010

REPORT ON

GEOPHYSICAL SURVEY

FOR MID=CANADA EXPLORATIONS SERVICES LTD.

NEEPAWA ISLAND AREA (MINNITAKI LAKE)

SICUX LOOKOUT, ONTARIO

February 1981

R.J. Meikle
Rayan Exploration Ltd.

SURVEY LOCATION - CLAIM GROUP

The claim group is located in the Parnes Lake area, district of Kenora,
Ontario. The claim group surrounds five old mining claims on Neepewa Island,
Minnitaki Lake. The five patended claims are:

Pa 31714

Pa 31711

Pa 31712

Sv 106

Sv 107

The claims on which the current geophysics was carried out on are:

437491, 437492, 437493, 437494, 437495, 437496,

437497, 437498, 437499, 437500, 485001, 485002

485003, 485004, 485005, 485006, 485007

WORK PERFORMED

INECUTTING:

A total of 22.12 miles (35.61 km) of lines were cut and picketed. Line spacing was 400 ft. with pickets every 100 ft.

VLF SURVEY:

A total of 15.34 miles (24.7 km) of VLF survey was conducted using a Geonics EM 16 instrument, recording both dip angles and quadrature response. All readings were taken facing in a northerly direction at right angles to the transmitter station direction.

MAGNETOMETER SURVEY:

A total of 15.34 miles (24.7 km) of Proton Precession Magnetometer Survey was conducted using a Barringer magnetometer. A staff was used for all readings. Baselines and tielines were used for diurnal control and the survey accuracy should be +/- 5 gammas.

GENERAL GEOLOGY

While the geology of the area is not familiar to the author, the surveyed area appears to be underlain by a mixture of mafic volcanics and younger interbedded metasediments.

RESULTS

MAGNETOMETER SURVEY:

As per map #1, the area has numerous magnetic occurrences. Generally the magnetic highs are flanking the E.M. conductors with some exceptions such as L60E - 10N where there is direct correlation between the two.

Readings were taken every 100 ft. with 50 ft. on anomalies. The magnetic distribution is very erratic and difficult to contour with 400 ft. line spacings.

Magnetic disturbances and diurnal variation were at an extreme low throughout the survey period.

The cause of the magnetic anomalies is probably due to mafic volcanics and or gabbro/diorite. These mafic units are generally erratic in distribution and composition.

Areas on the maps with 'NR' indicate where the magnetic gradient was too high and the sensor could not be placed far enough away from bedrock to obtain a reading.

YLF SURVEY:

As per map #2 & #3 the area is quite active electrically. This is probably due to the interbedded sediments found in the area. There are several east-west trending conductors some of which some are quite strong. The dip angles were filtered by Fraser's Method and contoured (map #3). This provides an excellent structured picture of the area while dilineating the more conductive regions.

The strongest anomaly was formed on L60E - 32+00N, just off the north end of the grid. The line was extended by compass to define this very strong conductor which correlates with a topographic low (swamp). Most of the conductors are long and quite strong which leads the author to think they are caused by graphitic sediments. However, this would require some more work, including mapping to determine this.

ENCLUSION:

The survey performed, outlined several conductors as well as various magnetic occurrences.

The first step in any future work should consist of detailed, geological mapping since bedrock exposure is relatively good on the islands.

If the geology is encouraging in an economic sense, the geophysics should be re-evaluated and more detail done.

Respectfully yours,

R.J. Meikle

Rayan Exploration Ltd.

al Resources

900

GEUPHYSICAL - GRULUGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

to be attached as an appendix to technical report facts shown here need not be repeated in report technical report must contain interpretation, conclusions etc.

Type of Survey(s) MICHETOMETER & F.M. Township or Area PRENES LOVE NEED Claim Holder(s) PETER & HUNKIN			MINING CLAIMS TRAVERSED List numerically		
Survey Compa	nv Ra	YAN EX	exugation LTD	P.A.	437491
Author of Repo				(prefix)	(member) 437492
Address of Author 131 KEK. Deve Neers Box Out.					
			(linecutting to office)		437493
Total Miles of 1				Pl	437494
TOTAL MINES OF 1	Line Cut.			PA	437495
SPECIAL PR	ROVISIO	NS	DAYS	PO	437496
CREDITS R			Geophysical per claim		•••••••••••••••••••••••••••••••••••••••
			-Electromagnetic	PA	437497
ENTER 40 d line cutting)		udes	-Magnetometer	PA	437498
survey.	for insc		-Radiometric	PP	437499
ENTER 20 d	days for e	ach	-Other	PA	437500
additional su	•		Geological		
same grid.			Geochemical	PA	485 00 1
AIRBORNE C	REDITS	(Special provis	sion credits do not apply to airborne surveys)	PI	485002
Magnetometer.			neticRadiometric lays per claim)	PA	485003
DATE:		SIGNA	ATURE:	PB	485004
VA. 2			Author of Report or Agent	PO	445005
			1	PA	485006
Res. Geol	···	Qualif	fications this file:	00	
Previous Surve	;yş	-	•		485001
	Туре	Date	Claim Holder	.	
			······		
				••••••••	,aa ₀₀ ,aaaaaaa
					,
			k'		
			•	TOTAL CLAIN	4S
. I	,		4		

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey

N	umber of Stations Lac Saver 974 F.M. 837 Number of Readings Mes 974 F.M. 837							
S	tation interval Mac 50' 100' E.M. 100' Line spacing 400'							
P	rofile scale							
C	ontour interval 1000 Commos Mass. F.M. +10 +28 +50 +35 (+100							
MAGNETIC	Instrument Rogervar Rector 6M122. Accuracy - Scale constant + 1-5 Connes Diurnal correction method							
X	Base Station check-in interval (hours)							
_	Base Station location and value 0+00 60/30 Gammes							
ELECTROMAGNETIC	Instrument							
	Instrument							
	Scale constant							
GRAVITY	Corrections made							
	Base station value and location							
	Elevation accuracy							
	Instrument							
j	Method							
3	Parameters - On time Frequency							
2	- Off time Range							
	- Delay time							
	- Integration time							
RESISTIVITY	Power							
4 4	Electrode array							
	Electron : spacing							
	Type of electrode							

INDUCED POLARIZATION.

Your file: 529/13 NW (30)

1982 03 25

Our file: 2.3860

Albert Hanson Mining Recorder Ministry of Natural Resources P.O. Box 669 Sioux Lookout, Ontario POV 2TO

Dear Sir:

Re: Geophysical (Electromagnetic and Magnetometer) Survey submitted under Special Provisions (credit for Performance and Coverage) on Mining Claims Pa 437491 et al in the Parnes Lake Area

The Geophysical (Electromagnetic and Magnetometer) Survey assessment work credits as listed with my Notice of Intent dated February 3, 1982 have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours very truly,

E.E. Anderson

Director

Land Management Branch

Whitney Block, Room 6450 Queen's Park Toronto, Ontario M7A 1W3 Phone: 416/965-1316

A. Barr/amc

cc: Peter G. Hunkin Schumacher, Ontario

cc: Rayan Exploration Ltd.
North Bay, Ontario
Attn: R.J. Meikle

cc: Resident Geologist
Sioux Lookout, Ontario

SEE	ACCOMPANYIN	G
	IDENTIFIED	
52	-G/13NW-0020	<u>-+/</u>
* ************************************		#2
		#3

LOCATED IN THE MAP CHANNEL IN THE FOLLOWING SEQUENCE (X)

529/132W-0020-41

RAYAN EXPLORATION LTD. Client - Mid Canada Exploration Service

Magnetometer Survey

SIOUX LOOKOUT, ONT.

Scale: | " = 400' | January , 1981 Instrument : Barringer Proton Mag Sensitivity:+/-5 gammas (staff used) Rdg. Interval: 100 ft. (less in anomalous areas) Note: Add 60,000 to all readings except where noted

Contour Interval: 1000 gammas (mag is too erradic for more detailed

2.36%

contouring at 400' line spacing.

52 G 130W-0020-#2

DID Argle | FILTRERO VALUES | 165 | -36 | +32 | +32 | +32 | +32 | +50 | +78 | +60 | +60 | +10 |

EXAMPLE OF FRASER FILTER METHOD

RAYAN EXPLORATION LTD CLIENT- Mid Canada Exploration Service

Filtered VLE Survey

(Fraser's METNOD)

SIOUX LOOKOUT, ONT Instrument - Geonics EM - 16

Instrument - Geonics EM - 16
Dip angles fittered by Fraser's Method
Compar Intervals

+10 +25 +50 +75 +100 Scale 1" =400' Jan /Feb 1981

2.3860

~	PEN (1) 2N + 4 + 6 6 35 + 11 0 10 25 15 211 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	True North
	OPEN 17N +19	W W W W 3850 +2 34N 22N +4 145N +5
\	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 -1 00-2 185 +2 0 +6 100N -4 $TL31N$ 85 -4 25 -3 135 0 $5N+12$ $70N-3$ $30N$ 75 -9 145 -1 1N 0 17N +10 $50N-3$ 85 -5 235 -1 11N -2 28N +7 $30N-2$ 15 -3 165 -5 20N -4 $42N-2$ $26N-2$ 75 -7 95 -8 $20N-5$ $30N-8$ $8N-2$ $26N$ 15 -11 $8N-8$ $11N-7$ $12N-5$ $45 0$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 - 17 $7N - 9$ $3N - 8$ $0 - 4$ $155 - 45 - 17$ $9N - 17$ $25 P9485005 - 4$ $305 - 736 - 26$ $0 - 22$ $185 - 10$ $225 - 5$ $305 - 6$ $22N25 - 22$ $285 - 14$ $325 - 8$ $325 - 4$ $50N - 1235 - 24$ $465 - 6$ $525 - 3$ $605 + 2$ $25N - 1835 - 20$ $785 - 7$ $695 - 1$ $26N - 10$ $3N - 1635 - 13$ $745 - 7$ $285 - 7$ $2N - 13$ $35 - 14$ $T1 - 19N$
<i>b</i> -	38N+5 7717 335 -2 75 6 455 174 7496 5 6 305 1/5 175 174 174 175 13N 18 18 18 18 18 18 18 18 18 18 18 18 18	$\frac{15}{15} = \frac{13}{14} = \frac{14}{15} = \frac{1}{12} = \frac{1}{1$
Ť	25-11	385-11 585-14 45-14 235-16 10N 8N-12 75-9 26N-10 3N-2 44N-14 13N+9 33N-22 18N+8
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$7N - 14$ $26N + 6$ $13N - 12$ $41N - 7$ $45 + 3$ $115 + 6$ $205 - 5$ $21N - 18$ $28N - 20$ $65 - 4$ $205 + 7$ $125 - 10$ $35 - 15$ $12N - 24$ $5N - 16$ $355 = 6$ $205 - 10$ $245 - 6$ $45 - 18$ $7N - 21$ $195 - 13$ $265 - 13$ $265 - 12$ $95 - 13$ $8 \pm 0 + 00$
	45 - 9 $75 - 9$ $78 - 9$ $105 0$ $2N + 1$ $7N - 9$ $25 - 12$ $218 - 12$ 2	0 - 21 $135 - 18$ $205 - 16$ $105 - 12$ $65 - 1665 - 12$ $105 - 18$ $85 - 14$ $0 - 6$ $15 - 2$ $2575 - 5$ $35 - 14$ $0 - 8$ $0 0$ $15 + 55 - 13$ $0 - 8 PAHY5006+2$ $5N + 7$ $3N + 160 - 6$ $0 - 3$ $19N + 5$ $12N + 8$ $8N + 111N + 2$ $45 + 2$ $20N + 4$ $3N + 6$ $25 + 13$ $65N + 4$ $0 + 2$ $4N + 4$ $35 0$ $45 + 4$
	42 1	00 3NO 135+2 00 25 60 TL85

25 +4

526/13NW-0020-#3

Quadrature ___ Cross Over N/K 2900 Direction of Tx Station Naa 270° 10N + 8

RAYAN EXPLORATION LTD Client . Mid Canada Exploration Service

VLF. SURVEY

Raw Dip Angles SIOUX LOOKOUT, ONT

1" =400' Jan 1981 R.J.M. Instrument: Geonics E.M. 16 Tx. Station: Naa - Cutler Maine

Nss - Annapolis Md. where

NIK - Seattle Wash. marked

2.3860