

32F10NW0096 15 CONTACT BAY (WABIGOO

010

AREA OF CONTACT BAY

REPORT #15

This file contains work performed by Hollinger Mines on claim:

K.40078

Hole #AK-I;

November, 1969

AK-2;

November, 1969

K-4-0078

K-40078 PLAN SHOWING LOCATION CONTACT BAY AREA Septe-1":200 717.70 Contact Bay Kellinga Precise Led

Location of Collar from 4 of K-40078

5 200,
E 125

	-			
NORTH	On XL-2	+ 005	(New	<u>Gri</u> d
EAST	ät" 0	+ 60E		
ELEV.		C/OF		
AZIM	Collar -	2005	10.	1.50
DIP	Collar -5	8 2		-47

DIAMOND DRILL REPORT

PROPERTY Kozowy-Nabish L.-Dryden. Ont. 12. K-40078

HOLE NO. A.	-1		
COMMENCED .	Nov. 4.	1969	
FINISHED	Nov. 7.	1969	_
PURPOSE OF			_
HOLE			
Exp	loration		

0 14.0 Overburden-Casing Sample 13.2 14.0 18.9 Massive fine grained grey black Amphibolitic fragmental in sharp contact with following coarse acidic fragmental Int. to basic with interhed. of following frag at 16.1 to 16.5 sheared and / or bedded at 50 to 55° to C.A. Maybe int to acid but darker colour which may be due to more amphibole (mafics)-contacts slightly unconformable- maybe intrusive? some diss pyrrhotite and pyrite					C	ORE SAMPL	.ES		
Sample 13.3 14.0 18.9 Massive fine grained grey black Amphibolitic fragmental in sharp contact with following coarse acidic fragmental Int. to basic with interbed. of following frag at 16.1 to 16.5 sheared and / or bedded at 50 to 55° to C. A. Maybe int to acid but darker colour which may be due to more amphibole (mafics)-contacts slightly unconformable- maybe intrusive? some diss pyrrhotite and pyrite 8.9 23.6 Acid fragmental - grey siliceous bedded (f) med frag. with thin interbeds (?) of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.	FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
14.0 18.9 Massive fine grained grey black Amphibolitic fragmental in sharp contact with following coarse acidic fragmental Int. to basic with interbed. Acid test = 200*-52° (m) of following frag at 16.1 to 16.5 sheared and / or bedded at 50 to 55° to C.A. Maybe int to acid but darker colour which may be due to more amphibole (mafics)-contacts slightly unconformable- maybe intrusive? some diss pyrrhotite and pyrite 8.9 23.6 Acid fragmental = grey siliceous Sample = 21.7' bedded (f) med frag, with thin interbeds (?) of mafic material (amphibole) Slightly porphyritic which up to 1/8" sil. frags, mottled by chloritic amphibole interbeds at 50-55° to C.A.	0	14.0	Overburden-Casing						
14.0 18.9 Massive fine grained grey black Amphibolitic fragmental in sharp contact with following coarse acidic fragmental Int. to basic with interbed. Acid test = 200*-52° (m) of following frag at 16.1 to 16.5 sheared and / or bedded at 50 to 55° to C.A. Maybe int to acid but darker colour which may be due to more amphibole (mafics)-contacts slightly unconformable- maybe intrusive? some diss pyrrhotite and pyrite 8.9 23.6 Acid fragmental = grey siliceous Sample = 21.7' bedded (f) med frag, with thin interbeds (?) of mafic material (amphibole) Slightly porphyritic which up to 1/8" sil. frags, mottled by chloritic amphibole interbeds at 50-55° to C.A.									Sample 18.8
Amphibolitic fragmental in sharp contact with following coarse acidic fragmental Int.to basic with interbed. of following frag at 16.1 to 16.5 bf (/T) sheared and / or bedded at 50 to 55° to C.A. Naybe int to acid but darker colour which may be due to more amphibole (mafics)-contacts slightly unconformable- maybe intrusive? some diss pyrrhotite and pyrite Sample - 21.7' bedded (f) med frag. with thin interbeds (?) of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.	14.0	18.9	Massive fine grained grey black						
sharp contact with following coarse acidic fragmental Int. to basic with interbad. of following frag at 16.1 to 16.5 sheared and / or bedded at 50 to 55° to C.A. Maybe int to acid but darker colour which may be due to more amphibole (mafice)-contacts slightly unconformable- maybe intrusive? some diss pyrrhotite and pyrite 8.9 23.6 Acid fragmental - grey siliceous bedded (1) med frag. with thin interbeds (?) of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.									
acidic fragmental Int. to basic with interbad. Acid test - 2001-52° (m) of following frag at 16.1 to 16.5 sheared and / or bedded at 50 to 55° to C.A. Maybe int to acid but darker colour which may be due to more amphibole (mafics)-contacts slightly unconformable- maybe intrusive? some diss pyrrhotite and pyrite 8.9 23.6 Acid fragmental - grey siliceous bedded (f) med frag, with thin interbeds (?) of mafic material (amphibole) Slightly porphyritic with up to 1/6" sil. frags, mottled by chloritic amphibole interbeds at 50-55° to C.A.									
of following frag at 16.1 to 16.5 sheared and / or bedded at 50 to 55° to C.A. Maybe int to acid but darker colour which may be due to more amphibole (mafics)-contacts slightly unconformable- maybe intrusive? some diss pyrrhotite and pyrite 8.9 23.6 Acid fragmental - grey siliceous bedded (1) med frag. with thin interbeds (?) of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.									4 and 4 and 2001 52° (m)
sheared and / or bedded at 50 to 55° to C.A. Maybe int to acid but darker Colour which may be due to more amphibole (mafics)-contacts slightly unconformable- maybe intrusive? some diss pyrrhotite and pyrite 8.9 23.6 Acid fragmental - grey siliceous bedded (1) med frag. with thin interbeds (2) of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.			· i						
Maybe int to acid but darker colour which may be due to more amphibole (mafics)-contacts slightly unconformable- maybe intrusive? some diss pyrrhotite and pyrite 3.9 23.6 Acid fragmental - grey siliceous bedded (1) med frag. with thin interbeds (2) of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.			<u> </u>						
colour which may be due to more amphibole (mafics)-contacts slightly unconformable- maybe intrusive? some diss pyrrhotite and pyrite 8.9 23.6 Acid fragmental - grey siliceous bedded (1) med frag. with thin interbeds (2) of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.									
(mafics)-contacts slightly unconformable- maybe intrusive? some diss pyrrhotite and pyrite S.9 23.6 Acid fragmental - grey siliceous bedded (f) med frag. with thin interbeds (?) of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.									4/0 0014 111 1
maybe intrusive? some diss pyrrhotite and pyrite 8.9 23.6 Acid fragmental - grey siliceous bedded (1) med frag. with thin interbeds (?) of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.									
and pyrite 18.9 23.6 Acid fragmental - grey siliceous bedded (1) med frag. with thin interbeds (?) of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.									
18.9 23.6 Acid fragmental - grey siliceous bedded (1) med frag. with thin interbeds (?) of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.									
bedded (/) med frag. with thin interbeds (?) of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.			and pyrite						
bedded (/) med frag. with thin interbeds (?) of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.	18.9	23.6	Acid fragmental - grey siliceous						Sample - 21.7°
of mafic material (amphibole) Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.				?)					
Slightly porphyritic with up to 1/8" sil. frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.		į.							
frags. mottled by chloritic amphibole interbeds at 50-55° to C.A.									
interbeds at 50-55° to C.A.									
		ł							
								į	
			VVVIIVAVIII WAVY FVI FI V VIIVAVI						

ORM BZZ	
IORTH	
AST	

PROPERTY	Kozowy	_	Dryden

HOLE NO.	AK-1
PURPOSE OF	F

				Cſ	ORE SAMPL	_ES		DESCRIPTION OF SAMPLE
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
3.6	30.6	Amphibolitic-Andesite-Dike-Grey	<u> </u>	1				Sample -30.5
		Green, massive med. to fine grained			<u> </u>	<u> </u>		
		with 1" chilled contacts and increase in			<u> </u>	'		
		sulphide content in frags at contacts.	<u> </u>		'			
<u> </u>		Contacts at 45 & 55° to CA and		 			ļ!	
		slightly irregular and sharp.	 	 	<u> </u>	-		
		with amphibole phenocrysts 1/16".		 		,	<u> </u>	
		Strikes for dike and frag. at angle of		1	<u> </u>	;		
		50° ?		 				
		Little diss. sulphides - py, po.	1	 	<u> </u>	<u> </u>		
30.6	49.5	Acid frag. as above at 18.9 to 23.6		 	!	·		Sample - 47.1
		le slightly porphyritic (feldspar)			<u> </u>	<u> </u>		- 49.5
		up to 1/16" with up to 1/8" frags (sil)	<u> </u>				<u> </u>	
	<u> </u>	and laminated by mafics (amphibole	1		1			
		chlorite) - fairly uniform	<u> </u>		-	-	<u> </u>	
	<u> </u>	frags may be stretched parallel to	1	<u> </u>			<u> </u>	
		pedding and / or shearing at 47° to C.A.		<u> </u>			<u> </u>	
	<u> </u>	Some py - po - chalco along	1	<u> </u>	!			
		Bedding planes.			!			
	'			L				•
				1				
	!							
				1				
					,			
	,			ĺ	,			
	+		#	1	 			

ORM \$22		
ORTH	 	 ·····
AST	 	
LEV.	 	
ZIM	 	
10		

HOLE NO.	AK - 1
HOLE	

PROPERTY	

				<u></u>				
		DECCENTED.		C	ORE SAMPL	ES		DESCRIPTION OF SAMPLE
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
49.5	87.9	Int. F.G. to Med. grained fragmental						Sample at 57.5
		as at collar of hole - contacts						87.9
		sharp at 50-54° and slightly						
		unconformable .						
		Vague coarse fragmental						·
		Character - otherwise fairly uniformly						
		textured and lineated at 45° to C.A.						
		Lower contact faulted 1"						
		Some Diss. py-po chalco w increase in						
		local seams (3%)						
87.9	91.4	Massive sil. Frag. (?) as above - more man	53.					Sample at 90.5
		occasional spot of Po. w little						
		chalco up to in Dia.						
		Lineated by mafics at ?						
91.4	119.3	Int. F to M. grained dark grey-green						
		indistinct (?) Frag. (?) as at 49.5 to						
		87.9						
		Both contacts sharp-upper ground,						
		lower sheared at 42° (½")						
		Generally sheared and /or bedded at						
		(?) - massive.						
		Massive texture w up to 1/16"						
		needles of amphibole 30% silica						
								Λ

ORM 522		
ORTH	 , i	
AST		
LEV.	 	
ZIM	 	
IP.		

COMMENCED		
FINISHED		
PURPOSE OF		
HOLE	- " ' ' '	

PROPERTY	

				C	ORE SAMPL	.ES			
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE	
		As 1/32" granules and 50% mafics (not						sample at 119.3 - 0.9'	
_		including coarse needles - lower contact							
		chilled (?) chloritic spots.							
		At 98.7 to 99.0 siliceous inclusion							
		as follows acid volcontacts sharp and							
		not parallel.							
		Few 1/8" qtz. carb. stringers (15) at		· · · · · · · · · · · · · · · · · · ·					
		15° to 30° to C.A.		<u> </u>					
		Diss. w pyrite throughout.							
119.3	151.3	Grey sil. Acid. coarse fragmental						sample - 122.5"	
		mottled w sericitic alteration - up						132.6 - 5"	
- A-Luny		to 1" sil. stretched frags. at 58°						145.0 - 6"	
		parallel to bedding.					·		
		Some ind. graded bedding - tops							
	·	up hole (?)				7			
		In places up to 1/16" amphibole needles							
		intruded by amphibolite dike at							
		131.5 to 132.6 at 50° to 60° to C.A and							
		somewhat altered (amphibolitic) to							
		about 138.					· · · · · · · · · · · · · · · · · · ·		
		Well diss w sulphides po, py, chalco					 		
		(up to 5%) throughout and particularly					: 		
		at 119.3 to 120.3, 122.4 to 128.5, 140.0							
1		to 140.1.							

ORM \$22	
NORTH	
AST	
LEV	
TIM	

COMMENCED	
FINISHED	
PURPOSE OF	
HOLE	

PROPERTY		· · · · · · · · · · · · · · · · · · ·	
----------	--	---------------------------------------	--

				C	ORE SAMPL	.E\$		
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
151.3	157.4	Amphibolitic dark grey green dike as			Cu	N1	Ag.Au	water seam at 170.8
		above at 91.4 to 119.3 - massive						ground core at 204.2 to
		med-f. grained uniform with						212 (80%)
		sharp discordant contacts-slightly						-212 to 222
		chilled at 25° & 33° to C.A.						(1.6*)
		Diss w specks of sulphide - py, po						.222 to 232
		Few hair stringers of qtz-carb.						(2*5*)
157.4	236.0	Acid fragmental-as above at 119.3 to	160.0	4"	.10	N	Not Not	Samples - 160.0 (4")
		151.3	167.6	511	-18	11	11 11	- 167.6 (5*)
		Up to 1" sil. frags. subhedral to	186.1	311	-15	11.1	9 ,7	<u>- 178.7 (3")</u>
		Anhedral in mafic ground mass (sericitic)	219.2	5n	.,0	-17	,, 11	-186.1 (6")
		Becoming more mafic with depth						-197.3 (8#)
		Due to increase inchlorite and						+219.2 (5")
		1/16" amphibole needles						-234.7 (4*)
		Shearing and /or bedding at 55®						
		to 75° to C.Asomewhat granitic						
		textured.						
		At 196.6 to 197.7 - 2-2" frags. sil						
		w mafic spots.						
		Intruded by above dikes at 183. to						
		185.1 (25° to 57° to CA). 186.2 to 192.8		44,44 44 3				
		(20° & 45° to CA)-irregular slightly chill	Led					
		Diss by up to 5% sulphides in frags & GI	mass					
		po, py, chalco throughout and esp at 159.						
	(1"-po-chalco) 161.7 (po-cu) 171.6 to 171.7	(po,Cu	.)				

-	R	14	•	•	4

-OKM	-22
NORT	H

~~	EU	
FINISHED		
PURPOSE	OF	

PROPERTY	

				CC	ORE SAMPL	.ES		
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
		173.8 to 175.6 (spots Cu in Po). 185.9 to						
		186.1 (cu in po(194.8 (po), 218.0 to 21	8.2					
		(Diss w po)						
36.0	245.6	Typical amphibolitic dikes as above						
	<u> </u>	w similar qtz - carb. hair stringers at						
	<u> </u>	45° to CA						
		Contacts sharp and slightly chilled						
		& at 25 & 15° to CA irregular and						
		discordantLower contact at 90° to						
		strike in core of bedding of following						
		fragmental.						
		Few diss. sulphides. py-po.						
245.6	254.3	Coarse fragmental-continuous						Sample - 245.6 (5"
		From above - grey green dark and siliceous					·	
		Bedding and or shearing at 60° to						
		CA - stretched frags - anhedral to subhedr	al					
		w long axis up to 1" : short - 1"						
		Some diss sulphides - as above (1%) or						
		less)						
				112.000-111.000				
	1							

FORM	822		
------	------------	--	--

ORTH	

COMMENCE	·	
FINISHED _		
PURPOSE O	F	
HOLE .		

PROPERTY _____

				CORE SAMPLES		_ES			
FROM	то	DESCRIPTION	FROM	то	TO RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE	
254.3	261.7	7 Finer grained - grey dark green	1						
		amphbolitic dike-as above-some epidote	1			<u> </u>			
		contacts sharp at 50° to ground slightly	'						
	7	drilled and discordant.							
								1	
61.7	326.4	Fragmental-coarse-continuous						Samples - 268 (4*)	
	'	From above						281.5 (74)	
		Cut by similar to above mafic						288 (4 ⁿ)	
;		Dikes at 201.1 to 272.4, 287.0 to 287.7					<u> </u>	296.7 (4")	
		288.5 to 294.0, 304.3 to 305.0, 306.8 to	<u> </u>					h	
·		307.3,307.8 to 309.6,310.0 to 312.5(2"-6"	dikes)				316.2 (3*)	
		213.5 to 214.5 - contacts irregular, share	!					322.6 (3")	
		and mostly discordant.	1					1	
		At 268 to 284.0 - section of up to 3"							
		sil.frags.						<u> </u>	
		From 284.0 to 312 frag. of up to ½"						1	
		sil frags.							
		Remainder up to 1" sil frags.						(
		Sheared and sericitic and/or bedded							
		at 55-60° to CA					j	<u> </u>	
		Little sulphides diss throughout	1					1	
		(py)							
		J ¹	,					1	

NO EAS	ST		DIAMOND	,
			PROPERTY	
1	то	DES	CRIPTION	
.4	336.2	Amphibolitic-Dark	grey green	
		Dike as above with	sharp contacts	
_		at 40 & 60° to CA		
		Limeated (sheare	ed) at 60° to CA	L
		By mafic 1/8" clots	elongated 11	
		ta shaamina ahlaw		

			HOLE NO.	AK-1
MOND	DRILL	REPORT	FINISHED	

36.2	DESCRIPTION	FROM	CORE SAMPLES		DESCRIPTION OF SAMPLE		
36.2		1 1.01	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
	Amphibolitic-Dark grey green						Ground core at 327.4
	Dike as above with sharp contacts						to 328.4
	at 40 & 60° to CA						
	Limeated (sheared) at 60° to CA						Sample at 335.4
	By mafic 1/8" clots elongated 11						
	to shearing - chloritic med. grained						
	Some diss sulphides - py-po.						
, ,							
1.0							Samples at 341.1 (4")
							347.9 (5*)
							362.2 (3 ⁿ)
	filled, round) from-344 to 37/6-rest		<u> </u>				
	brecciated with chloritic mat'l between		·				Fround core - 338.0 to 340
	fragments. spotted w 1/8" chlorite,						
	amphibole throughout						
	Intruded by amphibolitic dikes at						
	341.7 to 342.3, 353.2 to 356.2 -sheared		• 				
	at 55° to CA-contacts sharp 40-65° to C.A.						
	Few diss sulphides						
	Qtz. vein at 349.4 to 350.0 @ 40°						
			. =				
	1.6	By mafic 1/8" clots elongated 11 to shearing - chloritic med. grained Some diss sulphides - py-po. 1.6 Grey acid brecciated amygdaloidal Volcanic - may in part be coarse fragamygdaloidal († qtz filled, round) from-344 to 37%6-rest brecciated with chloritic mat'l between fragments. spotted w 1/8" chlorite, amphibole throughout. Intruded by amphibolitic dikes at 341.7 to 342.3, 353.2 to 356.2 -sheared at 55° to CA-contacts sharp 40-65° to C.A. Few diss sulphides	By mafic 1/8" clots elongated 11 to shearing - chloritic med. grained Some diss sulphides - py-po. 1.6 Grey acid brecciated amygdaloidal Yolcanic - may in part be coarse fragamygdaloidal (th qtz filled, round) from-344 to 37.6-rest brecciated with chloritic mat'l between fragments. spotted w 1/8" chlorite, amphibole throughout. Intruded by amphibolitic dikes at 341.7 to 342.3, 353.2 to 356.2 -sheared at 55 to CA-contacts sharp 40-65° to C.A. Few diss sulphides	By mafic 1/8" clots elongated 11 to shearing - chloritic med. grained Some diss sulphides - py-po. 1.6 Grey acid brecciated amygdaloidal Volcanic - may in part be coarse fragamygdaloidal († qtz filled, round) from-344 to 37%6-rest brecciated with chloritic mat'l between fragments. spotted w 1/8" chlorite, amphibole throughout. Intruded by amphibolitic dikes at 341.7 to 342.3, 353.2 to 356.2 -sheared at 55° to CA-contacts sharp 40-65° to C.A. Few diss sulphides	By mafic 1/8" clots elongated 11 to shearing - chloritic med. grained Some diss sulphides - py-po. 1.6 Grey acid brecciated amygdaloidal Volcanic - may in part be coarse fragamygdaloidal († qtz filled, round) from-344 to 37.6-rest brecciated with chloritic mat'l between fragments. spotted w 1/8" chlorite, amphibole throughout. Intruded by amphibolitic dikes at 341.7 to 342.3, 353.2 to 356.2 -sheared at 55° to CA-contacts sharp 40-65° to C.A. Few diss sulphides	By mafic 1/8" clots elongated 11 to shearing - chloritic med, grained Some diss sulphides - py-po. 1.6 Grey acid brecciated amygdaloidal Volcanic - may in part be coarse fragamygdaloidal (t qtz filled, round) from-344 to 3746-rest brecciated with chloritic mat'l between fragments. spotted w 1/8" chlorite, amphibole throughout. Intruded by amphibolitic dikes at 341.7 to 342.3, 353.2 to 356.2 -sheared at 55 to CA-contacts sharp 40-65° to C.A. Few diss sulphides	By mafic 1/8" clots elongated 11 to shearing - chloritic med. grained Some diss sulphides - py-po. 1.6 Grey acid brecciated amygdaloidal Volcanic - may in part be coarse fragamygdaloidal († qtz filled, round) from-344 to 3746-rest brecciated with chloritic mat'l between fragments. spotted w 1/8" chlorite, amphibole throughout. Intruded by amphibolitic dikes at 341.7 to 342.3, 353.2 to 356.2 -sheared at 55° to CA-contacts sharp 40-65° to C.A. Few diss culphides

FORM \$22	
NORTH	
EAST.	
ELEV	
AZIM	

HOLE NO.	AK-1	
COMMENC	ED	
FINISHED		_
PURPOSE	OF	
HOLE		

PROPERTY _____

	1		CORE SAMPLES						
FROM	TO	DESCRIPTION	FROM TO		RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE	
371.6	385.5	F. to M. grained dark grey amphibolitic						Sample at 377.5	
		intrusive - similar to above except							
		finer w occasional blue qtz. eye.							
		Some diss py.							
4 - 12	-	Spots of feldspar - anhedral-porphyriti	c						
		ontacts sharp & discordant at 55° (shear)							
	-	and 55° to CA.							
		Inclusion of above vol at 384.2 to							
		384.7							
85.5	391.3	Acid amygdaloidal vol-as at 336.2 to						Sample 391.1	
	1	371.6 with last 6" somewhat frag.							
		int. as above at 385.9 to 386.0							
		sheared and/or bedded at 55° to CA							
		few diss sulphides - py							
				_					
391.3	396.4	Amphibolitic int as at 371.6 to 385.5 w							
		occasional Blue qtz. eye. contacts							
		sharp at 60° to CAlittle sulphide.							
396.4	410.0	Acid volcanic-continuation of above						398.8 (4") Samples at 403.2 (4")	
		less amygdaloidal and more frag. with						406.0 (4*)	
		chloritic section at 400.1 to 403.8							
		sheared/bedded at 55° to CA w 2"				-			
		needles of amphidole							
		Some diss po. py.							

-	40.04	

NORTH
EAST
ELEV
AZIM

HOLE NO.	WV-T	
COMMENCED		
FINISHED		
PURPOSE OF		
HOLE		
HOLE		

PROPERTY _____

						,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
				cc	RE SAMPL	.ES			
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE	
410.0		END OF HOLE							
		Logged by M. Kremko		· , , , ,					
		Hollinger Mines							
		November 7, 1969							
		Dryden, Ontario.							
		Dryden, Ontario. Major Lamba							
		HOLLINGER MINES LIMITED		<u></u>					
		TIMMINS, ONTARIO							
						^	•		
<u></u>									
				·					
									
	L		<u> </u>		<u> </u>				

Location of Collar from # 3 of K- 40078 East 170',

TORK	
FORM	3 22

NORTH	On	XL-	24	005		
EAST	<u>at</u>	_7_	+	84E_		
ELEV AZIM DIP	Coll	ar	-	560 I	<u> </u>	_
DIP	Coll	ar		550	250-51	_
			49	<u>81 -/</u>	*80°	

DIAMOND DRILL REPORT

PROPERTY	_KOZOWY	- DRYDEN	_
(Claim-	K-40078	

HOLE NO. AK-2

COMMENCED November 7/69
FINISHED November 11/69
PURPOSE OF Exploration

•					CC	RE SAMPL	ES		
	FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
	0	11.0	Overburden - casing						
	11.0	73.6	Acid fragmental - grey with						
			siliceous ½ - 1" fragments uniform						
KENORA MINING DIV.			throughout lineated at 45-35° to						
EGET VE			CA (shearing) with Amphibolitic,						·
M FEB - 8 1970			chloritic and sericitic ground mass						
AM 7/2/1/19/1/9/2// 5.8			Almost uniformly Diss w fine Pyrite, po	,					
A			and very little chalco in ground mass.						
	(18.9	25.8)	Intruded by Amphibolitic int.						from 60-63 ground core
			Dike, massive, grey green, med to						
			fine grained - diorite textpred						
			contacts sharp and chilled at 45 & 35°						
•			to CA.						
			Lower contact of frag. tuffaceous from						
•			66 on.						
-									
-	73.6	79/8	Feldspar porphyry dike-chilled						
-			reddish contacts at 45° with interior of						
_			a grey siliceous dike with 1/16" euhedral		-				
_			to anhedral feldspar laths in very fine						
			grained sil. ground mass.						
	· .								
-									
-									
-									
-									

FORM	S22
NORT	H
EAST.	
AZIM.	

PROPERTY_

FINISHED 2	
FINISHED	
PURPOSE OF	
HOLE	*

				C	ORE SAMP	LES		
FROM	то	DESCRIPTION	FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
79.8	36.3	Int. pillowed, amygdaldoal volcanic						
	1	grey, grey fine to med. grained amphy colytic						
		volcanic with stretch eliptical 1/8 - ½"						
		amygdules (carbonate) and tuffaceous						
		(2-3" interbeds every foot or 1.5 feet.						
		Some Diss py, po, chalco in interbed						
	t	uffs.						
		Sheared at 35° to CA.						
		Lower contact with frags sharp at 35°						
		to CA.		~~~a~sur~~~~svasuu~sua~~~evr				
(100.2	107.8)	Intruded by Int. dikes						
(116.3	125.0)	As above with randomly oriented 1/16"						
		amphibole crystals.						
(83.8	85.9)	Feldspar porphyry dike-as above			1			
136.3	212.9	Fragmental-as above described becoming						
		finer tuff deeper in hole						
		Local, py, po. chalco diss at 151.0						
		to 151.5.						
(143.1	146.5)	Above Des. Int. intrusions at 143.4 to						
(147.7	148.1)	146.5 and 147.2 to 148.1-pyritic						
(166.2	181.6)	also at 166.2 to 181.6, 183.9 to						
(183.9	188.2)	188.2, 190.1 to 203						
(190.1	203)							

FORM S22		
NORTH	 	
EAST		
ELEV.		
4ZIM	 	
DIP		

HOLE NO.	AK	2			7
COMMENC	ED				
FINISHED_			 	,	
PURPOSE (OF	····			
HOLE					

ROPERTY	 	

	то	DESCRIPTION		C	ORE SAMP	LES		
FROM			FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
		Some py, po, chalco diss throughout						
		qtz. vein at 169.4 to 170.0						
212.9	232.0	Feldspar porphyry dike - as	221.5	224.5				
		Des. above at 45° to CA						
		massive med. grained, grey siliceous.						
		Few pyritic qtz. stringers w tourmaline-						
		22.5 and 24.2 chilled contacts.						
232.0	336.6	Fragmental -as above						
		Becoming coarser down hole						
		Sulphides as above w oDD splash						
(239.0	247.2)							
(283.1	286.1)							
(291.4	294.3)							
		(@ 45°)						
(201.5	311.0)	Feldspar porphyry-acidic dike finer						
		grained than above w 1/32"/						
		feldspar phenocrysts - bleached acidic						
		contacts-sharp at 60° - pyritic at						
		contacts -						The state of the s

						•		
	†							

FORM	\$22
NORT	H
AZIM.	· · · · · · · · · · · · · · · · · · ·
ND.	

HOLE NO.	AK	2			4
COMMENCE	D				
FINISHED				,	
PURPOSE O	F				
HOLE			-		

	то	DESCRIPTION		C	ORE SAMP			
FROM			FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
336.6	395.1	Int. fine grained dike - as above						
		slightly magnetic (magnetite)						
		- w stronger mag at about 369 - similar dike	\$			way was a second		
		all slightly magnetic.						
		Inclusion of above frag. at 338.2 to 32	9.0					
		Some sulphides throughout						
395.1	399.6	Fragmental - as above						
399.6	413.2	Amphibolitic Int. volcanic						
		vague contacts-dark grey						
		DioRitic med. to fine grained						
413.2	441.1	Fragmental - as above but w up to 5" aci	d frags	•				
		Some py, po. chalco diss. throughout.						
		Pyrrhotite non-magnetic in hole						
:								
National designation of the second								
				· · · · · ·				

FORM :	S 22			
NORTH	ł <u></u>	 	 	
ELEV.		 	 	
AZIM.		 	 	
ND				

PROPERTY_

HOLE NO. AK 2	5
COMMENCED	
FINISHED	
PURPOSE OF	
HOLE	

	T	DESCRIPTION		С	CORE SAMPI	LES		
FROM	то		FROM	то	RECOV.	WIDTH	ASSAY	DESCRIPTION OF SAMPLE
441.1	446.1	Feldspar porphyry- as at 301.5 to 311.0		<u> </u>	1	<i>!</i>		
				<u> </u>	!			
446.1	498	Fragmental - continued				<u> </u> '		
		from above to end of hole		 		<u> </u>		
		with Diss sulphides- as above						
		Intruded by int.med. grained		 		<u> </u>		
(464.8	486.1	Dike at 464.8 to 486.1		 	<u> </u>	<u> </u>		
		Qtz. veins at 475.0 to 475.2	<u> </u>			<u> </u>		
		and 479.1 to 479.6 (50%)						
			4			<u> </u>		
498		End of Hole	-	ı —		<u> </u>		
		Logged by			-			
		M. Kremko,		F	<u> </u>			
		Hollinger Mines Limited,		, i 				
		TIMMINS, Ontario.	-					
		December 11, 1969.		<u> </u>				
		M/yor/Lunho					1	
			-					
			#					
		,	1				1	
				 	'			
				L	,)		