

VSE-AVL

851 Field Street, Thunder Bay, Ontario P7B 6B6

Tel: (807) 346-0404 Fax: (807) 346-4233

E-mail: avalon@microage-tb.com Internet: http://www.avalonventures.com

RALEIGH LAKE

E. Stra

52G05NW2003 2.20005

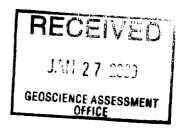
010

8 J

Report on 1999 Exploration Program

Raleigh Lake Property

for Assessment


Raleigh Lake Area G-2557 Balmoral Lake Area G-2530

Kenora Mining Division, Ontario

NTS 52 G/5 NW

Latitude 49°23' N Longitude 91°57' W

Magnetic Declination in 1998: 0°10' E

31 December 1999

Jens C. Pedersen, Senior Geologist Avalon Ventures Ltd.

Report on 1999 Exploration Program

Raleigh Lake Property

for Assessment

Raleigh Lake Area G-2557 Balmoral Lake Area G-2530

Kenora Mining Division, Ontario

NTS 52 G/5 NW

Latitude 49°23' N Longitude 91°57' W

Magnetic Declination in 1998: 0°10' E

Jens C. Pedersen, Senior Geologist Avalon Ventures Ltd. 31 December 1999

e i Marana e e e

SUMMARY

The Raleigh Lake property is situated 23 kilometres west of Ignace, Ontario in the Wabigoon Subprovince of the Superior Province of the Canadian Shield. Avalon Ventures Ltd. optioned the Raleigh Lake property in May 1998 on the basis of significant mineralization of the rare metals lithium, tantalum and rubidium from pegmatitic dykes of the Raleigh Lake Pegmatite Field.

In 1998, following a property visit and a brief compilation, Avalon conducted an initial exploration program which consisted of a lithogeochemical sampling program on the claims of the Raleigh Lake property and a regional reconnaissance sampling program. This work was documented and filed for assessment in May 1999.

Based on the results of the 1998 program, additional claims were staked and Avalon conducted a second phase of exploration in September-October 1999 which consisted of linecutting and completion of five diamond drill holes totalling 602 metres. The holes were designed to test the extent and tantalum mineralization of two known pegmatites, and to delineate new, "blind" pegmatites. Total expenditures for the program were approximately

Diamond drilling has shown that the largest pegmatite, Pegmatite #1, continues unchanged from surface to at least 450 metres downdip. It, and at least six other pegmatites intersected, contain pervasive, sub-economic tantalum mineralization associated with secondary albitization. Tantalum pentoxide values consistently average 0.011% Ta₂O₅ where tested. Assays indicate substantial fractionation based on both the numerous anomalous tantalum assays, combined with very high rubidium assays (up to 1.156% Rb₂O) and cesium assays (up to 0.552% Cs₂O). A high value of 0.039% Ta₂O₅ was obtained from a narrow pegmatite dyke underlying Pegmatite #1.

Drilling outlined and confirmed the presence of stacked, gently dipping to flat lying pegmatites at Raleigh Lake. All contain anomalous tantalum mineralization, with initial interpretation suggests an easterly trend of increasing fractionation. Pegmatite #1 was intersected in four drill holes and has confirmed that the pegmatites have extensive lateral and down dip continuity of surface exposed pegmatites.

A full and detailed exploration program is recommended for Raleigh Lake. This phase of exploration should include geologic mapping, lithogeochemical sampling, trenching, and a second round of at least 2000 metres of diamond drilling. The total estimated expenditures to carry out this program are \$300,000.

TABLE OF CONTENTS

SUMMARY

1.0	INTRODUCTION	1
2.0	LOCATION, ACCESS AND TOPOGRAPHY	1
3.0	LAND POSITION	1
4.0	PREVIOUS EXPLORATION	3
5.0	REGIONAL GEOLOGY	3
6.0	PROPERTY GEOLOGY AND MINERALIZATION	4
7.0	CURRENT PROGRAM	4
8.0	ASSAY PROCEDURES	6
9.0	RESULTS	6
	9.1 Geology	6
	9.1.1 Metavolcanics	6
	9.1.2 Feldspar Porphyry	7
	9.1.3 Pegmatites	7
	9.2 Assays	8
10.0	DISCUSSION	10
11.0	CONCLUSIONS	11
12.0	RECOMMENDATIONS	12
	REFERENCES	13
	STATEMENT OF EXPENDITURES	14
	STATEMENT OF QUALIFICATIONS	

RALEIGH LAKE

.....

52G05NW2003 2.20005

010C

List of Tables

Table 1	Raleigh Lake Property Claims List	2
Table 2	Drill Hole Statistics	5

List of Figures

Figure 1	Property Location Map	Following 1
Figure 2	Claim Map	Following 1
Figure 3	Regional Geology	Following 3
Figure 4	Property Geology	Following 4
Figure 5	Area of Drilling Plan View	Following 5
Figure 6	Schematic Cross Section	Following 8
Figure 7	Schematic Model	Following 10

List of Appendices

Appendix 1	Oxide Conversion and Sample Descriptions Table
	Assay Certificates - Prospecting Samples
Appendix 2	Drill Hole Logs RL99-01 to RL99-05
Appendix 3	Oxide Conversion Tables and Assay Certificates - Drill Core

List of Maps

Map 1	Compilation and Drill Hole Location Map Scale 1:5000	Back pocket
Map 2	Section RL99-02, 04, 05 Looking Northeast Scale 1:500	Back pocket
Map 3	Section RL99-01, 04 5000N Scale 1:500	Back pocket
Map 4	Section RL99-03 5200N Scale 1:500	Back pocket

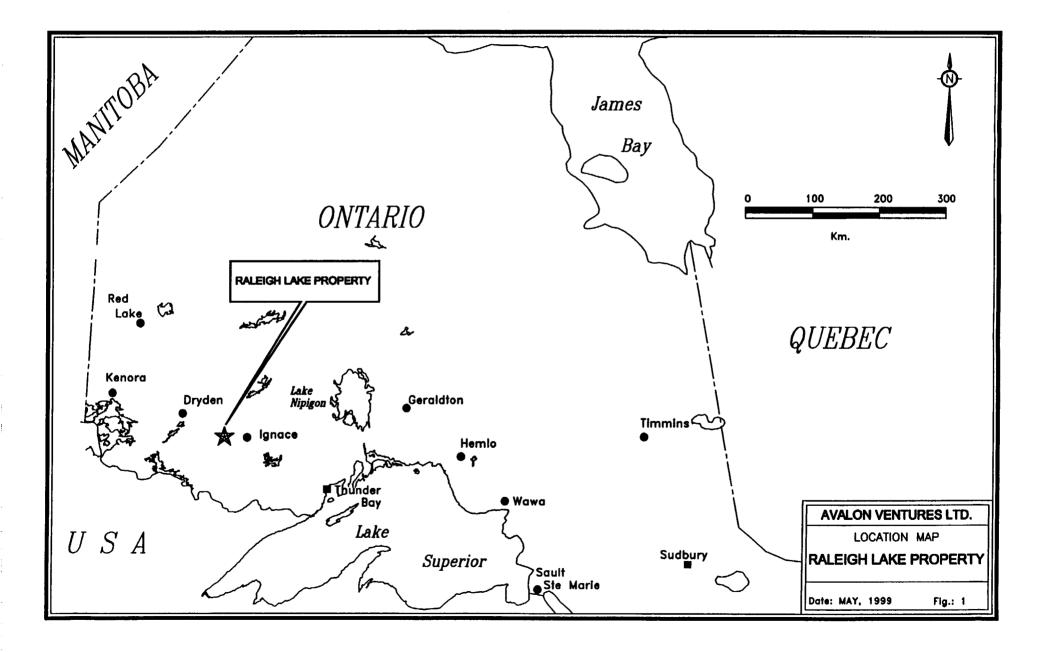
1.0 INTRODUCTION

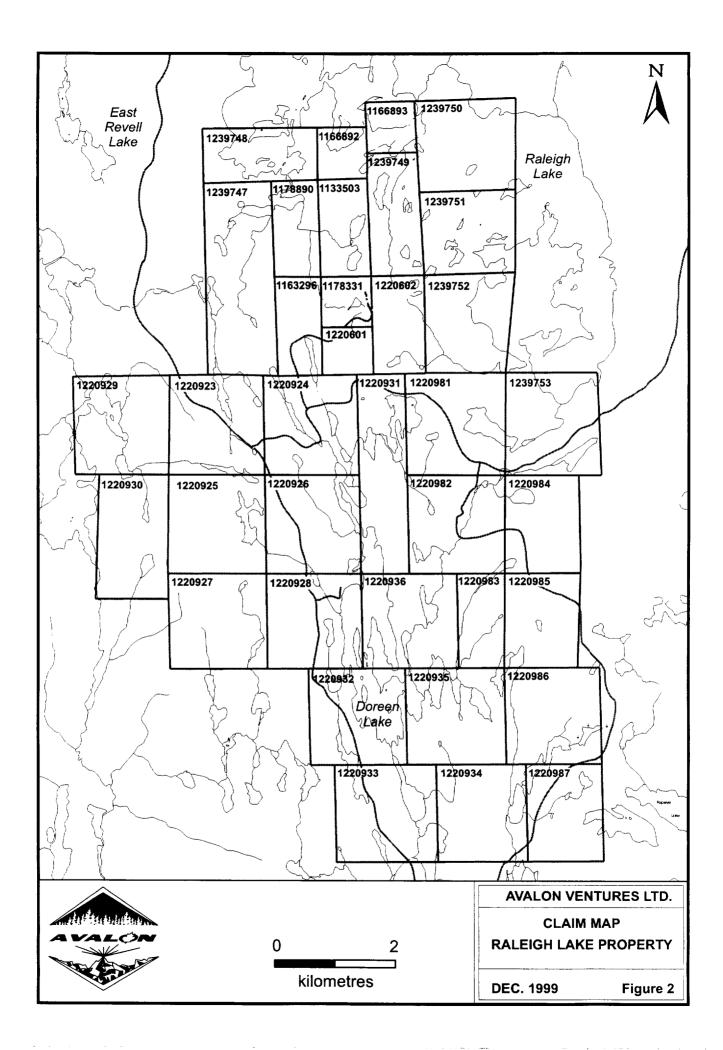
Avalon Ventures Ltd. optioned the Raleigh Lake property in May 1998 on the basis of known tantalum mineralization from pegmatitic dykes of the Raleigh Lake Pegmatite Field, as well as the discovery of significant new tantalum mineralization by Robert Fairservice, one of the property vendors. The initial exploration program in 1998 consisted of a program of regional reconnaissance sampling and specific lithogeochemical sampling. Based on the results of that program, further sampling was conducted and additional ground was acquired by staking claims contiguous to the original block.

A five hole diamond drilling program was carried out from 23 September to 30 September, 1999 following linecutting of a small grid (7.275 kilometres) to provide control. The purpose of the drill program was to trace the extent of two of the known pegmatites and identify zones of contained tantalum enrichment.

The purpose of this report is to document and interpret the results of the program and to make recommendations for further work.

2.0 LOCATION, ACCESS AND TOPOGRAPHY


The Raleigh Lake property is located approximately 23 kilometres west of Ignace, Ontario (Figure 1). The property can be accessed by boat from Raleigh Lake, or via a wellmaintained network of logging (Avenor) roads that branch south from Highway 17 (Trans Canada Highway) approximately 25 kilometres west of Ignace and 3.8 kilometres west of Raleigh Lake Road (Cobblestone Lodge). Upon departing Highway 17, travel 8.7 kilometres south to the "Moose Hide Road" junction and continue to the left. After another 3.1 kilometres, turn east onto logging road 46-02. Approximately 1.5 kilometres from this junction, an old logging road leads north onto the Raleigh Lake property and provides easy access to claim K 1178331. Road 46-02 continues to the eastern side of Raleigh Lake and eventually back to Highway 17.


The Raleigh Lake area is extensively covered by thin to moderate layers of glacial till and sandy soil. Outcrop exposure is generally poor, even along the shorelines of numerous lakes examined in the area, including Raleigh Lake.

3.0 LAND POSITION

The Raleigh Lake property consists of 36 claims, which comprise 463 claim units for a land area totalling 18,520 acres (Figure 2). The claims are located on claim sheets G-2557 Raleigh Lake and G-2530 Balmoral Lake, southwest of Raleigh Lake. NTS reference for the property is 52 G/5, with the property being centred on Latitude 49°23' N Longitude 91°57' W.

31 December 1999

The original seven claims and those that fall within a one mile area of interest are held under an option agreement with beneficial owners Robert Fairservice of Kenora, Ontario, Sherridon Johnson of Dryden, Ontario, and James Bond II of Welch, West Virginia. The agreement is a four year option during which time Avalon must make a total of \$100,000 in cash payments, issue 20,000 shares and incur a minimum of \$400,000 in exploration expenditures on the property to keep the option in good standing. At the end of the term, and by meeting these commitments, Avalon will have earned a 100% undivided interest in the property, subject to a 3.0% Net Smelter Returns royalty retained by the vendors, of which 1.5% can be purchased by Avalon at any time for \$1.0 million cash. Pertinent claim information is listed in Table 1.

Claim	Units	Recorded Holder	Recorded	Assessment Due
K 1178331	4	Fairservice 100%	13 Nov 1997	13 Nov 1999
K 1220601	4	Fairservice 100%	08 Apr 1998	08 Apr 2000
K 1220602	8	Fairservice 100%	08 Apr 1998	08 Apr 2000
K 1133503	8	Bond 75% / Johnson 25%	13 Jun 1997	13 Jun 1999
K 1163296	8	Bond 75% / Johnson 25%	29 Jan 1998	29 Jan 2000
K 1166892	4	Bond 75% / Johnson 25%	12 Feb 1998	12 Feb 2000
K 1166893	4	Bond 75% / Johnson 25%	12 Feb 1998	12 Feb 2000
K 1220923	16	Avalon 100%	14 July 1999	14 July 2001
K 1220924	16	Avalon 100%	14 July 1999	14 July 2001
K 1220925	16	Avalon 100%	14 July 1999	14 July 2001
K 1220926	16	Avalon 100%	14 July 1999	14 July 2001
K 1220927	16	Avalon 100%	14 July 1999	14 July 2001
K 1220928	16	Avalon 100%	14 July 1999	14 July 2001
K 1220929	16	Avalon 100%	14 July 1999	14 July 2001
K 1220930	15	Avalon 100%	14 July 1999	14 July 2001
K 1220931	16	Avalon 100%	14 July 1999	14 July 2001
K 1220932	16	Avalon 100%	14 July 1999	14 July 2001
K 1220933	16	Avalon 100%	14 July 1999	14 July 2001
K 1220934	16	Avalon 100%	14 July 1999	14 July 2001
K 1220935	16	Avalon 100%	14 July 1999	14 July 2001
K 1220936	16	Avalon 100%	14 July 1999	14 July 2001
K 1220981	16	Avalon 100%	18 Aug 1999	18 Aug 2001
K 1220982	16	Avalon 100%	18 Aug 1999	18 Aug 2001
K 1220983	8	Avalon 100%	18 Aug 1999	18 Aug 2001
K 1220984	12	Avalon 100%	18 Aug 1999	18 Aug 2001
K 1220985	12	Avalon 100%	18 Aug 1999	18 Aug 2001
K 1220986	16	Avalon 100%	18 Aug 1999	18 Aug 2001
K 1220987	12	Avalon 100%	18 Aug 1999	18 Aug 2001
K 1178890	8	Avalon 100%	18 Aug 1999	18 Aug 2001
K 1239747	16	Avalon 100%	01 Sept 1999	01 Sept 2001
K 1239748	8	Avalon 100%	01 Sept 1999	01 Sept 2001
K 1239749	12	Avalon 100%	01 Sept 1999	01 Sept 2001
K 1239750	16	Avalon 100%	01 Sept 1999	01 Sept 2001
K 1239751	16	Avalon 100%	01 Sept 1999	01 Sept 2001
K 1239752	16	Avalon 100%	01 Sept 1999	01 Sept 2001
K 1239753	<u>16</u>	Avalon 100%	01 Sept 1999	01 Sept 2001
36 claims	463		1	

Table 1: Raleigh Lake Property Claims List

4.0 PREVIOUS EXPLORATION

Historically, work has been carried out near the Raleigh Lake area for greenstone hosted gold and base metal mineralization. However, there has been little to no previous exploration for rare metal mineralization. Spodumene-bearing pegmatite was discovered in the area by Stan Johnson in 1966, though the mineralization was not disclosed until sometime in the early 1990s. Since that time, this area and others have become the focus of various studies on granite-related mineralization in the Superior Province by the Ontario Geological Survey (Breaks 1993 and Stone et al. 1998, 1999). Breaks documented the historic spodumene showing and detailed several new undescribed occurrences of rare metal mineralization within the Raleigh Lake Pegmatite Field (Breaks 1993), including identifying microlite as the main tantalum mineral in the pegmatite field.

In early 1998, vendor Fairservice identified a mineralized boulder train of pegmatitic material south of the known showings. Assay results from some of the boulders yielded up to 0.097% tantalum pentoxide.

The original seven claims of the Raleigh Lake property were staked by the vendors in 1997 and 1998. In 1998 Avalon carried out limited reconnaissance prospecting on the original claim group and follow-up prospecting and lithogeochemical sampling in the summer of 1999 (Pedersen, 1999). A small grid was cut in September 1999 to provide control for the diamond drill program documented in this report.

5.0 **REGIONAL GEOLOGY**

The Raleigh Lake property is situated within the Wabigoon Subprovince of the Superior Province of the Canadian Shield. More specifically, it occurs in the western portion of the central Wabigoon region (CWR). The CWR is characterized by ovoid gneissic domes and elliptical batholiths with screens and small belts of supracrustal rocks. Older foliated and gneissic tonalitic bodies are cut and surrounded by younger massive and foliated granitic bodies forming large-scale dome and basin structures. Minor greenstone belts of relatively low metamorphic grade occur within the CWR (Figure 3).

The Indian Lake granitoid batholith is a major feature of the Raleigh Lake area, with smaller bodies, such as the Raleigh Lake Pluton (4 x 6 kilometres in size), and the Crocker Bay Stock (0.5×1.5 kilometres in size) occurring in the immediate vicinity. These stocks are surrounded by mafic metavolcanic rocks ranging from foliated to gneissic flows and fragmentals. To the south and west, the mafic volcanics are in contact with intermediate to felsic flows and fragmental units (Stone et al. 1998, 1999).

31 December 1999

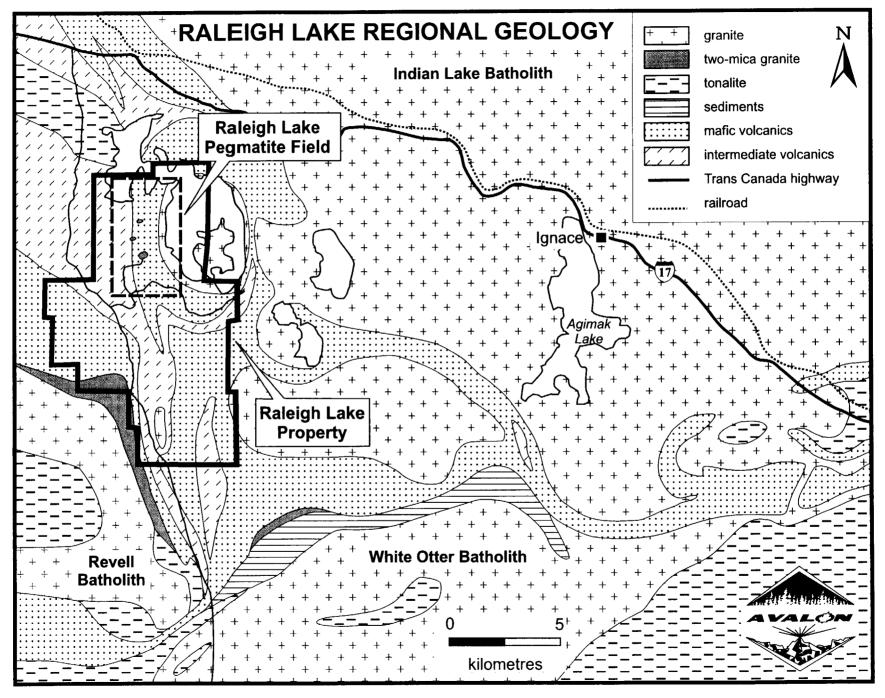


Figure 3: Regional Geology of Raleigh Lake Property

6.0 PROPERTY GEOLOGY AND MINERALIZATION

The Raleigh Lake property (Figure 4, Map 1) is predominantly underlain by Archean supracrustals comprised essentially of mafic metavolcanics and their derived metasedimentary equivalents, which both overlie and are intruded by granitic plutons and batholiths of various ages and chemistry. The metavolcanics comprise the Raleigh Lake greenstone belt (Sage et al. 1974), which is intruded by various of these granitoids, including the peraluminous (S-type) Revell Lake batholith. The Revell Lake batholith is believed to exhibit an alteration front which has recently been identified and mapped by the OGS as a "two-mica" granite, and is believed to be parental to the rare element pegmatites of the Raleigh Lake pegmatite field. Regional folding and doming outlined by OGS mapping provide excellent structural traps for potential pegmatite emplacement.

Numerous occurrences of rare element mineralization, in a zone approximately 1.5 kilometres wide and at least 4 kilometres in length, were described by Breaks (1993) as part of a study on granite-related mineralization in northwestern Ontario. The rare element-bearing minerals identified by Breaks include spodumene, beryl, holmquistite, ixiolite, microlite, bismuthinite, columbite, and tantalite. Prospecting by Robert Fairservice has revealed significant rare metal mineralization including lithium up to 2.713% Li₂O, tantalum up to 0.097% Ta₂O₅, cesium up to 0.018% Cs₂O and rubidium up to 0.240% Rb₂O in the pegmatite dykes. A subsequent property visit by the author just prior to acquiring the property returned values up to 1.679% Li₂O, 0.04% Ta₂O₅, 0.029% Cs₂O, and 0.915% Rb₂O.

The pegmatites belong to the albite spodumene sub-type of rare metal pegmatites, which commonly contain tantalum minerals, but are not at the high fractionation end of rare metal pegmatites. Nevertheless, their occurrence could indicate part of a continuum of a continuous fractionation sequence, which would ultimately end in deposition of evolved and mineralized rare metal pegmatites.

7.0 CURRENT PROGRAM

The 1999 exploration program on the Raleigh Lake property consisted of prospecting, linecutting and diamond drilling. Prospecting and sampling was carried out in the summer during the staking of additional ground contiguous to the original seven claims. A total of 48 samples were collected and sent to Chemex Labs in Thunder Bay, Ontario for preparation and subsequent multi-element analyses using Induced Coupled Plasma (ICP) and Mass Spectrometer (ICP-MS) techniques. The samples were also run for whole rock major oxide analysis by XRF. Prospecting sample locations are plotted on Map 1. Oxide conversion tables, sample notes and assay certificates from the prospecting samples are included in Appendix 1.

In September 1999 a small grid totalling 7.275 line kilometres was cut by Vytyl Geophysical Services of Thunder Bay, Ontario. A north-south baseline was established through the central portion of the property with four wing lines spaced 200 metres apart and picketed at

31 December 1999

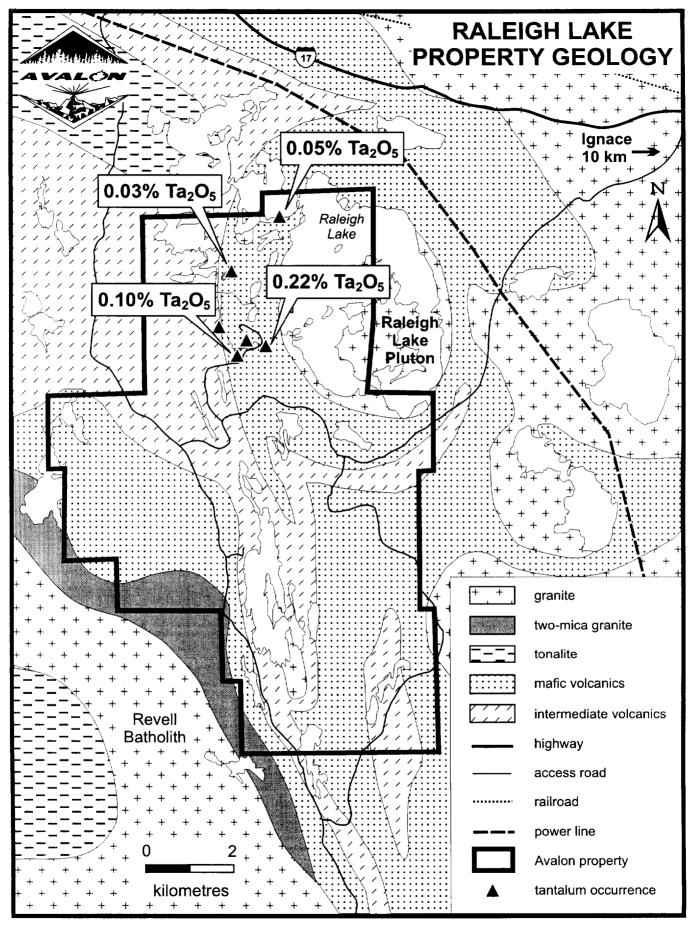


Figure 4: Property Geology of Raleigh Lake

25 metre stations. The grid was cut to provide control for the drill program. The drill program was designed to test the lateral and depth extent of two outcropping pegmatites, referred to as Pegmatite #1 and Pegmatite #3, and determine the nature and tenor of tantalum mineralization identified from previous outcrop sampling. Drilling also tested the vertical stacking model for pegmatites in order to determine the potential for locating new, buried or "blind" pegmatites related to those in outcrop.

Diamond drilling commenced at Raleigh Lake with RL99-01 on 23 September, 1999. Five holes were drilled (Map 1, Figure 5). The fifth and final hole, RL99-05, was completed on 30 September, 1999, for a total of 602.0 metres drilled. Drill hole statistics are presented in Table 2. Because of the shallow dip of pegmatites in outcrop, three holes were drilled at a vertical orientation (-90°), while two were drilled at an inclination of -70°. Drilling was carried out by Bradley Brothers of Rouyn-Noranda, Quebec, using NQ diameter core. Core was logged on site, with all pegmatite intervals transported to Thunder Bay where pegmatite was cut in half lengthwise with a diamond blade core saw. Cut halves were sent to X-RAL Laboratories in Toronto, Ontario for analysis. Core is stored on site, with the exception of the pegmatite intervals which are stored at Avalon's Thunder Bay office. Drilling, core logging, and core splitting were supervised by the author. Drill hole sections are found on Maps 2 to 4 in the back pocket.

Hole	Hole Northing		Hole Northing Easting		Claim	Azm	Dip	Length (m)
RL99-01	5000	5525	1178331	270	-70	146.0		
RL99-02	4865	5650	1220602	270	-90	173.0		
RL99-03	5200	5900	1220602	270	-90	59.0		
RL99-04	5000	5325	1178331	270	-90	75.0		
RL99-05	4858	5600	1178331	300	-70	<u>149.0</u>		
					Total	602.0		

Table 2:	Drill	Hole	Statistics
----------	-------	------	------------

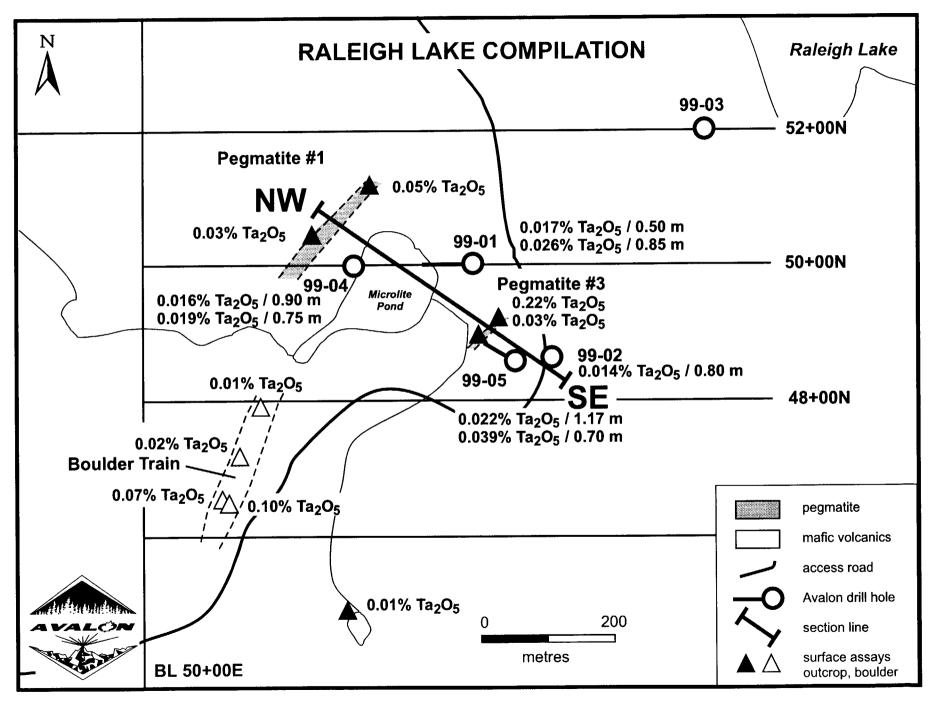


Figure 5: Area of Drilling Plan View

8.0 ASSAY PROCEDURES

Drill core samples were sent to X-RAL Laboratories of Toronto, Ontario, where a total of 45 pegmatite samples were assayed for tantalum (Ta), rubidium (Rb), niobium (Nb), and tin (Sn) by X-ray fluorescence (XRF), and lithium (Li), and cesium (Cs) by atomic absorption (AA). Samples were milled to minus 200 mesh and analyzed as follows:

	Pressed Pellet / XRF	Sodium peroxide fusion / AA
Nb Sn	5 ppm lower detection limit 2 ppm lower detection limit 5 ppm lower detection limit 2 ppm lower detection limit	Cs 100 ppm lower detection limit Li 10 ppm lower detection limit

Five selected samples were re-submitted for tantalum check assays. Pulps from each sample were split into four separate samples and analyzed by the same XRF technique to verify original assays, and to determine if there was a tantalum nugget effect imparted in the samples during the course of sample preparation.

Results reported by X-RAL were converted to % oxide for each element. Oxide conversion tables and assay certificates for the drill core samples are included in Appendix 3.

9.0 **RESULTS**

9.1 Geology

Except for regional work by OGS geologists (Breaks, 1993; Stone et. al., 1998, 1999), and reconnaissance prospecting by Avalon (Pedersen, 1999; Willoughby, 1999), little is known about structural or lithological details on the claims on which the present drill program was conducted. Drilling has confirmed mafic metavolcanics hosting the rare metal pegmatites, but did not encounter any metasedimentary units. Several intrusive feldspar porphyries encountered, including that in hole RL 99-03, may be related to the Raleigh Lake Pluton.

9.1.1 Metavolcanics

The host metavolcanics are comprised of meta-basalts, likely flows and deformed pillowed horizons. They are generally fine grained, semi-massive with moderate foliation, and dark green-grey in colour. Chloritic alteration varies from absent to abundant, including zones of intense silica flooding. In these sections, breccia textures are common, as is hematization of disseminated sulphides. Quartz veins commonly contain epidote and possible ankerite. This unit in particular is moderately to strongly magnetic due to the presence of common to abundant disseminated pyrrhotite. Lesser pyrite and trace chalcopyrite occurs as disseminated blebs and stringers. Sulphides average 3% to 6%, and up to 10%. Calcareous

horizons are also locally common, and in places resemble zones of silica flooding due to their siliceous character. These horizons contain distorted nodules and bands of quartz-epidote-calcite-diopside-grossular. Garnet (grossular) is commonly very coarse, to several centimetres.

9.1.2 Feldspar Porphyry

Several narrow, steeply dipping felsic intrusives were encountered in several holes, including RL 99-03 which collared and remained in it to the end of the hole. These feldspar porphyries are massive, medium grained, medium to dark grey in colour, with common to abundant 1 to 2 mm subhedral feldspar phenocrysts. Matrix is aphanitic to fine grained, commonly with fine grained biotite, and local disseminated sulphides. Generally unaltered, except in zones of silica flooding and brecciation encountered in RL 99-03, where siliceous alteration is aphanitic to cherty, occurring in lenses and veins to 30 cm. In this hole, matrix contains common fine chalky alteration, possibly sericite, and associated with biotite. Trace to minor pyrite, pyrrhotite, and chalcopyrite in siliceous zones. Mafic xenoliths occur locally. Composition of the porphyries is of a granodioritic character, and are possibly related to the Raleigh Lake pluton.

9.1.3 Pegmatites

Of the five holes drilled, four encountered multiple intersections of pegmatite. A fifth, vertically oriented hole (RL 99-03), collared in a feldspar porphyry dyke. This hole was abandoned at 59.0 metres.

The deepest hole (RL99-02) explored to 173 metres, encountering the deepest recorded pegmatite to date at 160 metres. This hole also outlined the furthest down dip extension of Pegmatite #1, at 450 metres from surface.

The pegmatites intersected range in width from 0.35 metres to 8.45 metres. All are heterogeneous and crudely zoned with local strong to complete albite replacement. Pegmatites typically have albitized wall zones, particularly at the footwall, and heterogeneous "intermediate" or "core" zones consisting of spodumene and K-feldspar with local albitization. Textures vary from fine grained and aplitic in albitic sections to megacrystic in spodumene and K-feldspar sections. Even in most of the smallest dykes, trace amounts of spodumene are observed. Albitization could have occurred in at least two events; a fine grained to aplitic, earlier event, to a later, coarser, whiter cleavelandite replacement. Local coarse grey quartz occurs in spodumene zones as does fine to coarse muscovite. Finer, green muscovite is more prevalent in albitic sections. Spodumene is generally green in colour, exhibiting tan colours locally in the presence of albite. Grain size ranges from <1 cm to >8 cm, commonly with ragged, corroded grain boundaries. Spodumene appears generally pristine internally, but locally exhibits partial to complete replacement by dark green aphanitic serpentine-like assemblage. Accessory minerals tend to be very fine grained and semi-opaque. These include fine ovoid glassy orange to partially altered spessartine, cubic pyrite, fine green clay mineral, tentatively identified as smectite (R.P. Taylor, pers. comm.),

fine acicular tantalite, minute cubic microlite, and trace bismuth. The majority of these minerals tend to occur in albitic sections and are most visible in albitic aplite. Because of the fine nature of many grains, it is difficult to distinguish between them in many instances. Microlite and acicular tantalite tend to occur with albite and were likely transported with it. Rare, cubic grains of microlite also occur randomly in spodumene sections.

9.2 Assays

Assay results from the 45 pegmatite drill core samples submitted for analysis indicate a fractionated system of pegmatites with local tantalum enrichment. Of these, 19 samples returned in excess of 100 ppm Ta (0.012% Ta₂O₅), including three in excess of 200 ppm $(0.023\% \text{ Ta}_2\text{O}_5)$, with a high value of $0.039\% \text{ Ta}_2\text{O}_5$. It is rubidium (Rb) values that truly reflect the fractionated character of these dykes. Assays as high as 1.156% Rb₂O over 1.15 metres in RL99-02 indicate exceptional Rb substitution in K-feldspar, particularly in light of the fact that most K-feldspar is at least partially albitized. In Pegmatite #1, mean Rb₂O values range from 0.137% Rb₂O in RL99-01 to 0.588% Rb₂O in RL99-02 over their respective widths. Cesium values are also elevated in most samples, including a mean value of 0.053% Cs₂O over 6.3 metres in the RL99-02 intersection of Pegmatite #1. Cesium is also migrating into selvedges and exocontacts as evidenced by the high value of 0.552% Cs₂O in a mafic xenolith in the same intersection. Tin (Sn) values are generally background (0.001% SnO₂) or not detected (ND). Lithium values become elevated, as expected, in the presence of spodumene, with a high value of 2.390% Li₂O in RL99-05. In albitic sections, Li values are as low as 0.001% Li₂O. It is likely that virtually all Li values obtained are reporting in spodumene; little if any lithian muscovite was observed, and no other lithium minerals have been observed macroscopically. Niobium (Nb) values are slightly elevated, and show a fairly good correlation with Ta, generally with Ta/Nb ratios of approximately 1.5:1. Even the smallest dykes show some form of rare element enrichment, particularly in Rb and Ta.

Pegmatite #1

Pegmatite #1 was intercepted in four of five holes, with the fifth (RL99-03) abandoned at 59.0 metres prior to reaching its projected depth extension. It varies in thickness from 5.4 metres to 8.45 metres. This pegmatite is of significance in that it is the largest pegmatite encountered to date, and shows strong down-dip continuity, both in physical terms, and in fractionation and mineralization terms. It is to date the only pegmatite which has been observed and sampled in outcrop and in four progressively deeper drill intervals (Figure 6, Maps 2, 3). Tantalum grades are sub-economic but remarkably consistent, with 4.0 to 5.0 metre sub-intervals in all four holes averaging 0.011% Ta₂O₅. Rubidium numbers are interesting both for their highly anomalous character, and also for an apparent down dip increase in enrichment.

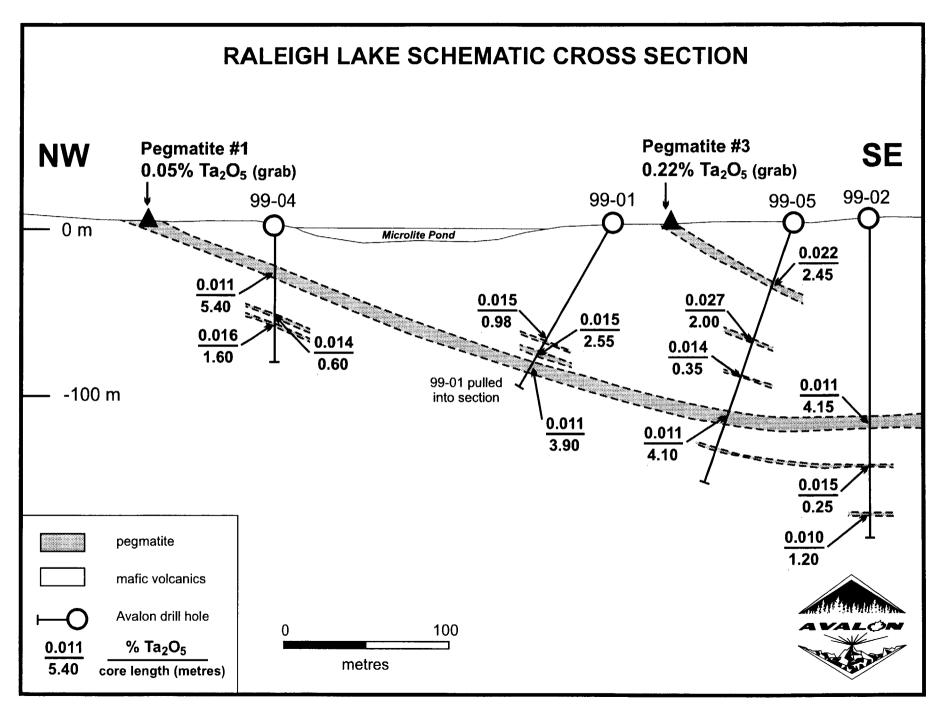


Figure 6: Schematic Cross Section

Starting with the uppermost intersection (RL99-04) and going down dip to the lowest (RL99-02), the mean Rb_2O and Ta_2O_5 values for the total intersected thickness are:

Hole	Rb ₂ O Value	Ta ₂ O ₅ Value	Down-Dip Intercept (from surface)
RL99-04	0.201% Rb ₂ O / 5.40 m	0.011% Ta ₂ O ₅ / 5.40 m	90 m
RL99-01	0.137% Rb ₂ O / 8.45 m	0.006% Ta ₂ O ₅ / 8.45 m	265 m
RL99-05	0.264% Rb ₂ O / 7.52 m	0.009% Ta ₂ O ₅ / 7.52 m	375 m
RL99-02	0.588% Rb ₂ O / 6.30 m	0.008% Ta ₂ O ₅ / 6.30 m	450 m

This apparent increase in enrichment of rubidium may be reflective of random, more K-feldspar-rich intervals at depth; nevertheless, an emerging pattern cannot be ruled out at this stage.

Pegmatite #3

Two drill holes were collared to intercept Pegmatite #3 (RL99-02, 05), with only RL99-05 intersecting it. RL99-05 was collared immediately down-dip and in front of the outcropping showing, whereas RL99-02 was collared somewhat to the north of the outcrop, and farther back. The intersection was fairly narrow, at 2.45 metres, which is close to a true thickness since RL99-02 was collared at -70° and the dip of the pegmatites was found to be 30°. Pegmatite #3 is significant because it returned 0.22% Ta₂O₅ from a surface grab sample, and because it occurs above Pegmatite #1, placing it in a potentially higher fractionation "bracket". In fact, Ta values for the intersection are double that of the average 0.011% Ta₂O₅ of all four Pegmatite #1 intersections, at 0.022% Ta₂O₅, with a high of 0.028% Ta₂O₅ in footwall aplitic albite.

Rubidium is also highly elevated, particularly in light of the pervasive albitic replacement of K-feldspar. The mean for the intersection is 0.245% Rb₂O / 2.45 metres. Cesium is geochemically anomalous in three of four sample intervals, with a high of 0.088% Cs₂O.

Other Pegmatites

Several smaller dykes and dykelets were encountered above and below both Pegmatite #1 and Pegmatite #3. These are interesting in that mineralogically, they are clearly genetically linked to each other and to the two larger pegmatites. They are also fractionated and exhibit anomalous Ta enrichment. The highest Ta value obtained in the current drill program came from a parallel 2.0 metre wide dyke, 30 metres below Pegmatite #3, at 0.039% Ta₂O₅. The pegmatite had a mean value of 0.027% Ta₂O₅ / 2 metres. In fact, of the nine separate intersections of pegmatite apart from #1 and #3, all except one returned higher mean Ta values than those in Pegmatite #1.

31 December 1999

10.0 DISCUSSION

The current round of drilling set out to identify the lateral and down dip extent of the two known outcropping pegmatites, namely Pegmatites #1 and #3, and to determine the extent of tantalum mineralization associated with them. At the same time, the wide spacing of the drill holes allowed for observations pertaining to down-dip metalogenic zoning. Finally, drilling allowed for the investigation of the vertically stacked, structurally controlled model (Figure 7) for pegmatite emplacement.

Initial inspection of drill core indicated abundant fine grained opaque and semi-opaque minerals, particularly in association with albite. A number of individual grains could be unequivocally identified as microlite, whilst others were less obvious as to their identity. Closer examination revealed that many grains were fine altered spessartine garnets which are locally very common in albite. Fine pyrite cubes, commonly oxidized, and a fine green interstitial clay mineral, all give a pervasive, fine speckled character to core, and allow for an overestimation of oxide content. Nevertheless, with this knowledge in mind, the generally low Ta values are still somewhat surprising. The possibility of a nugget effect during sample preparation was investigated by re-submitting five pulps for re-assay. Four sub-samples were collected from each of these, and re-analysed by the same XRF technique employed for the original samples. These values came back with 1% or less discrepancy from the original values, ruling out this nugget effect. The original values are therefore accepted as being representative. Even so, tantalum values are highly anomalous and pervasive, albeit sub-economic.

Tantalum is associated with secondary albite, both coarser cleavelandite, and finer aplitic albite. Aplites, which may be earlier than coarser cleavelandite, are common in the "wall" zones, particularly at the footwalls of most pegmatite intersections. These zones tend to have the most elevated tantalum values, and the lowest rubidium (due to the absence or complete replacement of K-feldspar). It is clear from core associations, and from petrographic examination (R.P. Taylor, pers. comm.), that tantalum is intimately associated with albitization. The lack of other complex elements such as boron (B) and fluorine (F) shows that albite is of particular importance in transporting and potentially accumulating tantalum in the Raleigh Lake pegmatite system. The evolved nature of the two tantalum minerals identified to date, microlite and mangano-tantalite, in association with albite, indicates a strong possibility for identifying other, higher grade zones. These zones could occur both in lateral continuations of the known pegmatites, and yet to be discovered dykes.

Pegmatite #1 displays strong down-dip continuity, having been intercepted 450 metres from surface outcrops. Combined with a minimum strike length of 165 metres outlined on surface, these measurements confirm the suspected strong lateral continuity of the pegmatites. There is little change in mineralogy, zoning, or fractionation (including Ta) between surface and 450 metres down dip, indicating that the potential for very large dykes has already been proven. Already, assuming an average 8 metre thickness and 200 metre strike length, Pegmatite #1 would contain in excess of 1.9 million tonnes of low grade material. Pegmatite

31 December 1999

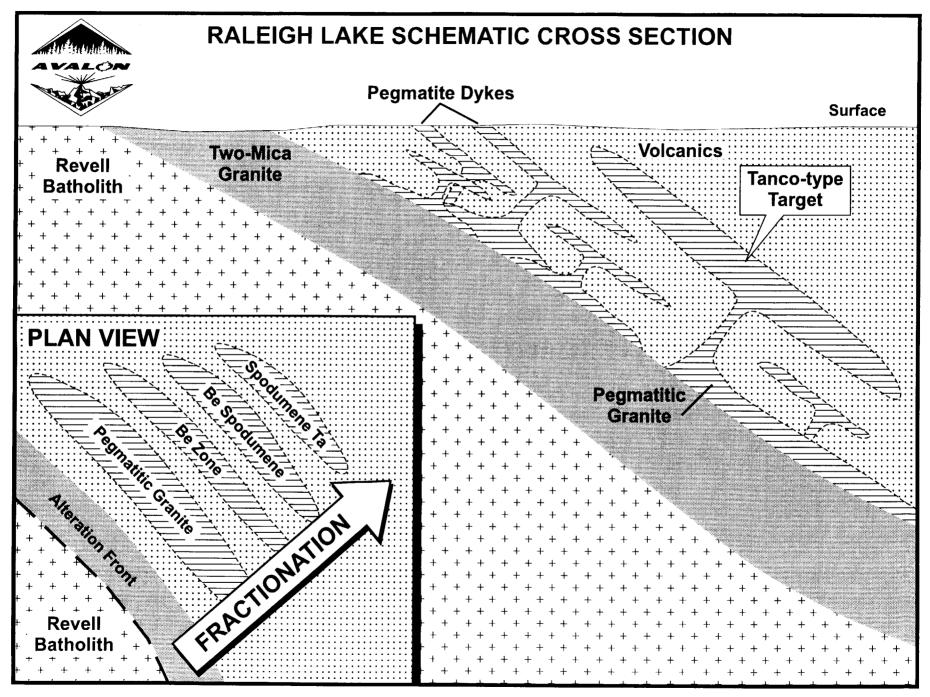


Figure 7: Schematic Model

#3 is smaller, but indicating better grades. It is possible that the known outcrop is near its northern terminus and continues to the south, since it was not intersected in RL99-02.

The smaller dykes encountered in drilling indicate that there is considerable stacking of pegmatites in the pegmatite field. While drill hole spacing is too wide to determine on-strike relationships, it appears that several could be continuous. Conversely, intersections could indicate en echelon or discontinuous sheets.

Pegmatite #1 appears to flatten down-dip from 15-20° dip to a horizontal position. This is significant in that it shows evidence for structural modification of pegmatite emplacement conditions. Warping or buckling in flat lying structural settings allows for ponding and continued remobilization of volatiles in pegmatites, as at the bilobate, flat lying Tanco pegmatite.

The overall higher tantalum values in Pegmatite #3 over those in Pegmatite #1 implies an upward fractionation trend. Since Pegmatite #3 overlies #1 by approximately 100 metres, it could suggest a continuing upward fractionation trend beyond #3 as originally hypothesized. This would place potential higher grade pegmatites east of the current area of drilling.

11.0 CONCLUSIONS

The short drill program at Raleigh Lake has confirmed three fundamental objectives: the down dip continuity of the pegmatites; extensive, sub-economic tantalum mineralization; and vertical stacking of pegmatites below the known occurrences. The largest pegmatite (Pegmatite #1) has been traced 450 metres down dip where it remains open. Its lateral extensions are unknown, but outcrop mapping has traced it for at least 165 metres in strike length before entering overburden on either end. Pervasive, anomalous tantalum mineralization is associated with zones of secondary albite, indicating the processes required for transport and concentration of rare metals is present. At least six, and up to 10 stacked dykes ranging from 1 to 8 metres in thickness have been encountered, implying the presence of an extensive pegmatite system vertically as well as laterally. A potential mineralization pattern is emerging based on drilling and outcrop assays which suggest fractionation increasing to the east. There is strong potential for delineating new and more fractionated pegmatites, particularly at a higher level than Pegmatites #1 and #3. There is also the possibility that Pegmatite #1 in particular could develop a larger, more fractionated thickening either at depth or laterally. A more intensive, detailed program of mapping, lithogeochem sampling, and drilling is warranted over the entire claim group.

12.0 RECOMMENDATIONS

The 1999 drill program has produced strong evidence and encouragement for the potential of large scale tantalum mineralization to warrant further work at Raleigh Lake. The focus of continuing programs should be to develop baseline lithologic information on lithium dispersion haloes in outcrop and zones of structural complexity, and mapping of shallow dipping joint sets and large scale folding, as at the south of Raleigh Lake. This should coincide with ongoing prospecting across and outside the claim group to identify new areas of outcropping pegmatites. A key objective would be to explore the apparent easterly fractionation trend along the entire length of the zone parallel with the two-mica granite. Detailed lithological and structural mapping, follow-up lithogeochemical sampling, and trenching of pegmatites to develop the new targets should then be followed by a second diamond drilling program to be detailed after the initial geological results have been compiled and evaluated. The total estimated expenditures to carry out this program are \$300,000.

REFERENCES

- Blackburn, C.E., Johns, G.W., Ayer, J., and Davis, D.W. 1991. Wabigoon Subprovince; *in* Geology of Ontario, Ontario Geological Survey, Special Volume 4, pt. 1, p. 303-381.
- Breaks, F.W. 1993. Granite-related mineralization in northwestern Ontario: I. Raleigh Lake and Separation Rapids (English River) rare-metal pegmatite fields; *in* Summary of Field Work and Other Activities 1993, Ontario Geological Survey, Miscellaneous Paper 162, p. 104-110.
- Cerny, P.C. and Ercit, T.S., Trueman, D.L., Ziehlke, D.V., Goad, B.E., Paul, B.J., Meintzer, R.E., and Anderson, A.J. 1985. Extreme fractionation in rare-metal granitic pegmatites: selected examples of data and mechanisms; Canadian Mineralogist, vol. 23, p. 381-421.
- Cerny, P. 1991: Rare Metal Granitic Pegmatites, Part 1: Anatomy and internal evolution of pegmatite deposits in Geoscience Canada v. 18 (2) p. 49-67.
- Harben, P. 1995. The Industrial Minerals Handybook, 2nd edition, Industrial Minerals Division, Metal Bulletin, London UK, 253 p.
- Pedersen, J.C., 1999, Preliminary Geological Report, Raleigh Lake Tantalum Project, Ignace, Ontario; internal company report for Avalon Ventures Ltd.
- Pye, E.G. and Fenwick, K.G. 1963. Ignace-Atikokan Sheet, Ontario Department of Mines Preliminary Geological Map P.183, scale 1 inch to 2 miles.
- Sage, R.P., Breaks, F.W., Stott, G.M., McWilliams, G.M. and Atkinson, S. 1974. Operation Ignace-Armstrong, Ignace-Graham sheet, Districts of Thunder Bay, Kenora, and Rainy River; Ontario Division of Mines, Preliminary Map P.964, scale 1 inch to 1 mile.
- Stone, D., Hall, J. and Chaloux, E. 1998. Geology of the Ignace and Pekagoning Lake areas, Central Wabigoon Suprovince; *in* Summary of Field Work and Other Activities 1998, Ontario Geological Survey, Miscellaneous Paper 169, p. 127-135.
- Stone, D., Hall, J. and Chaloux, E. 1999. Precambrian geology, Ignace area; Ontario Geological Survey, Map P.3360, scale 1:50,000.
- Taylor, R.P., 1999. Raleigh Lake Property and Oxide Dyke, Separation Rapids Property: Sample petrography and mineralogy; internal memorandum to Avalon Ventures Ltd.
- Willoughby, J., 1999. Petrology and Geochemistry of Archean granitoids in the Raleigh Lake area of northwestern Ontario and relation to rare-metal pegmatites; unpublished B.Sc. (Hons.) thesis, University of Waterloo.

STATEMENT OF EXPENDITURES

FOR 1999 EXPLORATION PROGRAM

Prospecting	5 days @ \$200/day	\$ 1,000
Sample Analyses – Prospecting	48 samples @ \$40/sample	\$ 1,920
Linecutting	7.275 km @ \$350/km	\$ 2,546
Drill Contract	602.0 metres @ \$73/metre	\$ 43,946
Geologist and Assistant	10 days @ \$450/day	\$ 4,500
Sample Analyses – Drill Core	44 samples @ \$25/sample	\$ 1,100
Supervision, Report and Drafting	15 days @ \$300/day	\$ 4,500
Supplies and Sample Shipping		\$ 1,500
Accommodation and Meals		\$ 2,400
Equipment and Vehicle Rentals		\$ 2,700

Total \$ 66,112

. .

STATEMENT OF QUALIFICATIONS

I, Jens C. Pedersen of Box 1, Group 5 RR#1, East Selkirk, Manitoba R0E 0M0, do hereby certify that:

- 1) I am a graduate of the University of Manitoba with a Bachelor of Science degree (Geology), 1976-1979.
- I am presently employed by Avalon Ventures Ltd. of 851 Field Street, Thunder Bay, Ontario P7B 6B6 in the capacity of Senior Geologist.
- 3) I have been practicing my profession as exploration geologist for the past 20 years with various Canadian mining companies in Canada, the United States, and Greenland, and as an independent geological consultant. Much of that time has been spent exploring for and evaluating rare metal pegmatites and related deposits while in the employ of Tantalum Mining Corp. of Canada and Highwood Resources Ltd.
- 4) This report on the Raleigh Lake property is based on my personal examination of, and supervision of, the work on the property.

Dated in Thunder Bay, Ontario this 31st day of December, 1999.

Jens C. Pedersen

Appendix 1

Oxide Conversion and Sample Descriptions Table

Assay Certificates - Prospecting Samples

and a second second

,

July 1999 Prospecting

ł

Chemex **Re-run values used where available

SAMPLE	D	Li	Li₂O%	Та	Ta₂O₅%	Cs	Cs₂O%	Rb	Rb₂0%	Description Note
SCHEME		ICP-MS		ICP-MS		ICP-MS		ICP-MS		
UNITS	CONVERSION	ppm	2.1528	ppm	1.221	ppm	1.060	ppm	1.094	
DETECTION	LIMIT	10		100		100		10		
6103		13.2	0.003	8.7	0.001	10.45	0.001	159.5	0.017	albite dyke
6104		27	0.006	27.5	0.003	21.6	0.002	>500		albite dyke
6105		5.4	0.001	1.15	0.000	3.75	0.000	43.4	0.005	albite dyke
6106		3	0.001	0.9	0.000	4.75	0.001	85.8	0.009	albite dyke
6107		26.6	0.006	0.75	0.000	6	0.001	93.8	0.010	two mica granite
6108		78.2	0.017	3.6	0.000	69.8	0.007	102.5	0.011	tonalite
6109		65.6	0.014	0.7	0.000	7.55	0.001	54	0.006	pink granite
6110		27.6	0.006	1.4	0.000	8.35	0.001	178	0.019	granite
6111		36.6	0.008	1.45	0.000	0.7	0.000	10.2	0.001	amphibolite
6112		97.4	0.021	1.3	0.000	2.8	0.000	68.8	0.008	amphibolite
6113		90.6	0.020	0.9	0.000	2.55	0.000	39	0.004	amphibolite
6114		37	0.008	0.95	0.000	8.85	0.001	53.6		amphibolite
6115		23.6	0.005	1.6	0.000	2.5	0.000	12	0.001	amphibolite
6116		20.2	0.004	1	0.000	1.85	0.000	26.6	0.003	amphibolite
6118	overlimit	7700	1.658	62.6	0.008	180	0.019	3050	0.334	spodumene boulder
6119	check, overlimit	9660	2.080	116	0.014	125	0.013	2130	0.233	spodumene boulder
	check, overlimit	433	0.093	134	0.016	66	0.007	585		spodumene boulder-BK
6121	check, overlimit	5730	1.234	107	0.013	4030	0.427	10450	1.143	glimmerite selvedge from BK
6122	check, overlimit	970	0.209	513	0.063	172	0.018	1700	0.186	Fairservice albite boulder
6123	overlimit	1980	0.426	87.6	0.011	39.2	0.004	940	0.103	albitic boulder
6124		26.6	0.006	3.25	0.000	6.25	0.001	130		granite
6126	overlimit	80.6	0.017	29.6	0.004	18.2	0.002	810	0.089	two mica pegmatitic granite
6127		72.6	0.016	27.8	0.003	17	0.002	483	0.053	two mica pegmatitic granite
286316	check, overlimit	308	0.066	131	0.016	52.9	0.006	823	0.090	spodumene pegmatite #3
286317		>500		72.4	0.009	108.5	0.012	>500		spodumene pegmatite #3
286318		>500		53.7	0.007	101	0.011	>500		spodumene pegmatite #3
286319		30.4	0.007	90.6	0.011	19.6	0.002	184.5	0.020	spodumene pegmatite #3
286320		42.4	0.009	30	0.004	80.7	0.009	>500		spodumene pegmatite #3
286321	check	over limit, n	o reassay	1810	0.221	217	0.023	2180		spodumeme pegmatite #3 square opaques
286322		36.6	0.008	5.1	0.001	1.15	0.000	15.2	0.002	pink albite at mouth of Crocker Bay
286323	check, overlimit	281	0.060	386	0.047	504	0.053	2200	0.241	coarse grained pegmatitic granite pink-white
286324	overlimit	69.8	0.015	76.2	0.009	347	0.037	2140	0.234	pegmatitc leucogranite
286325	overlimit	423	0.091	54.6	0.007	256	0.027	1350	0.148	pegmatitc leucogranite

	286326	overlimit	803	0.173	28.2	0.003	803	0.085	5580	0.610	pink pegmatitic dyke in Crocker Bay
	286327	check, overlimit	171.5	0.037	106.5	0.013	346	0.037	4080	0.446	pink pegmatitic dyke in Crocker Bay
÷	286328	check	over limit, r	no reassay	62	2 0.008 186.5		0.020	2900 0.317		pink pegmatitic dyke in Crocker Bay
	286329	overlimit	1730	0.372	47.4	0.006	253	0.027	3180	0.348	pink pegmatitic dyke in Crocker Bay
	286330	overlimit	1000	0.215	77.2	0.009	255	0.027	2050	0.224	pink pegmatitic dyke in Crocker Bay
	286331	overlimit	57.4	0.012	30.6	0.004	72.7	0.008	1310	0.143	pink pegmatitic dyke with opaques
	286332	overlimit	107	0.023	46.3	0.006	90.2	0.010	1890	0.207	pink pegmatitic dyke with opaques
	286333		29.4	0.006	1.4	0.000	5.4	0.001	41.2	0.005	felsic volcanic
	286334	overlimit	98.8	0.021	90.8	0.011	43.2	0.005	1200	0.131	FWB location, 15 cm wide dyke
	286335	overlimit	16.2	0.003	78.1	0.010	61.1	0.006	1370	0.150	FWB location, 15 cm wide dyke
	286336	overlimit	230	0.050	93.8	0.011	129.5	0.014	2590	0.283	pegmatitc granite north of Johnson peg
	286337		86	0.019	190	0.023	122	0.013	800	0.088	Johnson peg north channel
	286338		>500		228	0.028	41.5	0.004	>500		Johnson peg centre channel
	286339		>500		32.5	0.004	52.8	0.006	>500		Johnson peg south channel
	286340		68.8	0.015	48.9	0.006	46.4	0.005	>500		pegmatitic leucogranite near Johnson peg
	286341	overlimit	30.4	0.007	52.2	0.006	47.4	0.005	1650	0.181	FWB location, 30 cm wide dyke
	286342	check, overlimit	3890	0.837	179.5	0.022	165	0.017	2020	0.221	extreme south portion of pegmatite # 1
	286343	check, overlimit	5070	1.091	110	0.013	208	0.022	1390	0.152	extreme south portion of pegmatite # 1
	286344	check	over limit, r	o reassay	99	0.012	227	0.024	over limit, r	no reassay	pink pegmatitic dyke 3 m wide
	286345	overlimit	16	0.003	48.8	0.006	17.4	0.002	528	0.058	pink pegmatitic dyke 0.3 m wide repl by pink cleavlandite
	286346	overlimit	3560	0.766	68.1	0.008	33.1	0.004	962	0.105	peg. leucogranite dyke 1 m wide, coarse cleavlandite, saccaroidal albite
	286347	overlimit	28.6	0.006	45	0.005	21.6	0.002	526	0.058	pegmatite dyke 1 m wide, cleavlandite replacement of kspar
	286348	check	over limit, r	o reassay	73.5	0.009	84.8	0.009	1255	0.137	pegmatitic dyke 1 m wide
<i>e</i>	286349	check, overlimit	2230	0.480	111	0.014	51.3	0.005	766	0.084	spod boulder south of road at main showing
4	286350		37.6	0.008	2.7	0.000	8.85	0.001	227	0.025	pegmatite boulder south of road close to pegmatite #3

ł

- 1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Comments: ATTN: IAN CAMPBELL

С	ERTIFI	CATE A9921617		ANALYTICAL PROCEDURES											
(OPJ) - A' Project: P.O. # :	VALON VE 533	ENTURES LTD.	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT							
Samples	submitte oort was	ed to our lab in Thunder Bay, ON. printed on 12-JUL-1999.	19	12	Sn ppm: NH4I sublimation, extrac	λλς	2	1000							
	SAMI	PLE PREPARATION													
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION													
205 226 3202	12 12 12	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject													

A9921617

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Page Number : 1 Total Pages : 1 Certificate Date: 12-JUL-1999 Invoice No. : 19921617 P.O. Number • Account OPJ

Project : 533 Comments: ATTN: IAN CAMPBELL

				CERTIFIC	CATE OF ANALYSIS	A9921617				
SAMPLE	PREP CODE	Sn ppm								
6107 6108 6109 6110 N286317	205 226 205 226 205 226 205 226 205 226 205 226	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2								
N286318 N286320 N286322 N286337 N286338	205 226 205 226 205 226 205 226 205 226 205 226	3 < 2 < 2 < 2 < 2 < 2 < 2 < 2								
N286339 N286340	205 226 205 226	< 2 < 2								
						A THE A				
	<u>I</u>	L I	I		CERTIFICATION:		>			

ţ

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers Mississauga L4W 2S3 5175 Timberlea Blvd., Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163

To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Comments: ATTN: IAN CAMPBELL

	RTIF	ICATE	A9921618			ANALYTICAL	PROCEDURES		
(OPJ) - AVA Project: P.O. # :	ALON VI 533	ENTURES LTD.		CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
amples s his repo	submitt ort was	ed to our lab printed on 15	in Thunder Bay, ON. -JUL-1999.	9301 9341 9302 9303 9304 9305 9306 9306	12 12 12 12 12 12 12 12 12 12	Al %: ICP + ICP-MS package Sb ppm: ICP + ICP-MS package Ba ppm: ICP + ICP-MS package Be ppm: ICP + ICP-MS package Bi ppm: ICP + ICP-MS package Cd ppm: ICP + ICP-MS package Ca %: ICP + ICP-MS package	ICP ICP-MS ICP-MS/ICP ICP-MS/ICP ICP-MS/ICP ICP	0.01 0.1 10 0.05 0.01 0.02 0.01	25.0 1000 10000 10000 500 25.0
	SAMPLE PREPARATION					Ce ppm: ICP + ICP-MS package Cs ppm: ICP + ICP-MS package	ICP-MS ICP-MS	0.01 0.05	500 500
				9309 9310 9311 9312	12 12 12 12	Cr ppm: ICP + ICP-MS package Co ppm: ICP + ICP-MS package Cu ppm: ICP + ICP-MS package Ga ppm: ICP + ICP-MS package	ICP ICP -ms/ ICP ICP ICP -ms	1 0.2 1 0.1	10000 10000 10000 500
CODE SA	AMPLES		DESCRIPTION	9313 9315	12 12	Ge ppm: ICP + ICP-MS package Fe %: ICP + ICP-MS package	ICP-MS ICP	0.1 0.01	500 25.0
299 12	12	Pulp; prepped	on other workorder	9316 9317 9318	12 12 12	La ppm: ICP + ICP-MS package Pb ppm: ICP + ICP-MS package Li ppm: ICP + ICP-MS package	ICP-MS ICP-MS/ICP ICP-MS	0.5	500 10000
				9319 9320 9321 9322 9323	12 12 12 12	Mg %: ICP + ICP-MS package Mn ppm: ICP + ICP-MS package Mo ppm: ICP + ICP-MS package Ni ppm: ICP + ICP-MS package Nb ppm: ICP + ICP-MS package	ICP ICP ICP ICP-MS/ICP ICP-MS	0.2 0.01 5 0.2 0.2 0.2	500 15.00 10000 10000 10000 500
				9324 9325 9326 9327	12 12 12	P ppm: ICP + ICP-MS package K %: ICP + ICP-MS package Rb ppm: ICP + ICP-MS package	ICP ICP ICP-MS	10 0.01 0.2	10000 10.00 500
				9328 9329	12 12 12	Ag ppm: ICP + ICP-MS package Na %: ICP + ICP-MS package Sr ppm: ICP + ICP-MS package	ICP-MS/ICP ICP	0.05 0.01	100.0 10.00
				9330	12	Ta ppm: ICP + ICP-MS package	ICP-MS/ICP ICP-MS	0.2 0.05	10000 100.0
				9331 9332 9333		Te ppm: ICP + ICP-MS package T1 ppm: ICP + ICP-MS package Th ppm: ICP + ICP-MS package	ICP-MS ICP-MS ICP-MS	0.05 0.02 0.2	500 500 500
				9334 9335	12	Ti %: ICP + ICP-MS package W ppm: ICP + ICP-MS package	ICP ICP-MS/ICP	0.01 0.1	10.00
				9336 9337	12	U ppm: ICP + ICP-MS package V ppm: ICP + ICP-MS package	ICP-MS ICP	0.2	500 10000
				9338 9339	12	Y ppm: ICP + ICP-MS package Zn ppm: ICP + ICP-MS package	ICP-MS ICP	0.1	500 10000

A9921618

ł

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

517 On PH

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6 Page Number : 1-A Total Pages : 1 Certificate Date: 12-JUL-1999 Invoice No. : 19921618 P.O. Number : Account : OPJ

Project : 533 Comments: ATTN: IAN CAMPBELL

							CERTIFICATE OF ANALYSIS A9921618								
SAMPLE	PREP CODE		Sb ppm (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Cd ppm (ICP)	Ca % (ICP)	Ceppm (ICP)	Csppm (ICP)	Cr ppm (ICP)	Coppm (ICP)	Cuppm (ICP)	Ga ppm (ICP)	Ge ppm (ICP)
6107 6108 6109 6110 N286317	299 299 299 299 299	10.10 8.28 7.71	0.1 0.5 0.1 0.1 0.3	430 230 350 1210 20	1.05 4.60 0.80 2.10 24.6	0.19 1.20 0.08 0.10 1.89	< 0.02 0.08 0.02 0.02 0.02	0.32 4.10 2.01 1.08 0.11	8.06 26.9 16.95 55.7 1.87	6.00 69.8 7.55 8.35 108.5	150 84 132 124 127	0.8 14.4 5.8 3.4 1.6	7 18 7 4 12	20.5 28.3 20.6 21.5 63.6	1.1 1.3 0.8 1.0 4.2
N286318 N2863205 N286322 N286337 N286338	299 299 299 299 299 299	7.40	0.1 0.3 0.3 0.1 0.8	10 30 350 < 10 < 10	23.9 53.3 4.05 143.0 8.15	3.34 166.5 2.02 0.58 0.31	0.04 0.20 0.02 0.02 < 0.02	0.05 0.47 2.10 0.17 0.16	0.55 0.56 2.15 2.78 5.81	101.0 80.7 1.15 54.3 41.5	133 75 60 103 129	0.4 0.6 0.8 0.6 0.8	6 6 7 6 8	80.6 48.0 24.2 74.9 76.0	4.1 3.0 0.6 4.2 3.5
N286339 N286340	299 299	7.40 7.00	0.7 < 0.1	< 10 10	6.40 41.9	0.29 8.74	0.04 0.02	0.07 0.13	2.50 2.79	52.8 46.4	169 130	0.8	3	97.0 65.2	3.7 3.1
												($\mathbf{}$	1	
										CER	TIFICATIO	V:	Jaco P	1.0	* +

Г

i

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Page Number : 1-B Total Pages : 1 Certificate Date: 12-JUL-1999 Invoice No. : [9921618 P.O. Number : OPJ Account

Project : 533 Comments: ATTN: IAN CAMPBELL

			· · · · · · · · · · · · · · · · · · ·				CERTIFICATE OF ANALYSIS A9921618								
SAMPLE	PREP CODE	Fe % (ICP)	La ppm (ICP)	Pb ppm (ICP)	Li ppm (ICP)	Mg % (ICP)	Min ppma (ICP)	Moppm (ICP)	Ni ppm (ICP)	Nb ppm (ICP)	P ppm (ICP)	K % (ICP)	Rb ppm (ICP)	Ag ppm (ICP)	Na % (ICP)
6107 6108 6109 6110 N286317	299 299 299 299 299 299	0.57 3.81 1.71 1.24 0.58	3.0 11.5 7.0 28.0 0.5	14.0 9.5 9.5 23.0 8.0	26.6 78.2 65.6 27.6 >500	0.04 1.11 0.48 0.26 0.04	285 615 270 195 1005	1.4 0.6 0.8 0.6 0.8	9.8 25.0 24.2 23.8 60.7	5.2 7.8 3.4 11.4 85.0	110 860 280 190 10	2.97 1.24 1.20 3.52 1.42	93.8 102.5 54.0 178.0 >500	0.20 0.30 0.40 0.90 0.20	3.10 3.86 3.76 2.79 4.71
N286318 N286320 N286322 N286337 N286338	299 299 299 299 299 299	0.35 0.13 0.15 0.24 0.34	< 0.5 < 0.5 < 0.5 0.5 0.5 1.5	8.5 13.0 15.0 7.5 6.0	>500 42.4 36.6 >500 >500	0.01 < 0.01 0.01 < 0.01 0.01	570 130 10 335 350	0.6 2.4 0.6 0.8 0.6	14.8 18.0 34.8 13.8 19.6	54.4 19.6 0.6 121.0 239	< 10 90 < 10 < 10 < 10	1.42 1.45 0.72 0.63 0.62	>500 >500 15.2 >500 >500	0.05 0.15 0.30 0.05 0.05	2.09 5.70 6.80 5.75 4.72
N286339 N286340	299 299	0.59 0.23	0.5	3.5 9.5	>500 68.8	< 0.01 < 0.01	690 250	1.0 0.4	8.8 7.4	59.4 98.6	< 10 10	0.55 1.08	>500 >500	< 0.05 0.20	2.13 5.02
									1						
													\cap	1	
									1	CER	TIFICATION	1 N:	Davel	Lep	*+

1

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6 Page Number : 1-C Total Pages : 1 Certificate Date: 12-JUL-1999 Invoice No. : 19921618 P.O. Number : Account : OPJ

Project : 533 Comments: ATTN: IAN CAMPBELL

CERTIFICATE OF ANALYSIS A9921618

												E1010 A3321010				
SAMPLE	PREP CODE	Sr ppm (ICP)	Ta ppm (ICP)	Te ppm (ICP)	Tl ppm (ICP)	Th ppm (ICP)	Ti % (ICP)	Wippm (ICP)	U ppm (ICP)	V ppm (ICP)	Y ppm (ICP)	Zn ppm (ICP)				
6107 6108 6109 6110 N286317	299 299 299 299 299	51.5 611 407 262 7.6	0.75 3.60 0.70 1.40 72.4	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.50 0.74 0.34 0.98 10.10	2.6 3.0 2.2 18.2 5.0	0.01 0.48 0.17 0.13 0.06	0.8 0.3 0.4 0.3 0.7	0.6 1.2 1.0 3.0 1.0	2 93 31 17 8	3.1 9.6 2.8 5.0 1.1	20 76 50 40 34				
N286318 N286320 N286322 N286337 N286338	299 299 299 299 299 299	5.8 43.0 534 8.4 8.2	53.7 30.0 5.10 197.0 228	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	11.55 10.35 0.14 3.60 3.66	2.0 0.6 2.0 2.4 4.0	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.4 0.3 0.1 0.9 1.0	0.6 1.6 0.8 2.0 3.2	13 < 1 < 1 1 3	0.2 0.3 0.7 3.0 3.0	26 460 6 26 44				
N286339 N286340	299 299	6.0 7.8	32.5 48.9	< 0.05 < 0.05	3.86 5.56	3.6 1.6	< 0.01 < 0.01	1.1 0.7	1.2 2.0	6 1	2.2 4.6	38 36				
													()	1_{0}		

CERTIFICATION:

Vauel

÷

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers Mississauga L4W 2S3 5175 Timberlea Blvd., Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Comments: ATTN: IAN CAMPBELL

С	ERTIF	ICATE	A9922226				ANALYTICAL	PROCEDURES		
OPJ)- A Project: P.O. #:		ENTURES LTD. GH LAKE		CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
Samples	submitt port was	ed to our lab printed on 14	in Thunder Bay, ON. 4-JUL-1999.	902 906 2590 903 908 905 1989 907	1 1 1 1 1 1 1 1	A1203 %: XRF Ca0 %: XRF Cr203 %: XRF Fe203 %: XRF K20 %: XRF Mg0 %: XRF Mn0 %: XRF Na20 %: XRF		XRF XRF XRF XRF XRF XRF XRF XRF	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
	SAM	PLE PREPA	RATION	909 901	1	P205 %: XRF si02 %: XRF		XRF XRF	0.01 0.01	100.00
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION	904 910 2540 2891 2067	1 1 1 1	TiO2 %: XRF LOI %: XRF Total % Ba ppm: XRF Rb ppm: XRF		XRF XRF CALCULATION XRF XRF	0.01 0.01 0.01 5 2	100.00 100.00 105.00 50000 50000
208 226 3202	1 1 1	0-3 Kg crush	o approx 150 mesh and split entire reject	2898 2973 2978 2974	1 1 1	Sr ppm: XRF Nb ppm: XRF Zr ppm: XRF Y ppm: XRF		XRF XRF XRF XRF	2 2 3 2	50000 50000 50000 50000

A9922226

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Project : RALEIGH LAKE Comments: ATTN: IAN CAMPBELL

CERTIFICATION:

Page Number : 1 Total Pages : 1 Certificate Date: 14-JUL-1999 Invoice No. : 19922226 P.O. Number : Account : OPJ

								CE	ERTIF		EOF	ANAL	rsis	4	9922	226		
SAMPLE	PREP CODE	A1203 % XRF	Cr2O3 % XRF	K20 % XRF	Mg0 % XRF	MnO % XRF	Na20 % XRF	P205 % XRF	SiO2 % XRF	TiO2 % XRF	LOI % XRF	TOTAL %	Ba ppm	Rb ppm	Sr ppm	Nb ppm	Zr ppm	Y ppm
6125	208 226		 < 0.01	 								99.75	30		16	< 2	15	70
			 	 											\bigcap	- 1	$1 \rightarrow$	

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Comments: ATTN: IAN CAMPBELL

c	ERTIF	ICATE A9922227			ANALYTICAL	PROCEDURES	6	
(OPJ) - # Project: P.O, # :		ENTURES LTD. GH LAKE	CHEMEX	NUMBER	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
Samples	submitt port was	ed to our lab in Thunder Bay, ON. printed on 16-JUL-1999.	19	36	Sn ppm: NH4I sublimation, extrac	лля	2	1000
	SAM	PLE PREPARATION						
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION						
205 226 294 3202	36 34 2 36	Geochem ring to approx 150 mesh 0-3 Kg crush and split 4-7 Kg crush and split Rock - save entire reject						

A9922227

Analytical Chemists " Geochemists " Registered Assayers

5175 Ontari PHON

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Project : RALEIGH LAKE Comments: ATTN: IAN CAMPBELL Page Number : 1 Total Pages : 1 Certificate Date: 16-JUL-1999 Invoice No. : I 9922227 P.O. Number : Account : OPJ

				CERTIFIC	ATE OF A	NALYSIS	A99	922227	
SAMPLE	PREP CODE	Sn ppm							
6118 6119 6120 6121 6122	205 226 205 226 205 226 205 226 205 226 205 226	2 < 2 4							
6123 6124 6126 6127 286316	205 226 205 226 205 226 205 226 205 226	2 4 2	VW 877 /						
286319 286321 286323 286324 286325	205 294 205 226 205 226 205 226 205 226	< 2 < 2 < 2							
286326 286327 286328 286329 286330	205 226 205 226 205 226 205 226 205 226 205 226	4 3 6							
286331 286332 286333 286333 286334 286335	205 226 205 226 205 226 205 294 205 226	2							
286336 286341 286342 286343 286344	205 226 205 226 205 226 205 226 205 226 205 226	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2							
286345 286346 286347 286348 286349	205 226 205 226 205 226 205 226 205 226 205 226	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2							
286350	205 226	< 2							λ.

CERTIFICATION:__

i

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers Mississauga L4W 2S3 5175 Timberlea Blvd., Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Comments: ATTN: IAN CAMPBELL

С	ERTIF	CATE	A9922228				ANALYTICA	L PROCEDURES		
DPJ) - A roject: .0. # :		ENTURES LTD. H LAKE		CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
amples	s submitted to our lab in Thunder Bay, ON. port was printed on 14-JUL-1999. SAMPLE PREPARATION		nunder Bay, ON. 1999.	902 906 2590 903 908 905 1989 905	11 11 11 11 11 11 11 11	A1203 %: XRF CaO %: XRF Fe203 %: XRF Fe203 %: XRF K2O %: XRF MgO %: XRF MnO %: XRF Na2O %: XRF		XRF XRF XRF XRF XRF XRF XRF	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	100.00 100.00 100.00 100.00 100.00 100.00 100.00
	SAM	PLE PREPARAT	ΓΙΟΝ	909 901	11 11	P205 %: XRF S102 %: XRF		XRF XRF	0.01 0.01	100.00
HEMEX CODE	NUMBER SAMPLES	DES	CRIPTION	904 910 2540	11 11 11	T102 %: XRF LOI %: XRF Total %		XRF XRF CALCULATION	0.01 0.01 0.01	100.00 100.00 105.00
208 226 3202	11 11 11	Assay ring to app; 0-3 Kg crush and ; Rock - save entire	split							

A9922228

i

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Project : RALEIGH LAKE Comments: ATTN: IAN CAMPBELL

Page Number :1 Total Pages :1 Certificate Date: 14-JUL-1999 Invoice No. : 19922228 P.O. Number : Account :OPJ

	A12O3 % XRF	CaO	Cr203	Fe203	K20	Mag						[
		% XRF	% XRF	% XRF	% XRF	MgO % XRF	MnO % XRF	Na20 % XRF	P205 % XRF	SIO2 % XRF	TiO2 % XRF	LOI % XRF	TOTAL %	
226 226 226 226 226 226	16.37 14.08 15.83 13.93 14.17	0.23 0.41 2.35 0.31 0.34	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.51 1.01 2.57 0.74 0.88	3.84 2.43 2.60 3.76 4.18	0.04 0.09 0.61 < 0.01 < 0.01	0.11 0.04 0.03 0.07 0.06	6.07 5.05 5.08 4.41 4.05	0.03 0.03 0.15 0.04 0.06	71.24 75.30 68.90 75.71 75.12	0.03 0.02 0.46 0.02 0.02	0.65 0.63 1.12 0.52 0.60	99.12 99.09 99.70 99.51 99.48	
226 226 226 226 226 226	13.26 13.67 13.41 15.43 14.54	0.52 0.48 0.77 1.97 0.88	0.01 < 0.01 0.01 0.01 < 0.01	1.12 0.81 1.06 2.00 0.85	3.85 3.92 3.88 2.89 4.04	0.14 < 0.01 0.04 0.59 0.06	0.02 0.04 0.03 0.03 0.01	4.11 4.25 4.19 5.00 5.00	0.04 0.03 0.05 0.09 0.01	74.78 75.70 74.35 70.82 73.21	0.13 0.03 0.05 0.31 0.06	0.73 0.55 0.69 0.67 0.52	98.71 99.48 98.53 99.81 99.18	
226	13.68	0.50	< 0.01	1.07	3.90	< 0.01	0.05	4.64	0.04	74.55	0.03	0.57	99.03	
											í			
1														
												$\left(\right)$	1	
	226 226 226 226 226 226 226 226 226 226	226 15.83 226 13.93 226 14.17 226 13.26 226 13.67 226 13.41 226 15.43 226 14.54	226 15.83 2.35 226 13.93 0.31 226 13.26 0.52 226 13.67 0.48 226 13.41 0.77 226 15.43 1.97 226 14.54 0.88	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	226 15.83 2.35 < 0.01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	226 15.83 2.35 < 0.01 2.57 2.60 0.61 0.03 5.08 0.15 68.90 0.46 226 13.93 0.31 < 0.01	226 15.83 2.35 < 0.01 2.57 2.60 0.61 0.03 5.08 0.15 68.90 0.46 1.12 226 13.93 0.31 < 0.01	226 15.83 2.35 < 0.01				

ł

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

ſ

To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Comments: ATTN: IAN CAMPBELL

c	ERTIF	ICATE A9922230				ANALYTICA	PROCEDURES	5	
(OPJ) - / Project: P.O. # :	AVALON VI	ENTURES LTD.	1	CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
Samples	submitt port was	ed to our lab in Thunder Bay, ON. printed on 16-JUL-1999.		19	4	Sn ppm: NH4I sublimation, ext	ac AAS	2	1000
	SAM	PLE PREPARATION							
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION							
205 226 294 3202	10 9 1 10	Geochem ring to approx 150 mesh 0-3 Kg crush and split 4-7 Kg crush and split Rock – save entire reject							

A9922230

i

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Page Number : 1 Total Pages : 1 Certificate Date: 16-JUL-1999 Invoice No. : 19922230 P.O. Number : OPJ Account

Project : Comments: ATTN: IAN CAMPBELL

				CERTIFIC	ATE OF A	NALYSIS	A99	22230	
SAMPLE	PREP CODE	Sn ppm							
6103 6104 6105 6106 6111	205 226 205 294 205 226 205 226 205 226	< 2 < 2 < 2 < 2 < 2 							
6112 6113 6114 6115 6116	205 226 205 226 205 226 205 226 205 226 205 226	 							
							(1	
		 _	 	 	c	ERTIFICATION	I:	weller	2

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

CERTIFICATE

A9922232

(OPJ) - AVALON VENTURES LTD.

Project: P.O. # : RALEIGH LAKE

F

Samples submitted to our lab in Thunder Bay, ON. This report was printed on 26-JUL-1999.

SAMPLE PREPARATION													
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION											
299	36	Pulp; prepped on other workorder											

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Comments: ATTN: IAN CAMPBELL

CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPEF LIMIT
9301	36	Al %: ICP + ICP-MS package Sb ppm: ICP + ICP-MS package Ba ppm: ICP + ICP-MS package Be ppm: ICP + ICP-MS package Cd ppm: ICP + ICP-MS package Cd ppm: ICP + ICP-MS package Ca %: ICP + ICP-MS package Cs ppm: ICP + ICP-MS package Cr ppm: ICP + ICP-MS package Co ppm: ICP + ICP-MS package Co ppm: ICP + ICP-MS package Cu ppm: ICP + ICP-MS package Ga ppm: ICP + ICP-MS package Fe %: ICP + ICP-MS package Mage TiCP + ICP-MS package Fe %: ICP + ICP-MS package Mn ppm: ICP + ICP-MS package Ni ppm: ICP + ICP-MS package R %: ICP + ICP-MS package R %: ICP + ICP-MS package R %: ICP + ICP-MS package TI Ppm: ICP + ICP-MS package TI ppm: ICP + ICP-MS package Tappm: ICP + ICP-MS package Ti ppm: ICP + ICP-MS package Tappm: ICP + ICP-MS package Ti ppm: ICP + ICP-MS packag	ICP	0.01	25.0
9341	36	Sb ppm: ICP + ICP-MS package	ICP-MS	0.1	1000
9302	36	Ba ppm: ICP + ICP-MS package	ICP	10	10000
9303	36	Be ppm: ICP + ICP-MS package	ICP-MS/ICP	0.05	1000
9304 9305	36 36	B1 ppm: ICP + ICP-MS package	ICP-MS/ICP	0.01	10000
9305	36	Ca ppm: ICP + ICP-MS package	ICP-MS/ICP	0.02	500
9307	36	Ca nom: ICP + ICP-MS package	TCP-Mg	0.01	25.0 500
9308	36	Cs ppm: ICP + ICP-MS package	TCP-MS	0.01	500
9309	36	Cr ppm: ICP + ICP-MS package	ICP	1	10000
9310	36	Co ppm: ICP + ICP-MS package	ICP-MS/ICP	0.2	10000
9311	36	Cu ppm: ICP + ICP-MS package	ICP	1	10000
9312	36	Ga ppm: ICP + ICP-MS package	ICP-MS	0.1	500
9313	36	Ge ppm: ICP + ICP-MS package	ICP-MS	0.1	500
9315	36	Fe %: ICP + ICP-MS package	ICP	0.01	25.0
9316	36	La ppm: ICP + ICP-MS package	ICP-MS	0.5	500
9317	36	Pb ppm: ICP + ICP-MS package	ICP-MS/ICP	0.5	10000
9318	36	Li ppm: ICP + ICP-MS package	ICP-MS	0.2	500
9319 9320	36 36	Mg %: ICP + ICP-MS package	ICP	0.01	15.00
9320	36	Mn ppm: ICP + ICP-MS package	ICP	5	10000
9322	36	Ni ppm: ICP + ICP-MS package	ICP TCD_Wg/TCD	0.2	10000 10000
9323	36	Nb ppm: ICP + ICP-MS package	TCP-MS	0.2	500
9324	36	P DDm: ICP + ICP-MS Dackage	TCP	10	10000
9325	36	K %: ICP + ICP-MS package	ICP	0.01	10.00
9326	36	Rb ppm: ICP + ICP-MS package	ICP-MS	0.2	500
9327	36	Ag ppm: ICP + ICP-MS package	ICP-MS/ICP	0.05	100.0
9328	36	Na %: ICP + ICP-MS package	ICP	0.01	10.00
9329	36	Sr ppm: ICP + ICP-MS package	ICP-MS/ICP	0.2	10000
9330	36	Ta ppm: ICP + ICP-MS package	ICP-MS	0.05	100.0
9331 9332	36	Te ppm: ICP + ICP-MS package	ICP-MS	0.05	500
9334 9333	36 36	TI ppm: ICP + ICP-MS package	ICP-MS	0.02	500
9334	36	Th ppm: ICP + ICP-MS package	ICP-MS	0.2	500 10.00
9335	36	W nom: ICP + ICP-MS package	ICP-Wg/ICP	0.01	10000
9336	36	U DDM: ICP + ICP-MS package	TCP-MS	0.2	500
9337	36	V ppm: ICP + ICP-MS package	ICP	1	10000
9338	36	Y ppm: ICP + ICP-MS package	ICP-MS	0.1	500
9339	36	Zn ppm: ICP + ICP-MS package	ICP	2	10000

A9922232

Analytical Chemists * Geochemists * Registered Assayers

E C F

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Project : RALEIGH LAKE Comments: ATTN: IAN CAMPBELL Page Number : 1-A Total Pages : 1 Certificate Date: 26-JUL-1999 Invoice No. : 19922232 P.O. Number : Account : OPJ

			_					CERTIFICATE OF ANALYSIS A9922232								
SAMPLE	PRI COI		A1 % (ICP)	Sb ppm (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Cđ ppm (ICP)	Ca % (ICP)	Ce ppm (ICP)	Csppm (ICP)	Cr ppm (ICP)	Coppm (ICP)	Cuppm (ICP)	Ga ppm (ICP)	Ge ppm (ICP)
6118	299		7.79	1.0	10	27.8	12.55	< 0.02	0.04	1.80	180.0	173	0.6	3	50.2	4.0
6119			7.55	0.9	10	45.8	36.8	< 0.02	0.04	2.68	125.0	155	0.4	3	62.1	4.6
6120			7.76	1.2	< 10	45.4	8.09	< 0.02	0.11	3.44	50.4	140	0.4	5	51.2	3.8
6121			8.02	1.1	30	57.2	19.70	< 0.02	1.97	9.65	>500	317	25.6	7	71.3	5.0
6122	299		6.73	0.4	< 10	65.9	0.65	< 0.02	0.07	1.37	165.5	144	0.4	13	50.7	4.1
6123			7.07	0.2	< 10	16.25	0.08	< 0.02	0.07	2.52	39.2	171	0.4	4	61.1	3.5
6124			6.92	0.2	300	1.60	0.17	< 0.02	0.84	23.8	6.25	165	1.4	3	19.5	1.0
6126			6.65	0.2	< 10	4.80	0.22	< 0.02	0.10	7.12	18.20	153	0.4	1	64.3	3.0
6127			7.35	0.3	< 10	8.10	0.10	0.02	0.47	21.7	17.00	154	0.6	9	36.5	3.5
286316	299		8.33	0.2	10	28.0	0.13	< 0.02	0.09	2.93	46.8	125	0.4	5	61.2	4.6
286319			6.53	0.2	< 10	56.2	5.36	< 0.02	0.11	1.90	19.60	178	0.6	5	47.1	4.3
286321			7.16	Minrizd	10	137.5	18.00	< 0.50	0.05	Minrlzd	Minrlzd	162	< 1.0	47	Minrlzd	Minrlzd
286323			6.51	0.8	10	95.8	5.31	< 0.02	0.12	4.47	>500	160	0.6	8	60.5	5.6
286324			7.63	2.0	50	49.5	69.4	0.40	0.17	3.18	347	116	0.4	8	44.9	4.7
286325	299		6.55	0.6	< 10	9.10	24.6	< 0.02	0.19	6.88	256	173	0.6	5	63.9	5.0
286326			8.70	0.6	90	4.55	1.48	< 0.02	0.06	2.15	>500	90	0.4	4	43.6	5.4
286327			9.21	1.2	90	40.8	209	< 0.02	0.16	5.33	365	65	0.4	6	65.5	5.2
286328			8.56	Minrlzđ	60	148.0	166.0	< 0.50	0.25	Minrlzd	Minrlzd	78	< 1.0	4	Minrlzd	Minrlzd
286329			5.95	1.8	< 10	7.85	5.00	< 0.02	0.04	3.44	253	215	0.6	7	96.5	4.2
286330	299 -		6.10	0.4	< 10	6.50	0.97	< 0.02	0.07	3.19	255	153	0.4	2	85.4	4.2
286331		•	7.34	0.2	10	5.30	5.24	< 0.02	0.13	2.43	72.7	167	0.6	12	48.7	4.5
286332			7.66	0.6	10	8.10	64.3	< 0.02	0.14	2.40	90.2	133	0.4	6	58.1	5.1
286333			7.36	0.2	120	1.50	0.56	< 0.02	1.51	26.1	5.40	209	2.2	12	16.7	1.1
286334			7.88	0.2	50	9.35	9.74	< 0.02	0.34	4.44	43.2	142	0.6	4	83.3	4.3
286335	299 -		7.42	0.2	110	6.80	0.22	< 0.02	0.18	7.94	61.1	150	0.4	4	57.0	3.7
286336			6.51	0.4	10	7.55	0.61	< 0.02	0.07	4.46	129.5	157	0.4	5	79.6	4.3
286341			7.67	0.4	10	9.10	339	0.20	0.33	7.86	47.4	147	0.8	3	56.7	3.4
286342			7.27	0.2	10	68.7	4.91	< 0.02	0.18	1.34	133.0	174	0.6	6	64.3	4.8
286343			8.16	0.4	< 10	52.8	67.8	< 0.02	0.44	1.79	177.0	140	1.2	5	74.9	4.8
286344	299 -		7.67	Minrlzd	20	117.0	12.00	< 0.50	0.21	Minrlzð	Minrlzd	136	< 1.0	7	Minrlzd	Minrlzd
286345			7.12	0.1	50	8.50	3.44	< 0.02	0.45	5.74	17.40	161	0.6	5	36.5	2.7
286346			6.97	0.3	70	7.30	10.60	< 0.02	0.09	2.79	33.1	147	0.6	6	70.4	4.2
286347			6.56	0.2	10	4.15	8.27	< 0.02	0.09	1.02	21.6	128	0.8	25	61.5	3.9
286348				Minrlzd	10	101.5	6.00	< 0.50	0.13	Minrlzd	Minrlzd	87	< 1.0	7	Minrlzd	Minrlzd
286349	299 -		6.96	0.3	< 10	46.5	7.20	< 0.02	0.06	1.15	35.9	156	0.6	8	73.2	5.1
286350	299 -	-	7.69	0.2	280	2.00	0.17	< 0.02	1.16	26.5	8.85	126	2.8	4	26.4	1.4
														\square	010	

~

ł

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Project : RALEIGH LAKE Comments: ATTN: IAN CAMPBELL Page Number : 1-B Total Pages : 1 Certificate Date: 26-JUL-1999 Invoice No. : 1992232 P.O. Number : Account : OPJ

		_						CERTI	FICATE	OF AN	ALYSIS	5 /	499222	32	
SAMPLE	PREP CODE	Fe % (ICP)	La ppm (ICP)	Pb ppm (ICP)	Li ppm (ICP)	Mg % (ICP)	Mn ppm (ICP)	Mo ppm (ICP)	Ni ppm (ICP)	Nb ppm (ICP)	P ppm (ICP)	K% (ICP)	Rb ppm (ICP)	Ag ppm (ICP)	Na % (ICP)
6118	299	0.37	1.5	34.5	>500	0.01	565	1.2	2.6	39.6	70	3.71	>500	0.05	1.04
6119	299	0.29	1.0	13.5	>500	0.01	770	2.2	2.4	110.0	60	2.05	>500	0.05	1.55
6120	299	0.17	1.0	8.5	433	0.01	700	1.0	2.2	81.2	100	0.63	>500	0.15	5.66
6121 6122	299 299	4.87	4.0	14.5	>500	2.03	1810 1165	8.2	54.0 2.4	39.2 96.2	2560 50	3.90	>500	0.55	0.51 4.21
				10.0											
6123	299	0.36	0.5	8.0	>500	< 0.01	2030	0.8	2.2	75.4	30	1.25	>500	0.05	3.39
6124 6126	299 299	0.76	11.0	22.0	26.6	0.08	130 215	1.2	3.4	5.4	70 < 10	2.21	130.0 >500	0.40	3.20 2.42
6127	299	0.58	9.0	25.5	72.6	0.03	330	0.8	2.4	98.2	50	1.11	483	0.05	3.82
286316	299	0.24	1.0	12.0	308	0.03	630	0.6	2.6	92.8	30	0.87	>500	0.05	5.58
286319 286321	299	0.21	0.5 Minrlzd	7.0	30.4 Minrlzd	< 0.01	490	1.0	3.2	56.2 Minrlzd	10 < 10	0.22	184.5 Minrlzd	< 0.05	4.90
286323	299	0.37	1.5	19.5	281	0.01	1105 360	1.0	2.8	169.0	100	2.13	>500	0.10	3.52
286324	299	0.17	1.5	22.5	69.8	< 0.01	765	0.8	2.2	64.6	100	2.95	>500	0.60	4.37
286325	299	0.52	2.5	12.0	423	0.02	805	0.8	2.6	127.5	50	1.29	>500	0.05	3.57
286326	299	0.16	1.0	26.0	88.6	< 0.01	140	0.6	1.4	24.0	40	7.52	>500	< 0.05	2.10
286327	299	0.34	2.0	26.0	171.5	0.03	255	0.4	1.4	141.5	40	5.57	>500	0.45	3.78
286328	299	0.12	Minrlzd	20.0	Minrlzd	< 0.01	240	2.0	< 1.0	Minrlzd	40	4.78	Minrlzd	0.80	4.57
286329	299	1.09	1.5	13.5	>500	< 0.01	1335	1.0	3.0	177.0	10	2.55	>500	< 0.05	1.18
286330	299	0.70	1.0	7.0	>500	< 0.01	1090	0.8	2.2	155.0	10	1.59	>500	0.10	2.65
286331	299	0.29	0.5	16.5	57.4	< 0.01	280	1.0	2.8	76.6	40	2.37	>500	0.05	4.54
286332	299	0.34	0.5	21.0	107.0	< 0.01	380	0.8	2.2	105.0	40	2.80	>500	0.05	4.48
286333	299	0.55	11.5	15.5	29.4	0.02	205	1.0	8.0	2.8	440	0.73	41.2	0.30	3.19
286334	299	0.86	2.0	8.0	98.8	0.03	615	0.8	2.6	95.2	30	1.28	>500	0.05	3.81
286335	299	0.45	3.5	17.0	16.2	0.01	870	0.8	2.2	87.8	< 10	2.61	>500	0.05	2.65
286336	299	0.51	2.0	15.5	230	< 0.01	830	0.8	2.6	86.8	< 10	2.30	>500	0.05	2.65
286341	299	0.34	3.0	22.5	30.4	0.01	600	14.6	3.2	86.0	< 10	2.38	>500	0.45	3.06
286342	299	0.24	0.5	12.5	>500	0.01	1020	1.0	3.2	81.6	30	1.55	>500	0.05	3.60
286343	299	0.37	0.5	9.5	>500	0.07	915	9.4	3.8	69.2	300	1.11	>500	0.15	3.34
286344	299	0.28	Minrlzd	6.0	Minrlzd	0.03	1295	1.0	3.0	Minrlzd	70	1.46	Minrlzd	< 0.20	5.07
286345	299	0.37	2.5	35.0	16.0	0.01	435	1.0	3.4	28.6	10	3.11	>500	0.25	3.48
286346	299	0.34	0.5	10.0	>500	0.01	975	0.8	3.0	117.5	20	1.31	>500	0.10	4.02
286347	299	0.27	< 0.5	17.5	28.6	0.01	465	1.0	3.2	55.2	30	0.78	>500	0.15	5.49
286348	299	0.27	Minrlzā	6.0	Minrlzd	0.03	505	1.0	4.0	Minrlzd	30	1.03	Minrlzd	< 0.20	5.66
286349	299	0.26	< 0.5	8.5	>500	< 0.01	815	0.8	2.8	80.4	40	0.86	>500	0.05	5.16
286350	299	1.06	13.0	28.0	37.6	0.23	295	1.0	7.0	11.4	150	2.85	227	0.25	3.40
														12	
													$\left \right\rangle$		
									•••••	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •		1-1-W-	

CERTIFICATION:

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Tim Ontario, C PHONE: 9

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Project : RALEIGH LAKE Comments: ATTN: IAN CAMPBELL Page Number : 1-C Total Pages : 1 Certificate Date: 26-JUL-1999 Invoice No. : 19922232 P.O. Number : Account : OPJ

6119 299 - 6120 299 - 6121 299 -	E (ICP) - 6.8 - 5.0 - 6.0 - 37.8 - 5.0 - 5.0 - 37.8 - 5.0 - 5.0 - 5.0 - 37.8 - 5.0 -	Ta ppm (ICP) 62.6 >100.0 >100.0 >100.0 >100.0 >100.0 87.6 3.25 29.6	Te ppm (ICP) < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	T1 ppm (ICP) 28.4 18.40 4.86 106.5 15.95 5.82	Th ppm (ICP) 4.0 4.6 8.8 2.2 6.4	Ti % (ICP) < 0.01 < 0.01 < 0.01 0.43	W ppm (ICP) 0.6 0.8 0.6	U ppm (ICP) 2.4 3.0 6.2	V ppm (ICP) 2 1	Y ppm (ICP) 1.3 2.1	Zn ppm (ICP) 22 28			
6119 299 - 6120 299 - 6121 299 - 6122 299 - 6123 299 - 6124 299 - 6126 299 - 6127 299 -	- 5.0 - 6.0 - 37.8 - 5.0 - 6.4 - 161.0 - 5.4 - 7.8	>100.0 >100.0 >100.0 >100.0 >100.0 87.6 3.25 29.6	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	18.40 4.86 106.5 15.95	4.6 8.8 2.2	< 0.01 < 0.01	0.8	3.0	1	2.1	28			
6120 299 - 6121 299 - 6122 299 - 6123 299 - 6124 299 - 6126 299 - 6127 299 -	$\begin{array}{cccc} - & 6.0 \\ - & 37.8 \\ - & 5.0 \\ \hline - & 6.4 \\ - & 161.0 \\ - & 5.4 \\ - & 7.8 \end{array}$	>100.0 >100.0 >100.0 87.6 3.25 29.6	< 0.05 < 0.05 < 0.05 < 0.05	4.86 106.5 15.95	8.8 2.2	< 0.01								
6121 299 - 6122 299 - 6123 299 - 6124 299 - 6126 299 - 6127 299 -	- 37.8 - 5.0 - 6.4 - 161.0 - 5.4 - 7.8	>100.0 >100.0 87.6 3.25 29.6	< 0.05 < 0.05 < 0.05	106.5 15.95	2.2		0.6	1 6 2						
6122 299 6123 299 6124 299 6126 299 6127 299	- 5.0 - 6.4 - 161.0 - 5.4 - 7.8	>100.0 87.6 3.25 29.6	< 0.05	15.95		0.43			< 1	3.6	20		1	
6123 299 - 6124 299 - 6126 299 - 6127 299 -	- 6.4 - 161.0 - 5.4 - 7.8	87.6 3.25 29.6	< 0.05		6.4		8.9	21.2	187	14.8	128			
6124 299 - 6126 299 - 6127 299 -	- 161.0 - 5.4 - 7.8	3.25 29.6		5.82		< 0.01	1.0	5.2	3	1.8	22			
6126 299 - 6127 299 -	- 5.4	29.6	< 0.05		6.0	< 0.01	0.9	1.8	1	4.4	38			
6127 299 -	- 7.8			0.90	41.0	0.07	0.5	5.6	8	2.6	32			
			< 0.05	4.36	3.8	0.01	1.3	6.2	13	3.8	40			1
286316 299 -	- 6.2	27.8	< 0.05	2.92	13.8	0.01	1.2	14.6	1	17.0	60			1
		>100.0	< 0.05	5.98	5.0	< 0.01	0.6	2.2	3	1.5	20			
286319 299 -		90.6	< 0.05	1.24	3.0	< 0.01	0.7	1.2	3	1.0	12			
286321 299 -	- 32.0	Minrlzd	Minrlzd	Minrlzd	Minrlzd	< 0.01	< 10.0	Minrlzd	8	Minrlzd	26			1
286323 299 -		>100.0	< 0.05	18.00	10.4	< 0.01	1.6	11.2	5	3.5	50			
286324 299 -		76.2	< 0.05	18.95	4.2	< 0.01	0.6	4.0	1	7.3	124			1
286325 299 -	- 17.6	54.6	< 0.05	8.88	8.2	0.01	1.2	2.2	5	4.4	116			1
286326 299 -		28.2	< 0.05	50.2	1.2	< 0.01	0.8	0.6	< 1	0.5	32			
286327 299 -		>100.0	0.05	36.9	6.8	0.01	1.1	3.6	7	1.8	44			1
286328 299 -		Minrlzd	Minrlzd	Minrlzd	Minrlzd	< 0.01	< 10.0	Minrlzd	1	Minrlzd	10			1
286329 299 -		47.4	< 0.05	19.85	1.8	0.01	2.0	1.2	4	3.8	374			1
286330 299 -	- 6.2	77.2	< 0.05	12.25	3.0	0.01	1.8	1.0	3	4.2	282			
286331 299 -	1	30.6	< 0.05	8.70	2.4	< 0.01	0.6	0.8	2	5.2	42			
286332 299 -		46.3	< 0.05	12.70	3.2	< 0.01	0.9	1.2	1	5.0	90			i
286333 299 -		1.40	< 0.05	0.32	3.2	0.41	1.1	0.4	82	7.0	10			ł
286334 299 -		90.8	< 0.05	5.94	3.6	0.01	1.4	4.6	8	4.7	34			1
286335 299 -	- 38.4	78.1	< 0.05	8.30	2.8	< 0.01	0.8	3.4	4	6.5	32			
286336 299 -		93.8	< 0.05	16.50	3.2	< 0.01	1.2	2.8	3	5.7	82			
286341 299		52.2	< 0.05	9.34	3.4	< 0.01	1.2	4.8	4	5.3	86			1
286342 299 -		>100.0	< 0.05	15.95	2.6	< 0.01	0.8	3.4	2	1.8	28			1
286343 299 - 286344 299 -		>100.0	< 0.05	9.28	4.6	0.01	0.8	3.4	5	1.8	42			
280344 299	- 54.0	Minrlzd	Minrlzd	Minrlzd	Minrlzd	0.01	< 10.0	Minrlzd	4	Minrlzd	28			
286345 299	- 47.0	48.8	< 0.05	3.40	28.0	0.01	0.6	5.4	1	7.5	16			
286346 299		68.1	< 0.05	6.68	5.0	< 0.01	0.8	4.4	1	2.2	40			
286347 299		45.0	< 0.05	3.64	2.8	< 0.01	0.6	1.4	1	2.2	16		! I	l
286348 299		Minrlzd	Minrlzd		Minrlzd	0.01	< 10.0	Minrlzd	4	Minrlzd	22		1	
286349 299	- 4.4	>100.0	< 0.05	6.52	3.2	< 0.01	0.7	2.4	3	1.8	16			
286350 299	- 145.0	2.70	< 0.05	1.48	15.0	0.11	0.4	2.2	9	3.3	56			
												\cap		
					1							(111	I
		1										()	$ \land 1 / $	I

CERTIFICATION:

il.

i

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Comments: ATTN: IAN CAMPBELL

Ū.	ERTIF	ICATE	A9922233	ANALYTICAL PROCEDURES										
OPJ)- A Project: P.O. # :	VALON VI	ENTURES LTD.		CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	Upper Limit					
		ed to our lab printed on 2	in Thunder Bay, ON. 6-JUL-1999.	9301 9341 9302 9303 9304 9305 9306 9306	10 10 10 10 10 10 10 10	A1 %: ICP + ICP-MS package Sb ppm: ICP + ICP-MS package Ba ppm: ICP + ICP-MS package Be ppm: ICP + ICP-MS package Bi ppm: ICP + ICP-MS package Cd ppm: ICP + ICP-MS package Ca %: ICP + ICP-MS package Ce ppm: ICP + ICP-MS package	ICP ICP-MS ICP ICP-MS/ICP ICP-MS/ICP ICP ICP	0.01 0.1 10 0.05 0.01 0.02 0.01 0.01	25.0 1000 1000 1000 500 25.0 500					
	SAM	PLE PREPA	RATION	9308 9309	10	Cs ppm: ICP + ICP-MS package Cr ppm: ICP + ICP-MS package	ICP-MS ICP	0.05	500 10000					
HEMEX	NUMBER		DESCRIPTION	9309 9310 9311 9312 9313 9315	10 10 10 10 10	Co ppm: ICP + ICP-MS package Co ppm: ICP + ICP-MS package Ga ppm: ICP + ICP-MS package Ge ppm: ICP + ICP-MS package Fe %: ICP + ICP-MS package	ICP-MS/ICP ICP ICP-MS ICP-MS ICP-MS ICP	0.1 1 0.1 0.1 0.01	10000 10000 500 500 25.0					
299	10	Pulp; preppe	d on other workorder	9316 9317 9318 9319	10 10 10 10	La ppm: ICP + ICP-MS package Pb ppm: ICP + ICP-MS package Li ppm: ICP + ICP-MS package Mg %: ICP + ICP-MS package	ICP -MS ICP-MS/ICP ICP-MS ICP	0.5 0.5 0.2 0.01	500 10000 500 15.00					
				9320 9321 9322 9323 9324	10 10 10 10 10	Mn ppm: ICP + ICP-MS package Mo ppm: ICP + ICP-MS package Ni ppm: ICP + ICP-MS package Nb ppm: ICP + ICP-MS package P ppm: ICP + ICP-MS package	ICP ICP ICP-MS/ICP ICP-MS ICP	5 0.2 0.2 0.2 10	10000 10000 10000 500 10000					
				9325 9326 9327 9328	10 10 10 10	K %: ICP + ICP-MS package Rb ppm: ICP + ICP-MS package Ag ppm: ICP + ICP-MS package Na %: ICP + ICP-MS package	ICP ICP-MS ICP-MS/ICP ICP	0.01 0.2 0.05 0.01	10.00 500 100.0 10.00					
				9329 9330 9331 9332 9333	10 10 10 10 10	Sr ppm: ICP + ICP-MS package Ta ppm: ICP + ICP-MS package Te ppm: ICP + ICP-MS package Tl ppm: ICP + ICP-MS package	ICP-MS/ICP ICP-MS ICP-MS ICP-MS ICP-MS	0.2 0.05 0.05 0.02 0.2	10000 100.0 500 500 500					
				9334 9335 9336 9337	10 10 10 10	Th ppm: ICP + ICP-MS package Ti %: ICP + ICP-MS package W ppm: ICP + ICP-MS package U ppm: ICP + ICP-MS package V ppm: ICP + ICP-MS package	ICP-MS ICP ICP-MS/ICP ICP-MS ICP	0.01 0.1 0.2 1	10.00 10000 500 10000					
				9338 9339	10 10 10	Y ppm: ICP + ICP-MS package Zn ppm: ICP + ICP-MS package	ICP-MS ICP-MS ICP	0.1 2	500 10000					

A9922233

1

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 T Ontario PHON

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6 Page Number : 1-A Total Pages : 1 Certificate Date: 26-JUL-1999 Invoice No. : 19922233 P.O. Number : Account : OPJ

Project : Comments: ATTN: IAN CAMPBELL

							CERTIFICATE OF ANALYSIS A9922233								
SAMPLE	PREP CODE	A1 % (ICP)	Sb ppm (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Cđ ppm (ICP)	Ca % (ICP)	Ceppm (ICP)	Cs ppm (ICP)	Cr ppm (ICP)	Coppm (ICP)	Cuppm (ICP)	Gappm (ICP)	Ge ppm (ICP)
6103 6104 6105 6106 6111	299 299 299 299 299	7.04 7.30 7.74 8.03 6.41	0.2 0.7 0.6 0.3 0.6	40 30 1040 1390 30	14.10 11.65 2.10 2.20 0.70	0.12 16.50 0.18 0.13 0.18	0.02 0.10 < 0.02 < 0.02 0.16	1.48 0.79 1.12 1.22 5.77	6.19 18.75 2.33 0.93 4.68	10.45 21.6 3.75 4.75 0.70	193 135 190 173 130	1.6 4.0 1.2 0.6 42.0	19 16 37 5 13	27.8 42.0 24.2 21.8 21.3	2.1 3.9 0.9 0.8 2.0
6112 6113 6114 6115 6116	299 299 299 299 299 299	8.07 7.79 8.57 8.09 8.29	0.8 0.6 0.3 0.5 0.4	80 140 230 30 350	0.50 0.85 1.05 3.25 1.40	0.29 0.60 1.30 0.43 0.35	0.06 0.10 0.10 0.08 0.12	7.16 6.92 7.54 5.98 4.72	11.45 10.35 23.7 18.10 50.6	2.80 2.55 8.85 2.50 1.85	168 191 226 278 179	39.6 46.4 32.8 38.8 17.4	19 43 26 13 17	23.2 22.5 19.5 19.8 24.3	2.0 2.0 1.8 2.1 2.0
													,		
										CER	TIFICATIO	v: lba-		-al	<u>[V</u> .

ł

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Page Number : 1-B Total Pages : 1 Certificate Date: 26-JUL-1999 Invoice No. : 19922233 P.O. Number : OPJ Account

Project :

Comments: ATTN: IAN CAMPBELL

							CERTIFICATE OF ANALYSIS A9922233								
SAMPLE	PREP CODE	Fe % (ICP)	La ppm (ICP)	Pb ppm (ICP)	Li ppm (ICP)	Mg % (ICP)	Mn ppm (ICP)	Mo ppm (ICP)	Ni ppm (ICP)	Nb ppm (ICP)	P ppm (ICP)	K% (ICP)	Rb ppm (ICP)	Ag ppm (ICP)	Na % (ICP)
6103 6104 6105 6106 6111	299 299 299 299 299 299	0.35 0.83 0.48 0.38 10.70	3.0 8.0 1.5 0.5 1.5	42.0 31.0 21.0 36.5 4.5	13.2 27.0 5.4 3.0 36.6	0.05 0.23 0.05 0.05 3.09	395 2030 105 65 1615	4.8 47.8 1.2 1.0 0.6	5.2 9.2 4.0 3.4 52.0	34.2 84.0 2.6 2.6 3.8	< 10 30 < 10 40 380	1.56 1.85 1.09 4.56 0.19	159.5 >500 43.4 85.8 10.2	0.30 0.15 0.20 0.15 0.15	3.28 4.04 4.48 2.44 1.61
6112 6113 6114 6115 6116	299 299 299 299 299 299	7.66 8.23 5.14 4.71 3.37	4.5 4.0 11.5 8.0 26.0	5.0 6.0 9.5 7.5 17.5	97.4 90.6 37.0 23.6 20.2	1.82 2.70 1.37 2.35 0.91	1170 1995 930 975 920	0.8 0.6 1.0 1.2 0.8	45.0 92.0 49.0 108.0 35.0	4.8 3.0 5.0 5.8 10.4	340 290 460 390 870	0.52 0.59 0.83 0.18 0.73	68.8 39.0 53.6 12.0 26.6	0.15 0.15 0.15 0.20 0.25	1.42 1.36 1.25 2.68 2.71
										CER	TIFICATIO	v: ho	, (- al	

Analytical Chemists * Geochemists * Registered Assavers

5175 Timberlea Blvd.,	Mississauga
Ontario, Canada	Mississauga L4W 2S3
PHONE: 905-624-2806	FAX: 905-624-6163

To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Project :

Comments: ATTN: IAN CAMPBELL

Page Number : 1-C Total Pages :1 Certificate Date: 26-JUL-1999 Invoice No. :19922233 P.O. Number . Account :OPJ

CERTIFICATE OF ANALYSIS A9922233 PREP Sr ppm Ta ppm Tl ppm Te ppm Th ppm Ti % W ppm U ppm V ppm Y ppm Zn ppm SAMPLE CODE (ICP) 6103 299 ---72.9 8.70 < 0.05 0.90 24.8 0.01 0.7 23.4 3 29.3 10 6104 299 --44.4 27.5 < 0.05 3.44 7.0 0.03 0.7 5.0 17 53.9 30 6105 299 --241 1.15 < 0.05 0.22 0.6 0.02 0.6 2.2 4 2.3 12 6106 299 ---360 0.90 < 0.05 0.50 0.2 0.01 0.4 1.2 3 1.0 18 6111 299 --109.0 1.45 < 0.05 0.10 0.4 0.99 0.4 < 0.2 450 39.1 134 6112 299 --279 1.30 < 0.05 0.36 0.4 0.72 0.5 < 0.2 270 28.1 78 6113 299 ---276 0.90 < 0.05 0.18 0.8 0.83 0.5 0.2 242 25.3 120 6114 299 ---203 0.95 < 0.05 0.28 1.4 0.45 0.9 0.2 189 17.8 78 6115 299 ---202 1.60 < 0.05 0.06 1.0 0.48 0.5 0.2 185 18.8 76 6116 299 --602 1.00 < 0.05 0.14 5.6 0.34 0.4 1.2 95 16.2 72

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

CERTIFICATE

A9924523

(OPJ) - AVALON VENTURES LTD.

Project: RALEIGH LAKE P.O. # :

Samples submitted to our lab in Thunder Bay, ON. This report was printed on 06-AUG-1999.

SAMPLE PREPARATION							
CODE SAMPLES	DESCRIPTION						
	Pulp; prev. prepared at Chemex Meta-borate fusion charge						

To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Comments: ATTN: IAN CAMPBELL

CHEMEX	NUMBER SAMPLES		DESCRIPTION		METHOD	DETECTION LIMIT	Uppei Limit
2855	14	Bappm: ICP-MS			ICP-MS	0.5	10000
2501	14	Ce ppm: ICP-MS			ICP-MS	0.5	10000
2858 2859	14	Cs ppm: ICP-MS			ICP-MS	0.1	10000
2859	14	Co ppm: ICP-MS Cu ppm: ICP-MS			ICP-MS	0.5	10000
2502	14	Dy ppm: ICP-MS			ICP-MS ICP-MS	5 0.1	10000
2503	14	Er ppm: ICP-MS			ICP-MS	0.1	1000
2504	14	Eu ppm: ICP-MS			ICP-MS	0.1	1000
2505	14	Gd ppm: ICP-MS			ICP-MS	0.1	1000
2861	14	Ga ppm: ICP-MS			ICP-MS	1	1000
2842	14	Hf ppm: ICP-MS	T		ICP-MS	ī	10000
2506	14	Ho ppm: IPC-MS	1		ICP-MS	0.1	1000
2507	14	La ppa: ICP-MS			ICP-MS	0.5	10000
2862	14	Pb ppm: ICP-MS			ICP-MS	5	10000
2508	14	Lu ppm: ICP-MS			ICP-MS	0.1	1000
2509 2863	14	Nd ppm: ICP-MS			ICP-MS	0.5	10000
2863 2844	14	Ni ppm: ICP-MS Nb ppm: ICP-MS			ICP-MS	5	10000
2510	14	Pr ppm: ICP-MS			ICP-MS ICP-MS	1 0.1	10000
2864	14	Rb ppm: ICP-MS			ICP-MS	0.2	1000 10000
2511	14	Sm ppm: ICP-MS			ICP-MS	0.1	10000
2865	14	Ag ppm: ICP-MS			ICP-MS	1	1000
2867	14	Sr ppm: ICP-MS			ICP-MS	0.1	10000
2868	14	Ta ppm: ICP-MS		1	ICP-MS	0.5	10000
2512	14	Th ppm: ICP-MS		۲	ICP-MS	0.1	1000
2869	14	T1 ppm: ICP-MS			ICP-MS	0.5	1000
2550	14	Th ppm: ICP-MS			ICP-MS	1	1000
2513	14	Tm ppm: ICP-MS			ICP-MS	0.1	1000
2870 2871	14 14	Sn ppm: ICP-MS			ICP-MS	1	10000
2549	14	W ppm: ICP-MS			ICP-MS	1	10000
2872		U ppm: ICP-MS V ppm: ICP-MS			ICP-MS ICP-MS	0.5	1000 10000
2514		Yb ppm: ICP-MS			ICP-MS	0.1	10000
2873	14	Y ppm: ICP-MS			ICP-MS	0.5	10000
2874		Zn ppm: ICP-MS			ICP-MS	5	10000
2875	14	Zr ppm: ICP-MS			ICP-MS	0.5	10000

A9924523

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Project : RALEIGH LAKE Comments: ATTN: IAN CAMPBELL

Page Number : 1-A Total Pages : 1 Certificate Date: 06-AUG-1999 Invoice No. : 19924523 P.O. Number : Account :OPJ

										CE	RTIFI	CATE	E OF A	NALY	/SIS		\9924	523		
SAMPLE	PREP CODE	Ba ppm	Ce ppm	Cs ppm	Co ppm	Cu ppm	Dy ppm	Er ppm	Eu ppm	Gđ ppm	Ga ppm	Hf ppm	Ho ppm	La ppm	Pb ppm	Lu ppm	Nd ppm	Ni ppm	Nb ppm	Pr ppm
6119 6120 6121 6122 286316	244 297 244 297 244 297 244 297 244 297 244 297	< 0.5 66.0 1.0	5.5 5.0 11.0 1.5 2.0	66.0 2850 172.0	< 0.5 < 0.5 24.5 < 0.5 < 0.5	< 5 5 15 5 5	0.8 0.8 2.5 0.6 0.4	0.1 < 0.1 1.3 < 0.1 < 0.1	< 0.1 0.5	1.5 2.4 5.5 2.2 2.0	69 62 76 56 63	2 6 2 11 4	< 0.1 < 0.1 0.5 < 0.1 < 0.1	2.5 2.0 5.0 0.5 0.5	15 5 15 10 10	< 0.1 < 0.1 0.2 < 0.1 < 0.1	2.5 2.5 6.5 1.0 1.5	< 5 < 5 60 5 5	92 82 31 88 91	0.7 0.7 1.5 0.3 0.3
286321 286323 286327 286328 286328 286342	244 297 244 297 244 297 244 297 244 297 244 297	14.5 86.5 54.0	2.0	217 520 346 186.5 165.0	< 0.5 0.5 < 0.5 < 0.5 0.5	5 5 5 5 5 5	0.6 0.9 0.8 0.4 0.4		< 0.1	1.5 2.3 1.9 0.7 1.2	65 66 71 57 61	1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	0.5 2.0 3.0 1.0 0.5	10 20 25 20 15	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	1.0 2.5 3.5 1.0 0.5	5 5 5 5 5	1090 139 102 46 70	0.2 0.6 0.9 0.3 0.1
286343 286344 286348 286349	244 297 244 297 244 297 244 297 244 297	13.5 9.0	2.5 3.5 4.5 3.0	208 227 84.8 51.3	0.5 0.5 0.5 < 0.5	5 5 5 5	0.4 0.8 1.1 0.7	< 0.1 0.1 < 0.1 < 0.1	< 0.1 < 0.1	1.9 1.9 2.8 2.6	72 68 72 70	4 7 9 5	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	1.0 1.5 1.5 1.0	10 5 5 10	< 0.1 < 0.1 < 0.1 < 0.1	1.5 2.0 2.0 2.0	5 5 5 5	65 56 54 65	0.4 0.4 0.5 0.4
																(\int	1		
												,	С	ERTIFIC	ATION:	• 2	Javel		7	*

RERUNS from A9922232

ī

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: AVALON VENTURES LTD.

851 FIELD ST. THUNDER BAY, ON P7B 6B6

Project : RALEIGH LAKE Comments: ATTN: IAN CAMPBELL Page Number : 1-B Total Pages : 1 Certificate Date: 06-AUG-1999 Invoice No. : 19924523 P.O. Number : Account : OPJ

										CE	RTIF	CATE	OF A	NAL	YSIS	4	9924	523	
SAMPLE	PREP CODE	Rb ppm	Sm ppm	Ag ppm	Sr ppm	Та ррв	Tb ppm	T1 ppm	Th ppm	Tm ppm	Sn ppm	W ppm	U ppm	V ppm	Yb ppm	Y ppm	Zn ppm	Zr ppm	
6119 6120 6121 6122 286316	244 29 244 29 244 29 244 29 244 29 244 29 244 29	7 772 7 >10000 7 1975	1.5 2.5 4.7 1.7 1.9	< 1 < 1 < 1 < 1 < 1 < 1	1.8 4.6 41.4 2.7 3.0	95.0 133.0 86.0 441 120.5	0.2 0.3 0.6 0.3 0.2	11.0 3.5 55.0 10.5 4.0	2 1	< 0.1 < 0.1 0.1 < 0.1 < 0.1	2 3 4 2 2	5 5 9 4	3.0 9.0 14.5 7.0 2.0	15 20 220 20 15	0.1 < 0.1 1.4 < 0.1 < 0.1	4.5 5.5 15.5 2.5 2.0	30 20 155 25 25	12.5 21.0 43.5 22.0 10.0	
286321 286323 286327 286328 286328 286342	244 29 244 29 244 29 244 29 244 29 244 29 244 29	7 2370 7 4320 7 2900	1.2 2.1 2.4 0.8 0.9	< 1 < 1 < 1 < 1 < 1 < 1	4.2 18.4 36.9 40.4 19.1	1810 328 106.5 62.0 179.5	0.2 0.3 0.3 0.1 0.1	11.0 11.5 19.0 12.5 10.0	3 1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	2 2 4 3 2	8 6 4 4 5	5.0 13.5 3.5 2.0 4.0		< 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1	2.5 6.0 3.5 2.5 2.0	30 80 85 15 40	7.0 17.0 3.0 2.0 11.5	
286343 286344 286348 286349	244 29 244 29 244 29 244 29 244 29	7 1680	1.6 1.5 2.4 2.0	< 1 < 1 < 1 < 1 < 1	18.2 39.5 12.4 4.0	110.0 99.0 73.5 140.5	0.2 0.3 0.4 0.3	6.0 7.5 4.5 4.5	3 2 1 2	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	2 2 1 2	4 5 5 5	4.0 4.0 3.5 4.0	15 15 20 20	< 0.1 0.1 < 0.1 < 0.1	2.0 5.0 6.0 3.5	30 35 25 25	11.5 20.5 24.0 13.0	
																	τ. Υ		
																	(

CERTIFICATION:

. .

÷

Ø 001

Chemex Labs Ltd. 212 Brooksbank Avenue North Vancouver, BC V7J 2C1

Telephone: (604) 984 0221 Fax: (604) 984 0218

Fax Cover Sheet

Company Name:	Avalon Ventures Ltd.	
Contact Name:		
Fax Number:	(807) 346 0404 4233 Sarm	

Sender:	D. Tye	
Number of Page	es: 2	
Date Sent:	July 30, 1999	

Dear Ian,

As discussed, please find enclosed the qualitative numbers for your over limit samples.

Results above the Upper Quantitation Limit for Chemex Reference A9922232

Sample	Cesium	Lithium	Rubidium	Tantalum
6118		7700	3050	
6119		9660	2130	116
6120			585	134
6121	4030	5730	10450	107
6122		970	1700	513
6123		1980	940	
6126			810	
286316			823	131
286323	504		2200	386
286324			2140	
286325			1350	
286326	803		5580	

Results are in micrograms per gram (ppm)

	(s	Li	Rb	Ta.
286327			4080	145
286329		1730	3180	
286330		1000	2050	
286331			1310	
286332			1890	
286334			1200	
286335			1370	
286336			2590	
286341			1650	
286342		3890	2020	186
286343		5070	1390	101
286345			528	
286346		3560	962	
286347			526	
286349		2230	766	111

As I mentioned, we do not normally provide results above the upper quantitation limit for the method. Instead, we refer to our assay procedures to provide our client results. I have requested that further information be sent to you on some other analytical packages that may be of use. If I can be of any further assistance, please let me know.

Yours truly,

David Tye Director, Assay and Geochem Services Appendix 2

Drill Hole Logs

RL99-01 to RL99-05

· · · · · · · · · · · · · · · ·

DIAMOND DRILL LOG

Jac Rad-Logged by: J.C. Pedersen

Date: September 1999

Down-hole Survey: Acid

Contractor: Bradley Bros.

PROPERTY: Raleigh Lake HOLE No.: 99-01 Collar Eastings: 5525.00 Collar Northings: 5000.00 Collar Elevation: 2.00 Grid: AVL 000 NQ Core

то

FROM

Collar Inclination: -70.00 Grid Bearing: 270.00 Final Depth: 146.00 metres Drilled Sept 23-24, 1999 Casing left in hole

ASSAYS SAMPLE NO. WIDTH Ta205% Rb20% Nb205% Sn02% Li20% Cs20% FROM то

0 4.00 CASING AND OVERBURDEN Sandy clay.

4.00 24.20 METABASALT Fine grained, dark green-grey, semimassive, with moderate foliation, chloritized, with common concordant to discordant conjugate quartz fractures. Increasingly chloritized downhole. Common fine disseminated pyrite and pyrhotite, up to 0.5%. Local 1 cm. concordant pink feldspathic veins. Core locally blocky and clayey, as at 13.00 and 21.50 - 23.00. Minor hematite-limonite along fractures. Pyrite mainly disseminated, also in very fine cross-cutting fractures, as at 20.50. Local narrow quartzepidote veinlets with minor calcite.

LITHOLOGICAL DESCRIPTION

Core angles (foliation): 7.50 - 35 deg. 20.00 - 37 deg.

24.20 29.20 SILICIFIED / HEMATIZED METABASALT Dark grey-pink,

aphanitic, with common coarse brecciated sections. Abrupt irregular cross-cutting contacts with unaltered basalt, with distinct intrusive appearance. Local partially preserved basalt xenoliths (?) are strongly chloritized. Strong hematization of interstitial pyrite and along anastomosing fractures. Preserved

DIAMOND DRILL LOG

		Raleigh Lake 99-01											Pa	ge	2
FROM	то	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	то			ASSAYS					 		
T KOM	10		SAMPLE NO.	P KOPI	10	WIDTH	Ta205 %	Rb20%	Nb205%	Sn02 %	Li20%	Cs20%			
		basalt at 25.50 - 25.80 and 27.80 - 28.60. Appears to be a													
		distinct, discrete zone of silica flooding.													
29.20	37.60	QUARTZ EPIDOTE ALTERATION ZONE Intense alteration and													
		silica flooding with remnant highly chloritized basalt. Chaotic													
		banding and rotation of coarse basalt fragments. Strongly													
		magnetic, due to common disseminated pyrrhotite. Abundant quartz													
		veins, commonly with light green hue imparted by epidote.													
		Possible ankerite imparting locally common buff colour. Disseminated sulphides average 3%, up to 6% and locally as high													
		as 10%, mainly pyrrhotite, with lesser pyrite and chalcopyrite.													
		Pyrrhotite commonly in coarse 1 cm blebs, pyrite locally in fine													
		cross-cutting stringers. Local orange feldspathization. More													
		mafic, with 5 to 7% disseminated pyrrhotite at 31.20 - 33.90.													
37.60	64.00	METABASALT As previous, but with very common narrow													
		alteration zones with quartz-epidote, orange feldspathic													
		veinlets, and quartz-carbonate breccia zones. Basalt is very													
		hard and silicified with chloritized mafics. Local disseminated													
		pyrite and pyrrhotite. Essentially non-magnetic except in presence of local disseminated pyrrhotite.													
		41.50 - 20 cm. Calcite-quartz vein with cockscomb calcite													
		lining vug.													
		46.90 - 47.80 Quartz-carbonate (ankerite?) breccia, matrix													

•

.

,

1

.

DIAMOND DRILL LOG

		: Raleigh Lake : 99-01											E	age	3
FROM	то	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	то	width		ASSAYS Rb20%	Nb205 %	Sn021	Li20 %	Cs20 %	 		
		supported, with angular 1mm to 3 cm basalt fragments. Trace pyrite and chalcopyrite in coarser veins. Common anastomosing hairlike fractures subparallel to core axis.													
		Foliation at 38.00 - 38 deg.													
64.00	73.30	QUARTZ EPIDOTE (ANKERITE?) ALTERATION ZONE As previous. Buff coloured ankerite-(quartz-epidote) commonly fragmented by white quartz stringers and veinlets. Common partially preserved basalt fragments. Granular buff green alteration, soft, could be ankerite or scapolite, quite common in irregular veins and masses, with up to 8% pyrrhotite and common disseminated chalcopyrite, as at 67.80 - 68.40. Basalt silicified but less altered at 70.75 - 72.60.													
73.30	74.28	ALBITIZED PEGMATITE Salmon pink, coarse to megacrystic, almost completely albitized feldspathic pegmatite. Relict megacrystic pink K-feldspar. Local porous texture due to abundant miarolitic cavities with fine clear albite (adularia?) crystals. Trace fine late pyrite cubes. Trace fine Ta-minerals. Contacts cross-cutting, subperpendicular to core axis.	6201	73.30	74.28	0.98	0.015	0.138	0.008	0.001	0.177	0.005			
74.28	80.05	QUARTZ EPIDOTE (ANKERITE?) ALTERATION ZONE As previous. Undulatory banding, irregular, commonly subparallel to core axis.													

PROPERTY: Raleigh Lake HOLE No.: 99-01

i

1

.

DIAMOND DRILL LOG

		99-01											Pag
								ASSAYS					
Rom	TO	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	TO	WIDTH	Ta205 %	Rb20%	Nb205*	Sn021	Li20%	Cs20%	
		78.45 - 78.50 Feldspathic pegmatite. Contacts cross-cutting											
		basalt at 35 deg. to core axis.											
. 05	82.60	ALBITIZED K-FELDSPAR SPODUMENE PEGMATITE Salmon pink	6202	80.05	80.90	0.85	0.026	0.284	0.014	NIL	0.001	0.016	
		colour, two distinct phases: an upper spodumene-bearing phase,	6203	80.90	82.60	1.70	0.010	0.141	0.008	0.001	0.001	0.005	
		and a lower K-feldspar-quartz phase which is pinker in colour and											
		strongly albitized, and porous with common 1mm to 1cm miarolitic											
		cavities. Common coarse black aphanitic clayey alteration in											
		coarse patches to 1 cm in middle of section, possibly completely											
		replaced spodumene. Local disseminated pyrite. Minor disseminated opaque oxides in spodumene zone (80.05 - 80.80).											
		Common fine disseminated, clear to light orange pink spessartine											
		garnet, particularly associated with albite (mainly cleavelandite)											
		in spodumene zone. Contacts subperpendicular to core axis, at											
		high angle to basalt.											
. 6 0	83.95	QUARTZ EPIDOTE (ANKERITE?) ALTERATION ZONE As previous.											
3.95	92.40	SPODUMENE PEGMATITE Coarse to megacrystic, salmon	6204	86.95	87.70	0.75	0.006	0.046	0.000				
		pink pegmatite with coarse partially replaced K-feldspar, and	6205	87.70	88.00	0.30	0.006	0.046	0.003	NIL	0.055	0.005	
		coarse green partially corroded spodumene. Common coarse grey	6205	88.00	89.10	1.10	0.018	0.165	0.010	0.001 0.001	0.353 0.988	0.014 0.017	
		white quartz, particularly at upper boundary. Pink grey	6207	89.10	89.90	0.80	0.011	0.274	0.008	NIL	0.988	0.023	
		K-feldspar commonly replaced by medium grained cleavelandite.	6208	89.90	90.40	0.50	0.017	0.030	0.008	0.001	0.006	0.005	
		Spodumene crystals exhibit sharply corroded boundaries, and	6209	90.40	90.80	0.40	0.007	0.174	0.008	0.001	1.748	0.016	
		commonly partially to completely replaced by aphanitic serpentine-	6210	90.80	91.20	0.40	0.010	0.228	0.013	0.001	0.809	0.018	

DIAMOND DRILL LOG

PROPERTY: HOLE No.:	Raleigh Lake 99-01	DIAMON	D DRI	LL LOC	3							Pag	ge 5
FROM TO	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	то	WIDTH	Ta205%	ASSAYS Rb20%		Sn028	Li20%	Cs20%	 	
	like alteration product. Local medium to coarse yellow-white muscovite. Several areas with fine to coarse oxides, likely microlite, at least in part, observed across dike. Crude zoning, with guartz, spodumene-K-feldspar-guartz, and K-feldspar-albite zones going from hanging wall to foot wall.	6211 6212	91.20 91.60	91.60 92.40	0.40 0.80	0.012 0.004	0.106 0.498	0.009 0.009	0.001 NIL	0.121 0.001	0.005 0.031		
	86.95 - 87.00 Cleavelandite replacement zone.												
	87.00 - 87.70 Quartz zone, with minor salmon pink feldspar and isolated spodumene crystals at lower boundary, and coarse opaques to 1 cm. with brown luster and streak.												
	87.70 - 89.10 Spodumene - K-feldspar zone, as described, with common opaque oxides.												
	89.10 - 89.90 K-feldspar - quartz - albite zone with mottled texture and fine dark interstitial and fracture filling.												
	89.90 - 91.65 Spodumene - K-feldspar - albite. As previous, but with more albitic replacement, particularly saccharoidal sections with very common fine disseminated opaques, possible microlite.												
	91.65 - 92.40 Albitized K-feldspar zone. Coarse, light pink, some cleavelandite.												

į

.

į

İ

÷

DIAMOND DRILL LOG

PROPERTY HOLE No.	: Raleigh Lake : 99-01											Page	6
FROM TO	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	то	width	Ta205 %	ASSAYS Rb20%	Nb205 %	Sn02\$	Li20%	Cs20%		
92.40 146.0	METABASALT As previous, with common intermittent quartz-epidote-ankerite? alteration, decreasing down section, particularly after 99.00. Common buff-grey to green alteration bands and patches, generally with few sulphides, similar to silicified alteration zone, but could be calc-silicate horizons/ nodules. Disseminated pyrrhotite and pyrite throughout, <1% except in local areas. Mafics chloritized. Common shallow angle quartz fractures, including local quartz-feldspar-epidote veins and patches. Quartz vein (10 cm) at 109.00. Foliation / core angles vary from 23 to 38 deg., average 35 deg.												
	DOWN-HOLE SURVEY DATA												
	DEPTH INCLINATION BEARING												

DIAMOND DRILL LOG

PROPERTY: Raleigh Lake HOLE No.: 99-02 Collar Eastings: 5650.00 Collar Northings: 4865.00 Collar Elevation: 5.00 Grid: AVL 000 NO Core

3.00

Collar Inclination: -90.00 Grid Bearing: 270.00 Final Depth: 173.00 metres Drilled Sept 24-26, 1999 Casing left in hole

Logged by: J.C. Pedersen Date: AVL 000 Down-hole Survey: Acid Contractor: Bradley Bros.

ASSAYS FROM TO LITHOLOGICAL DESCRIPTION SAMPLE No. FROM TO WIDTH Ta205% Rb20% Nb205% Sn02% Li20% C520%

0 3.00 CASING AND OVERBURDEN 1 metre sandy clay.

43.00 **METABASALT** Dark green-grey, very chloritic, fine to medium grained, common irregular lenses and "nodules" of quartzepidote-diopside, likely calc-silicate, with local coarse glassy grossular garnet. Matrix and mafic phenocrysts of metabasalt strongly chloritized. Foliation variable, generally at low angles to core axis, to subparallel. Irregularly oriented concordant to cross-cutting quartz stringers, fractures, and veins common, increasing dramatically downsection after 30.00. Some appear to be calc-silicate and of irregular shape and orientation, to 20 cm., with associated epidote/diopside, locally with grossular, as at 35.30. Entire section weakly to strongly magnetic, due probably to finely disseminated and fine stringers of pyrrhotite. Fine pyrite locally associated with pyrrhotite; average 0.5%, up to 2-3% sulphides, particularly in strongly chloritized sections. Trace chalcopyrite. Locally common fine to medium chlorite fractures and stringers.

20.50 - 20.95 Quartz vein / lens with coarse glassy bronzy diopside, likely calcareous-siliceous lens.

DIAMOND DRILL LOG

		Raleigh Lake 99-02										Page	2
FROM	то	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	то	WIDTH	 ASSAYS Rb20%	Sn02 %	Li20%	Cs20 %	 		
		40.30 - 40.70 FELDSPAR PORPEYRY See description below.											
		Sharp contacts upper contact - 34 deg. lower contact - 44 deg.											
		Core angles: 13.00 - 15 deg. 27.00 - 29 deg.											
43.00	50.30	FELDSPAR FORPHYRY Light grey, medium grained, massive,											
		homogeneous, vague foliation. Subvolcanic intrusive. Feldspar											
		phenocrysts subhedral, 1-2 mm. Fine interstitial biotite,											
		including fine chloritic blebs and silvery sericite grains. Vague alteration, trace fine disseminated sulphides. Appears to											
		be a fairly unaltered, felsic-intermediate intrusive. Sharp											
		contacts at 20 deg. (upper) and 27 deg. (lower).											
50.30	89.85	METARASALT As previous. Weakly magnetic. Very											
		common irregular quartz-epidote-diopside veins and lenses.											
		Foliation flattening to parallel with core axis at 58.00.											
		Common fine cross-cutting conjugate quartz fractures and											
		stringers, commonly ptygmatically folded, as at 66.00, with axial plane parallel with core axis.											
		Core angles: 58.00 - 00 deg. 59.50 - 5 deg. 67.00 - 14 deg.											
		76.00 - 11 deg.											
89.85	100.85	FELDSPAR PORPHYRY As previous. Sharp, shallow angle											
		contacts at 9 deg. (upper) and 6 deg. (lower). Local fine quartz fractures with bleached haloes, generally at 45 deg. to core											
		fractures with situations, generally at 45 deg. to core											

.

DIAMOND DRILL LOG

PROPERTY: HOLE No.:	: Raleigh Lake : 99-02	DIAMOR	U DRI	.Uц цц	6							Pag	ge 3
FROM TO	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	 TO	width		ASSAYS Rb201		Sn02 %		Cs20 %	 	
	axis. Quartz vein (10 cm) at 90.80. Very minor fine disseminated pyrite.												
100.85 104.70	METABASALT / CALC-SILICATE As previous, strongly chloritic, with very common lenses / horizons of grossular calc- silicate. Coarse orange grossular to 4 cm with intercleavage calcite, mantled by quartz-epidote-diopside. Metabasalt locally strongly magnetic due to fine grains, blebs, and stringers of pyrrhotite, lesser pyrite. Trace chalcopyrite, often in association with calc-silicate. Core angles very shallow and undulating.												
104.70 111.30	ALBITIZED SPODUMENE PECHATITE Heterogeneous, crudely zoned, with intense albitic replacement, particularly at the footwall. Hanging wall is essentially monominerallic, megacrystic light salmon pink K-feldspar, with local medium grained white radiating cleavelandite replacement. "Wall zone" to 105.25 is whiter, with coarse cleavelandite replacement and local coarse residual glassy grey quartz. Coarse 10 cm aggregates of green muscovite and with albite at 105.60 and 106.80. Coarse green spodumene appears at 107.20, generally mantled by coarse green muscovite. After 107.70, quartz hosts green spodumene with local pink corroded K-feldspar, commonly with white albitic mantles. Spodumene is unaltered but with corroded crystal boundaries. Local deep orange garnets likely spessartine.	6213 6214 6215 6216 6217 6218	104.70 106.00 107.15 108.60 110.40 110.70	106.00 107.15 108.60 110.40 110.70 111.30	1.30 1.15 1.45 1.80 0.30 0.60	0.002 0.004 0.009 0.014 0.007 0.011	1.067 1.156 0.652 0.010 0.711 0.038	0.016 0.018 0.012 0.007 0.009 0.005	0.001 0.002 0.001 NIL 0.001 0.001	0.023 0.042 1.901 0.004 0.558 0.015	0.089 0.101 0.058 0.005 0.552 0.013		

Ŧ

.

Trace oxides / opaques.

DIAMOND DRILL LOG

		Raleigh Lake 99-02	DIAMON	D DRII	OJ JL	G							Page	4
FROM	то	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	то	WIDTH	Ta205 %	ASSAYS Rb201	Nb2051	Sn02 %	Li20%	Cs20 %		
		Upper contact - 90 deg. lower contact - 45 deg.												
		104.70 - 107.50 Monominerallic K-feldspar as described.												
		107.50 - 108.60 Spodumene - K-feldspar - quartz, as described.												
		108.60 - 110.40 Aplitic to saccharoidal albite with microlite, as described, very common fine white to light orange spessartine. Spessartine commonly partially mantled by fine black alteration. 110.40 - 110.70 Mafic xenolith, highly altered and replaced by metasomatic biotite (glimmerite) and holmquistite. Sharp contacts at 45 deg. to core axis, with narrow 1 cm fine white aplitic albite exocontacts.												
		110.70 - 111.30 Aplitic albite with microlite as previous, with local coarser (1 cm) radiating grey-white cleavelandite. Abundant fine deep dioptase-green mineral, glassy, but with local aphanitc alteration. Common pseudo-triangular cross-sections, resultant of location at intersections of radiating cleavelandite lathes. Mineral imparts fine spotted texture to core. Local fine microlite.												

111.30 132.50 METABASALT / CALC-SILICATE As previous.

i

.

PROPERTY: Raleigh Lake

HOLE No.: 99-02

1

DIAMOND DRILL LOG

ASSAYS FROM то LITHOLOGICAL DESCRIPTION SAMPLE No. FROM TO WIDTH Ta205% Rb20% Nb2051 Sn02**%** Li20% Cs20% 132.50 133.35 ALBITIZED K-FELDSPAR QUARTZ PEGMATITE Megacrystic, 6219 132.50 133.10 0.005 0.60 0.235 0.005 NTL. 0.005 0.016 generally blocky salmon-pink K-feldspar in coarse glassy grey 6220 133.10 133.35 0.25 0.015 0.136 0.009 0.001 0.016 0.005 quartz, with both boundaries albitized and replaced by fine aplitic albite and coarser cleavelandite. Hanging wall comprised of 10 cm of coarse cleavelandite, with minor trace Ta-minerals. Trace molybdenite. 132.50 - 133.10 Cleavelandite hanging wall and "core" K-feldspar - quartz. 133.10 - 133.35 Generally albitized with local fine disseminated Ta-minerals, local coarse muscovite. Contacts at 76 deg. (upper) and 74 deg. (lower). 133.35 158.40 METABASALT / CALC-SILICATE As previous. Grossular decreasing after 138.00. Core angles subparallel with core axis. 158.40 159.60 ALBITIZED K-FELDSPAR QUARTZ PEGMATITE Sharp contacts 6221 158.40 159.60 1.20 0.010 0.178 0.013 0.001 0 007 0.005 with no visible exocontact alteration, upper contact at 34 deg., lower at 52 deg. Coarse to megacrystic, generally salmon pink K-feldspar megacrysts with coarse glassy grey quartz and intermittent albitized sections, both at contacts and internally. Abundant fine disseminated pseudo-opaque to opaque minerals, a number of which appear to be pink-orange glassy garnet with opaque mantles, and fine sulphides, in part pyrite. Trace dioptase-green glassy mineral grains. Numerous identifiable

Page 5

DIAMOND DRILL LOG

		Raleigh Lake 99-02											Page	6
FROM	то	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	то	WIDTH	Ta205%	ASSAYS Rb20%	Sn02 %	Li20 %	Cs20%	 		
		tantalite and microlite grains, particularly in, but not exclusive to, albitized units. One 4mm molybdenite grain in quartz. Late fine cross-cutting yellow-green mica stringers at top of section. Local chloritic(?) alteration of dark mineral grains / blebs.												
159.60		METABASALT As previous sections, with decreasing calc-silicate horizons after 165.00. Generally chloritic metabasalt. Siliceous "layers" appear deformed and pulled apart, likely disjointing related to strong flattening stresses.												
		DOWN-HOLE SURVEY DATA												
		DEPTH INCLINATION BEARING												

1

.

DIAMOND DRILL LOG

PROPERTY: Raleigh Lake HOLE No.: 99-03 Collar Eastings: 5900.00 Collar Northings: 5200.00 Collar Elevation: 2.00 Grid: AVL 000 NO Core

Collar Inclination: -90.00 Grid Bearing: 270.00 Final Depth: 59.00 metres Drilled Sept 26-27, 1999 Casing pulled from hole

Logged by: J.C. Pedersen Date: September 1999 Down-hole Survey: Acid Contractor: Bradley Bros.

ASSAYS FROM TO LITHOLOGICAL DESCRIPTION SAMPLE No. FROM TO WIDTH

0 7.00 CASING AND OVERBURDEN Sandy clay, boulders.

7.00 59.00 FELDSPAR PORPHYRY / GRANODIORITE Massive, medium grained, medium to dark grey, with abundant 0.5 to 2 mm subhedral feldspar phenocrysts. Aphanitic matrix with common interstitial biotite. Very fine grained chalky mineral / alteration interstitially, possible sericite, associated with biotite. Local disseminated pyrite. From 26.00 - 38.00 very common highly siliceous alteration, aphanitic to cherty, in lenses and veins to 30 cm, likely silica flooding. Later glassy quartz veins cross-cutting fine silica zones. Trace associated fine grained pyrite, lesser pyrrhotite and chalcopyrite. Possible stockwork. Minor local porous veinlets with pyrite and calcite, as at 34.00. Mafic xenoliths at 25.00 to 25.80 and 27.60 to 27.90.

DOWN-HOLE SURVEY DATA

DEPTH INCLINATION BEARING

59.00 -88.00

DIAMOND DRILL LOG

PROPERTY: Raleigh Lake HOLE No.: 99-04 Collar Eastings: 5325.00 Collar Northings: 5000.00 Collar Elevation: 5.00 Grid: AVL 000 NQ Core

- İ

Collar Inclination: -90.00 Grid Bearing: 270.00 Final Depth: 75.00 metres Drilled Sept 27-28, 1999 Casing left in hole

6

Logged by: J.C. Pedersen Date: September 1999 Down-hole Survey: Acid Contractor: Bradley Bros.

								ASSAYS					
FROM	TO	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	то	WIDTH	Ta205%	Rb20 %	Nb205%	SnO2%	Li20%	Cs20%	
0	3.00	CASING AND OVERBURDEN 1 metre sandy clay.											
3.00	26.00	METABASALT Dark green-grey, fine grained, with common narrow bands / horizons of fine to medium grained partially bleached almandine garnet. Weakly to strongly magnetic, strongest in areas with more pervasive disseminated and stringers of pyrrhotite. Mafics chloritized. Very minor fine cross- cutting quartz stringers. Bands with coarse pyrite and subordinate pyrrhotite common. Average sulphide content 1 - 2%, up to 8% in horizons to 20 cm. Sulphides primary and concordant with foliation, which averages 45 deg. Commonly siliceous matrix, particularly with presence of garnets.											
26.00	31.40	ALBITE SPODUMENTE PECMATITE Contacts subperpendicular to core axis, at 72 deg. (upper) and 79 deg. (lower). Heterogeneous, but primarily albitized by radiating white cleavelandite overgrowing quartz - K-feldspar matrix hosting average 20% light tan to green spodumene. Spodumene occurs as coarse ragged light green crystals 2 to 15 cm long, oriented at shallow angle to core axis, commonly subparallel. Light tan spodumene with same orientation, average 1 to 2 cm long, and a	6222 6223 6224 6225 6226	26.00 27.30 28.30 29.40 30.50	27.30 28.30 29.40 30.50 31.40	1.30 1.00 1.10 1.10 0.90	0.012 0.006 0.011 0.010 0.016	0.114 0.331 0.289 0.158 0.124	0.010 0.011 0.013 0.011 0.009	0.001 0.001 0.001 0.001 0.001	0.792 2.187 1.410 0.297 0.040	0.012 0.024 0.022 0.011 0.005	
													HOLE No: 99-04

PROPERTY: Raleigh Lake

-

DIAMOND DF	SITT TOG
------------	----------

HOLE	No.:	: 99-0 4											Page 2
								ASSAYS					
FROM	TO	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	то	WIDTH	Ta205%	Rb20%	Nb205 %	Sn02%	Li20%	Cs20%	
		third zone of much smaller green white randomly oriented spodumene											
		crystals at 28.00 - 28.30. Local coarse light salmon coloured											
		K-feldspar associated with coarse green spodumene, generally											
		partially replaced by radiating cleavelandite. Very minor											
		saccharoidal albite, predominantly cleavelandite ranging from											
		<.5 cm to 3 cm, aplitic albite bands with fine green mica at											
		28.30 and 28.50. Coarse 2 mm equant microlite crystal											
		interstitial to green spodumene in quartz at 28.40. Muscovite											
		common throughout, generally as coarse disseminated blebs, minor											
		fine stringers. Local narrow concentrations of minute pseudo-											
		opaque mineral associated with cleavelandite, commonly altering											
		to brilliant dioptase-green, soft alteration; common											
		pseudotriangular habit resulting from location interstitial to											
		radiating cleavelandite blades. This mineral may be unusual											
		sulphide, and when not completely altered has brown-black colour,											
		and could be confused with microlite. Local trace identifiable											
		microlite, including fine tabular tantalite at 30.90. Unusual											
		bronze yellow staining of mainly cleavelandite from 29.40 to											
		30.00. Local fine glassy orange spessartine.											
		26.00 - 27.30 Coarse green spodumene, albitized pink K-feldspar,											
		fine to coarse grained, very common minute green sulphide (?),											
		particularly in finer cleavelandite-rich sections. Locally common											
		disseminated opaques, mainly green sulphide (?).											
		27.30 - 28.30 Tan coloured, corroded spodumene upper 60 cm,											
		fine white-green spodumene lower 30 cm, as described. Trace											
		fine opaques.											

DIAMOND DRILL LOG

		Raleigh Lake 99-04											Pa	ige	3
FROM	то	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	то	WIDTH	Ta205 %	ASSAYS Rb201	Nb205 %	Sn02%	Li20%	Cs20 %	 		
		28.30 - 29.40 Coarse green spodumene in quartz at top 20 cm, with microlite crystal as described, then darker grey, mottled texture with grey-green corroded spodumene with interstitial coarse mica in quartz. Trace opaques.													
		29.40 - 30.50 Top of section with bronze yellow discoloration(?) of mainly cleavelandite, becoming pinker downsection. Numerous fine opaques with cleavelandite, many of which may be unusual sulphide.													
		30.50 - 31.40 Whiter, highly albitic, including white albite (?) and light sea-green albite (?) at top of section. Common disseminated opaques, mainly sulphide (?), but also several distinct fine tantalite and microlite grains, as at 30.90.													
31.40	52.40	METABASALT As previous. Garnetiferous horizons sporadic and decreasing downhole. Weakly magnetic. Lighter grey, fine grained horizon with fine concordant and horsetailing "dendritic" stringers of pyrite to 10%, from 39.20 to 40.60, likely waterlain cherty tuff / volcaniclastic, continuing devoid of pyrite to 42.80. At 49.60 5 cm quartz vein at 45 deg. to core axis. Bedding at 42.00 parallel with foliation, at 45 deg. to core axis.													

52.40 53.00 ALBITIZED PEGNATITE Grey-green, fine to medium 6227 52.40 53.00 0.60 0.014 0.156 0.010 0.001 0.032 0.005

į

.

DIAMOND DRILL LOG

LE N	o.:	99-04											Page
om :	то	LITHOLOGICAL DESCRIPTION	SAMPLE NO.	FROM	то	WIDTH	Ta205 %	ASSAYS Rb20ł	Nb2058	Sn028	Li20%	C\$20 1	
		grained banded pegmatite with 5 cm coarse muscovite-quartz border zones. Predominantly fine grained grey-white cleavelandite, with distinct sea-green cast in lower section. Very common minute brown opaques, also fine dioptase-green alteration, which may be an interstitial fill rather than in situ alteration of primary mineral(?). Sharp contacts at 77 deg. (upper) and 70 deg. (lower).											
00 56.	.90	METABASALT As previous. Becoming coarser grained, with 0.5 cm chloritized mafic phenocrysts. Trace sulphides, no garnets, very little calc-silicate, generally quite homogeneous. Abundant acicular randomly oriented holmquistite to 2 cm from 56.00 to contact with pegmatite.											
90 58.	.50	ALBITIZED SPODUMENE PEGMATITE Sharp contacts sub-	6228	56.90	57.35	0,45	0.018	0.226	0.012	0.001	0.046	0.012	
		perpendicular to core axis. Heterogeneous, crudely zoned with	6229	57.35	57.75	0.40	0.010	0.314	0.012	0.001	1.076	0.015	
		spodumene-quartz-K-feldspar core and albitized border zones. Coarse mottled quartz-albite with green muscovite (10cm) at both contacts, becoming abruptly highly albitic, fine to medium grained, mottled texture, with very common fine disseminated dark minerals, including dark altered garnet, sulphides (?), and Ta-minerals, both microlite and fine (pseudo)-acicular tantalite. Also common fine sea-green mineral, possible alteration product. Local coarse partially replaced salmon pink K-feldspar. Narrow core with coarse green spodumene oriented subparallel to core axis in coarse quartz-K-feldspar matrix, minor green muscovite,	6230	57.75	58.50	0.75	0.019	0.171	0.012	0.001	0.332	0.011	

1

•

	D	IAMOND	DRILL	LOG
--	---	--------	-------	-----

		Raleigh Lake 99-04	DIAMONE	DRIE		G							Pa	ge	5
FROM	то	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	то	WIDTH	Ta205 %	ASSAYS Rb20%	 Nb205%	Sn02 %	Li20 %	Cs20%	 		-
		and trace opaques, at 57.35 to 57.75. Vague banding (albite - fine green mica) locally. Medium grained white cleavelandite common, possible two phases of albitization. Coarser tabular dark micaceous assemblages may be completely replaced spodumene. Well developed microlite at 57.80.													
58.50		METABASALT As above. Acicular holmquistite to 59.50, as at hanging wall.													
		Core angles: 63.00 - 44 deg. 70.00 - 45 deg.													
		DOWN-HOLE SURVEY DATA													
		DEPTH INCLINATION BEARING													
		75.00 -89.00													

:

-

DIAMOND DRILL LOG

PROPERTY: Raleigh Lake HOLE No.: 99-05 Collar Eastings: 5600.00 Collar Northings: 4858.00 Collar Elevation: 2.00 Grid: AVL 000 NQ Core

3.00

Collar Inclination: -70.00 Grid Bearing: 300.00 Final Depth: 149.00 metres Drilled Sept 28-30, 1999 Casing left in hole

Logged by: J.C. Pedersen Date: September 1999 Down-hole Survey: Acid Contractor: Bradley Bros.

Cs20%

Li20%

ASSAVC FROM то LITHOLOGICAL DESCRIPTION SAMPLE No. FROM TO WIDTH Ta205% Rb20% Nb205% Sn02

0 3.00 CASING AND OVERBURDEN Sandy clay, boulders.

27.30 **METABASALT** Dark green-grey, fine to medium grained, heterogeneous textures, mainly due to abundant quartz-epidotediopside-carbonate(?) veins and lenses, which likely represent deformed calcareous (calc-silicate) horizons in volcanics. Weakly to moderately magnetic, common disseminated pyrrhotite, lesser pyrite, up to 6%, average <1%. Local biotite replacement of mafics. Sulphides generally associated with mafic horizons. Numerous narrow (<lcm) concordant quartz veins, including fine ptygmatically folded cross-cutting stringers, as at 19.00.

Core angles: 14.00 - 35 deg. 18.00 - 42 deg.

27.30 28.70 FELDSPAR PORPHYRY Massive, fine grained, medium grey subvolcanic intrusive with abundant fine 0.5 to 2 mm subhedral white feldspar phenocrysts in aphanitic matrix with interstitial biotite. Trace to 0.5% fine disseminated pyrrhotite and pyrite. Minor fine cross-cutting guartz stringers. Sharp contacts at 18 deg. (upper) and 25 deg. (lower).

			-											
PROPER HOLE N	2TY: Ra 10.: 99	leigh Lake 05	DIAMON	D DRI	LL LO	67							Page	e 2
FROM 1	TO	LITHOLOGICAL DESCRIPTION	SAMPLE NO.	FROM	 то	WIDTH	Ta205%	ASSAYS Rb20%		Sn021	Li20%	Cs20%		
28.70 32.	.25 Meta	BASALT As previous. Foliation at 20.00 - 47 deg.												
32.25 34.	65 de coars "inte Aplie disse impas be ea green assoc albit numer	TIZED SPODUMENE PEGNATITE Sharp contacts at eg. (upper) and 67 deg. (lower). Crudely zoned with narrow se K-feldspar-quartz-muscovite borders, aplitic albite ermediate" zone, and spodumene-K-feldspar-quartz "core". tic albite is fine grained, light grey-pink, with minute eminated quartz eyes and spessartine garnet, local green hue tred by fine disseminated muscovite. Weakly banded and may arly phase (?). Spodumene core is heterogeneous, with light a ragged spodumene crystals to 5 cm, average 10 to 15%, ciated with coarse quartz - K-feldspar, and medium grained tic matrix (cleavelandite) with coarse quartz blebs and crous disseminated opaques. Spodumene occurs from 0 to 33.90.	6231 6232 6233 6234	32.25 32.50 33.45 33.95	32.50 33.45 33.95 34.70	0.25 0.95 0.50 0.75	0.012 0.019 0.023 0.028	0.213 0.362 0.213 0.129	0.008 0.010 0.011 0.009	0.001 0.001 0.001 0.001	0.141 1.285 0.934 0.159	0.088 0.025 0.016 0.005		
	32.25 opaqu	; - 32.50 Border zone and aplitic albite. Trace minute nes.												
	32.50 disse	 - 33.45 Spodumene zone, coarse grained, trace to uncommon minated opaques. 												
	cleav	- 33.95 Predominantly medium grained light pink elandite with common disseminated opaques, including fine line												

1

.

microlite.

DIAMOND DRILL LOG

		: Raleigh Lake : 99-05	DIAMON	D DRII								Page	: 3
FROM	то	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	то	WIDTH	Ta205¥	ASSAYS Rb20%	Sn021	Li208	Cs20 %	 	
		33.95 - 34.70 Aplitic albite, some cleavelandite at top of section, local disseminated fine opaques.											
34.70	47.00	METABASALT As previous. Local grossular in quartz- albite-epidote lenses.											
		43.50 - 45.40 Banded siliceous horizon with local 3 to 6 mm bands of pyrrhotite-pyrite, to 15%, average 2 to 4%. Common overgrowing chloritized acicular randomly oriented amphibole.											
		Core angles consistent at 35 deg.											
47.00	49.45	FELDSPAR PORPHYRY As previous. Contacts at 47 deg. (upper) and 45 deg. (lower). Contacts concordant with foliation / bedding. Vague foliation (magmatic), generally massive.											
49.45	64.80	METABASALT / CALC-SILICATE As previous, but abundant quartz-epidote-diopside horizons and lenses, commonly banded, generally contorted and disjointed lenses. Local associated coarse grossular. Common 1 to 2 mm overgrowing randomly oriented chloritized acicular amphibole in these units.											
		49.50 - 55.50 Highly siliceous, banded, with local tight folds (flattening), common narrow concordant bands / stringers of											

ļ

.

PROPERTY: Raleigh Lake HOLE No.: 99-05

ţ

DIAMOND DRILL LOG

HOLE	S NO.	: 99-05											Page 4
FROM	TO	LITHOLOGICAL DESCRIPTION	SAMPLE NO.	FROM	то	WIDTH	Ta205%	ASSAYS Rb20%		Sn02 1	Li20%	Cs20 ł	
		pyrrhotite / pyrite, epidote, minor grossular, and local overgrowing amphibole. Sulphides average 3%, up to 8% locally.											
64.80	66.80	ALBITIZED PEGMATITE Upper contact at 66 deg., lower	6235	64.80	65.97	1.17	0.022	0.256	0.011	0.001	0.009	0.013	
		contact ground, possible fault contact. Highly albitized, with	6236	65.97	66.10	0.13	0.011	0.028	0.005	NIL	0.009	0.005	
		quartz "core", and several coarse light salmon pink partially	6237	66.10	66.80	0.70	0.039	0.039	0.016	0.001	0.029	0.005	
		replaced K-feldspar. Albitic sections generally fine grained											
		and crudely banded. Pseudo-aplitic albite is very fine radiating											
		cleavelandite. Numerous opaques, but generally small altered garnets. Local fine disseminated dioptase-green mineral. Very											
		minute disseminated pseudo-acicular oxides, likely tantalite											
		(ilmenite?).											
		64.80 - 65.67 Albitized coarse K-feldspar, abundant fine albite,											
		very fine disseminated opaques in albite, including fine pitted											
		garnet and fine green acicular mineral.											
		65.67 - 66.10 Quartz "core".											
		66.10 - 66.80 Fine albitite (cleavelandite) with orange garnets											
		and very fine acicular opaques.											
66.80	107.88	WETABAGAIT DO EVENIONS ANOTALIS											
	107.00	METABASALT As previous, greatly decreased calc-silicate, essentially disappearing after 89.00. Unit is fine grained,	6244	85.90	86.25	0.35	0.014	0.058	0.008	0.001	0.174	0.005	
		relatively homogeneous, chloritic, with trace sulphides.											
		Becoming coarser grained and "spotted" after 89.00. Weakly											

SAMPLE No.

DIAMOND DRILL LOG

FROM

то

WIDTH Ta205%

PROPERTY: Raleigh Lake HOLE No.: 99-05

Page 5

FROM TO LITHOLOGICAL DESCRIPTION

magnetic. Foliation variable and contorted, common flattening and disjointing of calcareous lenses, foliation varies from 10 deg. to 45 deg., generally appears moderately flatter than previous, at 25 deg. to 30 deg. After 89.00, very homogeneous, consistent foliation at 36 deg. to 42 deg. to core axis, likely massive flow. Local cross-cutting narrow quartz veinlets.

85.90 - 86.25 **ALBITIZED PEGNATITE** Light pink, completely replaced, with local coarse quartz blebs, and very narrow 1 cm border zone. Micaceous exocontacts to 2 cm, likely glimmerite. Contacts sharp at 40 deg. (upper), and 24 deg. (lower). Common fine disseminated opaques which include fine pyrite and other possible sulphide. Fine acicular opaques may be tantalite.

107.88 115.40 ALBITE SPODUMENE PEGNATITE Contacts at 70 deg.

(upper) and 80 deg. (lower). Crudely zoned, coarse grained, with broad spodumene-bearing "core", albitized K-feldspar hanging wall, highly albitized footwall. Albitic zones commonly fine grained and pseudo-aplitic, but appear to be cleavelandite. Spodumene occurs from 108.95 to 111.35 and 112.30 to 114.00, average 20% coarse slender, ragged light green crystals ranging from 2 to 15 cm, average 4 cm. Local coarse deep green, glassy anhedral spodumene. Spodumene generaly oriented subperpendicular to core axis. Albitic zones locally contain several disseminated coarse (0.5mm) microlite grains. Locally very minute acicular oxides. Coarse microcline commonly white, particularly in spodumene zone, which consists of guartz-spodumene-K-feldspar

6238	107.88	108.48	0.60	0.006	0.485	0.011	NIL	0.015	0.022
6239	108.48	108.95	0.47	0.012	0.351	0.010	0.001	0.080	0.023
6240	108.95	111.30	2.35	0.005	0.236	0.008	0.001	2.390	0.015
6241	111.30	112.00	0.70	0.011	0.240	0.011	0.001	0.532	0.015
6242	112.00	114.05	2.05	0.007	0.283	0.008	0.001	1.882	0.018
6243	114.05	115.40	1.35	0.017	0.167	0.012	NIL	0.450	0.011

ASSAYS

Rb20% Nb205%

SnO2*

Li20%

Cs20%

DIAMOND DRILL LOG

PROPERTY HOLE No.	Y: Raleigh Lake : 99-05	DIMMON	D DRI								Page	6
							ASSAYS	 			 	_
FROM TO	LITHOLOGICAL DESCRIPTION	SAMPLE No.	FROM	то	WIDTH	Ta205%	Rb20\$	Sn02%	Li20%	Cs20%		
	+/- albite, with trace Ta-oxides.											
	107.88 - 108.48 K-feldspar-quartz, megacrystic, with local cleavelandite replacement, with fine disseminated opaques.											
	108.48 - 108.95 Highly albitized with common very fine acicular opaques.											
	108.95 - 111.30 Spodumene-rich with quartz-K-feldspar matrix, with trace local fine oxides.											
	111.30 - 112.00 Highly albitized, with common microlite at top of unit.											
	112.00 - 114.05 Spodumene zone as previous, with local albitization and disseminated opaques.											
115.40 149.00	METABASALT As previous. Local minor disseminated sulphides, mainly pytrhotite.											
	128.80 5 cm P-feldspar-quartz-albite pegmatite veinlet. Possible fine disseminated Ta-minerals. Contacts at 65 deg.											

Ì

.

DIAMOND DRILL LOG

PROPE HOLE	NO.:	: Raleigh I : 99-05	ake		21111011			0							Page	7
FROM	TO	LITH	OLOGICAL DESCRIP	TION	 SAMPLE No.	FROM	то	WIDTH	Ta205 %	ASSAYS Rb20%	Sn02 %	Li20%	Cs20 %	 		
			WN-HOLE SURVEY DA	ATA												
		DEPTH	INCLINATION	BEARING												
		76.00	-69.00													
		149.00	-68.00													

Appendix 3

Oxide Conversion Tables and Assay Certificates

Drill Core

a and a second second second second second second second second second second second second second second second

Raleigh Lake - 533 XRAL R99-01

SAMPLE	ID			Ta	Ta ₂ O ₅ %	Ta ₂ O ₅ %	Rb	Rb ₂ O%	Rb ₂ O%	Nb	Nb ₂ O ₅ %	Nb ₂ O ₅ %	Sn	SnO ₂ %	SnO ₂ %	Li	Li ₂ 0%	Li ₂ 0%	Cs	Cs ₂ 0%	Cs ₂ 0%
SCHEME				XRF			XRF			XRF			XRF			AA			AA		
UNITS		Το	Width	ppm	1.221	average	ppm	1.094	average	ppm	1.431	average	ppm	1.270	average	ppm	2.1528	average	ppm	1.060	average
DETECTION				5			2			2			5			10			100		
6201	73.30	74.28	0.98	123	0.015	0.015	1260	0.138	0.135	53	0.008	0.007	5	0.001	0.001	824	0.177	0.174	50	0.005	0.005
0201	73.50	14.20	0.30	120	0.010																
6202	80.05	80.90	0.85	216	0.026	0.022	2600	0.284	0.242	96	0.014	0.012	2.5	0.000	0.000	5	0.001	0.001	148	0.016	0.013
							1290	0.141	0.240	59	0.008	0.014	5	0.001	0.001	15	0.003	0.005	50	0.005	0.009
6203	80.90	82.60	1.70	79	0.010	0.010	1230	0.141	0.240			0.011									
						0.005	400		0.005	23	0.003	0.002	2.5	0.000	0.000	257	0.055	0.041	50	0.005	0.004
6204	86.95	87.70	0.75	52	0.006		422	0.046					£.5		0.000	1640	0.353		130	0.014	
6205	87.70	88.00	0.30	129	0.016	0.005	1510	0.165	0.050	69	0.010			0.001						0.014	
6206	88.00	89.10	1.10	60	0.007	0.008	1970	0.216	0.237	49	0.007	0.008	5	0.001	0.001	4590	0.988		159		
6207	89.10	89.90	0.80	92	0.011	0.009	2500	0.274	0.219	54	0.008	0.006	2.5	0.000	0.000	28	0.006	0.005	220	0.023	0.019
6208	89.90	90.40	0.50	143	0.017	0.009	275	0.030	0.015	57	0.008	0.004	5	0.001	0.000	26	0.006	0.003	50	0.005	
6209	90.40	90.80	0.40	54	0.007	0.003	1590	0.174	0.070	53	0.008	0.003	5	0.001	0.000	8120	1.748	0.699	149	0.016	0.006
6210	90.80	91.20	0.40	85	0.010	0.004	2080	0.228	0.091	89	0.013	0.005	5	0.001	0.000	3760	0.809	0.324	171	0.018	0.007
6211	91.20	91.60	0.40	95	0.012		965	0.106	0.042	64	0.009	0.004	5	0.001	0.000	562	0.121	0.048	50	0.005	0.002
6212	91.60	92.40	0.80	34	0.004	0.003	4550	0.498	0.398	62	0.009	0.007	2.5	0.000	0.000	5	0.001	0.001	292	0.031	0.025
0212	31.00	92.40	0.00		0.001																
Dup 6201				125	0.015		1240	0.136		54	0.008		5	0.001		809	0.174		50	0.005	

R99-01	From	То	Width	Ta,O₅%	Rb₂O%	Nb ₂ O ₅ %	SnO ₂ %	Ll ₂ 0%	C\$20%
Intervals	73.30	74.28	0.98	0.015	0.138	0.008	0.001	0.177	0.005
	80.05	82.60	2.55	0.015	0.189	0.010	0.001	0.003	0.009
	86.95	92.40	5.45	0.009	0.212	0.008	0.000	0.425	0.016
	87.70	91.60	3.90	0.011	0.185	0.008	0.001	0.583	0.015

1

R99-02 Raleigh Lake - 533

107.15

132.50

158.40

ţ

XRAL

4.15

0.85

1.20

111.30

133.35

159.60

SAMPLE I	D			Ta	Ta ₂ O ₅ %	Ta ₂ O ₅ %	Rb	Rb ₂ O%	Rb ₂ O%	Nb	Nb ₂ O ₅ %	Nb ₂ O ₅ %	Sn	SnO ₂ %	SnO₂%	LI	Li ₂ 0%	Li ₂ 0%	Cs	C\$20%	C\$20%
SCHEME				XRF	· · · · · · · · · · · · · · · · · · ·		XRF			XRF			XRF			AA			AA		
UNITS	From	То	Width	ppm	1.221	average	ppm	1.094	average	ppm	1.431	average	ppm	1.270	average	ррт	2.1528	average	ppm	1.060	average
DETECTION	IMIT			5			2			2			5			10			100		
6213	104.70	106.00	1.30	20	0.002	0.003	9750	1.067	1.387	109	0.016	0.020	10	0.001	0.002	109	0.023	0.031	839	0.089	0.116
6214	106.00	107.15	1.15	35	0.004	0.005	10570	1.156	1.330	124	0.018	0.020	17	0.002	0.002	196	0.042	0.049	952	0.101	0.116
6215	107.15		1.45	71	0.009	0.013	5960	0.652	0.945	86	0.012	0.018	11	0.001	0.002	8830	1.901	2.756	546	0.058	0.084
6216	108.60	110.40	1.80	115	0.014	0.025	89	0.010	0.018	52	0.007	0.013	2.5	0.000	0.001	19	0.004	0.007	50	0.005	0.010
6217	110.40	110.70	0.30	59	0.007	0.002	6500	0.711	0.213	64	0.009	0.003	8	0.001	0.000	2590	0.558	0.167	5210	0.552	0.166
6218	110.70		0.60	92	0.011	0.007	348	0.038	0.023	32	0.005	0.003	5	0.001	0.000	71	0.015	0.009	126	0.013	0.008
															0.000	04	0.005	0.000	148	0.016	0.009
6219	132.50	133.10	0.60	39	0.005	0.003	2150			35		0.003	2.5			24	0.005	0.003			
6220	133.10	133.35	0.25	120	0.015	0.004	1240	0.136	0.034	60	0.009	0.002	6	0.001	0.000	75	0.016	0.004	50	0.005	0.001
6221	158.40	159.60	1.20	83	0.010	0.012	1630	0.178	0.214	90	0.013	0.015	5	0.001	0.001	33	0.007	0.009	50	0.005	0.006
Dup 6213				22	0.003		9830	1.075		110	0.016		10	0.001		98	0.021		765	0.081	
R99-02	From	То	Width			Ta ₂ O ₅ %			Rb ₂ O%			Nb ₂ O ₅ %			SnO₂%			Ll ₂ 0%			C\$20%
Intervals	104.70	111.30	6.60			0.008			0.593			0.012			0.001			0.457			0.076

0.009

0.006

0.013

0.001

0.000

0.001

0.708

0.008

0.007

0.289

0.206

0.178

0.011

800.0

0.010

0.064

0.013

0.005

R99-04 Raleigh Lake - 533

1

XRAL

SAMPLE I	D			Ta	Ta ₂ O ₅ %	Ta ₂ O ₅ %	Rb	Rb ₂ O%	Rb ₂ O%	Nb	Nb ₂ O ₅ %	Nb ₂ O ₅ %	Sn	SnO ₂ %	SnO ₂ %	LI	Ll ₂ 0%	Li ₂ 0%	Cs	Cs ₂ 0%	Cs ₂ 0%
SCHEME				XRF			XRF			XRF			XRF			ÂĂ			AA		
UNITS	From	То	Width	ppm	1.221	average	ppm	1.094	average	ppm	1.431	average	ppm	1.270	average	ррт	2.1528	average	ppm	1.060	average
DETECTION L	IMIT			5			2			2			5			10			100		
6222	26.00	27.30	1.30	96	0.012	0.015	1040	0.114	0.148	67	0.010	0.012	5	0.001	0.001	3680	0.792	1.030	110	0.012	0.015
6223	27.30	28.30	1.00	52	0.006	0.006	3030	0.331	0.331	75	0.011	0.011	6	0.001	0.001	10160	2.187	2.187	224	0.024	0.024
6224	28.30	29.40	1.10	94	0.011	0.013	2640	0.289	0.318	91	0.013	0.014	5	0.001	0.001	6550	1.410	1.551	208	0.022	0.024
6225	29.40	30.50	1.10	83	0.010	0.011	1440	0.158	0.173	74	0.011	0.012	5	0.001	0.001	1380	0.297	0.327	103	0.011	0.012
6226	30.50	31.40	0.90	129	0.016	0.014	1130	0.124	0.111	60	0.009	0.008	5	0.001	0.001	188	0.040	0.036	50	0.005	0.005
6227	52.40	53.00	0.60	112	0.014	0.008	1430	0.156	0.094	71	0.010	0.006	5	0.001	0.000	150	0.032	0.019	50	0.005	0.003
6228	56.90	57.35	0.45	145	0.018	0.008	2070	0.226	0.102	84	0.012	0.005	5	0.001	0.000	214	0.046	0.021	114	0.012	0.005
6229	57.35		0.40	82	0.010	0.004	2870	0.314	0.126	81		0.005	5	0.001		5000	1.076	0.431	141	0.015	0.006
6230	57.75			155	0.019	0.014	1560	0.171	0.128	81	0.012	0.009	5	0.001		1540	0.332	0.249	106	0.011	0.008
02.30	37.73		0.75	100	0.010														-		
Dup 6225				81	0.010		1430	0.156		74	0.011		5	0.001		1410	0.304		137	0.015	
R99-04	From	To	Width			Ta ₂ O ₅ %			Rb₂O%			Nb ₂ O ₅ %			SnO ₂ %			Ll₂0%			Cs₂0%

R99-04	From	То	Width	Ta ₂ O ₅ %	Rb₂O%	Nb ₂ O ₅ %	SnO₂%	Ll ₂ O%	Cs ₂ 0%
Intervals	26.00	31.40	5.40	0.011	0.200	0.011	0.001	0.950	0.015
	52.40	53.00	0.60	0.014	0.156	0.010	0.001	0.032	0.005
	56.90	58.50	1.60	0.016	0.222	0.012	0.001	0.437	0.012

R99-05 Raleigh Lake - 533

3 XRAL

SAMPLE I	D			Та	Ta ₂ O ₅ %	Ta ₂ O ₅ %	Rb	Rb ₂ O%	Rb ₂ O%	Nb	Nb ₂ O ₅ %	Nb ₂ O ₅ %	Sn	SnO ₂ %	SnO ₂ %	LI	Ll ₂ O%	Li ₂ 0%	Cs	Cs20%	C\$20%
SCHEME				XRF			XRF			XRF			XRF			AA			AA		
UNITS	From	To	Width	ppm	1.221	average	ppm	1.094	average	ppm	1.431	average	ppm	1.270	average	ppm	2.1528	average	ppm	1.060	average
DETECTION L	.imit			5			2			2			5			10			100		
6231	32.25	32.50	0.25	100	0.012	0.003	1950	0.213	0.053	54	0.008	0.002	6	0.001	0.000	656	0.141	0.035	829	0.088	0.022
6232	32.50	33.45	0.95	159	0.019	0.018	3310	0.362	0.344	73	0.010	0.010	6	0.001	0.001	5970	1.285	1.221	236	0.025	0.024
6233	33.45	33.95	0.50	191	0.023	0.012	1950	0.213	0.107	79	0.011	0.006	5	0.001	0.000	4340	0.934	0.467	152	0.016	0.008
6234	33.95	34.70	0.75	231	0.028	0.021	1180	0.129	0.097	63	0.009	0.007	5	0.001	0.000	740	0.159	0.119	50	0.005	0.004
6235	64.80	65.97	1.17	177	0.022	0.025	2340	0.256	0.300	80	0.011	0.013	5	0.001	0.001	40	0.009	0.010	125	0.013	0.016
6236	65.97	66.10	0.13	87	0.011	0.001	254	0.028	0.004	38	0.005	0.001	2.5	0.000	0.000	43	0.009	0.001	50	0.005	0.001
6237	66.10	66.80	0.70	316	0.039	0.027	360	0.039	0.028	110	0.016	0.011	5	0.001	0.000	135	0.029	0.020	50	0.005	0.004
6244	85.90	86.25	0.35	114	0.014	0.005	529	0.058	0.020	54	0.008	0.003	5	0.001	0.000	809	0.174	0.061	50	0.005	0.002
6238	107.88	108.48	0.60	52	0.006	0.004	4430	0.485	0.291	75	0.011	0.006	2.5	0.000	0.000	69	0.015	0.009	207	0.022	0.013
6239	108.48	108.95	0.47	95	0.012	0.005	3210	0.351	0.165	71	0.010	0.005	5	0.001	0.000	371	0.080	0.038	220	0.023	0.011
6240	108.95	111.30	2.35	40	0.005	0.011	2160	0.236	0.555	55	0.008	0.018	5	0.001	0.001	11100	2.390	5.616	143	0.015	0.036
6241	111.30	112.00	0.70	94	0.011	0.008	2190	0.240	0.168	78	0.011	0.008	5	0.001	0.000	2470	0.532	0.372	140	0.015	0.010
6242	112.00	114.05	2.05	60	0.007	0.015	2590	0.283	0.581	55	0.008	0.016	5	0.001	0.001	8740	1.882	3.857	172	0.018	0.037
6243	114.05	115.40	1.35	142	0.017	0.023	1530	0.167	0.226	86	0.012	0.017	2.5	0.000	0.000	2090	0.450	0.607	107	0.011	0.015
Dup 6237				318	0.039		359	0.039		111	0.016		5	0.001		140	0.030		50	0.005	

R99-05	From	То	Width	Ta₂O₅%	Rb₂O%	Nb ₂ O ₅ %	SnO ₂ %	Li ₂ O%	Cs ₂ 0%
Intervals	32.25	34.70	2.45	0.022	0.245	0.010	0.001	0.752	0.024
	64.80	66.80	2.00	0.027	0.165	0.013	0.001	0.016	0.010
	85.90	86.25	0.35	0.014	0.058	0.008	0.001	0.174	0.005
	107.88	115.40	7.52	0.00894	0.264	0.009	0.001	1.396	0.016
	108.48	115.40	6.92	0.00916	0.245	0.009	0.001	1.516	0.016
	111.30	115.40	4.10	0.01133	0.238	0.010	0.001	1.180	0.015

1885 Leslie Street Don Mills, Ontario Canada M3B 3J4 Telephone (416) 445-5755 Fax (416) 445-4152

CERTIFICATE OF ANALYSIS

Work Order: 057135

To:	Avalon	Vent	ures Ltd
	Attn:	lan	Campbell

851 Field Street THUNDER BAY ONTARIO, CANADA P7B 6B6

:

:

Copy 1 to

Copy 2 to

P.O. No.	:				
Project No.	:	533			
No. of Samples	:	44 CC	DRE		
Date Submitted	:	04/10/	99		
Report Comprises	:	Cover S	Sheet	t plus	
		Pages	1	to	2

Distribution of unused material: Pulps: Store Rejects: Store

Certified By

Dr. Hugh de Souza, General Manager XRAL Laboratories

.

ISO 9002 REGISTERED

Report Footer:

L.N.R.= Listed not receivedI.S.= Insufficient Samplen.a.= Not applicable--= No result*INF= Composition of this sample makes detection impossible by this methodM after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

:

SGS Member of the SGS Group (Société Générale de Surveillance)

Date : 18/10/99

were

Work Order:	057135]	Date:	18/10	/99		1
Element. Method.	Ta XRF7	Nb XRF7	Sn XRF7	Rb XRF7	Cs AA90	Li ICP90	
Det.Lim.	5	2	5	2	100	10	
Units.	ppm	ppm	ppm	ppm	ppm	ppm	
6201	123	53	5	1260	<100	824	
6202	216	96	<5	2600	148	<10	
6203	79	59	5	1290	<100	15	
6204	52	23	<5	422	<100	257	
6205	129	69	5	1510	130	1640	
6206	60	49	5	19 7 0	159	4590	
6207	92	54	<5	2500	220	28	
6208	143	57	5	275	<100	26	
6209	54	53	5	1590	149	8120	
6210	85	89	5	2080	171	3760	
	05	<i>(</i>)	F	065	~ 100	562	
6211	95	64	5	965	<100		
6212	34	62	<5	>4000	292	<10	
6213	20	109	10	>4000	839	109	
6214	35	124	17	>4000	952	196	
6215	71	86	11	>4000	546	8830	
6216	115	52	<5	89	<100	19	
6217	59	64	8	>4000	5210	2590	
6218	92	32	5	348	126	71	
6219	39	35	<5	2150	148	24	
6220	120	60	6	1240	< 100	75	
6221	83	90	5	1630	< 100	33	
6222	96	67	5	1040	110	3680	
6223	52	75	6	3030	224	10160	
6224	94	91	5	2640	208	6550	
6225	83	74	5	1440	103	1380	
6226	129	60	5	1130	< 100	188	
6227	112	71	5	1430	< 100	150	
6228	145	84	5	2070	114	214	
6229	82	81	5	2870	141	5000	
6230	155	81	5	1560	106	1540	
6231	100	54	6	1950	829	656	
6232	159	73	6	3310	236	5970	
6233	191	79	5	1950	152	4340	
6234	231	63	5	1180	< 100	740	
6235	177	80	5	2340	125	40	
6236	87	38	<5	254	<100	43	
6237	316	110	5	360	<100	135	
			<5	>4000	207	69	
6238	52 95	75 71	5	3210	207	371	
6239							
6240	40	55	5	2160	143	11100	
6241	94	78	5	2190	140	2470	
6242	60	55	5	2590	172	8740	
6243	142	86	<5	1530	107	2090	
6244	114	61	5	529	147	157	
*Dup 6201	125	54	5	1240	<100	809	

FINAL

· · · · · · · · ·

Page 1 of 2

SGS Member of the SGS Group (Société Générale de Surveillance)

FINAL

Page 2 of 2

Element.	Ta	Nb	Sn	Rb	Cs	Li
Method.	XRF7	XRF7	XRF7	XRF7	AA90	ICP90
Det.Lim.	5	2	5	2	100	10
Units.	ppm	ppm	ppm	ppm	ppm	ppm
*Dup 6213	22	110	10	>4000	765	98
*Dup 6225	81	74	5	1430	137	1410
*Dup 6237	318	111	5	359	<100	140

SGS Member of the SGS Group (Société Générale de Surveillance)

XRAL Laboratories A Division of SGS Canada Inc.

1885 Leslie Street Don Mills, Ontario Canada M3B 3J4 Telephone (416) 445-5755 Fax (416) 445-4152

CERTIFICATE OF ANALYSIS

Work Order: 057350

To: **Avalon Ventures Ltd** Attn: lan Campbell

> 851 Field Street THUNDER BAY ONTARIO, CANADA P7B 6B6

> > 1

:

Copy 1 to

Copy 2 to

P.O. No.	:	POH WO#57135
Project No.	:	533
No. of Samples	:	20 PULPS
Date Submitted	:	21/10/99
Report Comprises	:	Cover Sheet plus
		Pages 1 to 1

Distribution of unused material: Pulps: Store **Rejects:** Store

Certified By

Dr. Hugh de Souza, General Manager XRAL Laboratories

ISO 9002 REGISTERED

Report Footer:

- = Listed not received = Not applicable

= Insufficient Sample = No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

:

I.S.

--

SGS Member of the SGS Group (Société Générale de Surveillance)

L.N.R.

n.a.

Date 16/11/99 •

Element.	Ta
Method.	XRF7
Det.Lim.	5
Units.	ppm
	PP
6205 A	122
6205 B	124
6205 C	121
6205 D	123
6216 A	112
6216 B	111
6216 C	112
6216 D	111
6226 A	123
6226 B	127
6226 C	126
6226 D	130
6230 A	152
6230 B	147
6230 C	156
6230 D	153
6237 A	316
6237 B	313
6237 C	314
6237 D	324
	<i></i>
*Dup 6205 A	124
*Dup 6230 A	153
	100

FINAL

Page 1 of 1

SGS Member of the SGS Group (Société Générale de Surveillance)

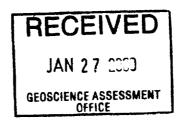
P) Ontario	Ministry of Northern Development and Mines	Performed on Mini	eclaration of Assessment Work erformed on Mining Land hing Act, Subsection 65(2) and 66(3), R.S.O. 1990	
2G05NW2003 2.200	05 RALEIGH LAKE	review th	e assessment work and co	e Mining Act. Under section 8 of th rrespond with the mining land holde Development and Mines, 6th Floo
	r work performed on ase type or print in i	Crown Lands before reco rd ink.	ding a claim, use for 2	m 0240.
. Recorded hold	er(s) (Attach a list	if necessary)		
ame (see a	attached lis	+)	Client Number	
idress			Telephone Numbe	r
Corres	pendence to:		Fax Number	
	Ventures L		Client Number	301086
1			Telephone Numbe	07-346-0404
	Field Street		Fax Number)7-346-4233
	er Bary, ON			
Type of work	p erformed: Check (-) and PRECEN	EoPine following gr	oups for this declaration.
	prospecting, surveys ork under section 18		drilling/stripping,	ys Rehabilitation
ork Type		THE ASS	ESSMEN	Office Use
	nd drilling			
Prospec	ting assau	i S	Total \$ Value Work Claimed	of 66112
ates Work From	OI 07 99 Day Month Vear	To 3/ /2 99 Day Month Year	NTS Reference	e \
lobal Positioning System		ownship/Area Raleigh Lake	Mining Divisio	" Kenora
	N	G - 2557	Resident Geo District	
			atural Recources as	required:
Please remember 1	- complete and a	ermit from the Ministry of N notice to surface rights hold ttach a Statement of Costs, showing contiguous mining les of your technical report.	form 0212; lands that are linked	Sin,
	- provide proper r - complete and a - provide a map s - include two cop	ttach a Statement of Costs, showing contiguous mining les of your technical report.	form 0212; lands that are linked	for assigning work;
3. Person or co	- provide proper r - complete and a - provide a map s - include two cop mpanies who prepa	ttach a Statement of Costs, showing contiguous mining ies of your technical report.	(Attach a list if neces	for assigning work; sary)
3. Person or co	- provide proper r - complete and a - provide a map s - include two cop mpanies who prepa	ttach a Statement of Costs, showing contiguous mining ies of your technical report.	(Attach a list if neces	for assigning work; sary) For 807-346-0404
3. Person or con Name Chri Address Avali	- provide proper r - complete and al - provide a map s - include two cop mpanies who prepa s Pedersen, on Ventures	showing contiguous mining ies of your technical report red the technical report Senior Geologist	(Attach a list if neces	for assigning work; (sary) (807-346-0404) 807-346-4233
3. Person or con Name Address Address Avalu Name 851	- provide proper r - complete and al - provide a map s - include two cop mpanies who prepa s Pedersen, on Ventures Field Stree	tred the technical report Se in ior Geologist LHd.	(Attach a list if neces Telephone Num Telephone Num	for assigning work; (sary) (807-346-0404) 807-346-4233
3. Person or con Name Address Name Name 851 Address Thun	- provide proper r - complete and al - provide a map s - include two cop mpanies who prepa s Pedersen, on Ventures Field Stree	showing contiguous mining ies of your technical report red the technical report Senior Geologist	(Attach a list if neces Telephone Num Telephone Num	for assigning work; (sary) (807-346-0404) (807-346-4233) (sor
3. Person or con Name Address Address Address 851 Address 7hun Name	- provide proper r - complete and al - provide a map s - include two cop mpanies who prepa s Pedersen, on Ventures Field Stree	tred the technical report Se in ior Geologist LHd.	(Attach a list if neces Telephone Num Fax Number Telephone Num	for assigning work; sary) 807-346-0404 807-346-4233
3. Person or con Name Address Address Address 851 Address 7hun Name	- provide proper r - complete and al - provide a map s - include two cop mpanies who prepa s Pedersen, on Ventures Field Stree	tred the technical report Se in ior Geologist LHd.	(Attach a list if neces Telephone Num Fax Number Telephone Num Fax Number Telephone Num	for assigning work; (sary) (807-346-0404) (807-346-4233) (sor
3. Person or con Name Address Address Address Address Address	- provide proper r - complete and al - provide a map s - include two cop mpanies who prepa s Pedersen, on Ventures Field Stree der Bay,	ies of your technical report Senior Geologist LHd ON PTB 6B6	(Attach a list if neces Telephone Num Fax Number Telephone Num Fax Number Telephone Num	for assigning work; (sary) (807-346-0404) (807-346-4233) (sor
3. Person or con Name Address Address Address Address Address Address 4. Certification 1. Kara forth in this Decla	- provide proper r - complete and al - provide a map s - include two cop mpanies who prepa s Pedersen, on Ventures Field Stree dur Bay, by Recorded Holde en Rees (Print Name) aration of Assessment	ar or Agent motice to surface rights hold thach a Statement of Costs, showing contiguous mining ies of your technical report Senitor Geologist LHd. A pror Agent , do hereby ce	Attach a list if neces (Attach a list if neces Telephone Num Fax Number Telephone Num Fax Number Telephone Num Fax Number Telephone Num Fax Number Telephone Num Fax Number Sertify that I have person work to be performed	for assigning work; (sary) $\frac{807-346-0404}{807-346-4233}$ ber ber ber ber
3. Person or con Name Chri Address Address Address Address Address 4. Certification 1. Karc forth in this Decla or after its completion	- provide proper r - complete and al - provide a map s - include two cop mpanies who prepa s Pedersen, on Ventures Field Stree dur Bay, by Recorded Holde en Rees (Print Name) aration of Assessmer etion and, to the bes	ar or Agent ar of Mork having caused the anr	Attach a list if neces (Attach a list if neces Telephone Numi Fax Number Telephone Num Fax Number Telephone Num Fax Number Telephone Num Fax Number Telephone Num Fax Number Telephone Num Fax Number	for assigning work; (sary) $\frac{807-346-0404}{807-346-4233}$ ber ber ber toral knowledge of the facts I or witnessed the same duri
3. Person or con Name Chri Address Address Address Address Address 4. Certification 1. Kare forth in this Decla or after its completion	- provide proper r - complete and al - provide a map s - include two cop mpanies who prepa s Pedersen, on Ventures Field Stree dur Bay, by Recorded Holde en Rees (Print Name) aration of Assessmer etion and, to the bes	ar or Agent More Agent Ared the technical report More Agent More Agent Mo	Attach a list if neces (Attach a list if neces Telephone Numi Fax Number Telephone Num Fax Number Telephone Num Fax Number Telephone Num Fax Number Telephone Num Fax Number Telephone Num Fax Number	for assigning work; (sary) $\frac{807-346-0404}{807-346-4233}$ ber ber ber toral knowledge of the facts I or witnessed the same duri

Recorded holders for Raleigh Lake Property

K 1178331, K 1220601, K 1220602

8.266 Sp

Robert Fairservice Client # 130646 Box 627 Kenora, ON P9N 3X6 (807) 468-6461 phone


K 1133503, K 1163296, K 1166892, K 1166893

James Bond II Client # 109716 Box 948 Welch, West Virginia 24801 (304) 436-3902 phone

Sherridon Johnson Client # 149509 Box 19 Site 214 RR #2 Dryden, ON P8N 2X5 (807) 937-5769 phone

K 1220923, K 1220924, K 1220925, K 1220926, K 1220927, K 1220928, K 1220929, K 1220930, K 1220931, K 1220932, K 1220933, K 1220934, K 1220935, K 1220936, K 1220981, K 1220982, K 1220983, K 1220984, K 1220985, K 1220986, K 1220987, K 1178890, K 1239747, K 1239748, K 1239749, K 1239750, K 1239751, K 1239752, K 1239753

Avalon Ventures Ltd. Client # 301086 851 Field Street, Thunder Bay, ON P6B 6B6 (807) 346-0404 phone

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

work wa mining l column	Claim Number. Or if is done on other eligible and, show in this the location number d on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date.
eg	TB 7827	16 ha	\$26, 825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568	2	\$ 8, 892	\$ 4,000	0	\$4,892
1	K 1178331.	4	# 38,812	1,600	7,850	# 29,362
2	K 1220601 .	4	900	1,600		
3	K 1220602 ·	8	23,950	3,200		# 20,750
4	K 11632961	8	650	3,200		
5	K 1166893;	4	1,200	1,600		
6	K 1166892	4	200	1,600		
7	K 1133503"	8	400	3,200		
8						
9						
10						
11						
12			FRE	EIVED		
13				Langer al		
14				ENCE ASSESSMENT OFFICE		
15			GEODO	OFFICE		
		Column Totals	66,112	16,000	7,850	50,112

I, <u>Karen Rees</u>, do hereby certify that the above work credits are eligible under (Print Full Name) subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to

the claim where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing	Date
	Jan 24. 2000
10 / Qes	

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\sim) in the boxes below to show how you wish to prioritize the deletion of credits:

1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

2. Credits are to be cut back starting with the claims listed last, working backwards; or

3. Credits are to be cut back equally over all claims listed in this declaration; or

4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only		
Received Stamp	Desmed Approved Date	Date Notification Sent
	Date Approved	Total Value of Credit Approved
	Approved for Recording by Mining R	lecorder (Signature)
D244 (20100)		

Ministry of Northern Development and Mines

Statement of Costs for Assessment Credit

Transaction Number (office use)

1)00,0,00000

Personal information collected on this form is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

		har a start	<i></i>
Work Type	Units of Work Depending on the type of work, list the numb of hours/days worked, metres of drilling, kilo- metres of grid line, number of samples, etc.	or Cost Per Unit of work	Total Cost
Prospecting	5 days	# 200/day	# 1,000
Sample Analyses-Prospect	· rinchides 48 samples	# 40/sample	1,920
Linecutting	7.275 km	# 350/km	2,546
Diamond drilling	602.0 metres	# 73/m	43,946
Geologist : Assistant	10 days	# 450/day	4,500
Sample Analyses - Drille	ore 44 samples	# 25/sample	1,100
Supervision, report : drai		# 300/day	4,500
Associated Costs (e.g. supplies,	mobilization and demobilization)		
Su	upplies and sample shippi	no	j,500
	pment and Vehicle rental		2,700
			-
Transp	ortation Costs	FOFIVED	
		TELEIVED	
		JAN 27 20	•
Food a	and Lodging Costs	SECIENCE ASSESSMENT	2,400
	Total Valu	e of Assessment Work	\$ 66,112
			L

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.

2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK	× 0.50 =	Total \$ value of worked claimed.

Note:

- Work older than 5 years is not eligible for credit.

- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

I, <u>Karen Rees</u> , do hereby certify, that the amounts shown are as accurate as may
reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on
reasonably be determined and the costs were modified time conducting decountry to be
the accompanying Declaration of Work form as <u>Agent</u> , <u>General Manager</u> , <u>Avalon</u> I am authorized
to make this certification.

Signature Date Date Jan 24, 2000

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

April 20, 2000

ROBERT JOHN FAIRSERVICE P.O. BOX 627 155 MAIN STREET SOUTH KENORA, ON P9N-1T1 🐨 Ontario

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Dear Sir or Madam:

Submission Number: 2.20005

 Subject: Transaction Number(s):
 W0010.00005
 Approval

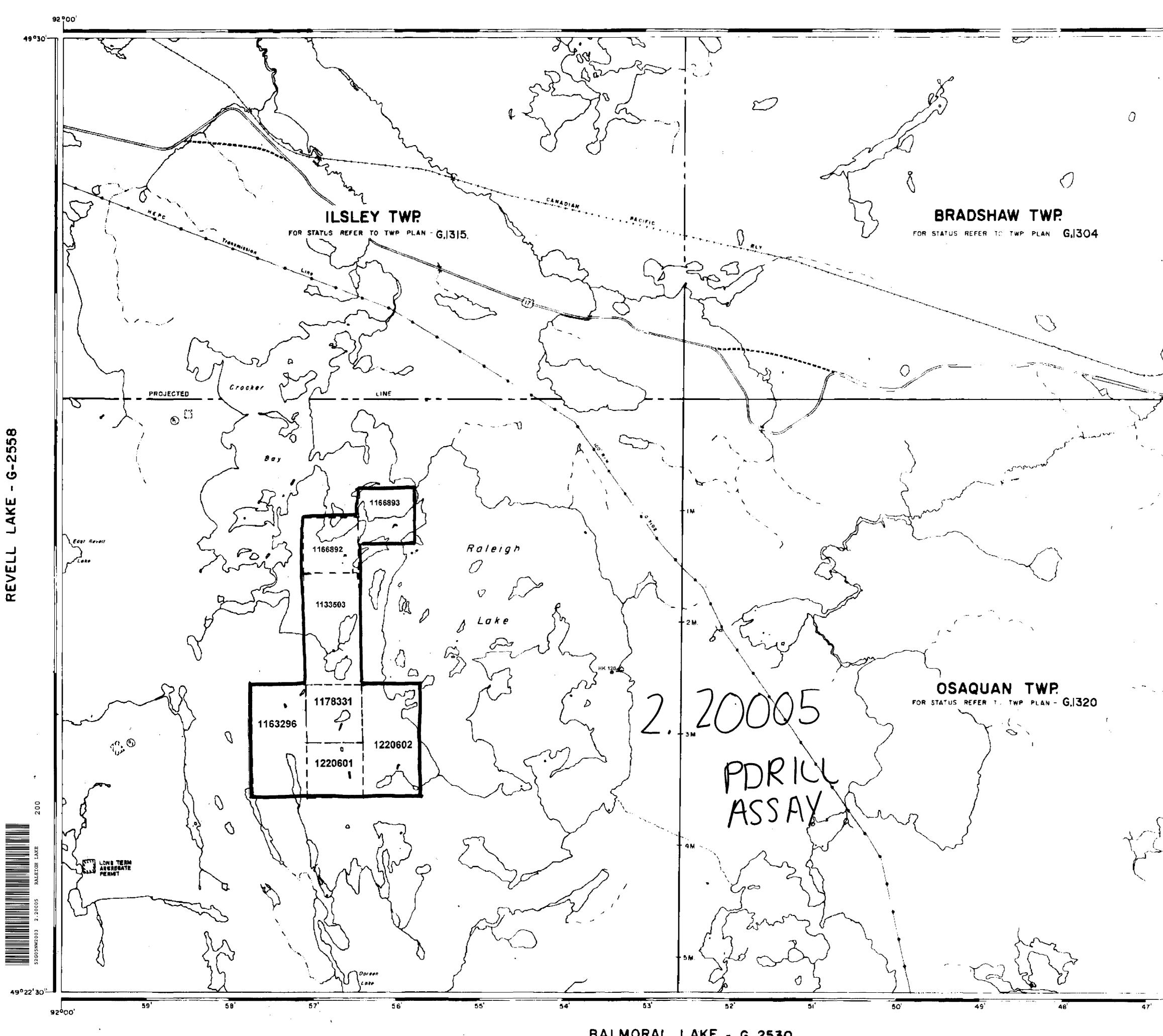
We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

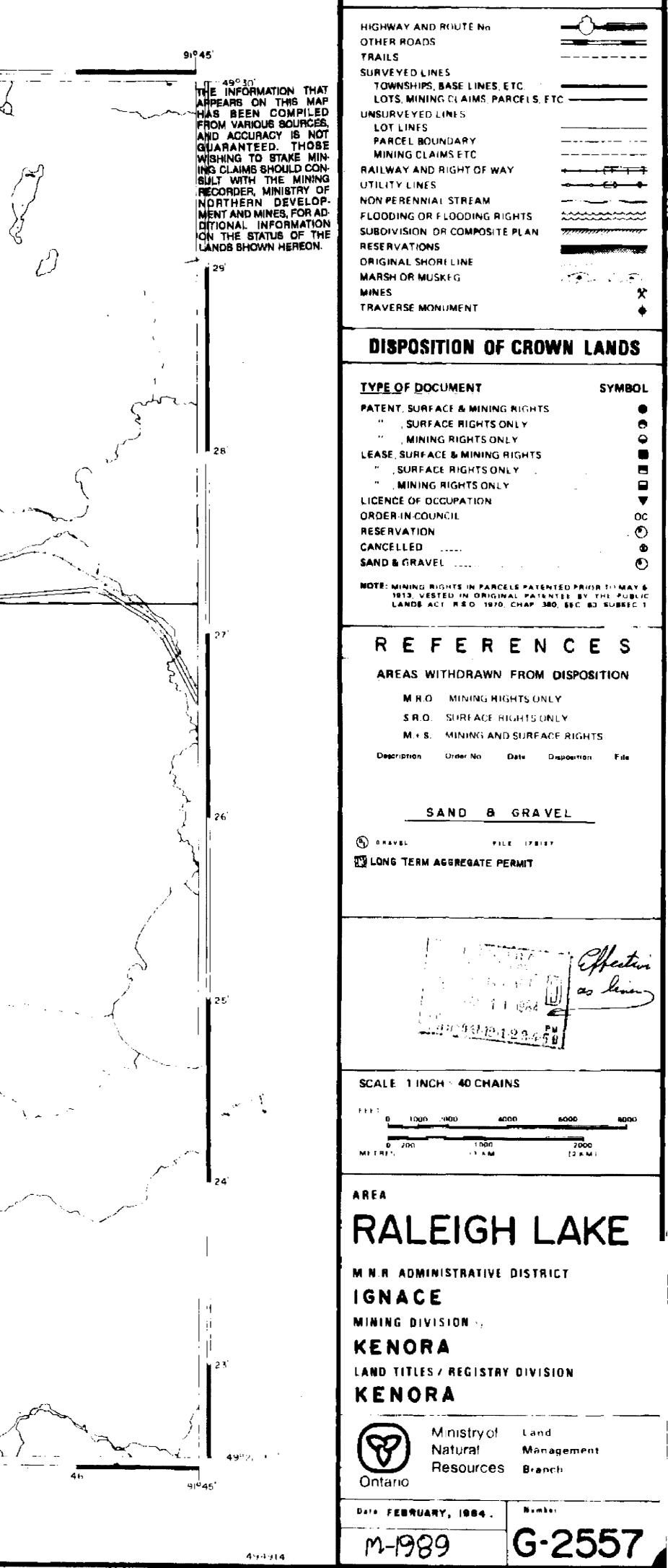
If you have any questions regarding this correspondence, please contact LUCILLE JEROME by e-mail at lucille.jerome@ndm.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

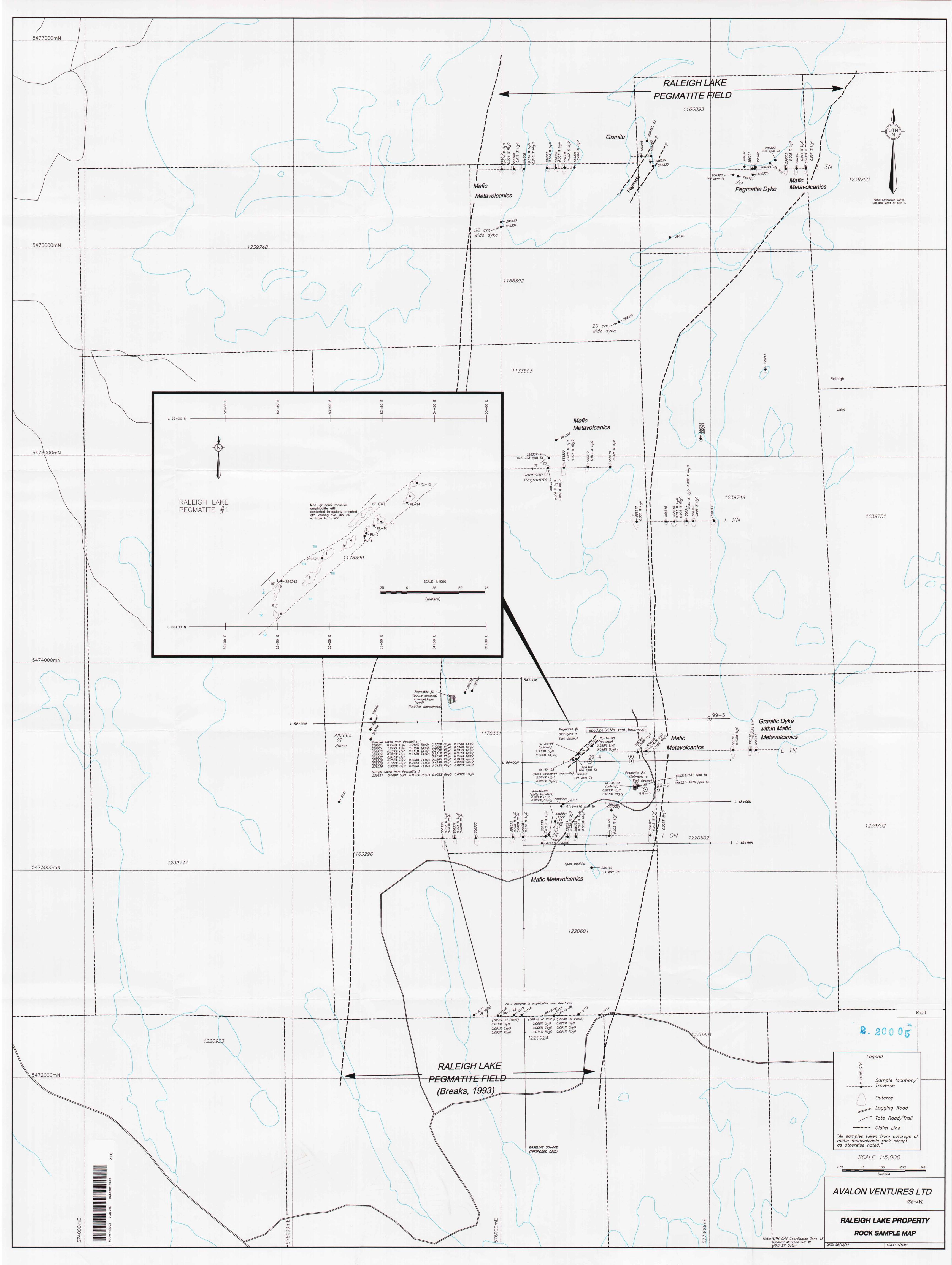

. Ho

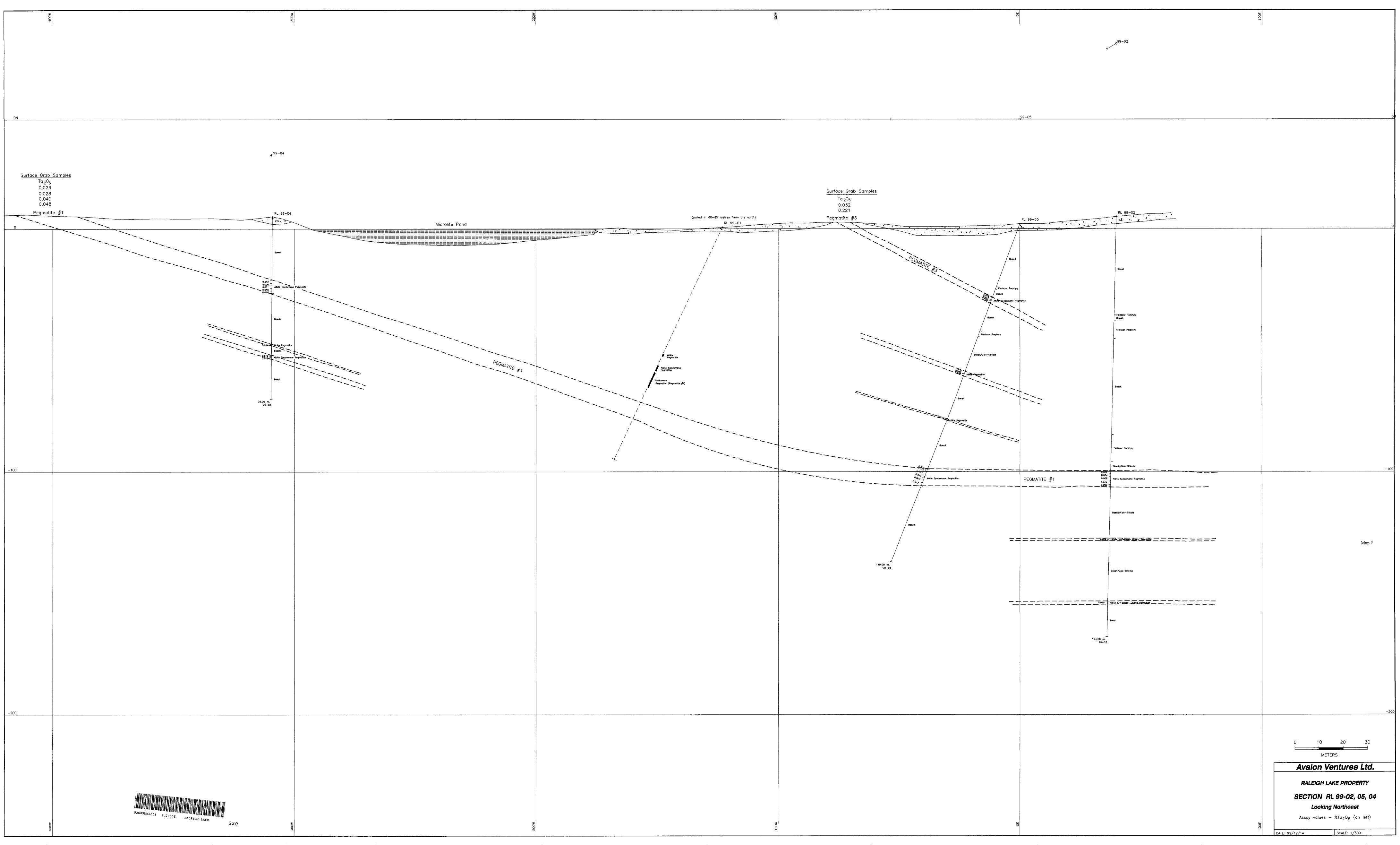
ORIGINAL SIGNED BY Blair Kite Supervisor, Geoscience Assessment Office Mining Lands Section

Work Report Assessment Results

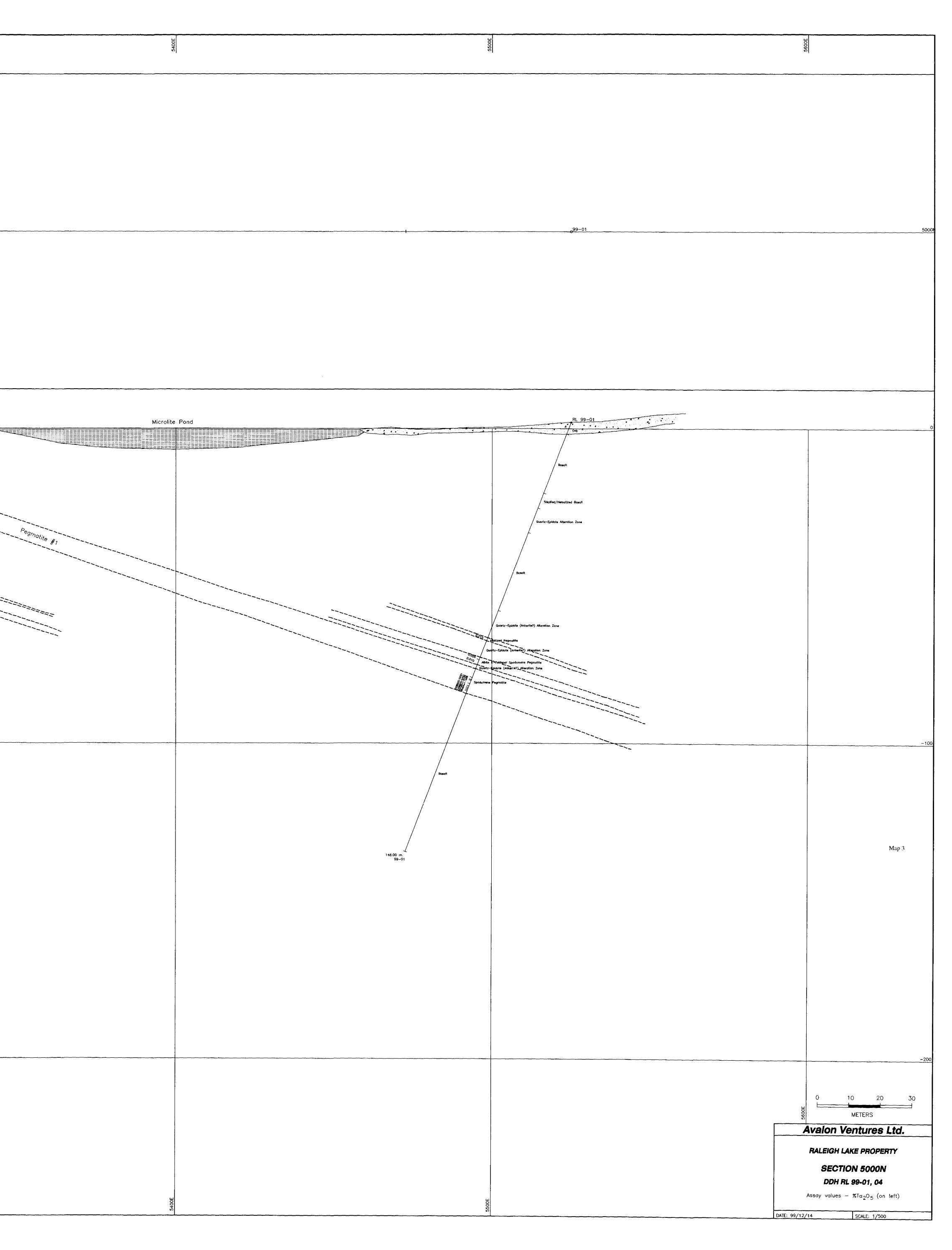

Date Correspondence Sent: April 20, 2000		, 2000	Assessor:LUCIL	LE JEROME	
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	
W0010.00005	1178331	RALEIGH LAKE	Approval	April 18, 2000	
Section: 16 Drilling PDRILL 17 Assays ASSAY					
Correspondence	to:		Recorded Hold	er(s) and/or Agent(s):	
Resident Geologis	st		ROBERT JOHN FAIRSERVICE		
Kenora, ON			KENORA, ON		
Assessment Files	Library		SHERRIDON PATRICK JOHNSON		
Sudbury, ON	,		DRYDEN, ONT	ARIO	
			JAMES EDWA	RD II BOND	
			WELCH, WEST		
			Karen Rees		
			AVALON VENTURES LTD.		
			THUNDER BAY	, ONTARIO	

1




......

LEGEND




BALMORAL LAKE - G-2530

G C C C C C C		
5000N		99-04
Surface Grab Samples Ta 205 0.026 0.028 0.040 0.048		
0.040 0.048 Pegmatite #1		
0		RL 99-04
		Basolt
	0.012 0.006 0.011 0.010 0.010 0.010	Abite Spodumene Pegmatite
	0.014	
		Basatt
	0.01+	Abite Spodumene Pegmälite
		Basati
-100		
-200		
52G05NW2003 2.20005 RALEIGH LAKE 230		

	+ 0 99-03	
	99-03	
	Feldepar Porphyny/Grenodlonite	
59.00 m 99-0		
	2900E	6000F

6000E		 <u>. </u>	6100E	
	· · · · · · · · · · · · · · · · · · ·			5200N
				0
		 		-100
				Map 4
				-200
			0 10 60 10	
			Avaion Ven Raleigh Lake SECTION	tures Ltd. PROPERTY 5200N
6000E			DDH RL Assay values - % DATE: 99/12/14	