WICKS LAKE PROJECT 1988

DRIFTING AND DIAMOND DRILLING PROGRAM

By
Richard LaPrairie P.Eng.
Project Manager, M.P.D. Consultants January 1989

SUMMARY

A program of exploration diamond drilling and underground drifting on a group of 27 unpatented staked claims on the Wicks Lake Property in the Dogpaw Lake Area of the Kenora Mining Division of western Ontario has confirmed the presence of gold associated with a narrow quartz carbonate vein. The vein, although narrow, is continuous down dip and along strike with good gold values. The gold is however confined to the vein; as samples taken in the diorite host rock on both the hanging and foot walls show minimal amounts of gold.

This work was carried out by M.P.D. Consultants, on behalf of TEESHIN RESOURCES of Oakville, Ontario, who by expending a minimum of $\$ 275,000$ would earn a 50% interest in the property from Mountain Lake Resources.

Work started on the project in October of 1988 when a 7 man crew started barging the required mining equipment and supplysifs across Kakagi Lake. A campsite was built, and a portal collared on the \#3 vein on the western shore of Wicks Lake.

350 feet of the number 3 vein was exposed in underground drifting. At this point an intrusive dike, perpendicular to the vein was encountered and the vein disappeared for some 60 ft . when the same or a bimilar vein was encountered.

The vein was sampled extensively to determine possible mining grades. In addition to back sampling drift rounds were positioned in such a manner as to allow for the separation of ore from waste. Calculations based on a 5^{\prime} minimum mining width gave a calculated head grade of 0.059 opt. Selective mining, by split shooting, raised the grade of the ore stockpiled to . 104 opt.

Three diamond drill holes with a total footage of 1,921 feet were drilled to investigate the downdip extension of the vein.

The advent of winter was a major factor in the overall scope of the project as the freezup of Kakagi Lake would curtail access to the project until such time as the ice would be thick enough to travel over. The final days of demobilization did require breaking ice with a steel boat.

At the end of December 1988 expenditures on the property totaled \$403,611.59.

PAGE
TABLE OF CONTENTS I NTRODUCTION 4
PROJECT LOCATION AND ACCESS 4
PHYSIOGRAPHY 4
SOCIOECONOMIC FACTORS 4
SERVICES 5
PROPERTY HISTORY 5
GEOLOGY
AREA 6
PROJECT 6
VEINS. 7
SCOPE OF PROGRAM. 8
COST BREAKDOWN. 9
DISCUSSION OF RESULTS 10
RECOMENDATIONS 10
STATEMENT OF QUALIFICATIONS 11
LIST OF FIGURES
LOCATION MAP FIGURE 1
PROPERTY MAP FIGURE 2
CLAIMS FIGURE 3
DRIFT FIGURE 4
APPENDIX A...1" $=5$ ' BACK PLANS AND RIBSAPPENDIX B...1"=2' FACE SKETCHESAPPENDIX C...GRAPHS OF MUCK vS BACK ASSAYSAPPENDIX D...DIAMOND DRILL LOGSAPPENDIX E... BACK, FACE, MUCK, AND PERCUSSION HOLE ASSAYSAPPENDIX F...DIAMOND DRILL CROSS SECTIONSAPPENDIX G...ADDITIONAL INFORMATION

INTRODUCTION

In the months of October and November of 1988 M.P.D. Consultants, on behalf of Teeshin Resources, performed an exploration program of underground drifting and surface diamond drilling on the Wicks Lake Project located 7 miles east of Nestor Falls in western Ontario.

A minimum of $\$ 275,000.00$ was to be expended to allow Teeshin Resources to acquire a 50\% interest in the project from Mountain Lake Resources.

Work accomplished included the driving of 445, of nominal $8^{\prime} \times 8^{\prime}$ drift, the collection of some 600 tons of ore, and the drilling of 3 diamond drill holes totaling 1,921 feet. A total of over $\$ 400,000.00$ dollars was expended on the project, well exceeding the minimum work commitment.

PROJECT LOCATION AND ACCESS

The Wicks Lake Property is located at longitude 94 degrees 50 minutes East, and latitude 49 degrees 15 minutes North on the peninsula between Wicks and Kakagi lakes 7 miles east of Nestor Falls, Ontario. Access to the property $1 s$ across 7 miles of open water on Kakagi Lake then $3 / 4 \mathrm{mile}$ by bush road to the portal site. It is noted here that the last portion of the bush road contained a section of such steepness that it significantly affected the overall project timing and budget.

PHYSIOGRAPHY-
The area is characterized by numerous lakes and abrupt rock ridges that are heavily timbered with red pine, white pine, birch, and cedar. Sumpers are warm and pleasant and winters are severe with extended periods of $\mathbf{- 4 0}$ degree temperatures.

SOCIOECONOMIC FACTORS

The two main industries in the area are tourism and lumbering. Mining is virtually non-existent, and a qualified labour force does not exist. There are two other properties in the area, the Cameron Lake Mine 4 miles to the northeast (currently on care and malntenance), and the Scrambler project 75 miles to the north in Kenora (operating on a very limited basis).

Locally schooling is limited to grade school level. Housing is scarce and accommodation is essentially restricted to non winterized motels and lodges.

Hospitals, schools, and shopping centers can be found in Kenora ($1 \& 1 / 2$ hours drive to the north) and Fort Francis(1 hours drive to the south).

Hunting, fishing, and boating are the main recreational activities with fishing going on almost year round.

The nearest source of power is a powerline running north from Ft. Francis to transformers located 3 miles south of Nestor Falls. Substantial tonnage would have to be found to justify construction of a powerline to the property.

Although there is no direct road access to the property the Cameron Lake mine road runs east-west about 4 miles north of the portal site. Approximately 8 miles of new road would have to be constructed to access this gravel road. The project area has been permitted for logging operations in the next 5 years and the permits for road construction have already been obtained by Dave Burt, a local logger.

Mining supplies are not readily available. Rough timber is produced and can be purchased locally. Kenora has little to offer in the way of mining materials. Ft. Francis has a limited stock of mining hardware, mostly items common to both mining and forestry. Fuel and lubricants can be purchased in Emo and Ft.Francis. Explosives, bits, steel, and other "mining" items must come from Thunder Bay, Red lake, Sudbury, or other far away places.

Trucking is limited to Kingsway who deliver, from Kenora, once a week only. There is daily bus service between Kenora and Ft. Francis both which have commercial airports.

PROPERTY HISTORY

In December 1944, Noranda Mines optioned 14 claims from E. Wensley, a local trapper and prospector. This was the proper Wicks Lake or Wensley showing. At about the same time Sylvanite Mines optioned the adjoining ground to the west and north from the Millree Syndicate, now called the Millree showing. These two showings are now covered by the optioned claims.

In 1944 and 1945, Noranda conducted an extensive program of trenching and diamond drilling along 3 mineralized narrow quartz zones with strike lengths up to 2000 feet long. These veins were hosted by (or parallel to) a long narrow gabbro/diorite dike. Trenching, especially over the No. 3 Vein, gave impressive results where 0.4 opt $A u$ over 2 to 3 feet in width were obtained. Unfortunately, the diamond drilling gave less impressive results, typically 20% of the grade over 60% of the width. It was the general consensus that a more accurate estimate of gold grades would require underground work. This Noranda was unwilling to do on narrow veins in a remote location.

Sylvanite gold mines optioned the adjacent ground to the west and north of the Wensley showing. They explored a number of showings and tried to find extensions of the Wensley veins but were unsuccessful in doing so and the option was terminated.

In 1974, Noranda staked claims on much of the Millree showing and optioned the Wensley showing held by Roy Martin. A minimal program of 4 days showed some gold values in carbonatized gabbro on the Millree.

In 1976, the geological report for the area was published but it carried no mention of the Wicks lake showing.

In 1980-1981, Noranda optioned the showings from Roy Martin

Once more and conducted an exploration program that consisted of geological mapping, soil geochemistry, magnetometer surveys, I.P. surveys-both detailed and reconnaissance, and diamond drilling. Results from this work confirmed the existence of gold mineralization too narrow for commercial production and the option was terminated.

In 1982, Jack Martin resampled 11 of Noranda's surface trenches and obtained assays similar to the original assays.

In 1982-1983, Frances Resources, of Vancouver, B.C., optioned the ground and carried out an exploration program that consisted of stripping, trenching, portal preparation, and shaft sinking. Results from this program once again displayed a discrepancy between assays from diamond drilling and bulk sampling. Frances Resources discontinued work on the property and it reverted to the vendors. At this time a bulk sample was shipped to lakefield Research where metallurgical testing indicated that acceptable recoveries could be obtained through fine grinding and straight cyanidation.

In August of 1988 Mountain lake Resources optioned the property and entered into a joint venture with Teeshin Resources who financed a program of underground drifting and diamond drilling which is the subject of this report.

GEOLOGY

-AREA
The Kakagi lake area is situated on the flank of a centre of intermediate-felsic volcanisim in the Wabigoon Belt of metavolcanic metasedimentary supracrustal rocks. The regional trend of these rocks is to the northwest, parallel to a major structural break which truncates the intermediate-felsic rocks to the northeast of Kakagi lake. The other major structural feature of the volcanic centre a set of strong, northwest trending folds, dominated by the Emm Bay and South Narrow Lake synclines. Flexure of the axes of these major folds in the area of northwest trending faults suggests movement on the fault was predominantly right lateral.

The Kakagi Lake area is underlain chiefly by intermediate pyroclastic rocks with minor chemical sediments and a series of extensive, thick mafic and ultra mafic sills, all of Archean age. This package has been folded into an open syncline plunging 80 to 90 degrees northeast and enfolding a late felsic pluton, the Stephen Lake granite. A number of strong north-trending lineaments are mappable; these may be related to a strong northtrending fault system which passes through Wicks Lake disrupting the geologic sequence with displacements of greater than 300 meters. (DeQuadros, 1988)
-PROJECT
Mapping on the Martin Option property revealed a southeast trending sequence of intermediate pyroclastic rocks and cherty sediments intruded by gabbro-diorite and pyroxenite sills with thicknesses on the order of 350 meters and by a small (altered)
granodiorite body. These rocks are regionally metamorphosed to greenschist facies rank and are quite well preserved. Few structural data are available.

Bedding was mapped in some small exposures of chert and cherty tuffs but tops could not be determined; from O.G.S. regional mapping, tops are north. Strike of bedding proved to be parallel to the general strike of the gabbro and pyroxenite sills.

Foliation and shearing is not well developed but where measured is consistently parallel to the strike of the units.
-VEINS
There are 3 known veins on the Wensley showing; numbered 3,4, and 5. The longest is the number 3 vein which outcrops on the western shore of Wicks lake west of the two islands and has a N 70 strike that has been traced by 37 trenches over 2500 feet in length. It was on this vein that the recent drilling and drifting was done. It's width rarely exceeds 1 foot and it dips 80 degrees to the north.

The number 5 vein is about 100 feet south of the number 3
vein and runs parallel to it. It has been traced for over 1000 feet in length. Noranda reported assays from 7 trenches over 200 feet along strike that ran .32 opt over 4.5 feet.

The number 4 vein also runs parallel to the number 3 vein about 100 feet south of the number 5 vein. Not much work has been done on this vein.

There are 5 veins on the Millree showing: $1,2,4,5, * 6$. The \#1 vein is hosted in a banded tuff and trends dipping about 75 degrees to the west. It is a foot wide banded quartz vein conformable with the tuff unit and has been well mineralized with pyrite and fine dusty molybdenite. It has been traced for 200 feet and gave very low assays, the best being . 03 opt over 6 feet.

The $\# 2$ vein consists of strong silicification, carbonatisation, and pyritisation over widths of 5 to 14 feet. It strikes and dips 70 degrees to the west. It lies in diorite and has been traced by trenching and drilling for 300 feet. The best assays are 0.13 opt over 6.8 feet and 0.04 opt over 12 feet.

The \#4 vein is parallel to the \#2 vein and 15 located about 300 feet west. It is a 2 foot wide smoky quartz vein with sparse pyrite. A grab sample from this vein is reported to run 48.6 dwts(2.43 opt) Au but resampling has not substantiated this assay.

The \#5 vein is parallel to the \#2 vein, about 950 feet to the east. It has been traced for about 400 feet, and consists of a strong carbonatized zone 12 feet wide in diorite. It is well mineralized and is cut by numerous quartz stringers and veinlets, several of which pan gold. The best assays are: . 26 opt over 18 feet; . 09 opt over 6 feet. This vein has not been drilled.

The \#6 vein is also parallel to the \#2 vein about 180 feet east of the \#5 vein: It is a weakly carbonatized zone with 30% quartz stringers and is generally well pyritized. The best value obtained was 0.06 opt over 10 feet.

SCOPE OF PROGRAM

Mobilization of the project started on Wednesday Oct. 12 when a 600 CFM Gardner Denver compressor arrived and was barged across Kakagi Lake. The barge and operator were supplied by Kenora Soil and Drilling who also supplied a skidder and crew to cut a road from the landing to the wicks Lake portal site.

Other equipment utilized on the job included a Wagner ST2-B scooptram for muck removal, and 35 Kw Onan generator with a 10.5 Hp 22" dia. electric fan for ventilation. Drilling was done with jacklegs. Blasting agents were nonels, amex, and Cilgel 70% where water was encountered. Fuel was brought in in 45 Gallon drums that were hauled 10 at a time over the hili in a sloop pulled by the skidder. Water for drilling was initially supplied by a gasoline powered piston pump feeding a tank above the portal with gravity feed to the drift. This was later replaced with a diesel powered bean pump with a coil heater that ran continuously. (After cold weather arrived all diesel equipment had to be left running constantly to avoid startup delays.)

Initial drifting in the more weathered portion of the vein (first 50'from portal) found that the waste rock broke right to the vein which could then be hand scaled off after several rounds had been advanced. As the rock became more competent with depth the rounds were found to break to the side holes only and advancing "blindly" without the vein being exposed on each round lead to excessive overbreak. -

As a result of this, the decision to "split shoot" was made. The entire round would be drilled in the footwall of the vein with one row of holes drilled in the hanging wall. The cut and footwall holes were then loaded and blasted. After the waste rock was mucked out the remaining holes would be loaded, blasted, and mucked as ore. Shortly before the intrusive contact the vein split into two to three separate veins with spacings between them large enough to prohibit segregation of the vein material and the whole round was taken as ore.

The vein disappeared when the intrusive was encountered. The drift was then pulled slightly to the right and advanced 60 ft. before another vein was intersected. Drifting continued until $445 f t$. of advance was attained.

Grade control was established by:
Chipsampling of faces for both vein and wallrock as drifting progressed.

Grabsamples of broken muck after slashing the vein.
Extensive backsampling and mapping after mining had exposed the vein, hangingwall, and footwall.

A series of 28- 4' test holes was drilled in the hanging wall of the vein along the entire length of the drift to check for any ore shoots that might have been missed in drifting. Diamond Drilling-3 diamond drill holes were put in from surface to try to determine the continuity and downdip extension of any ore encountered on the drift level. The first hole was collared north of the shaft and drilled due south at 50 degrees in an attempt to intersect the \#3 vein _ft. below the drift and
then intersect the \#5 vein. The second hole was collared further east and drilled 607 ft . at 55 degrees on an azimuth of 160 degrees to intercept the \#3 vein feet below the drift. The third hole was collared northeast of the portal and drilled 507 ft. at 45 degrees on an azimuth of 155 degrees to intercept the \#3 vein under Wicks Lake.

On Wednesday Nov. 23rd the final drift round was taken and the test holes were drilled in the right rib. The following day while the miners took the day off, the back was washed and extensively sampled.

In the following 7 days the equipment was all dismantied, hauled over the hill to the Kakagi Lake landing, and barged to the Lakeview Lodge landing. At this time it was necessary to rent an additional skidder to pull the gear over the hill as one skidder was required to pull the load and the second skidder was required to pull the first.

The timber installed in the portal was removed and the drift was backfilled.

Out of the seven days required for demobilization one day was lost when high winds prevented the crew from crossing Kakagi Lake, and another day was lost while repairs were made to the barge which sank while unloading the scooptram.

Demobilization came just ahead of winter as the last few days required breaking ice with a steel boat to allow access to the landings on both sides of Kakagi lake.

Equipment used on the job can be found in several locations. The fan and 150° of electric cable is being stored by Kenora Soil and Drilling in Kenora.

8 lamps and a 10 lamp charger are in Haileybury at R. LaPrairies.

The rest of the gear left over is stored outside at the Big Pine Lake Lodge in Nestor Falls. Included are 4 Jacklegs, 50 bits, 20 steels, 1 bit sharpener, 1 toolbox with assorted small tools, 1 coleman stove, 2 coleman lamps, one tent, and several pails of vic fittings.

COSTS
Expenditures up to December 31st, 1988 were as follows:
Mobilization
Demobilization
Diamond Drilling
Engineering
Geology
Site Operation
Drifting
Compressor
Portal
Sampling
Camps
G\&A

$$
\begin{array}{r}
\$ 41,940.90 \\
\$ 19,246.56 \\
\$ 47,174.42 \\
\$ 24,870.36 \\
\$ 13,134.78 \\
\$ 11,712.94 \\
\$ 225,291.34 \\
\$ 3,998.40 \\
\$ 8,438.57 \\
\$ 236.38 \\
\$ 4,930.73 \\
\$ 2,636.21
\end{array}
$$

TOTAL \$ 403,611.55

-VEIN GRADE AND WIDTHS

The vein, although fairly continuous, was always very narrow never exceeding 1 foot in width. Grade calculations made from results of backsamples were based on a 5 and a 3 foot minimum mining width. Muck samples were collected and averaged for the round. Results, broken into 50 foot intervals and excluding the 60 feet of waste, were as follows: (ounces/short ton)

Distance from portal	Backs-5'	Mucks	Backs-3'
$0-50$,	0.103	0.151	.200
$50-100^{\prime}$	0.084	0.150	.183
$100-150$	0.067	0.224	.168
$150-200$	0.048	0.096	.092
$200-250$	0.044	0.057	.080
$250-300$	0.010	0.031	.045
$300-350$	0.069	0.105	.115
$350-400$	$0.000 *$	0.000	$* .002 *$
$400-450$	0.044	0.018	.063
	AVERAGE	0.059	0.104
		.118	

As can be seen on the accompanying graphs the muck samples ran consistently higher than the back samples. This is because the back samples were calculated on a 5 foot minimum width, while the muck samples were based upon vein material only. All faces were chip sampled to see if the mineralization extended into the footwall. Results indicate that very little, if any, gold is carried in the footwall. Percussion holes drilled in the hanging wall indicate the same absence of mineralization.

The first diamond drill hole intersected the \#3 vein_ft. below the drift level where assays indicate 5 ft . of .069 opt or ift. of . 21 opt.; the \#5 vein, if intercepted, carried no appreciable values. The second drill hole is believed to have pierced the intrusive where the \#3 vein should have been and had no significant gold intercepts. The third drill hole intersected several small quartz carbonate veins but all were barren.

RECOMMENDATIONS

This program has shown the gold deposits associated with the eastern end of the \#3 vein on the Wensley Showing to be uneconomic at the present time. This however does not preclude the existence of economic deposits on other portions of the property. It still has excellent potential as an exploration target.

It is the recommendation of this writer that additional work to be done on the property be limited to surface reconnalssance and diamond drilling until such time as a road has been constructed into the property. The barging of heavy equipment and supplies is labour intensive and expensive.

I Richard G. LaPrairie,
am a resident of 293 Meridian, Haileybury, Ontario,
am a graduate of the Colorado School of Mines and hold a B.S. in Mining Engineering,
have practiced my profession full time since 1974,
am a Registered Professional Engineer in the Provinces of Ontario, Quebec, British Columbia, and the State of Montana,
have no economic interest in the Wicks Lake Property
Richard G. LaPrairie P.Eng.
24 January 1989

MINNES OTA

$\begin{array}{r} k 1 \bigcirc 710 \\ 0 \end{array}$	K469276	K46927	1535966	15555967	K535961	
K1017709	1849270	K41927,	$\mathrm{k} 469272$		$\begin{aligned} & 6489274-1 \\ & \text { WICKS } \\ & G \text { LAKE } \end{aligned}$	k-72262
$\begin{array}{r} K 1017708 \\ V \end{array}$	8489269	\checkmark	18489267	14489266		
	K1017706		$\mid 61017705$	8662266		

Claims are shown on claim map G2613, the Dogpaw Lake Area in the Kenora Mining Division.

Claints

K489266
K489267-k489277
K535966-K535968
K882262-k日82266
K1017705-k1017710
$K 1003440$

Expiry Date
Dof 18. 1988
Wer 16, 198B
hug 18, 1988
hug 19, 1988
Hug 19, 1980日

Figure 3

Appendix "A"

[^0]

Scale 1" $=5^{\prime}$

Teeshin Resources	
Back Plan of Main Drift	
200 to	5

Scale 1" $=5^{\prime}$

Teeshin Resources		
$\begin{array}{\|l\|} \hline \text { scale: } / 60 \\ \hline \text { date: Jon } 15 / 89 \\ \hline \end{array}$		
Back Plan of Main Drift		
400 to 4	445 Feet West	

[^1]Appendix 'B"

Oct 3 /ss
Moon Drift
23.3' west of D.
(23.3' west of portal)

Fore Skotch

Oct $30 / 88$
Main Dortt 46.9^{\prime} west of D_{1}

Vein
Mirtare guars end rebiectied wall rock, stronoly sheosed perallel to dip. 3.5 \% disseme and subic py in vecinlers porollif to vein. $3 \cdot 5 \%$ corbonate Vein epprex. 0.6' wide, occossionol fropmeats of elrered diorite.
0.5^{\prime} 3one of silicified dierive,
coorse grained in texture. (46.9' west of portel)

Scole 1:24

$$
1^{\prime \prime}=2^{\prime}
$$

Foce Skeleh
Nou $4 / 80$
Moin Drilt
65^{\prime} wost of DI
(65'west of poceol)

Scole 1:24

$$
\prime^{\prime \prime}=2^{\prime}
$$

aliered diorice atrered diorene and chloritised deocile, $3-5 \%$ corbonote, troie pyrite.

Vern

- O.4' wide moinly guortz veen with 3.5\% dessem end colie py in reenlits porellel to vein, treese cpy. strongly shicondond esloretized diocive in lominotions porollel ie py verntets dip 80°
atered dierite Py weintets end strouply sheored end enloritesed coocite lomicetrons

 guorta -ederly sectiens
in ploces. Dierile hes undergene solicotication? Secondioy ritrorevien

Nor. 81989

Face Sketch
Men Drift 10° west of D_{2} (89° from fichte)

Nou $19 / 88$
Mon Derle
815 'west of Ds
(340' wast of portal)

$$
\begin{aligned}
& \text { Nov st } 188 \\
& \text { Morn Doth } \\
& 69^{\prime} \text { west of D6 } \\
& \text { (397'west ot portal) }
\end{aligned}
$$

Fere Sketch

Foce Sketch

Nov 23 1988

Foce Sketch
Moin Dritr 76' west of D, $\left(445^{\circ}\right.$ wese of poorel) (end of driftrong)

Appendix
"C

COMPARISON OF MUCK AND BACK ASSAYS averaged in 50 foot increments

COMPARISON OF MUCK AND BACK ASSAYS

Appendix D

Wicks Lake Project
NAME OF PROPERTY TW-88-1 LENGTH 8OT FEEE
HOLE NO. \qquad LENGTH 807 Feet
LOCATION CLAIM K
LATITUDE ~ 10168.0 N DEPARTURE ~ 9237.0 E
ELEVATION 127.4^{\prime} AZIMUTH 180 80°

started Novemzer 7, 1928 finished NQvemzer 15, 1988

FOOTAGE	DIP	AZMUUTH	FOOTAGE	DIP	AZMMUTH
0	-50°	180°	807	-38°	
200	-51°	-			
400	-43°	-			
600	-41°	-			

\qquad

hole no.

FOOTAGE		DESCRIPTION	SAMPLE					Au		ASSAYS		
FROM	то		no.	[2 SULPM	Fпом	FPOTAGE	roral	\%	*	02 itom	02:T0n	
201	202	Moderately altered diorite, about 10% qtz-carb alter. about 3% epidote alteration, weakly sheared, chloritic along fractures, 1 - 3% dissem. py.	152	10	201	202	1			0.030		
202	202.5	Qtz-carb vein, with about 10% amphibole frags., 1 - 3% dissem. and cubic py, vein about 45° to core axis.	152	11	202	202.5	0.5			0.095		
202.5	202.9	```Fine grained massive diorite, weakly silicified in places, occasional qtz-carb filled fractures, tr - 1% py.```	152	12	202.5	203.2	0.7			0.080		
202.9	203.2	Mixture light grey silicified diorite and qtz-carb vein section almost cherty, qtz-carb vein $=80^{\circ}$ to core axis, 1-3\% py.										
203.2	209	Fine grained diorite tr - 1% py. 205.5 - 205.7 qtz-carb vein with 104 amphibole in parallel laminations, tr py.	$\begin{aligned} & 152 \\ & 152 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\left.\right\|_{203.2} ^{205}$	$\begin{aligned} & 205 \\ & 206 \end{aligned}$	$\underset{1}{1.8}$					
		205.7-208.6 gore possesses moderately developed foliation, $=50^{\circ}$ to core axis, amphibole and plagioclase separating into individual layers, chloritic along fractures.	$\begin{aligned} & 152 \\ & 152 \\ & 152 \end{aligned}$	$\begin{aligned} & 15 \\ & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 206 \\ & 207 \\ & 208 \end{aligned}$	$\begin{aligned} & 207 \\ & 208 \\ & 209 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$			Tr Tr Tr		
209	214.4	Medium grained massive diorite with occasional calcite filled fractures.										
214.4	215	Qtz-carb vein, tr - 1\% py, has orange-brown weathering along fracture surfaces, appear to have vein emplaced followed by silica replacement of the host rock, ie. part of section is granular and part of section is massive qtz-carb.	152	18	214.4	215	0.6			Tr		
215	215.5	Silicified diorite, host rock completly silicified, almost cherty, moderately brecciated, tr py.										

NAME OF PROPERTY Wicks Lake Project
HOLE NO. TW-88-1 SHEET NO._ 5

name of property Wicks Lake Project
\qquad Location LENGTH 607 feet 123.2 DEPARTURE 160° DIP 55°
ELEVATION \qquad 19
1988

FOOTAGE	DIP	AZMMUTH	FOOTAGE	DIP	AZMMUTH
0	-55°	160°			
200	-53°	-			
400	-49°	-			
607	-47°	-			

HOLE NO. 2 SHEET NO \qquad REMARKS BQ CORE

Logse by R. Deklerk

NAME OF PROPERTY Wicks Lake Property
hoLe no. TW-88-2 SHEET NO. 2

DIAMOND DRILL RECORD

mame of property Wicks Lake Project
HAME OF PROPERTY TW-88-3 LENGTH 507 feet
LOCATION CIAIMK 489273
LATITUDE ~/0254.0 N DEPARTURE ~/Q///.OE
ELEVATION 2.0' \qquad AZIMUTH 155^{0} \qquad DIP 45°
started NOVEMBER 26, MZZ finished NOVEMREE 29,1987

FOOTAGE	DIP	AZMMUTH	FOOTAGE	DIP	AZMMUTH
0	-45°	155°			
200	-47°	-			
400	-46°	-			
500	-43°	-			

HOLE NO. 3
3
SHEET NO. \qquad REMARKS BQ CORE

Logged by R. Deklerk

NAME OF PROPERTY Wicks lake Property. HOLE NO. TW-88-3 SHEET NO 2

Location
Latitude \qquad DEPARTURE
elevation \qquad OEPARTURE \qquad 0° DIP 55°

STARTEO \qquad FINISRED

Casing

Coarse to medium grained, massive diorite.
48-49 2mm wide calcite veinlet running parallel to core axis, with tr - 1t dissem py.
Medium grained massive diorite
Coarse grained diorite

Medium grained diorite

Fine grained massive diorite
145. - 153. 2 tan to buff colored diorite, appears to have been serpentised, then partially bleached through inilctatection.
147.4-149.s ixture qts and atz-carb veins, core almost completiy silicified; numerous ciear atz veinlets cross cut core, tr - 14 py , numerous micro veinlets lined with rusty brown mud.

Felsic Intrusive
tan to grey in color; 10-15空clear qtz grains; tr - 3s py; numerous clear qti veinlets cross cut core.

FOOTAGE	DIP	AZMAUTh	FCotage	DH	AZMUUTH
0	55	160			
200	53	160			
400	49	160			
607	47	160			

HOLE NO. 2 SHEET NO. 1 REMARKS BQ CORE

Locged by R. Deklerk

FOOTAGE	OIP	AZMATH	FOOTAGE	DIP	AZMUUTH
0	45	155			
200	47	155			
400	46	155			
500	43	155			

HOLE NO. 3 SHEET NO. 1
REMARKS $B Q$ COEE

Loged ay R. Deklerk

HOLE NO. TW-88-3 SHEET NO. 3

NAME OF PROPERTY_Wicks_Lake_Property
HOLE NO. TW-88-3
SHEET NO \qquad

DIAMOND DRILL RECORD
NAME OF PROPERTY Wicks Lake Project
NAME OF PROPERTY \qquad LENGTH 807 Feet
location latitude
\qquad cemat

ELEVATION \qquad DEPARTUR
AZIMUTH \qquad OIP \qquad
STARTED
\qquad FINISHED 180° O1P 50°
ATED
FOOTA FINISHED \qquad

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	$5 j$	180	807	38	180
200	51	180			
400	43	180			
600	41	180			

HOLE NO. 1 SHEET NO. 1 REMARKS SOQ COEE

Logged by R. Deklerk

NAME OF PROPERTY TW-88-1 HOLE NO. TW-88-1

footage		DESCRIPTION	SAMPLE					Au		ASSAYS	
FROM	то		no.		пnom	FOOTAGE	total	7	2	oz: row	oz rom
201	202	Moderately altered diorite, about 10% qtz-carb alter. about 34 epidote alteration, weakly sheared, chloritic along fractures, 1 - 34 dissem. py.	152	10	201	202	1			0.030	
202	202.5	Qtz-carb vein, with about 10\% amphibole frags., 1-3\% dissem. and cubic py, vein about 45° to core axis.	152	11	202	202.5	0.5			0.095	
202.5	202.9	Fine grained massive diorite, weakly silicified in places, occasional qtz-carb filled fractures, tr - 1\% py.	152	12	202. 5	203.2	0.7			0.080	
202.9	203.2	Mixture light grey silicified diorite and qtz-carb vein section almost cherty, qtz-carb vein $=80^{\circ}$ to core axis, 1-3\% py.									
203.2	209	Fine grained diorite tr - 1% py.									
		205.5-205.7 qtz-carb vein with 10% amphibole in parallel laminations, tr py.	$\begin{aligned} & 152 \\ & 152 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\left.\right\|_{203.2} ^{205}$	$\left[\begin{array}{l} 205 \\ 206 \end{array}\right.$	1.8			(Tr^{210}	
		205.7-208.6 gore possesses moderately developed foliation, $=50^{\circ}$ to core axis, amphibole and plagioclase separating into individual layers, chloritic along fractures.	$\begin{aligned} & 152 \\ & 152 \\ & 152 \end{aligned}$	$\begin{aligned} & 15 \\ & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 206 \\ & 207 \\ & 208 \end{aligned}$	$\left[\begin{array}{ll} 207 \\ 208 \\ 209 \end{array}\right.$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$			Tr Tr Tr	
209	2.14 .4	Medium grained massive diorite with occasional calcite filled fractures.									
214.4	215	Qtz-carb vein, tr - 1$\}$ py, has orange-brown weathering along fracture surfaces, appear to have vein emplaced followed by silica replacement of the host rock, ie. part of section is granular and part of section is massive qtz-carb.	152	18	214.4	215	0.6			Tr	
215	215.5	Silicified diorite, host rock completly silicified, almost cherty, moderatèly brecciated, $t r$ py.									

DIAMOND DRILL RECORD
NAME OF PROPERTY Wicks Lake Project
HOLE NO. TW-88-1
SHEET NO \qquad

FOOTAGE		DESCRIPTION	SAMPLE					Au		ASSAYS	
fnom	ro		No.	$\left[\begin{array}{c}2 \text { SULPM1 } \\ 1025\end{array}\right.$	rRom	$\int_{\text {FOOTAG }}$	Total	\div	7	O2 row	02 rom
$\left\lvert\, \begin{aligned} & 215.5 \\ & 218 \\ & 219.3 \\ & 225.1 \end{aligned}\right.$	$\left(\begin{array}{l} 218 \\ 219.3 \\ 225.1 \\ 292.3 \end{array}\right.$	Medium grained, massive, qtz diorite, tr py. Light grey silicified qtz diorite, have numerous 4 mm wide qtz-carb veinlets cross cutting core at $80-90^{\circ}$. Fine grained massive diorite Medium grained massive diorite, have small zones of qtz diorite in places. 242.0-242.1 qtz-carb vein barren, $\approx 60^{\circ}$ to core axis. 246 - 248 have subangular 1 - 3mm size amphibole crystals on surface. $254.0-254: 31 \mathrm{~cm}$ wide $q t z-c a r b$ vein, $=40^{\circ}$ to core axis. $256.6-357.0$ several qtz-carb veins about 5 mm in size $=40^{\circ}$ to core axis. 268.6 - 268.8 qtz-carb veinlet 0.3 cm to 1 cm in width with 1 - 3% fine grained py. 271 - 273. numerous 1 cm rounded patches of epidotiz plagioclase. $276.30 .5-1 \mathrm{~cm}$ wide $q t z$-carb vein $=30^{\circ}$ to core axis. 277.0 - 277.4 core moderately sheared by qtz-carb alteration. 278.2 - 1 cm wide qtz-carb vein $=40^{\circ}$ to core axis. 280-287.5 plagioclase weakly epidotized.	152	19	268	269	1			Tr	

DIAMOND DRILL RECORD

NAME OF PROPERTY Wicks Lake Project
HOLENO. TW-88-1 SHEET NO.

\qquad
-
HOLENO.
TW-88-1
SHEET NO. \qquad

\qquad

TEESHIN RESOURCES LTD. WICKS LAKE PROJECT

DDH TW 88-02

607° E.O.H.

TEESHIN RESOURCES LTD.
WICKS LAKE PROJECT
DOH TW 88-03

Appendix
"E"

SAMPLE	DAIE	DESCRIPTION	STM
13153	TR 21-0ct-88	Aliered diorite	01
13154	TR 21-0ct-88	ALIEREO DIORITE	01
13155	TR 21-0ct-88	altered diorite	01
13156	$0.13021-0 \mathrm{ct}-88$	ALTERED DIURITE .5' gtz vein $\mathbf{v} / 1-3 \% \mathrm{fgp}$	01
13157	0.005 21-0ct-88	altered diorite tr-1\% f.g.py.	01
13203	0.005 06-Nov-88	altered diorite, 1-3i carb	01
13204	0.005 06-Nov-88	altered diorite, 1-3I carb	01
13205	0.010 06-Nor-88	altered diorite, 1-3\% carb	01
13206	0.690 06-Mor-88	.6' silicified vall rock . ${ }^{\prime}$ vein	01
13207	0.025 06-Nor-88	altered diorite, winor yein material	01
13169	$0.01024-0 \mathrm{ct}-88$	strongly sheared and chloritized diorite	01
13170	TR 24-0ct-88	strongly sheared and chloritized diorite $\mathrm{w} / 1-3 \mathrm{l}$ (1)	
13171	0.470 24-0ct-88	altered diorite, .5 ' qiz vein w/1-3xpy, 15Mo	01
13172	0.080 24-0ct-88	altered diorite . 25 ' qtz vein, 1\% t.g.py. l-3icarb	01
13215	0.005 06-Nov-88	altered diorite, tr py, highly fractured 3-58 earb	01
13216	$0.00505-\mathrm{Nov-88}$	altered diorite, ir py, highly fractured 3-58 carb	01
13217	0.310 06-Moy-88	.6' altered diorite, . ${ }^{\prime \prime}$ vein waterial 3-54py	01
13218	0.020 05-Koy-88	. 2^{\prime} vein material, 8^{\prime} altered diorite	01

13182	0.005 30-0ct-88 altered diorite, 3-51 carbonate, tr py.
13183	0.010 30-0ct-88 altered diorite, 3-5\% carbonate, tr py.
13185	0.890 03-Nov-88 vein material, 3-5\%f.g and cubic py

13435 tr 14-Nor-88 altered diorite 01
13437 tr 1 - $\mathrm{Hov}-88$ altered diorite, silicified diorite
134380.330 14-Mov-88 .6' altered dioritet. 4'vein, 3-58 py

13439

13196	0.010 04-Nor-88 altered diorite, tr py, 3-5\% carb.	01
13197	0.005 04-Mov-88 altered diorite, tr py, 3-5\% carb.	01
13198	0.010 04-Nov-88 silicified diorite, almost therty	01
13199	0.410 04-Nov-88 vein material with altered diorite 3-5\% py	01
13052	0.010 15-Nov-88 altered diorite, 3-51 carbonate	01
13053	$0.00515-$ Mor-88 altered diorite, 3-5\% carbonate	01
13051	$0.00515-\mathrm{Nov-88}$ altered diorite, tr py	01
13055	$0.62515-N o v-88$ silicified diorite w/qtz-carb vein	01
13056	$0.00515-\mathrm{Nov-88}$ strongly sheared diorite alnost schistose	

15056

13232
13233
13234
13235
15043
15044

15049
15050
15051
0.070 20-Nov-88 atz-tarb vein in back 3-54py
$0.00508-\mathrm{Nov}-88$ altered diorite, tr py, 1-34 carb
0.00508 -Nov-88 altered diorite, ir py, 1-3k carb
0.020 08-Nor-88 altered diorite. 1-31 f.g.py. 1-34 carb
0.620 08-Nor-88 . 35 ' silicilied vall rk, $\mathbf{2}^{\prime}$ qiz vein. 45^{\prime} diorite 01
0.060 20 -Nor- 88 altered diorite $v / 1$ qut carb vein
tf 20 -Nor- 88 altered diorite $w / .1$ qtz carb vein
Lf 20 -Noy-88 altered diorite, tr py
ir 20 -Nov- 88 altered diorite + serpentised diorite
0.005 20-Nov-88 otz-carb vein + seppentised diorite $3-5 \%$ py

Lectilom
3 'vest of stn
3 'vest of 5tn
3 'vest of 5tn
3 'west of stn
3 'vest of stn
13 'vest of station
24.3 'vest of station
24.3 'vest of station 24.3 'vest of station 24.3 'vest of station
35 'vest of station
35 'vest of station
35 'vest of station
35 'vest of station
46.9 'vest of station
46.9 'vest of station
46.9^{\prime} vest of station
56 'vest of station
56 'vest of station
56 'vest of station
56 'vest of station
65 'vest of station
65 'vest of station
65 'vest of station
65 'vest of station

77 ' vest of station
77 * vest of sation
77^{\prime} west of station
77 'veat of station
77 ' vest of station

39^{\prime} from sin

89 'vest of station
89 'vest of station
89 'vest of station
89 'vest of station
16 'vest of station

20 'vest of station
20 'vest of station
20 'vest of station

FROM TO TOTAL

0	3	3
3	6	3
6	8	2
8	10	2
10	11	1

0	3	3
3	6	3
6	7.2	1.2
7.2	8.2	1
8.2	9.2	1

0	3	3
3	6	3
6	7	1
7	8	1

0	2.5	2.5
2.5	5	2.5
5	6	1
6	7	1

0	2.5	2.5
2.5	5	2.5
5	6	1

0	3	3
3	5	2
5	6	1
6	7	1
0	3	3
3	6	3
6	7	1
7	8	1
0	3	3
3	6	3
6	7	1
7	8	1
8	9	1

randon saeple

0	3	3
3	6	3
6	7	1
7	8	1
0	4	4
4	8	4
0	4	1
4	7	3
7	8	1

13242
13243
13272
13273
1327
15052
15053
15054
15055
13275
13276
13277
13278
13279
15057
15058
15059

13261
13262
13263
13264
15061
15062
15063
15064
13281
13282
13283
15099
15100
15101
15102
15103
15104
15105

IR 09-Nov-88 altered diorite 18 carb veinlets 0.010 09-Kov-88 altered diorite 14 carb veinlets

TR 12-Mov-88 altered diorite 1% carb 0.210 12-Mov-88 vein materialt altered diorite 10-15y py 0.005 12-Nov-88 altered diorite tr py
0.00520 -Nor-88 altered diorite, tr py
tr 20 -Nor-88 altered diorite, tr py
$0.07520-\mathrm{Nov}-88$ silicified diorite 3-5\% f.g. py
0.510 20-Noy-88 qtz-carb vein + altered diorite $5-7$ Pap

TR 12-Nov-88 altered diorite 3-5\% carb

TR 12-Nor-88 allered diorite
0.01512 -Kor-88 altered diorite

TR 12-Nor-88 altered diorite
IR 12-Nor-88 altered diorite, tr-1\% f.g.py
0.010 20-Noy-88 altered diorite, tr py
tr 20 -Nov- 88 altered diorite, tr py 0.005 20-Nov-88 altered diorile $y / 1-3 \%$ py
0.320 20-Nov-88 atz-carb vein + altered diorite $3-5 \%$ py

Th 11-Nov-88 altered diorite 1-3\% cart

> tr 20 -Nov- 88 altered diorite, tr py
> 0.00520 -Nov- 88 altered diorite tr- 18 py
> 0.01020 -Nov- 88 silicified diorite + gtz carb vein
> 0.00520 -Noy- 88 altered diorite $/ 1-3 \%$ py 0.000 12-Nov-88 altered diorite $v /$ tr $1 . \mathrm{g}$. py
tr 23-Nov-88 altered diorite; tr-14py
0.00523 -Nov- 88 altered diorite w/qtz carb stringers
0.0523 -Nov-88 altered diorite +.1 'qtz carb vein 0.015 23-Nov-88 altered diorite w/several . 05 'qua tarb stringers 04-

IR 11 -Nov-88 altered diorite $1-3 \%$ carb

$$
\begin{array}{ll}
0.010 & 11 \text {-Nov-88 altered diorite, tr-19 f.g. py, } 1-34 \mathrm{carb} \\
0.750 \text { 11-Nov-88 atz-carb veintaltered diorite } 3-5 \% \mathrm{py}
\end{array}
$$

3

TR 12-Nov-88 altered diorite $w / 1-3 \%$ sart 03$0.00012-\mathrm{Nov}-88$ altered diorite $\mathrm{w} / \mathrm{tr} \mathrm{f} . \mathrm{g}$. oy

TR 12-Nov-88 altered diorite w/tr-1\% f.g. py
TR K2 Nor-88 altered diorite whr-1\% 1.g. py 03

Lecallow
0.015 23-Now-88 chloritic diorite $w /$ nulnerous qla cart veinlets 0.04523 -Nov-88 chloritic diorite $w /$ numerous giz carb veinlets 0.22 23-Noy-88 altered diorite $+.1^{\prime}$ qiz cart vein $3-5 \%$ py 04 01 04
0.010 13-Noy-88 altered diorite, tr-1\% py

Th 13 -Nor-88 altered diorite, tr-1\% py
0.03513 -Nov-88 altered diorite +1 to 15 ' vein, $1-3 \%$ py
0.135 13-Nor-88 .2' yein haterial 5-10\% py taltered diorite

Th 13-Nov-88 massive allered diorite tr-1: py

0.320 12-Mov-88 vein material + altered diorite, 5-10xpy

31.5	'vest of station	0	3
3			
31.5	'vest of station	3	6
3			
31.5	6	8	2
31.5 'vest of station station	8	9	1
31.5 'vest of station	9	10	1

10 'vest of station
10 'vest of station
40^{\prime} 'vest of station
10 'vest of station
202
02
02020202020202
31.5 'vest of station
2D2202

$$
\begin{aligned}
& 50 \text { 'vest of station } \\
& 50 \text { 'vest of station } \\
& 50 \text { 'vest of station } \\
& 50^{\prime} \text { vest of station } \\
& 50^{\prime} \text { 'vest of station }
\end{aligned}
$$

61 'vest of station
61 'vest of station
61 'vest of station
61 'vest of station
73 'vest of station
73 'vest of station
73 'vest of station
73 'vest of station
20 'vest of station
20 'vest of station
20 'vest of station
20 'vest of station
23.5 'vest of station
23.5 'vest of station
23.5 'vest of station

$0 \cdot$ vest of station	7	10	3
0 ', west of station	10	13	3
0 'vest of station	13	14	1
0 ' west of station	14	15	1

12, west of station	0	3	3
12 , vest of station	3	6	3
12, west of station	6	7	1
12 vest of slation	7	8	1

50 'vest of station	13	14	1
51.5 'vest of station	0	3	3
51.5 west of station	3	6	3
51.5 'vest of station	6	7	1
51.5 'vest of station	7	8	1
51.5 west of station	8	10	2

13430
13431
13432
13433
13434
15111
15112
15113
15114
15115
13058
13059
13060
13061
13062
13063

15121
15122
15123
15124
15125
15126
15127
15128
15129

15116
15117
15118
15119
15120
13088
13089
13090
13091
13092
15130
15131
15132
15133
15134
15135
tr 14-Noy-88 altered diorite
to 14-Nor-88 altered diorite tr-18 f.g. py
to 14-Nov-88 altered diorite 1-3\% 4.0.9y
0.100 14-Mor-88 . 6' altered diorite, 3^{\prime} vein 31 I.g.py
tf 14 -Nov-88 altered diorite tr-1\% f.g. py
tf 24-Nov-88 CHLORITIC DIORITE
tf 24 -Nov-88 sheared chloritic diorite w/qtz carb
0.07 24-Nov-88 diorite $v /$. 15^{\prime} qiz tarb vein $3-54$ py
tr 24 -Mov-88 strongly sheared diorite 1-3I py
0.06 24-Nov-88 chloritic diorite w/.2'giz carb vein 1-3i py
tr 15-Nov-88 altered diorite, 1-35 carb
$0.00515-\mathrm{Nov-88}$ altered diorite, $1-31$ carb
0.380 15-Nov-88 atz-carb veintdiorite, 1-3\%py
0.005 15-Nor-88 altered diorite, tr-14py
0.100 15-Nov-88 qtz cart veint diorite 3-51 f.g.py
tr 15 -Nov- 88 altered diorite + qtz carb vein

tr 24-Mov-88 altered diorite, blocky-barren
0.17 2i-Nor-88 silicified diorite w/numerous quz carb sigrs;5-10\%pot

If 24 -Nov-88 chloritized diorite w/ nuerous atz carb stgrs ol
0.01 24-Nov-88 chloritized diorite $\mathbf{v / . 1}$ 'qtz cart vn $1-81 \mathrm{py}$

If 24-Nov-88 altered diorite tr py
If 24-Nov-88 altered diorite; blocky ; tr py
0.0524 -Nor-88 silicified diorilei. 3^{\prime} qta carb vnitr-lif py
tf 21 -Nor- 88 strongly chloritized diorite; tr-14py
0.00524 -Nov- 88 silicified diorite $v / .0^{\prime}$ atz cart vein $1-3 \%$ py
I. 24 -Nov- 88 altered diorite $1-3 k$ py
0. 05 24-Nov-88 altered diorite $\mathbf{v / . 0 5}$ 'atz carb vein 5-10\%py
ti 24 -Nov-88 altered diorite w/.1' qtz carb vein $1-3 \%$ py
if 24 -Nor-88 chloritic diorite $4 / l^{\prime}$ quz carb vein tr py
If 17-Nor-88 altered diorite, tr py
0.01017 -Nor-88 altered diorite with solie vein material
0.010 17-Nov-88 altered diorite vith some vein haterial

If 17-Noy-88 altered diotite $4 / I^{\prime}$ gtz carb vein
0.005 17-Now-88 altered diorite, ir fy
nil 24-Noy-88 chloritized diorite; 3-51 py
0.005 24-Nov-88 silicified diorite; w/.l' atz cart vn; 1-3y py
0.00524 -Nov- 88 strgly steared t silicified diorite; $1-3 \mathrm{k}$ py
0.224 -Noy-88 aixed dioritedqutz carb vm ; tr-3kpy
tf 24-Nov-88 sheared and chloritized diorite; 1-3t py
It 24 -Nov- 88 aixture chloritic and massive diorite
0.00518 -Nov- 38 strongly sheared and chleritic diorite, tr py

STM

LOCATIOM
34.5^{\prime} vest of station 34.5' vest of station 34.5^{\prime} vest of station 34.5^{\prime} vest of station

> 48 'vest of stalion
> 48 'vest of station
> 18 'vest of station
> 48 'vest of station
> 48 'vest of station

57 ' vest of station 57 , vest of station $57^{\text {' west }}$ of station 57 ' vest of station 57 ' vest of station
66^{\prime} vest of station
66^{\prime} vest of station
66^{\prime} vest of station
$66^{\text {. }}$ vest of station
66^{\prime} vest of station
66^{\prime} vest of station
76^{\prime} vest of station 76^{\prime} vest of station 76^{\prime} vest of station 76^{\prime} vest of station
86^{\prime} vest of station

4 'vest of station 4' vest of station 4. vest of station 4' vest of station 4' vest of station

	' 'eet vest from stn	0	2	2
20	'1eet vest from sto	2	4	2
20	'feet west from stn	4	6	2
20	'1eet west from stn	6	7	1
20	'feet west from stn	7	8.2	1.2

$$
\begin{array}{lrrr}
34 \text { ' vest of station } & 0 & 1 & 1 \\
34 \text { 'vest of station } & 1 & 2 & 1 \\
34 \text { ' vest of station } & 2 & 3 & 1 \\
34 \text { ' vest of } 5 \text { tation } & 3 & 4.5 & 1.5 \\
34 \text { 'vest of station } & 4.5 & 6 & 1.5 \\
34 \text { 'vest of station } & 6 & 7.5 & 1.5
\end{array}
$$

FROK TO TOTAL

0	3	3
3	5.5	2.5
5.5	6.5	1
6.5	9.5	3

0	3	3
3	6	3
6	8	2
8	9	1
9	10	1
0	3	3
3	5.5	2.5
5.5	6.5	1
6.5	9.5	3
9.5	10.5	1

0	4	4
4	7	3
7	8	1
8	12	4
12	13	1
13	14	1

0	1	1
1	1	3
4	5.5	1.5
5.5	8.5	3

0	1	1
1	3	2
3	4.5	1.5
4.5	5.5	1
5.5	7.5	2

$\begin{array}{lll}0 & 1.5 & 1.5\end{array}$

1.5	3	1.5
3	4	1
4	6	2
6	8	2
0	2	2
2	4	2
4	6	2
6	7	1
7	8.2	1.2

48.5 'vest of station

SAKPLE
0.015 19-Nor-88 felsic unit w/ clear qtz stock work veining $1-5 \%$ py05 0.010 19-Nor-88 felsic unit w/ clear qtz stock work veining $1-5 \%$ py05 0.010 19-Nor-88 felsic unit w/ clear qiz stock vork veining l-5l py05 0.005 19-Nor-88 felsic unit w/50he qtz carb vein $1-5 \$$ py $\quad 0.5$ 0.050 19-Nor-88 felsic unit + allered diorite 1-5\% py
0.035 25-Nov-88 audsean, sheared diorite w/qtz cart vein atl
0.05 25-Nov-88 audsean, sheared diorite w/qtz carb vein intl

Lt 25 -Nov-88 felsic intrusive w/stk york gtz veining 0.005 25-Nov-88 felsic intrusive v/sik work qtz veining 0.0125 -Nor-88 felsic intrusive $v /$ sik work qiz veining 0.0125 -Nor-88 felsic intrusive w/stk work qtz veining

0.28 24-Nov-88 strongly silicifiedtsheared diorite gabbro, transitiD5
 0.12 24-Nov-88 strongly silicifiedtsheared diorite gabbro, transitios
 0.01 24-Nor-88 silicified tsheared diorite-gabtro, numerous giz car05 If 24-Nor-88 coarse grained diorite; ir py
 05

nil 20 -Nov-88 qtz-diorite, gabbro, l-3k silica infilling Lt $20-\mathrm{Nov-88}$ qtz-diorite, gabbro, 1-3k silica infilling If 20 -Nov- 88 chloritic diorile w/.1' glz carb vein tr. Py if 20 -Nov-88 telsic + altered diorite tr-34 py

Lf 25-Noy-88 altered gabbro in contact w/ felsic intrusive
if $25-\mathrm{Noy-88}$ felsic intrusive $\mathrm{v} /$ stock work qtz veining
Li $25-$ Nov- 88 felsic intrusive $v /$ stork work qlz veining
if 25 -Nov-88 felsic intrusive w/ stock work qtz veining
tr 25-Nov-88 gabbro tr py, tr atz carb veining
tr $25-\mathrm{Nov}-88$ transition zone gabbrotfelsic intrusives
It $25-\mathrm{Nov}-88$ felsic intrusive
nil 21-Noy-88 massive gabbro, chloritic in places ir ay It 21 -Nov-88 aassive gabbro, chloritic in places tr py tr 21 -Nov-88 aixture gabbro + transition zone(gabbro telsic unit06
tr 25 -Nov-88 gabtro -tr py
tr 25 -Nov-88 gabbro -tr PY
0.04 25-Nov-88 gabbro w/ .35' alz carb vn, tr-1Kpy

It 22 -Nov-86 strongly silicified gabbro
0.06 22-Nov-88 strongly silicified gabtro w/.3' qtz carb vein 07 0.0922 -Nov-88 strongly silicified gabbro w/nunerous qiz carb vein07 05

06 06

07

D7

LOCATION
48.5 'vest of station
48.5 'vest of station
48.5 'vest of station
48.5 'vest of station
58 'vest of station

68 'west of station
68 'vest of station
68 'vest of station
68 'vest of station

81 'vest of station	02	2
81 'vest of station	24	2
81 'west of station	16	2
81 'vest of station	68	2
81 'vest of station	$8 \quad 10$	2

randon sa ERR
randon sa ERR
randol sa ERR
FROH TO TOTAL

FROH	TO	TOTAL
2	3.2	1.2
3.2	5	1.8
5	6	1
6	8	2
0	1	1
1	2	1
2	4.5	2.5
4.5	6.5	2
6.5	8	1.5
0		
1.5	1.5	
1.5	3	1.5
3	5	2
5	9	4
0	2	2
2	1	2
1	6	2
6	8	2
6	10	2

011
121
24.52 .5
$4.56 .5 \quad 2$
6.581 .5
$\begin{array}{lll}0 & 1.5 & 1.5\end{array}$
1.531 .5
$3 \quad 5 \quad 2$
594

83 'vest of station
 83 'vest of station

17 'vest of station
17 'vest of station
17 'vest of station
69 'west of station
69 'vest of station
69 'vest of station
39 'vest of station
39 'vest of station
39 'vest of station
49.5 'vest of station
49.5 'vest of station
49.5 'west of station

86 'vest of station
86 'vest of station
86 'vest of station
86 'vest of station
102 'vest of station
102 'vest of station
102 'vest of station
102 'vest of station
5 'vest of station
5 'vest of station
5 'vest of station
5 'vest of station
4.5 'rest of stan

0	2	2
2	4	2
4	6	2
6	8	2
0	2	2
2	4	2
4	6	2
6	8	2
0	2	2
2	4	2
4	6	2
6	8	2
0	3	3
3	5	2
5	8	3
0	4	4
1	8	4
8	10	2
0	4	4
4	6	2
6	8	2
0	3	3
3	4	1
4	5	1

15081
15082
15161
15162
15163
15164
15165
15166
15167 0.225 25-Nov-88 gabbro v/ . 15 ' qle carb vn; l-3łpy itr cpy
0.1425 -Nor-88 gabbro w/ nud filled stear; tr-14py
t. 25 -Nor-88 gabbro w/ numerous quz carb stringers
0.01 $25-$ Nov-88 gabbro $/$ numerous qtz carb stringers

SAMPLE GINUE DATE DESCRIPIION STH
ti 22-Nov-88 siliscous gabbro, nullerous carb veins nil 22 -Nov-88 silicious gatbro
0.045 25-Nor-88 gatbro w/ . 3^{\prime} qti carb vn, tr-12py

If 25 -Nov-88 gabbro
If $25-\mathrm{Nop}-88$ gabbro
0.21 25-Hov-88 silicified gabbro $w / .3^{\prime}$ glz carb vn; tr-1\% py

Lr 25-Nov-88 gatbro; tr-14py
0.005 25-Noy-88 gabbro ; tr py

15168
15169
15170

LOCAIIOK
49.5 'vest of station

49.5 'vest of station

59 'vest of station
59 'vest of station 59 'vest of station

69 'vest of station
69 'vest of station
69 'vest of station
07 07

07

[^2]teeshin resources limited hicks lake froject 1988

SAFPLE GRADE DATE DESCRIPTION
$131510.11021-0 \mathrm{ct}-88$ quarrz vein material frok slash
$131520.11521-0 \mathrm{ct}-88$ quartz VEIN MATERIAL FROM SLASH
$131640.75023-0 \mathrm{ct}-88$ nixtured veintaltered diorite
131650.700 23-0tt-88 QT2. vein 3-5! f.g. py. tr cpy.
$131660.10024-0 \mathrm{ti}-88 \mathrm{Q}$ Q2. vein $3-58$ f.g. py. tr cpy.
$131670.02024-0 \mathrm{ct}-88$ of2. vein $3-51$ f.g. py. ir cpy.
131680.320 24-0tt-88 Q 12 . vein $3-58$ f.g. py. tr coy.
131770.040 29-0ti-88 vein waterial fron slash, $1-3$ zif.g.py
$131780.13029-0 \mathrm{ct}-88$ 3tcartonate trace tpy
131790.215 29-0tt-88 3karbonate trace cpy
131800.020 29-0ct-88 3lcarbonate trace cpy
131810.365 29-0tt-88 3karbonate trace cpy
132210.010 07-Nov-88 al lered diorite w/.1' gtz carb. vein, l-34py
131860.07004 -Nov-88 vein material, $3-5 \% \mathrm{ig}$ diss. and cutic py
$131890.13004-\mathrm{Nov-88}$ vein naterial, $3-5 \mathrm{fg}$ dis5en and cubic py
$13190 \quad 0.53004$-Nov-88 vein waterial, $3-5 \mathrm{t}_{\mathrm{f}} \mathrm{fg}$ dis5en and cubic py
131910.22004 -Nov-88 vein raterial, $3-51 \mathrm{fg}$ dissen and cubic py
$131920.21004-N o v-88$ vein uaterial, $3-51$ fg digsen and cubic py
13267 TR 11 -Nov- 88 qtz-carb veinlet w/amphibole frags
131930.36004 -Nov- 88 vein material, $3-51$ ig dis5en and cubic py
131940.27004 -Nov- 88 vein haterial, $3-58 \mathrm{fg}$ dissen and cubic py
131950.27004 -Nov-88 vein haterial, $3-51 \mathrm{fg}$ dissem and cubic py
132100.15006 -Nov-88 vein material tr Ho, 3-5\% f.g. py
132110.11006 -Nov-88 vein uaterial tr Mo,3-58 f.g. py
132120.06506 -Nov-88 vein uaterial tr Mo, 3-5\% f.g. py
132650.00511 -Nov-88 serpentized diorite wall rk
132660.00511 -Nov-88 pod of f.g.py in altered diorite
132270.09508 -Nov- 88 vein naterial fron slash
132280.12508 -Nov- 88 vein material frok slash
132220.14007 -Nov-88 . I'ghz carb vein vertical in facew/ 1-38 f.g. py
$132290.23008-N o v-88$ vein material from slash
$13230 \quad 0.21008$-Nov-88 vein haterial from slash
132310.21508 -Nov-88 vein taterial fron slash
132440.26009 -Nov- 88 vein material; frof slash
$132450.39009-$ Kiov- 88 vein material; fron slash
13246 1.070 09-Nov-88 vein material; from slash
132470.085 09-Nov-88 vein material; frow slash
$13250 \quad 0.140$ 10-Nov- 88 vein material fron slash
$132510.12010-\mathrm{Nov}-88$ vein material fron slash
132540.265 10-Nov-88 vein material from slash
132550.320 10-Nov-88 vein haterial from slash
132560.155 10-Nov- 88 vein haterial frou slash
132570.025 10-Nov-88 vein haterial from slash
$132580.035 \quad 10$-Nov-88 vein material fron slash
132850.03512 -Nov- 88 vein material fron slash
$132860.055 \quad 12$-Nov- 88 vein haterial frou slash
132870.02012 -Nov- 68 vein haterial fron slash
$13288 \quad 0.030 \quad 12$-Nor- 88 vein naterial from slash
$13289 \quad 0.360$ 12-Nov-88 vein haterial from slash
132900.09012 -Nov- 88 vein material fron slash
132840.00012 -Nov-88 qta-tarb veinlet vitr py thinor anphibole

D1 0-3' FRDM STATION
OI O-3' fron station
013.0 to 24.3^{\prime} from station

DI 3.0 to 24.3^{\prime} fron station
013.0 to 24.3^{\prime} fron station
3.0 to 24.3' from station 324.313 .6
013.0 to 24.3^{\prime} from station 324.313 .6
0124.3 to 38.4 from sta 24.38 .131 .3
0121.3 to 38.4 fros stn
24. 38.431 .3
0124.3 to 38.4 from stn
0124.3 to 38.4 froe stn

D1 24.3 to 38.4 from stn
D1 31-37' fron stn
D1 39.1-46.9' fron sin
01 39.1-46.9' from stin
01 46.9-56' fromstn
D1 46.9-56' froustn
D1 16.9-56' froustn
Di 52' from stn
D1 55-65' frol stn
D1 55-65' (ron sin
01 55-65' fron stn
D1 65-75.5' from stn
01 65-75.5' frou stn
01 65-75.5' fros stn
01 75-77' fron sin
01 75-71' fron stn
01 71-82' frol sin
01 14-82' from stn
0189 tron stm
02 10-20' frous stn
02 10-20' from stin
02 10-20' frous stn
02 20-28' froustn
02 20-28' fron stn
02 28-31' frous stn
02 28-31' from stn
02 34-39' fron stn
02 34-39' from stn
02 39-47' from stn
02 39-47' frous stn
02 39-47' frow stn
02 47-55' frol stn
02 47-55' frous stn
03 2-10 fron stn
03 2-10' fron sin
03 2-10' fron sin
03 10-18' from stn
03 10-18' fron stn
D3 $10-18^{\prime}$ frou stn
03 23.5' from \sin
24. 38.131 .3
24. 38.431 .3
24. 38.431 .3
$34 \quad 3735.5$
39. 16.943 .1
39. 16.943 .1
46. 5651.4
46. 5651.4
46. 5651.4
$52 \quad 52 \quad 52$
$55 \quad 65 \quad 60$
$55 \quad 65 \quad 60$
$55 \quad 65 \quad 60$
6575.570 .2
6575.570 .2
6575.570 .2
$\begin{array}{lll}75 & 77 & 76\end{array}$
$\begin{array}{llll}75 & 77 & 76\end{array}$
$\begin{array}{lll}74 & 82 & 78\end{array}$
$\begin{array}{ll}74 & 82\end{array} 78$
$89 \quad 89 \quad 89$
$\begin{array}{lll}10 & 20 & 15\end{array}$
$\begin{array}{lll}10 & 20 \quad 15\end{array}$
$\begin{array}{lll}10 & 20 & 15\end{array}$
$\begin{array}{lll}20 & 28 & 24\end{array}$
$\begin{array}{lll}20 & 28 & 24 \\ 28 & 34 & 31\end{array}$
$28 \quad 34 \quad 31$
$34 \quad 3936.5$
$34 \quad 3936.5$
$39 \quad 47 \quad 43$
$39 \quad 47 \quad 43$
$\begin{array}{lll}39 & 47 & 43\end{array}$
$47 \quad 55 \quad 51$
$17 \quad 55 \quad 51$
$2 \quad 10 \quad 6$
$210 \quad 6$
$2 \quad 10 \quad 6$
$\begin{array}{lll}10 & 18 & 14\end{array}$
$\begin{array}{lll}10 & 18 & 14\end{array}$
$10 \quad 18 \quad 14$
23. 23.523 .5
132910.620 13-Nov-88 yein material from slash
132920.150 13-Nov-88 vein waterial from slash
132930.075 13-Nov-88 vein uaterial from slash
132960.030 13-Nov-88 vein material frow slash
132970.125 13-Nov-88 vein material fron slash
132980.080 13-Nov-88 vein haterial fron slash
132940.030 13-Nov-88 altered diorite
132950.005 13-Nov-88 allered diorite
132990.120 13-Hov-88 vein taterial from slash
133000.450 13-Nov-88 vein material from slash
134010.215 13-Nov-88 vein waterial from slash
131020.010 13-Nov-88 altered diorite 3-5\% f.g. py

13403 TR 13-Nov-88 altered diorite 3-5! 1.g. py
134040.035 13-Nov-88 vein uaterial from slash
134050.03513 -Nov-88 vein waterial fron slash
134060.025 13-Nov-88 vein naterial fron slash
134140.00514 -Nov- 88 vein material from slash

13415 tr 14 -Nov- 88 vein material from slish
$134160.00514-$ Nov- 88 vein haterial fron slash
134190.200 14-Nov-88 vein uaterial fron slash
134200.00514 -Nov- 88 vein waterial fron slash
$134210.12014-N o v-88$ vein uaterial from slash
134240.010 14-Nov-88 vein material fron slash
134250.015 14-Nov-88 vein material fron slash
134260.01014 -Nov-88 vein naterial from slash
$134270.010 \quad 14$-Nov-88 vein material fron slash
134280.06514 -Nov-88 vein naterial fron slash
$134290.050 \quad 14$-Nov-88 vein uaterial fron slash
$134420.150 \quad 15$-Nov-88 vein material froh slash
$134430.01515-\mathrm{Nov-88}$ vein haterial from slash
$13440.02515-\mathrm{Nov-88}$ vein material from slash
$130510.050 \quad 15-$ Nov- 88 vein material fron slash
134490.075 15-Nov-88 vein material from slash
$13450 \quad 0.100 \quad 15-N o v-88$ vein waterial fron slash
$130570.080 \quad 15-N o v-88$ vein uaterial from slash
$130640.040 \quad 15-\mathrm{Nov}-88$ vein material from slash
130650.010 15-Nov-88 vein material from slash
$13056 \quad 0.050 \quad 15-N o v-88$ vein material from slash
$130670.030 \quad 15$-Nov-88 vein material from slash
$13069 \quad 0.00516$-Nov-88 altered diorite + vein material- round taken as ore04 $73-80$ from stn
$13070 \quad 0.00516$-Nov-88 altered diorite + vein material- round taken as ore0d $73-80$ from sin
130710.00516 -Nov-88 altered diorite + vein material-round taken as ore04 73-80 fron sin

13072 tr 16-Nov-88 altered diorite + vein naterial- round taken as ore04 80-86' fron stn
$130730.00516-N o v-88$ altered diorite + vein aterial- round taken as ore04 $80-86^{\prime}$ from stn
130740.010 16-Nov-88 altered diorite + vein material- round taken as ore04 80-86' from stn

13075 tr $16-\mathrm{Nov}-88$ altered diorite + vein material-round taken as ore0d $80-86^{\prime}$ frow stn
$130760.00516-$ Nov- 88 altered diorite + vein material- round taken as ore04 86-94' fron stn
13077 tr 16 -Nov- 88 allered diorite + vein material-round taken as ore04 86-94' from stn
$130780.00516-\mathrm{Nov}-88$ altered diorite 4 vein material-round taken as ore04 86-94' fron stn
130790.00516 -Nov-88 altered diorite + vein material- round taken as ore04 86-94' from sin
$13080 \quad 0.08016$-Nov- 88 altered diorite + vein material-round taken as oreDS 1.5-8.5 from stn
130810.06016 -Nov-88 altered diorite + yein material- round taken as oreDS 1.5-8.5 fron 5 in
$130820.010 \quad 16$-Nov- $\$ 0$ altered diorite + vein aterial-round taken as oreD5 1.5-8.5 fron sin
130830.090 16-Nov-88 altered diorite + vein aterial-round taken as ore05 1.5-8.5 from stn
tr 16 -Nov- 88 altered diorite + vein material- round taken as ore05 $8.5-14$ from stn

03 18-30.5' from sta
03 18-30.5' fron sta
Q3 18-30.5' iron sta
03 30.5-38' from sta
03 30.5-38' fron stn
03 30.5-38' fron stn
03 38' from stn
03 38 ' frous stn
03 38-41' froll stn
03 38-11' from stn
03 38-11' frou stn
03 45.5' from sin
0345.5^{\prime} fron stn
03 41.5-51.5' from stn
03 4.5-51.5' from stn
03 41.5-51.5' from stn
03 51.5-58.51 frou stn
03 51.5-58.5' from stn
03 51.5-58.5' frow stn
03 58.5-65.5' froe stn
03 58.5-65.5' frou stn
03 58.5-65.5' from stn
03 65.5-72.0' from stn
03 65.5-72.0' frow stn
03 65.5-72.0' from stn 04 41.5-48' from stn
04 41.5-48' from stn
04 11.5-48' fron stn
04 48-55' from stn
04 48-55' frou stn
04 48-55' from stn
04 55-61' fron sin
04 55-61' from stn
04 55-61' from stn
04 62-66' fron stn
0466 FEET FROM STA
0466 FEET FROM STA
0466 FEET FROM STA
0466 FEET FROM STA
ore04 73-80 from sin \qquad

1830.524 .2
1830.524 .2
1830.524 .2
30. 3834.2
30. 3834.2
30. 3834.2
$\begin{array}{lll}38 & 38 & 38\end{array}$
$38 \quad 38 \quad 38$
$38 \quad 4139.5$
$38 \quad 4139.5$
$38 \quad 4139.5$
45. 45.545 .5
45. 45.545 .5
11. $\$ 1.546 .5$
4. 51.546 .5
4. 51.546 .5
51. $58.5 \quad 55$
51. $58.5 \quad 55$
51. $58.5 \quad 55$
58. 65.562
58. 65.562
58. $65.5 \quad 62$
65. 7268.7
65. 7268.7
65. 7268.7
41. 4844.7
4. 4844.7
11. 4844.7
$48 \quad 5551.5$
$48 \quad 5551.5$
$48 \quad 5551.5$
$\begin{array}{lll}55 & 61 & 58\end{array}$
$\begin{array}{lll}55 & 61 & 58 \\ 55 & 61 & 58\end{array}$
$\begin{array}{lll}62 & 66 & 64\end{array}$
$\begin{array}{lll}62 & 66 \quad 64\end{array}$
$73 \quad 8076.5$
$73 \quad 8076.5$
$73 \quad 8076.5$
$73 \quad 8076.5$
$\begin{array}{lll}80 & 86 & 83\end{array}$
$80 \quad 86 \quad 83$
$\begin{array}{lll}80 & 86 & 83\end{array}$
$\begin{array}{lll}80 & 86 & 83\end{array}$
$\begin{array}{lll}86 & 94 & 90\end{array}$
$\begin{array}{lll}86 & 94 & 90\end{array}$
$\begin{array}{lll}86 & 94 & 90\end{array}$
$86 \quad 94 \quad 90$
1.58 .55
1.58 .55
1.58 .55
$1.58 .5 \quad 5$
$8.5 \quad 1411.2$

NUCK SABEDES

13085
13086
13087

13093

13094
13095
13096
13097
13098
13099
13100
15001
15002
15003
15004
15005
15006
15007
15008
15014
15015
150170.075 18-Nov-88 altered dioriletvein naterial round taken as ore
150180.015 18-Nov-88 altered dioriletvein material round taken as ore
150190.220 19-Nov-88 altered dioriletvein material round taken as ore

15020 0.015 19-Nov-88 allered dioritetvein naterial round taken as ore
150210.010 19-Nov-88 allered dioriletrein material round taken as ore
150220.145 19-Nov-68 allered dioritetvein material round taken as ore

15023 0.085 19-Nov-88 altered dioritetvein waterial round taken as ore
150240.125 19-Nov-88 allered dioritetvein naterial round taken as ore

15025 0.455 19-Nov-88 allered dioritetyein material round taken as ore 150260.050 19-Nov-88 altered dioritetvein naterial round taken as ore 150270.060 19-Nov-88 allered dioritetvein material round taken as ore 150280.075 19-Nov-88 altered dioritetvein material round taken as ore 150290.065 19-Nov-88 altered dioritetvein material round taken as ore $150350.01520-\mathrm{Nov-88}$ wainly felsic unit, round taken as ore
150360.01020 -Nov- 88 mainly felsit unit, round taken as ore
$150370.01020-N o v-88$ mainly felsic unit, round taken as ore $150380.00520-N o v-88$ mainly felsit unit, round taken as ore
15039 tr 20 -Nov-88 mainly felsic unit, round taken as ore
15040 tr $20-N o v-88$ wainly felsic unit, round taken as ore ir $20-\mathrm{Nov-}-88$ mainly felsic unit, round taken as ore
tr $20-\mathrm{Nov}-88$ mainly felsic unit, round taken as ore $0.0522-$ Nov- 88 silicified gatbro, round taken as ore
tr 22 -Nov- 88 silicified gatbro, round taken as ore 150850.00522 -Nov-88 silicified gabbro, round taken as ore tr 22 -Noy- 88 silicified gabbro, round taken as ore $0.0223-\mathrm{Nov}-88$ silicified gattro, round taken as ore
tr 23-Nov-88 silicified gabbro, round taken as ore 0.005 23-Nov-88 silicified gabbro, round taken as ore Ir 23 -Nov- 88 silicified gattro, round taken as ore $0.00523-\mathrm{Nov}-88$ silicified gabtro, round taken as ore $0.00523-\mathrm{Nov}-88$ silicified gabbro, round taken as ore
tr 23 -Nov- 88 silicified gatbro, round taken as ore
tr 23 -Nov-88 silicified gabbro, round taken as ore 15095

Ir 16-Nov-88 altered diorite + vein aterial-round laken as ore05 8.5-14 from stn $0.00516-\mathrm{Nov}-88$ allered diorile + vein material- round taken as ore05 $8.5-14$ from stn 0.005 16-Nov-88 altered diorite + vein material- round taken as ore05 8.5-14 from stn 0.03017 -Nov-88 altered diorite + vein waterial- round taken as ore05 20-27' from stn 0.120 17-Nov-88 allered diorite + vein material- round taken as oreD5 20-27' from stn 0.075 17-Nov-88 altered diorite + vein aterial- round taken as ore05 20-27' from stn 0.015 17-Mov-88 altered diorite + vein naterial-round taten as ore05 20-27' from stn 0.00518 -Nov-88 altered diorite + vein material- round taken as ore05 27-34' fron stn 0.370 18-Nov-88 altered diorite + vein material- round taken as ore05 27-31' from stn 0.010 18-Nov-88 altered diorite + vein aterial-round taken as ore05 27-34' from 5 tn 0.240 18-Nov-88 altered diorite + vein aterial-round taken as ore05 27-31' fron stn 0.05018 -Nov- 88 altered diorite + vein nalerial-round taken as ore $0534-12^{\prime}$ from stn 0.125 18-Nov-88 altered diorite + vein saterial- round taken as ore05 34-42' from stn 0.00518 -Nov-88 altered diorite + vein naterial- round taken as ore05 34-12' fron stn 0.02018 -Nov- 88 altered diorite + vein waterial-round taken as ore $0534-42^{\prime}$ from stn 0.145 18-Noy-88 altered diorite + vein material-round taken as ore05 $42-48.5^{\prime}$ fron stn 0.120 18-Nov-88 altered diorite + vein aterial-round taken as ore05 $\mathbf{1 2 - 4 8 . 5 \text { fron stn }}$ 0.260 18-Nov-88 altered diorite + vein material- round taken as ore05 12-48.5' fron stn 0.080 18-Nov-88 altered diorite + vein material-round taken as ore05 42-48.5' from stn 0.025 18-Nov-88 altered dioritetvein naterial round taken as ore D5 48.5-55.5' from 5 n 05 18.5-55.5' from stn 05 18.5-55.5' fron stn 05 48.5-55.5' from stn 05 55.5-63' from stn 05 55.5-63' from stn 05 55.5-63' from stn 05 55.5-63' from stn 05 63-71' from 5 m D5 63-71' from stn 05 63-71' from 5tn DS 63-71' from stn D5 71-81' from stn 05 71-81' fromstn 05 71-81' froes stn 05 71-81' frow stn D5 81-88' from stn D5 81-88' frow stn 05 81-88' from stn 05 81-88' from 5 tn 05 88-96' frow 5 tn 05 88-96' frous stn 05 88-96' frow stn 05 88-96' from 5tn 07 49.5-56' fron sin 07 49.5-56' fron stn 07 49.5-56' from stin 07 49.5-56' from stn 07 56-63' from station 07 56-63' from station 07 56-63' from station 07 56-63' from station 07 63-68' from station 07 63-68' from station 07 63-68' from station 07 63-68' from station 07 68-72.5' from station

8.5	14	11.2
8.5	14	11.2
8.5	14	11.2
20	27	23.5
20	27	23.5
20	27	23.5
20	27	23.5
20	27	23.5
20	27	23.5
20	27	23.5
20	27	23.5
34	42	38
34	42	38
34	42	38
34	12	38

4248.545 .2
4218.545 .2
4248.545 .2
4248.545 .2
48. $55.5 \quad 52$
48. $55.5 \quad 52$
48. $55.5 \quad 52$
48. $55.5 \quad 52$
55. 6359.2
55. 6359.2
55. 6359.2
55. $\quad 6359.2$
$\begin{array}{lll}63 & 71 & 67\end{array}$
$63 \quad 71 \quad 67$
$\begin{array}{lll}63 & 71 & 67\end{array}$
$\begin{array}{lll}63 & 71 & 67\end{array}$
$\begin{array}{lll}71 & 81 & 76\end{array}$
$7181 \quad 76$
$71 \quad 81 \quad 76$
$7181 \quad 76$
818884.5
818884.5
818881.5
818884.5
$88 \quad 96 \quad 92$
$\begin{array}{lll}88 & 96 & 92\end{array}$
$\begin{array}{lll}88 & 96 & 92\end{array}$
$88 \quad 96 \quad 92$
49. 5652.7
49. 5652.7
49. 5652.7
49. 5652.7
$56 \quad 6359.5$
$56 \quad 6359.5$
$56 \quad 6359.5$
$56 \quad 63 \quad 59.5$
$63 \quad 6865.5$
$63 \quad 6865.5$
$63 \quad 6865.5$
$63 \quad 6865.5$
6872.570 .2
150960.02 23-Nov-88 silicified gabbro, round taken as ore
150970.123 -Hov-88 silicified gabbro, round taken as ore 15098 0.06 23-Hoy-88 silicified gabbro, round taken as ore
07 68-72.5' from station 6872.570 .2
07 68-72.5' from station 6872.570 .2

UICKS LAKE PROJECT FACE SAKPLES

TEESHIN RESOURCES LIMITED
HICXS Lake PROJECT 1988
SAMPLE GRADE DATE DESCRIPIION

13158
13159
13160
13161
13162
13163
13173
13174
13175
13176
13184
13187
13188
13200
13201
13202
13208
13209
13213
13214
13219
13220
13223
13224
13225
13226
13236
13237
13238
13239
13240
13241
13248
13249
13252
13253
13259
13260
13268
13269
13270
13271
13412
13413
13417
13418
13422
13423
13435
13440
13441
in 21-0ct-88 F altereo diorite
Tr 21-0ct-88 F altereo diorite
TR 22-0ct-88 F altered diorite
tr 22-0tt-88 F altereo diorite
$0.01023-0 \mathrm{ct}-88 \mathrm{~F}$ ALTERED DIORITE $1-3 \%$ carb. tr-1\% py.
$0.00523-0 \mathrm{ct}-88 \mathrm{~F}$ ALTERED DIDRITE $1-3 \%$ carb. tr-1\% py.
$0.00524-0 \mathrm{tt}-88 \mathrm{~F}$ altered diorite, intense carb veining, str.chlorite
TR $24-0 \mathrm{Ct}-88 \mathrm{~F}$
TR 26-0tt-88 F
TR 26-0ti-88 F $0.00531-0 \mathrm{ct}-88 \mathrm{~F}$
$0.00530-0 \mathrm{tt}-88 \mathrm{~F}$
TR $30-0 \mathrm{Ct}-88 \mathrm{~F}$
TR 04-Noy-88 F
TR 05 -Nov-88 F
TR 05-Nov-88 F
0.005 06-Nov-88 F
0.005 06-Nor-88 F

TR 06-Nor-88 F
TR 06-Nor-88 F
TR 07-Hov-88 F 0.005 07-Nov-88 F 0.010 08-Nov-88 F WIL 08-Hov-88 F
TR 08-Nor-88 F
TR 08-Mor-B8 F 0.005 08-Nov-88 F

TR 09-Nov-88 F 0.005 09-Nor-88 F 0.060 09-Nor-88 F

TR 09-Noy-88 F
TR 09-Noy-88 F
TR 10-Nov-88 F
TR $10-\mathrm{Nor}-88 \mathrm{~F}$ $0.00510-\mathrm{Nor}-88 \mathrm{~F}$

TR 10 -Nov-88 F
TR 11 -Nov-88 F 0.420 11-Nov-88 f

TR 11 -Nov-88 f
TR 11-Mor-88 F
TR 12 -Nor-88 F 0.000 12-Nor-88 F
tr 14 -Nor-88 F 0.010 14-Noy-88 F

If 14 -Nov-88 F
tr 14-Nor-88 F $0.020 \quad 14$-Nor-88 F
tr 14 -Nov-88 F 0.080 14-Hor-88 F 0.00515 -Nar-88 F
. I'quz-tarb veinlet 3-5\% py
altered diorite, intense carb veining, str.chlorite
altered diorite, strongly sheared, chloritized
altered diorite, strongly sheared, chloritized
altered diorite, $3-5 \%$ carbonate, tr py.
altered diorite, $3-5 \%$ carbonate tr. py
altered diorite, 3 -5x carbonate tr. py
intensely silicified diorite almost cherty
altered diorite, tr py, 3-58 carb
altered diorite, tr py, 3-58 carb
altered diorite. highly fracturedby carb. vein
altered diorite. highly fracturedty carb. vein
altered diorite, it py,highly fractured 3-5\% carb
altered diorite, tr py,highly fractured 3 -5x carb
altered diorite, $3-5 \%$ carb
altered diorite, $3-5 \%$ carb
altered diorite, tr pyrite
altered diorite, tr pyrite
altered diorite $3-5 \%$ carb veinlets tr py
altered diorile $3-5 \%$ carb veimets tr py
.05uide qtz-carb stringer IX f.g.py.
altered diorite, strongly sheared, chloritized altered diorite, strongly sheared, chloritized
.2- 3^{\prime} gtz carb veinlets perp to vein
altered diorite, $1-3 \%$ carb
altered diorite, $1-3 k$ carb
altered diorite
altered diorite
altered diorite trill f.g. py.
altered diorite tr-1: f.g. py.
altered diorite
altered diorite
altered diorite tr py
altered diorite tr py
altered diorite
altered diorite
altered diorite, tr-l: f.g.py
altered diorite, tr-11 f.g.py
altered diorite tr-18 f.g.py
altered diorite tr-18 f.g.py
altered diorite tr py
altered diorite tr py
altered diorite silicified in places, ir-lipy
altered diorite silicified in places, tr-lipy

LENGTH
 STRLDCATION
 FROM TO TOTAL

01 +14.4' from station
D1 +14.4' from station
$01+19.0^{\prime}$ from station
$01+19.0$ from station
$01+24.3^{\prime}$ from station
D1 24.3^{1} from station 01 distance from siation 31 .randon sanple
Dl distance from station 31 . random sample
01 39.4' from stn random sample
0139.4 from stn randon sample

01 60.7' from stn random sample
01 5a.5' fron stn random sample
0154.5^{\prime} froe stn random sample
01 72' from stn randon sample
01 72^{\prime} tronstn randon sample
Di 72^{\prime} from stm randoe sample
0175.5^{\prime} from stn random saiple
01 75.5' from stn randon sample
$\begin{array}{ll}0175.5^{\prime} \text { fron stn } & \text { randon sample } \\ 0179.5^{\prime} \text { fron stn } & \text { randon sample }\end{array}$
01 79.5' frou stn randon sauple
01 84' fron stin randou sample
01 84' fron stn randon sample
0196^{\prime} fron stn
Di 96' fron 5tn
02 24 frous stn
D2 24' fron stm
0231 fron stm
02 38' from stin
0238^{\prime} from stm
02 38' froll sta
02 it' froustm
02 44' from stm
0255 from stm
0255 froe stm
0262^{\prime} from stn
0262^{\prime} fram stm
0269^{\prime} froe stn
02 69' from stn
D3 16.5^{\prime} from stn
03 16.5' from stn
03 23.5' from stin
D3 23.5' from sin
D3 58.5^{\prime} from stn
03 58.5' from 5 in
0365.5^{\prime} from stn
0365.5^{\prime} from stn
03 72' fron 5 in
0372 from stn
047^{17} fron stn
04 54' fron stin
044^{\prime} fron 5 tin
rando sample
randon sample randon sample
randon sample
randon sample
random sauple
randow sample
random sample
randok sample
randoe sample
chip sanple ir
chip saaple if
chip sample ir
chip sanple if
thip sample if
thip sample fo
chip sauple it
chip sample if
thip sample ir
thip sample fo
thip sample fr
chip sample ir
thip sample fr
chip sample ir
thip sample ir
thip sample if
randon sample
random sample
random sample
randow sample
randow sample
randou sample
randow sample
random sample
randow sample

	$0.10015-\mathrm{Nov-88} \mathrm{~F}$	altered diorite, tr-iz f.g.py
13446	0.010 15-Nov-88 F	altered diorite, tr-1\% f.g.py
13447	0.00515 -Hov-88 F	altered diorite, tr-18 f.g.py
13448	Lr 15-Nov-88 F	altered diorite, ir-1\$ f.g.py
15065	0.005 20-Nor-88 F	qlz-diorite + gabbro
15066	0.005 20-Nov-88 F	qiz-diorite + gabtro
15067	if 21-Kov-88 F	uixture gabbro + felsic unit
15068	if 21-Nov-88 F	nixture gabbro + felsic unit
15069	If 21-Nov-88 F	uixture gabbro + felsic unit
15070	tr 21-Hov-88 F	hixture gabbro + felsic unit
15074	tr 21-Nov-88 F	uainly gabbro w/ ainor felsic
15075	tr 21-Hov-88 F	uainly gabbro w/ minor felsic
15076	tr 22-Noy-88 F	uainly gabbro w/ uinor felsic
15077	tr 22-Mov-88 F	hainly gabbro w/ minor felsic

$0458{ }^{\prime}$ from stn	randou sample
$0458{ }^{\prime}$ from stn	randoe sample
0463.51 frow stn	randow sample
0463.51 from stn	random sample
05109 from stn	random sample
05109 from stn	randow sample
$0655{ }^{\prime}$ fron stn	randon sample
06 55' from stn	random sample
0661 from stn	randou sample
$0661{ }^{\prime}$ from stn	randow sample
0734.5 from stn	random sample
0734.5 from stn	random sample
0741.5 from stn	randow sample
0741.5^{\prime} frow stn	random sample

SAMPLE	grade	DATE
15451	t.r	24-Nov-83
15452	t.r	24-Nov-88
15453	0.06	24-Nov-88
15454	0.005	24-Nov-Es
15455	t.r	24-Nov-88
15456	tr	24-Nov-88
15457	t.r	24-Nov-89
15458	0.005	24-Nov-68
15459	0.01	24-Nov-88
15460	tr	24-Nov-88
15461	nil	24-Nov-88
15462	nil	24-Nov-88
15463	nil	24-Nav-6e
1546.4	0.005	24-Nov-88
1546.5	t.r	24-Nav-85
1546 E	t.r	24-Nov-88
15467	0.005	24-Nov-88
15468	0.005	24-Nov-68
15469	t.r	24-Nov-8e
15470	t.r	24-Nov-68
15471	0.04	24-Nov-88
15472	t.r	24-Nov-88
15473	0.01	24-Nov-88
15474	t.r	24-Nov-83
15475	tr	24-Nov-88
15476	0.025	24-Nov-86
15477	tr	24-Nov-88
15478	t.r	24-Nov-38

[^0]:

[^1]:

[^2]: 7

