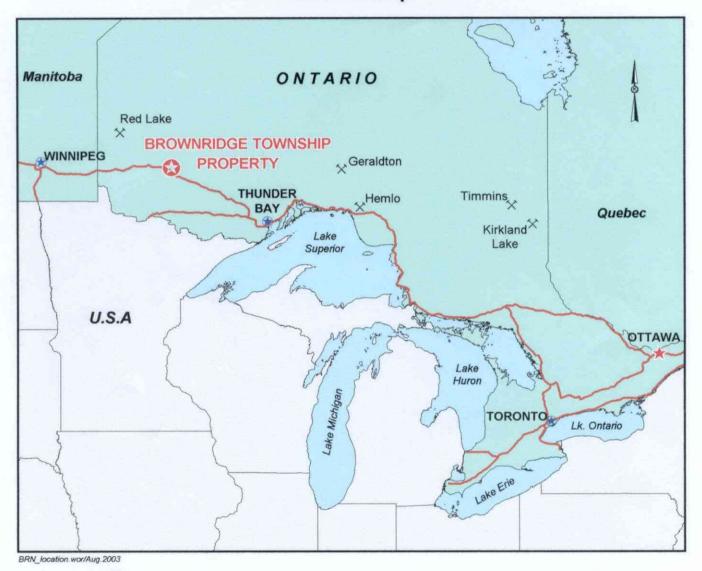

EMERALD FIELDS RESOURCE CORPORATION 1546 Pine Portage Road Kenora, Ontario P9N 2K2 (807) 468-7374 - Fax (807) 468-9792

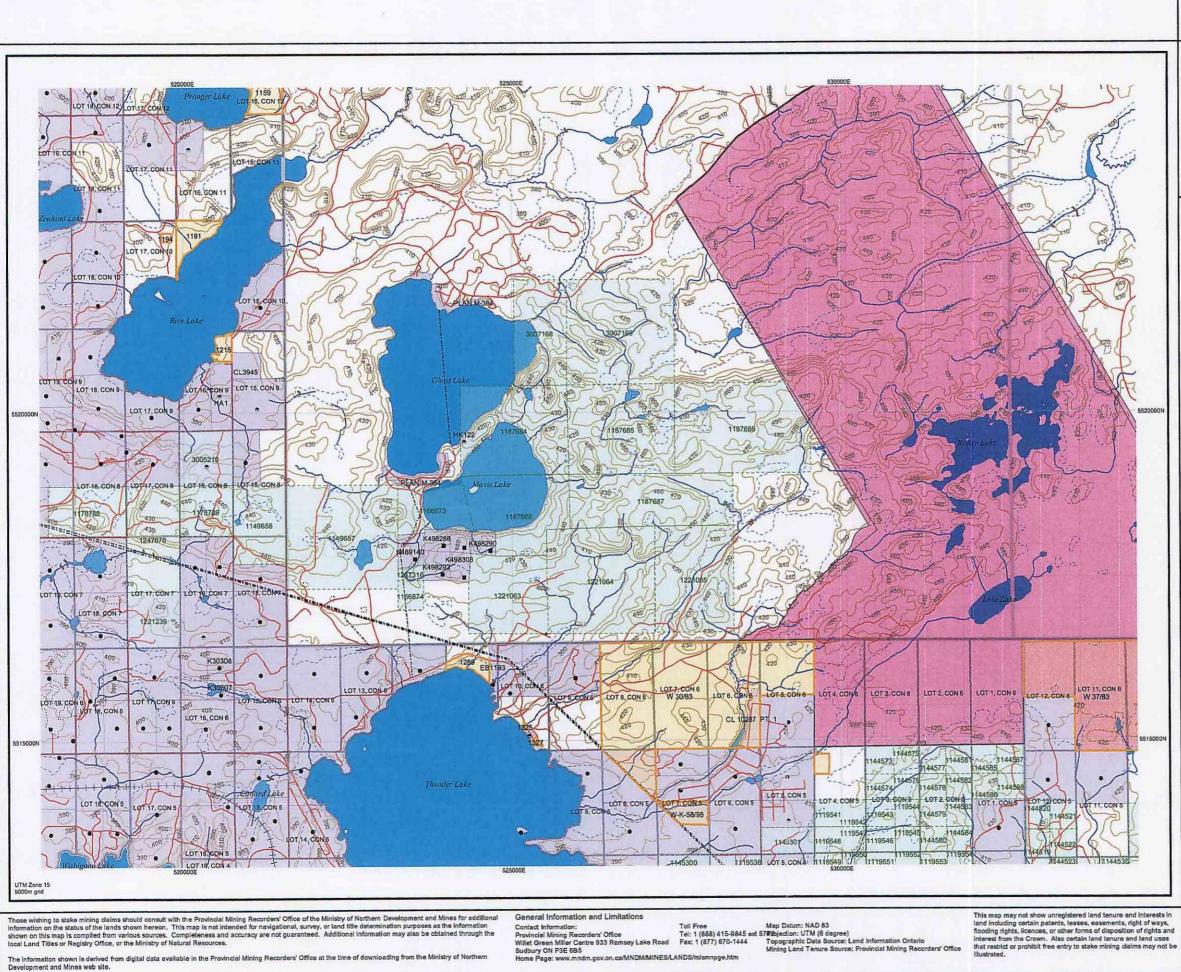
ADDENDUM TO EXPLORATION REPORTS On The BROWNRIDGE (Ghost Lake) PROPERTY Brownridge Township Kenora Mining Division, Ontario - 10 (NTS 52F/15SE)

Transaction No.:W0210.01724 & W0310.01374

Report by

<u>Al</u>asdair J.M. Mowat, C.E.T. Kenora, Ontario




52F15SE2019 2.27258

010

Emerald Fields Resource Corporation BROWNRIDGE TOWNSHIP PROPERTY Location Map

Scale: 1:10,000,000

14

÷

The Information shown is derived from digital data available in the Provincial Mining Recorders' Office at the time of downloading from the Ministry of Northern Development and Mines web site.

MINISTRY OF NORTHERN DEVELOPMENT AND MINES PROVINCIAL MINING RECORDER'S OFFICE

Mining Land Tenure Мар

Date / Time of Issue: Fri Feb 20 14:41:21 EST 2004

TOWNSHIP / AREA BROWNRIDGE

PLAN G-0814

ADMINISTRATIVE DISTRICTS / DIVISIONS

Mining Division Land Titles/Registry Division Ministry of Natural Resources District

Kenora
KENORA
DRYDEN

TOPOG	RAPHIC	Land Tenu	re
	Administrative Boundaries	Freehold Pate	nt
	Township	•	Surface And Mining Rights
Ē	Concession, Lot		Surface Rights Only
	Provincial Park	•	Mining Rights Only
	Indian Reserve	Leasehold Pat	ont
0	Cliff, PR & Pile		Surface And Mining Rights
	Contour		Surface Rights Only
	Nine Shafts	2	Mining Rights Only
	Mine Headframe	Licence of Oc	cupation
•	Railway	7	Uses Not Specified
	Road	۲	Surface And Mining Rights
	Trail		Surface Rights Only
	Natural Gas Pipolino	v	Mining Rights Only
	Utilities	LIP	Land Use Permit
+	Tower	ec .	Order In Council (Not open for staking)
			Water Power Lease Agreement
	~	1234	Mining Claim
	12		!
1		1234	Filed Only Mining Claims
F.			
a.		LAND	TENURE WITHDRAWALS
12.		1234	Areas Withdrawn from Disposition
	man a d	Second Second	Mining Acts Withdrawal Types
	and it		Nsm Surface And Mining Rights Withdrawn Ns Surface Rights Only Withdrawn
			Wm Mining Rights Only Withdrawn
			Order In Council Withdrawal Types N*sm Surface And Mining Rights Withdrawn
		1	N's Surface Rights Only Withdrawn
			W [*] m Mining Rights Only Withdrawn
		Ns	IMPORTANT NOTICES
-			
	Scale 1:57914		

ADDENDUM

PROJECT NAME: Brownridge (Ghost Lake) Property

LOCATION: - Brownridge Township G.814

- Kenora Mining Division 10
- Claim No. K.1221064
- NTS 52F/15SE
- Lat. 49-49' N by Long. 92-37'W
- GPS (NAD 83) 55 18 000m. N by 5 27 000m. E
- MNR Administrative District of Dryden
- Dryden topographical sheet 52F/15, scale 1:50,000 (1999)

MINERAL COMMODITIES: Rare-metal - Ta, Cs, Li and Be) mineralization; Hemlo gold style mineralization; gold associated with quartz veins and shears, and VMS-style base metal mineralization.

OWNERSHIP: Emerald Fields Resource Corporation (Client # 303602) 1546 Pine Portage Road Kenora, Ontario P9N 2K2 (Phone: 807-468-7374; Fax: 807-468-9792)

- optioned from Robert Fairservice, Kenora, Ontario

CLAIM STATUS: Active

ACCESS and HISTORY: Refer to previous submitted reports by the author.

ADDENDUM TO TRANSACTION No: W.0210.01724 - S.#2.24502

DATE OF SURVEY: January to February 25th, 2004

SURVEY PERFORMED By: Alasdair J.M. Mowat Chemistry by SGS (XRAL) Labs, Don Mills, Ontario

DISCUSSION: As mentioned in the previous submitted assessment work reports, this project including Bridges are ongoing active projects. Based on Emerald Fields's field work (geology, drilling and sampling) and other industry and government actives being carried out in this region, it is believed that the rock packages in Brownridge and Bridges Townships maybe related. This is a result of rock analyses and geophysics. The Bridges rock units being rafted by the intruding granitic Dryberry Batholith. The importance of this finding is related to explaining and to the discovery of new economic deposits of base metals, gold and rare-metal mineralization. The possible strike length of this very favourable geological belt is +/-100 km. In the course of this economic evaluation, 26 core samples were removed from Emerald Fields's four Brownridge drill holes - stored at the Kenora Core Library - for chemistry. (The information sheets attached.) The samples sent to SGS's Lab, Don Mills, Ontario for analysis. The information is to be used in formulas to clarify/classify rock types and identify anomalous mineralized zones for follow-up. Same methodology as used in the attached report.

Assisting in the scientific evaluation are the Kenora District OGS staff members; particularly, Mr. Allen Raoul who's input is very much appreciated.

REPORT by: Alasdair J.M. Mowat, C.E.T. Kenora, Ontario

REPORT DATED: February 25th, 2004

BROWNRIDGE and BRIDGES TOWNSHIP EXPLORATION INVESTIGATION:

Field Work

On August 8, 2003, A. Mowat and J. Resky, both of Emerald Fields, with C. Ravnaas and A. Raoul, both of the Kenora District Geologist's Office, visited the drill site of the Cates Occurrence. Access was gained by traveling 1.5km east of Stewart Lake Lodge on Highway 17 then travelling 500m northeast on a skidder road.

A traverse was done by the party to ascertain the various lithologies, alteration and mineralization that was evident at surface. The following exposures were examined:

Foliated Felsic Lapilli Tuff (5520834N, 449948E; NAD 83)

A large hill was examined. It was 100m x 500m and trended 0700. It consisted of fine-grained, light grey, banded to highly foliated (020°/78°NW), plagioclase-Kspar-quartz-biotite gneiss with probable severely stretched lapilli. See sample Cates 01.

Continued SW back to the highway but at the base of this hill, by the snow-machine trail, we encountered an outcrop.

<u>Metasediments</u> (5520968N, 449655E; NAD 83) The outcrop consisted of a biotite-plagioclase schist with 2-3% magnetite; a metagreywacke. See sample Cates 02

As we proceeded toward the highway, only two more outcrops of metagreywacke, similar to sample Cates 02, were encountered and not sampled. At this time, the geochemistry of samples Cates 01 and Cates 02 were pending

Cates 02 were pending.

Alteration Study

The objective of this alteration study was to evaluate the potential of an area to host a VMS deposit associated with the highly metamorphosed and highly altered felsic volcanic rocks of Bridges Township. Preminary ground sampling by the author was done and sampling of core (drill hole GL88-04) by A. Mowat was used to interpret the alteration potential.

A quantitative rating system, known as the Ore Score, was developed to compare alteration and mineralization (Raoul and Masson, 1998). The higher the Ore Score value the greater the indication of hydrothermal alteration and presence of base metal mineralization. This scoring system was originally devised by Granges (1992) as a developmental model for VMS alteration for the Trout Lake Mine of Flin Flon, Manitoba. This system is based on the hydrothermal alteration model of a VMS vent and surrounding country rock. In the Bridges Township, a series of felsic volcanic rocks and their probable sedimentary equivalents, have been hydrothermal altered, through sericitization and albitization, in a vent or fracture system. These rocks have then undergone middle to upper amphibolite grade metamorphism making alteration assemblage difficult to identify. The geochemical signature of this alteration will remain the same allowing an evaluation of these units for VMS potential.

Formulas shown in Table 1 were used to determine the Ore Score of selected alteration samples. The rating system is shown in Table 2. Major element values in Table 4 were used to calculate the Ore Score. The calculated values are presented in Table 6.

Table 1. Index, formulas and alteration index scoring system.

Index	Formula	Alteration	ndex value		
mucr	Tomula	Score 1	Score 2	<u>Score 3</u> >90	
Hashimoto Index	(MgO+K ₂ O) / (MgO+K ₂ O+ Na ₂ O+CaO)100	>70	>80		
Sercite Index	$(K_2O)/(Na_2O+K_2O)100$	>70	>80	>80 >90	
Chlorite Index	$(MgO+F_2O_3)/(MgO+Fe_2O_3+2CaO+2Na_2O)100$	>70	>80	>90	
Spitz Index	Al ₂ O ₃ / Na ₂ O	>25	>50	-	
Cu and Zn		>100 ppm	>1000 ppm	>5000 ppm	
Ag	· · · · · · · · · · · · · · · · · · ·	>1 ppm	>2 ppm	>5 ppm	

Table 2. Ore score, alteration index, metal index and VMS mineralization potential ratings.

Ore Score Alteration Index + Metal Score	Alteration Index (0-9) Hashimoto Index + Sericite Index + Chlorite Index	Metal Index (0-11) (Cu + Zn + Ag mineralization) + Spitz Index	VMS Mineralization Potential		
0-3	Low	Low	Nil		
4-6	Moderate	Moderate	Low		
7-9	High	High	Low-moderate		
10-12	-	Very high	Moderate		
13-15	-	-	Moderate-high		
16-18	-		High		
19-20	-	-	Very high		

Table 3. Typical whole rock geochemistry from Newpet (1982-1987). The enriched and depleted range values are based upon personnel experiences of this author (based on over 30,000 VMS samples).

Rock Type	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MgO	CaO	Na ₂ O	K ₂ O	MnO	P ₂ O ₅	TiO ₂	LOI
Rhyolite	72.82	13.27	1.48	1.11	0.39	1.14	3.55	4.30	0.06	0.07	0.28	1.49
Deplete Rhyolite	>65.54	>11.94	>0.74	>0.56	>0.20	>0.57	>1.78	>2.15	N/A	N/A	N/A	N/A
Enriched Rhyolite	<80.10	<14.60	<2.22	<1.67	<0.59	<1.71	< 5.33	<6.45	N/A	N/A	N/A	N/A
Dacite	65.01	15.91	2.43	2.30	1.78	4.32	3.79	2.17	0.09	0.15	0.58	1.25
Depleted Dacite	>58.50	>14.32	>1.22	>1.15	>0.89	>2.16	>1.90	>1.09	N/A	N/A	N/A	N/A
Enriched Dacite	<71.51	<17.50	<3.65	<3.45	<2.67	<6.48	<5.69	<3.26	N/A	N/A	N/A	N/A
Andesite	57.94	17.02	3.27	4.04	3.33	6.79	3.48	2.45	0.14	0.21	0.87	0.34
Depleted Andesite	>52.15	>15.32	>1.64	>2.02	>1.67	>3.35	>1.74	>1.23	N/A	N/A	N/A	N/A
Enriched Andesite	<63.73	<18.72	<4.91	<6.06	<5.00	<10.19	<5.22	<3.68	N/A	N/A	N/A	N/A
Basalt	49.20	15.74	3.79	6.73	9.47	2.91	1.10	1.84	0.35	0.20	1.38	2.54
Depleted Basalt	>44.28	>14.17	>1.90	>3.37	>4.74	>1.46	>0.55	>0.92	N/A	N/A	N/A	N/A
Enriched Basalt	<54.67	<17.49	<5.69	<10.10	<14.21	<4.37	<1.65	<2.76	N/A	N/A	N/A	N/A

 SiO_2 and Al_2O_3 are relatively immobile – 10% variance is used

Fe₂O₃, FeO, MgO, Na₂O and K₂O are mobile – 50% variance is used

MnO and P2O5 – high variance \sim low concentration allow for slight mineralogy change to radically change values H2O, CO2 and LOI – high variance \sim not consistent enough to be compared N/A – Not Aplicable (not used in alteration studies)

Sample	Unit	SiO ₂	AhO3	Fe ₂ O ₃	MgO	CaO %	Na ₂ O	K2O	MnO %	P ₂ O ₅	TiO ₂ %	LOI %	Cu	Zn	Ag
EF-GL-88-04-01	1	64.90	16.08	5.17	1.38	5.97	0.88	3.47	0.30	0.15	0.50	1.00	<u>ppm</u> 112	ppm 609	PP
EF-GL-88-04-02	1	64.56	15.66	4.46	1.81	5.08	2.77	2.78	0.12	0.13	0.49	0.90	18	1.140	2
EF-GL-88-04-03	1	62.16	15.67	5.55	2.30	4.53	2.01	4.60	0.22	0.14	0.50	1.65	23	93	1
EF-GL-88-04-04	1	65.59	15.51	4.76	1.67	3.39	2.56	3.67	0.21	0.13	0.43	1.35	236	379	5
EF-GL-88-04-05	1	63.23	15.95	4.84	2.65	5.13	0.21	4.66	0.25	0.14	0.50	2.10	230	155	2
EF-GL-88-04-06	6A	56.52	18.18	5.79	1.02	1.58	0.44	10.21	1.64	0.21	0.65	1.80	113	2,700	14
EF-GL-88-04-07	6A	56.65	18.12	4.78	1.07	2.44	0.68	8.74	3.25	0.19	0.55	1.00	59	902	8
EF-GL-88-04-08	6A	60.22	16.61	4.33	0.86	1.69	0.26	6.56	2.31	0.15	0.50	2.20	146	6.070	45
EF-GL-88-04-09	6A	60.65	15.59	3.89	0.73	0.69	< 0.01	6.48	3.04	0.12	0.46	2.80	224	12,900	60
EF-GL-88-04-10	6A	65.88	14.12	2.64	0.53	0.54	< 0.01	6.28	3.05	0.09	0.28	2.00	186	8,680	75
EF-GL-88-04-11	6A	59.56	15.72	3.78	1.14	0.78	< 0.01	6.36	2.71	0.11	0.45	3.10	225	14,400	55
EF-GL-88-04-12	6A	56.97	15.47	4.20	1.09	0.84	< 0.01	5.95	4.40	0.11	0.44	3.00	135	11,100	40
EF-GL-88-04-13	6A	57.20	13.08	6.04	0.80	0.69	< 0.01	5.52	3.60	0.12	0.35	2.80	309	25,200	54
EF-GL-88-04-14	6A	63.39	14.46	3.90	0.94	1.06	< 0.01	5.72	2.87	0.10	0.30	2.20	88	9,660	41
EF-GL-88-04-15	6A	64.65	16.70	3.97	1.00	2.06	< 0.01	2.58	2.29	0.10	0.38	2.40	90	9,300	86
EF-GL-88-04-16	6A	65.61	15.46	4.54	1.69	1.86	0.31	5.14	1.23	0.11	0.45	1.95	141	1,440	22
EF-GL-88-04-17	6A	66.18	15.37	4.58	1.58	2.30	0.32	5.40	1.00	0.11	0.43	1.65	188	1,650	17
EF-GL-88-04-18	6	65.59	15.86	4.44	1.88	3.39	0.37	5.23	0.71	0.11	0.43	1.60	173	456	13
EF-GL-88-04-19	6	66.33	14.85	4.93	1.69	2.54	0.27	5.13	0.95	0.11	0.45	1.65	231	1,110	20
EF-GL-88-04-20	6	62.49	14.73	7.29	1.83	0.66	< 0.01	5.78	0.82	0.11	0.41	3.50	118	1,780	44
EF-GL-88-04-21	6A	55.88	12.95	9.86	1.06	0.39	< 0.01	4.70	0.82	0.08	0.40	5.00	168	36,100	162
EF-GL-88-04-22	6A	59.46	14.35	10.57	2.29	0.63	< 0.01	5.58	1.59	0.11	0.40	1.75	75	2,370	32
EF-GL-88-04-23	6A	57.19	14.28	10.42	2.42	1.01	< 0.01	5.38	1.58	0.12	0.40	1.60	31	6,450	19
EF-GL-88-04-24	6A	60.80	14.40	10.63	1.15	0.49	<0.01	4.26	1.66	0.11	0.41	3.00	106	2,200	47
EF-GL-88-04-25	6A	60.63	14.20	9.54	1.59	0.79	<0.01	5.04	2.35	0.14	0.37	1.20	49	1,970	25
EF-GL-88-04-26	6A	59.11	14.86	11.53	1.54	0.61	<0.01	6.18	2.14	0.11	0.41	1.00	49	1,080	14
EF-GL-88-04-27	1	59.90	16.25	2.85	1.11	2.58	0.56	5.38	6.02	0.12	0.41	0.40	11	449	<0.2
EF-GL-88-04-28	1	62.77	15.60	4.54	3.15	6.11	1.00	4.26	0.98	0.12	0.44	0.40	11	578	2
EF-GL-88-04-29	1	68.85	15.25	3.47	1.42	3.57	0.43	3.78	1.29	0.11	0.34	0.70	35	781	5
DUP-EF-GL-88-04-01	1	65.04	16.07	5.17	1.38	5.96	0.88	3.47	0.30	0.15	0.50	1.00	110	573	3
DUP-EF-GL-88-04-13	6A	57.33	13.13	6.04	0.80	0.69	< 0.01	5.51	3.58	0.12	0.35	2.90	307	>10000	14
DUP-EF-GL-88-04-25	6A	60.63	14.21	9.55	1.59	0.79	< 0.01	5.06	2.35	0.14	0.37	1.20	50	1.970	20

Table 4. Major element geochemistry and Cu, Zn, Ag assays of alteration samples.

Depleted - <0.01% Na₂O (highlighted in blue) Elevated - 10.25% K₂O (highlighted in red)

Emerald Fields assigned the rock types from the above sampling. They are:

Unit 1: Biotite-Feldspar-Quartz Schist

Unit 6: Quartz-Feldspar +/- Sericite, Sillimanite, Muscovite, Garnet Schist

Unit 6A: Quartz-Feldspar +/- Sericite, Sillimanite, Muscovite, Garnet Schist with visible sphalerite, pyrite and pyrrhotite.

Table 5. The classification of the actual tock type is shown using Emerald Field Resources field identification versus Winchester and Floyds' 1977 plot of SiO₂ vs. Zr/TiO₂. Comments on the depletion, enrichment and any notable features are included.

Sample	Rock Type	Classification (Winchester and Floyd 1977)	Depletion	Enrichment
EF-GL-88-04-01	1	Dacite	Na ₂ O	Nil
EF-GL-88-04-02	1	Dacite	Nil	Nil
EF-GL-88-04-03	1	Dacite / Andesite	Nil	Nil
EF-GL-88-04-04	1	Dacite	Nil	Nil

Sample	Rock Type	Classification (Winchester and Floyd 1977)	Depletion	Enrichment
EF-GL-88-04-05	1	Dacite	Na ₂ O	Nil
EF-GL-88-04-06	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-07	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-08	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-09	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-10	6A	Dacite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-11	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-12	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-13	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-14	6A	Dacite / Andesite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-15	6A	Dacite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-16	6A	Dacite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-17	6A	Dacite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-18	6	Dacite	Na ₂ O	K ₂ O, MnO
EF-GL-88-04-19	6	Dacite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-20	6	Dacite/Andesite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-21	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO, F ₂ O ₃
EF-GL-88-04-22	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO, F ₂ O ₃
EF-GL-88-04-23	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO, F ₂ O ₃
EF-GL-88-04-24	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO, F ₂ O ₃
EF-GL-88-04-25	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO, F ₂ O ₃
EF-GL-88-04-26	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO, F ₂ O ₃
EF-GL-88-04-27	1	Andesite	Na ₂ O	K ₂ O, MnO
EF-GL-88-04-28	1	Dacite/Andesite	Na ₂ O, CaO	K ₂ O, MnO
EF-GL-88-04-29	1	Dacite	Na ₂ O	K ₂ O, MnO
DUP-EF-GL-88-04-01	1	Dacite	Na ₂ O	K ₂ O, MnO
DUP-EF-GL-88-04-13	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO
DUP-EF-GL-88-04-25	6A	Andesite	Na ₂ O, CaO	K ₂ O, MnO

Table 6.	Alteration index,	metal score and ore sco	ore of alteration samples.
----------	-------------------	-------------------------	----------------------------

Sample	Hashimoto	Sericite	Chlorite	Alteration Index	Cu	Zn	Ag	Spitz	Metal Score	Ore Score
EF-GL-88-04-01	0	2	0	2	1	1	2	0	4	6
EF-GL-88-04-02	0	0	0	0	0	2	1	0	3	3
EF-GL-88-04-03	0	1	0	1	0	0	1	0	1	2
EF-GL-88-04-04	0	0	0	0	1	1	2	0	4	4
EF-GL-88-04-05	0	3	0	3	0	1	1	2	4	7
EF-GL-88-04-06	2	3	0	5	1	2	3	1	7	12
EF-GL-88-04-07	1	3	0	4	1	1	3	1	6	10
EF-GL-88-04-08	1	3	0	4	1	3	3	2	9	13
EF-GL-88-04-09	3	3	0	6	1	3	3	2	9	15
EF-GL-88-04-10	3	3	0	6	1	3	3	2	9	15
EF-GL-88-04-11	3	3	0	6	1	3	3	2	9	15
EF-GL-88-04-12	2	3	0	5	1	3	3	2	9	14
EF-GL-88-04-13	3	3	0	6	1	3	3	2	9	15
EF-GL-88-04-14	3	3	0	5	0	3	3	2	8	13
EF-GL-88-04-15	0	3	0	3	0	3	3	2	8	11
EF-GL-88-04-16	1	3	0	4	1	2	3	2	8	12
EF-GL-88-04-17	1	3	0	4	1	2	3	1	7	11
EF-GL-88-04-18	0	3	0	3	1	1	3	1	6	9

Sample	Hashimoto	Sericite	Chlorite	Alteration Index	Cu	Zn	Ag	Spitz	Metal Score	Ore Score
EF-GL-88-04-19	1	3	0	4	1	2	3	2	8	12
EF-GL-88-04-20	3	3	0	6	1	2	3	2	8	14
EF-GL-88-04-21	3	3	0	6	1	3	3	2	8	14
EF-GL-88-04-22	3	3	0	6	0	2	3	2	7	13
EF-GL-88-04-23	2	3	0	5	0	3	3	2	8	13
EF-GL-88-04-24	3	3	0	6	1	2	3	2	8	14
EF-GL-88-04-25	2	3	0	5	0	2	3	2	7	12
EF-GL-88-04-26	3	3	0	6	0	2	3	2	7	13
EF-GL-88-04-27	0	3	0	3	0	1	0	1	2	5
EF-GL-88-04-28	0	2	0	2	0	1	2	0	3	5
EF-GL-88-04-29	0	3	0	3	0	1	3	1	5	8
DUP-EF-GL-88-04-01	0	2	0	2	1	1	2	0	4	6
DUP-EF-GL-88-04-13	3	3	0	6	1	3	3	2	9	15
DUP-EF-GL-88-04-25	2	3	0	5	0	2	3	2	7	12

The following geochemical generalizations were deduced:

Unit 1: Biotite-Feldspar-Quartz Schist

The first group of samples (01-05) show this unit to be dacite with no alteration or weak-moderate Na_2O depletion. Using the Ore Score methodology, one sample (01) showed a weak Sericite Index while another sample (05) showed a strong Sericite and Spitz Indices. This indicates that sample 05 had significant sodium depletion. Mineralization consisted of weakly elevated Ag values with low Cu-Zn values (<1200 ppm). No placement of these samples can be made within a VMS environment due limited data available.

The fifth group of samples (27-29) show this unit to be an altered dacite with Na₂O (+/- CaO) depletion and K₂O-MnO enrichment. Using the Ore Score methodology, all three samples showed moderate to strong Sericite Index with weak Spitz Indices. This indicates that these samples had sodium depletion and potassium enrichment. Mineralization consisted of weakly elevated Ag values with low Cu – Zn values (<800 ppm). These samples show high MnO values (0.98 – 6.02 %), indicative of a proximal vent source (due to the high dispersion rate of MnO), within a VMS environment. The low metal values suggest that this vent is barren or more probable, the sulphide mineralization has been already been deposited and all that remains of the brine is the "exhalitive" minerals (silica +/- hematite – Mn – Ba).

<u>Unit 6A: Quartz-Feldspar +/- Sericite, Sillimanite, Muscovite, Garnet Schist</u> with visible sphalerite, pyrite and pyrrhotite.

The second group of samples (06-13) show this unit to be an altered andesite with Na₂O-CaO depletion and K₂O-MnO enrichment. Using the Ore Score methodology, all eight samples show weak to strong Hashimoto Indices, strong Sericite Indices and strong Spitz Indices. This indicates that these samples had sodium-calcium depletion and potassium enrichment. Mineralization consisted of elevated Ag values (8 - 75 gpt) with high Zn values (0.09 - 2.52 %). These samples show high MnO values (1.64 - 4.40 %) and high Zn values, indicative of a mineralization within a vent of a VMS environment, near the vent surface – water interface.

The third group of samples (14-17) show this unit to be an altered dacite with Na₂O-CaO depletion and K₂O-MnO enrichment. Using the Ore Score methodology, these four samples show weak to strong Hashimoto Indices, strong Sericite Indices and weak to strong Spitz Indices. This indicates that these samples had sodium-calcium depletion and potassium enrichment. Mineralization consisted of elevated Ag values (17 - 86 gpt) with high Zn values (0.14 - 0.96 %). These samples show high MnO values (1.00 - 2.87 %) and high Zn values, indicative of a mineralization within a vent of a VMS environment, near the vent surface – water interface.

The sixth group of samples (21-26) show this unit to be an altered and esite with Na₂O-CaO depletion and Fe₂O₃. K₂O-MnO enrichment. Using the Ore Score methodology, these six samples show moderate to strong Hashimoto Indices, strong Sericite Indices and strong Spitz Indices. This indicates that these samples had sodium-calcium depletion and iron-potassium enrichment. Mineralization consisted of elevated Ag values (14 - 162 gpt) with high Zn values (0.11 - 3.61 %). These samples show high MnO values (0.82 - 2.35 %), high Fe₂O₃ (9.54 - 11.53 %) and high Zn values, indicative of a mineralization within the vent stockwork of a VMS environment.

Unit 6: Quartz-Feldspar +/- Sericite, Sillimanite, Muscovite, Garnet Schist

The fourth group of samples (18-20) show this unit to be an altered andesite with Na₂O-CaO depletion and K₂O-MnO enrichment. Using the Ore Score methodology, these three samples show weak to strong Hashimoto Indices, strong Sericite Indices and weak to strong Spitz Indices. This indicates that these samples had sodium-calcium depletion and potassium enrichment. Mineralization consisted of elevated Ag values (13 - 44 gpt) with elevated Zn values (0.05 - 0.18 %). These samples show moderate MnO values (0.71 - 0.82 %) and elevated Zn values, indicative of a mineralization proximal to a vent system (<100 m).

Discussion

Mapping by Pryslak (1976) describes the MacNicol-Tustin-Bridges-Docker townships as...

"Early Precambrian volcanic and sedimentary rocks, metamorphosed under almandine-amphibolite and hornblende-hornfels facies conditions, form an east-trending metavolcanic-metasedimentary belt that ranges in width from 30 m to 6.4 km. The rock in the northern part dip subvertically; dips in the southern part of the belt average 50° to 60° N.

The metavolcanics vary in composition from mafic to intermediate, and consist of flows and pyroclastic deposits. Metavolcanics form about 75% of the east-trending belt. Metasediments form about 20 percent of the belt, and are mostly of clastic origin, except for minor amounts of metamorphosed iron formation.

A sill-like body of quartz-feldspar porphyry, which was metmorphosed under amphibolite facies conditions, and an elliptical mass of porphyritic syenite of uncertain age, have been mapped by the author in the area. Mafic to ultramafic intrusive rocks form about 5 percent of the metavolcanic-metasedimentary belt. All rocks of this group, except amphibolite, were intruded after the regional metamorphic event.

This author believes that this metavolcanic-metasedimentary belt is a north extension of the Warclub Group. Mapping of the Thunder Lake area by Beakhouse (2000, 2001, 2002) has broken the Warclub Group down into 4 panels, with younging directions consistently to the south. The panels include the following units: Brownridge Sediments-Volcanics, the Thunder Lake Sediments-Volcanics, Thunder River Volcanics and Zealand Sediments (See figure 1). Beakhouse (2002) states...

The Dryden-Wabigoon area is transected by the Wabigoon fault, which is a major regional structure that separates the area into two geologically distinct domains with distinct mineral deposit types and styles in Wabigoon Subprovince. The Sioux Lookout domain, lying to the north of the Wabigoon fault, is characterized by a series of alternatively sedimentary-dominated or volcanic dominated panels that consistently face to the south. Many of these panels are regionally interpreted to be fault bounded although at least some of these contacts in the map area appear to be conformable depositional contacts with minimal superimposed strain. This area has a complex deformational history with an earlier, generally bedding parallel fabric (D₁) being deformed into a series of megascopic to regional scale, southwest plunging, Z asymmetric folds with the development of a second fabric (D₂) parallel to the axial surface of these folds. Metamorphic grades varies regionally from upper greenschist facies to upper amphibolite facies, with the lowest grade generally occurring nearest to the Wabigoon Fault. Gold deposit types in this area include disseminated and vein type mineralization. Rare metal pegmatites, associated with the Ghost Lake batholith, occur primarily within the Brownridge Volcanics, although relatively evolved pegmatites have also been found within the Brownridge sediments east of Ghost Lake. Base metal sulphide mineralization is not common, although several sulphide occurrences, and possible related related syngenetic alteration, occur near the stratigraphic top of the Brownridge volcanics.

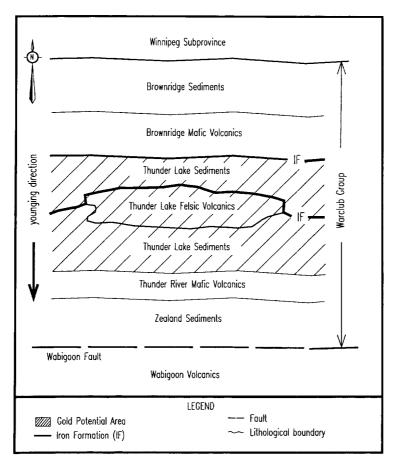


Figure 1: Stratigraphic section of the Warclub Group (Modified after Beakhouse, 2000)

This north extension of the Warclub Group is represented by the Brownridge Sediments and Volcanics. The regional geology of the area is adequately described by Beakhouse (2000, 2001, 2002) as...

Geology of the Brownridge Sediments and Volcanics

All of the metasedimentary units are dominated by wacke with subordinate interlayered siltstone and, with the exception of the Zealand sediments, which are more highly strained, have well preserved primary structures (even, continuous bedding with graded bedding, scour, rip-up clasts and, less common, ripple cross-laminations and load casts). The uppermost Brownridge sediments are interlayered with thin mafic metavolcanic units provisionally interpreted to be similar to metavolcanic rocks within the basal portion of the overlying Brownridge Volcanics.

The basal portion of the Brownridge volcanics is composed of pillowed and massive mafic metavolcanic rocks together with medium-grained basalt and/or gabbro. In the southeastern portion of Brownridge Township, equigranular mafic metavolcanic rocks are interlayered with distinctive porphyritic to intermediate flows and fragmental metavolcanic rocks. The phenocryst assemblage in these units consists of amphibole (which may, at least in part, be after pyroxene) with or without plagioclase. These rocks are restricted primarily to the area south and southwest of Rafter Lake and do not appear to extend into the western portion of the map area. Berger (1990) describes correlative rocks in the adjacent Laval Township and presents evidence that they are chemically distinct from other volcanic rocks in the area. Previous mapping (Satterly, 1941) identified a large number of thin felsic metavolcanic units in the upper portion of the Brownridge volcanics in the western half of Brownridge Township. These units are reinterpreted to be variolitic massive and pillowed flows.

The following evidence suggests that the Brownridge Volcanics and Sediments are co-equivalent with the metavolcanic-metasedimentary belt of the Bridges Township:

1. According to the regional geologic compilation of Blackburn (1979), the Warclub Group (units 4 and 5) are represented by a series of clastic sediments, especially unit 4b (sandstone, siltsone, argillite and derived schists) with accessory unit 5b (magnetite ironstone) in the Thunder Lake area. Those sediments found in

Zealand township have been reclassified as the Thunder Lake Assemblage by Beakhouse (2000, 2001 and 2002). They are underlain by units 1a (massive and pillow mafic flows) with accessory units 2a-2b (felsic to intermediate flows, tuffs, agglomerate and breccia), which were later re-classified by Beakhouse as the Brownridge Volcanics.

These Warclub Metasediments have been traced westward to Temple township (45km) and then appear to folded around the northeastern lobe of the Dryberry Batholith, within Temple, Sanford and Mutrie Townships. At the north end of Mutrie Township, the Warclub is in contact with metavolcanic-metasedimentary belt of the Bridges Township. This belt may represent the Brownridge Volcanic of Beakhouse. Due to limited mapping (1": 1 mile) and limited outcrop exposure, a limited knowledge of this area is known and gaps of information are present within these townships.

The metasediments on the south side of the Bridges belt are listed by Blackburn as unit 4b (sandstone, siltsone, argillite and derived schists) with accessory unit 5b (magnetite ironstone). These sediments could represent a remenant of the Warclub that was not assimilated by the intrusion of the Dryberry Batholith to the south.

2. Little work has been done on the geochemical distinctiveness of these individual greenstone belts. Within Brownridge Volcanics, Berger (1990) describes correlative rocks in the adjacent Laval Township and presents evidence that they are chemically distinct from other volcanic rocks in the area. Berger divided the Neepawa Group into formation A and formation B.

Formation A is composed of mafic and felsic flows with subordinate fragmental deposits and is intruded by subvolcanic metagabbro and metadiorite dikes and sills. This formation is tholeiitic with a pronounced iron enrichment. This is represented as magnetic basalts with the presence of magnetite pods. With the samples taken by Emerald Fields, samples 21-25 (group 6A) plot as tholeiite.

Formation B is composed of mafic and pyroxene-hornblende phyric pyroclastic deposits with subordinate flows. This formation is pre-dominantly calc-alkaline with the data plotting towards the mafic end with tholeiitic and calc-alkaline dominant. High alumina samples were plotted as dacite and low alumina samples were plotted as andesite. With the samples taken by Emerald Fields, samples 1-5 (group 1), samples 6-17 (unit 6A) and samples 18-20 (unit 6) plot as calc-alkaline.

These two, geochemically distinct formations is very unusual and provides another correlation of the units of the Laval-Brownridge Townships with the units of the McNicol-Docker Townships.

3. The only continuous geophysical survey, which covers this entire area, is the 1961 Ontario Geological Total Magnetic Survey. A distinct geophysical break occurs at the north end of Mutrie Township, representative of a fault contact between the Warclub Sediments to the south and the metavolcanic-metasedimentary belt to the north.

The metasediments on the south side of the Bridges belt have a similar magnetic signature to those of the Warclub Group, specifically the north end of the Thunder Lake Sediments. Beakhouse identified a large (20m) thick graphite horizon, with a moderate magnetic signature, at the contact of the Brownridge Volcanics with the overlying Thunder Lake Sediments. A similar horizon was located at the Pope Lake Graphite showing and may be representative of this same graphite horizon. The magnetic signature is difficult to identify at this locality due to a moderate magnetic response by the interwoven sediments with the granite (with sediment xenoliths).

EMERALD FIELDS RESOURCE CORPORATION 1546 Pine Portage Road Kenora, Ontario P9N 2K2 (807) 468-7374 - Fax (807) 468-9792

SGS (Laboratories) Canada Inc.

February 16th, 2004

1885 Leslie Street Don Mills (Toronto), Ontario M3B 3J4

Attention: Ms. Bonnie White:

RE: Core samples from B/F-1 to -4 Project, Kenora Mining Division - 10, Ontario

Following is a detail list of the submitted split core samples requiring the noted analytical analysis:

D.D.H. B/F-1 -

$D.D.H. D/I^{-1}$					
		Feet			
Sample #	Box #	From To	Description	Analysis	
548313	2	27.0 - 27.5	5 2"pg+mT	Ta,Cs,Li,Be,Cr	
548314	2	29.5 - 30.5	5 60%pg+mT	Ta,Cs,Li,Be,Cr	
548315	6	85.0 - 86.0) mT	Whole Rck+Met	'c+Li
548316	7	96.0 - 97.0) B	Ditto	+Li,Cr
548317	8	115.0 - 116.0) sul-fT	Ditto	
548318	13	176.0 - 177.0	fT+s	Ditto	
548319	14	190.0 - 191.0	0 mD	Ditto	+ Li,Cr
D.D.H. B/F- 2 -					
548320	2	23.0 - 24.0	80%pg@40d+mT	Ta,Cs,Li,Be,Cr	
548321	2	27.5 - 29.5	80%pg@70d+mT	Ditto	
548322	2	34.0 - 34.5	5 mT	Whole Rck+Me	et'c + Li,Cr
548323	4	49.0 - 50.0) mT	Ditto	
548324	10	139.0 - 140.0) cc-mT	Ditto	
548325	12	161.0 - 162.0) chS	Ditto	+ Li
548326	12	167.0 - 168.0) gt-mT	Ditto	
548327	14	201.0 - 202.0) f-i/mT	Ditto	+ Li
D.D.H. B/F - 3 -					
548328	3	35.0 - 36.0) mT	Whole Rck+Met	'c + Li
548329	10	144.0 - 145.0) py-chS	Ditto	
548330	12	165.0 - 166.0	mB	Ditto	+lI,cR
548331	13	189.2 - 189.8	50%pg+mT	Ta,Cs,Li,Be	

548332	14	192.2 - 193.0	80%pg+mT	Ta,Cs,Li,Be
D.D.H. B/F - 4 -				
548333	2	35.8 - 36.5	50%pg+Gb	Ta,Cs, Li,Be,Cr
548334	3	46.0 - 47.0	Gb	Whole Rck+Met'c+Li,Cr
548335	3	56.0 - 57.0	50%pg+Gb	Ta,Cs,Li,Be,Cr
548336	6	95.0 - 96.0	Gb	Whole Rck+Met'c+Li,Cr
548337	6	103.0 - 104.0	Si-Z(F/N)	Whole Rck+Met'c+Au
548338	13	205.0 - 206.0	Gb	Whole Rck+Met'c+Li,Cr

Rock (core) Sample Information:

1/. Sample # from 548313 to 548338, inclusive.
 2/. Total # of samples <u>26</u>.

SAMPLE LEGEND

.

Whole Rck	- Whole Rock analysis
Met'c	- Metallic analysis
ditto	- repeat
+	- additional add on element
Та	- Tantalum
Cs	- Cesium
Li	- Lithium
Be	- Beryllium
Cr	- Chromium
Au	- Gold

(---2---)

GEOLOGY LEGEND

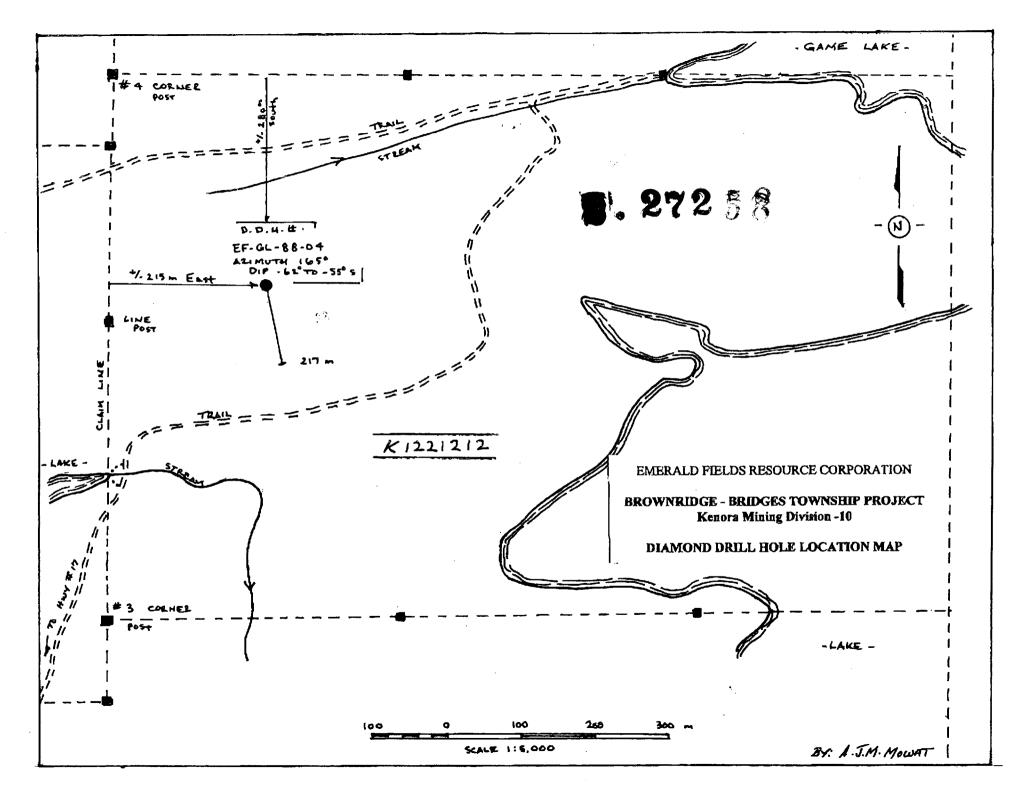
pg	- Pegmatite Dyke/Sill
mD	- Mafic Dyke
GB	- Gabbro
py-chS	- pyrite bearing Cherty Sediment
chS	- Cherty Sediment
В	- Basalt
Si-Z(F/N)	- Silicified Zone (Fold Nose)
sul-fT	- Sulphurized Felsic Tuff
fT+s	- Felsic Tuff with sulphides
f-i/mT	- Felsic to Intermediate Mafic Tuffs
mT	- Mafic Tuffs
cc-mT	- Carbonated Mafic Tuffs
gt-mT	- Garnetiferous Mafic Tuffs

Other

@40d - At 40 degrees to core axis

(----3---)

SGS															FEB-25-2004
Work Order: 076381	Dat	te: 25/	02/04		PREL	IMINAF	ΥΥ				Page 1 of 2	2			
Element.	Na2O	MgO	Al2O3	SiO2	P2O5	K2O	CaO	TiO2	Cr2O3	MnO	Fe2O3	Sr	Y	Zr	WED 02:44 F
Method.	ICP95	ICP95	ICP95	ICP95	ICP95	ICP95	ICP95	ICP95	ICP95	ICP95	ICP95	ICP95	ICP95	ICP95	
Det.Lim.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	10	10	10	
Units.	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	
548313	3.59	3.09	21.60	53.23	0.19	3.17	2.01	0.53	0.03	0.08	6.83	421	19	111	PM XRAL LABS
548314	0.47	4.94	9.85	68.26	1.50	1.13	2.65	0.66	0.06	0.08	5.57	100	20	175	
548315	1.33	3.59	19.51	54.77	0.14	3.23	1.38	0.72	0.04	0.09	9.05	120	20	109	
548316	2.02	2.56	16.29	57.66	0.14	2.17	4.31	0.59	0.04	0.15	6.98	186	15	127	
548317	0.87	3.86	19.01	53.99	0.13	5.32	0.97	0.70	0.04	0.07	8.73	141	19	107	
548318	0.85	6.78	12.62	44.13	0.05	0.27	10.34	0.56	0.04	0.87	16.85	97	23	38	X
548319	1.92	7.62	16.01	54.18	0.07	0.07	7.16	0.78	0.03	0.18	8.56	186	14	52	
548320	6.87	1.05	16.58	61.65	0.72	0.44	2.98	0.40	0.02	0.06	4.06	95	12	44	
548321	5.61	2.12	15.44	58.78	0.28	0.67	3.72	0.70	0.01	0.10	6.70	208	19	79	
548322	2.57	5.09	13.41	49.62	0.21	0.20	8.48	1.74	0.01	0.26	16.83	184	45	143	
548323	4.28	2.05	19.10	54.53	0.92	2.42	4.27	0.66	0.02	0.14	6.68	128	18	71	
548324	1.77	2.84	14.34	46.49	0.24	0.75	9.77	1.93	0.02	0.31	15.63	183	37	136	
548325	3.92	0.34	10.16	75.04	0.05	0.40	1.25	0.36	0.02	0.04	3.31	61	89	482	
548326	3.21	0.69	11.98	68.34	0.16	1.36	2.15	0.68	0.02	0.10	7.25	290	116	500	
548327	3.22	1.62	11.82	57.54	0.16	0.29	3.92	0.74	0.01	0.34	17.15	270	129	480	
548328	3.03	8.45	16.07	50.03	0.03	0.62	8.95	0.42	0.09	0.16	9.26	141	<10	24	FAX NO. 41
548329	2.06	1.25	9_94	51.79	0.26	2.49	1.14	0.29	0.02	0.10	17.84	76	12	113	
548330	1.65	3.95	12.39	46.06	0.23	0.42	9.49	1.92	0.01	0.37	20.21	128	40	133	
548331	4.39	2.84	14.38	53.49	0.35	0.41	5.38	0.96	0.02	0.12	10.22	115	23	80	
548332	5.06	1.82	14.12	57.33	0.44	0.56	5.01	0.66	0.02	0.10	7.58	86	13	57	
548333	4,64	5.12	15.37	57.16	0.54	0.36	6.63	0.34	0.07	0.11	6.32	72	<10	35	4164454152
548334	2,48	8.10	15.73	49.63	0.04	0.34	10.46	0.46	0.11	0.16	9.99	105	<10	26	
548335	4,26	5.82	17.22	52.90	0.42	0.58	7.02	0.29	0.08	0.13	7.08	125	<10	21	
548336	1,93	8.56	15.31	49.72	0.04	0_74	10.66	0.42	0.11	0.15	9.71	127	<10	24	
548337	0,83	6.67	11.06	39.39	0.02	0.31	19.07	0.32	0.08	0.14	7.76	126	<10	20	
548338	1.40	9.65	14.78	49.21	0.04	0.13	10.98	0.44	0.12	0.18	9.98	84	<10	26	
*Dup 548313	3.69	3.13	21.54	53.19	0.19	3.27	1.99	0.52	0.03	0.08	6.96	411	19	105	
*Dup 548325	4.04	0.34	9.99	75.36	0.04	0.39	1.22	0.36	0.02	0.04	3.33	61	86	471	
*Dup 548337	0.84	6.70	11.12	39.56	0.02	0.31	18.94	0.32	0.08	0.14	7.77	126	<10	21	



Work Order:	076381	Dat	e: 25/	02/04		PRELEMINARY
Element.		Nb	Ba	Se	LOI	Sum
Method.		ICP95	ICP95	ICP95	ICP95	ICP95
Det.Lim.		10	10	10	0.01	6.01
Units.		ррт	ppm	ppm	%	%
548313		10	630	19	2.70	97.19
548314		11	167	<10	3.05	98.27
548315		13	537	23	3.70	97.65
548316		<10	458	15	2.65	95.65
548317		12	748	23	4.25	98.06
548318		<10	74	40	5.20	98.58
548319		<10	25	48	1.70	98.31
548320		103	73	<10	1.65	96.51
548321		58	161	15	2.15	96.35
548322		26	32	38	0.70	99.18
548323		55	206	15	1.95	97.07
548324		27	207	39	4.40	98.56
548325		27	21	<10	0.70	95.68
548326		29	539	11	0.55	96.67
548327		28	57	14	0.50	97.45
548328		<10	199	44	1.00	98.15
548329		<10	1450	<10	8.30	95.65
548330		27	175	37	1.40	98.15
548331		76	57	23	4.30	96.91
548332		99	41	15	5.30	98.05
548333		78	67	27	0.90	97.59
548334		<10	98	43	0.90	98.43
548335		26	105	28	1.45	97.30
548336		<10	144	42	1.50	98.87
548337		<10	85	33	10.55	96.23
548338		<10	29	39	1.20	98.13
*Dup 548313		10	613	18	2.70	97.42
*Dup 548325		27	20	<10	0.65	95.87
*Dup 548337		<10	86	33	10.40	96.24

Page 1 of 2

Brownridge P	roperty Ge	ochemist	ry (holes	BF01 - BI	F 04)														
Sample	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	MnO	P2O5	TiO2	Cr2O3	LOI	Total	Sr	Y	Zr	Nb	Ba	Sc
548313	53.23	21.60	6.83	2.01	3.09	3.59	3.17	0.08	0.19	0.53	0.03	2.70	97.19	421	19	111	10	630	19
548314	68.26	9.85	5.57	2.65	4.94	0.47	1.13	0.08	1.50	0.66	0.06	3.05	98.27	100	20	175	11	167	<10
548315	54.77	19.51	9.05	1.38	3.59	1.33	3.23	0.09	0.14	0.72	0.04	3.70	97.65	120	20	109	13	537	23
548316	57.66	16.29	6.98	4.31	2.56	2.02	2.17	0.15	0.14	0.59	0.04	2.65	95.65	186	15	127	<10	458	15
548317	53.99	19.01	8.73	0.97	3.86	0.87	5.32	0.07	0.13	0.70	0.04	4.25	98.06	141	19	107	12	748	23
548318	44.13	12.62	16.85	10.34	6.78	0.85	0.27	0.87	0.05	0.56	0.04	5.20	98.58	97	23	38	<10	74	40
548319	54.18	16.01	8.56	7.16	7.62	1.92	0.07	0.18	0.07	0.78	0.03	1.70	98.31	186	14	52	<10	25	48
548320	61.65	16.58	4.06	2.98	1.05	6.87	0.44	0.06	0.72	0.40	0.02	1.65	96.51	95	12	44	103	73	<10
548321	58.78	15.44	6.70	3.72	2.12	5.61	0.67	0.10	0.28	0.70	0.01	2.15	96.35	208	19	79	58	161	15
548322	49.62	13.41	16.83	8.48	5.09	2.57	0.20	0.26	0.21	1.74	0.01	0.70	99.18	184	45	143	26	32	38
548323	54.53	19.10	6.68	4.27	2.05	4.28	2.42	0.14	0.92	0.66	0.02	1.95	97.07	128	18	71	55	206	15
548324	46.49	14.34	15.63	9.77	2.84	1.77	0.75	0.31	0.24	1.93	0.02	4.40	98.56	183	37	136	27	207	39
548325	75.04	10.16	3.31	1.25	0.34	3.92	0.40	0.04	0.05	0.36	0.02	0.70	95.68	61	89	482	27	21	<10
548326	68.34	11.98	7.25	2.15	0.69	3.21	1.36	0.10	0.16	0.68	0.02	0.55	96.67	290	116	500	29	539	11
548327	57.54	11.82	17.15	3.92	1.62	3.22	0.29	0.34	0.16	0.74	0.01	0.50	97.45	270	129	480	28	57	14
548328	50.03	16.07	9.26	8.95	8.45	3.03	0.62	0.16	0.03	0.42	0.09	1.00	98.15	141	<10	24	<10	199	44
548329	51.79	9.94	17.84	1.14	1.25	2.06	2.49	0.10	0.26	0.29	0.02	8.30	95.65	76	12	113	<10	1450	<10
548330	46.06	12.39	20.21	9.49	3.95	1.65	0.42	0.37	0.23	1.92	0.01	1.40	98.15	128	40	133	27	175	37
548331	53.49	14.38	10.22	5.38	2.84	4.39	0.41	0.12	0.35	0.96	0.02	4.30	96.91	115	23	80	76	57	23
548332	57.33	14.12	7.58	5.01	1.82	5.06	0.56	0.10	0.44	0.66	0.02	5.30	98.05	86	13	57	99	41	15
548333	57.16	15.37	6.32	6.63	5.12	4.64	0.36	0.11	0.54	0.34	0.07	0.90	97.59	72	<10	35	78	67	27
548334	49.63	15.73	9.99	10.46	8.10	2.48	0.34	0.16	0.04	0.46	0.11	0.90	98.43	105	<10	26	<10	98	43
548335	52.90	17.22	7.08	7.02	5.82	4.26	0.58	0.13	0.42	0.29	0.08	1.45	97.30	125	<10	21	26	105	28
548336	49.72	15.31	9.71	10.66	8.56	1.93	0.74	0.15	0.04	0.42	0.11	1.50	98.87	127	<10	24	<10	144	42
548337	39.39	11.06	7.76	19.07	6.67	0.83	0.31	0.14	0.02	0.32	0.08	10.55	96.23	126	<10	20	<10	85	33
548338	49.21	14.78	9.98	10.98	9.65	1.40	0.13	0.18	0.04	0.44	0.12	1.20	98.13	84	<10	26	<10	29	39
DUP-548313	53.19	21.54	6.96	1.99	3.13	3.69	3.27	0.08	0.19	0.52	0.03	2.70	97.42	411	19	105	10	613	18
DUP-548325	75.36	9.99	3.33	1.22	0.34	4.04	0.39	0.04	0.04	0.36	0.02	0.65	95.87	61	86	471	27	20	<10
DUP-548337	39.56	11.12	7.77	18.94	6.70	0.84	0.31	0.14	0.02	0.32	0.08	10.40	96.24	126	<10	21	<10	86	33

Brownridge P	roperty Go	ochemist	ry (holes	BF01 - B	F 04)														
Sample	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	MnO	P2O5	TiO2	Cr2O3	LOI	Total	Sr	Y	Zr	Nb	Ba	Sc
548313	53.23	21.60	6.83	2.01	3.09	3.59	3.17	0.08	0.19	0.53	0.03	2.70	97.19	421	19	111	10	630	19
548314	68.26	9.85	5.57	2.65	4.94	0.47	1.13	0.08	1.50	0.66	0.06	3.05	98.27	100	20	175	11	167	<10
548315	54.77	19.51	9.05	1.38	3.59	1.33	3.23	0.09	0.14	0.72	0.04	3.70	97.65	120	20	109	13	537	23
548316	57.66	16.29	6.98	4.31	2.56	2.02	2.17	0.15	0.14	0.59	0.04	2.65	95.65	186	15	127	<10	458	15
548317	53.99	19.01	8.73	0.97	3.86	0.87	5.32	0.07	0.13	0.70	0.04	4.25	98.06	141	19	107	12	748	23
548318	44.13	12.62	16.85	10.34	6.78	0.85	0.27	0.87	0.05	0.56	0.04	5.20	98.58	97	23	38	<10	74	40
548319	54.18	16.01	8.56	7.16	7.62	1.92	0.07	0.18	0.07	0.78	0.03	1.70	98.31	186	14	52	<10	25	48
548320	61.65	16.58	4.06	2.98	1.05	6.87	0.44	0.06	0.72	0.40	0.02	1.65	96.51	95	12	44	103	73	<10
548321	58.78	15.44	6.70	3.72	2.12	5.61	0.67	0.10	0.28	0.70	0.01	2.15	96.35	208	19	79	58	161	15
548322	49.62	13.41	16.83	8.48	5.09	2.57	0.20	0.26	0.21	1.74	0.01	0.70	99.18	184	45	143	26	32	38
548323	54.53	19.10	6.68	4.27	2.05	4.28	2.42	0.14	0.92	0.66	0.02	1.95	97.07	128	18	71	55	206	15
548324	46.49	14.34	15.63	9.77	2.84	1.77	0.75	0.31	0.24	1.93	0.02	4.40	98.56	183	37	136	27	207	39
548325	75.04	10.16	3.31	1.25	0.34	3.92	0.40	0.04	0.05	0.36	0.02	0.70	95.68	61	89	482	27	21	<10
548326	68.34	11.98	7.25	2.15	0.69	3.21	1.36	0.10	0.16	0.68	0.02	0.55	96.67	290	116	500	29	539	11
548327	57.54	11.82	17.15	3.92	1.62	3.22	0.29	0.34	0.16	0.74	0.01	0.50	97.45	270	129	480	28	57	14
548328	50.03	16.07	9.26	8.95	8.45	3.03	0.62	0.16	0.03	0.42	0.09	1.00	98.15	141	<10	24	<10	199	44
548329	51.79	9.94	17.84	1.14	1.25	2.06	2.49	0.10	0.26	0.29	0.02	8.30	95.65	76	12	113	<10	1450	<10
548330	46.06	12.39	20.21	9.49	3.95	1.65	0.42	0.37	0.23	1.92	0.01	1.40	98.15	128	40	133	27	175	37
548331	53.49	14.38	10.22	5.38	2.84	4.39	0.41	0.12	0.35	0.96	0.02	4.30	96.91	115	23	80	76	57	23
548332	57.33	14.12	7.58	5.01	1.82	5.06	0.56	0.10	0.44	0.66	0.02	5.30	98.05	86	13	57	99	41	15
548333	57.16	15.37	6.32	6.63	5.12	4.64	0.36	0.11	0.54	0.34	0.07	0.90	97.59 ,	72	<10	35	78	67	27
548334	49.63	15.73	9.99	10.46	8.10	2.48	0.34	0.16	0.04	0.46	0.11	0.90	98.43	105	<10	26	<10	98	43
548335	52.90	17.22	7.08	7.02	5.82	4.26	0.58	0.13	0.42	0.29	0.08	1.45	97.30	125	<10	21	26	105	28
548336	49.72	15.31	9.71	10.66	8.56	1.93	0.74	0.15	0.04	0.42	0.11	1.50	98.87	127	<10	24	<10	144	42
548337	39.39	11.06	7.76	19.07	6.67	0.83	0.31	0.14	0.02	0.32	0.08	10.55	96.23	126	<10	20	<10	85	33
548338	49.21	14.78	9.98	10.98	9.65	1.40	0.13	0.18	0.04	0.44	0.12	1.20	98.13	84	<10	26	<10	29	39
DUP-548313	53.19	21.54	6.96	1.99	3.13	3.69	3.27	0.08	0.19	0.52	0.03	2.70	97.42	411	19	105	10	613	18
DUP-548325	75.36	9.99	3.33	1.22	0.34	4.04	0.39	0.04	0.04	0.36	0.02	0.65	95.87	61	86	471	27	20	<10
DUP-548337	39.56	11.12	7.77	18.94	6.70	0.84	0.31	0.14	0.02	0.32	0.08	10.40	96.24	126	<10	21	<10	86	33

From: Alasdair Mowat To: Steve Beneteau Fax Sent: Thursday, April 1st, 2004 Subject: E.mail of Friday, March 26, 2004 (copy attached)

Steve:

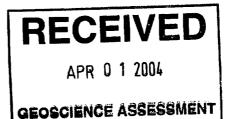
Please find attached the requested change to *Transaction No. W.0410.00327 (2.27258)* regarding work performed. Accordingly, please review and comment on paragraph #5 for correctness. For your record, as of today, Thursday, April 1st, 2004, I will be in the field for at least 3 weeks and will be unattainable to attend to Emerald Fields's daily business operating concerns and other related matters. Thanks for your support and guidance, I remain

Sin

cc. Steve Beneteau, Geoscience Assessment Office, MNDM (3 pages) File

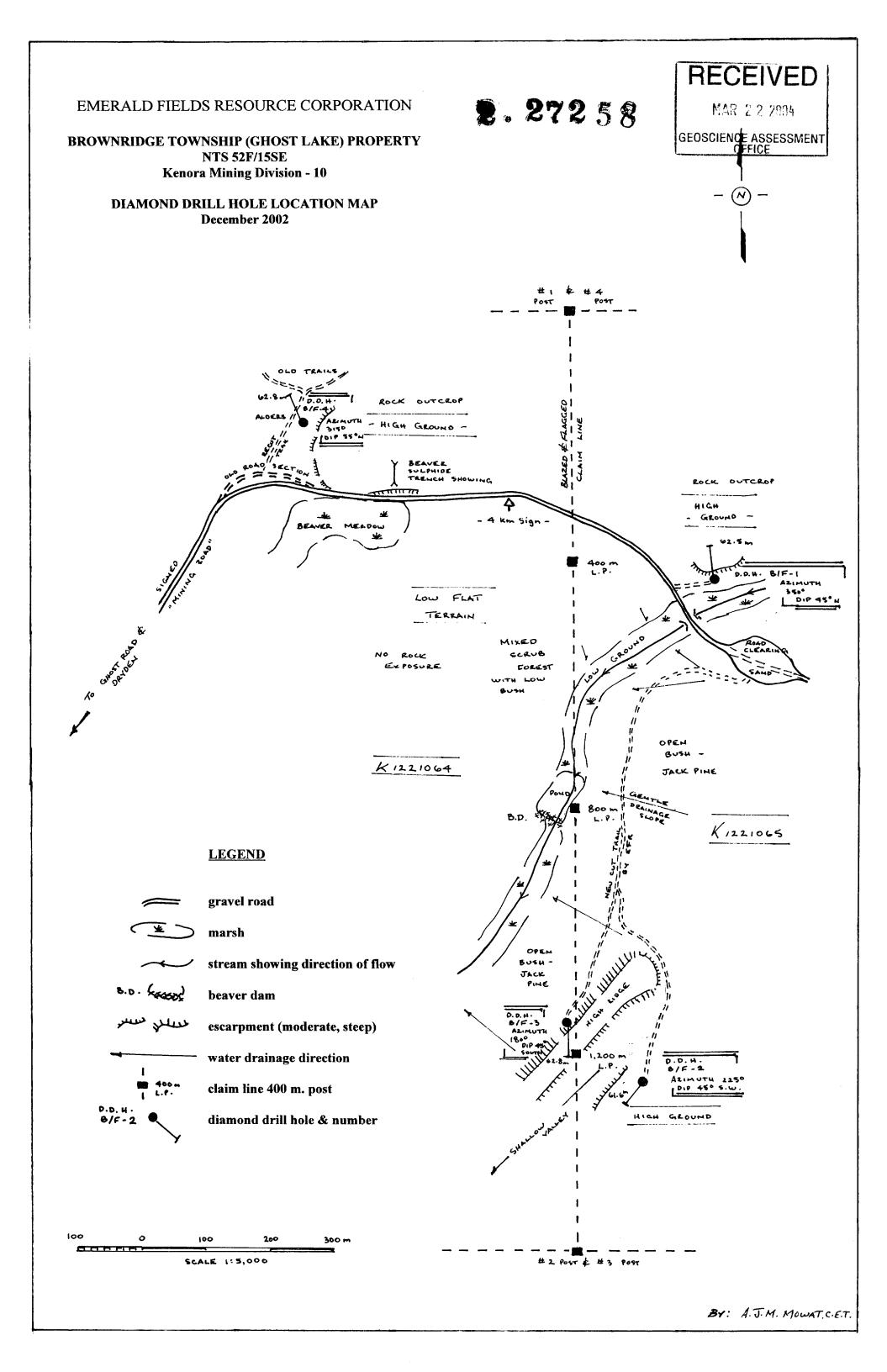
20 GA RECEIVE APR 0 1 2004 -GEOSCIENCE ASSESSMENT OFFICE G

Alasdair Mowat


From:	<steve.beneteau@ndm.gov.on.ca></steve.beneteau@ndm.gov.on.ca>
To:	<ajmowat@kmts.ca></ajmowat@kmts.ca>
Cc:	<steve.beneteau@ndm.gov.on.ca></steve.beneteau@ndm.gov.on.ca>
Sent:	Friday, March 26, 2004 1:18 PM
Subject:	Thanks for the Fax, need to correct distribution

Al;

Thanks for the map indicating which claim number drill hole EF-GL-88-04 occured on. Based on the information you have provided, work was performed on 3 claims (1221212, 1221064 & 1221065): However, your submitted Report of Work form indicates work was performed on only 2 claims (1221064 & 1221065). Accordingly, please provide an AMENDED Report of Work form indicating that work was performed on the following 3 claims: 1221064 = \$1,209.00, 1221065 = \$1,209.00 and 1221212 = \$1,209.00.


If you have any questions, please ask.

Steven B. Beneteau Geoscience Assessor Mining Lands Section Ministry of Northern Dev. & Mines Phone: 705-670-5855 Toll Free Phone:1-888-415-9845 Toll Free Fax: 1-877-670-1555 E-mail: steve.beneteau@ndm.gov.on.ca Website:www.mndm.gov.on.ca/mndm/mines/lands/default_e.asp

OFFICE

3/29/2004

Work Report Summary

Transaction No: Recording Date:				St Work Done	from: 200	ECKED W/ NC 4-JAN-07 4-FEB-25) ERRORS/V	VARNINGS	
Client(s): 3036	502 EI	MERALD FIEI	DS RESOL	IRCE CORPO	RATION				
Work Report De	etails:								
Claim#	Perform	Perform Approve	Applied	Applied Approve	Assign	Assign Approve	Reserve	Reserve Approve	Due Date
K 1221063	\$0	\$0	\$1,209	\$0	\$0	0	\$0	\$0	2004-FEB-29 E
K 1221064	\$1,813	\$0	\$1,209	\$0	\$604	0	\$0	\$0	2004-FEB-29 E
K 1221065	\$1,814	\$0	\$1,209	\$0	\$605	0	\$0	\$0	2005-MAR-01
-	\$3,627	\$0	\$3,627	\$0	\$1,209	\$0	\$0	\$0	-
External Credits	5:	\$ 0							
Reserve:				k Report#: W0	410.00327				
		\$0 Tota	Remaining						
Audit Informatio	<u>n:</u>								
Entered By: Posted/ Unposte		LEVAC_J			2004-FE	3-27			

Status of Claim is based on information currently on record.

52F15SE2019 2.27258 BROWNRIDGE

900

Work Report Summary

Transaction No:	W0410.	00327		St	atus: Al	APPROVED					
Recording Date:	2004-FE	B-27		Work Done f	f ro m: 20	04-JAN-07					
Approval Date:	2004- M /	AY-04			to: 20	04-FEB-25					
Client(s):											
30360	02 EI	MERALD FIEL	LDS RESOL	IRCE CORPO	RATION						
Survey Type(s):											
		GEOL									
Work Report Det	ails:										
Claim#	Perform	Perform Approve	Applied	Applied Approve	Assigi	Assign n Approv e	Reserve	Reserve Approve	Due Date		
K 1221064	\$1,209	\$1,209	\$1,209	\$1,209	\$	0 0	\$0	\$0	2004-NOV-16		
K 1221065	\$1,209	\$1,209	\$1,209	\$1,209	\$1	0 0	\$0	\$0	2005-MAR-01		
	\$2,418	\$2,418	\$2,418	\$2,418	\$1	0 \$0	\$0	\$0			
External Credits:		\$0									
Reserve:		\$0 Res	erve of Worl	k Report#: W0	410.0032	7					
		\$0 Tota	I Remaining								

Status of claim is based on information currently on record.

2004-May-18 10:07 armstrong_d

Ministry of Northern Development and Mines

Date: 2004-MAY-05

Ministère du Développement du Nord et des Mines

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO P3E 6B5

EMERALD FIELDS RESOURCE CORPORATION 1546 PINE PORTAGE RD., KENORA, ONTARIO P9N 2K2 CANADA Tel: (888) 415-9845 Fax:(877) 670-1555

Submission Number: 2.27258 Transaction Number(s): W0410.00327

Dear Sir or Madam

Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

he revisions outlined in the Notice dated March 03, 2004 have been corrected. Accordingly, assessment work credit has been approved as outlined on the AMENDED Declaration of Assessment Work Form that accompanied this submission.

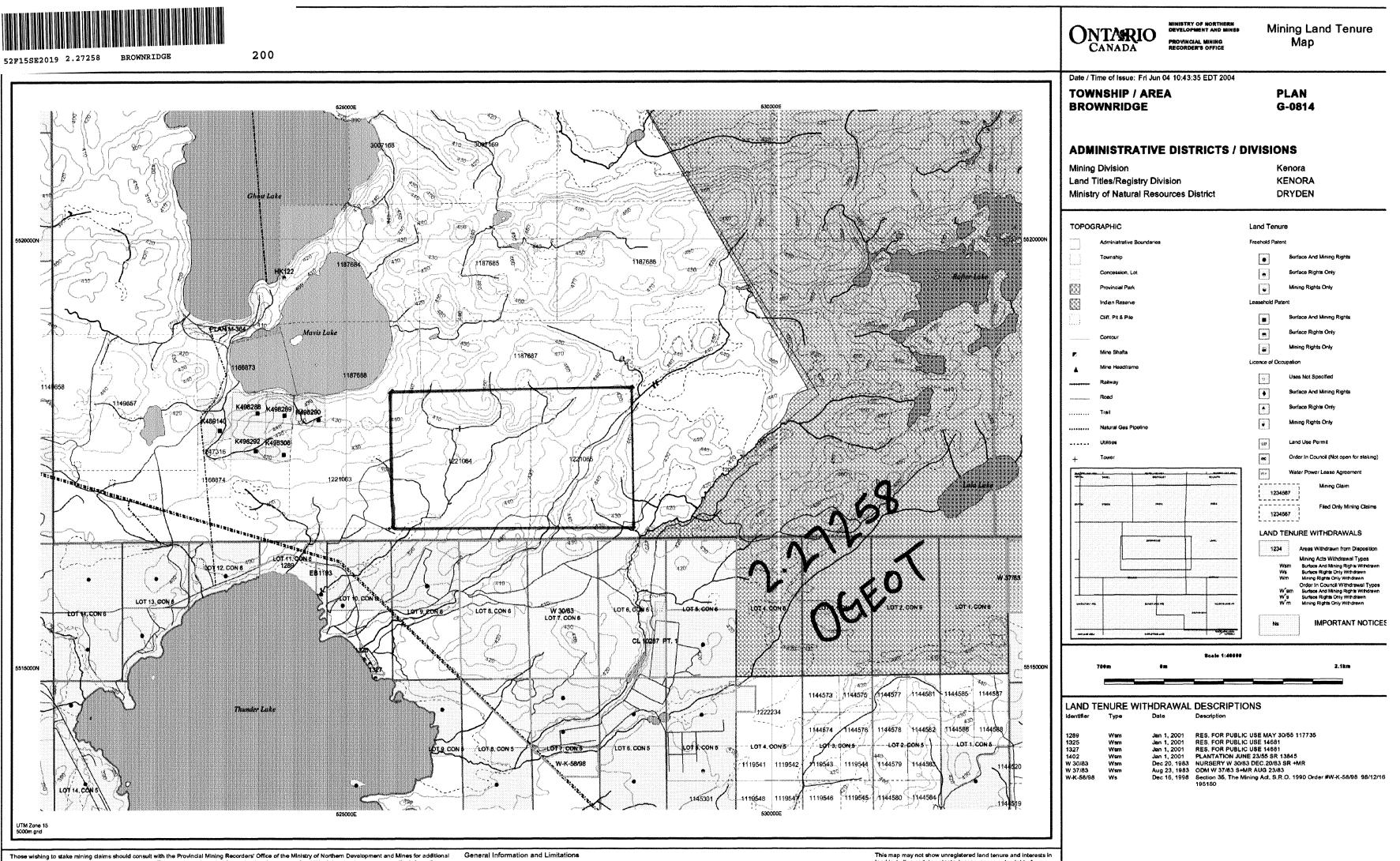
If you have any question regarding this correspondence, please contact STEVEN BENETEAU by email at steve.beneteau@ndm.gov.on.ca or by phone at (705) 670-5855.

Yours Sincerely,

Rom C Gashingh.

Ron C. Gashinski Senior Manager, Mining Lands Section

Cc: Resident Geologist


Alasdair James Mowat (Agent)

Emerald Fields Resource Corporation (Assessment Office)

Assessment File Library

Emerald Fields Resource Corporation (Claim Holder)

Those wishing to stake mining claims should consult with the Provincial Mining Recorders' Office of the Ministry of Northern Development and Mines for additional information on the status of the lands shown hereon. This map is not intended for navigational, survey, or land title determination purposes as the information shown on this map is compiled from various sources. Completeness and accuracy are not guaranteed. Additional information may also be obtained through the local Land Titles or Registry Office, or the Ministry of Natural Resources.

The information shown is derived from digital data available in the Provincial Mining Recorders' Office at the time of downloading from the Ministry of Northern Development and Mines web site.

Contact Information and Eminations
Contact Information:
Toll Free
Map Datum: NAD 83
Provincial Mining Recorders' Office
Tel: 1 (888) 415-9845 ext 57#Bbjection; UTM (6 degree)
Willet Green Miller Centre 933 Ramsey Lake Road
Fax: 1 (877) 870-1444
Topographic Data Source: Land Information Ontario
Sudbury ON P3E 685
Home Page: www.mndm.gov.on.ca/MNDM/MINES/LANDS/mismnpge.htm

This map may not show unregistered land tenure and interests in land including certain patents, leases, easements, right of ways, flooding rights, licences, or other forms of disposition of rights and interest from the Crown. Also certain land tenure and land uses that restrict or prohibit free entry to stake mining claims may not be illustrated.