

RECEIVED

UN! ? 5 1986
REPORT ON THE MAGNETOMETER
MINING LANDS SECTIQN
survey on the washeibemaga lake
CLAIM GROUP, BOYER LAKE AREA,
NORTHWESTERN ONTARIO, 52 F/7

```
E.P. MORETON ESSO MINERALS CANADA JUNE 1st,1986
```


IAELE OF CONTENTS

PAGE
Introduction 1
Location and Access 1
History 1
Geology 1
Magnetometer Survey 3
References 5
Author's Declaration 6
LIST DF MAFS
Map \#1:General Location Map 2
2:Total Field Magnetometer Data (in back pocket)
3:Contoured Total Field Data (in back pocket)

Introduction

> A qround magnetometer survey was conducted over a group of four claims held by Esso Resources Canada Ltd covering a portion of the old Pelham Mines occurrence. The survey was conducted on a series of east-west trending lines spaced fifty metres apart covering all four claims. (Map $\# 2)$.

Location and Access
The property is located some 60 kilometers southeast of Dryden, Ontario (Map \# 1). It can be reached via a well established bush trail leading from Washeibemaga Lake $1 / 2$ mile to the east. Washeibemaga Lake is accessed by a 400 metre portage from the Snake Bay Road some 35 kiloneters south of where it begins at Highway 17 (Map 1).

History
The original property which comprised 17 claims was staked by S. S. Forneri in 1937 (Blackburn, 1981). It was subsequently optioned to M.J. D'Brian Limited who conducted a trenching pragram and 1,856 feet of x-ray diamond drilling during the summer of 193B. Results of this program outlined a number of narrow "vein" zones which carried gold values as high as f.62 oz/ton.

Pelham Gold Mines acquired the ground in 1948 and let the property remain idle until finally optioning it to New Calumet Nines Limited in 1959. The ground was held under option for the next ten years with no record of any work being preformed at this time.

In 1973, the property was examined by W. G. Wahl, on behalf of Osisko Lake Mines Limited. Detailed channel sampling conducted over the old showings substantiated the 0 Brian sampling results. A limited amount of magnetic and electromagnetic (VLF-EM) surveying was apparently undertaken in close proximity to the showings. Neither method was able to detect the showings. A cut grid composed of east-west lines spaced every 200° was established on the property. No recorded work was carried out on the grid.

Geology

> The entire property is underlain by mafic to felsic metavolcanics and gabbros of the Wapageisi Lake Group intruded in the west by the main body and apophyses of the Taylor Lake Stock. The south-central portion of the property is underlain by a medium-grained quartz-bearing

MAP NOI GENERAL LOGATION
qabbro which has intruded into mafic metavolcanic flows to the west and felsic to intermediate metavolcanic tuffs, lapilli tuffs and tuff-breccias to the east.
lo the north and east the property is underlain by a complex succession of intermediate to felsic metavolcanics. nojacent to the qabbro the series is composed of interbedded felsic volcanic flows and cherty sediments which grade to lhe north and the east into intermediate to felsic lapilli-tuffs and breccias which contain upto 50% chloritic tends and fragments. Bedding in the sediment lenses and the volcanics strikes just west of north and dips from 65 to 85 degrees to the east. The northern two claims of the property are underlain by a westerly tapering wedge of distinctive felsic quartz-bearing tuffs and lapilli-tuffs representing the extrusive phase of the Thundercloud Forphyry which lies some 3 kilometers southeast of the property. No mafic or non quartz-bearing material is found within this massive sequence of volcanics which makes it very distinct from the mixed metavolcanic sequence to the south. Numerous dykes upto 5.0 metres in width of the Thundercloud porphyry are found intruding the mafic volcanics in the western portion of the property. These dykes invariably trend north-south and are characteristically intensely foliated and altered.

Along the western boundary the north-south trending eastern contact of intermediate Taylor Lake Stock intrudes into the mafic and quartz-bearing felsic volcanics. One larqe, northeasterly striking, dyke of the Taylor Lake Stock is found cutting through the quartz-bearing felsic tuffs in the northwesteri portion of the property.

Naghetometer Suryey

The total field magnetometer survey was conducted using an Exploranium 6-816 proton precession magnetometer which has an accuracy of $+/-10$ gammas and a sensitivity of $+\cdots$ 0.1 gammas. The survey was conducted by using a base-station method consisting of readings taken at an established base-station a maximum of every two hours. Corrections for diurnal drift were not nescessary as fluctuations in the total field base station readings varied by less than 20 gammas over the three days it took to complete the survey. A 10 staff was used to elevate the sensor away from the qround to counter the effects of any possible cultural material on the property. The survey consisted of taling readings every 12.5 metres on an east-west grid with 50 metre line spacings. The raw data is presented on lap \#2 and a contoured version is presented on Map \#3, both located in the back pockets of the report.

Overall the total magnetic field on the property ranged from a low of approximately 58,500 gammas to a high in
excess of 64, 500 gammas. The following table shows the approxillate range in values encountered for the various rock types on the property.

Roc: Iype Fesponse (Gammas)

Nafic Volcanics	$60,100-60,500$
Gabbro	$60,100-64,500$
Felsic Volcanics	$59,000-60,100$

Interpretation - The contoured magnetic data (Map \# 3, in back pocket) distinctly shows the contact between the nafic metavolcanics and gabbros to the south and the felsic metavolcanics to the north and east. This contact is approximated ty the 60,300 gamma contour line. The total field susceptioility of the felsic metavolcanic package to the north is very quite forming a broad plateau with a maximum relief of 200 gammes in total field variation.
lhe gatbro body shows a wide range in total field values. Ihis variation reflects the presence of internal variations in the gaboro itself as well as included sediments and the effects of later alteration. Portions of masssive, unaltered gabbro have a total field response which qenerally fall between 60,200 and 61,800 gammas presumably reflecting variation in primary magnetite content.

On lines $1+00,1+50$, and $2+00 \mathrm{~N}$, just east of the baselife a north-south trending magnetic low with values < 60, 000 gammas is present in the gabbro. This low coincides with an included band of intercalated felsic volcanics and chert which have been intruded and possibly rafted by the qubtro. A larqe, north-south trending positive magnetic anomaly is present on lines $0+50,1+00,1+50$ and $2+00 \mathrm{~N}$, some 250 metres west of the baseline. This anomaly is defined by values ranging from 60,500 gammas to in excess of 64,500 qammas. Scattered outcrops in this area are composed of thermally metamorphosed "hornfelsed" gabbro which contain locally upto 10% disseminated pyrite and pyrrhotite. The contact between the gabbro and the mafic volcanics to the west is marked by distinct north-south trend to the total field evident on lines $0+50,1+00,1+50$, and $2+00 \mathrm{~N}$ at approximately 375 west.

On the very eastern margin of the claim group on lines $1+00$ and $1+50 \mathrm{~N}$ at approximately 284 east, a distinct positive anomaly marks the presence of a lens of intensely hornfelsed mafic volcanics within the lower sequence of felsic volcanics which contains upto 3% pyrrhotite.

HEFEREHCES

Elackburn, C.E., 1976: Geology of the Boyer Lake - Hegoisi Lake Area, District of Kenora, Ontario Geological Survey, Feport 202, 107p.
fUTHORS DECLAHAIIOH
1 hereby declare that 1 the author witnessed and supervised the work recorded in this report between the detes of May 25 and May 28,1986 and state that all the data has been accurately presented as collected.

I have been oranted a BSc. (1981), and an MSc (1984) in qeological sciences from Queen's University at kingston. Ontario. From Fet. 1, 1984 to the present 1 have been employed full-time as a project gealogist by Esso Minerals Canada Ltd. ard submit this report of work in that capacity.

Geophysical-Geological-Geochemical Technical Data Statement

File

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) GEOPHYSICAL
Township or Area Boy tr Lave (0.2575)
Claim Holders) ESSO RESOUREES CANAOA LIMITEP

Survey Company
Author of Report E.P. MOR ETON
Address of Author L/O ESSO MINERALS CANAOA, TORON TO
Covering Dates of Survey MAy $28 \rightarrow$ MAY 28
Total Miles of Line Cut 10

SPECIAL PROVISIONS CREDITS REQUESTED

ENTER 40 days (includes
line cutting) for first survey.
ENTER 20 days for each additional survey using same grid.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer 40 Electromagnetic \qquad Radiometric \qquad (enter days per claim)
DATE: JUNE -198C SIGNATURE: \&utior of export or Agent

MINING CLEANS TRAVERSED List numerically
(prefix) ((umber)

$K-850291$

-850292
-850299
-850300

Res. Geol. \qquad Qualifications

Previous Surveys

GROUND SURVEYS - If more than one survey, specify data for each type of survey
Number of Stations_ 850 Number of Readings 845
Station interval 12.5 Memes Line spacing 50 meres
Profile scale \qquad
Contour interval _100 GAMMAs

Instrument Exploraniun G-816
Accuracy - Scale constant 0.1 GAmmAS
Diurnal correction method BASE STATION

Base Station check-in interval (hours) 1-2 Moves
Base Station location and value LOHOON O+OOE MEAN VALVE 60,410
© Instrument \qquad
Coil configuration
Coil separation \qquad
Accuracy
Method:
Fixed transmitterShoot backIn line
\square Parallel line
Frequency (specify V.L.F. station)
Parameters measured

Instrument \qquad
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument
Method \square Time Domain
\square Frequency Domain
Parameters - On time \qquad Frequency \qquad

- Off time

Range

- Delay time \qquad
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode \qquad

SELF POTENTIAL

Instrument___ Range \qquad
Survey Method \qquad

Corrections made

RADIOMETRIC

Instrument \qquad
Values measured
Energy windows (levels)
Height of instrument \qquad Background Count \qquad
Size of detector \qquad
Overburden \qquad (type, depth - include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey \qquad
Instrument \qquad
Accuracy
Parameters measured \qquad

Additional information (for understanding results)

AIRBORNE SURVEYS

Type of survey(s)
Instrument(s) (apecify for each type of survey)

Accuracy

> (specify for each type of survey)

Aircraft used \qquad
Sensor altitude \qquad
Navigation and flight path recovery method \qquad

Aircraft altitude Line Spacing
Miles flown over total area Over claims only

GEOCHEMICAL SURVEY - PROCEDURE RECORD

Numbers of claims from which samples taken \qquad

TYPE OF SURVEY
人 (GPG vine
___ GEOLOGICAL
___ GEOCHEMICAL
_ EXPENDITURE

MINING LANDS COMMENTS:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

P, 2xust
Signature of Assessor

Turtlepond Lake - G-2595

LEGEND

BOYER LAKE
m.n.f. admanistrative oistrict

DRYDEN
MINING OIVISION
KENORA
KENORA
land tities/ registry divisio KENORA
 (2)

