity horizon present to the north. The low resistivity horizon source may be related to a shear zone. The probable cause of the IP response is thought to be disseminated pyrite.

A second polarizable horizon of possible interest occurs to the north of the previous one described, at about 6+00 N. It has an association with high resistivity values thought to represent underlying siliceous volcanics or intrusives. Other similar responses are present throughout the central and eastern portions of the survey grid.

GEOCHEMISTRY

 A_0 (humus; 220 samples) and B-horizon soils (1,316 samples) were taken at 25 m stations on 100 m line spacings between approximately 2+00N and 10+00S from line 25+00W to line 9+00E, across the Central Zone, as outlined by the geophysical surveys.

Twenty-eight of the total 1,316 B-horizon soil samples returned values greater than 6 ppb with the highest value being 178 ppb on line 10+00W at 4+15S. Additional sampling in the vicinity of this higher value failed to locate any anomalous trend.

In the humus, the highest gold value returned was 78 ppb taken on line 24+00W at 5+00S. The majority of humus samples contained less than 7 ppb Au and there was no correlation between higher gold values in humus and B-horizon soils.

The weakly anomalous values in soil and humus are isolated highs; overall, the gold geochemical values in both sampling mediums are only slightly enhanced on the property.

Rock geochemical sampling was carried out in conjunction with the geological mapping and outlined several localities, which returned values ranging from 20 ppb to a high of 600 ppb Au; these areas were subsequently trenched as described in the following section.

TRENCHING

Eight areas were selected for trenching, five to test geochemical anomalies (T1-T5 inclusive) and three to test anomalous IP responses (T6-T8 inclusive). These localities were firstly stripped using a bulldozer, and trenches were subsequently blasted across the more interesting sections. Results from the trenching are summarized in Table 1 and the trench locations are shown on the compilation map (in pocket).

- 14 -

Table 1

ROWAN LAKE PROPERTY

TRBNCHING DATA

Trench	Location	Lithology	<u>Alteration</u>	Mineralization	Geophysical Response	Gold Values
1	L15+50W -1+25N	sheared mafic flows	quart z- car bonat e veining, sericite	trace to 2% py	broad moderate to strong, IP/ resistivity anomaly	low less than 5 ppb high 27 ppb
2	L17+00W -5+00S	m assive mafic flows	quart z- car bonat e vei ning	trace to 2% py	magnetometer low	low less than 5 ppb high 20 ppb
3	L1 6+00W -1+75S	weakly foliated mafic flows	quartz- carbonate veining	trace to 2% py	none	low less than 5 ppb high 45
4	L1 9+00W -1 +25N	sheared mafic flows	quartz veining, sericite	trace to 2% py	broad moderate to strong IP/ resistivity anomaly	low less than 5 ppb high 27 ppb
5	L7 +00W -2 +00	sheared mafic flows	quartz- carbonate veining, sericite	trace to 5% py	none	low less than 5 ppb high 70 ppb
6	L17+00W -0+35N	sheared mafic flows (Gossan)	quartz- carbonate veining, sericite	trace to 10% py trace to 5% mt trace py	strong IP/ resistivity anomaly low	low less than 5 ppb high 805 ppb (0.024 oz. Au/st)
7	L15+50W -0+25N	sheared mafic flows (Gossan)	quartz- carbonate veining, sericite	trace to 10% py trace cpy	strong IP/ resistivity low	low less than 5 ppb high 70 ppb
8	L1 9+00W -0 +50N	sheared mafic flows	sericite, minor quartz veining	trace py	broad IP/ resistivity low	no samples taken

DERRY, MICHENER, BOOTH & WAHL

The most significant results were obtained from trenches #6 and #7, which exposed a 5 m wide gossan zone within the Central horizon, which contained quartzcarbonate veins parallel to foliation. Pyrite locally up to 10% and magnetite up to 5% with minor chalcopyrite occurs within these veins. The gossan is coincident with a moderate to strong IP resistivity anomaly, which extends from line 21+00W to 7+00W. Gold values obtained from chip and grab samples from these trenches range from less than 5 ppb to a high of 105 ppb Au. The higher gold values obtained were generally associated with quartz-carbonate veins within the gossan zone, although one sample containing 95 ppb came from a vein just beyond the margin of the gossan.

- 15 -

DIAMOND DRILLING

Ten diamond drill holes, totalling 940 m, were completed in the fall of 1984 to follow-up target zones outlined by geophysical and geological work. Eight of these holes (RL-84-01, -02, -03, -06, -07, -08, -09 and -10) were drilled within the Central horizon in order to test the strike length and down-dip extension of the gossan zone and its coincident IP/resistivity anomaly. Two holes, RL-84-04 and RL-84-05, were drilled to test IP/resistivity anomalies in the southern and northern horizons, respectively. The locations of the holes are shown on the compilation map in the pocket and Figure 5 is a more detailed map of the drilling in the Central Zone.

Gold values found in the eight holes testing the Central horizon were erratically distributed throughout the mafic volcanics typically associated with narrow pyritiferous quartz-carbonate veins within weakly to locally strongly altered zones. Two deeper holes, RL-84-09 and RL-84-10, indicate that the alteration extends to a depth of at least 150 m. The IP anomalies drilled in the northern and southern zones are caused by weakly to disseminated pyrite with only background gold values.

The best intersections obtained on the drilling program were as follows:-

(1) A 2.3 m interval in hole #3 from 68.7 m to 71.0 m in which two mineralized intersections were sampled. These returned 3,345 ppb Au over 1.0 m from 70 m to 71 m and 3,300 ppb Au over 0.5 m from 68.7 m to 69.2 m. The intervening 0.8 m was not sampled. The mineralization is associated with pyrite-bearing quartz-carbonate veins which cut mafic metavolcanic rocks.

- 16 -

(2) 2,503 ppb Au over 0.5 m at a depth of 61.75 m in hole #1. Here the mineralization is associated with pyrite-bearing quartz-carbonate veinlets cutting weakly altered mafic metavolcanics.

- (3) 2,914 ppb Au over 0.5 m at a depth of 51.0 m in hole #1 within moderately altered and foliated mafic metavolcanic rocks.
- (4) 1,275 ppb Au over 1.0 m at a depth of 125 m in hole #10 associated with a quartz-carbonate vein cutting moderately altered and foliated metavolcanics.

CONCLUSIONS AND RECOMMENDATIONS

The work carried out on the property to date, including prospecting, trenching, geophysical surveys and diamond drilling, has outlined a zone of erratically mineralized, altered and foliated mafic metavolcanic rocks across a width of about 150 m and along a strike length of 550 m in the western part of the property. On the basis of hole #7 and the resistivity responses, this central alteration zone may extend a further 650 m to the east. On a more regional basis, this zone appears to be the eastern continuation of the zone on the Monte Cristo property, 6 km to the southwest and the Cameron Lake deposit, a further 10.5 km to the southwest.

Further drilling is warranted to test the full strike length of the altered and foliated mafic metavolcanic rocks to search for ore shoots that on the basis of comparison with the Cameron Lake deposit, are probably relatively short in their strike length. On that property, it has been reported that the main ore shoot is at

a depth of about 85 m and is 125 m in length and 75 m in width with a plunge steeply to the northwest. Detailed drilling would therefore be required to search for a smaller but relatively good grade target of this type.

Accordingly, an additional diamond drill program comprising seven holes totalling 1,050 m is proposed to follow-up the anomalous gold values in the Central Zone. Five of these holes would test the zone along strike to the west and down-dip of the higher grade sections in holes #1 and #3. In addition, two holes are recommended to test the eastern extension of the zone between holes #8 and #7.

The locations of the recommended holes are shown on the geophysical and geological compilation map in the pocket and are summarized in Table 2.

Table 2

Recommended Diamond Drill Holes

Line	Station	Dip	Azimuth	Length (m)
RL-85-1 - 21+00W	0+85S	-50 ⁰	340 ⁰	100
RL-85-2 - 20+00W	1+20S	-500	340 ⁰	155
RL-85-3 - 19+00W	1+005	-50 ⁰	340 ⁰	155
RL-85-4 - 18+00W	0+85S	-500	340 ⁰	155
RL-85-5 - 17+00W	0+65S	-50 ⁰	340 ⁰	155
RL-85-6 - 12+00W	0+75S	-50°	340 ⁰	200
RL-85-7 - 9+00W	0+10N	-50 ⁰	340 ⁰	130
				1,050

Further drilling would be contingent on favourable results from this proposed program.

BUDGET

The estimated cost of this program of 1,050 m of drilling, including supervision and reporting, is \$120,000 as shown in Tables 3 and 4.

- 20 -

Respectfully submitted, DERRY, MICHENER, BOOTH & WAHL

W. N. Pearson, Ph.D.

D. G. Wahl, P.Eng. Consulting Engineer

August 15, 1985 Toronto, Canada

- 21 -

Table 3

ROWAN LAKE PROJECT

Summary Budget

1.0	Prefield Planning	\$ 800
2.0	Mobilization, Demobilization and Expediting	1,320
3.0	Field Program 1,050 m diamond drilling	110,790
4.0	Report Preparation	3, 530
5.0	Management and Supervision	3,560

TOTAL

\$120,000

- 22 -Table 4 **ROWAN LAKE PROJECT Detailed Budget** Prefield Planning 1.0 1.1 Fees 1.1.1 Senior Geologist 1 day @ \$300/day 300 1.1.2 Project Geologist 1 day @ \$250/day 250 1.1.3 Draftsperson 3 hrs. @ \$20/hr. 60 610 1.2 Expenses 1.2.1 Telephone 40 1.2.2 Secretarial 3 hrs. @ \$20/hr. 60 1.2.3 Photocopying and Printing 40 1.2.4 800 Courier/Postage 50 190 2.0 Mobilization, Demobilization and Expediting 2.1 Fees 2.1.1 Project Geologist 2 days @ \$250/day 500 2.2 Expenses 2.2.1 500 Airfares 2.2.2 Travel 2 man-days @ \$60/man-day 120 2.2.3 Shipping 200 820 1,320

- 23 -

(Continued)

3.0	Field	Progra	<u>m</u>			
	3.1	Fees				
		3.1.1	Project Geologist			
		210	35 days @ \$250/day	8,750		
		J. 1. Z	31 days @ \$130/day	<u>4,030</u>	1 2, 7 80	
	3.2	Expense	es			
		3.2.1	Consum abl es			
			- Food, 65 man-days			
			@ \$30/man-day	1,950		
			- Gasoline	400		
			- Stove Oil	100	2,450	
		3.2.2	Telephone		1 50	
		3.2.3	Diamond Drilling			
			1,050 m @ \$59.0/m	61,950		
			Mob and Demob	10,000		
			Core Boxes			
			180 @ \$6/box	1,080		
			Drill Moves			
			6 @ \$1,200 each	7,200		
			Drill Fluid Additives	600		
			Acid Tests			
			20 @ \$60 each	1,200		
			Misc. Contractor Costs	<u> 1,100 </u>	83,130	
		3.2.4	Core Splitter Rental		100	
		3.2.5	Analyses			
			750 @ \$12.00		9,000	
		3.2.6	Shipping		445	
		3.2.7	Truck Rental		1 500	,
			5 WKS. @ \$1,400/month		1,700	
		3.2.8	Core Rock Materials		n 0 c	
		2 0 0	(a. \$0.70/m orilled		735 100	
		J. Z. 9	Postage/Couriers		000 100	¢110.700
		3.Z.1U	sample bags, Stationary, etc.	•	200	<u> 9110,790</u>

DERRY, MICHENER, BOOTH & WAHL

- 24 -

Table 4 (Continued)

4.0	Repo	ort Prep	paration			
	4.1	Fees				
		4.1.1	Project Geologist 8 days @ \$250/day	2,000		
		4.1.2	Draftsperson 4 days @ \$170/day	680		
		4.1.3	Secretarial 20 hrs. @ \$20/hr.	400	3,080	
	4.2	Expens	es			
		4.2.1	Printing and Reproduction		450	3, 53 0
5.0	Man	agem ent	and Supervision			
	5.1	Fees				
		5.1.1	Senior Geologist 4 days @ \$300/day	1,200		
		5.1.2	DMBW - Partner 2 days @ \$500/day	1,000	2,200	
	5.2	Expens	ses			
		5.2.1 5.2.2	Airfare (2) Travel Days	1,000		
		593	4 man-days @ \$60/day Food	240		
		J. 2.J	4 man-days @ \$30/day	<u> 120 </u>	1,360	3,560
				TOTAL		\$120,000

DERRY, MICHENER, BOOTH & WAHL

REFERENCES

Blackburn, C.E. and James, D.A.

1983: Gold Deposits in Northwestern Ontario; <u>in</u> (Colvine, A.C. (ed.) The Geology of Gold in Ontario, Ontario Geological Survey, Misc. Paper 110, p. 194-210.

Hunter, A.D. and Curtis, L.W.

1983: The Cameron Lake Gold Deposit, NW Ontario; Pioneering in a Dormant Gold Camp, Synopsis of Paper Presented at the Northwest Mining Association Spokane, December 1-3, 1984.

Trowell, N.F., Blackburn, C.E., Edwards G.R.

1980: Preliminary Synthesis of the Savant Lake-Crow Lake Metavolcanic-Metasedimentary Belt, Northwestern Ontario and the Bearing upon Mineral Exploration, Ontario Geological Survey, Misc. Paper 89, 30 p.

- 25 -

- 26 -

CERTIFICATE OF QUALIFICATIONS

L William N. Pearson, of Apt. 2707, 10 Tangreen Court, Willowdale, Ontario, do hereby certify that:-

- (1) I am an exploration geologist and associate of Derry, Michener, Booth & Wahl, Consulting Geologists and Engineers, of Toronto.
- (2) I am a graduate of the University of British Columbia in Honours Geology with the degree of B.Sc. in 1974, and of Queen's University, Kingston, Ontario, with the degree of M.Sc. in 1977 and Ph.D. in 1980.
- (3) I have been practising my profession for eleven years.
- (4) I have not received, nor do I expect to receive any interest, directly or indirectly, in Guardsman Resources Limited.
- (5) The statements contained in this report and the conclusions reached are based upon my review of all available data. I have visited the property.
- (6) I hereby consent to the use of this report in a Statement of Material Facts and for the preparation of a prospectus for submission to the Ontario Securities Commission and other regulatory authorities.

William N. Pearson, Ph.D

Toronto, Canada August 15, 1985

- 27 -

CERTIFICATE OF QUALIFICATIONS

I, David G. Wahl, residing at 3 McKay Cres., Unionville, Ontario, do hereby certify that:-

- (1) I am a consulting engineer, president of W.G. Wahl Limited which is a partner in the firm Derry, Michener, Booth & Wahl.
- (2) I am a graduate of the Colorado School of Mines, with degree of Engineer of Mines (1968) and have been practising my profession since graduation.
- (3) I am a registered Professional Engineer in the Province of Ontario and have been designated Consulting Engineer with specialization granted in exploration and development.
- (4) I am past Chairman of the Board of Regulations, Association of Professional Engineers of the Province of Ontario.
- (5) I have no interest in, nor do I expect to receive any interest, direct or indirect, in Guardsman Resources Limited.
- (6) This report, and the conclusions and recommendations made, are based on examination of all available data. I have not visited the property.
- (7) I hereby consent to the use of this report in a Statement of Material Facts and for the preparation of a prospectus for submission to the Ontario Securities Commission and other regulatory authorities.

'Vwk

David G. Wahl, P.Eng. Consulting Engineer

Toronto, Canada August 15, 1985

2F05SE0009 63.4802 ROWAN LAK

200

MAFIC METAVOLCANICS Massive to foliated matic flows
AREA OF OUTCROP
DRILL HOLE
FAULT (Interpreted from magnetics)
INFERRED ALTERATION CONTACT
AREA WITH $\geq 1000 \text{ ppb}$ Au and HIGHEST VALUE OBTAINED (ppb Au / core length (m))
BLASTED TRENCH

63.4802 (pt.1)

210

LEGEND

100N

100N

LEGEND

N001

100N

LEGEND	
	0
Dverburden	
FELSIC INTRUSIVES	
Quartz Feldspar Porphyry	
VOLCANICS	
Matic Metavolcanit	
Silicified Mafic Metavolcanic	
Sample intervals shown for all samples	
Values less than 100mmh Au not plotte	
	, u
SCALE 1-500	
C C 20 40	
METRES	
DEJUUR MINES LID.	
Rowan Lake Property	ENR VERY BY C DMBW
	ERAWN BY
	APPRCVED_BY
Section 20+00W	N. T. M.
	52 F/
Looking West	ГАТЕ Feb 14756
RL-85-2	DHE NO
DERRY, MICHENER, BOOTH & WAHL	86-07-06
OM85-190 63,4802 (pt. 1)	

4 1 1 ł

· · · · · · · · · · · · ·