010

REPORT ON THE 1984
EXPLORATION PROGRAM
ON THE
NEW KLONDIKE PROPERTY
IN THE
TABOR LAKE-KAWASHEGAMUK LAKE AREA

Major Sturi

SUMMARY

The 96-claim New Klondike property is located approximately 30 miles southeast of Dryden in the Kenora Mining District. During the summer of 1984, a program of detailed prospecting and diamond drilling was completed.

Several previously outlined VLF-EM conductors were prospected. All were found to be caused by surficial features such as conductive clay, creeks and swamp edges.

A number of previously unlocated trenches and quartz veins were sampled. Assays were generally low, ranging up to a maximum of 0.242 oz/ton in a grab sample. Check samples taken from the dump at the Brockman shaft and adit returned samples of 1.01 oz/ton Au and 0.59 oz/ton Au respectively, confirming values taken during last years' exploration program.

The Church Lake trench was tested with six diamond drill holes totalling 803 feet. Although the shear zone which hosts the vein at surface was intersected, no sign of the vein was found in drill core. Assays from the drill program returned a best value of 0.006 oz/ton Au/3.1 feet.

It appears that gold mineralization on the New Klondike property is confined to narrow quartz veins.

Although the grade of these veins may be quite spectacular, the restricted widths and strike lengths reduce the possiblity of finding any economically viable tonnage. It is therefore recommended that no further work be done on the property.

TABLE OF CONTENTS

	Page
INTRODUCTION	1
LOCATION AND ACCESS	1
PREVIOUS WORK	2
1984 EXPLORATION PROGRAM Work Performed Prospecting Drilling Results Prospecting Drilling	4 4 4 4 4 7
CONCLUSIONS AND RECOMMENDATIONS	8
REFERENCES	10
APPENDIX A - Claim Status	
APPENDIX B - VLF-EM Conductors	
APPENDIX C - Geology - New Klondike Property	
APPENDIX D - Mineral Occurrences	
APPENDIX E - Drill Logs and Sections	
APPENDIX F - Sample Descriptions and Assays	

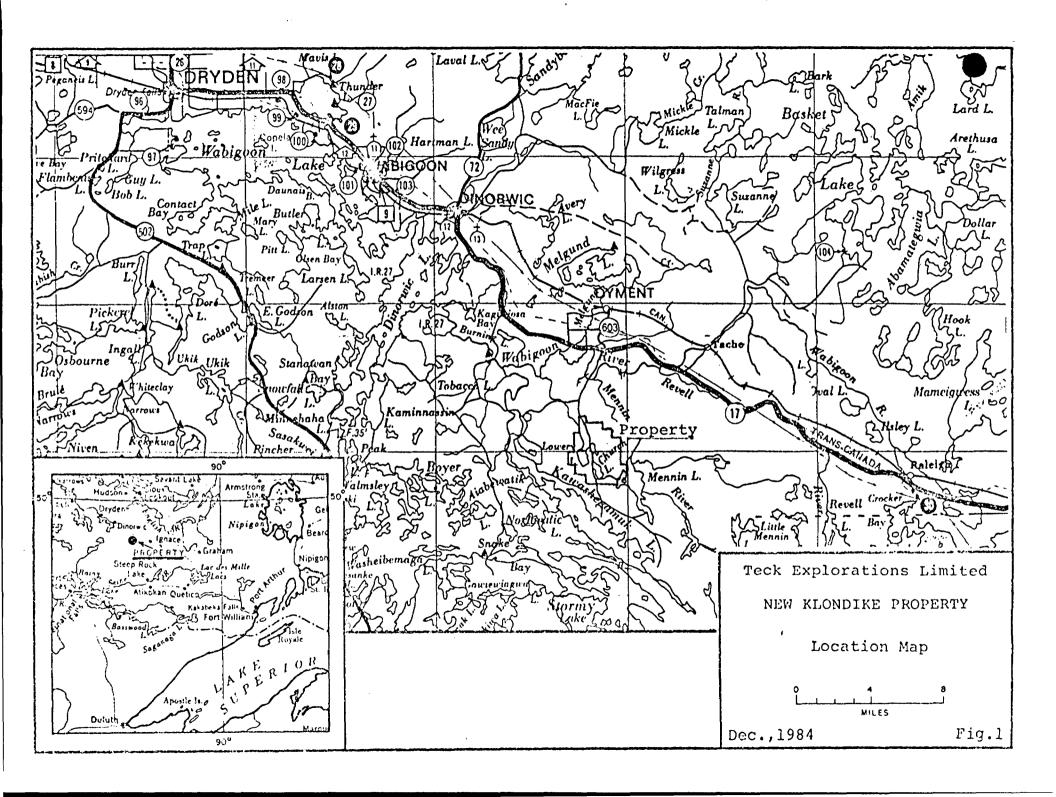
ILLUSTRATIONS

Figures		After Page
1	LOCATION MAP	1
2	CLAIM MAP	1
3	GRID LOCATION MAP	1
4	MAP LOCATION SHEET	1

Drawings

5653a	VLF-EM SURVEY	in	pocket	2
5653b	MAGNETOMETER SURVEY	in	pocket	2
5653c	GEOLOGICAL SURVEY	in	pocket	2
			•	
5654a	VLF-EM SURVEY	in	pocket	3
5654b	MAGNETOMETER SURVEY	in	pocket	3
5654c	GEOLOGICAL SURVEY	in	pocket	3
5655a	VLF-EM SURVEY	in	pocket	4
5655b	MAGNETOMETER SURVEY	in	pocket	4
5655c	GEOLOGICAL SURVEY	in	pocket	4
5738	DRILL PLAN	in	pocket	4
5656a	VLF-EM SURVEY	in	pocket	5
5656b	MAGNETOMETER SURVEY	in	pocket	5
5656c	GEOLOGICAL SURVEY	in	pocket	5
5657a	VLF-EM SURVEY	in	pocket	6
5657b	MAGNETOMETER SURVEY	in	pocket	6
5657c	GEOLOGICAL SURVEY	in	pocket	6

INTRODUCTION


The New Klondike property consists of 96 contiguous claims located in the Kenora Mining District (Fig. 1, Appendix A). The central 58 claims, held by Mr. A. Kozowy of Ignace, Ontario were optioned by Teck Explorations Limited. The surrounding 38 claims were staked by Teck Explorations.

The property is located in the heart of what was known in the early days of gold mining in northwestern Ontario as the New Klondike gold region. Two old shafts, an adit, a high grade gold vein and several other interesting gold occurrences are located on the property.

During the winter, geophysical surveys (VLF-EM and magnetometer) were conducted over Brown, Lowery and Church Lakes. During the summer a program of detailed prospecting and diamond drilling was completed.

LOCATION AND ACCESS

The New Klondike property is located approximately 30 miles southeast of Dryden, Ontario. An all-weather road

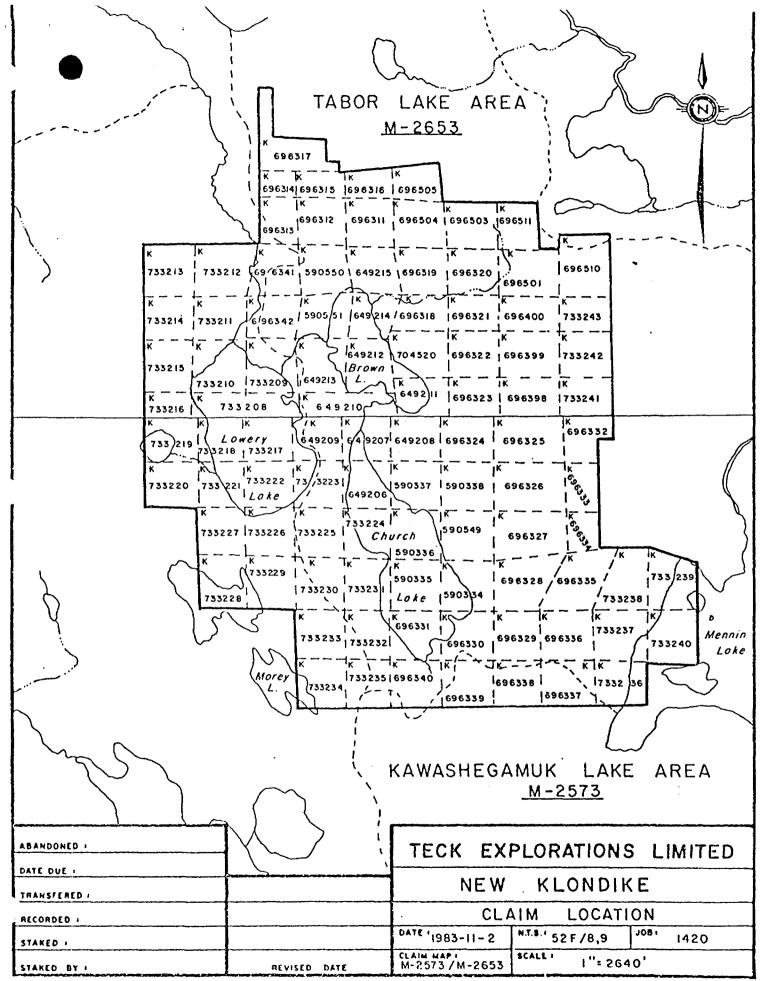
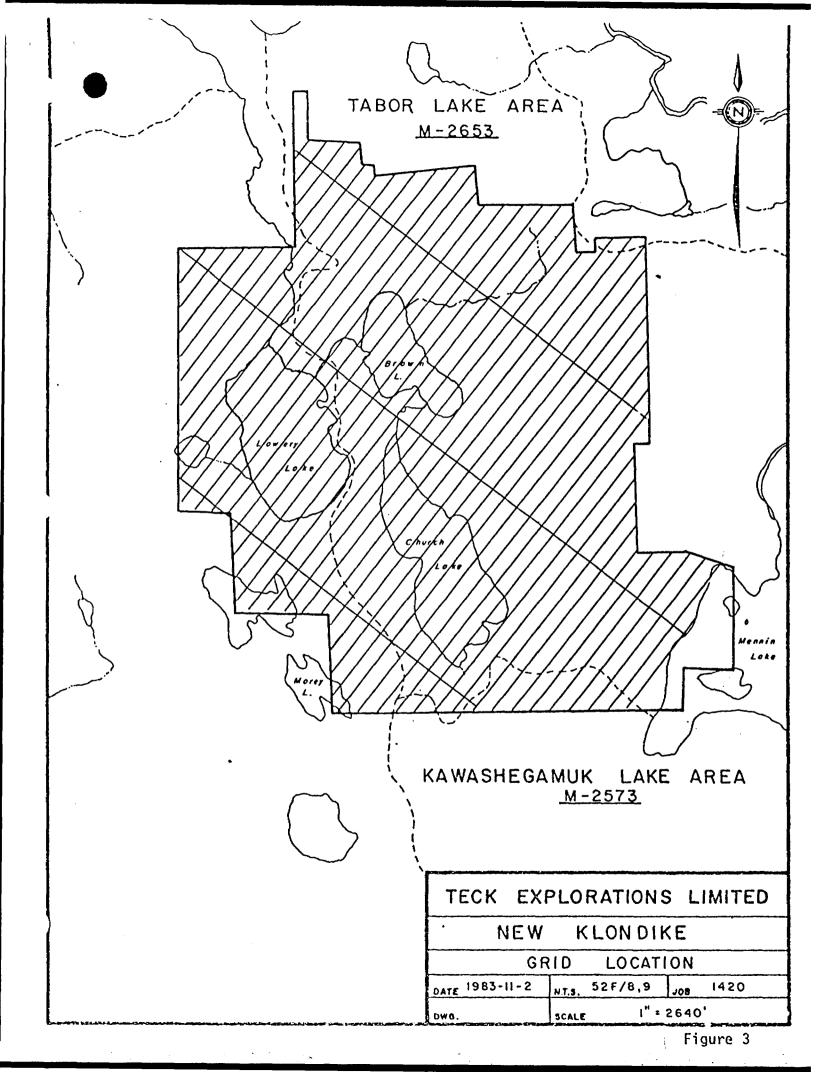
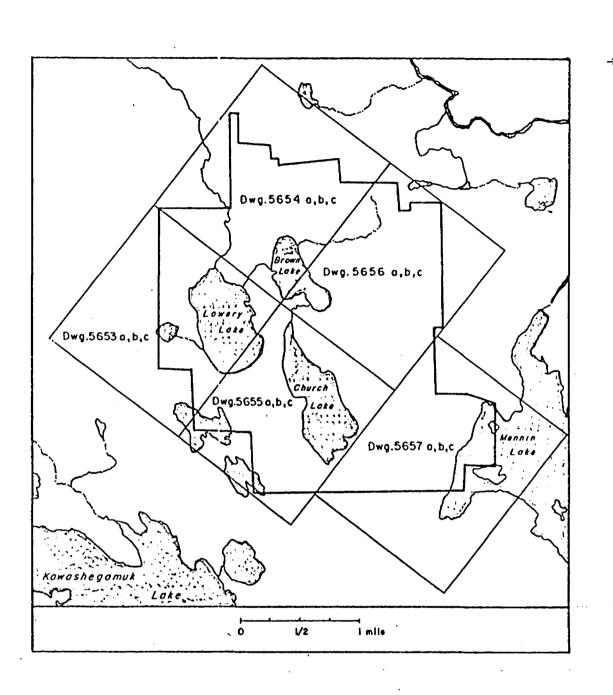




Figure 2

a - V.L.F.-E.M SURVEY

b - MAGNETOMETER SURVEY

c - GEOLOGICAL SURVEY

TECK EX	PLORATIONS LIMITED				
NEW	KLONDIKE				
MAP LOCATION SHEET					
DATE 1984-06-13	NT.S. 52F/8,9 JOB . 1420				
nwa.	3CALE 1" = 2640'				

commences at Borups Corners and runs south for six miles through the western half of the claim block. A bush road branches off near the southwest corner of the property and follows the southern claim boundary.

PREVIOUS WORK

The area has seen considerable gold prospecting and mining activity during the period 1895 to 1912 and again in the 1930s. Although there has been no gold production recorded from the New Klondike property, the Sakoose mine just north of the property produced 3,660 ounces of gold and 145 ounces of silver during the period 1890 to 1947. The mine has since been taken to lease by Mr. J. Redden of Ignace, Ontario, who is extracting gold from the old dump using a heap leaching process.

Within the boundaries of claim K590550, a shaft was sunk to a reported depth of 142' on a small but rich vein, said to be traceable for 1000' along strike. On claim K696311, a 4'x7' shaft was sunk to a depth of 40' on a small, 2' wide vein traceable for 250'. Around the same time, a 48' long, 6' deep trench was put down on a high grade gold-bearing quartz vein on claim K590549 near the east shore of Church Lake.

During the 1950s and 1970s, Falconbridge, Selco, Inco and V.M.A. Mines Ltd. carried out ground geophysical surveys and drilling on parts of the property, exploring for copperzinc and copper-nickel deposits. Drilling consisted of six holes totalling 1,037'. Mineralization included intersections of 5% to 30% pyrite, 3% to 10% pyrrhotite and trace to 1% chalcopyrite in massive to brecciated andesite tuff. In addition, one sample of rhyolite tuff assayed by Selco returned values of 0.01% Cu, 0.02% Zn and 0.002 oz/ton Au.

Magnetometer and EM surveys conducted by Selco located 29 conductive zones of which 10 were recommended for drilling. Newmont Mining conducted magnetometer and EM surveys with a portion of the survey area overlapping part of the property. A total of 12 conductors were outlined with one, located on the property, being drilled. The 300' drill hole intersected a zone of 10% to 30% pyrite-pyrrhotite along an andesite-dacite fragmental contact.

During the summer of 1983, Teck Explorations Limited conducted a program of line cutting, geological mapping and geophysical surveys (VLF-EM and magnetometer). A total of 52 VLF-EM conductors and several high magnetic trends were outlined on the property. Samples taken during the mapping also located several areas anomalous in gold (Penno, 1983).

1984 EXPLORATION PROGRAM

Work Performed

Prospecting

Two prospectors were employed to explore for auriferous quartz veins and structures on the property. Outcrops were stripped by hand and chip and grab samples were taken of favourable rock types. Where necessary, sampling was aided by opening up small trenches using pluggers and dynamite.

Drilling

A total of 804 feet of BQ core were drilled using a unitized, totally hydraulic diamond drill. All core was logged at the drill site, split, and later stored in Marathon, Ontario.

Results

Prospecting

Detailed prospecting was conducted over most of the property, with particular attention given to the Brown and Church Lakes areas.

Previously outlined VLF-EM conductors (see Appendix B) C, G, I, J, M, N, P, U, LL, PP, BBB, CCC and EEE were prospected. All were found to be caused by surficial conductivity such as clay, creeks and swamp edges.

Along the east side of Church Lake, between L16+00S and L24+00S (Dwg. 5665), several samples taken returned anomalous gold values. At L16+00S, 4+00W, two chip samples of quartz veins in a 1'x6' rusty shear zone returned values of 1075ppb (0.03 oz/ton) Au and 1692ppb (0.05 oz/ton) Au. However, several samples of chlorite schist (sheared, chloritized gabbro) above and below the vein assayed only a maximum of 40ppb Au.

On L20+00S at station 5+90W, a grab sample of sheared and altered (carbonatized) gabbro with magnetite and up to 10% pyrite assayed 5160ppb (0.15 oz/ton) Au. This is comparable to a grab sample of sheared gabbro with 20% magnetite taken last year at L20+60S, 8+00W which returned an assay of 1310ppb (0.04 oz/ton) Au. A check sample taken at L20+50S, 7+50W by the author assayed nil Au. This large difference in values is probably due to the discontinuous or "patchy" character of the mineralization.

A single grab sample of smokey quartz in porphyritic gabbro taken at L22+80S, 7+20W, returned an anomalous assay of 840ppb (0.025 oz/ton) Au.

A new trench was established across strike at the south end of the Church Lake trench (Mineral Occurrence 9, Appendix D). This revealed a sharp contact between felsic pyroclastics to the west and sheared, highly chloritized gabbro to the east. Two samples of felsic pyroclastics assayed 10 and 20ppb Au.

Several chip and grab samples of quartz veins taken around the Church Lake trench (Dwg. 5665) all returned assays of nil ppb Au. However, a grab sample of quartz from one of the small trenches on strike with the Church Lake vein assayed 570ppb (0.017 oz/ton) Au.

Prospecting in the area around the Brockman shaft (Mineral Occurrence 2, Appendix D), north of Brown Lake between lines 24+00N and 28+00N, located several old trenches that were sampled. A grab sample from a rusty quartz vein located at L24+80N, 26+70E, approximately 100 feet southwest of the Kozowy trench (Mineral Occurrence 4, Appendix D) assayed 8295ppb (0.242 oz/ton) Au. A 12" chip sample of quartz taken from the Kozowy trench returned an

assay of 0.855 oz/ton Au. A previous sample taken by Trusler (1983) assayed 0.102 oz/ton. It should be noted, however, that the quartz vein is narrow, ranging in width from 1 to 4 inches, and that the samples were taken at an oblique angle to the strike of the vein.

Check samples of quartz taken from the dump at the Brockman shaft and the adit (Mineral Occurrence 1, Appendix D) returned assays of 1.01 oz/ton Au and 0.593 oz/ton Au respectively. This compares with previous samples that assayed 0.13 oz/ton Au and 1.32 oz/ton Au.

Drilling

Six holes totalling 804 feet were drilled to test the down dip extension of the high grade Church Lake gold vein (Fig. 5). All holes intersected varying amounts of felsic pyroclastics and porphyritic to massive gabbro. Sulphide mineralization was confined to shear zones within the gabbro.

Holes NK-1 and NK-2 were drilled immediately under the surface trench, with both holes being collared from the same set up. Hole NK-1 intersected a 10.8 foot wide calcareous shear zone with quartz-carbonate veinlets and stringers. This section returned a best assay of 0.004 oz/ton Au. Similarily, NK-2, which was drilled to test a deeper extension of the vein, intersected the same shear zone. All samples returned only trace values of gold.

Hole NK-3 was drilled to test the southern strike extension of the vein. A shear zone with carbonate veinlets in porphyritic gabbro assayed a maximum of 0.002 oz/ton.

NK-4 and NK-5 tested the strike extension of the vein to the north. Hole NK-4 intersected at 15.7-foot wide zone of sheared gabbro with occasional quartz veins up to 3 inches in width. Assays ranged from trace to 0.006 oz/ton Au/3.1 feet. The best values occurred in sections with quartz veins and 1-4% associated disseminated pyrrhotite and pyrite. NK-5 intersected two separate shear zones with abundant carbonate alteration. Both sections returned only trace amounts of gold.

To rule out a possible change in the dip direction of the vein, NK-6 was collared west of the trench and drilled east. The hole was collared and completed in massive to slightly foliated gabbro. Two samples taken of an altered feldspar porphyry dyke and an 8 inch quartz-carbonate vein returned only trace amounts of gold.

CONCLUSIONS AND RECOMMENDATIONS

Detailed prospecting during the summer failed to outline any substantial new gold mineralization on the

property. Work in the vicinity of the Brockman shaft did confirm previously reported gold values from a number of quartz veins in the area, but the veins are narrow and discontinuous, and do not promise any significant tonnage potential.

Diamond drilling of the Church Lake trench where numerous spectacular samples of visible gold have been found failed to locate any down dip or strike extension of the vein. Although the shear zone which hosts the mineralization at surface was intersected in drill core, no trace of the vein was found.

Based on the exploration program which has been conducted over the New Klondike property, it appears that gold mineralization is confined to quartz veins over narrow widths. Although the grade of these veins is usually quite spectacular, the restricted widths invariably reduce the possibility of finding economically viable tonnage on the property. It is therefore recommended that no further work be done on the property.

Respectfully submitted,

TECK EXPLORATIONS LIMITED

W.L.E. Pennot

November 16, 1984

Rep #999NB d WP-71

REFERENCES

- Blackburn, E.C. and Kresz, D.U., 1981. "Kawashegamuk Lake Area, District of Kenora", p. 66-69, Edited by John Wood, O.L. White, R.B. Barlow and A.C. Colvine, Ontario Geological Survey, Misc. Paper 100, 255p.
- Bow, J.A., 1899. "Mines of Northwestern Ontario", p. 72-75,
 Ontario Bureau of Mines, Vol. 8, Pt. 1, 289 p.
- Penno, W.L.E., 1983. "Report on the 1983 Exploration Program on the New Klondike Property in the Tabor Lake-Kawashegamuk Lake Area", Report No. 894NB, Teck Explorations Limited, 2189 Algonquin Avenue, North Bay, Ontario.
- Satterly, J., 1960. "Geology of the Dyment Area", Ontario Department of Mines, Volume 69, Pt. 6, p. 1-32.
- Thomson, J.E., 1933. "Geology of the Manitou-Stormy Lakes Area", Ontario Department of Mines, Vol. 42, Pt. 4, p. 1-40.
- Trusler, J.R., 1983. "Geology and Proposed Exploration of the New Klondike Property, Brown and Church Lakes Area, Ontario" Report No. 980-T, Teck Explorations Limited, Suite 7000, 1 First Canadian Place, Toronto, Ontario.

APPENDIX A

CLAIM STATUS

TECK CORPORATION - ALEXANDER KOZOWY - H. J. HODGE INC.	Agreement date: 20 May 1983.
Kawashegamuk &	Amt. or Nature Date Due Action
GROUP NAME NEW KLONDIKE AREA Tabor Lakes	28 June 1983 - TQ/H. J. Hodge
	See summary TX-140-2
TOWNSHIP MINING DIV. Kenora	
PROVINCE ONTARIO JOB NO. 1420 NTS NO.	

}		↑ DATE	DUE DATE	UNDER		ASSESSMENT WORK FILED		FILED	 		==	
ļ	IDENTIFICATION	RECORDED	OUE DATE	EXTN.	AMOUNT DUE	EM	MAG	δζ		TOTAL		
(1)	K-590334	21 Dec 82	21 Dec 85		39	40	20	/		. 61		
(1)	K-590335	**	" 85		40	40	20			60		
(2)	K-590336 - 337	11	" 85		39	40	20	1		61		
(1)[K-590338	11	" 85		40	40	20			60		
(3)	K-590549 - 551	05 Oct 82	05 Oct 85		40	40	20			60		
[
(2)	K-649206 - 207	03 Mar 83	03 Mar 86		40	40	20			60		
(1)	K-649208	+1	" 86		39	40	_20	/		61		
(2)	K-649209 - 210	†1	" 86		110	40	20			60		
(1)	K-649211	11	" 86	ļ	39	40	20			61		
(3)	K-649212 - 214	11	" 86	<u> </u>	40	40	20	ļ		60		
(1)	K-649215	11	. " 86	ļ	39	40	20			61		
				ļ								
(1)	K-696311	31 May 83	31 May 86	ļ	39	40	20			61		
(3)	K-696312 - 314	11	" 86		1/0	40	20			60		
(1)	K-696315	"	" 85	<u> </u>	40		<u> </u>	20	 	20		
(1)	K-696316		" 15	ļ	15	40	5	ļ	ļ	45		
(1)	K-696317)1	" 86		40	40	20		 	60		
(1)	K-696318	H	" 86		39	40	20_		<u> </u>	61		
(5)	к-696319 - 323	11	" 86	<u> </u>	1/0	40	20			60		
(4)	K-696324 - 327	31 May 83	31 May 86		40	40	20			60		
(1)	K-696328	"	" 86		39	40	20	/		61		
(3)	K-696329 - 331	11	" 86		40	40	20			60		Ĺ
(4)	K-696332 - 335	19	" 86		40	40	20			60		
(1)	K-696336	11	" 86		39	40	20	1		61		 !
(4)	K-696337 - 340	11	" 86		40	40	20			. 60		
(2)	K-696341 - 342	PF .	" 86		40	40	20			60		
, .]			1		
(3)	K-696398 - 400	06 Jun 83	06 Jun 86		40	40	20			60		
(1)	K-696501	06 Jun 83	06 Jun 86		40	40	20			60		
,_,												
(1)	K-696503	06 Jun 83	06 Jun 86		110	40	20			60		
(1)	K-696504	11	" 45		10	30	20			50		
(1)	K-696505	11	" 85		10	1.0	5	5		20		
,,	<u> </u>											
,, , }	אריזו חד יי	OS Ame RA	OS Apr RA		39	10	20	1		61		
								,				

APPENDIX B

VLF-EM CONDUCTORS

LIST OF VLF-EM CONDUCTORS ON THE NEW KLONDIKE PROPERTY

CONDUCTOR BEGINS AT: CO-ORDINATES	CONDUCTOR ENDS AT: CO-ORDINATES	LENGTH	STRENGTH OF CONDUCTOR	ASSOCIATED MAG SIGNATURE	TYPE OF CONDUCTOR
A L 68N, 1+25E	L 60N, 0+25W	900'	strong	up to 1090 gammas	bedrock?
B L 68N, 13+00E	L 60N, 12+00E	900'	strong	high background	weak bedrock?
C L 64N, 42+50E	L 52N, 41+75E	900'	strong to very strong	background	bedrock
D L 60N, 33+00E	L 48N, 34+00E	700'	moderately weak	high background	surficial
E L 56N, 31+50E	L 52N, 31+75E	5001	weak to strong	background	surficial
F L 52N, 17+25W	L 48N, 16+50W	5001	strong	background	weak bedrock?
G L 52N, 1+50E	L 32N, 6+25E	2300'	strong to very strong	background	bedrock
H L 52N, 10+50E	L 40N, 14+25E	1300'	weak to moderate- ly strong	background	surficial
I L 48N, 22+00E	L 28N, 27+00E	2200'	strong to very strong, very weak towards NW end	background	surficial
J L 44N, 17+50W	L 40N, 16+50W	500'	very strong	background	bedrock
K L 40N, 1+50W	L 36N, 1+00W	500'	weak to moderate- ly strong	background	weak bedrock?
L L 36N, 56+75W	L 32N, 55+00W	400'	very weak	background	surficial
	· · · · · · ·				

CONDUCTOR BEGINS AT: CO-ORDINATES	CONDUCTOR ENDS AT: CO-ORDINATES	LENGTH	STRENGTH OF CONDUCTOR	ASSOCIATED MAG SIGNATURE	TYPE OF CONDUCTO
M L 36N, 30+50W	L 24N, 31+50W	1300'	very weak (NW) to very strong (SE)	background?	bedrock
N L 36N, 2+25E	L 28N, 1+25E	900'	moderately strong to strong	background	bedrock?
O L 32N, 8+50W	L 28N, 8+00W	500'	very weak	background	surficial
P L 28N, 40+50W	L 4N, 39+25W	2500'	strong to very strong	background	bedrock?
Q L 28N, 21+50W	L 24N, 23+50W	500'	very weak	background	surficial
R L 28N, 47+00E	L 8S, 32+00E	3600'	strong to very strong	erratic	bedrock?
S L 24N, 11+00E	L 0+00, 9+25E	2500'	very strong	background	bedrock
T L 20N, 19+75W	L 4S, 21+50W	2500'	very weak	background	surficial
U L 20N, 11+25W	L 8N, 8+00W	1300'	very weak to strong	background	surficial
V L 20N, 4+00W	L 16N, 4+75W	500'	moderately strong	background	surficial?
W L 16N, 26+25W	L 12N, 28+25W	500'	very weak	background	surficial
X L 12N, 58+50E	L 8N, 54+00E	600'	moderately weak to moderately strong	erratic	weak bedrock
Y L 8N, 40+00E	L 56S, 26+50E	6500'	strong becoming weak towards ends	background?	bedrock

CONDUCTOR BEGINS AT: CO-ORDINATES	CONDUCTOR ENDS AT: CO-ORDINATES	LENGTH	STRENGTH OF CONDUCTOR	ASSOCIATED MAG SIGNATURE	TYPE O CONDUCTOR
Z L 4N, 33+50W	L 0+00, 35+00W	500'	very weak (NW) to moderately weak (SE)	background	surficial
AA L 4N, 18+00E	L 0+00, 18+25E	500'	very weak (NW) to moderately weak (SE)	up to 1100g	surficial
BB L 0+00, 12+50E	L 4S, 12+50E	500'	very weak	background	surficial
CC L 0+00, 15+00E	L 20S, 15+00E	2100'	very weak becom- ing very strong towards SE end	background	surficial
DD L 4S, 32+50W	L 8s, 35+00W	500'	moderately strong	background	surficial
EE L 4S, 50+25E	L 24S, 56+00E	2100'	very strong	slightly above background	bedrock
FF L 8S, 63+00E	L 12S, 62+00E	500'	weak to moderate- ly weak	background	surficial?
GG L 8S, 20+25E	L 12S, 19+75E	500'	very weak to weak	background	surficial
HH L 8S, 9+00E	L 12S, 10+00E	500'	strong	background	surficial
II L 12S, 46+00W	L 16S, 45+50W	5001	strong	background	bedrock?
JJ L 12S, 13+00W	L 16s, 15+50W	500'	weak	background	surficial
KK L 16S, 9+25W	L 36S, 16+00W	2200'	very weak	high background	surficial
	•			1	

CONDUCTOR BEGINS AT: CO-ORDINATES	CONDUCTOR ENDS AT: CO-ORDINATES	LENGTH	STRENGTH OF CONDUCTOR	ASSOCIATED MAG SIGNATURE	TYPE C CONDUCTOR
LL L 20S, 23+75W	L 365, 29+25W	1800'	strong	up to 550 gammas	bedrock
MM L 24S, 43+50W	L 28S, 43+50W	600'	strong (NW) to weak (SE)	background	bedrock?
NN L 28S, 46+00W	L 48S, 54+50W	2100'	very strong	background	bedrock
OO L 28S, 10+75E	L 40S, 10+25E	1300'	strong to moder- ately strong	background	bedrock
PP L 28S, 47+00E	L 32S, 46+50E	400'	weak to moderate- ly strong	background	weak bedrock
QQ L 40S, 44+00E	L 44S, 43+50E	500'	moderately weak to weak	up to 650 gammas	weak bedrock
RR L 40S, 15+50W	L 56S, 20+50W	1700'	very weak	background	surficial
SS L 52S, 36+25W	L 56S, 37+50W	400'	very weak	background	surficial
TT L 52S, 21+50E	L 56S, 22+25E	500'	very strong	background	bedrock
UU L 56s, 1+00W	L 60S, 1+75W	500'	weak	background	weak bedrock
VV L 60s, 37+00W	L 64S, 37+25W	500'	very weak	background	surficial
WW L 64S, 18+75W	L 72S, 16+50W	900'	moderately weak (SE) to strong (NW)	up to 900 gammas	weak bedrock
XX L 72S, 20+25W	L 76S, 15+50W	600'	weak	high background	surficial

CONDUCTOR BEGINS AT: CO-ORDINATES	CONDUCTOR ENDS AT: CO-ORDINATES	LENGTH	STRENGTH OF CONDUCTOR	ASSOCIATED MAG SIGNATURE	TYPE CONDUCTOR
YY L 80s, 12+50W	L 88S, 5+50W	1000'	strong	high background	bedrock
ZZ L 88S, 18+25W	L 92S, 18+00W	500'	strong	high backtround	bedrock
•					
			,		

ONE LINE VLF-EM CONDUCTORS - NEW KLONDIKE PROPERTY

CO	NDUCTOR LOCATION CO-ORDINATES	STRENGTH OF CONDUCTOR	ASSOCIATED MAG SIGNATURE	TYPE OF CONDUCTOR
AAA	L 12S, 0+25E	strong	background	bedrock?
ввв	L16S, 71+25E	very strong	slightly above background	bedrock
ccc	L 40S, 41+50N	very strong	background	bedrock
DDD	L 44S, 37+00E	moderately strong	up to 1090 gammas	bedrock
EEE	L 48S, 50+25N	moderately strong	background	bedrock
FFF	L 88S, 31+50E	strong	background	bedrock
	•			

APPENDIX C

GEOLOGY - NEW KLONDIKE PROPERTY

Megne James

GEOLOGY - NEW KLONDIKE PROPERTY

General Geology

The property is dominantly underlain by a series of tholeiltic to calc-alkaline metavolcanics (Dwgs. 5663 to 5667 inclusive). A small wedge of metagreywackes and chemical metasediments underlies the northeast corner of the grid, sandwiched between metavolcanics to the southwest and the Revell batholith to the northeast. The metavolcanics and metasediments generally strike north to northwest and dip southwest. All units are intruded by a series of gabbroic sills and felsic dykes.

Most of the rocks have been metamorphosed to greenschist facies, except to the northeast where the grade increases to amphibolite facies due to the emplacement of a composite granodiorite batholith (Revell batholith) along the eastern edge of the property.

Mafic Metavolcanics

These rocks are dark green, fine grained to aphanitic and generally contain <1% disseminated pyrite and chalcopyrite. Magnetite content is highly variable resulting in an erratic magnetic signature. Felsic

volcanics are often interbedded or closely associated with this unit.

No obvious flow or volcanic textures were observed in outcrop. Classification was based mainly on colour and the massive, homogenous appearance as well as lack of sedimentary features.

Most of the mafic volcanics have been metamorphosed by the intrusion of the Revell batholith. They are generally moderately hard and composed of chlorite and amphibole, becoming spotted with coarse grained amphibole crystals near the margin of the batholith.

Intermediate Volcanics

These rocks are massive and form a series of northwest trending ridges, evidenced by a strong lineament between Glover and Morey Lakes. They are dominantly intermediate (andesitic) in composition, but may also include minor mafic flows.

Between Church Lake and Glover-Morey Lakes area, the volcanics are primarily flows characterized by well preserved pillows and flow textures. Around Glover and Morey Lakes, flows tend to be amygdaloidal. Pillows

are less common and characterized by abundant siliceous amygdules which are generally <3/4" long and tend to be oriented north-south parallel to the general regional foliation.

Felsic Metavolcanics

The felsic metavolcanics consist of a series of rhyolitic to dacitic tuffs and flows with minor agglomeratic units. They are usually sericitized and carbonatized and generally contain minor amounts of disseminated sulphides, mainly pyrite and pyrrhotite with traces of chalcopyrite and sphalerite.

In the area around L40+00E, 46+00N, there appears to be some iron enrichment associated with minor faulting. However, no evidence of chloritic or sericitic alteration, stringer mineralization or bedded sulphides was observed.

Metasediments

A narrow wedge of metasediments occurs in the northwest corner of the property, sandwiched between felsic volcanics to the west and the Revell batholith to the east. They consist mainly of clastic greywackes and arkoses with minor intercalations of chemical sediments, primarily well bedded chert.

Metagabbro

This unit is generally fine to medium grained and often porphyritic containing subhedral feldspar phenocrysts. These may be of primary origin but appear to be metamorphic. Generally, the metagabbro is not magnetic, but along the east shore of Church Lake, the intrusive has been altered and contains up to 20% medium to coarse grained (secondary?) disseminated magnetite.

Although not clearly apparent, this unit is probably a series of gabbroic sills rather than a single, larger intrusive. It separates andesitic metavolcanics from overlying felsic and mafic metavolcanics.

Felsic Intrusives

The Revell batholith, a large composite granodiorite body, outcrops along the eastern boundary of the property. It is composed essentially of fine to coarse grained, anhedral to subhedral plagioclase, quartz and biotite, with lesser amounts of potassium feldspar

(orthoclase?). The emplacement of this batholith has thermally metamorphosed many of the rocks on the property.

The numerous feldspar porphyry dykes which crosscut all units, may represent the final cooling phase of the batholith. These dykes are variable in composition and appearance, ranging from plagioclase phenocrysts in a dark grey to bluish aphanitic groundmass, to plagioclase phenocrysts in a fine grained quartz-biotite groundmass. The latter is most prevalent in the proximity of a strong north-south lineament running through Brown and Church Lakes.

Quaternary Geology

Most of the property is overlain by a thin to possibly thick blanket of glacial lacusterine deposits. The area lies within the southern extent of a large clay belt found around the Wabigoon and Dryden region. The deposits were probably laid down by glacial Lake Agassiz (Satterly, 1960; Thomson, 1933).

APPENDIX D

MINERAL OCCURRENCES

MINERAL OCCURRENCES - NEW KLONDIKE PROPERTY

1) Adit: L28+35N; 23+00E - Claim K590550 (DWG 5654C)

An adit is located approximately 200' southwest of the shaft mentioned below. It appears to have been driven along a 2' fault zone which strikes 072° and dips 60°N.

The zone contains fault gouge with little or no quartz. A chip sample of this zone returned an assay of 40ppb Au.

However, in the cliff face above the adit, the fault is occupied by a 1.75' mineralized quartz-chlorite-ankerite vein containing approximately 3% sulphides (pyrite with minor chalcopyrite and galena). A chip sample across the vein returned an assay of 1.32 oz/ton Au.

L27+80N; 29+50E - Claim K590550 (DWG 5654C) 2) Shaft: North of Brown Lake, a shaft has been sunk to a depth of 142' on vein striking reported a west-northwest and having pinch and swell down dip (OBM, 1899). It is not possible to see the vein from the edge of the shaft, but the host rock appears to be mafic metavolcanic flows, lacking apparent any alteration or shearing.

The dump consists of chloritic mafic metavolcanics, quartz feldspar porphyry (QFP) and quartz. Quartz pieces contain chlorite and carbonate with up to 2% sulphides, mainly pyrite with lesser amounts of chalcopyrite and sphalerite. The QFP is also slightly mineralized containing a maximum of 2% pyrite. Trusler (1983) reports that a 25 lb composite grab sample taken from the dump by H.J. Hodge assayed 0.47 oz/ton Au. Grab samples of quartz and QFP taken during the mapping program returned assays of 0.13 oz/ton Au and 60ppb Au respectively.

3) Brockman Trench: L26+10N; 28+50E - Claim K590550 (DWG 5654C)

This and the Kozowy Trench to the south, are located in highly sheared mafic metavolcanics. Both appear to be associated with a prominent north-south lineament.

The Brockman trench is sunk on an irregular quartz vein with an average width of 6" containing coarse grained chalcopyrite. A chip sample of a chalcopyrite-rich section returned an assay of 3.91 oz/ton Au over 0.5'. However, the mineralization is very erratic and this sample is not totally representative of the entire vein.

4) Kozowy Trench: L25+00; 27+75E - Claim K590550 (DWG 5654C)

This trench is located approximately 290 feet south of the main shaft and 90 feet south of the Brockman trench. A 2" to 4" wide quartz vein was reported by Trusler (1983) to grade 0.102 oz/ton Au.

5) Trench: L24+16N; 40+50E (DWG 5654C)

A previously unreported shallow trench has been opened up on 1.5' wide quartz vein hosted by mafic volcanics. The quartz becomes smokey and contains ankerite near the contact. Samples of the quartz vein, mineralized smokey quartz (containing chlorite, ankerite and <1% pyrite) and wallrock returned assays of 30, nil and 20ppb respectively.

6) L12+OOS; 59+OOE (DWG 5656C)

A 6.5' wide shear zone containing rusty quartz occurs in metagabbro. A 25-lb. bulk sample of the pyritic material taken from the shear zone returned 20ppb Au.

7) L17+00S; 67+00E (DWG 5656C)

A 2.5' quartz vein in metagabbro, believed to be the one discovered by Kozowy while staking and referred to in Trusler's (1983) report, returned an assay of 90ppb Au.

8) L21+00S; 8+00W (DWG 5655C)

Sheared and altered porphyritic gabbro, now altered to chlorite schist, outcrops on the east shore of Church Lake. The gabbro contains up to 20% coarse grained magnetite and partially altered feldspar porphyroblasts. No quartz veining or sulphides were observed in outcrop. However, a grab sample of sheared metagabbro returned an anomalous assay of 0.04 oz/ton Au.

9) Church Lake Trench: L40+00S; 10+50W - Claim K590549 (DWG 5655C)

A 4" to 12" mineralized quartz vein has been trenched for a length of 48'. The vein occurs within a shear zone on the east shore of Church Lake and east of a prominent north-south lineament running through Brown and Church Lakes. The host rock is an intensively sheared gabbro, now altered to a chloritic schist. Slickenslides in the trench indicate the last movement was near vertical with the west side being downthrown. The shearing and progressive alteration of the gabbro can be traced for at least 500' from the lakeshore.

The quartz veining varies from white to blue grey and has been brecciated. Fractures within the quartz contain chlorite, calcite, ankerite and tourmaline.

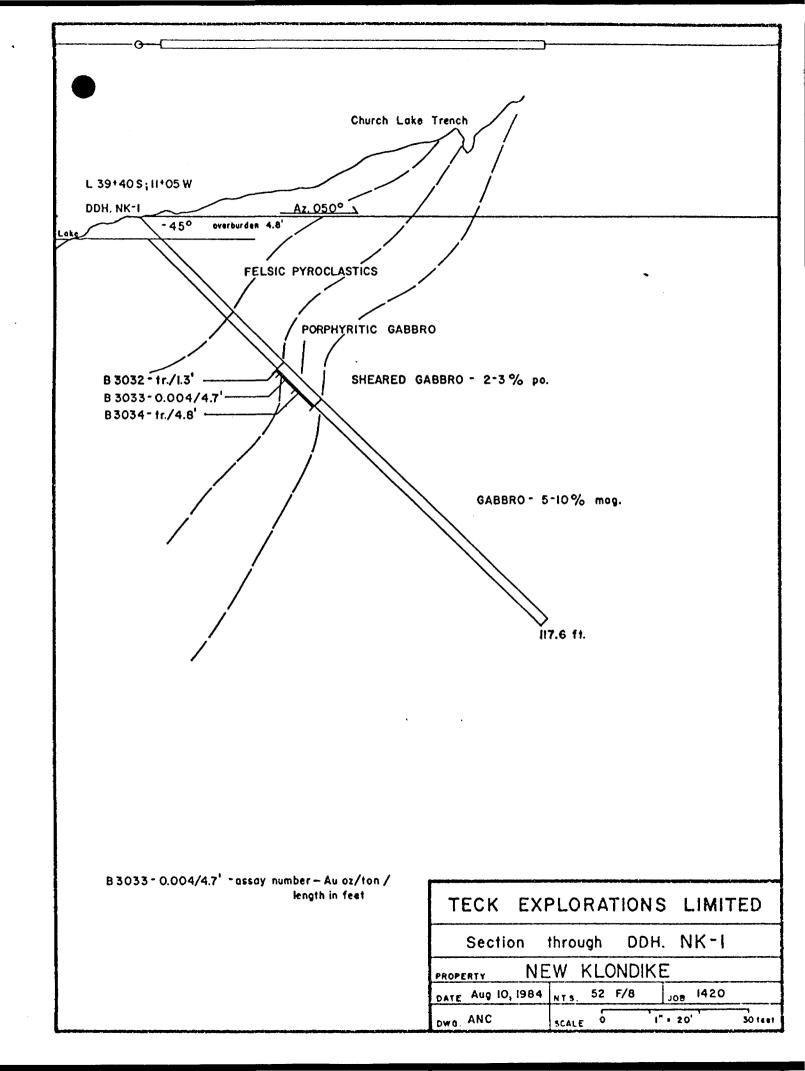
The veins are mineralized with pyrrhotite, pyrite, chalcopyrite and native gold.

Three shallow trenches apparently sunk on a number of minor quartz veins occur about 100' to the north. These veins may be an en echelon extension of the main vein system. A grab sample of quartz taken by Trusler from these trenches assayed 0.028 oz/ton Au.

10) L64+00S; 21+60W to 22+00W (DWG 5657C)

Located near the southeast end of Church Lake, a series of felsic metavolcanics have been sheared, highly sericitized and carbonatized. This showing may be related to the strong north-south lineament mentioned earlier in this report. Three grab samples of sheared and/or fractured and altered felsic volcanics assayed 0.02 oz/ton, 0.12 oz/ton and 0.09 oz/ton Au.

APPENDIX E

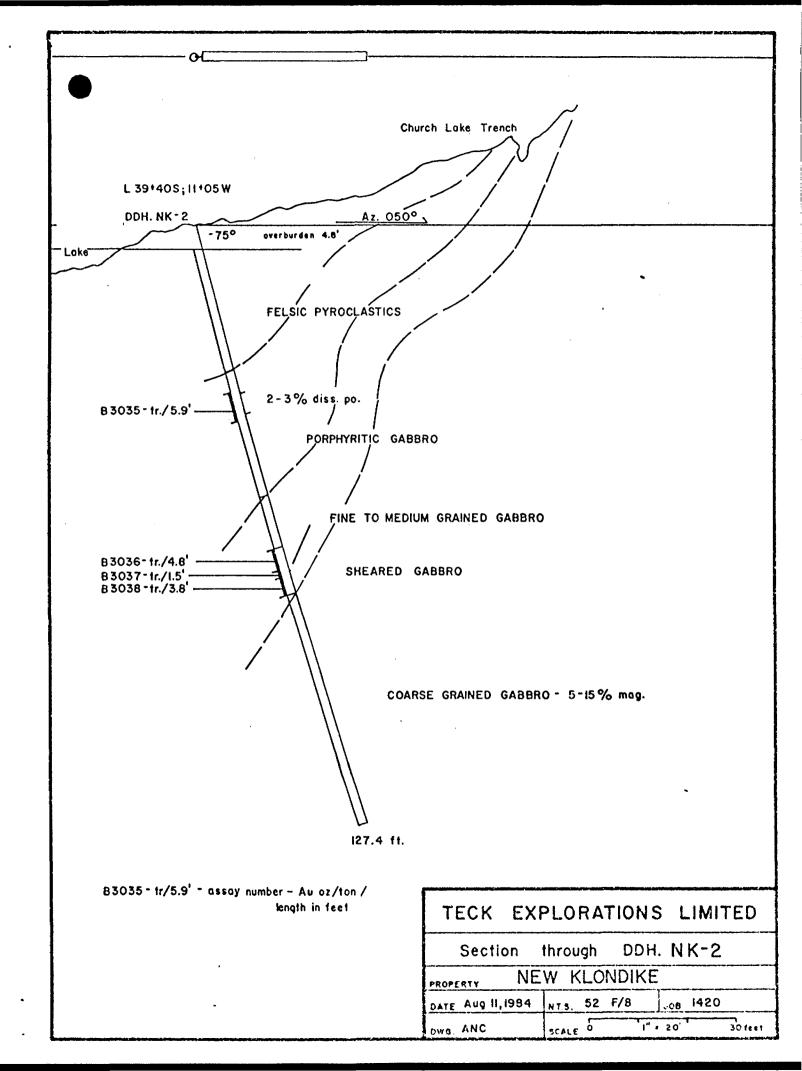

DRILL LOGS AND SECTIONS

Hole <u>NX-1</u> Sheet 1 of 2

Job 1420 N.T.S. 52F/8 Property New Klondike	Objective To Test Surface Showing at Depth	Core Location <u>Dryden</u>	Tests	Dip	Azlmuth
Township Kawashegamuk Lake Area Location: Line 39+40S	Drilling Co. St. Lambert Drilling	Distance to water 15 feet Casing Lost Ni!	At Collar 117.6		050°
Station 11+05W Elevation	Commenced August 9, 1984 Completed August 10, 1984 Longth 117.6 feet	Core Size BQ			
Logged W. Penno Remarks	Longin 117,0 reer				***************************************

Depti	h (F)			Sample			Length					
From	То	Rock Type	Description	No.	From	То	Feet			Assays		
0	6.8		Casing					Au oz/ton	Ag oz/ton	Cu	Zn ppm	
6.8	27.4	FELSIC PYROCLASTICS	Light grey series of fine to coarse ash and lapilli tuffs, tuff breccias and agglomerate. Fragments are generally dark grey ranging in size from 1/16 to 1", angular to rounded in a fine grained to aphanitic sericitic matrix. Contains 2-4%, yellow to light brown, disseminated ankerite(?). 10.3-11.3 - Feisic lapilli tuff.									
27.4	42.3	PORPHYRITIC GABBRO	Large (up to 1") ewhedral to subhedral white plagiociase phenocrysts in a light green and white, fine to medium grained matrix composed of 30-40% plagiociase and 50-60% chlorite and amphibole. Phenocrysts compose 5-8% of unit.									
42.3	53.1	SHEARED GABBRO	Dark green, fine grained strongly sheared gabbro, altered to a chiorite schist. Highly calcareous with thin quartz-carbonate veinlets and stringers parallel shearing at 50° to core axis.		42.3	43.6	1.3	Trace				

Deg	oth (F)			Sample			Length				U	
From	To	Rock Type	Description	No.	From	То	Feet			Assays		
			43.6-48.3 - Light to medium groy, fine grained to aphanitic feldspar porphyry dyke with 2-3% fine grained disseminated pyrrhotite.	1	1	48.3 53.1	4	0.004	Ag oz/ton	Cu ppm	Zn ppm	
53.1	117.6	GABBRO	Dark green and white, massive, holocrystalline, composed of 45-55% fine to coarse grained, euhedral to anhedral amphibole and chlorite and 40-50% white anhedral to subhedral plagioclase. Variable in grain size and texture. Contains 5-10% medium to coarse grained magnetite associated with up to 8" wide alteration zones with abundant epidote and blue quartz. 87.7-89.6 - Feldspar porphyry dyke. 106.6-117.6 - Gabbro with magnetite associated with quartz-epidote alteration zones.	83034	48.5	>3•1	4.8	Trace				
117.6		END OF HOLE										

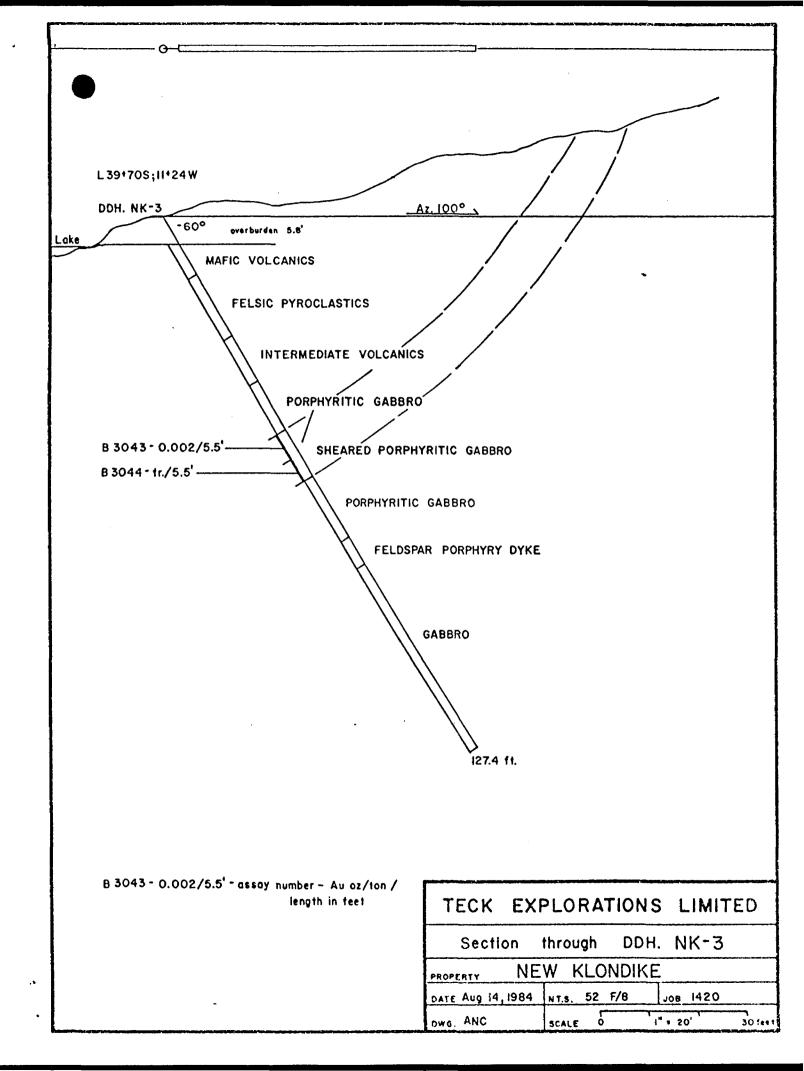


Hole <u>NK-2</u> Sheet 1 of 2

Job 1420 N.T.S. 52F/8 Property New Klondike	Objective To Test Surface Showing at Depth	Core Location <u>Dryden</u>	Tests	DΙρ	Azîmuth
Township Kawashegamuk Lako Area Location: Line 39+40S	Drilling Co. St. Lambert Drilling	Distance to water 15 feet Casing Lost N11	At Collar 127.41	•	050*
Station 11+05W Elevation	Commenced August 10, 1984 Completed August 11, 1984 Length 127.4 feet	Core Size BQ			
Romarks					

Dept	h (F)	Rock Type	Description	Sample No.	From	То	Length			Assaya		
			,									
0	4.9		Casing					Au oz/ton	Ag oz/ton	Cu ppm	Zn ppm	
4.9	30.4	FELSIC PYROCLASTICS	Light grey, siliceous series of fine ash to lapilil tuffs, tuff breccia and agglomerate. Fragments angular to rounded and up to 1" in size. Unit altered to sericite.									
30.4	57.3	PORPHYRITIC GABBRO	Large (up to 1") white euhadral to anhedral plagicclase phenocrysts in a fine to medium grained, white and green plagicclase-amphibole-chiorite matrix. Massive, slightly calcareous. 35.3-41.2 - Sheared porphyritic gabbro. 35.7-40.3 - Feldspar porphyry dyke with 2-3% fine grained disseminated pyrrhotite.		35.3	41.2	5.9	Trace				
57.3	68.6	FINE TO MEDIUM GRAINED GABBRO	Dark green and white, holocrystalline, massive, composed of 35-45\$ white plagicclase and 45-55\$ green amphibole and chlorite.									,
68.6	78.7	SHEARED GABBRO (?)	Dark green, strongly sheared gabbro (?) altered to a chlorite schist. Abundant quartz-carbonate									

	ተከ (F)			Sample	_	_	Length.			_		/
From	То	Rock Type	Description	No.	From	То	Foot			Assays		
			veining and alteration. Shearing at 40° to ∞re axis. 69.5-73.4 - Shear zone with abundant quartz-						Ag oz/ton	Cu ppm	Zn ppm	
			carbonate veining and alteration. 73.4-74.9 - Feldspar porphyry dyke.	B3036 B3037 B3038	68.6 73.4 74.9	73.4 74.9 78.7	1.5	Trace Trace Trace				
78.7	127.4	COARSE GRAINED GABBRO	Green and white, highly variable in texture and grain size. Contains zones up to 8" wide with 5-15% medium to coarse grained magnetite associated with blue quartz, carbonate and epidote alteration.		·							
127.4		END OF HOLE				,						

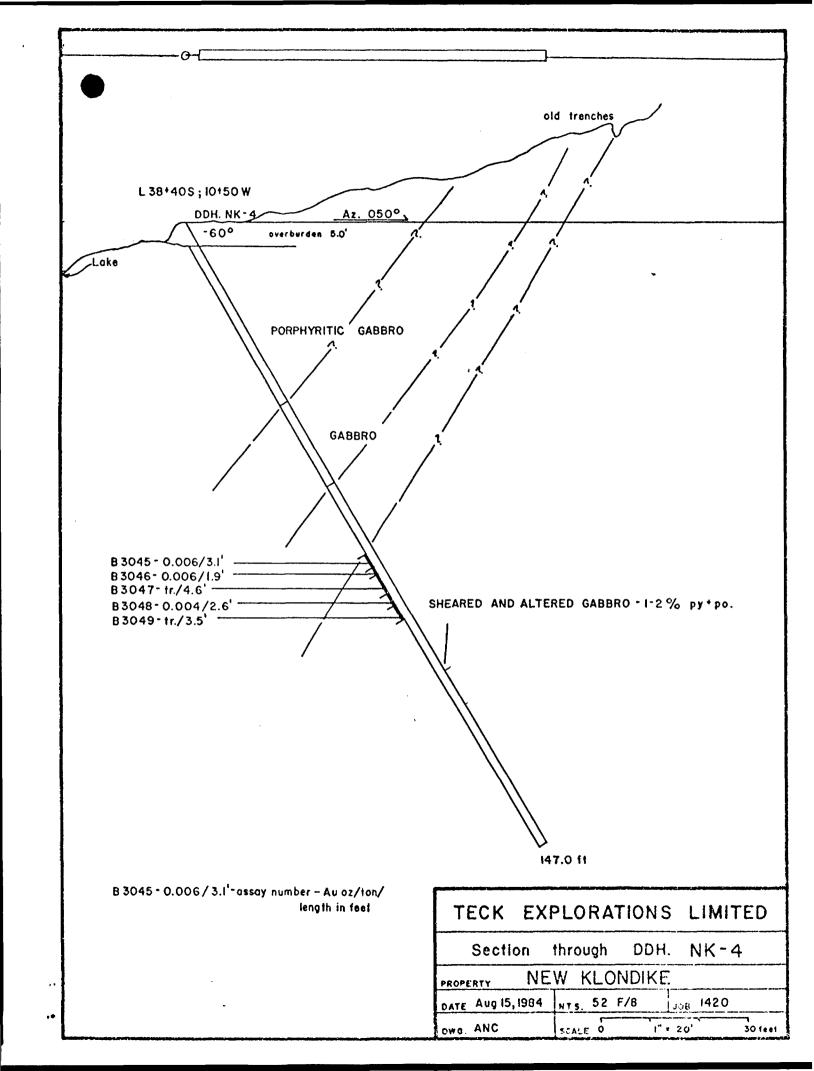


Hole NK-3
Shoot 1 of 2

Job 1420 N.T.S. 52F/8 Property New Klondike	Objective To Test Surface Showing at Depth	Core Location <u>Dryden</u>	Tests	Dip	Azlmuth
Township Kawashegamuk Lake Area	Drilling Co. St. Lambert Drilling	Distance to water 15 feet	At Collar	-60°	100*
Location: Line 39+70S Station 11+24W	Commenced August 13, 1984	Casing Lost NII	127.41	<u>-57.5</u> °	
Elevation Logged W. Penno	Completed August 14, 1984 Length 127.4 feet	Core Size BQ			
Remarks					

Depti From	h (F)	Rock Type	Description	Sample No.	From	То	Length Feet			Assays		
	6.0							A. .	· · · · · · · · · · · · · · · · · · ·	<u> </u>	i	1
0	6.8		Casing					Au oz/ton	Ag oz/ton	Cu ppm	Zn ppm	
6.8	13.9	MAFIC VOLCANIC	Medium to dark green, fine grained, massive,							· ·		
			composed of 50-60% fine grained chlorite and				1				,	
· ·			amphibole and 40-50\$ white feldspar (plagio- clase?) and carbonate. Cut by numerous thin				1					
			irregular carbonate veinlets. Calcareous and				Ì					
,			slightly porphyritic with occasional euhedral									1
			plagioclase laths up to 1/8" in size.									
13.9	28.3	FELSIC PYROCLASTICS	Dark grey to greenish grey series of lapilli									
			tuffs and tuff breccia with subordinate felsic	-			1					
!			ash tuff and agglomerate. Fragments range in									
· ·	Ì		size from 1/16 to 3/4", averaging 1/8 to 3/16". Unit altered entirely to sericite with 1-2% fine				}				ł	İ
	1	·	grained disseminated ankerite (?) and occasional				ļ					
•		, i	bright green patches of fuchite (?). Same unit									
	•		as 49-30.4 in DDH NK-2.				1					
		1177701701177 110101111111										
28.3	39.2	INTERMEDIATE YOLCANIC(7)	Medium to dark green, fine grained, massive.		,							
			Calcareous cut by numerous carbonate veinlets and fractures. May be slightly altered section of									

De	oth (F)			Sample			Length					
From	То	Rock Type	Description	No.	From	То	Feet			Assays		
			mafic volcanic (?). 36.6-39.2 - Zone of alteration and brecclation. Bleached with thin carbonate-chlorite fractures.					Au oz/ton	Ag oz/ton	Cu ppm	Zn ppm	
39.2	50.6	PORPHYRITIC GABBRO	Large (up to 1-1/2") white, euhedral to anhedral plagioclase phenocrysts in a fine grained chlorite-amphibole-feldspar matrix. Some phenocrysts corroded and embayed. 43.9-44.9 - Medium grained intermediate dyke. 49.0-50.6 - Feldspar porphyry dyke.									
50.6	61.6	SHEARED PORPHYRITIC GABBRO	Dark green, sheared and foliated, altered to a chlorite schist. Abundant carbonate veining and alteration parallel shearing at 50° to core axis. Rare ragged plagiculase phenocrysts near contacts.	B3043 B3044	1	56.1 61.6		0.002 Trace		,		
61.6	76.3	PORPHYRITIC GABBRO	Similar to 39.2-50.6, but phenocrysts more altered. Matrix slightly coarser grained.									
76.3	82.9	FELDSPAR PORPHYRY DYKE										
82.9	127.4	GABBRO	Green and white, holocrystalline, massive. Highly variable in grain size. Composed of 55-65% chlorite and amphibole and 35-45% feldspar (plagioclase). Approaches a diorite in composition.	4								
127.4		END OF HOLE										

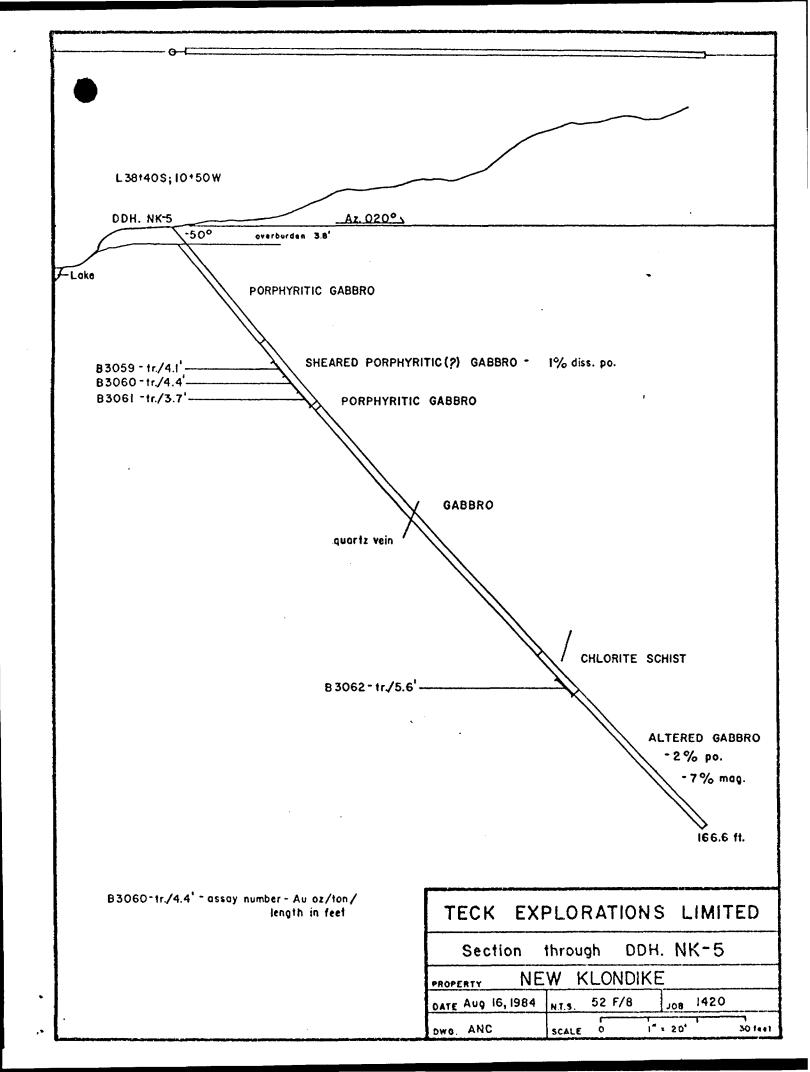


Hole NK-4 Sheet 1 of 2

Job 1420 N.T.S. 52F/8 Property New Klondike Township Kawashegamuk Lake Area	Objective	Core Location	Tests Olp At Collar60*	Azlmuth 050°
Location: Line	Commenced August 14, 1984	Core Size BQ		
Remarks				

Depti	h (F)			Sample			Length					
From	То	Rock Type	Description	No.	From	То	Feet			Assays		
0	5.5		Casing					Au oz/ton	Ag oz/ton	Cu ppm	Zn ppm	
5.5	42.7	PORPHYRITIC GABBRO	Large white ouhedral to anhedral plaglociase phenocrysts in a fine to medium grained matrix. Massive. Same as 39.2-50.6 in DDH NK-3. 28.8-33.5 - Feldspar porphyry dyke.									
42.7	61.7	GABBRO	Similar to 5.5-42.7 but lacking porphyritic texture. Upper and lower contacts gradational.									
61.7	147.0	SHEARED AND ALTERED GABBRO (?)	Dark green with thin irregular white carbonate veinlets throughout. Composed essentially of fine grained chlorite and fine to medium grained amphibole with 3-5% blue (secondary?) quartz. Slightly follated at 10-20° to core axis. Pyrrhotite and pyrite (1-2%) associated with carbonate veinlets. Alteration highly variable, possible increasing down hole, evidenced by zones with 5-7% disseminated magnetite and 1-2% pyrrhotite. 78.7-79.1 - Zone with 1." and 3/8" wide quartz veins. Trace of pyrrhotite and pyrite along	1	77.1	80.1	3.1	0.006				

Dep	ነተከ (F)			Sample			Longth					
From	То	Rock Type	Description	No.	From	То	Feet			Assays		
			contacts. 80.1-82.0 - Zone with 11 and 2" wide quartz veins with numerous chlorite inclusions. Also					Au oz/ton	Ag oz/ton	Cu ppm	Zn ppm	
			contains occasional pink, K-feldspar (?) crystals and 1-2% disseminated pyrrhotite and pyrite, generally associated with vein contacts and chioritic inclusions. Contacts at 15-20% to core axis.	B3047	80.1 82.0	82.0 86.6		0.006 Trace				•
			88.4-89.2 - 3" quartz vein with 2-4% associated pyrrhotite, trace of pyrite. Contacts at 15-20° to core axis. 105.6-106.0 - 1" quartz vein at 35° to core axis. 107.2-109.1 - Feldspar porphyry dyke.	B3049	86.6 89.2	89.2 92.7		0.004 Trace				
147.0		END OF HOLE										
			·									
-												

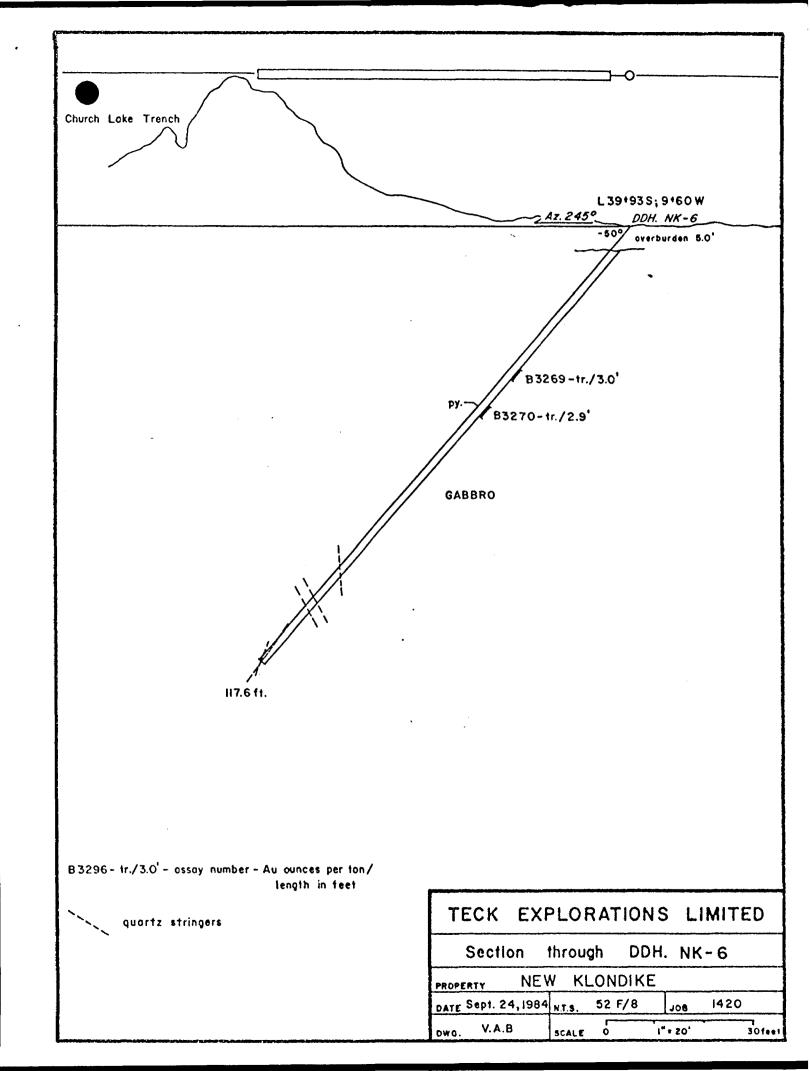


Hole NK-5 Sheet 1 of 2

Job 1420 N.T.S. 52F/8 Property New Klondike	Objective To Test Surface Showing at Depth	Core Location <u>Dryden</u>	Tests	Dlp	Azlmuth
Township Kawashegamuk Lake Area Location: Line 38+40S	Drilling Co. St. Lambert Drilling	Distance to water 25 feet Casing Lost NII		-50° -46.5°	020
Station 10+50W Elevation	Commenced August 15, 1984 Completed August 16, 1984	Core Size BQ			
Logged W. Penno	Length 166.6 feet				
Remarks					

Depti From) (F) To	Rock Type	Doscription	Sample No.	From	То	Length Fect			Ascays		
0	4.6	PORPHYRITIC GABBRO	Casing Large white (up to i") euhedral to anhedral plagloclase phenocrysts in a fine grained chlorite-amphibole-feldspar matrix. Contains					Au oz/ton	Ag oz/ton	Cu ppm	Zn ppm	
28.9	47.3		12-15" wide zones with abundant epidote-quartz alteration. Dark green, fine grained with carbonate veining					·				
		GABERO	and alteration parallel shearing/foliation at 15-60° to core axis. Unit altered to a chlorite schist with <1\$ disseminated pyrrhotite. 29.7-35.1 - Feldspar porphyry dyke. 36.8-37.3 - Quartz vein with chloritic wallrock	4	35.1 39.2	39.2 43.6	1	Trace Trace				
			inclusions. Contacts irregular varying from 40° to 70° to core axis. Contains <1≴ pyrrhotite and pyrite.	B3061		47.3	L	Trace				
47.3	48.6	PORPHYRITIC GABBRO	Same as 4.6-28.9.				•					
48.6	116.7	GABBRO	Dark green and white, massive, highly variable in grain size. Contains occasional thin carbonate									

De	pth (F)			Sample			Length					
From	То	Rock Type	Description	No.	From	То	Feet			Assays		
			veins and alteration zones with blue quartz and epidote. 77.5 - 1" quartz vein, contacts sharp and at 65° to core axis.					Au oz/ton	Ag oz/ton	Cu ppm	Zn ppm	
116.7	127.4	CHLORITE SCHIST (SHEARED GABBRO?)	Dark green, fine grained with abundant carbonate alteration, veinlets and stringers parallel shearing at approximately 60° to core axis. Contains 5-10% coarse grained secondary (?) blue quartz. 118.3-121.8 - Feldspar porphyry dyke.	B3062	121.8	127.4	5.6	Trace				
127.4	166.6	ALTERED GABBRO (?)	Dark green and white, highly variable in texture and composition. Composed mainly of fine to medium grained chiorite and amphibole with white, fine to coarse grained euhedral to anhedral feldspar (plagiociase?) occurring in irregular patches and zones. Also contains 5-10% medium to coarse grained blue quartz, 1-2% pyrrhotite and 5-7% fine to coarse grained magnetite generally associated with up to 12" wide alteration (?) zones. Similar to 61.7-147.0 in DDH NK-4, but lacking shearing/foliation and carbonate alteration.									
165.6		END OF HOLE										



Hole NK-6
Sheet 1 of 2

Job 1420 N.T.S. 52F/8 Property New Klondike	Objective To Test Church Lake Trench at	Core Location <u>Marathon, Ontario</u>	Tests	DIp	Azlmuth
Township Kawashegamuk Lake Area Location: Line 39+93S	Drilling Co. St. Lambert Drilling	Distance to water 200 feet Casing Lost NII	At Collar 117.6'	-50° -49°	245*
Station 9+60W Elevation	Commenced September 24, 1984 Completed September 24, 1984	Core Size BQ			
Logged W. Penno	Length 117.6 feet				
Remarks					

Dept	h (F)			Sample			Length					
From	То	Rock Type	Description	No.	From	То	Feet			Assays		
0	6.6	•	Casing					Au oz/ton	Ag oz/ton	Cu ppm	Zn ppm	
. 6.6		GABBRO	Green and white, mottled, fine to medium grained, massive to slightly foliated. Composed of 60-70% green euhedral to anhedral amphibole and chlorite and 30-40% white euhedral to anhedral plagioclase ± quartz (secondary?). Occasional coarse grained sections with fine to coarse grained magnetite and epidote alteration. 31.6-43.0 - Feldspar porphyry dyke. Bleaching and silicification associated with chlorite filled fractures. Wallrock slightly sheared up to 21 from contacts.		37.2	40.2	3.0	Trace				
			48.3-48.9 - Quartz carbonate vein at 20-30° to core axis. Trace of pyrite. 64.1-72.1 - Porphyritic Mafic Dyke. Dark green with 1-2\$ euhedral plagioclase phenocrysts up to 1/4" in size in a fine grained chlorite-feldspar matrix. Contacts at 30-40° to core axis.	B3270	46.9	49.8	2.9	Trace				

	th (F)			Sample			Length					
From	То	R∞k Type	Description	No.	From	То	Feet		· · · · · · · · · · · · · · · · · · ·	Assays		
			92.0-92.5 - Series of quartz veins up to 1/2" in size. Contacts at 45° to core axis. No associated sulfides. 100.2 - 1/2" quartz vein at 70° to core axis. No sulfides. 102.9 - 1" quartz vein at 70° to core axis in 5" shear zone. No sulfides. 110.8 - 3/8" quartz vein at 5° to core axis in 5" shear zone. 116.6 - 1/2" quartz vein at 20° to core axis. Minor shearing. No associated sulfides.					Au oz/ton	Ag oz/ton	Cu ppm	Zn ppm	
117.6		END OF HOLE										

APPENDIX F

TABLE I - SAMPLE DESCRIPTIONS AND ASSAYS - 1983 PROGRAM

TABLE II - SAMPLE DESCRIPTIONS AND ASSAYS - 1984 PROGRAM

TABLE I

SAMPLE DESCRIPTIONS AND ASSAYS - 1983 PROGRAM

Sample		Sample		λοσον:
Number	Location	Type	Description	Assay (ppb Au)
A9602	12+00N, 27+00	E Grab	2" x 5' quartz vein	Nil
A9603	8+00S, 45+50	E Grab	Rusty sheared felsic volca- nics	20
A9604	72+00s, 4+50	W Grab	Altered, gossanous gabbro	10
A9605	8+00s, 31+80	E Grab	Rusty felsic volcanics with 2% pyrite	60
A9606	12+00s, 51+10	E Grab	Rusty felsic volcanics with 1% pyrite	20
A9607	36+00s, 48+75	E Grab	Pyrite in sediments	Nil
A9608	52+00s, 36+50	E Grab	Quartz vein in felsic vol- canics	Nil
A9609	56+00s, 18+00	E Grab	Quartz vein in felsic vol- canics	Nil
A9610	56+00s, 23+80	E Grab	Quartz vein float with pyrite, chalcopyrite	10
A9611	51+20S, 29+00	E Grab	Sheared felsic volcanics with up to 50% pyrite (in trench)	20
A9612	51+50s, 29+00	E Grab	As A9611	20
A9613	64+00s, 1+60	E Grab	Felsic volcanics with 1-2% pyrite	Nil
A9901	24+16N, 40+50	E Chip 1.5'	Quartz vein	30
A9902	24+16N, 40+50	E Grab	Quartz rubble	Nil
A9903	24+16N, 40+50	E Grab	Footwall (2"), sheared gabbro, <1% pyrite	20
A9904	24+00N, 46+00	E Grab	Quartz from dump	105

Sample Number	Location	Sample Type	Description	Assay (ppb Au)
A9905	12+00S, 29+00E	Grab	Rhyolite breccia with 3% pyrrhotite	20
A9906	12+00S, 29+90E	Grab	Rhyolite breccia with 5% pyrrhotite, pyrite	Nil
A9907	16+00S, 37+00E	Grab	Brecciated and sheared feldspar porphyry	10
A9908	20+00S, 6+25E	Grab	Felsic volcanic float with quartz veins and chlorite	50
A9909	20+00S, 3+75W	Grab	Altered gabbro with 3% pyrite, minor quartz-carbo-nate veins	220
A9910	26+00s, 8+00W	Grab	Altered gabbro with 20% magnetite	1310
A9911	64+00S, 22+00W	Grab	Sheared felsic volcanics	630
A9912	64+00s, 21+60W	Grab	Rhyolite float, fractured, carbonate stain	4000 (0.12 oz/ton)
A9913	64+40S, 22+00W	Grab	Rhyolite float, fractured, carbonate stain	3110
A9914	64+00s, 10+80W	Grab	Granodiorite with very fine sulphides	200
A9915	64+00S, 9+50W	Grab	Rusty gabbro	60
A9916	63+25S, 4+50W	Grab	Altered felsic volcanics	400
A9917	60+00S, 0+00	Grab	Altered felsic volcanics	230
A9918	60+00S, 9+00W	Grab	Rusty gabbro in contact with feldspar porphyry in old trench	50
A9919	60+00S, 12+00W	Grab	Altered felsic volcanics with 1/2" quartz vein	150

Sample Number	Location	Sample Type	Description	Assay (ppb Au)
A9920	20+00S, 19+75E	Grab	Altered felsic volcanics (float?)	200
A9921	20+00S, 21+00E	Grab	Felsic volcanic	90
A9922	20+00S, 29+75E	Grab	Felsic volcanic <1% pyrite/ chalcopyrite	50
A9923	20+00S, 25+40E	Grab	Felsic volcanic with 5-10% pyrrhotite	120
A9924	20+00S, 40+00E	Grab	Felsic volcanic with 1% pyrrhotite	80
A9925	24+00S, 37+10E	Grab	Felsic volcanic	30
A9926	24+00S, 37+10E	Grab	Felsic volcanic/felsic dyke contact	80
A9927	24+00S, 25+40E	Grab	Cherty rhyolite, 10-15% pyrite, minor pyrrhotite	20
A9928	44+00S, 4+00W	Grab	Sheared gabbro with quartz vein	20
A9929	32+00S, 21+60E	Grab	Mafic tuff, <1% pyrite	110
A9930	32+00S, 38+00E	Grab	Brecciated and sheared felsic volcanic, minor pyrite, chalcopyrite	240
A9931	28+00S, 40+50E	Grab	Mafic intrusive <1% pyrite, chalcopyrite	90
A9932	36+00S, 22+00E	Grab	Felsic volcanics, <1% pyrite	20
A9933	44+00S, 8+25E	Grab	Float - quartz in gabbro	80
A9934	36+00S, 16+20E	Grab	Felsic volcanics, <1% pyrite	50

Sample Number	Locat	ion	Sample Type	Description	Assay (ppb Au)
A9935	44+00S,	9+90W	Grab	Feldspar porphyry with 2" quartz-chlorite vein	40
A9936	20+00s,	7+50W	Grab	Gabbro with 3% pyrite	250
A9937	15+25S,	4+20W	Grab	Altered gabbro, 1% pyrite, 20% magnetite	30
A9938	16+00s,	3+90W	Grab	Wallrock of quartz vein	5
A9939	8+30S,	1+40E	Grab	Contact of gabbro and feld- spar porphyry dyke	10
A9940	80+00S,	28+00W	Grab	2' alteration zone in felsic volcanics with minor quartz veins	Nil
A9941	80+00S,	24+50W	Grab	Ultramafic dyke with 30% pyrrhotite	10
A9942	80+00S,	7+25W	Grab	4" quartz vein in altered gabbro	Nil
A9943	84+00S,	14+20E	Grab	Felsic volcanic or felsic intrusive, <1% pyrite	10
A9944	84+00S,	2+45E	Grab	Gabbro with 15% pyrrhotite	20
A9945	88+00S,	12+25W	Grab	Mafic dyke with 10-15% pyrrhotite	10
A9946	88+00S,	1+50W	Grab	Thin quartz vein in felsic volcanic	40
A9947	92+20S,	0+00	Grab	Altered felsic volcanic with 1% pyrite	10
A9948	92+00S,	7+00E	Grab	Altered gabbro with 30% magnetite	20
A9949	84+00S,	24+90W	Grab	Mafic dyke with 10-15% pyrrhotite	20

Sample Number	Location	Sample Type	Description	Assay (ppb Au)
A9950	14+50N, 8+50W	Grab	Quartz veining in felsite dyke	20
A9951	Adit	Chip-1.5'	Fault gouge above adit	40
A9952	Adit	Chip- 1.75'	Quartz vein above adit	45190 (1.32 oz/ton)
A9953	Brockman Dump	Grab	Quartz with 2% sulphides (pyrite, sphalerite, chalcopyrite, pyrrhotite)	4390 (0.13 oz/ton)
A9954	Brockman Dump	Grab	Quartz porphyry from dump	60
A9955	26+10N, 28+50E	Chip- 6"	Quartz vein with 10% chalcopyrite	134060 (3.91 oz/ton)
A9956	52+00N, 47+75E	Grab	Felsic volcanics with minor pyrite, quartz	40
A9957	46+50N, 40+00E	Grab	Felsic volcanics with fine fractures with quartz, tourmaline, pyrite	150
A9958	45+75N, 40+00E	Grab	Agglomerate	20
A9959	44+00S, 41+50E	Grab	Quartz-carbonate vein in gabbro	30
A9960	17+50s, 67+00E	Grab	Quartz vein in gabbro	90
A9961	12+00S, 59+00E	Chip-1.0'	Contact gabbro and felsic intrusive	Nil

TABLE II

SAMPLE DESCRIPTIONS AND ASSAYS - 1984 PROGRAM

Sample Number		Sample Type	Description	Assay (ppb Au)
B221	8+00S, 0+00	Composite chip	Quartz float with rusty inclusions	10
в222	16+00S, 5+50W	Composite	Altered gabbro	Nil
в223	20+50S, 7+50W	Composite	Altered gabbro	Nil
B224	15+50s, 0+50W	Composite chip	Mafic volcanic, 1-2% pyrrhotite	Nil
B225	23+85S, 1+80W	Chip-2.5'	Altered gabbro	10
B226	39+50s, 1+20W	Composite	Dark grey 8" quartz vein	Nil
в227	39+50s, 1+20W	Composite	Dark grey 5' quartz pod	10
B228	Church Lake Trench #4	Grab from dump	Quartz and altered wall rock	570
B229	42+00S, 11+00W	Grab	Quartz float in o/c of chlorite schist	Nil
В232	64+00S, 22+00W	Composite	Altered gabbro	30
в233	64+00S, 21+60W	Grab	Felsic volcanic, 1% pyrite, pyrrhotite	10
B234	64+60s, 21+80W	Grab	Felsic volcanic float, 1% pyrite, pyrrhotite	30
в235	64+20S, 21+30W	Grab	Felsic volcanic float, 1% pyrite, pyrrhotite	10

Sample		Sample		Assay
Number	Location	Туре	Description	(ppb Au)
в236	Adit	Composite chip	Sheared chloritized gabbro	20
в237	Adit	Grab	Quartz vein in fault above adit	20,330 (0.59 oz/ton)
в238	Brockman Dump	Grab	Randomly selected quartz; some with pyrite, chalco- pyrite, galena	34,627 (1.01 oz/ton)
в3001	45+10S, 41+00E	Grab	Rusty felsic volcanic, 3% pyrite	Nil
B3002	35+00S, 37+00E	Grab	Dacite, 4% pyrite	10
в3003	27+70S, 48+00E	Grab	Quartz vein in felsic rock	Nil
B3004	15+70S, 52+20E	Grab	2" quartz vein in foliated volcanic	Nil
в3005	14+00S, 69+00E	Grab	Quartz vein in gabbro	Nil
в3006	7+50S, 26+00E	Grab	1" quartz vein in gabbro	Nil
в3007	13+50S, 28+50E	Grab	Quartz vein in 4" chlorite schist	Nil
В3008	21+20S, 22+50E	Grab	Quartz vein in felsic dyke	Nil
в3009	15+10S, 20+00E	Grab	Quartz vein in mafic volcanic, 3% pyrite	Nil
в3010	Church Lake Trench	Chip-4.0'	Altered felsic volcanic	10
B3011	Church Lake Trench	Chip-3.5'	Altered felsic volcanic	20
в3012	39+40N, 51+50E	Composite chip	Sheared felsic volcanic and quartz	20

Sample Number			_	Description	Assay (ppb Au)
B3013	39+40N, 52	+00E	Composite grab	Sheared felsic volcanics	30
B3014	40+00N, 52	+80E	Grab	Felsic volcanic, pyrite, quartz	440
в3015	12+00S, 59	+00E	25 lb bulk	Pyritic shear zone	20
в3154	39+20S, 1	+20W	Chip 40'	Smokey quartz vein '	Nil
в3155	42+00N, 29	+00E	Grab	Magnetic, sheared felsic volcanics	Nil
в3156	43+00N, 31	+50E	Grab	Magnetic, sheared felsic volcanics	Nil
в3157	39+20S, 1	+20W	Chip 3.01	Calcareous gabbro, 5% quartz veins	Nil
в3158	37+70S, 9	+20W	Grab	3'x4" guartz vein in gabbro	Nil
B3159	22+80S, 7	+20W	Grab	Smokey quartz in gabbro	840
в3160	16+00S, 4	W00+1	Composite chip	6'x1' quartz vein in rusty sheared gabbro	1075
B3161	40+95s, 10)+30W	Chip- 6"	Quartz vein in gabbro	Nil
B3162	41+25S, 10)+20W	Composite chip	8'x12'x4" quartz vein in gabbro	Nil
A3163	38+25S, 6	5+50W	Grab	2" quartz vein in gabbro	Nil
B3164	36+80s, 6	5+50W	Grab	6" quartz vein in gabbro	Nil
в3167	29+40s, 2	2+00E	Grab	3" quartz vein in gabbro	10
B3168	45+35N, 40)+65E	Grab	Sheared felsic volcanic; 2-3% pyrite	Nil
B3169	36+00N, 44	1+75E	Grab	Smokey quartz	35

Sample Number			Sample Type	Description	Assay (ppb Au)
B3170	36+80N,	45+00E	Grab	Magnetic mafic dyke	10
В3171	33+70N,	49+00E	Grab	Rusty quartz	10
B3172	25+00N,	48+00E	Composite chip	25'x1' quartz vein in mafic volcanic	. 10
в3173	33+50N,	32+50E	Chip- 8"	Quartz vein	Nil
в3174	25+00N,	28+00E	Chip- 8"	Quartz vein in sheared intermediate volcanic, 5% pyrite	Nil
в3175	24+40N,	21+00E	Chip-5.0'	Magnetic shear zone, trace pyrite (0-5.0E)	Nil
в3176	24+40N,	21+00E	Chip-5.0'	Magnetic shear zone, trace pyrite (5.0-10.0E)	Nil
в3177	24+40N,	21+00E	Chip-5.0'	Sheared felsic volcanic (10.0-15.0E)	Nil
в3178	24+40N,	21+00E	Chip-5.0'	Sheared felsic volcanic (15.0-20.0E)	Nil
B3179	24+40N,	21+00E	Chip - 15.0'	Sheared felsic volcanic (20.0-35.0E)	Nil
B3180	24+40N,	21+00E	Chip - 15.0'	Sheared felsic volcanic (35.0-50.0E)	Nil
B3181	23+00N,	21+00E	Chip - 5"	Quartz vein with 3% pyrite in felsic volcanic	30
B3182	23+00N,	21+00E	Chip-6.0'	Felsic volcanic with several quartz veins	Nil
B3183	23+00N,	20+50E	Chip- 18"	Quartz vein with splashes of chalcopyrite	20
B3184	24+80N,	26+70E	Grab	25'x4" quartz vein south of Brockman Shaft	8295 (0.242 oz/ton)

Sample Number	Location	Sample Type	Description	Assay (ppb Au)
B3185	Kozowy Trench	Chip- 12"	Quartz vein - south of Brockman Shaft	29213 (0.852 oz/ton)
в3186	50' north of Kozowy Trench	Grab	2" quartz vein	70
в3187	60+25S, 9+20W	Grab	Sheared gabbro with pyrite, magnetite	30
в3188	58+90S, 8+20W	Grab	5'x4" quartz vein in gabbro	10
B3189	53+00S, 9+00W	Chip - 15.0'	Quartz vein - chlorite schist in trench	Nil
в3190	53+00S, 9+00W	Chip-6.0'	Quartz vein - chlorite schist in trench	Nil
B3191	53+00S, 9+00W	Chip - 15.0'	Quartz vein - chlorite schist above trench	50
в3192	83+35S, 3+35W	Chip -20"	Quartz vein in altered gabbro	Nil
B3193	5+75S, 10+20W	Grab	12'x5" quartz vein in gabbro	Nil
B3194	20+00s, 5+90W	Grab	Altered gabbro with up to 10% pyrite	5160 (0.15 oz/ton)
B3195	16+00S, 4+00W	Chip-4.0'	Quartz vein	1660
в3196	16+00S, 4+00W	Grab	Chlorite schist below quartz vein	Nil
в3197	16+00S, 4+00W	Grab	Chlorite schist in quartz vein	40
B3198	16+00S, 4+00W	Grab	Chlorite schist above quartz vein	20

Sample Number	Location	Sample Type	Description	Assay (ppb Au)
B3199	48+60S, 40+00E	Grab	Felsic volcanics with 3% pyrite	10
в3200	51+00S, 19+00E	Grab	5"x4' quartz vein	Nil
	•		,	
				-
			·	
			,	
; ;				

•

900

International Platinum Corporation

December 5, 1986

Mr. Mark Hall Mining Recorder Kenora Mining Division 808 Robertson Street P.O. Box 5080 Kenora, Ontario P9N 3X9

Dear Mark:

Attached is a Report of Work covering 45 claims on our Church Lake property. Please notify the Mining Lands Section of this notice as soon as possible as we are sending the geotechnical reports to them immediately.

Yours truly,

INTERNATIONAL PLATINUM CORPORATION

Lorne Burden Project Geologist

LB/bh

cc: Mining Lands Section

RECEIVED

DEC - 8 1986

MINING LANDS SECTION

Type of Surveyio

Claim Holder(s)

GEOLOGICAL

Report of Work

(Geophysical, Geological, Geochemical and Expenditures)

Please type or print If number of numing claims trave

excepts space on the form, attach a list Only days credits calculated in the

"Expenditure" section may be entered in the "Expend Days Cr" columns

Mining Act

Do not use shaded areas below Tabor Lake and Kawashegamu Lake Areas C. 2585

Alexander	Kozowy)	Interrnational	Platinum	Corporation
detrose			0004	

(51856) T.989 Ste. 2304, Sun Life Tower, P.O. Box 30, 150 King St.W.

(P.O. Box 36, Dryden, Ontario)

Oronto, Ontario M5H 1J9

Day of Innex (from & to)

15 04 83 15 10 83

Day Mo. V. Day Mo. V.

Teck Explorations Limited

Name and Address of Author (of Geo Technical report) 2189 Algonquin Ave., North Bay, Ontario

edits Requested per Each (Jaim in Columns at 1		(Carrier)	Claims Traversed		ricei seqi		
pecial redvisions	Geophysical	Days per Claum	p.,	Number	Expend. Days Cr.	Prefo	Mining Claim Number	Expend. Days Cr.
For first survey.	Electromagnetic		K	590337			696328	
Enter 40 days. (This includes line cutting)	- Magnetometer			590338			696329	
For each additional survey: using the same grid:	Radiometric			649208			696330	
Enter 20 days (for each)	Other			649209			696332	
	Geological	20		649213			.696333	
	Geochemical			649315	NOR-A	 	696334	
Man Days	Geophysical	Days per Claim		696311	NI IG DIV.	Œ	696335	
Complete reverse side and enter total(s) here	- Electromagnetic			6963125			696336	
7% A N N N N N N N N N N N N N N N N N N	Magnetometer			696313DE	C 1 0 19B6		696337	
	- Badiometric			6 7 8 9 10,1	1,12,1,2,3,4	158	696338	
~	- Other	,		696315			696339	
14 1170	Geological	,		696316		}	696340	
	Geochemical	1		696317			696341	
Airborne Credits		Days per Claim		696318			696342	
Note: Special provisions	Electromagnetic			696319			696398	
Enter 20 days (for each) fan Days Complete reverse side and enter total(s) here and enter total(s) here Note: Special provisions credits do not apply to Airborne Surveys. Expenditures (excludes power ype of Work Performed erformed on Claim(s)	Magnetometer			696320			696399	
	Radiometric			696321			696400	
	er stripping)			696322			696501	
ype of violation terrormed				696323			696503	
erformed on Claim(s)				696324			696504	
	Geological Geochemical Geochem	696325			696505			
alculation of Expenditure Days	s Creaits			696326				
	•			696327			704520	
S	÷ [15] = [59033	4		umber of mining covered by this of work.	45
Total Days Credits may be an choice. Enter number of days				For Office Use	_/			

				10		(1
Date		Reco	بوتون	9 03	the or	gent (Signature)
November	19/86	7	ζ,	19	given	ω
Certification Vi	erityina R	endrt	8f I	1401	k.	

Total Days Becorded				186	nu	on h	
900	Date Date	i Appy L. L.	ived as $f = \int_{-\infty}^{\infty} C$	Necorded]	Ela	man !	
							1

. I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed here to, naving performed the work or witnessed same during and for after its completion and the appeared report $\boldsymbol{\beta}$ thue

Name and Postal Address of Person Certifying

Teck Explorations Limited

intermitable Philippin Corporation

December 5, 1986

Mining Lands Section
Ministry of Northern Development
& Affairs
Whitney Block, Room 6610
99 Wellesley Street West
Queen's Park
Toronto, Ontario
M7A 1W3

Dear Sirs:

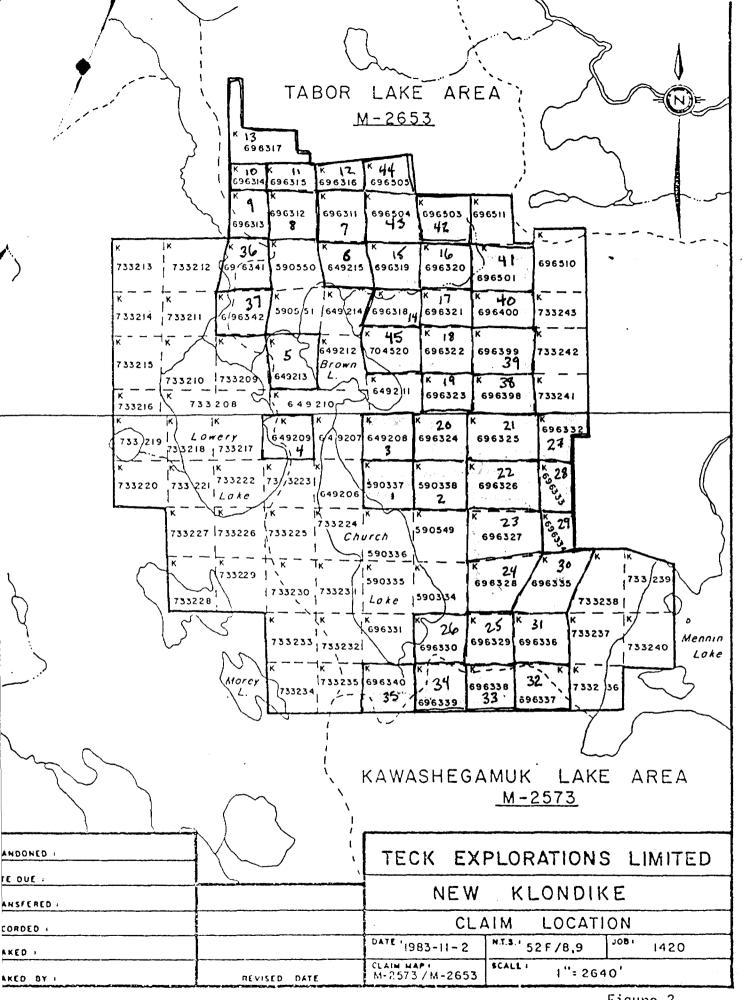
As per assessment requirements, please find enclosed two copies of a geotechnical report covering 45 claims in the Tabor Lake - Kawashegamuk Lake Areas of northwestern Ontario. The mining recorder in Kenora has just been sent the report of work, so it may be a few days before you can match this geotechnical report to a formal report of work.

We look forward to a favorable reply.

Yours truly,

INTERNATIONAL PLATINUM CORPORATION

Telephone: (416) 593-8706


RECEIVED

64.0 - 8 **1986**

Lorne Burden Project Geologist

MINING LANDS SECTION

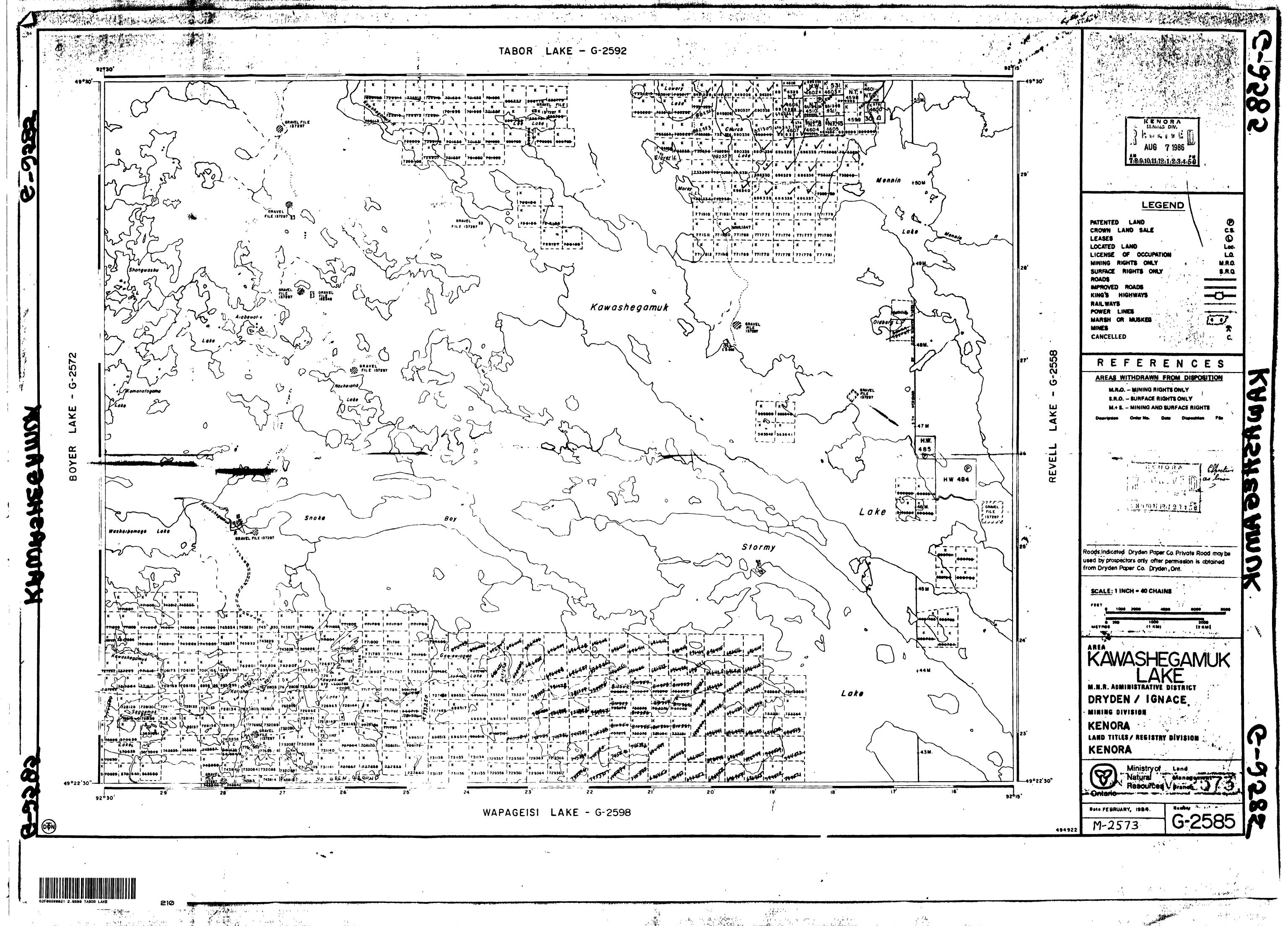
LB/bh Encl:

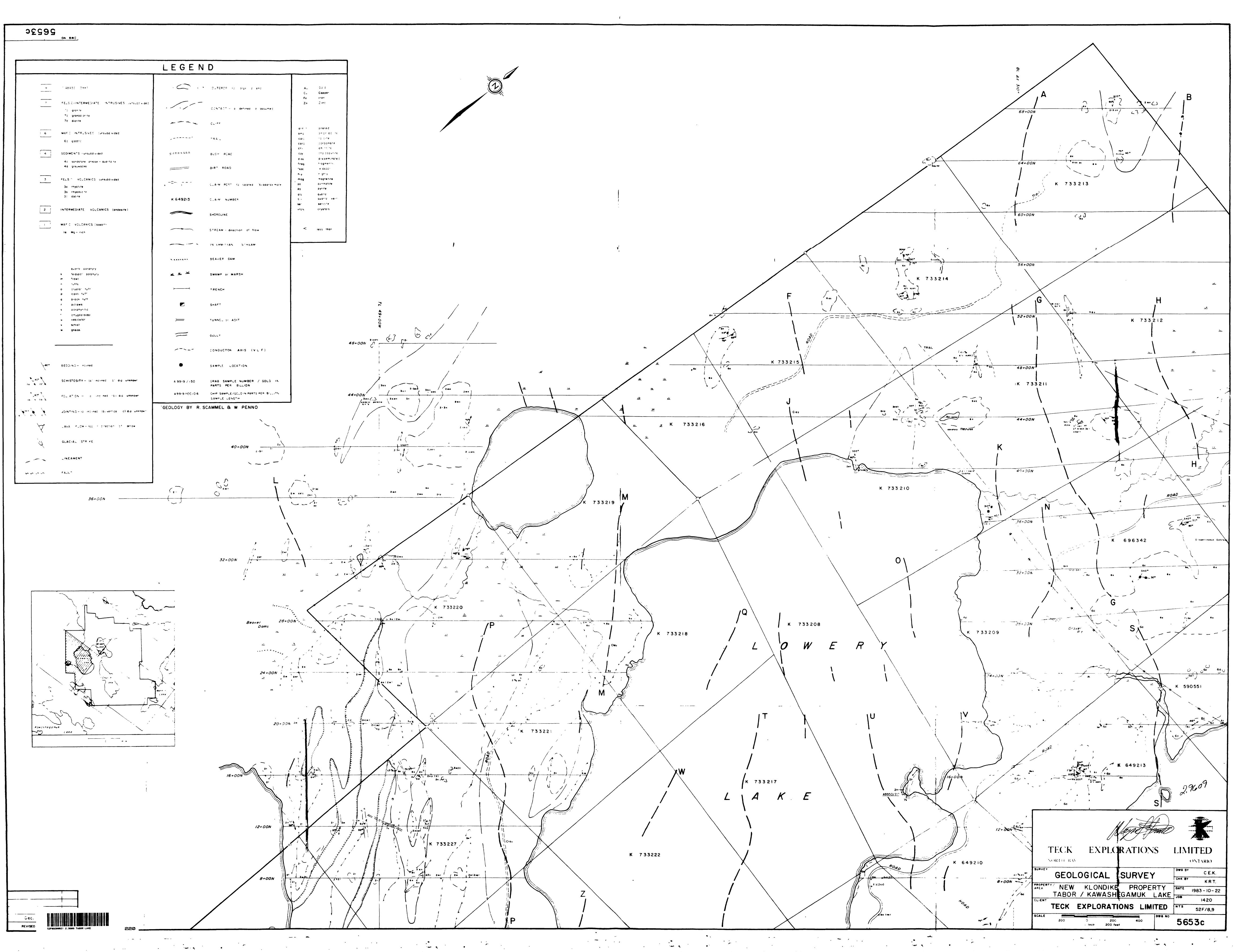
and the feet was the

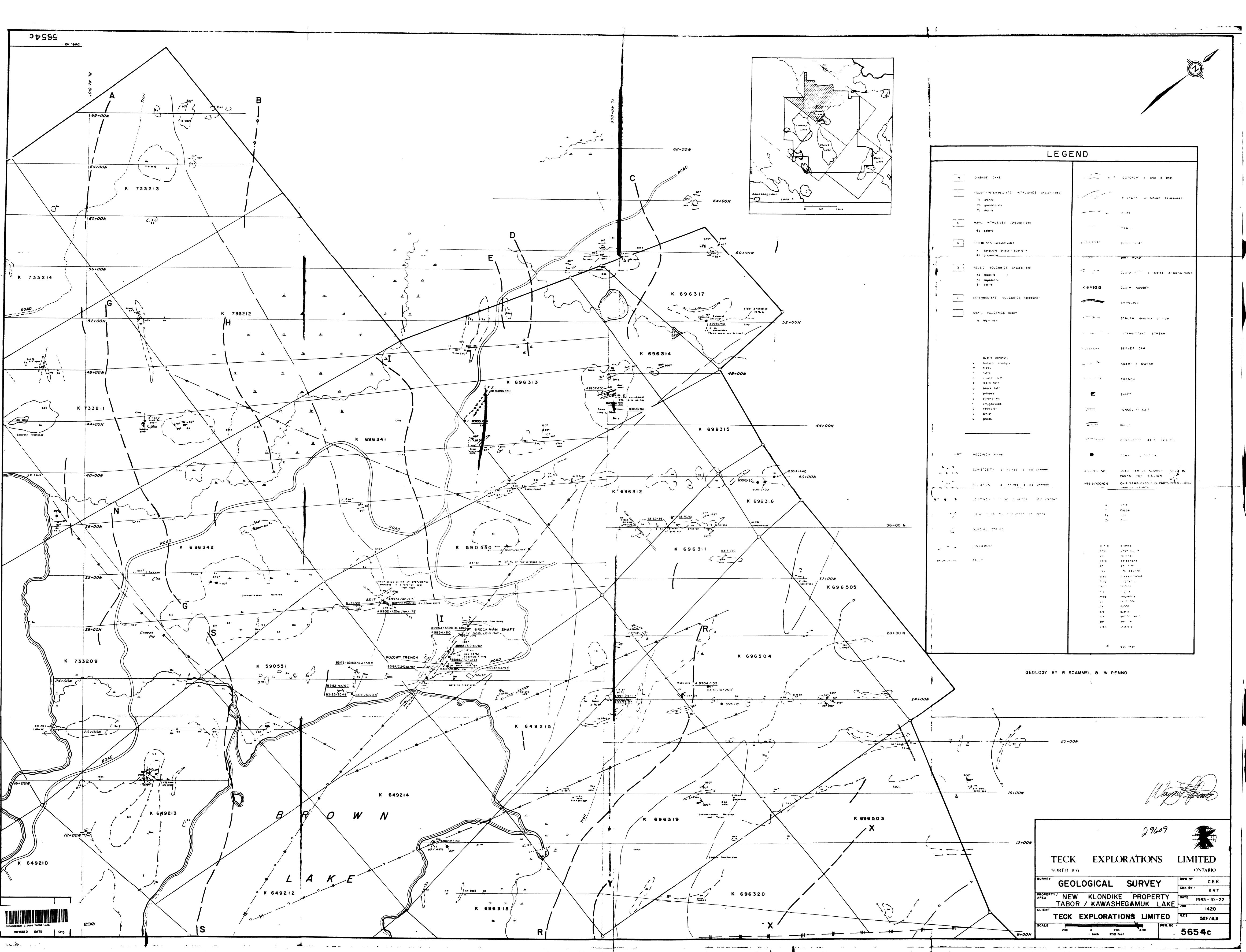
A PARTIE OF THE PROPERTY OF

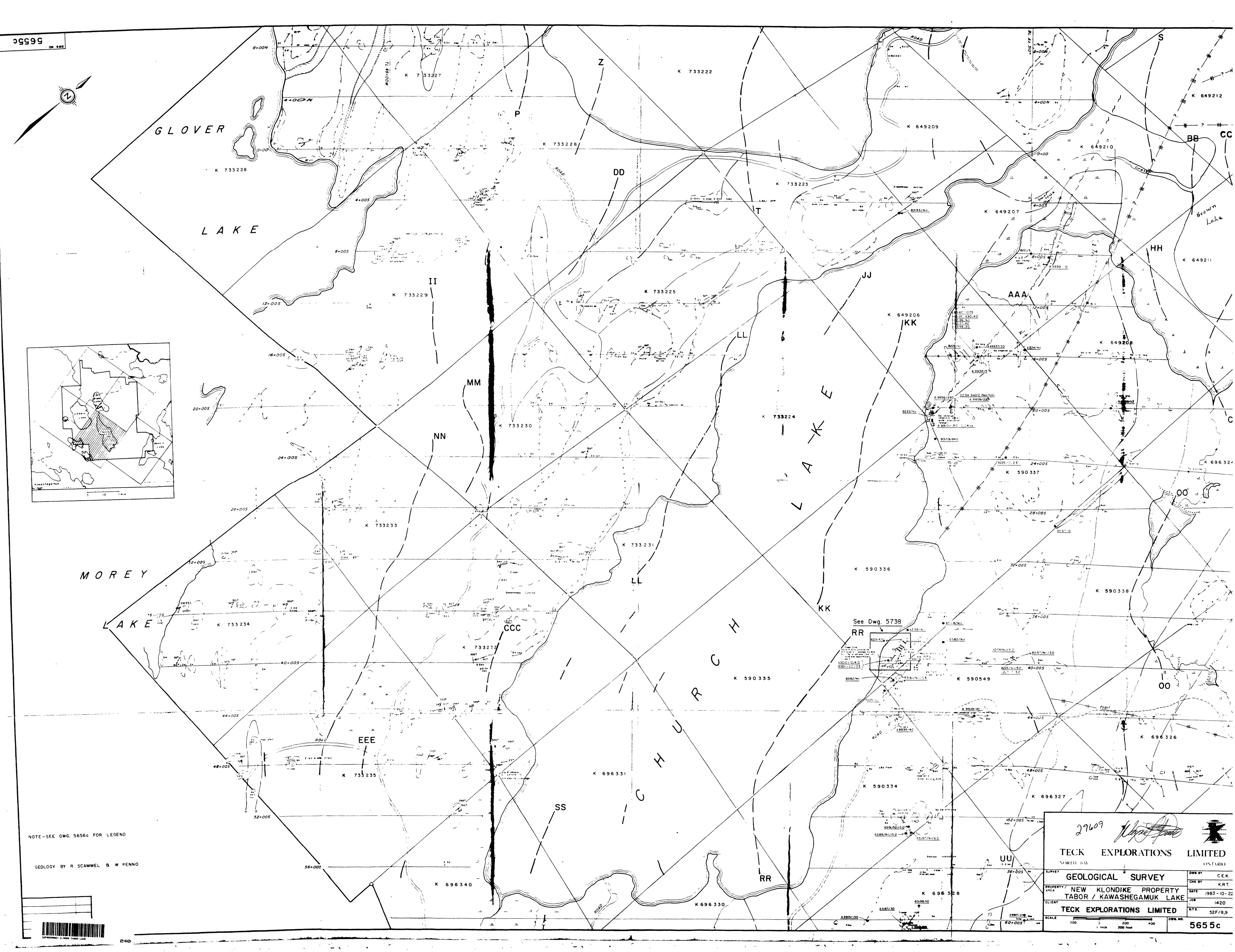
Figure 2

•							
! K 59 0 337	V	24696328	V				
1 590338	V	1696329	/				
3 649208	1/4	4696330	4				
4 649209	1/4	11696332	/				
5 649213	1/4	18 696333	1				
6 649215	Y 4	2696334	1/4				
7 696311	\ <u>\</u>	30696335	/				
8 696312	<u> </u>	31696336	1				
9 696313	/	32696337	V				
10 696314	1/4	13 696 338	V				
1 696315	Dep one	34696339	~				
12 696316	1/2 V Small	35696340	1/4				
13 696317	1/4	3696341	~				
14 696318	V	31 696342	1				
15 696319	V	38 696 398	V				
14 696320	V	39 696 399	V				
17 696321	/	40696400	V				
14 696322		4 696501	✓				
19 696323	V	42696503	V				
20 696324	/	43 696 504	V				
u 696325	V	# 696 505	/				
22 69 6326	V	11704520	14				
23 696 327	V						
		1					
		let go	80	saw	7		
		U					
The state of the s							
	- 		1	<u> </u>	l	1 1	1 6


KAWASHEGAMUK LAKE M.2573


LQ MRQ SRO


AREA OF


Disposition

MINISTRY OF NATURAL RESOURCES SURVEYS AND MAPPING BRANCH



