

NORANDA EXPLORATION COMPANY, LIMITED (no personal liability)

SUMMARY REPORT OF WORK - 1992

SIX MILE LAKE - PROJECT 1320

N.T.S. 52G/14 and 52G/15

NORTHWEST ONTARIO DISTRICT

2.15020

THUNDER BAY, ONTARIO **JANUARY, 1993**

2. 3297. Qual. 1210.

REG FELIX SR. PROJECT GEOLOGIST

NOISING DIMINION PATRICIA WIMING RECORDER

SS: 01A 7 YAM E8

Ø10C

17

Taulu un contonto

Page 1.0 INTRODUCTION 1 2.0 **LOCATION AND ACCESS** 1 3.0 PROPERTY DISPOSITION 1 4.0 **PREVIOUS WORK** 2 5.0 **PERSONNEL** 5 6.0 **REGIONAL GEOLOGY** 5 7.0 1992 PROGRAMS 5 7.1 Gridding 6 7.2 Geology and Lithogeochemistry 6 7.3 Geophysics 7 7.4 Soil Geochemistry 7 8.0 **DISCUSSION OF RESULTS** 7 8.1 Penassi Lake Grid 7 8.1.1 Geology and Lithogeochemistry 7 8.1.2 Geophysics 8 8.1.3 Soil Geochemistry 8 8.2 Cobb Lake Grid 9 8.2.1 Geology and Lithogeochemistry 9 8.2.2 Geophysics 11 8.2.3 Soil Geochemistry 12 8.3 Cobb Bay Grid 13 8.3.1 Geology and Lithogeochemistry 13 8.3.2 Soil Geochemistry 15 8.4 Fish Lake Grid 15 8.4.1 Geology and Lithogeochemistry 15 8.4.2 Soil Geochemistry 17 9.0 **CONCLUSIONS AND RECOMMENDATIONS**

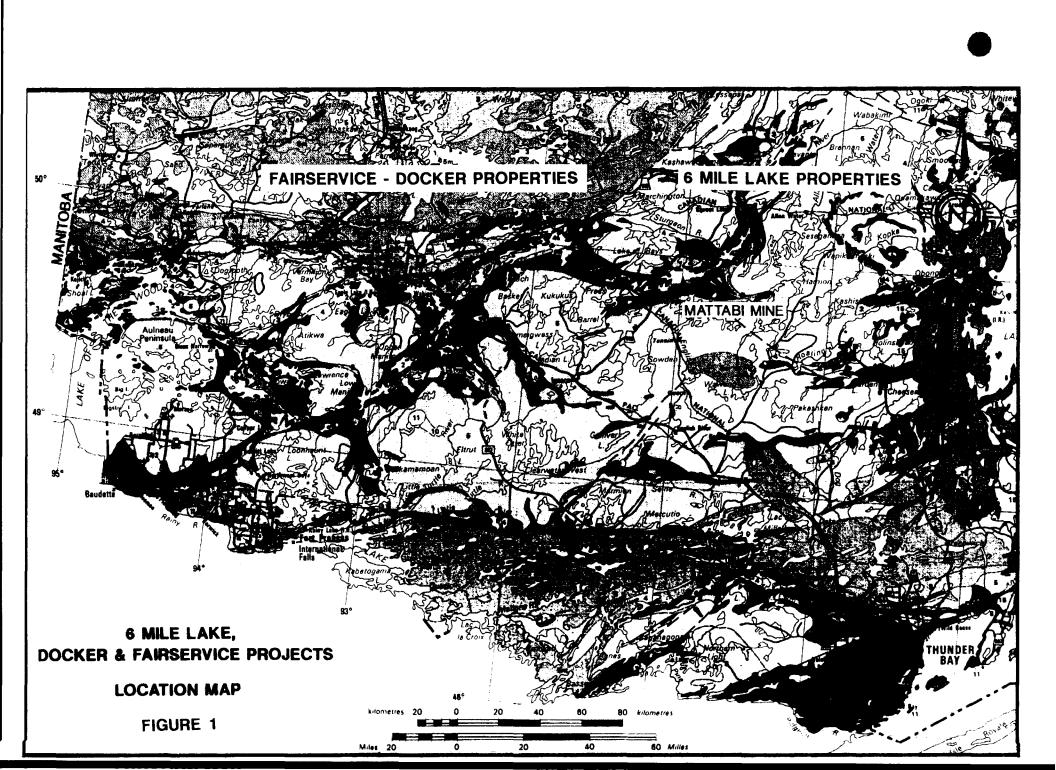
List of Attachments

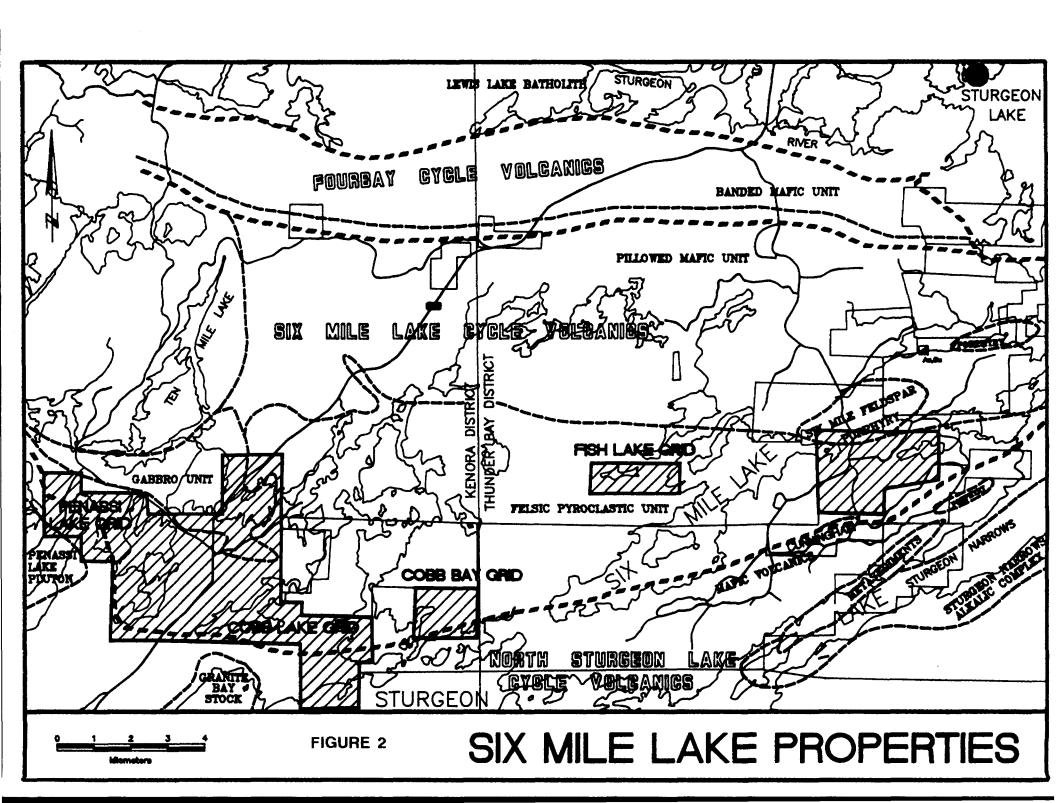
Scale

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6A Figure 6B Figure 7 Figure 8	Location Map Six Mile Lake Properties Location Sketch Regional Geology Map Total Field Magnetics - Six Mile Lake Area AFM Plot - Cobb Lake West Grid Samples (Zr/10) - (Ti/100) - (Y) Plot - Cobb Lake West Grid Samples (Zr/10) - (Ti/100) - (Y) Plot - Cobb Lake East Grid Samples (Zr/10) - (Ti/100) - (Y) Plot - Cobb Bay Grid Samples (Zr/10) - (Ti/100) - (Y) Plot - Fish Lake Grid Samples	1:2,000,000 1" = 2 miles (approx) 1" = 2 miles (approx) 1:100,000
Map 1	Claim Sketch - Six Mile Lake Area	1" = ½ mile
Map 2	Claim Sketch - Penassi Lake Area	1" = ½ mile
Мар 3 Мар 4	Geocompilation - Six Mile Lake Area Geology - Penassi Lake Grid	1:20,000
Map 5	Geology - Cobb Lake Grid	1:5,000 1:5,000
Map 6	Geology - Cobb Bay Grid	1:5,000
Map 7	Geology - Fish Lake Grid	1:5,000
Map 8	Total Field Magnetic Values - Penassi Lake Grid	1:5,000
Map 9	Total Field Magnetic Contours - Penassi Lake Grid	1:5,000
Map 10	HLEM Survey - 440 Hz - Penassi Lake Grid	1:5,000
Map 11	HLEM Survey - 1760 Hz - Penassi Lake Grid	1:5,000
Map 12	HLEM Survey - 3520 Hz - Penassi Lake Grid	1:5,000
Map 13	Total Field Magnetic Values - Cobb Lake Grid	1:5,000
Map 14	Total Field Magnetic Contours - Cobb Lake Grid	1:5,000
Map 15	HLEM Survey - 880 Hz - Cobb Lake Grid	1:5,000
Map 16	HLEM Survey - 1760 Hz - Cobb Lake Grid	1:5,000
Map 17	HLEM Survey - 3520 Hz - Cobb Lake Grid	1:5,000
Map 18	Soil Geochemistry - Cu/Zn Values - Penassi Lake Grid	1:5,000
Map 19	Soil Geochemistry - Cu/Zn Values - Cobb Lake Grid	1:5,000
Map 20	Soil Geochemistry - Cu/Zn Values - Cobb Bay Grid	1:5,000
Map 21	Soil Geochemistry - Cu/Zn Values - Fish Lake Grid	1:5,000
Appendix I Appendix II Appendix III	Petrographic Descriptions Lithosample Descriptions and Analyses Soil Geochemistry Laboratory Procedures and Analyses	

1.0 INTRODUCTION

Past successes such as the discoveries of deposits like Isle Dieu and Aur-Louvem are strong arguments to pursue exploration opportunities in existing mining camps such as the Sturgeon Lake Camp. Although the discovery of Mattabi in 1969 sparked a wave of exploration over the entire Sturgeon Lake greenstone belt in the late 1960's and early 1970's, all of the six base metal deposits found as yet are hosted within the South Sturgeon Lake Volcanic Assemblage on the south limb of a broad regional syncline. The Six Mile Lake area is situated on the northern limb. Most of the deposits in the South Sturgeon Lake volcanics are hosted by thick bedded, high porosity, subaqueous, felsic quartz crystal pyroclastic flow deposits overlain by massive shallower-water, fine grained, ash flow tuff Alteration zones are characteristically huge and widespread semi-conformable to cap rocks. conformable with local more intense lenses or pods beneath deposits and associated synvolcanic faults. Bedded and massive pyroclastic flow deposits of comparable size and morphology to the immediate host rocks of the South Sturgeon Lake VMS deposits are present within the second volcanic cycle (the Six Mile Lake Cycle) in the Six Mile Lake area. Previous testing of 1960's AEM targets has not located any economic mineralization. AEM and AMAG surveys of the Six Mile Lake area completed in 1990 by the OGS did not provide any new isolated AEM targets to act as a focal point. However, very little lithogeochemistry has been applied to the evaluation of the Six Mile Lake area for VMS deposits. In 1992, data released by the OGS reported lithogeochemical alteration indicative of footwall alteration associated with VMS and pyroclastic hosted gold deposits was present in samples collected from the Six Mile Lake cycle volcanics.


Consequently, a program was initiated in 1992 to further evaluate the geologic, geophysical and geochemical setting of the Six Mile Lake area for VMS deposits. Compilation and re-interpretation of existing data, including existing AEM data, was completed. Claim staking, linecutting, geological, lithogeochemical and soil geochemical surveys were undertaken within selected areas underlain by the Six Mile Lake Cycle volcanics. By year end ground geophysics was also initiated on two of the selected properties. The objective of these programs was to identify any alteration cells and/or untested geophysical anomalies diagnostic of potential VMS mineralization and to help develop viable drill targets.


2.0 LOCATION AND ACCESS (Figures 1, 2)

The Six Mile Lake area is located in the Sturgeon Lake-Savant Lake region, NTS 52G/14 and 52G/15, approximately 215 km northwest of Thunder Bay, Ontario. The area is bounded by latitudes 50°05'N and 49°52'N and longitudes 91°08'W and 90°46'W. The community of Savant Lake is situated 40 km north; Highway 599 provides access from Ignace, Ontario, 80 km to the south. Logging and tourist camp roads referred to locally as the Six Mile Lake road, the Handcuff Lake road, the Cobb Bay road and the McLeod Lake road, in conjunction with local lakes, afford additional access to the Six Mile Lake properties.

3.0 PROPERTY DISPOSITION (Figure 2)

As of December 31, 1992, the Six Mile Lake project is comprised of five properties encompassing a total of 20 unpatented mining claims (249 claim units, 3984 hectares). These claims lie in the Penassi Lake and the Six Mile Lake areas - claim sheets G.2526 and G.2561. They were staked by Noranda Exploration which holds a 100% interest. The claims listed below can be found on Maps 1 and 2 at the end of this report.

CLAIM BLOCK	# OF CLAIM UNITS	AREA	RECORDING DATE
PA 1195525	15	Penassi Lake	04/22/92
PA 1195526	15	Penassi Lake	04/22/92
PA 1195527	16	Penassi Lake	05/04/92
PA 1195554	12	Six Mile Lake	04/27/92
PA: 1195574	12	Six Mile Lake	04/22/92
PA 1195575	15	Penassi Lake	04/22/92
PA 1195577	16	Penassi Lake	04/22/92
PA 1195578	15	Penassi Lake	05/04/92
PA 1195579	16	Penassi Lake	05/04/92
PA 1195580	15	Penassi Lake	05/04/92
PA 1195581	16	Penassi Lake	05/04/92
PA 1195582	3	Penassi Lake	05/04/92
PA 1195584	15	Penassi Lake	05/04/92
PA 1195585	15	Penassi Lake	05/04/92
PA 1195802	3	Penassi Lake	08/19/92
PA 1195803	12	Six Mile Lake	08/19/92
PA 1195804	6	Six Mile Lake	08/19/92
PA 1195805	4	Six Mile Lake	08/19/92
PA 1195806	16	Six Mile Lake	08/19/92
PA 1195807	12	Six Mile Lake	08/19/92

4.0 PREVIOUS WORK

The Six Mile Lake area was previously mapped by Trowell (1974, 1976, 1983). Beggs (1975) completed a north-south traverse across the north limb stratigraphy as part of a thesis on the petrology and geochemistry of the Six Mile Lake area. The Ontario Geological Survey completed airborne magnetic and electromagnetic surveys for the entire Sturgeon Lake-Savant Lake area in 1990. Most recently, the central and eastern portions of the area have been geologically mapped by Don Robinson (OGS, 1992).

The Six Mile Lake area has undergone two major episodes of exploration activity. Discovery of Mattabi in 1969 sparked a wave of exploration for base metals in the late 1960's and early 1970's. Rio Tinto Exploration Ltd., Granges Ltd., Noranda Exploration, Conwest, Selco, as well as Mattagami

Lake Mines Ltd. completed massive sulphide exploration programs with no success. Approximately 3 km west of Sturgeon Narrows, a massive pyritic sulphide lens up to 5m thick, hosted by the Six Mile Lake Cycle felsic pyroclastic unit that is capped by a Fe-carbonate alteration zone was geologically mapped in 1973 by Santa Maria Mines Ltd. IP later traced this zone for 1200 meters strike length. However, drilling of this zone as recently as 1985 yielded only trace amounts of base and precious metals. The second period of exploration activity centered around the "rediscovery" of gold in the early 1980's at King Bay. Several drilling campaigns by companies such as Steep Rock Resources, Hudson Bay Exploration, Falconbridge Ltd., Almanden Resources, Abermin Corp., W.G. Wahl Ltd., and Primrose Gold have subsequently tested the occurrence and surrounding area. Gold values over narrow and irregular quartz vein widths were intersected in drilling programs.

Geological data inventory folios have been completed for the Fourbay Lake, Six Mile Lake and Penassi Lake areas (OGS, 1986, 1987 and 1989), summarizing the previous exploration for the area. The following is a brief summary of previous exploration on each of the Six Mile Lake properties which are covered by this report. The reader should refer to Figure 2 and Map 3 for property locations and previous drill holes and geophysical anomalies.

(I) Penassi Lake Grid Area

- 1969-70:
- Mattagami staked 16 claims over AEM Anomaly H; anomaly had coincident airborne EM and Mag; follow-up Crone JEM and fluxgate mag in 1970 outlined 3 strong, narrow conductors with magnetic coincidence; a Radem survey later in 1970 outlined three more areas of weak, non-magnetic conductivity; drilled two holes; intersected .7 meters of 0.2% Zn in graphitic tuff in one hole and andesite no assays in second hole; remaining four conductors have never been tested.
- 1970-71:
- Labow, L.F., staked 10 claims between Graystone and Cobb Lakes, bordered on the west by Highway 599 (Daering Explorers Option) and 15 claims immediately east of Daering property (Win-Eldrich Mines); completed ground mag, radem VLF surveys and geologic mapping; delineated 4 conductive zones on Daering property and 2 discontinuous conductive zones without mag anomalies on Win-Eldrich Mines property; drilled 7 holes totalling 918 meters testing conductors, intersected felsic volcanics, no economic mineralization.
- 1971-72:
- Imperial Oil Limited staked 100 claims in McKee Lake area; carried out geological mapping; HLEM and mag surveys, picked up 3 conductors; drilled 3 holes totalling 288m testing all 3 conductors, one hole tested the southern extension of the Mattagami conductor 8-1 and intersected 0.6 meters of 0.06% Cu and 0.10% Zn in a siliceous tuff.

(II) Cobb Lake Grid Area

- 1970-72:
- Scandia Mining and Exploration staked 26 claims in the Cobb Lake Granite Bay area; completed ground mag and HLEM, no EM conductors; optioned by Noranda Exploration in 1972; carried out CEM and VLEM surveys, found 3 weak CEM anomalies; also completed soil geochem survey, found 5 zones of coincident zinc and copper concentrations, weak conductors were never drilled.
- 1970:
- Mattagami Lake Mines Limited staked 9 claims (Group 9) on north shore of Sturgeon Lake immediately south of Cobb Bay; carried out ground mag and JEM. 2 conductive zones delineated. 2 drill holes totalling 415 meters encountered no economic

mineralization.

1973:

Granges carried out EM-17 on 269 claims east of Cobb Lake and Granite Bay.

(III) Cobb Bay Grid Area

1971:

Spooner Mines and Oils Ltd. staked 484 claims within southern portion of Cobb Lake and Cobb Bay, Byline Lake and south over Sturgeon Lake; completed airborne Mag and EM surveys.

1972:

Granges Exploration Ltd. optioned Spooner claims; completed 5 drill holes over northern portion of Sturgeon Lake and south of Cobb Bay. No economic mineralization encountered; in hole SPO-14 just south of Cobb Bay, intersected graphite and chert beds carrying 2-5% disseminated pyrite within rhyolitic to dacitic lapillistone.

(IV) Fish Lake Grid Area

1971-72:

Dome Exploration Ltd. staked 33 claims north of Six Mile Lake and east of Saunders Lake; completed airborne mag, flat except for SE corner near Fish Lake; carried out ground mag and EM, many narrow mag anomalies delineated, no conductors.

1970-72:

Rio Tinto Canadian Exploration Ltd. held 161 claims from Byline Lake to northwestern portion of Six Mile Lake (Byline, Hydra and Pamike properties); conducted soil geochem, ground mag, TURAM EM and geological mapping, delineated a 400 meter thick rhyolite flow breccia in a thick sequence of felsic pyroclastics; minor Zn and Cu mineralization was reported associated with rhyolite flow breccia unit, four copper occurrences and one zinc occurrence were reported, two of them occur with Turam conductors and were drilled with 4 holes, no economic mineralization was intersected, a grab sample south of Fish Lake ran 0.51% Zn and was never drilled.

(V) Dumbell Lake Claim Group Area

1970:

Ross Kidd staked 20 claims east of Six Mile Lake, carried out airborne mag and EM, no anomalies.

1970-71:

Bordun Mining (Quebec) Ltd. staked 16 claims NE of Six Mile Lake; completed ground mag and EM-16 and SE-200, delineated 3 narrow mag anomalies within mafic flows, no SE-200 anomalies, several EM-16 conductors.

1970:

Rio Tinto Canadian Exploration Ltd. held the Amalgamated Beau Belle Option claim group east of Six Mile Lake; completed ground mag and EM, geology and 2 drill holes totalling 276 meters testing a Turam conductor in mafic intrusives, no economic mineralization was encountered.

1971:

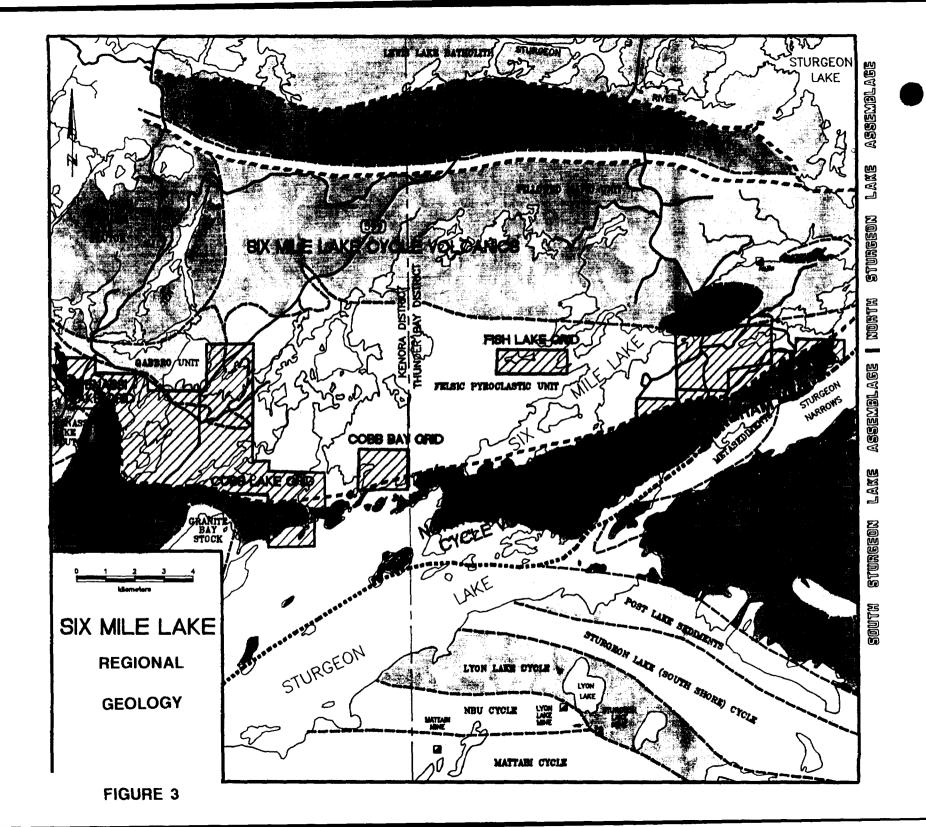
Dome Exploration held 15 claims east of Six Mile lake, carried out ground mag and EM.

1970-71:

Conwest held claims on the Dumbell Lake - King Bay area; completed geology, airborne mag and EM.

5.0 PERSONNEL

Archive and compilation studies were completed by the author. Geologic, prospecting and lithosampling surveys were carried out by R. Felix, C. MacDougall, A. Smith, M. Stares and S. Stares, all employees of Noranda Exploration Company, Limited. Linecutting was contracted to Vytyl Exploration Services of Thunder Bay, Ontario. A review and re-interpretation of AEM/AMAG data from the 1990 OGS survey tapes was completed by R. DeCarle of Toronto. Ground geophysics was carried out by Northwest Geophysics of Thunder Bay. The soil geochemistry survey was completed by Stares Contracting Ltd. of Thunder Bay and lithogeochemical and soil geochemical plots were provided by M. Leahey, Bayshore Geology Inc. of Thunder Bay. All programs were supervised by the author, John Sullivan - District Geologist, Northwest Ontario and John Gingerich - District Geophysicist, Northwest Ontario.


6.0 REGIONAL GEOLOGY (Figure 3)

The regional geology has been described by Trowell (1974, 1976, 1983) and Robinson (1992). The area occurs within the western region of the Wabigoon Subprovince and is underlain by an Archean supracrustal succession. The Six Mile Lake area is situated on the northern limb of a broad regional syncline in the Sturgeon Lake greenstone belt; the south limb (South Sturgeon Lake Assemblage) is host to all base metal deposits found as yet, including the former producing (VMS) Zn-Cu-Pb-Ag deposits at Mattabi, Sturgeon Lake and Lyon Lake. OGS mapping indicates that the geology of the Six Mile Lake area consists of south-facing, homoclinal sequence of two mafic to felsic volcanic cycles overlain by a third mafic volcanic cycle (Map 3). The lower 1900 meter mafic to felsic cycle is referred to as the Fourbay Cycle. The overlying 6,000-10,000 meter mafic to felsic cycle is referred to as the Six Mile Lake Cycle and the uppermost 1,500-2,000 meter mafic cycle with thin (<100m) discontinuous felsic volcanic lenses is the North Sturgeon Cycle. The thickness of the entire South Sturgeon Lake volcanic pile is equivalent to the second volcanic cycle - the Six Mile Lake Cycle. Robinson (1992) suggested that the western half of the second volcanic cycle's felsic pyroclastic unit represents a more proximal VMS environment. Mafic dykes, sills and sheets as well as quartz feldspar porphyry and feldspar porphyry dikes and sills are characteristically numerous throughout the Six Mile Lake Cycle. Two feldspar porphyry stocks, up to 1500m by 5000m, occur at and near the stratigraphic top of the second mafic cycle near King Bay and Six Mile Lake. The volcanic succession is bounded to the north by the Lewis Lake Batholith, to the west by the Penassi Lake Pluton and to the south by clastic sedimentary rocks of the Sturgeon Narrows Group. The sedimentary rocks face north and are in disconformable contact with the North Sturgeon Lake Volcanic Assemblage. The sedimentary rocks have been subsequently intruded by the Sturgeon Narrows Alkalic Syenite complex. All supracrustal rocks have been metamorphosed under greenschist and locally almandine-amphibolite facies conditions.

7.0 1992 PROGRAMS

A preliminary evaluation and compilation of archive geologic, geochemical and geophysical data covering the Six Mile Lake Area was initiated in early 1992. Existing AEM and AMAG data were reviewed and screened for previously untested AEM conductors and potentially untested (synvolcanic?) lineaments. Staking was initiated in April to cover:

- a) untested strong conductors with magnetic coincidence on the northwest side of Penassi Lake.
- b) untested zinc occurrence (0.51% Zn) associated with siliceous rhyolite flow breccia immediately

south of a Turam conductor previously delineated by Rio Tinto (1970) within an area east of Six Mile Lake; the zinc occurrence is along strike from some weak AEM responses with magnetic coincidence which were re-interpreted by R. DeCarle.

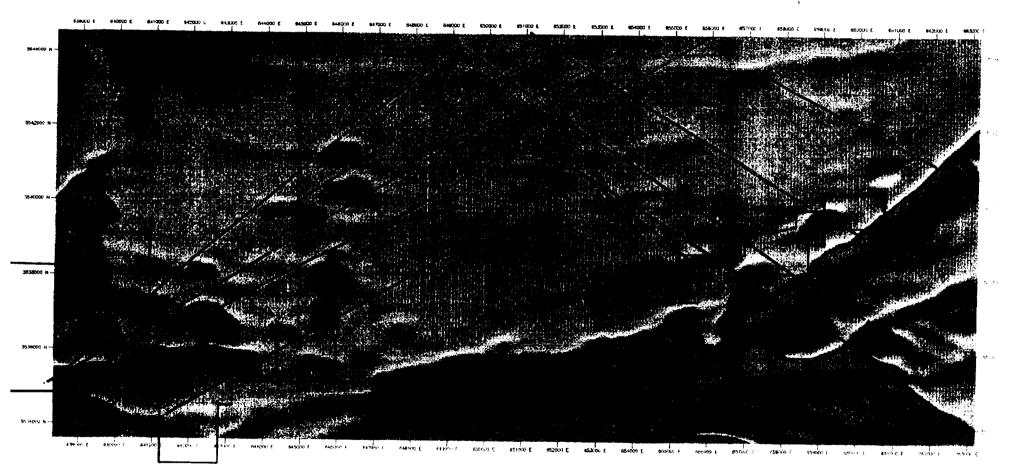
c) untested CEM anomalies with 5 zones of coincident Zn + Cu in soil concentrations on the west side of Cobb Lake.

d) potentially favourable felsic stratigraphy near the top of the Six Mile Lake felsic pyroclastic unit. Magnetic data interpretation suggests associated (synvolcanic?) lineaments/faults (see Figure 4). Approximately 11.5 km of favourable felsic volcanic stratigraphy was acquired. One day after Noranda began staking, BHP-Utah began to blanket stake the area and has subsequently acquired a large land position. Another group of claims covering 7 km of the Six Mile Lake felsic stratigraphy and a sulphide zone up to 30 meters wide situated in the eastern region of the belt was optioned by Noranda from L. Cunningham. An exploration program is in progress and is reported under separate cover (Cunningham Option Property).

Linecutting was followed up with geologic mapping, lithogeochemical sampling and soil geochemistry on four separate gridded areas. The mapping and lithosampling was augmented by a small amount of petrographic examination work. HLEM and Mag surveys were carried out on two of the gridded areas. All of these programs are discussed below.

7.1 Gridding (Map 3)

At the end of 1992, gridding was initiated within four separate areas. One grid was cut over an area in the northwest region of Penassi Lake to cover untested AEM conductors with magnetic coincidence. A total of 3.8 km of line was cut and picketed every 25 meters; lines were spaced 100 meters apart in the eastern region of the grid and 200 meters apart in the western region.


Another grid was cut in the Cobb Lake region from Cobb Bay at the eastern end to McLeod Lake at the western boundary. A total of 14.8 line kilometers was cut with line spacing every 1000 meters to act as control for preliminary prospecting and reconnaissance investigations. The area was subject to a forest fire in the early 1980's and subsequent 'blow-down' sections and a second dense growth of closely spaced pine trees has restricted traversing without cut lines. In the area between Highway 599 and the western region of Cobb Lake, closer spaced lines at 200 meters apart were cut. This is the area where previous exploration (Noranda 1970) located 3 weak CEM conductive zones with 2 main zones of copper-zinc soil anomalies.

Two other control grids with widely spaced lines were cut in the Cobb Bay area and the Fish Lake area, again to aid field investigations where traversing was severely hampered by bad 'blow down' and dense bush conditions. A total of 3.7 line kilometers was cut on the Cobb Bay claim which is underlain by the top of the favourable Six Mile Lake felsic pyroclastic unit in contact with the overlying North Sturgeon Lake mafic volcanic unit. The Fish Lake grid covers an area where previous work by Rio Tinto (1970-72) delineated a zinc showing (0.51% Zn) hosted by a thick sequence of felsic pyroclastics. A total of 3.5 kilometers was cut on the Fish Lake claim group.

7.2 Geology and Lithogeochemistry

Geologic mapping was conducted along cut lines on each of the gridded properties. Data has been plotted at a scale of 1:5,000 on Maps 4,5,6, and 7. In addition, 46 rock samples were submitted to Accurassay Labs Ltd. of Thunder Bay for copper-zinc analyses and 98 rock samples were forwarded to TSL Labs of Mississauga, Ontario for whole rock determinations. This includes 25 samples collected by Don Robinson during his mapping of the Six Mile Lake area and not previously analyzed or reported.

TOTAL FIELD MAGNETICS

SIX MILE LAKE AREA

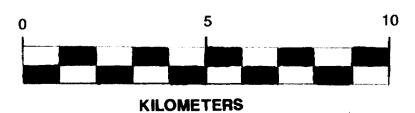


FIGURE 4

The samples were selected by Norex and the cost of the analyses was paid by Norex. Geologic data and sample locations are plotted on Maps 3,4,5,6 and 7 and sample descriptions and geochemical analyses are appended.

7.3 Geophysics

Ground magnetometer and horizontal loop electromagnetic surveys were contracted out to Northwest Geophysics of Thunder Bay. These surveys were carried out over portions of the Penassi Lake and Cobb Lake grids.

Instrumentation

The ground magnetometer survey employed the EDA OMNI plus (± .1 nT) proton precession magnetometer. Readings of the earth's geomagnetic field were taken at 12.5m intervals and diurnal corrections were made by integrating synchronized field readings with base stations readings.

The HLEM survey utilized the APEX MaxMin I system. A 100m coil separation was employed as were 4 operational frequencies (440, 880, 1770, 3520 Hz). The in-phase and quadrature components of the secondary field are recorded in percentage of primary field (± 1% full scale).

Data has been plotted on Maps 8 to 17.

7.4 Soil Geochemistry

Soil samples were collected at 25 meters along cut lines. A total of 671 B-horizon soil and 256 humus samples were collected and analyzed for copper and zinc at the Norex Laboratory in Bathurst, NB. Analytical techniques and results are appended. Cu-Zn values are plotted on Maps 18,19,20 and 21.

8.0 DISCUSSION OF RESULTS

8.1 Penassi Lake Grid

8.1.1 Geology and Lithogeochemistry

Outcrop exposure in general was very good. The area gridded is underlain predominantly by a mafic metavolcanic sequence comprised of pillowed flows and banded mafic tuffs. The metavolcanics are intruded in the southern region by a mafic stock of gabbroic composition. Pillow structures are strongly attenuated; tops cannot be ascertained. The rocks are characteristically fresh and pristine; little alteration is evident. The HLEM conductor which is discussed in the next section occurs along the contact of the pillowed flows with the banded tuffs. The main rock types are described as follows:

Mafic Metavolcanic Rocks

These rocks are fine to medium grained, medium to dark greenish black on fresh exposure and weather pale green. Pillow textures display chlorite ± epidote rinds, varying from 0.5 to 2 cm with a pale green interior. The banded tuffs appear to be in conformable contact with the pillowed units. The tuffs are grey to green, fine grained, with a pronounced color banding which may be due to local hydrothermal alteration mineral assemblages. The essential minerals within the mafic metavolcanic units include subhedral, green to greenish black prismatic amphibole and anhedral to euhedral, tabular plagioclase. Accessory minerals include chlorite, epidote ± carbonate. Foliation is the dominant

structural element striking easterly to southeasterly, steeply dipping to vertical.

Mafic Intrusive Rocks

Dykes and sills of fine to coarse grained gabbro occur within the Penassi Lake grid area and make up about 15-20% of the area mapped. The mafic intrusives are massive to porphyritic, dark green, amphibole-plagioclase rich rocks.

A distinctive gossan zone with widths up to 15 meters is exposed intermittently across the property at the contact of the pillowed unit with the banded tuff unit. Pyrite is the most common metallic sulphide mineral with local concentrations of graphite and garnet. A second narrow gossan is hosted by the banded mafic tuff unit near Line 3W/1 + 50N and is comprised mainly of pyrite, magnetite and garnet.

No copper-zinc values of significance were realized from the lithosamples collected during the mapping. No apparent alteration was evident in samples run for whole rock determinations.

8.1.2 Geophysics

A strong conductor crosses the grid between the baseline and 50N, is about 10 to 25m deep, roughly vertical, and shows very strong conductivity-thicknesses. The anomaly is coincident with magnetic lows. On line 100W it appears to be 30m thick. The conductor is about 50m left-offset by an apparent fault between 200W and 300W and the western continuation of the conductor has consistently narrow widths. This may indicate that the eastern, thick conductor is in a structurally deformed part of the mineralized horizon, providing a better trap for economic size mineralization.

The magnetics show a lot of high relief, small size anomalies. A fault coincident with that interpreted from the HLEM data is observable, but any number of faults can be postulated from a small grid with high relief.

Extension of the grid both east and west to follow the anomaly is recommended.

8.1.3 Soil Geochemistry

Anomalous thresholds were arbitrarily established after a review of the data and are summarized below for Cu-Zn.

	Copper (ppm)	Zinc (ppm)
Maximum Value	145	158
Minimum Value	2	4
Arithmetic Mean	20 (103 data points)	43 (103 data points)
One Standard Deviation (calculated)	22	33
Anomaly Threshold	50	100

There is a weakly enriched zone of Cu-Zn values which occurs as follows:

```
L 1W - 1 + 00S to 0 + 75S

L 2W - 1 + 25S to 0 + 25N

L 3W - 2 + 00S to 0 + 25N

L 5W - 2 + 00S to 1 + 50N

L 7W - 2 + 00S to 1 + 25N

29 ppm Cu to 52 ppm Cu, 100 to 158 ppm Zn

40 to 145 ppm Cu, 60-96 ppm Zn

61 to 119 ppm Cu, 56-136 ppm Zn

46 to 76 ppm Cu, 110 to 142 ppm Zn
```

Two additional spot Zn anomalies occur at L1W - 2+00S and L7W - 2+25N to 2+50N. In general, Cu-Zn values which exceed the arbitrary threshold values of 50 ppm Cu and 100 ppm Zn occur sporadically in narrow discontinuous zones.

8.2 Cobb Lake Grid

8.2.1 Geology and Lithogeochemistry

Outcrop exposure in general was moderate to locally poor especially at the north end of the grid. The mapped area includes the top section of the Six Mile Lake Cycle felsic pyroclastic unit in contact with the overlying North Sturgeon Lake Cycle mafic metavolcanics. The extrusive material is intruded by mafic and porphyritic felsic sills and dykes. The Cobb Lake felsic belt is traceable across the entire map area from Cobb Bay to the west end of McLeod Lake, a distance of 5.7 kilometers. Tuffs, lapilli tuffs, pyroclastic breccia and quartz-feldspar porphyries are found in the unit. Agglomerate exposures were encountered in the southwest area of Cobb Lake and on Cobb Bay. Lapilli fragment sizes average 5 cm in the Cobb Lake area and from a few millimeters to 10's of centimeters in the Cobb Bay area. The matrix and the fragments are the same composition. Along strike and interdigitating with the felsic pyroclastic rocks are outcrops of felsic porphyritic flows. They are generally porphyritic in feldspar and in some outcrops in quartz. They possibly are coarse ash (crystal tuff) deposits in the pyroclastic unit. There appears to be a fining of pyroclastic deposits away from the southeastern region of Cobb Lake. A large massive quartz feldspar porphyry sill/small stock was encountered along with some coarse mafic intrusive bodies between the eastern end of Cobb Lake and Cobb Bay. The QFP appears compositionally gradational with the felsic pyroclastic unit and probably is a subvolcanic equivalent for the unit. A notable mafic intrusive sill at least 1200 meters long occurs between Highway 599 and the western end of Cobb Lake. The sill is up to 150 meters thick. The Cobb Lake felsics are overlain to the south by andesitic to basaltic flow and tuffs, pillowed flows with minor interbeds of felsic tuff and agglomerate. The contact between the two units was observed in a number of places including L2 + 00E/1 + 00S, L21 + 75E/BL and L32 + 00E/1 + 25S. Contacts suggest local interfingering of the two units.

The stratigraphic section is considered to be a steeply south dipping homoclinal sequence with tops to the south. Foliation directions are predominantly east-west except near Cobb Bay where they trend south of east. No major faults can at present be inferred from the mapping program.

Chlorite, sericite and carbonate schists mark local zones of alteration within a more pervasive setting of weak to moderate sericitization and carbonatization over the entire map area. Two areas of particular note are: (1) the southeastern region of Cobb Lake where possible chert/exhalite textures were identified in a sample of quartz-carbonate, chlorite-pyrite breccia (sample TS 1320-8); (2) the region between Cobb Lake and McLeod Lake where a number of angular pieces of quartz-sericite-carbonate schist float (1316 F to L) are mineralized with 2-10% disseminated pyrite. The float is believed to be near source and coincidently borders a swamp where anomalous zinc in soil concentrations was realized (see Soil Geochemistry below).

A description of the main rock types of the map area are as follows:

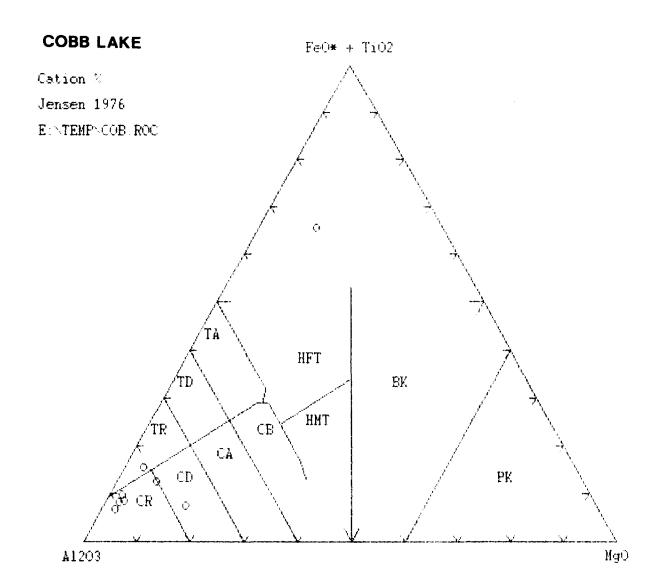
Mafic Metavolcanics

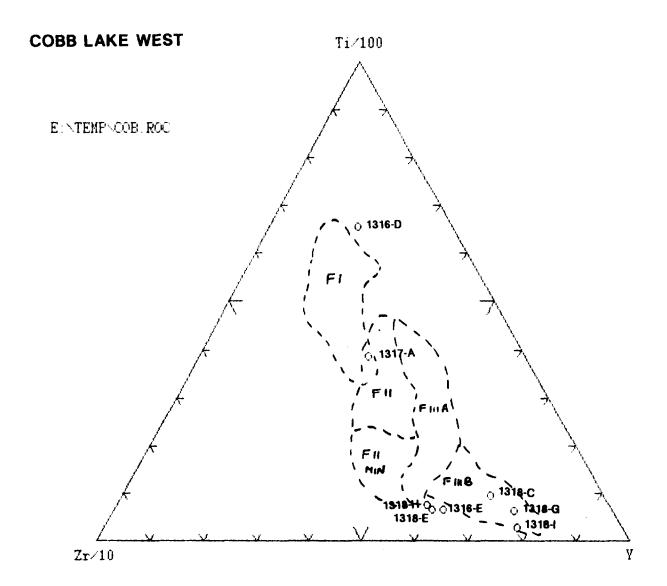
They are fine to medium grained and medium to dark green on fresh surfaces. Weathered varieties are brownish in color. Massive as well as foliated forms are common, suggesting the presence of thick flows containing coarser centres. Pillow forms are 10 to 40 cm bun to tube shaped with thin pillow selveges. Amygdules and vesicules were both observed and some rocks contain pale green amphibole and feldspar phenocrysts locally forming a subophitic texture. Epidote and carbonate constitutes <5 to >25% of the mafic rock.

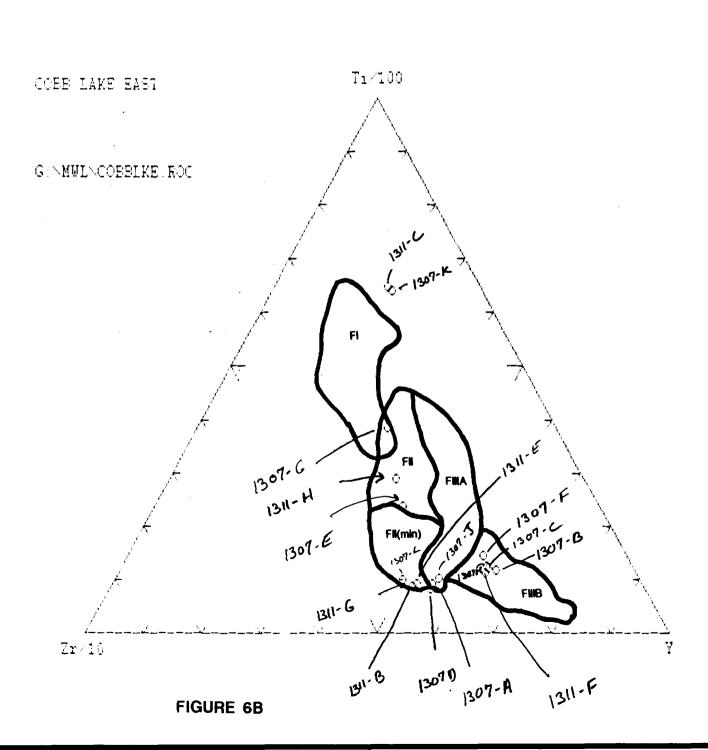
Felsic Metavolcanics

These rocks are generally fine grained to aphanitic and medium to light grey in color. They weather buff to grey and white. Fresh surfaces may carry a brown or greenish cast. Quartz eyes, 1mm to 3mm in size and in amounts varying up to 5% are usually present. Locally feldspar phenocrysts of a small size also occur. The felsic stratigraphy is dominated by coarse ash/crystal tuff deposits but there is interdigitation with coarse pyroclastic deposits characterized by poorly sorted, clast supported lapilli tuffs and tuff breccias. Fragments and matrix are composed of subangular to subrounded crystals of quartz and feldspar. The coarser fragmental rocks contain up to 25% mafic minerals in the matrix. Altered varieties typically contain accessory chlorite, carbonate, epidote and rutile. Sericite is the most common accessory mineral in amounts from 5 to 30%.

Mafic Intrusives


Several sills and dikes of gabbro occur throughout the map area, however they are most conspicuous within the felsic pyroclastic unit. Gabbro exposures are massive, fine grained, dark green to blackish green in color. Accessory minerals include quartz and magnetite. Some amphiboles are locally altered to carbonate.


Felsic Intrusives


These rocks are generally porphyritic in quartz and occasionally in feldspar as well. Small exposures of intrusive porphyry and what may be porphyritic tuff or flow material are difficult to differentiate between. Intrusives are generally medium grained, porphyritic with a light grey to green or pinkish hue. Weathered exposures are usually white. Mineralogically, they are composed of 2 to 15%, 2 to 5mm, subrounded quartz phenocrysts and 5 to 15%, 2 to 4mm, subhedral white plagioclase crystals within a fine grained felsitic groundmass.

There were no significant copper-zinc values realized in any of the grab samples collected during the mapping program. This was not unexpected as there were no massive sulphide horizons encountered. However, there are some felsic pyroclastic exposures weakly mineralized with disseminated pyrite that occur in areas which have weak AEM responses, e.g. 21 + 75E/2 + 50N, 6 + 00W/3 + 25N.

Partial geochemical analyses were obtained for 45 representative hand specimens of some of the major rock types in the map area. Six of the samples of the felsic pyroclastics collected from the area in between Cobb Lake and McLeod Lake plot in the calc-alkaline field on the AFM ternary diagram (Figure 5).

D.J. Robinson in his publication on Geology of the Six Mile Lake Area (OGS Open File Report 5838) stated that:

'In studies around the Fukazawa Kuroko volcanic massive sulphide (VMS) deposits of Japan, Date et al. (1985) utilized the Hashimoto alteration index to measure the intensity of rock alteration spatially related to ore. The index is defined as:

$$K_2O + MgO/K_2O + MgO + Na_2O + CaO *100.$$

The index reflects sodium and calcium depletion and potassium and magnesium enrichment in the footwall rocks spatially associated with VMS deposits and pyroclastic-hosted lode Au deposits. The alteration index (A.I.) varies directly with distance from the ore deposit, whereby an A.I. greater than 90 represents pervasively altered rock in the immediate footwall of the deposit, and an A.I. less than 60 reflects unaltered rock. A very low A.I., less than 25, may also be indicative of a sodium enrichment associated with both VMS and lode Au deposits.'

There were three samples which have an alteration index of 60 or greater:

SAMPLE #	A.I.	LOCATION
1318-H	74	6W/3 + 20N
1318-I	60	4 + 25W/5 + 00N
029-0	60	4+00E/1+25N

Sample 1318-H is a piece of angular float of schistose porphyritic felsic metavolcanic which appears to be a major component of the roadbed for Highway 599 in that area. Sample 1318-I is a sample of cherty quartz eye felsic metavolcanic outcropping approximately 200 meters north from 1318-H on the roadside. Both sample locations are immediately south of an area with weak AEM responses. Sample 029-O is a quartz eye felsic metavolcanic along strike to the east on the south shore of Cobb Lake. Samples with very low A.I. and exhibiting sodium enrichment include:

SAMPLE	A.I.	Na ₂ O (%)	LOCATION
660B	17	5.67	22 + 00E/7 + 75N
1316D	12	4.79	8+00W/2+50N

Finally, ternary plots were made of the trace element, geochemistry for titanium, zirconium and yttrium on a (Zr/10) - (Ti/100) - Y projection. According to Lesher et at, 1986, samples of the felsic metavolcanics from the region between Cobb Lake and McLeod Lake fall within or near the F II (min) fields or F III and are prime exploration targets (Figure 6A). Several samples of the QFP and the pyroclastics near the QFP contact between Cobb Lake and Cobb Lake also fall within the prime exploration fields (Figure 6B).

8.2.2 Geophysics

There is a conductor trending northeast which is apparently coincident with and presumably due to the powerline adjacent to the road. A weak conductor also exists at 250S on L400W and 300S on L200W. This conductor was not fully measured by the HLEM survey, so quantitative interpretation is

difficult.

The magnetic survey shows a strong east-west anomaly at 125N which is non-conductive. It may represent a mafic to ultramafic body.

8.2.3 Soil Geochemistry

After a review of the data, anomalous thresholds were arbitrarily established. The Cu-Zn soil geochemistry is summarized below:

	Copper (ppm)	Zinc (ppm)
Maximum Value	630	878
Minimum Value	1	3
Arithmetic Mean	17 (596 data points)	45 (596 data points)
One Standard Deviation (calculated)	36	61
Anomaly Threshold	50	100

A number of Cu-Zn trends were evidenced within the western region of the Cobb Lake grid (Map 5). Several small pockets of anomalous concentrations of Cu-Zn were also delineated east of L4 + 00E. However, most data points are restricted to the baseline since wingline sampling was spaced at 1000 meter intervals from L4 + 00E to 39 + 00E. At least six zones of anomalous Cu, Zn concentration can be delineated as follows:

Zone A: This zone extends from L8 + 00W to 12 + 00W and is still open to the west. Values up to 878 ppm zinc were returned from samples within this zone and anomalous zinc concentrations were noted from an area 175 meters across on L8 + 00W. This anomaly is immediately north and west of the area near Highway 599 where promising altered felsic metavolcanics are located (see previous section on Geology and Lithogeochemistry).

Zone B: This Cu-Zn trend extends from L6 + 00W to L18 + 00W (1200 meters strike) and is still open to the west. Values up to 630 ppm Cu and 310 ppm Zn were realized. This zone is underlain by mafic metavolcanics at the bottom of the North Sturgeon Lake Cycle. Some of the base metal enrichment is probably related to narrow lenses of felsic metavolcanic within the North Sturgeon Lake Cycle unit, e.g., L8 + 00W/1 + 75S.

Zone C: This zone extends from 2+00E to 2+00W (≤600 meters strike length), north of Cobb Lake. It is also along strike to the east of outcrops of quartz eye felsic metavolcanic on Highway 599. An alteration index of 60 was noted in these rocks. Values up to 116 ppm Zn and 150 ppm Cu are noted in soils from Zone C.

Zone D: This narrow zone occurs south of Cobb Lake from L0+00 to 3+25E. The area is underlain by felsic quartz eye tuff and cherty tuffs at the top of the Six Mile Lake felsic pyroclastic unit in contact with the North Sturgeon Lake mafic metavolcanics. Values up to 36 ppm Cu with accompanying concentrations of zinc up to 142 ppm are noted.

Zone E: This predominantly Zn enriched trend occurs southeast of Cobb Lake across Line 32 + 00E at the baseline. The bedrock stratigraphy is mapped as interbedded porphyritic felsic metavolcanic flows and crystal tuffs with felsic lapilli tuffs at the southern contact of a quartz feldspar porphyry intrusive stock/sill. Values up to 46 ppm Cu and 284 ppm Zn were returned from this zone.

Zone F: This zone of Cu-Zn enrichment extends from 4+25S to 6+25S (200 meters across) on L32+00E south of Zone E. The zone is underlain by narrow felsic lapilli tuffs encompassed by mafic metavolcanic flows of the North Sturgeon Lake Cycle metavolcanics.

Other anomalous concentrations of Cu, Zn were noted at:

```
(76-101 ppm Cu)
(i)
       L18+00W - 2+50S to 2+75S
(ii)
       B.L. - 9 + 25E
                                            (150 ppm Zn)
       L12+00E - 2+00N
                                            (43 ppm Cu, 662 ppm Zn)
(iii)
       L12 + 00E - 0 + 25S
                                            (48 ppm Cu, 162 ppm Zn)
(iv)
       B.L. - 15 + 25W
                                            (228 ppm Zn)
(v)
                                            (48 ppm Cu, 292 ppm Zn)
(vi)
       B.L. - 20 + 75W
                                            (128 ppm Zn)
       B.L. - 23 + 50W
(vii)
       L32 + 00E - 3 + 25N to 3 + 50N
                                            (46 ppm Cu, 126-302 ppm Zn)
(viii)
       B.L. - 37 + 25W
                                            (136 ppm Zn)
(ix)
```

8.3 Cobb Bay Grid

8.3.1 Geology and Lithogeochemistry

Outcrop exposure was very poor with bedrock exposed essentially on two east-west ridges, one along the baseline and the other between L5+00W and L10+00W at the northend of the grid. The area mapped is underlain by the contacts of steeply south dipping felsic pyroclastic units with overlying mafic metavolcanics to the south. A small quartz feldspar porphyry body was noted at the western end of the baseline intruding the mafic metavolcanic sequence. A subvolcanic origin for the felsic intrusive is favoured as this rock contains anhedral quartz phenocrysts and a quartzo-feldspathic matrix. The compositional and textural similarities of this QFP body with that mapped on the Cobb Lake grid suggests that all of the stratigraphy observed on the Cobb Bay grid is within the Six Mile Lake Cycle unit. The contact with the North Sturgeon Lake Cycle volcanics is inferred to be further south. The felsic pyroclastic rocks on the property form two east-west trending belts. The northern member is comprised of pyroclastic crystal tuff and where exposed is strongly sericitized and carbonatized (see samples 1320-4, Appendix I). A sample (1305-H) of an outcrop within this unit was microscopically identified as an altered diorite because of the high percentage of hornblende and epidote (see Appendix I - sample 1320-5). The author believes this outcrop possibly represents intensely altered feldspar porphyry or a feldspar phyric flow. The second felsic member occurs just north of the baseline and is comprised essentially of pyroclastic lapilli tuff. It averages 50 meters in thickness and is in contact to the north with massive and locally strongly carbonatized fine to medium grained mafic metavolcanic flows. To the south of the felsic lapillistone is a series of porphyritic (feldspar) and pillowed mafic lava flows. Local 5-10% pyrite-pyrrhotite mineralization occurring in pod-like form was noted in this sequence. These mafics are also characteristically strongly carbonatized. The main rock types are described as follows:

Mafic Metavolcanics

These rocks are medium to dark green on fresh surfaces, either fine to medium grained or coarse grained lava flows. Essential minerals include subhedral, colourless to pale yellow-green prismatic amphibole and anhedral to euhedral feldspar both as matrix and occasionally as phenocrysts. Accessory

minerals include chlorite, carbonate, epidote and local sulphide minerals. Pillow textures display a dark green chlorite ± epidote rind, up to 2 cm wide, with a pale green pillow interior. Pillowed sequences form bun shapes from 20 cm to 50 cm long and are generally attenuated. Mafic volcanic rocks in the Cobb Bay grid area are typically chloritic and carbonate altered, which is especially evident on the weathered surface.

Felsic Metavolcanics

These rocks display a prominent foliation. They occur either as porphyritic crystal tuffs or lapillistone and locally as quartz-carbonate-sericite schists. The coarse ash deposits (crystal tuff) are composed predominantly of blocky, subhedral to elongate fragments and broken crystals of feldspar up to 3 or 4 mm in size, with subordinate quartz crystals. Altered varieties contain accessory sericite, carbonate and chlorite forming up to 30% of the rock with sericite as the most abundant alteration mineral. Lithic fragments are absent. The petrographic description of sample TS 1320-4 suggests that the accessory carbonate includes a ferruginous component (ankerite or siderite). The lapilli tuffs contain 25 to 50% porphyritic juvenile lithic fragments in a fine to coarse ash matrix. Juvenile lithic fragments are composed of very fine grained to microcrystalline quartz and feldspar, with pristine subhedral to euhedral feldspar and subrounded quartz microphenocrysts.

Quartz Feldspar Porphyry

This rock consists of phenocrysts of 2 to 5% subrounded quartz and subhedral plagioclase, up to 5mm in size, scattered through a microgranular felsite groundmass composed predominantly of feldspar. There is a notable lack of mafics with only traces of carbonate and pyrite. The feldspars generally show a weak sericitization.

Feldspar Porphyry/Altered Diorite

This rock consists of coarse, sub-prismatic, buff-coloured, phenocrysts/fragments, up to 1 cm in size set in a dark matrix forming a 'leopard-rock' like texture. The phenocryst-like features are believed to be intensely altered feldspars. Microscopically, they have been identified as epidote aggregates (see Appendix I - TS 1320-5). The dark matrix is comprised essentially of hornblende with intergrown microgranular plagioclase.

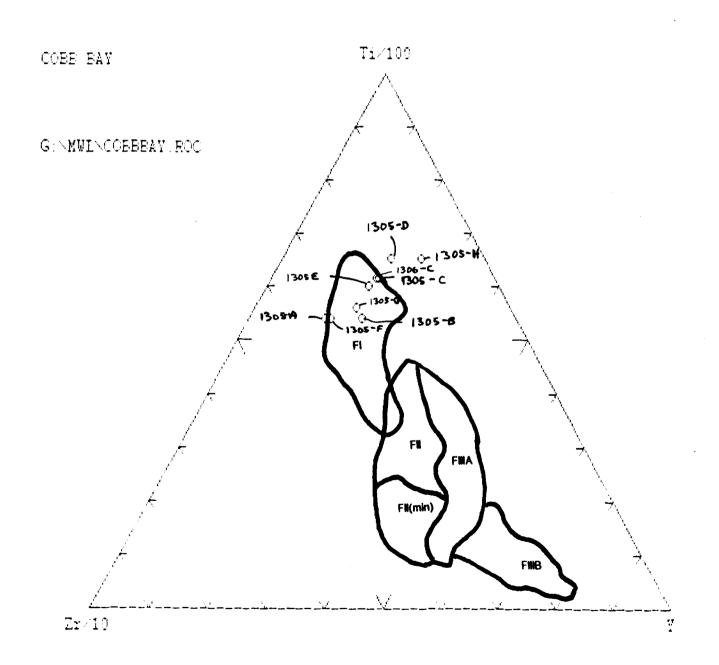
No significant sulphide mineralization, except for local pods of 5-10% pyrite-pyrrhotite within the mafic metavolcanics, was noted within the map area. Five of the eight representative hand specimens of the major rock types which were run for whole rock geochemistry have a Hashimoto alteration index less than 25 and are relatively sodium enriched.

SAMPLE #	A.I.	Na₂0 %	LOCATION
1305-A	15	5.93	B.L./12+60W
1305-C	17	6.52	B.L./10 + 75W
1305-D	15	4.04	10+00W/1+00N
1305-F	22	4.33	7 + 00W/4 + 00N
1305-G	24	4.53	7+00W/4+00N

A ternary plot was made of the trace element geochemistry for titanium, zirconium and yttrium on a (Zr/10) - (Ti/100) - Y projection. None of the samples fall within the prime exploration target fields (see Figure 7).

8.3.2 Soil Geochemistry

	Copper (ppm)	Zinc (ppm)
Maximum Value	38	186
Minimum Value	2	6
Arithmetic Mean	11 (135 data points)	39 (135 data points)
One Standard Deviation	8	31
Anomaly Threshold	25	75


There appear to be three sites/zones of Cu, Zn-enrichment. One zone extends from L5+00W/3+75N to L10+00W/1+50N is up to 100 meters across, and is underlain by the northern felsic crystal tuff member. Values up to 31 ppm Cu and 112 ppm Zn were noted in this zone. Although they are very weak enrichments, they are still 2 to 3 time the concentrations of these metals in the soil bordering this zone. A second zone occurs just south of the baseline on L10+00W \cdot 0+50S to 1+00S and crosses the baseline at 6+50W and 4+75W. Values up to 38 ppm Cu and 166 ppm zinc occur within this zone. The third zone stretches across L5+00W \cdot 0+75S to 1+50S northeasterly and crosses the baseline between 2+00W and 0+75W. Cu values up to 26 ppm and zinc values up to 106 ppm were noted within this zone.

8.4 Fish Lake Grid

8.4.1 Geology and Lithogeochemistry

Outcrop exposure was poor to moderate and mapping was restricted to cut grid lines. The Six Mile Lake Cycle felsic metavolcanic rocks encompassed within the map area are comprised of coarse to fine pyroclastic deposits including: pyroclastic breccia, lapilli tuff, crystal tuff and finely bedded ash tuff. The felsic sequence is cut by numerous, north to northeast and northwest trending mafic and quartz feldspar porphyry dykes and sills. A north trending feldspar porphyry dyke also transects the felsic pyroclastic sequence at the eastern end of the map area. The intrusions make up up to 50% of the property stratigraphy. Within the mapped area, there appears to be a rough fining of the pyroclastic deposits from north to south. Block and ash breccia was noted within the northwest quadrant of the property and bedded ash tuffs occur near the baseline at 5 + 25W.

Foliation directions are roughly east-west with dips steeply to the south. Most of the rock exhibited a fresh, pristine character except for some strong sericitization developed in the felsic tuffs near the presumed location of the Rio zinc occurrence (0.51% Zn) south of Fish Lake. Some chlorite and carbonate alteration with minor disseminated pyrite was also noted (see Appendix I - TS 1320-2). The QFP body occurring within the northeastern quadrant of the property displays strong chloritization with traces of pyrite mineralization. Malachite staining was observed in an outcrop of bedded ash tuff at 5+25W/0+05N. Additional gridding with closer spaced wing lines is required to further evaluate the significance of this alteration and weak mineralization.

A description of the major rock types is as follows:

Felsic Metavolcanics

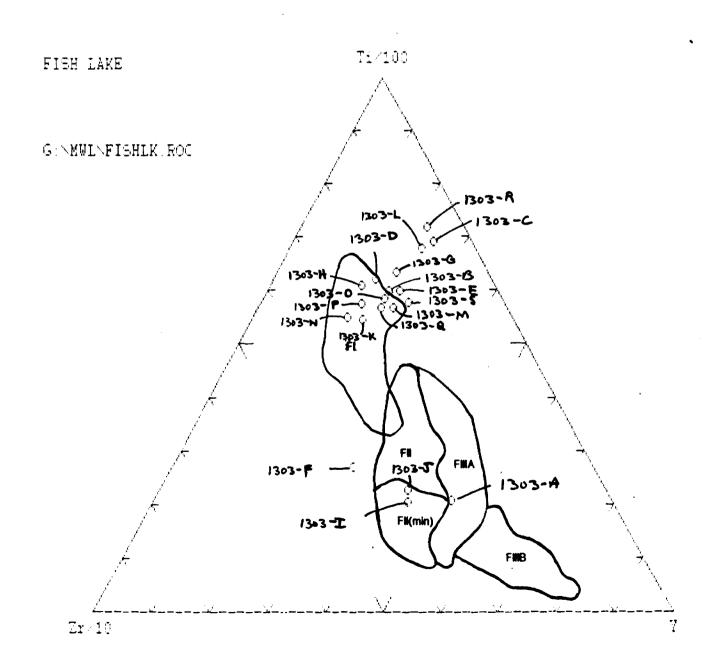
These rocks are comprised essentially of three types: pyroclastic breccia, coarse ash tuffs and fine ash tuff. The pyroclastic breccia generally appears as a distinct member within a composite pyroclastic flow deposit. It consists of up to 90% felsic juvenile lithic fragments, which are aphanitic, commonly quartz-phyric, tabular to elongate with white weathering and vesicular, ranging from coarse ash to 15 cm in size with a fine to coarse ash matrix. It is characterized by poor sorting, e.g. samples 1303-D, 1303-I. The coarse ash tuffs are composed essentially of angular to sub-rounded plagioclase crystals and angular quartz crystals ≤3mm in size set in a minutely fine grained felsitic matrix. The rocks are generally fine grained, weakly porphyritic, grey-white in color, and show weak banding/bedding. Accessories include sericite, chlorite and carbonate (samples 1303-B, 1303-G, 1303-H, 1303-L, and T.S. 1320-2). The bedded fine ash tuffs are very fine grained with a varved or laminated appearance. A petrographic description (Appendix I - 1320-3) indicates that the rocks are comprised essentially of plagioclase and sericite with darker laminae being composed of an abundance of chlorite.

Mafic Intrusive

These rocks are typically coarse grained, green, black and white in color, massive and non-foliated. Some portions are fine grained such as the mafics exposed on the baseline from 12+50W to 15+00W. They are comprised essentially of amphibole and plagioclase.

Quartz Feldspar Porphyry

These felsic intrusive rocks are generally porphyritic with quartz phenocrysts ≤1cm. They are typically grey-white in color however, when moderately chloritized display a light green color (1303-K, 1303-P). Samples from the QFP at the north end of L0+00 are strongly chloritized.


Feldspar Porphyry

The porphyry is composed of 5 to 15%, 1 to 5mm, white, tabular to equant, plagioclase phenocrysts within a dark colored, fine grained, quartzo-feldspathic groundmass.

There were no significant copper-zinc values returned from any of the grab samples collected. The strongest alteration which was noted megascopically during the mapping occurs between 3+00N and 4+00N from one end of the property to the other. Partial geochemical analyses for 19 grab samples indicate mainly fresh, unaltered rocks except for one. Samples 1303-S was collected at the end of the cut line 0+00 and its petrochemical data denotes an alteration index of 83. This was the highest value obtained in any of the samples analyzed to date in the project area. Since the A.I. varies directly with distance from the ore deposit, this area is of particular interest.

There are weak AEM targets with coincident magnetics as well in this region. More exploration is warranted to further evaluate this horizon.

Finally, a ternary plot was made of the titanium, zirconium and yttrium geochemistry. Three of the samples collected, 1303-A, 1303-I and 1303-J fall within the prime exploration fields (Figure 8).

8.4.2 Soil Geochemistry

The Cu, Zn geochemistry is summarized below:

·	Copper (ppm)	Zinc (ppm)
Maximum Value	251	214
Minimum Value	1	4
Arithmetic Mean	15 (93 data points)	25 (93 data points)
One Standard Deviation	29	24
Anomaly Threshold	50	100

The sparsity of data points lends to the difficulty of delineating Cu, Zn anomalous zones. However, there are a few pockets of Cu-Zn enrichment as follows.

(i)	L5 + 00W - 4 + 75N	122 ppm Cu, 58 ppm Zn
(ii)	L10+00W - 2+50N	29 ppm Cu, 214 ppm Zn
(iii)	L15+00W-0+75N	251 ppm Cu, 44 ppm Zn
	L15+00W - 1+00N	43 ppm Cu, 26 ppm Zn
(iv)	L15+00W-3+00N	64 ppm Cu, 44 ppm Zn

9.0 CONCLUSIONS AND RECOMMENDATIONS

The Western half of the Six Mile Lake Volcanic Cycle represents a proximal VMS environment and the thickness of the Six Mile Lake Volcanic Cycle is equivalent to the South Sturgeon Lake volcanic cycle which hosts the former producing deposits at Mattabi, Sturgeon Lake and Lyon Lake. A semiconformable zone of iron carbonate occurs within the footwall of the Mattabi Mine. Similarly, an iron-carbonate alteration zone caps the Six Mile Lake cycle felsic pyroclastic unit. Geologic mapping to date of this unit in the western half of the Six Mile Lake cycle suggests vent or proximal facies rocks, ie. poorly sorted and thick bedded deep-water flow breccia fragmentals with quartz feldspar porphyry intrusions (Eastern Cobb Lake and Western Fish Lake grids), locally overlain and laterally progressing to shallower-water both thinly and thickly bedded lapilli tuff, crystal tuffs and ash tuffs. In some areas these units are all intercalated with mafic flows. (Western Cobb Lake, Cobb Bay grids).

Penassi Lake

The AEM/HLEM conductor on the Penassi Lake property was found to be a barren graphitic sulphide iron formation hosted by the mafic metavolcanic unit. No further work is recommended on the geophysical anomaly however, the contact between the felsic pyroclastic unit and the overlying mafic metavolcanics in this region should be located and sampled.

Cobb Lake

A small amount of HLEM and mag surveying in the Cobb Lake region did not delineate any drill targets. However, there are several zones of Cu, Zn enrichment exhibited in the soil geochemistry

which warrant further testing including trenching and more lithosampling. Quartz-sericite-carbonate schist float mineralized with 2-10% disseminated pyrite was noted in the 400 to 600 meter thick felsic pyroclastic belt between Cobb Lake and McLeod Lake. These occurrences are spatially related to a zone of anomalous soil geochemistry with weak untested AEM anomalies. An induced polarization survey is recommended to further evaluate this area. Chlorite, sericite and carbonate schists also mark local zones of alteration in the southeastern region of Cobb Lake where chert/exhalite textures have been identified. Limited lithosampling to date has produced petrochemical data suggestive of hydrothermal alteration patterns, ie. alteration indexes greater than 60 and trace elements plots within the Lesher FII (min) and FIII prime exploration target fields. Additional gridding and sampling is warranted to better define zones/anomalous areas with follow-up IP surveys, trenching and diamond drill testing.

Cobb Bay

A small amount of lithosampling on the Cobb Bay property did not produce any significant geochemical alteration pattern. The felsic crystal tuff member which occurs within the northern region of the Cobb Bay grid appears to be the best exploration target for potential VMS mineralization on this property. Intense altered portions of this unit are expressed as quartz-carbonate-sericite schists and have an accompanying weak zinc enrichment in the soil geochemistry. More gridding, mapping and sampling are needed to further evaluate the potential of these coarse ash deposits.

Fish Lake

Within the Fish Lake property located west of Six Mile Lake, the zinc occurrence previously reported by Rio Tinto was not located. A zone of strong sericite ± carbonate ± chlorite alteration occurs between 3 + 00N and 4 + 00N from one end of the property to the other hosted by the felsic pyroclastic unit. An alteration index of 83 was obtained for an intensely chloritized sample from the northeastern area of the property. There are weak AEM targets with coincident magnetics as well in this region. More mapping and sampling is also needed in this region with IP surveys contingent on continuing positive results.

Dumbell Lake

No work has been done yet on the Dumbell Lake property located east of Six Mile Lake. Lithogeochemical and soil geochemical studies along with geologic mapping are recommended.

In summary, it is recommended that an evaluation of the geologic and geochemical setting of the Six Mile Lake area for VMS deposits be continued. Further geologic mapping, ground geophysics and lithogeochemistry will aid in the development of drill targets. Drill testing of high chargeability trends/hydrothermal alteration cells would follow. A proposed budget is as follows:

Phase I

Linecutting Mag IP Geology Rocks Phase II	40 km x \$400/km 40 km x \$100/km 12 days x \$1000/day 50 days x \$300/km 120 samples x \$25/s	\$16,000 4,000 12,000 15,000 _3,000	\$ 50,000
Diamond Drilling (3 holes) Assaying/Core Splitting Engineering Services	450m x \$70/m 60 samples x \$25/s 20 days x \$300/day	\$31,500 1,500 6,000 11,000	<u>\$ 50,000</u>
	TOTAL		\$100,000

Respectfully Submitted,

NORANDA EXPLORATION COMPANY, LIMITED (no personal liability)

Reg Felix

Sr. Project Geologist

Northwest Ontario District

January 27, 1993

Thunder Bay, Ontario

REFERENCES

Beggs, D.G., 1975:

Petrology and Geochemistry of Archean Volcanic Rocks, North of Sturgeon Lake; A thesis submitted in conformity with the requirements for the Degree of Master of Science in the University of Toronto.

Corstorphine, W., 1978:

Preliminary Report, Cobb Lake, Reconnaissance Geology Sturgeon Lake Area, Ontario for Mattagami Lake Exploration (Company Report).

Lesher, C.M., et al, 1985:

Trace element geochemistry of ore - associated with barren, felsic metavolcanic rocks in the Superior Province, Canada; Can. Journal Earth Sciences, Vol. 23, 1986, p.222-237.

Morton, R.L., et al, 1991:

The Early Development of an Archean Submarine Coldera Complex with emphasis on the Mattabi Ash-Flow Tuff and its Relationship to the Mattabi Massive Sulphide Deposit; Economic Geology, Vol. 86, No.5, August 1991, 11p.

Ontario Geological Survey:

Geological Data Inventory Folios, GDIF 328 - Six Mile Lake Area, GDIF 465 -Penassi Lake area, GDIF 348 - Fourbay Lake Area.

1990 Airborne electromagnetic and total intensity magnetic survey, Sturgeon Lake - Savant Lake Area, Maps 81487, 81488, 81489, 81492, 81493, 81494, 81495, scale 1:20,000.

Robinson, D.J., 1992:

Geology of the Six Mile Lake Area; Ontario Geological Survey, Open File Report 5838, 93p.

Steinert, G., 1976:

Preliminary Report on the North Sturgeon Lake Volcanic Belt for Mattagami Lake Mines Limited (Company Report).

Trowell, N.F., 1974:

Squaw Lake - Sturgeon Lake Area, Northeast Arm - Sturgeon Lake Sheet, District of Thunder Bay; Ontario Division of Mines, Preliminary Map P.968, Geological Series, scale 1;15,840. Geology 1972, 1973.

1976: Geology of the Quest Lake Area, Districts of Kenora and Thunder Bay; Ontario Division of Mines, Geoscience Report 154, 60p. Accompanied by Map 2335, scale 1:31,680.

1983: Geology of the Squaw Lake - Sturgeon Lake Area - District of Thunder Bay, Ontario Geological Survey, Report 227, 114p, Accompanied by Map 2420, scale 1:31,680.

Wallis, T.L., 1985:

Compilation of the area north of Sturgeon Lake, NTS 52G/14, 15, 52J/2, 3; Memorandum to W. MacIsaac, Noranda Exploration (Company Report).

APPENDIX 1

PETROGRAPHIC DESCRIPTIONS

QUARTZ FELDSPAR PORPHYRY

Estimated mode

Quartz 20
Plagioclase 65
Sericite 15
Carbonate trace
Rutile)
Opaques) trace

This is a rock of simple composition which is clearly recognizable as a felsic volcanic or hypabyssal intrusive (quartz feldspar porphyry).

It consists of phenocrysts of subhedral plagioclase and lesser quartz, 0.3 - 3.0mm in size, scattered through a microgranular groundmass of grain size 20 - 100 microns. The latter is composed predominantly of plagioclase, probably with an accessory component of intergrown quartz, plus sericite. Its even, holocrystallinne character suggests that it may have been recrystallized.

The sericite is in the form of minute flakes, intergranular to the quartzo-feldspathic aggregate. It also concentrates as felted wisps and semi-continuous schlieren which define a sinuous, microlenticular foliation. This could be the expression of a primary flow fabric, or a structurally superimposed feature related to metamorphic recrystallization.

The plagioclase phenocrysts show generally mild sericitization - partly following incipient microfracturing concordant with the sinuous groundmass schlieren.

The rock is notable for its complete lack of mafics. The only other constituents are rare traces of carbonate and micron-sized opaques - mainly rutile. A few tiny euhedra of partially oxidized pyrite are also seen.

FELSIC TUFF

Estimated mode

Quartz	3
Plagioclase	60
Sericite	23
Chlorite	6
Carbonate	8
Opaques	trace

Macroscopic examination of the off-cut indicates that this sample is a fine-grained rock showing gradational, banded, compositional variations. It contains abundant, tiny, lenticular, clast-like features, and clearly represents a bedded tuff.

In thin section it is found to consist of clasts 0.1 - 1.0mm in size, set in a minutely fine-grained felsitic matrix (grain size 2 - 10 microns) with intergranular sericite. Sericite locally concentrates as sinuous wisps and semi-continuous schlieren.

The clasts consist of angular to sub-rounded plagioclase crystals and rare quartz, plus lenticular lithic fragments of felsite, often outlined by the sinuous sericite wisps.

Accessories consist of carbonate and chlorite - as dispersed flecks, diffuse patches, and intimate intergrowths (partial replacements) in plagioclase crystals. The darker coloured half of the sectioned area contains a relatively higher abundance of chlorite and carbonate, whilst the lighter half has more abundant sericite - indicative of bedded differences in original composition (more mafic vs more felsic).

The mineralogy of the felsitic matrix cannot be reliably determined by optical means owing to its extremely fine-grained size, but the impression is that it is predominantly feldspathic rather than quartzose, and the overall composition of the rock is andesitic.

There is little evidence of recrystallization or deformation (other than normal compaction effects).

BEDDED ANDESITIC ASH TUFF

Estimated mode

Plagioclase	42
Quartz	1
Sericite	33
Carbonate	9
Chlorite Chlorite	13
Opaques)	2
Rutile)	L

This sample (see off-cut block) is a delicately varved or laminated, minutely fine-grained rock of porcellanitic appearance. It is most likely a bedded ash tuff.

Its pyroclastic character is confirmed in thin section, where it is found to consist of a matrix of felsitic material (probably mainly plagioclase) of grain size 2 - 10 microns, with more or less abundant intergrown sericite. Tiny crystal clasts of plagioclase and rare quartz, 20 - 70 microns in size, are distinguishable within the felsite in certain bands.

Other bands (the darker laminae in the off-cut) are characterized by relative abundance of chlorite, as individual spots (clusters) and semi-coalescent trains. These dark spots are of similar size to the plagioclase crystals and presumably represent altered mafic clasts. Carbonate, as dispersed flecks, sometimes concentrating as streaks and lenses, commonly shows spatial association with the chloritic spots.

The banding is further emphasized by variations in the relative proportions of sericite and felsite - some laminae consisting largely of minutely felted sericite. These may represent concentrations of altered vitric ash, or are intercalations consisting predominantly of argillaceous sedimentary detritus.

Dust-sized opaques (probably mainly rutile), 2 - 20 microns in size, occur dispersed throughout, but tend to be more abundant in the chlorite-rich laminae.

Sericite in this rock shows only rudimentary preferred orientation, without segregation as discrete schlieren. There is no evidence of metamorphic recrystallization, and small-scale primary textural features (clasts, layering) are perfectly preserved.

The overall composition closely resembles that of 1320-2.

FELSIC CRYSTAL TUFF

Estimated mode

	Quartz	5
]	Plagioclase	62
	Sericite	21
	Carbonate	5
	Ch1orite	4
Ferruginous	carbonate)	3
	Limonite)	J
	Rutile)	trace
	Opaques)	orace

This is another rock containing prominent clasts or phenocrysts. It resembles 1320-2 in general macroscopic character, but is less obviously foliated, and has slightly coarser clasts (up to 3 or 4mm in size).

In thin section an additional difference is apparent in that the clasts consist almost entirely of crystals (plagioclase plus minor quartz and altered mafics), and recognizable lithic fragments are absent.

The plagicclase crystals are blocky, subhedral to elongate, sub-rounded in form. In some cases they form aggregated clusters. They show mild to strong pervasive alteration to minutely fine-grained sericite.

Sporadic, irregular to lenticular patches of felted chlorite presumably represent a minor accessory mafic component.

The matrix is a homogenous aggregate of felsite (predominantly plagioclase) of grain size 5 - 30 microns, with minutely fine-grained sericite as an intergranular component. The latter typically shows essentially random orientation, and only locally concentrates as sub-parallel wisps - generally marginal to plagioclase crystal clasts. The abundance of sericite is notably consistent throughout.

The sporadic, irregular pockets and threads of unetched material visible in the off-cut block consist of clumps of microgranular carbonate and associated quartz. They are probably of authigenic redistributional origin, related to localized microfracturing.

The rock contains two readily distinguishable varieties of carbonate. The microgranular segregations described above are calcite, but there is also a ferruginous type (siderite or ankerite) which occurs as discrete, tiny rhombs - typically rimmed with limonite - moulded onto, or incorporated within, the calcite clumps. It is also seen as dispersed individuals scattered through the felsitic matrix (and occasionally within plagioclase crystal clasts).

The homogeneity of the matrix in this rock, and the absence of

Sample 1320-4 cont.

recognizable lithic clasts raises the possibility that it is an altered porphyry rather than a tuff. However, the distribution, partial rounding and incipient fracturing of the plagioclase crystals tend to favour a pyroclastic origin.

ALTERED DIORITE

Estimated mode

Plagioclase	12
Quartz	1
Hornblende	55
Epidote	30
Chlorite	2
Sphene	trace
Rutile)	trace
Opaques)	crace

This rock is clearly of different type to the felsic volcanics/pyroclastics making up the bulk of the suite. Macroscopically (see off-cut) it consists of coarse, sub-prismatic, buff-coloured, phenocryst-like features set in a dark (mafic-rich), white-flecked matrix.

In thin section the buff-coloured patches are found to consist predominantly of epidote - mainly of sub-opaque cryptocrystalline type. The epidote aggregates show a diffuse anhedral/blocky (inherited?) internal fabric, and often incorporate more or less abundant, ragged, small inclusions of microgranular plagioclase, quartz, hornblende and chlorite.

The dark/speckled phase consists predominantly of hornblende, as varigranular aggregates ranging from anhedral grains of several mm in size to finer-grained, bladed, acicular masses, with intergrown microgranular plagioclase.

The hornblende is mainly perfectly fresh, but sporadic alteration to chlorite is seen - mainly peripheral to the epidote masses and/or associated with local microshears.

The texture of the amphibolitic phase is consistent with that of a medium-grained mafic aggregate of intrusive type - possibly partially recrystallized. The nature of the epidote is uncertain. There is some evidence that it has developed as a superimposed feature (small patches and wisps of it being seen in the matrix, both in areas of microgranular plagioclase and in hornblende). The presence of included remnants(?) of hornblende and microgranular plagioclase in some of the larger epidote masses suggests that these may also have developed, at least in part, by matrix replacement. Alternatively, it is possible that they may represent the intense alteration of original feldspar phenocrysts.

The rock most likely represents a modified intrusive diorite.

SAMPLE 1320-6 SHEARED OR FELSIC VOLCANIC

Estimated mode

Ouartz 40(?) Plagioclase 27 Sericite 28 Chlorite 2 Apatite trace Limonite

This rock contains augen-like clasts in a fine, streaky matrix. It has the macroscopic aspect of a metamorphosed, possibly sheared, conglomerate, tuff or porphyry. Some of the clasts appear porous and Fe-stained.

In thin section the clasts are found to consist of sub-angular to sub-rounded grains of quartz and fresh plagioclase, mostly in the 0.2 - 1.0mm size range, but occasionally up to 3.0mm. These commonly show fracturing and marginal recrystallization, and the quartz typically exhibits strain polarization. They often concentrate as lenticular clumps - sometimes having the aspect of fragmented coarser clasts.

The clasts (which make up some 25% of the rock) occur scattered through a matrix, of grain size 5 - 30 microns, composed of quartz, an indeterminate proportion of intergrown plagioclase, and sericite. Variations in the relative proportions of the quartzo-feldspathic and sericitic components show streaky/lenticular distribution, diverging around the strings of individual clasts and clast clusters. This defines a weak sinuous foliation.

Sporadic swarms or trains of small (0.1 - 0.3mm), discrete, sometimes lenticular patches of felted green chlorite occur, mainly in the finest (sericite-rich) streaks of the matrix.

The clusters of smaller clasts are commonly associated with (mantled and/or cemented by) lenticular segregations of microgranular quartz, slightly coarser than that of the matrix at large. This often contains clusters of limonite granules or limonite-stained cavities, partly concentrating in rimming relationship to individual clasts. This probably represents an accessory component of ferruginous carbonate, now totally oxidized and/or leached.

The section also includes a few contorted segregations (discordant hairline veinlets?) of microgranular quartz.

The exact nature of this rock remains uncertain, even in the light of the petrographic data. It clearly exhibits cataclastic features, but could equally well be derived from a sediment (tuffaceous siltstone with sandy/conglomeratic intercalations), a felsic tuff, or a quartz-feldspar porphyry.

Estimated mode

Quartz	17
Plagioclase	60
Sericite	20
Carbonate	1
Biotite	2
Opaques)	trace
Limonite)	oracc

This rock consists of a fine-grained, silky, locally lenticular textured, white-etched (plagioclase/sericite?) matrix, with sparsely scattered, small clasts or phenocrysts. The sectioned portion includes a few thin, sub-parallel laminae or veinlets of quartz.

In thin section the matrix is found to consist predominantly of a fine-grained felsitic aggregate (grain size 10 - 50 microns), probably composed mainly of plagioclase, plus minor accessory quartz. Sericite is the principal accessory, as minute, oriented flakes. These concentrate as sporadic swarms of en-echelon wisps which define an incipient foliation. Traces of fine-grained carbonate are locally associated with the sericite.

Sericite is much more abundant at one end of the section (the lenticular-textured area in the off-cut).

Quartz forms scattered, tiny pockets, and locally concentrates as irregular anasotomosing and/or contorted laminae. Some of these are concordant with the foliation, but the more prominent zones appear to be oblique to it. There are also occasional, clearly discordant threads of quartz, sometimes with minor intergrown carbonate.

The foliation is emphasized by the presence of short, en-echelon strings of minutely fine-grained, dark olive-brown biotite. These are visible on the surface of the off-cut as dark flecks.

The sparsely scattered, clast-like bodies consist of anhedral grains of quartz and fresh plagioclase, 0.5 - 2.0mm in size. These quartz grains often have embayed outlines like phenocrysts in a volcanic, and show partial recrystallization. The plagioclase grains are sometimes broken and/or cemented by carbonate.

The character of these grains (and hence of the rock itself) is ambiguous. They could equally well be sporadic crystal clasts in a fine-grained felsitic tuff, or phenocrysts in a sparsely porphyritic flow. The overall textural aspect of the matrix tends to favour the former possibility.

EXHALITE(?) BRECCIA

Estimated mode

Quartz	28
Plagioclase	5
Sericite	8
Chlorite Chlorite	30
Carbonate	28
Rutile)	1
Pyrite)	1

This sample differs significantly in mineralogy from the majority of the suite. It is a dark rock, rich in quartz, chlorite and carbonate, and (judging from the paucity of white etch reaction on the off-cut) strikingly low in feldspar. It contains abundant cryptofragmental bodies, 0.5 - 5.0mm or more in size.

It is of heterogenous appearance in thin section, and appears to be composed of close-packed, poly-lithic and mineral fragments.

There are two principal components. One consists predominantly of fine-grained quartz (grain size 10 - 30 microns) with various, but often abundant proportions of minutely intergranular chlorite. This lithotype commonly shows a contorted microfabric - possibly the effect of soft sediment compaction.

The other consists of carbonate, often with intimately intergrown accessory sericite. This occurs as equant to elongate grains, ranging in size from 0.2 - 2.0mm, commonly occurring as clusters cemented by wisps and pockets of felted chlorite. The carbonate is unreactive to dilute acid, and is presumably dolomite or ankerite.

Another prominent constituent - scattered randomly through the rock - is quartz, as individual, equant, sub-angular, monocrystalline grains, 0.2 - 1.5mm in size. These closely resemble the quartz phenocrysts in a single, large (7mm) lithic clast of felsitic plagioclase with intergrown sericite and carbonate.

Chlorite also occurs in monomineralic form, as sporadic, felted-textured clasts, or interclast pockets.

Sporadic disseminated opaques consist of fine-grained rutile, plus a few individual grains and clumps (0.3 - 3.0mm in sizeO of anhedral-subhedral pyrite.

The origin of this rock is uncertain. It appears to be a form of breccia. Except for one prominent fragment of felsic porphyry, and the scattered monocrystalline quartz grains (disaggregated phenocrysts?) the mineralogy of the constituent clasts is not that of the volcanic ejecta making up a normal tuff. The fine quartz/chlorite intergrowths (ferromagnesian cherts?) and carbonate constituting the predominant lithotypes are consistent with possible exhalative affinities. Fragment outlines are often ill-defined, and the rock could be a form of slump breccia.

LAMINATED HORNFELS(?)

Estimated mode

Quartz	33
Plagioclase	5
Sericite	3
Calcite	24
Biotite	10
Hornblende	14
Garnet	11
Opaques)	11
Rutile)	11

This is a fine-grained, foliated rock of distinctly different character to the majority of the suite.

An even, microgranular (granoblastic?) matrix of quartz, of grain size 20 - 50 microns, is host to abundant, laminar/lenticular concentrations of biotite, hornblende and calcite. The same minerals also occur, along with minor sericite, in dispersed form within the siliceous aggregate. Feldspars appear minor to absent, though differentiation of quartz and plagioclase is difficult in this grain size range, and as an accessory component of intergrown plagioclase could be present.

The calcite occurs as discontinuous lenticles and strings of grains, 0.05 - 0.5mm in size.

The biotite and hornblende (both strongly coloured, pleochroic varieties) are often closely associated, and occur concentrated as thin, rather irregular schlieren (to 0.2mm in thickness) and wispy zones of tiny, anhedral-subhedral grains.

Lenticular augen-like textures are common throughout, and may, in part, represent relict fragmental features.

Sparsely scattered, individual, equant/sub-angular grains of quartz, 0.1 - 1.0mm in size ("quartz eyes"), occur randomly throughout.

A prominent feature is the presence of garnet. This forms sporadic, irregular/elongate patches (incipient porphyroblasts) 1 - 3mm or more in size - often of diffuse, wispy form, elongated concordant with the prevailing foliation. The garnet is of distinctive spongy (poikildblastic) habit, densely sieved with tiny inclusions of the matrix quartz and, to a minor extent, the other intimately intergrown components.

This rock presents some contradictory features. The presence of garnet indicates that it is largely recrystallized, although there has apparently been very little coarsening, and the biotite and hornblende show no pronounced schistosity. Relict fragmental texture is partially preserved, and the wispy laminar distribution of the various constituents may also be largely an inherited one -

Sample 1320-9 cont.

from a laminated sedimentary/volcanic protolith. The overall textural aspect is suggestive of hornfelsic affinities (recrystallization under predominantly thermal rather than dynamic conditions). The spongy/poikiloblastic form of the garnet is consistent with this origin.

Biotite and garnet are suggestive of a pelitic component in the protolith, whilst calcite and hornblende suggest an intermixed calcareous/ferromagnesian one. The paucity of feldspar is notable. The original rock could, perhaps, have been a tuffaceous, limy siltstone.

APPENDIX II

LITHOSAMPLE DESCRIPTIONS AND ANALYSES

NORANDA EXPLORATION COMPANY, LIMITED	9
--------------------------------------	---

188

AB Accountage	PROJECT NO. 13/16	PROPERTY	SIX Mile/yamous
CERT. NO	GRID REFERENCE		

1 N.T.S. 525/14

DATE Aprel 10/92

SA	M	PL	E	RE	P)F	π

				SAMPLE	REPORT							
SAMPLE #		DESCRIPTION			TYPE	WIDTH		ASSAYS		00 OD0	MATEC	SAMPLER
		PUTAL SEA								CO-OKL	INATES	
A	Shabandawan 91	cea short	malico		Rock	= meter	44					
R	Reatleman	Brithry 13	alea (Stur	son bi	0		Au	LU		f		
	altered modie	107. pg. 12.0		Km	OHL	of Silve	Dollar	CU	ZM	·		
	garrettuken	a- mali	TR-00	Kan	done	Iche	Conde	utos				
F	11	11	100	. 1	AU	C4	てん					
F	68	11	11	(1	Au	Cu	ZN					
G												
н												
1												
1												
												
											····	1
M	 										·· <u>·</u> ·····	
					 			· · · · · · · · · · · · · · · · · · ·				
N				· ·								†
					 							+
	 				 	 						
					 							
R	 											+
s	 		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
I			 	·	 		}					+
					 			<u> </u>			<u> </u>	+
Y					 							
W					1	l						

Norsk Form: C:\forme\&emprep.fm

		Nº	189	White - Office
•	NORANDA EXPLORATION COMPANY, LIMITED	14-	109	Yellow - Fleid
LAB ARTHUR 7.5 L	PROJECT NO PROPERTY	fatre		N.T.S. 526/14
CERT. NO.	GRID REFERENCE See che Way			DATE /M/20/92

SAN	IPLE	REP	ORT

		1					1	
DESCRIPTION	TYPE	WIDTH		ASSAYS		CO-ORE	SAMPLEA	
	7							N. She
100 min south of Past #101 1193526			(UR)					M. Par
of ussay 175 mitter was TOF LINE POST	that is	400 mit	South	of Pos	FIOF	195526	(GR)
· · · · · · · · · · · · · · · · · · ·	,						125	
north of Penning lb. (les Cla	inm	(م					Culo	
er le ce ce ce	C,						SE GIR	
								
								ļ
								<u> </u>
							<u> </u>	
								
							-	
							 	
								
				<u> </u>				
			 					
0	100 min south of that #10+ 1195526 LOS OF THE MET HE METERS SOUTH OF POST TO 1195527 TO MALLO NOUTH OF SOUTH OF 1195527 TO MALLO NOUTH OF PAST TO 1195527 TO NOUTH OF PENMIN LB (Dea Cla	100 mite south of track 100 1195526 Let of Elist Not the meters 50 Mth of Post that is 30 miles total of 1051 of 195527 In north of Pennin lb. (lee Clair in	100 mite south of the MIPT 1195526 Let of Ellis 175 46c meters 50 4th of POST that is 400 mite 30 miles total of 3 POST OF 1195527 In North of Pennin lb. (les Clair map)	100 miter south of man 410 1195526 THE STATE WE METERS SOUTH OF POST A Heat is 400 miter South 30 miles routh of Est Sine 195527 Heat is 400 miter South To north of Pennin lb. (les Claim In p)	ooming south of the Apple 1195526 Let of Elegistic Micher's South of Post i hat is 400 mits South of Party of 195527 In north of Pennin lb. (les Clair map)	100 mite south of track #100 1195526 That is 400 mite for the first that is 400 mite South of Part #100 To make to the of Part # 100 1195527 The north of Pennin lb. (les Claim In p)	100 min south of that \$100 1195526 Let of Electron was for sine for that is 400 mits South of Past #10 p 1195526 In North of Pennin lb. (les Claim map)	100 min south of man 4100 1193926 THE WAS THE MET WAS THE SOUTH OF POST A Heat is 400 min South OF Part 10 \$ 195526 (S. R. R. S. M. M. S. M. S.

NORANDA EXPLORATION COMPANY, LIMITED								Yellow - P	laid ,
4B	TSL PROJECT NO. 1320	D PRO	PERTY	Sirmil	e Lak	e ·	_ N.	T.S	-9/14
ERT. NO	NO GRID REFERENCE : 5 amples from along claim							ATE Agri	127/92
SAMPLE REPORT And Whole rock Analysis.									
SAMPLE #	DESCRIPTION	TYPE	WIDTH	ASSAYS			Location CO-ORDINATES		SAMPLER
A	Strongly Showed QE(blue) Brokyry/F.V. 9" screit, to, py. Of Ruphyry-felsic, 14 gray-pink, by-0.5 2 pay massage	arab					830- 50-16 05 cl. = 119	5581	WB
B	Of Ruphyry- felsic Havey-pink to-0.5 they massesse	grab					3457.41	1550 40	WB
с									
£									
 _									
н									
K		·	 						
		-	<u> </u>						
M								<u> </u>	
<u>N</u> 0									
Р									
_ ^ _									3.7
R									
T									

NORANDA EXPLORATION COMPANY, LIMITED

Nº 660

Nº	•	-	1	9	4

AB	T.S.L	
ERT. NO.		

PROJECT NO. 1320 PROPERTY SIX MILE N.T.S. 526/15

GRID REFERENCE DATE MAY 26/92

NORANDA EXPLORATION COMPANY, LIMITED

SAMPLE REPORT										
SAMPLE #	DESCRIPTION	TYPE	WIDTH	ASSAYS		CO-ORDINATES		SAMPLER		
•	Elevel Tuse Inc									
	Felsic Lan Tuff / Aug		 				····	 		
B	Felsic yte xe full		├──					 		
~ / ^ ~~	1 Pelsic 978 XV 7644							 		
	GA-PY Gosson Argillite (15m. mide)		 					 		
E			}					 		
E	" " with 30 DO PY/11K		╂───╂							
G	11 11 11 11									
н	Finely laminated Telac tuff to blue 9 x 2405									
	Felar Lapille tuff		ļ							
	Physlite Flow Breccia (Float) AND??									
K	Felsic Lithic TUFF ITUFF BX				<u> </u>					
1	Felair Lapille tuff									
M	Otr xe lapilly fuff in blue yt agos									
N	Folge Volcanic Flan finds foly ciliceouspink									
R										
			╂					+		
			 		 			 		
							,			
	 	<u>.</u>	 					 		
w			1		1		L			

AB T.S.L	Accusances
CERT. NO.	•

NORANDA EXPLORATION COMPANY, LIMITED

Nº 191

WHID - OFFICE
YARDON - PROBERTY

PROPERTY

WARD - OFFICE
YARDON - PROPERTY

DATE My 26/92

CAMPLE DEPORT

				ASSAYS			
SAMPLE #	DESCRIPTION	DESCRIPTION TYPE WIDTH			CO-ORDINATES	SAMPLER	
A	Felse LADILITUSF	Gral				RF	
R	Felice att. Courtal TUFF strandy schools					1	
	Felsic at z crystal toff stewns cash muticatum	"					
.)	Flort Sulfide Fe Em 20-3000 DU-00 , Space	,					
F	12 11 11 11 11 11 11	1					
F	Felsic lapille tuff schistose work carl making						
	Cubinato scucità schiet	•(
н	10to souceto schoot intous cuchunatoride	11					
	Otz up soucho controvato schif cubitle	0					
	Dr. severts carlamento school	4				11_	
K	n a " "	9					
1	Felsie crystal tuff un settle						
M							
N							
0							
D							
R							
<u> </u>						1	
T		<u> </u>	† -				
[]							
V					1	1	
w							

Norex Form: C:\forms\Semprep.frm

to some stage of

NORANDA EXPLORATION COMPANY, LIMITED

LAB	τ .	`S.L.	

CERT. NO. _____

PROJECT NO. 1320 PROPERTY SIX MIG

GRID REFERENCE COBL / AKE GRID

N.T.S. <u>52J/2</u>
DATE <u>S. 43/92</u>

SAMPLE REPORT

SAMPLE REPURT										
SAMPLE #	DESCRIPTION	TYPE	WIDTH	- whole		CO-ORDINATES		SAMPLER		
A	Felsic Lapille Tuff (Pyroclastic Bracia) frag slown	Grah				39100 E	3/005	R7		
В	Quetz Parphyry (9 tz 1-2 m) cherse Uttoc vi fuff					B.L	341/5E	,		
c	Are banded falue and crystal to Ffly taxe somm	"				31450 E	0+255	11		
a	False Agenchatic - Lapille tof / Lapillisting	и				32,100E	1100S	"		
E	31 11 11	,•	3 M			3 2+00 E	5+255			
F	QFP, strong carbonatization, f??					32tooE	1+90N	*		
	11	,,				32100E	4+75N			
н	Lithic crystal to FF; blue apake at ots ego in Figuritary					20HODE	3/25/			
	Cab - see - 4/2 ochit					20 HOOF	2/251/			
	Felsic Prioclastic Tof Breccia					22kmE	1+20N			
K	Inter Dan Braccia					22/00E	- Bita	<u> </u>		
1								<u> </u>		
M							<u> </u>			
N		<u>.</u>								
		<u> </u>	ļ	ļ						
<u> </u>		 	ļ				ļ			
		ļ				ļ		 		
R			ļ			<u> </u>	<u> </u>			
		ļ	ļ				ļ <u></u>			
T						 	<u> </u>			
u	•									
V			 			<u> </u>	,			
w		<u> </u>						<u> </u>		

Nº 130	1

NORANDA EXPLORATION COMPANY, LIMITED

N.T.S. 525/2 DATE Sept 3/92 PROJECT NO. 1320 PROPERTY SIX MILE GRID REFERENCE Cobb BAY Grid

SAMPLE REPORT										
SAMPLE #	DESCRIPTION	TYPE	WIDTH	ASSAYS			CO-ORDINATES		SAMPLER	
SMINIFUE W				Cu	Zn					
	Felsic Lepsille Tu 8F (Frag 2-3cm) is 19apy, Fr sph.	Gral		8	23		B.L	12465W		
R	Falsic Lupelli Ta OF (Frag 2- sen) is 190py, Fr Sph	Grad	Float	46	29		BL	10+25W	1	
<u> </u>	Felore Lepylle Type 19009	Grat					10KDW	11001	M.S.	
₽ C	Intembratized makes wite to 5-1020 py-100	Geal		62	118		5750W	2+50N	M.S.	
E										
F					ļ 					
G							<u> </u>			
н										
1										
.1										
K										
1										
M										
N										
^										
P										
R										
•										
7									 	
11		1					<u> </u>			
V		 		 			<u> </u>			
·		 					<u> </u>			
W	1		l	1	L	L	1		i	

Norsk Form: C:Verme\Semprep.frm

LAB Accusasy

CERT. NO. _____

1305 Nº

NORANDA EXPLORATION COMPANY, LIMITED

LAB		1.5.4	 	 _
VED.	T NO			

PROJECT NO. 1320 PROPERTY SIX Mile

N.T.S. <u>520/2</u>
DATE <u>Sp13/92</u>

SAMPLE REPORT

	SAMIL	REPURI					····
SAMPLE #	DESCRIPTION	TYPE	WIDTH	while Por	CO-ORI	DINATES	SAMPLER
	QFP, F.g. syrayyrean ,1-3mm eulalta Steid, rahadaki	Grah				12+60W	RF
B	Ctz crystal false tuff; 2-3mmgbyla Felsic Lapille tuff; frag 2-5cm	Grah			0 t25N	12+40W	R4
C.	Felsic Lupille tuff; fran 2-5cm	Geale	Flow		B.L.	10+25W	RE
	Felsic Lapille Tuse	Grab			LIOHOW	ITOON	RF
E '	Felsic Lipilli TUSF	Grab			7+00w	OFSON	RF
≠G.	Carbonte Sencele schot	Grah			7 km ce	44001	RF
# F.	Intendy carbonated fatic xe toff	Grat			γ	"	"
н	Continuity - soucite - cheart achest wichout Frag	Grab			11	3+50N	*
						ļ	
			ļ				
							ļ
	`						
M							
N							
						<u> </u>	
R		ļ.,					<u> </u>
T							
V							
W							

VORANDA EXPLORATION (COMPANY, LIMITED
-----------------------	------------------

LAB		:5.L	 		
CER	T. NO.				

PROJECT NO. 1320 PROPERTY SIX MILA

N.T.S. <u>527/2</u>

GRID REFERENCE Six Mile Lake Grid

DATE A46 3/92

SAMPLE REPORT

	SAMPLE	REPORT				
SAMPLE #	DESCRIPTION	TYPE	WIDTH	whole Rock	CO-ORDINATES	SAMPLER
Α.		Grah			L20mmlu 1+35N	RF
R	Por False Vol / Oto Aria oto xla = 3mm quentitate				19490 W 3+80N	٠
c	Course grammal matic intrusiere	*			20100W 4+75N	1,
	Felsic fragmental (black rash)	<u> </u>			19+75W 4+23N	
E	Falsic traymental = queen cloutered pleaserysts	٧			17450W 340N	
F·	Otz Porphyry	и.			BL GHOOW	
G.	rate sec. whist on to py chloritized planorychy	11	ZIM		17+50W 3+25N	.,
Н.	Oto south & continuate achiet to sy				10+00W 3+70N	1/
i	Felsic proclastic flows, fragments 10-15cm	11			10100W 3,50N	11
	A 10 10 10 10	•			10+00W 1+25N	11
к	Ote phyric falsic paroclastic/porphy; 4to 11cm	v			10too W OFSON	,,
	Otz - Sericite schiot (F. vol)	v.			Uro0 6+35W	
M	Falsic and tyff is malachite unbadding	1'			OTOSN STOOM	"
N	Qtz phynic felsic proclastic /Ots posphyly	V			0100 3125W	
	Sourita achist (Int w)	•			0+055 3+15W	
<u> </u>	Otz physic Felsic paradostic / Otz posphysy	1/			0100 H75W	
	Falsic pyroclastic (blockenlook)	4			atoo Itoolu	
R	Ote F. Hanar porphyny, stony chloritischim, tray				15toow 4+25N	
s	31 11 11 11 11				LS YOOW STUDN	
T.						
V						
w						

NORANDA EXPLORATION COMPANY, LIMITED

AB Accusandy	PROJECT NO. 1320 PROPERTY SIX MILE	S/TL2_3.T.N
CERT. NO	GRID REFERENCE	DATE Aug 30/92

	SAMPLE	REPORT							
SAMPLE #	DESCRIPTION	TYPE	WIDTH	PPM	PPM ASSAYS Cy Zn		CO-ORDINATES		SAMPLER
	Rusty MARICUXCANIC BL/6+85W	GEA R		102	91		C066 4		
В	Chanty Felsic Biecuis 13 3-50 per 439 F/3 toos		5m	2%	242		,,	, 0/	
	F.G. MAFIC Intim 1-270 py 630+184	Grah		764	24	•	11 11	/	
	Folsic Fragmental w to py L32+15E/8255	•,,		49	43		4 11	1/	
<u> </u>	Ob sourcete select to to sulche L1750 w/3toon	и.	IM	55	34		SIX MILE	Grid	
F				10/3			,		
G	Maria Fut (Gallio) F.G. To 1-24/0 PD			187	120			0+505	
H	Maric vole; consordized, 10-15% py			243	50	- /// +	LBDE		
	Marie Volce; constrained, 10-15-12py		 	48	151	COSCLA	L 33.6	25407	
K				106	28				
				111	106				
M									
N					ļ <u>. </u>				
				 					
<u> </u>			 		 				
			<u> </u>	-	 	<u> </u>			I
R		 							
u									
V							,		
w			<u> </u>			<u> </u>			

pt Form: C:Verme\Samprop.frm

N	ō	1	3	1	1

LAB	PROJECT	NO.
		-

CERT. NO.

PROJECT NO. 1320 PROPERTY Six MIELK

GRID REFERENCE COBB LK G-vi0

N.T.S._____

DATE _____

CAMPLE DEPORT

NORANDA EXPLORATION COMPANY, LIMITED

				n			i .		
SAMPLE #	DESCRIPTION TYPE		TYPE WIDTH		ASSAYS		00.000		SAMPLER
				 	<u> </u>		}	INATES	
Α	Rhy - Pyroclastic			WR	Codel	1K		/tzoN	
В	Felsie till			uk		ij		2750N	
L. c	addonaratte			w.K.		11/2	27 E	0175N	
	Could Ser. schiet altered	Elvi 1	Vol	end	Cobb	Boy /	-7w	4+25N	
F	Felsi she chest fragment.			UR	Carlote		1-22E	2+60 N	/
F	Flow Banded Jelsi tull			wo		w 1	91+50FU		
G	Felse Dean lastic forsells			wx		11 /	-39E	30005	
н	Por- nelle Mel.			C.D.		11	BL-	ZolooE	
				<u> </u>					
				1	 	<u> </u>			
K				 					
 				∦	 				
M				 	 	 			
NN			<u> </u>	}	 				
0				 					-
. <u>P</u>					 			· · · · · · · · · · · · · · · · · · ·	
				 					
R				 					
S									
I									
V							,		
w									

Noral Form: C:\forme\Samprop.fm

Yellow	- Fleir	j

LAB _	Accuracy
CERT.	NO.

NORANDA EXPLORATION COMPANY, LIMITED

PROJECT NO. 1320 PROPERTY SIX MILL N.T.S. 527/2

GRID REFERENCE PO 2465/ DATE OCHIP/2.

SAMPLE REPORT

	SAIMI	LE KEPUKI					
SAMPLE #	DESCRIPTION TYPE	TYPE	WIDTH	ASSAYS Cu Zn		CO-ORDINATES	SAMPLER
	C C D in						85
A	Goscomus S.D.B	Gruh	1	 		In oto	122
- \ _ B				 			
<u> </u>	Almed M. ver is to cay	**	<u> </u>	 		1/4/5	
n	Commun Port in M. Mahwadas tropy		<u></u>	 		1+ 75W 1+50	
E	Georgius S.T.F	- Gud	2-3m	<u> </u>		24 2540 otex	5.5
E	Good Park All Maria 11	Good		<u> </u>		2+50cm coxer	22
G	Conson Ard in Pollacued M. Vir	11				S.M Stor	SWS
н	Grace SIF	-	5-10m	1		7 kg stss	MSS
1	1/					74 0765	NKS
.1	N 1/	1,	2-3m				NSS
K	1/	11	1/	1			NNS
M							
N N							
				1			
			†	1			
				1			
				╂───	 		_
R				#	 		
s			 				_
				 			_
u				╂			
						- '	
w							

Norsk Form: C:Vorme\Samprop.frm

Nº	1	3	1	6

WNw	•	01

PROJECT NO. 1320	PROPERTY Six Mile	N.T.S. 55 3/2
GRID REFERENCE	Penassi / Collake Greet	DATE 0=+19/92

SAMPLE REPORT

	SAMPL	E REPORT					
SAMPLE #	DESCRIPTION	TYPE	WIDTH	assays Whole Rock	CO-ORD	DINATES	SAMPLER
	DIZ second to to suffide Zfamai	Grale			LIW	and	RZ
. <u>B</u>	Fel-Int Work TUTT I and				0+254	aton	
				·			
	Folsie Ut Clout, Co year, travel	Gul	ļ		84	2450A	/
E	Felin Vol, was strongly for	<u> </u>			Brase	2450N	
F	Int. Carlo tales Prochadia is glage		ļ		Sport	0432 S	
	Freezes wel for on set coal, by, to set	"	Float		600	3+20M	
Н	u v v	ļ <u>.</u>	W		64	343000	
	Dron och Land, 5-102 py	1-4-	<i>W</i>		200	2100n	
		u	"		11	1	
K	41	7	11		*/		
1	1)		1		11	1/	
M					ļ		
N		 					<u> </u>
		<u> </u>			ļ		
Р			 				
0	 	<u> </u>	<u> </u>		 		
R	 		 		 		
		 					
T	 		-				
u	 	-	 				
		 	-		<u> </u>		
W		_	<u> </u>				

Nerex Ferm: G:\forme\Samprep.frm

CERT. NO.

N TO	4	3	4	,
Nō		J	1	

NORANDA EXPLORATION COMPANY, LIMITED

LAB	Accurately
	<i>J</i>
CERT. NO.	-

PROJECT NO. 1320 PROPERTY SIX MILE GRID REFERENCE Penanti Lk

N.T.S. 520/2

DATE OCTOVY

	SAMPL	E REPORT							
SAMPLE #	DESCRIPTION		TYPE WIDTH	WIDTH					SAMPLER
SAMI CE W				Cu	سح			DINATES	
	SIF 5 30-50% Gt, 5-10 MOTERY	Gul	3-5M				Drow	Orono	RX
R		<u> </u>					<u> </u>		ļ
		ļ					ļ		
D		ļ <u>.</u>							<u> </u>
F		<u> </u>							
F									
									<u> </u>
н									
						<u> </u>		<u> </u>	
К									
1									
_M									
N									
0									
. р									
0								1	
R									
s									1
7		1		,	 				1
11			†	 	 	;	†	 	†
									
V		 			 	 	 	 	
W				<u> </u>	1	1	1	<u> </u>	1

North Form; C:\forms\Samprop.frm

ORANDA	FYPI ORATION	COMPANY	IMITED

LAB	S.L	PROJECT N
-----	-----	-----------

CERT. NO. _____

PROJECT	NO.	1320	PROPERTY	514	Mile

N.T.S. 500/2 DATE Oct-20/1: GRID REFERENCE C. 66 LL Com

	SAMPLE	REPORT						
SAMPLE #	DESCRIPTION	TYPE	WIDTH	ASSAY	R ₂	CO-ORE	INATES	SAMPLER
Α	Falsi Reachateland	Cresh			7	LBW	0+255	RT
В	M. Vol. (gal), chlori)	4				184	01405	R#
<u> </u>	DFP/Por Felai Ville- House and	A	۲3		- 	Bu	14605	
	Por Felai Wort	Floor				614	0 +50S	
F	Felonia.						MONTO	
	Felai VII (coule) proming to age	~ .				600	3,5351	
Н	Felsi UN Colores a moschel	Floret				4+256	SHOW	
	Felici Val Charles w 1-2 mark and		·			400	REDA	
к								
								
N								
Р						1		
<u> </u>					 			
S								
T						 		
Uv						 		
w								

Nerest Form: C:\forme\Semprep.fm

Nº	1	63	6
1.4	-	\mathbf{v}	•

NORANDA EXPLORATION COMPANY, LIMITED

AB VAN Patryryckel	PROJECT NO.	320 PROPERTY	SIX M
CERT. NO	GRID REFERENCE	Co46 4	K Grw

1/6 LK N.T.S. 525/2
DATE NW6/93

					ASSAYS				
SAMPLE #	DESCRIPTION	TYPE	WIDTH		433413		CO-ORE	INATES	SAMPLER
Δ	Felice Apparlate (Port es cont	Cont						3+25N	RT
В									
С									
, D									
F									
Ġ									
н									
		····							
······································						· · · · · · · · · · · · · · · · · · ·	······································		
M									
N		- - - - - - - - - -							t
O									
									
B									
s				 					
T									
									
				 		<u> </u>	· · · · · · · · · · · · · · · · · · ·		ļ

Nerex Ferm: C:\forme\Samprep.frm

NORANDA EXPLORATION COMPANY, LIMITED	NORANDA	EXPLORATION	COMPANY,	LIMITED
--------------------------------------	----------------	--------------------	----------	---------

Nº 029

AB TS	L Thu	nder B	<u>~~</u>	
			(
ERT. NO.				

PROJECT NO. 1320 PROPERTY Cobb Lake GRID REFERENCE NOR GOOD BL - 090 Az DATE Oct 28/92

N.T.S. 526/14

SAMPLE REPORT

	SAMPLE	KEPUHI		п					
SAMPLE #	DESCRIPTION	TYPE	WIDTH	WR	ASSAYS Cu	Zn	CO-ORD	INATES	SAMPLEA
	Qtz-Feld Porphyritic Rhyolite wk ser carb		grab	V	3	10	L2125W	3+50N	CM/KS
B	atz eye crystal lithic tuff		grab		29	400	Latoow	5+00N	
С	atz-Feld Parahyritic Rhyolite wkser, corb		grab		7	110	L0+30E	2+50N	
- t n	atz eve Rhyolite wk. ser carb		arab		6	20	14+20E	4+50N	
. F	atz eve Rhyolite wk-med ser-carb		grob		5	27	L3+50 E	4+00N	
F	Felsia Ash tuff, minor carb veinlets		grab		51	35	L2+00E	0125N	
	Feld parphyritic Rhyolite		grab		6.	61.	L2+00E	1+00 S	
H			ļ	 				 	
				 	ļ				
			ļ	 					
K			 	}					
				 					<u> </u>
M			<u> </u>	-	 				
N	01 - 1 (1 - 4 11)				VZ	V 18	1 11 1 2 2 2	3	
	Pekic vol (atzeye rhyolit) w. wk ser.		Jup		V 55	V 9	17.00E	1+50S	<u> </u>
	Gil, bx matic vol w. wk chl	1-22 py	 	·	V 45	V 55	L7+50E L8+15E	0+10N	
	bx madic vol (flow top); mod sil, we carb should fig madic vol w. we chi t carb altertia	1-52 pg	 	1-	V130	27	12+10E	2+755	
R	felsic aft ere crystal full w. 2026, er crystals, 10% OE		 	 	V 11	V 12	412100E		
S	felse steere full in medfol; we ser			V	21		41270CE		
U	Pulsic glz eye full w. 20% glassy QE's ; wk early		1-1-	7	V 4		412+00E		
	his - phyric ned gred may vol mor hem.			V	V 21		411 110E		
	Play-physic fine good mastic vol w. minor chl		V		V 59		LILTIOE		

Norex Form: C:\forms\\$emprep.frm

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

10-Sep-92

NORANDA EXPLORATION CO. LTD. 960 Alloy Drive Thunder Bay, ON

P7B 6A1

Page:

Copy: 1 of 2

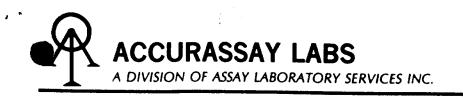
Set: 1

Attn: R. Felix

Receiv

Received: 8-Sep-92 06:39

Project: 1320 -Six Mile


PO #: 81838

Job: 924580T

Status: Final

Rock Samples

	Cu	Zn
	AA	AA
Sample	PPM	<u>PPM</u>
1302A	102	91
1302B	78	242
1302C	764	24
1302D	48	43
1302E	55	34
1302G	187	120
1302H	592	50
13021	53	50
1302J	48	151
1302K	106	25
1302L	111	106
1306A	8	23
1306B	46	28
1306C	62	118

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

Page: 1

Noranda Exploration Co. Ltd

960 Alloy Drive

Ihunder Bay, Ontario

P7B 6A1

November 5

92

Work Order # : 924/84

Project

: 1359

SAMPLE	NUMBERS	Silver	Copper	Zinc
Accurassay	Customer	PPM	PPM	PPM
18	16321		49	〈1
19	16320		120	⟨1
20	1632V		64	⟨1
21	1314A		530	<1
22	13148		1200	(1

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

Page: 1

Noranda Exploration Co. Ltd

960 Alloy Drive

Thunder Bay, Ontario

P7B 6A1

October 30

. 92

Work Order # : 924784

Project : 1359

SAMPLE NU	IMBERS	Gold	Gold	
Accurassay	Customer	ььр	UZ/T	
18	16321	1252	0.036	
19	16320	12	(0.001	
19	16320	12	<0.001	Check
20	1632V	7	(0.001	
21	1314A	7	<0.001	
22	13148	11	(0.001	
22	13148	8	(0.001	Check

A DIVISION OF ASSAY LABORATORY SERVICES INC.

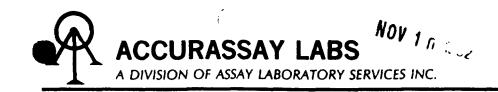
1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 307) 623-6448 FAX 623-6820 (807) 623-6448

Page: 1

Noranda Exploration Co. Ltd

November 5

92


960 Alloy Drive Thunder Bay, Ontario

P/B 6A1

Work Order # : 924/84 Project

: 1320

SAMPLE N	JMBERS	Silver	Copper	Zinc
Accurassay	Customer	ÞÞm	PPM	PPM
1	10168		4.4	
1	1315A		64	<1
2	13158		140	<1
3	1315E		150	<1
4	1315F		54	<1
5	1315G		1400	<1
6	1315H		160	<1
/	13151		47	<1
8	1315J		88	<1
9	1315K		94	<1
10	1316F		74	<1
11	1316G		86	<1
12	1316H		23	<1
13	13161		110	<1
14	1316J		53	<1
15	1316K		110	<1
16	1316L		78	<1
1/	4916	<1		

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 807) 623-6448 FAX 623-6820 (807) 623-6448

Page: 1

Noranda Exploration Co. Ltd

960 Alloy Drive

Thunder Bay, Ontario

P7B 6A1

October 30

92

Work Order # : 924784

Project : 1320

SAMPLE Accurassay	NUMBERS Customer	Gold ppb	Gold Oz/T	
1	1315A			
$\hat{2}$	1315B			
3	1315E			
4	1315F			
5	1315G			
6	1315H			
7	13151			
8	1315J			
9	1315K			
10	1316F	5	<0.001	
10	1316F	(5	(0.001	Check
11	1316G	⟨5	(0.001	
12	1316H	(5	<0.001	
13	13161	(5	(0.001	
14	1316J	12	<0.001	
15	1316K	9	<0.001	
16	1316L	₹5	<0.001	
17	491F	5	<0.001	

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

10-Sep-92

NORANDA EXPLORATION CO. LTD.

960 Alloy Drive Thunder Bay, ON

P7B 6A1

Page: 2 Copy: 1 of 2

Set : 1

Attn: R. Felix

Project: 1320

PO #: 81838

Received: 8-Sep-92 06:39

Job: 924580T

Status: Final

Signed:

Jeffrey Davis, B.Sc., C.Chem. Manager, Thunder Bay Division

TSL LABORATORIES

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Noranda Exploration Co. Ltd. 960 Alloy Drive Thunder Bay, Ontario P7B 6A1

REPORT No. S4259

SAMPLE(S) OF Rock

INVOICE #: 19450 P.O.: 81803/TB1881

R. Felix Project: 1320

	Au ppb	Cu ppm	Zn ppm
191-D	<5 <5	1300	90 50
191-E	<5	670	59

COPIES TO: R. Felix

INVOICE TO: Noranda Expl.- Thunder Bay

Jun 05/92

SIGNED ____

Page 1 of 1

TSL LABORATORIES

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Noranda Exploration Co. Ltd. 960 Alloy Drive

Thunder Bay, Ontario

P7B 6A1

REPORT No. S4260

SAMPLE(S) OF ROCK

INVOICE #: 19451 P.O.: 81803/TB1882

R. Felix Project: 1320

	Au ppb	Cu ppm	Zn ppm
192-B	<5	26	36
192-D	<5	52	22
192-E	<5	86	210
192-F	<5	250	78
192-G	<5	59	49

COPIES TO: R. Felix

INVOICE TO: Noranda Expl. - Thunder Bay

Jun 05/92

SIGNED .

Deme Vien

MAY 20 1332

TSL LABORATORIES

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

ALE COPY

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Noranda Exploration Co. Ltd. 960 Alloy Drive Thunder Bay, Ontario P7B 6A1

REPORT No. S4185

SAMPLE(S) OF Rock

INVOICE #: 19357 P.O.: 81220/TB1861

R. Felix

Project: 1320

	Au ppb	Cu ppm	Zn ppm
660-A	<5		
660-B	<5		
189-B	<5		
189-C	<5		
189-D	<5	120	10
189-E	<5		
189-F	<5		

COPIES TO: R. Felix

INVOICE TO: Noranda Expl. - Thunder Bay

May 12/92

SIGNED _

NOV 1 8 1992

TSL LABORATORIES

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN

(306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Noranda Exploration Company Limited 960 Alloy Drive

Thunder Bay, Ontario

P7B 6A1

REPORT No. S4961

SAMPLE(S) OF Rock INVOICE #: 20296

P.O.: PN:82023/TB2137

Project: 1320

	Cu ppm	Zn ppm
029-A	3	10
029-B	29	400
029-C	7	110
029-D	6	20
029-E	5	37
029-F	51	35
029-G	6	61
029-O	2	18
029-P	55	9
029-Q	45	55
029-R	130	27
029-S	11	12
029-T	21	29
029-U	4	50
029-V	21	90
029-W	59	53

COPIES TO: R. Felix, A. Smith INVOICE TO:

Noranda Expl. - Thunder Bay

Nov 13/92

SIGNED

Page 1 of 1

1070 LITHIUM DRIVE, UNIT 2 THUNDER BAY, ONTARIO P7B 6G3 (807) 623-6448 FAX 623-6820

10-Sep-92

NORANDA EXPLORATION CO. LTD. 960 Alloy Drive Thunder Bay, ON P7B 6A1

Page: 1 Copy: 1 of 2 Set: 1

Attn: R. Felix

Received: 8-Sep-92 06:39

Project: 1320 = Six Mile

PO #: 81838

Job: 924580T

Status: Final

Rock Samples

	Cu	Zn
	AA	AA
Sample	<u>PPM</u>	PPM
1302A	102	91
13028	78	242
1302C	764	24
1302D	48	43
1302E	55	34
1302G	187	120
1302H	592	50
13021	53	50
1302J	48	151
1302K	106	25
1302L	111	106
1306A	8	23
1306B	46	28
1306C	62	118

Lugueste

NORANDA EXPLORATION

THUNDER BAY, ONTARIO

ATTN: R. FELIX

TB-1861 PROJ:1320

TSL LABORATORIES

102-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4
PHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. WHOLE ROCK ANALYSIS
Lithium MetaBorate Fusion 2-302-48TH STREET, BASKATOON, BASKATCHEWAN PHONE #: (306) 931 - 1033

REPORT No. : T1449 : MY11RA : MAY-13-1992

SAMPLE #	8103	A1203 Fe203	CaO, HgO	Ne20 X20	T102 MnO	P205 Ba	Sr S r	Y Bo	loi Total
) (TI \$ //	2 2	* *	* *	8 2	\$ ppm	ppm ppm	ppm ppm	* *
660-A	70.52	16.80 3.24	0.45 0.53	4.60 2.02	0.35 0.06	0.12 634	149 100	14	
660-B	78.23	11.84 2.07	0.37 0.31	5.67 0.94	0.15 0.03	0.06 304	118 250	14 3 32 4	2.23 100.89 1.01 100.68
189-B	71.74	14.06 3.59	1.58 1.00	4.40 2,08	0.43 0.05	0.14 591	171 214	24 7	1.49 100.55
189~~	69.66	13.62 3.16	2.41 1.00	4.89 1.44	0.39 0.04	0.12 203	75 193	20 6	1.41 98.13
189-	46.32	0.53 36.88	13.82 2.03	0.11 0.02	0.03 0.47	0.08 42	8 8	(2 (1	(0.01 100.29
	A selection		*						
189-E	61.04	15.37 4.80	5.03 2.4 0	5.63 0.64	0.51 0,21	0.16 196	317 94	8 8	2.39 98. 17
189-F	68.23	15.07. 1.42	2.87 0.63	5.26 1.66	0.29 0.04	0.12 308	288 62	4 3	2.20 97.78
		Ā							

		727 - 100 -							
							7.6	*	
									andys in Lease of the control

		a mayye. A mayye.							
						A			
							1		7. 7. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
								¥Šv. 1984	
		August growing	yw sjagylo ferdi	12 Pain (27 12 WA 47 12)	The state of the s		D HVVA A A M	Now Property of	4. Apr. 1971 A.A.

NORANDA EXPLORATION

PROJETES

TB:1881

IIM 25 1334

T S L LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 87K 6A4
PHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. WHOLE ROCK ANALYSIS

Lithium MetaBorate Fusion

Page No. : 1 of 1
File No. : JN09RA
Date : JUN-15-1992

SAMPLE #	sio2	A1203 Fe203	CaO MgO	Na20 K2 0	TiO2 PinO	P205 Ba	Sr Zr	y So	LOI TOTAL
2000 22 %		3 3	8 1	3 3	3 1	% ppm	ppm ppm	ppm ppm	101
					_				
191-A	67.11	16.21 2,63	5.63 0.91	4.76 -0.44	0.45 0.06	0.16 104	189 114	10 9	1.09 99.44
191-8	67.50	14.44 4.35	3.01 1.22	3.64 1.50	0.43 0.07	0.10 349	152 106	10 7	3.82 100.07
191-C	54.77	9.44 5,87	8.68 4.13	1.38 0.96	0.26 0.17	0.08 104	86 80	< 2 4	12.79 98.52
191-F	72.35	14.96 2.96	1.22 1.87	1.45 1.58	0.39 0.07	0.12 190	67 110	6 4	3.19 100.15
191	70.56	17.36 3.44	0.23 0.18	1.94 2.10	0.33 0.06	0.12 273	102 85	4	3.25 99.55
_ 1						***	Maria salas salas salas		
191-Н	<u>ক্রি</u>	15.98 10.72	(6.35) (2.03)	2.25 0.58	0.83 0.17	0.14 101	91 51	16 31	11.68 98.06
191-1		11.47 3.11	3.05 7.32	-0103 (100)	0.19 0.06	0.04 356	11	23, 8	4.07 98.14
191-J	67.29	17.01 0.97	2.27 0.25	3.35 2.94	0.43 0.03	0.12 367	88 78	4 5	3.55 98.21
191-K 191-L	59.73 68.01	21.01 3.64 15.71 4.21	0.62 0.21	4.12 . 3.28 5.11 1.96	1.52 0.11	0.40 579	194 232	22 19	2.90 97.56
171-6	33.01		1.08 . 0.20	5.11 1.96	0.57 0.12	0.18 312	118 154	16 10	2.44 99.59

		1			•				
					•				
						*			
								¥	
				***		*		*	
								X	
•								100 mm of 100 mm	
	Equation 5								
						4			
							**************************************	¥	
		774 - 1.4 130.6 2011 : 1.4 130.4			4.7 ************************************				

SIGNED :

Pany and

TSL/92

Laboratoires TSL/ASSAYERS Laboratories

780 AV. DU CUIVRE C.P. 665 ROUYN-NORANDA QUEBEC J9X 5C6

PHONE #: 819-797-4653

FAX #: 819-797-4501

REPORT No. : **T1561**Page No. : 1 of 1
File No. : JN10RA

Date : JUN-11-1992

111 5 2 1992

NORANDA EXPLORATION

THUNDER BAY ONT

I.C.A.P. WHOLE ROCK ANALYSIS

Lithium MetaBorate Fusion

SAMPLE #	8102	A1203 Fe203	CaO HgO	Na20 K20	T102 Mn0	P205 Ba	8r 3r	Y	loi Total
	*	8	8	4 5	* \$	* ppe	ppa ppa	ppm ppm	* *
192-A	64.90	17.04 5.17	0.82 1.25	4.47 2,16	0.61	0.18 492	255. 114	10 9	2.17 98.83
192-C	72.37	13.81 2.63	1.97 1.29	5.36 0.68	0.34 0.05	0.10 132	167 97	8 7	1.07 99.68
192-н	73.35	12.58 3.09	3.02 0.76	2.60 1.76	0.35 0.07	0.12 330	209 116	12 6	1.08 98.79
192-1	67.44 57.66	14.92 2.96 15.31 5.57	3.38 0.83	4.04 1.72	0.62 0.08	0.20 136	210 106	8 9	2.50 98,69
1°1	37.66	15.31 5.57	4.56 2.38	2.43 3,5 4	0.51 0.10	0.16 585	172 110	10 11	6.78 98.98
192-K		10.46 1,68	0.36 0.21	4.04 1.72	0.13 0.02	0.06 201	76 186	3 2 4	0.71 97.79
192-L		12.09 2.25	0.30 0.42	2.58 3.62	0.11 0.02	0.06 309	76 219	487 5	1.06 99.97
192-M		12.64 1.92	0.44 . 0.16	4.07 2,99	0.20 0.03	0.06 491	79 145	20 3	0.80 98.30
192-W	أتيها	9.24 2.57	0.21 0.07	3.00 2,72	0.08 0.03	0.02 : 482	30 - 202	38 (1	0.60 99.19
									A
									V. 20
									,
		**			-			V	
							•	**************************************	
		£							
		.				***			
								20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	
		•							
		•							
			<u> </u>						
					in of				
	s personal de de la constantia della constantia della constantia della constantia della constantia della con	₩, Fr. Ark	4-900-904	The state of the s				Professional Control	Control of the second

SIGNED :

Laboratoires TSL/ASSAYERS Laboratories

780 AV. DU CUIVRE C.P. 665 ROUYN-NORANDA QUEBEC J9X 5C6

PHONE #: 819-797-4653

FAX #: 819-797-4501

REPORT No. : T2026

Page No. : 1 of 1 File No. : SE25RA

Date : OCT-02-1992

I.C.A.P. WHOLE ROCK ANALYSIS

Lithium MetaBorate Fusion

SAMPLE #	8102	A1203	7 e203	CaO MgO	Na2O	X20	TiO2	MnO	P205 Ba	Sr Z	r y	Bo.	LOI	TOTAL
	*	*	* *	*	8	***	74000 7000 7000 7000	8	\$ pps	######################################	ber bbe	PP#	*	*
1303-A	76.29	12.79	1.30	0.60 0.26	4.91	1,58	0.12 (0.02	0.06 458	102	97 18	3	0.89	98.82
1303-B	60.13	14.76	5.78	5.58 3.05	2.83	1.42	10000000 Portley	0.09	0.12 267		90 10	C. March C. Son T. Co. Co.	6.59	100.80
1303-C	51.00	12.69	13.49	11.34 5.64	1.30	0.08	20.474, 20.232	0.19	0.14 39	767 - 167 - 177 - 178	76 28		1.71	98.90
1303-D	63.47	15.43	5.11	3.17 2.38	4.34	0.96	34. 50.45W	0.07	0.12 214	2 g	13 10	NAME OF TAXABLE PARTY OF TAXABLE PARTY.	4.11	99.74
1303-E	66.78	15.79	6.89	0.64 2.06	2.96	1.86	0.52	0.06	0.12 413	7.2.2	89 12		2.71	100.39
1303-9	76.82	11.96	1,70	0.26 0.10	4.28	1.42	0.17	0.03	0.04 447	91 1	58 12	4	1.13	97.91
13(62.05	17.83	6.02	0.31 1.82	3.59	2.04	24,74,70	0.03	0.12 393	20 C C C C C C C C C C C C C C C C C C C	07 14	A TO STORY	3.51	98.03
130ว-ศ	67.97	15.33	6.52	0.76 1.29	3.48	0.98	0.38	0.05	0.10 230	216	8 7 6	8	2.55	99.41
1303-I	70.09	13.43	5.15	1.21 1.14	2.84	1.80	0.20	0.08	0.08 422	87 2	09 26	5	2.65	98.65
1303-J	76.44	13.71	1.16	0.65 0.45	3.75	2,40	0.21	0.01	0.08 452	49 1	91 24	3	1.39	100.25
1303-K	70.77	15.36	2.64	1.04 1.18	4.24	2.00	0.28 (0.03	0.10 38 5	190	81 6	. 5	2.06	99.69
1303-L	53.41	15.06	13.37	3.13 7. 3 0	1.97	0.02	0.89 (0.19	0.10 41	118	74 18	35	4.73	100.17
1303-M	65.93	14.47	4.80	3.91 2.05	1.46	2,26	0.48	0.05	0.12 375	101 1	00 12	8	5.25	100.78
1303-N	72.49	14.56	2.33	0.39 0.97	6.55	0.54	0.33 (0.03	0.10 129	97 1	03 6	4	1.03	99.31
1303-0	62.85	16.61	5,38	2.73 2.44	3.19	1,70	0.46	0.08	0.12 337	123	96 10	8	4.63	100.19
1303-P	70.63	15.91	3.10	0.73 1.21	4.03	2.06	0.43 1	0.03	0.12 372	170 1	12 8	6	1.97	100.22
1303 - Q	67.8 6	16.21	4.11	1.97 1.30	5.94	0,76	0.44	0.06	0.12 303	227 1	02 10	7	1.41	100.17
1303-R	48.47	17.90	9.12	8.00 9.08	2.96	0.20	0.55	0.16	0.08 70	121	30 10	23	3.76	100.28
1303-8	65.23	14.16	6.01	1.20 3.85	0.20	2,92	0.45	0.06	0.10 396	19	78 12	7 1 THE 14 A	3.79	97.98
1305-A	69.70	14.68	2.48	2.21 0.69	5.93	0,80	0.28	0.03	0.12 215	210 1	02 4	2	0.98	97.89
1305-В	69.93	15.66	1.42	0.38 0.69	4.69	2.82	0.28	0.01	0.22 838	98	83 6	3	1.49	97.59
1305-C	68.28	15.94	1.48	1.50 0.41	6.52	1.26	0.57	0.05	0.24 312	186 1	14 10	7	1.59	97.84
1305-D	60.09	14.04	4.88	8.45 1.61	4.04	0,54	0.47	0.15	0.12 137	394	70 E	13	5.93	100.30
1305-E	64.11	16.00	4.28	1.25 2.62	5.62	0,84	0.69	0.06	0.22 244	229 1	56 12	8	2.33	98.01
1305-₹	66.73	14.07	4.26	2.65 0.68	4.33	1,24	0.52	0,06	0.16 292	153 1	84 8	- 6	3.48	98.17
13- 0-0	68.37	15.23	5.20	1.37 0.47	4.53	1.36	0.65	0.09	0.20 344	159 1	85 12	8	2.64	100.12
1305-H	50.75	15.53	9.24	5.10 4.35	4.70	0.84	1.37	0,19	0.30 317	129 1	. 37 30	25	8.46	100.83
1306-C	64.84	14.68	7.59	3.37 2.05	4.35	0,36	0.45	0.15	0.12 99	275	88 8	9	2.62	100.56
1307-A	81.06	10.03	1.10	1.07 0.21	3.16	3.00	0.10	0.02	0.04 480	212	35 36	3	0.38	100.16
1307-D	74.94	12.33	1.64	1.00 0.13	3.79	2,94	0.11	0.01	0.04 432	72	94 44	3	1.38	98.33
1307-E	83,40	8.29	2.37	1.11 0.77	0.97	2.14	0.13	0.02	0.06 580	49)	10 14	3	1.35	100.60
1307-F	75.48	11.83	1.92	0.34 0.54	4.09	3.08	0.12	0.02	0.04 555	79 1	.21 30	3	0.79	140.10.000
1307-G	71.64	13.80	3.41	1.66 0.89	3.97	2,40	0.43	0.05	0.14 572	153	95 27	8	1.74	100.13
1307-J	79.41	8.62	4.83	1.99 1,05	1.83	1.02	0.08	0.06	0.04 283	45	.60 26	2	0.69	99.62
			TALAH SE	Manager of the control	74.5		27 17 27 27		Management of the second of th	22.07.000000	222003	A AL HOUSE AND A CO.		100 9/54 1

NORANDA

ATTN: FELIX

PROJ -: 1320

TB-2079

THUNDER BAY ONT.

NORANDA EXPLORATION

THUNDERBAY ONT.

TB-2108 ATTN: FELIX

PROJ.:1320

Laboratoires TSL/ASSAYERS Laboratories

780 AV. DU CUIVRE C.P. 665 ROUYN-NORANDA QUEBEC J9X 5C6

PHONE #: 819-797-4653

FAX #: 819-797-4501

REPORT No. : T2108 : 1 of 1

: OC15RA

: OCT-28-1992

I.C.A.P. WHOLE ROCK ANALYSIS

Lithium MetaBorate Fusion

SAMPLE #	8102	A1203	Pe203	CaO No	O Na2O X2O	T102 Minō	P205 Ba	sr ir	y Sc	LOI TOTAL
	* "	x	*	* *	8	* *	*	ppm ppm	ppm ppm	
1307-в	73.67	13.36	2.89	1.75 0.9	8 2.56 2.62	0.15 0.05	0.06 462	244 183	50 5	1.29 99.38
1307-C	77.41	10.55	1.56	1.25 0.1		0.11 0.02	0.04 261	65 133	34 3	1.39 98.23
1307-н	79.68	11.26	1.31	0.43 0.2	0 2.69 3.86	0.12 0.02	0.04 553	132 143	36 4	0.75 100.35
1307-K	58.11	16.21	8.81	7.16 4.3	7 2.73 1.20	0.83 0.14	0.20 220	512 120	16 20	1.06 100.82
1	77.29	10.65	2.75	1.36 0.8	0 3.76 0.94	0.10 0.03	0.04 506	71 246	30 3	0.31 98.04
1311 - B	82.93	9.77	1.19	0.11 0.0	2 2.93 2.58	0.10 0.02	0.04 363	37 275	36 1	0.74 100,44
1311-C	58.15	16.51	9.14	7.69 4.0	7 2.08 0.76	0.89 0.14	0.22 238	793 12 9	16 20	1.27 100.90
1311-D	50.68	12.84	7.45	6.73 4.3	2 4.46 0.62	1.10 0.16	0.36 191	161 170	22 18	10.29 99.00
1311-E	73.89	12.55	6.16	0.63 0.5	5 1.86 2.66	0.13 0.09	0.06 392	110 324	44 4	1.64 100.21
1311-7	77.43	11.12	1.63	1.97 0.1	6 3.43 2.54	0.12 0.02	0.06 327	78 164	40 3	2.04 100.51
1311-G	81.68	10.42	0.98	0.72 0.1	6 3.27 3.24	0.10 0.01	0.04 487	162 264	32 3	0.28 100,91
1311-1	62.12	11.02	14.50	7.40 0.7	6 0.22 1.18	0.32 0.72	0.10 112	45 214	26 7	2.18 10 0.50

Laboratoires TSL/ASSAYERS Laboratories

780 AV. DU CUIVRE C.P. 665 ROUYN-MORANDA QUEBEC J9X 5C6

PHONE #: 819-797-4653 FAX #: 819-797-4501 REPORT No. : T2161 : 1 of 1

: NOV-19-1992

I.C.A.P. WHOLE ROCK ANALYSIS

Lithium MetaBorate Fusion

SAMPLE #	8102	A1203 Fe	203 CaO	MgO	Na2O	K20	T102	MinO	P205	34	Sr Ze	Y Sa	LOI TOTAL
	. *	*	1	4.3.3	* 1	* 4	x ::	*	8	ppm	ppm ppm	ppm ppm	x 1 x
				E. colors	: 3-				7				
1316-A	62.30	18.78 2	78 7.13	1,74	2.56	0.84	0.58	0.22	0.10	190	201 90	6 10	2.35 99.3 7
1316-B	65.63	15.46 6	.24 3.83	1.85	4.32	1,08	0.80	0.09	0.20	246	297 162	18 13	0.78 100.30
1316-D	65.43	16.72 3	.60 2.85	1.24	4.79	0.98	0.52	0.06	0.16	213	254 84	В 6	1.60 97.93
1316-E	77.11	9.25 .1	32 3.56	1.46	1.94	2.12	0.08	0.10	<0.02	268	293 232	46 3	2.96 99.86
1317	40.37	8.19 35	.39 9.12	2.98	0.26	0,16	0.32	2.11	0.04	11	68 145	16 11	<0.01 98.75
1318-A	62.06	13.64 8	18 5.61	3.03	4.22	0.18	0.63	0.12	0.12	75	163 116	16 14	2.51 100.29
1318-B	49.62	16.28 10	.92 11.79	7.11	2.72	0.16	0.62	0.19	0.02	44	118 39	14 34	1.10 100.52
1318-C	77.63	12.25 1	.33 0.42	0.29	3.74	4.04	0.11	0.02	0.02	570	59 145	48 4	0.61 100.47
1318-D	70.70	13.97 3	.72 3.11	1.08	4.25	1.42	0.41	0.10	0.08	525	217 88	6	1.96 100.80
1318-E	81.59	10.83 1	.53 0.18	0.33	3.29	1.84	0.10	0.03	(0.02	496	64 311	56 3	0.80 100.49
			1000 1000					2.					
1318-F	59.46	14.98 8	36 5.06	3.46	4.43	0.22	0.64	0.10	0.14	82	193 13 0	16 ; 14	2.34 99.18
1318-G	75.55	12.16 2	0.13	0.26	4.15	2.56	0.08	0.02	₹0.02	560	23 141	58 4	0.76 97.66
1318-X	77.16	12.13	.47 0.10	0,43	1.46	3.98	0.11	0.07	(0.02	649	21 301	52 2	1.92 100.82
1318-1	78.15	11.73	.68 0.77	0,28	2.29	4.36	0.08	0.03	(0.02	565	41 130	52 3	1.17 100.52
1633-A	54.20	14.48 15	.35 7.64	2.61	2.95	0.54	2.03	0.24	0.20	208	143 122	36 39	0.07 100.31
				* · · · · · · · · · · · · · · · · · · ·					4 5: 3	Mark .		4.0	
1633-B	67.74	16.51 2	.26 4.21	0.64	3.54	1.78	0.47	0.05	0.14	1589	622 128	8 7	0.31 97.66
1633-C	64.70	19.71 1	.47 2.61	0.32	1.49	5.40	0.53	0.03	0.26	598	623 112	6 7	1.41 97.92

TSL/92

NORANDA EXPLORATION

THUMBER BAY

TB-2120

P.O.81788

PROJ.1320/1359

: NOO4RA

Laboratoires TSL/ASSAYERS Laboratories

780 AV. DU CUIVRE C.P. 665 ROUYN-MORANDA QUEBEC J9X 5C6

PHONE #: 819-797-4653

FAX #: 819-797-4501

REPORT No. : **T2193**

Page No. : 1 of 1 File No. : NO19RA

Date : NOV-26-1992

I.C.A.P. WHOLE ROCK ANALYSIS

Lithium MetaBorate Fusion

SAMPLE #	8102	A1203 2	Fe203	CaO MgO	Na20 K20	TiO2 Mmô	P205 Ba	Sr Zr	Y åc	LOI TOTAL
`	8	* //	*		8	8	t pps	ppm ppm	ppm ppm	*
029-A	78.84	11.16	2.07	0.47 0.30	3.40 3,58	0.09 0.02	0.02 631	40 116	40 3	0.67 100.63
029-B	76.54	11.26	2.13	1.63 0.23	3.36 2.78	0.10 0.05	0.02 445	45 277	58 2	2.44 100.54
029-c	76.84	9.87	2.49	2.01 0.10	2.88 3.08	0.08 0.08	(0.02 533	82 258	60 2	2.64 100.10
029-D	76.00	11.54	2.39	0.88 0. 60	4.41 1,30	0.15 0.03	0.04 740	120 275	54 4	1.27 98.61
029-E	77.82	12.17	1.50	0.76 0.13	3.80 3.24	0.07 0.02	0.02 640	65 137	46 3	1.33 100.85
029 -F	66.77	16.76	3.22	2.43 0.77	6.13 1.40	1.11 0.15	0.30 274	261 137	24 18	1.63 100.66
029-G	71.36	14.88	2.31	2.43 0.52	4.98 1.86	0.22 0.03	0.12 530	266 120	2 1	0.62 99.33
029-0	79.52	10.01	2.26	2.00 0.09	0.27 3.44	0.09 0.06	0.02 360	27 245	52 2	3.09 100.84
029-P	56.29	12.89	7.47	16.05 4.01	0.12 0.10	0.25 0.11	0.04 23	267 19	12 36	2.26 99.59
029 - Q	56.02	15.20	7.80	7.42 3.68	4.36 0.64	0.91 0.18	0.24 209	271 116	22 19	2.55 98.98
029-R	51.92	15.21	14.48	7.81 6.06	3.54 0.14	0.57 0.22	0.06 43	63 38	22 55	0.92 100.91
029-8	78.53	10.99	0.79	1.59 0.18	4.90 1.74	0.10 0.04	0.18 520	70 270	54 4	1.65 100.67
029-T	77.73	11.32	1.68	1.67 0.27	3.65 2.28	0.10 0.05	(0.02 379	50 276	44 2	1.88 100.64
029-U	76.01	11.22	1.86	2.02 0.20	1.91 2.84	0.10 0.02	0.02 595	65 260	38 3	2.39 98.60
029-V	49.50	16.79	7.09	9.69 4.00	5.79 0.20	0.51 0.14	0.74 230	1882 284	36 15	6.14 100.59
029-W	49.37	18.32	10.65	5.73 6.36	4.15 1.18	0.49 0.19	0.10 456	240 49	12 49	3.11 99 .65

SIGNED: Jam Pilmik

TB-2137

PROJ.:1320

NORANDA EXPLORATION

THUMBER BAY ONT.

ATTW.: SMITH/FELIX ()

TSL/92

NORANDA EXPLORATION

2R-1596-RA1

ATTN: DON ROBINSON

Laboratoires TSL/ASSAYERS Laboratories

780 AV. DU CUIVRE C.P. 665 ROUYN-NORANDA QUEBEC J9X 5C6

PHONE #: 819-797-4653

FAX #: 819-797-4501

REPORT No. : T2052
Page No. : 1 of 1
File No. : SE29RA

Date : OCT-22-1992

I.C.A.P. WHOLE ROCK ANALYSIS

Lithium MetaBorate Fusion

SAMPLE #	8102	A1203	Fe203	CaO MgO	Na20 K20	T102 MmO	P205 3e	Sr ž r	y Sa	LOI TOTAL
	· X	x	*	*	*	3	t ppm	ppm ppm	ppm ppm	* * * * * * * * * * * * * * * * * * * *
					44					4 N A ABA,
273701	74.29	12.33	2.15	2.07 0.78	4.17 1.12	0.16 0.04	0.06 184	56 112	14 6	0.76 97.94
273702	75.01	12.01	3,45	1.30 1.21	2.31 1.84	0.22 0.04	0.06 432	30 197	28 8	1.82 99.99
273703	70.53	11.42	5.81	2.64 1.05	3.11 1.28	0.32 0.20	0.08 269	115 125	14 7	3.09 99.50
273704	72.81	13.22	2.71	1.14 0.59	4.71 2.14	0.22 0.04	0.06 437	38 244	44 6	1.07 99.26
2' 3	67.23	13.80	2.78	5.07 1.60	2.96 1.32	0.38 0.08	0.08 365	191 106	12 6	4.67 99.97
								1.00		
273706	62.65	15.18	6.46	5.84 3.68	3.82 1.02	0.51 0.11	0.10 382	245 88	10 18	1.52 100.90
273707	64.23	14.95	5.61	3.13 1.72	2.25 2.14	0.40 0.06	0.10 294	60 80	6 7	3.76 98.58
273708	62.25	15.37	4.70	4.98 1.47	4.01 0.98	0.53 0.06	0.12 184	195 109	12 10	4.77 99.43
273709	76.97	12.39	2.08	0.76 0.24	4.61 1.38	0.21 0.03	0.06 395	90 165	12 5	1.04 100.54
273710	70.10	13.02	4.02	2.46 0.66	2.55 1.42	0.31 0.19	0.06 314	218 103	10 9	4.62 99.98
							7474 Toward	1,200,000	- 514-49	
273711	61.36	14.57	6.41	7.22 2.08	2.49 0.94	0.48 0.16	0.08 197	190 103	12 13	2.29 98.05
273712	51.37	14.35	11.74	7.20 2,25	1.55 1.18	1.12 0.18	0.12 290	105 83	22 30	8.53 99.59
273713	60.62	12.27	7.63	6.23 3.77	4.63 0.28	0.63 0.16	0.08 180	119 131	14 15	1.96 98.26
273714	67.39	15.52	3.81	1.43 1.47	4.00 1.54	0.39 0.05	0.10 320	85 97	8 6	2.42 98.12
273715	71.54	15.17	2.42	1.81 0.67	2.86 2.50	0.28 0.04	0.08 510	237 108	4 , 113 4.4	2.37 99.73
						Rayala nga A			y Paris A Navara	
273716	71.14	16.72	1.09	1.85 0.39	5.59 1.88	0.13 0.02	0.10 480	431 58	< 2 2	1.04 99.93
273717	63.14	16.86	3.72	3.98 1.32	3.90 1.04	1.11 0.05	0.12 288	239 138	14 15	4.83 100.17
2737**	55.33	14.04	7.12	8.00 1.85	2.43 0.98	1.09 0.11	0.14 239	223 133	20 16	9.61 100.91
273.	69.00	13.84	3.89	2.06 1,73	0.48 3.20	0.34 0.05	0.08 303	41 84	6 12	3.89 98.57
273720	67.93	14.34	4.10	2.02 1.59	3.65 1.66	0.35 0.05	0.10 363	71 90	6 9	2.82 98.60
				77.32.42.5						
273721	68.92	14.51	3.10	3.26 1.31	3.78 1.64	0.37 0.05	0.08 348	162 107	12 6	3.11 100.14
273722	75.28	13.03	1.30	0.81 0.57	3.03 2.34	0.18 0.02	0.06 324	66 91	10 3	1.59 98.91
273723	70.82	14.65	2.42	2.04 0.66	1.68 1.82	0.34 0.06	0.10 281	289 84	6 6	3.14 97.72
273724	67.23	15.77	2.06	2.59 0.51	4.24 2.00	0.21 0.03	0.08 352	319 69	4	3.00 98.03
273725	63.73	14.56	4.82	4.45 1.84	3.61 1.80	0.57 0.08	0.10 363	223 84	10 14	4.55 100.35

BIGNED: MARIO

APPENDIX III

SOIL GEOCHEMISTRY LABORATORY PROCEDURES AND ANALYSES

NORANDA EXPLORATION COMPANY, LIMITED (No Personal Liability)

5ilt. Soil and Rock Geochemistry Laboratory Procedures

- 1. Mn, Cu, Pb Zn Ag, Ni A 0.5 gram sample is attacked with 1:1:1 HCl, He U with acid on hot plate for one hour. Sample is cooled, diluted and stirred. Blements are determined directly from digest with conventional atomic absorption spectrometric procedure.
- 2. Arsenic An aliquot from Cu digest is diluted with potassium iodide and analyzed with a Varian Hydride.
- 3. Antimony A 0.5 gram sample is attacked with 1:1 hydrocloric acid. An aliquot from digest is diluted with potassium iodide and analyzed with a Varian Hydride.
- 4. Gold A 10 gram sample is digested with aqua regia. Gold is extracted with MIBK from the aqueous solution. AA is used to determine gold.

5 0 1992

1320 PAGE 1

N. RANDA EXPLORATION CO. LTD. P.O. BOX 30 BATHURST, N. B. E2A 3Z1

GCI NO. RF192 PROJECT NO. 1320 ANALYST GM BG MATERIAL SOILS

NUMBER OF SAMPLES 957

NTS NO. 52 J/2 LOCATION THUNDER BAY

COLLECTOR STORAGE BOX

DATE RECEIVED 09/16/92 09/24/92

DATE ENTERED DATE COMPLETED 09/24/92 REMARKS REG FELIX # / LOCATION : CU : ZN : Undef: Undef: Undef: Undef: Undef: Undef: Undef : PPM : PPM : : : : : : : --:---68: 0: 0: 0: 0: 15: 0-0W : : : : : : : : 62: 0-25W 10: 0: 0: 0: 0: 0: 0: : : : : : : 0: 0: 0: 0: 0: 13: 34: 0: 0-25W : : : : : : : : 30: 0: 0: 0: 0: 0: 0: 0-50W 15: : : : : : : : 42: 0: 0: 0: 0: 0: 0-50W 6: 0: : : : : : : : 24: 5: 0: 0: 0: 0: 0: 0: 0-75W : 0: 11: 94: 0: 0: 0: 0: 0: 0-75W : : : : : : : : 74: 0: 0: 0: 0: 0: 0 16: 0: 0-100W : : : : : : : : 0: 26: 0: 0: 0: 0: 0-100W 6: 0: : : : : : : 0: 84: 0: 0: 0: 0: 0 0-125W 18: 0: : : : : : : : : 0: 0: 0: 0: 0-125W 0: 0: : : : : : 26: 106: 0: 0: 0: 0: 0-150W 0: : : : : : : : 6: 0: 0: 0: 0: 0: 0: 0-150W 2: : : : : : : 6: 44: 0: 0: 0: 0: 0: 0: 0-175W : : : : : : 68: 0: 20: 0: 0: 0: 0: 0: 0 0-175W : : : 92: 0-200W 14: 0: 0: 0: 0: 0: 0: 0 : : : : : : : 0: 0: 0: 0: 0-225W 9: 46: 0: 0: : : : : : 0: 20: 0: 0: 0: 0-225W 7: 0: 0: : : : : : : : 0: 0-250W 5: 26: 0: 0: 0: 0: 0: : : : : 0: 0: 0: 3: 10: 0: 0: 0: 0-250W : : : : : 34: 0: 0: 0: 0: 0: 0: 0 0-275W 11: 3: 26: 0-275W

GCI NO. RF192 NTS NO. 52 J/2
PROJECT NO. 1320 LOCATION THUNDER BAY
ANALYST GM BG COLLECTOR
MATERIAL SOILS STORAGE BOX
NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92
DATE COMPLETED 09/24/92 DATE ENTERED 09/24/92
REMARKS REG FELIX

/ LOCATION : CU : ZN : Undef: U

# / LOCATION	CU :		Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
0-300W	:: : 7:	: 16:	: 0:	0:	0:	: 0:	0:	0:	0
0-300W	: : : 4:	10:	0:	: 0:	0:	: 0:	: 0:	0:	0
0-325W	: : : 4:	: 10:	0:	: 0:	0:	: 0:	: 0:	0:	0
0-325W	: : : 5:	: 12:	: 0:	: 0:	: 0:	: 0:	: 0:	0:	0
0-350W	: : : 5:	20:	: 0:	0:	: 0:	: 0:	: 0:	0:	0
0-350W	: 11:	: 42:	0:	0:	0:	: 0:	: 0:	: 0:	0
0-375W	: : : 7:	: 14:	0:	0:	0:	0:	: 0:	: 0:	0
0-375W	24:	28:	0:	0:	0:	0:	: 0:	0:	0
0-400W	: : 2:	8:	0:	0:	0:	0:	0:	0:	0
0-425W	7:	44:	0:	0	0:	0:	0:	0:	0
0-425W	6:	18:	0:	0:	0	0:	0:	0:	0
0-450W	16:	82:	0:	0:	0	0:	0:	0:	0
0-450W	3:	6:	0:	0	0:	0:	0:	0:	0
0-475W	: : : 23:	: 116:	0:	0:	0:	: 0:	0:	0:	0
0-475W	: : : 6:	: 36:	0:	0:	0:	: 0:	: 0:	0:	0
0-500W	: : : 19:	72:	o:	0:	0:	: 0:	: 0:	o:	0
0-525W	: 23:	: 166:	0:	0:	0:	: 0:	: 0:	0:	0
0-525W	: : : 14:	32:	0:	: 0:	0:	: 0:	: 0:	0:	0
0-550W	: : : 12:	: 106:	0:	0:	0:	: 0:	: 0:	0:	0
0-550W	: : : 23:	: 24:	0:	: 0:	0:	: 0:	: 0;	: 0:	0
0-575W	: : 27:	: 186:	0:	: 0:	: 0:	: 0:	: 0:	0:	0
0-575W	: : : 28:	70:	: 0:	0:	o:	: 0:	: 0:	0:	0

GCI NO. RF192 NTS NO. 52 J/2
PROJECT NO. 1320 LOCATION THUNDER BAY
ANALYST GM BG COLLECTOR
MATERIAL SOILS STORAGE BOX
NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92
DATE COMPLETED 09/24/92 DATE ENTERED 09/24/92
REMARKS REG FELIX

# / LOCATION	CU :	ZN PPM	Undef:	Undef:	Undef:	Undef	Undef:	Undef:	Undef
0-600W	4	16:	0:	0:	0:	0	0:	0:	0
0-625W	6	26	0	0:	0:	0	0:	0:	0
0-625W	4	16	0:	0:	0:	0	0:	0:	0
0-650W	32	60	0:	0	0:	0	0:	0:	0
0-650W	12	52	0	0	0:	0	0:	0	0
0-675W	10	68	0:	0	0	0	0:	0:	0
0-675W	6	24	0	0	0:	0	0:	0:	0
0-700W	6	34	0	0:	0:	0	0:	0:	0
0-700W	19	28	0	0:	0:	0	0:	0:	0
0-725W	5	20	0:	0	0:	0	0:	0:	0
0-725W	4	16	0:	0	0:	0	0:	0:	0
0-750W	15	20	0:	0	0:	0	0:	0:	0
0-750W	13	32	0	0:	0:	0	0:	0:	0
0-775W	9	28	0	0:	0	0	0	0:	0
0-775W	9	46	0:	0	0	0	0	0:	0
W008-0	10	64	0	0:	0:	0	0:	0	0
0-825W	4	12:	0:	0:	0:	0	0:	0:	0
0-825W	8	36	0:	0:	0:	0	0:	0	0
0-850W	15	34	0:	0:	0:	0	0:	0:	0
0-850W	11	36	0:	0:	0:	0	0:	0:	0
0-875W	13	20	0:	0:	0:	0	0:	0:	0
0-875W	: 25	36	0:	0:	0:	0:	0:	0:	0

GCI NO. PROJECT NO. NTS NO. LOCATION COLLECTOR RF192 52 J/2 THUNDER BAY 1320 GM BG SOILS ANALYST STORAGE BOX MATERIAL DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92 NUMBER OF SAMPLES 957 DATE COMPLETED 09/24/92
REMARKS REG FELIX

# / LOCATION	CU :	ZN PPM	Undef:	Undef:	Undef	Undef	Undef	Undef:	Undef
0-900W	13	30:	0:	0:	0:	0:	0:	0:	0
0-925W	29	50	0:	0:	0	0:	0:	0:	0
0-925W	6:	16:	0:	0:	0:	0:	0:	0:	0
0-950W	6	28:	0:	: 0:	0:	0:	0:	0:	0
0-950W	: 17:	22:	0:	: 0:	0:	0:	0:	0:	0
0-975W	: 8:	16:	0:	: 0:	0:	0:	0:	0:	0
0-975W	: 7:	22:	0:	0:	0:	0:	0:	0:	0
0-1025W	: 35:	42	0:	0:	0:	0:	0:	0:	0
0-1025W	: : : : : : : : : : : : : : : : : : :	42	: 0:	0:	0:	0:	0:	0:	0
0-1050W	: 2:	12:	0:	: 0:	0:	0:	:	:	0
0-1050W	: 70:	: :	:	0:	0:	:	:	:	0
0-1075W	: 22:	:	:	0:	0:	0:		:	
0-10/5W	: 22		:	:	:	:	0:	0:	0
0-1075W	: 39	48:	0:	0:	0:	0:	0:	0:	0
	:	:	:	:	:	:	:	:	
0-1100W	: 72	70:	0:	0:	0:	0:	0:	0:	0
0-1125W	: 17:	36:	0:	0:	0:	0:	0:	:	^
U-1125W	• ±/,		•	•	•	•	•	0:	0
0-1125W	: 33	56	0:	0:	0:	0:	0:	0:	0
•	:		:	:	:	:	:	:	•
0-1150W	: 61	204:	0:	0:	0:	0:	0:	0:	0
	:		:	:	:	:	:		
0-1150W	: 11	26:		0:	0:	0:			0
0 117EW	. 10		:	:	•				•
0-1175W	: 18	56	0: :	0:	0:	_	0:		0
0-1175W	7	10		0:					. 0
	:		:	:	:		:		3
0-1200W	: 15	42:		0:					0
0-1225W	: : 125	56:	0:	: 0:	0:	0:	0:		0

NTS NO. LOCATION GCI NO. PROJECT NO. RF192 52 J/2 1320 THUNDER BAY GM BG COLLECTOR ANALYST SOILS STORAGE BOX MATERIAL DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92 NUMBER OF SAMPLES 957 DATE COMPLETED 09/24/92 REMARKS REG FELIX

# / LOCATION	: CU :	ZN PPM	Undef:	Undef:	Undef:	Undef	Undef:	Undef:	Undef
0-1225W	14:	42	0:	0:	0:	0	0:	0:	0
0-1250W	11:	18	0:	0:	0:	0:	0:	: 0:	0
0-1250W	: 76:	46	0:	0:	0:	0:	0:	: 0:	0
0-1275W	: 45:	50:	: 0:	0:	0:	0	0:	0:	0
0-1275W	: 6:	22:	: 0:	0:	0:	0:	0:	: 0:	0
	: :	:	:	:	:	:	:	:	
0-1300W	5:	24:	0:	0:	0:	0:	0:	0:	0
0-1300W	: 160	130:	0:	0:	0:	0:	0:	0:	0
	:	:	:	:	:	:	:	:	
0-1325W	: 17:	56:	0:	0:	0:	0:	0:	0:	0
	:		:	:	:	:	:		_
0-1325W	: 3:	10:	0:	0:	0:	0:	0:	0:	0
0-1350W	: 3:	18:	0:	0:	0:	0:	0:	0:	0
0 133011	:		:	:	:		:	:	U
0-1350W	: 15:	22:	0:	0:	0:	0:	0:	0:	0
	:	:	:	:	:	:	:	:	
0-1375W	: 3:	10:	0:	0:	0:	0:	0:	0:	0
	:	:	:	:	:		:	:	
0-1375W	: 14:	98:	0:	0:	0:	0:	0:	0:	0
	:		:	:	•	•	:	:	_
0-1400W	5	12:	0:	0:	0:	0:	0:	0:	0
0-1400W	: 18:	94:	0:	0:	0:	. 0:	0:	0:	0
0-1400W	• 10	. 24.	•	•	•		•	•	U
0-1425W	: 64:	40:	0:	0:	0:	0:	0:	0:	0
V 2.50	:		:	:			:	:	
0-1450W	: 46	46:	0:	0:	0:	0:	0:	0:	0
	:	:	:	:	:		:	:	
0-1475W	: 630:	38:	0:	0:	0:	0:	0:	0:	0
	:	:	;	:	:	•	:	:	
0-1500W	: 420	104:			0:	0:	0:	0:	0
0-150EW	: : 15:	28					:		^
0-1525W	. 15	20	0:		0:	0:	0:	0:	0
0-1550W	: 13:	34			0:	0	0:	0:	0
V 199011	:		:	:			:	:	J
0-1575W	: 80	66:	0:	0:	0:	0:	0:	0:	0

GCI NO. LOCATION COLLECTOR GCI NO. PROJECT NO. RF192 NTS NO. 52 J/2 1320 THUNDER BAY GM BG ANALYST SOILS MATERIAL STORAGE BOX NUMBER OF SAMPLES 957 DATE RECEIVED DATE ENTERED 09/16/92 DATE COMPLETED 09/24/92 09/24/92 REMARKS REG FELIX

" / · · · · · · · · · · · · · · · · ·	CU PPM	ZN :	Undef:	Undef:	Undef	Undef	Undef:	Undef:	Undef
0-1600W	65	76:	0:	0:	0:	0:	0:	0:	0
0-1625W	: : 53	56 :	0:	0:	0	0	0:	0:	0
0-1650W	: 14:	20:	0:	0:	0:	0:	0:	0:	0
0-1675W	: 39:	30:	0:	0:	0:	0:	0:	: 0:	0
0-1700W	23	70:	: 0:	0:	0:	0:	0:	: 0:	0
0-1725W	: 5	: 18:	0:	0:	0:	0:	0:	: 0:	0
0-1750W	41:	:	0:	0:	:	:	:	0:	0
	: :	:	:	:	:	:	:	:	
0-1775W	: 18:	20:	0:	0:	0:	0:	0:	0:	0
0-0N	. 4	8	0	0	0	0	0:	0:	0
0-25N	. 7:	48:	0:	0:	0:	0	0:	0	0
0-50N	: : 8:	18:	0:	0:	0:	0	0:	: 0:	0
	:	:	:	:	:	:	:	:	
0-75N	: 7:	22:	0:	0:	0:	0:	0:	0:	0
0-100N	20:	16:	0:	0:	0:	0	0:	0:	0
	:	:	:	:	:	:	:	:	
0-125N	: 3:	6:	0:	0:	0:	0:	0:	0:	0
0.150	:	26.	:		:		:	:	•
0-150N	: 6:	26:	0:	0:	0:	0:	0:	0:	0
0-175N	5	28:	0:	0:	0:	0	0:	0:	0
	:	:	:	:	:	:	:	:	_
0-200N	: 7	22:	0:	0:	0:	0:	0:	0:	0
		:	:	:	;	:	:	:	_
0-225N	5	24:	0:	0:	0:	0:	0:	0:	0
0-250N	: 6:	20:	0:	0:	0:	0	0:	0:	0
0" 230N	:		:	:	:		:		J
0-250N	: 2:	6:	0:	0:	0:	0	0:	0:	0
	:	:	:	:	:	:	:	:	
0-275N	: 7:	22:	0:	0:	0:	0:	0:	0:	0
0-27EN	:	12:	: 0:	0:	0	0:	0:	:	^
0-275N	: 4	. 12: 	: 				v: 	0:	0

GCI NO. RF192 NTS NO. 52 J/2
PROJECT NO. 1320 LOCATION THUNDER BAY
ANALYST GM BG COLLECTOR
MATERIAL SOILS STORAGE BOX
NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92
DATE COMPLETED 09/24/92 DATE ENTERED 09/24/92
REMARKS REG FELIX

REMARKS	KEG F	FTTY							
•	CU :		Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
0-300N	7	20	0:	0:	0:	0:	0:	0:	0
0-300N	4:	12	0:	0:	0:	0:	0:	0:	0
0-325N	8	16:	0:	0:	0:	0:	0:	0:	0
0-325N	4:	20	0:	0:	0:	0:	0:	: 0:	0
0-350N	3:	20:	0:	0:	0:	0:	0:	0:	0
0-350N	6:	14:	0:	o:	0:	0:	0:	0:	0
0-375N	6:	12:	0:	o:	: 0:	0:	: 0:	: 0:	0
0-375N	8:	50 :	0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
0-400N	5:	10:	0:	: 0:	: 0:	0:	0:	: 0:	0
0-400N	: : : 4:	16:	0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
0-425N	. 5:	8	0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
0-425N	3:	16:	0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
0-450N	20:	50:	0:	: 0:	: 0:	0:	: 0:	: 0:	0
0-450N	: : : 6:	28 :	0:	: 0:	: 0:	0:	: 0:	: 0:	0
0-475N	: : : 12:	:	:	: 0:	: 0:	: 0:	: 0:	: 0:	0
0-475N	6:	:	:	: 0:	: 0:	0:	0:	:	0
0-500N	8:	:	:	:	:	0:	:	0:	0
0-500N	17:	:	:	0:	0:	0:	0:	0:	0
	: :	:	:	:	:	:	:	:	
0-525N	150:	:	:	0:	0:	0:	0:	0:	0
0-550N	: 11:	:	:	0:	0:	0:	0:	0:	0
0-575N	25:	:	:	0:	0: :	0:	0: :	0: :	0
0-600N	: 28:	92:	0:	0:	0:	0:	0:	0:	0

GCI NO. RF192 NTS NO. 52 J/2
PROJECT NO. 1320 LOCATION THUNDER BAY
ANALYST GM BG COLLECTOR
MATERIAL SOILS STORAGE BOX
NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92
DATE COMPLETED 09/24/92 DATE ENTERED 09/24/92
REMARKS REG FELIX

# / LOCATION	: CU :	ZN PPM	Undef:	Undef:	Undef:	Undef	Undef:	Undef:	Undef
0-625N	8:	72	0:	0:	0:	0	0:	0:	0
0-650N	2	4	0:	0:	0	0	0:	0:	0
0-675N	3	8	0:	0:	0	0	0:	0	0
0-700N	2	8	0:	0:	0	0	0:	0:	0
0-0E	9	60	0:	0:	0	0	0:	0	0
0-25E	8	24	0	0:	0	0	0	0	0
0-25E	9	24	0:	0:	0	0	0:	0	0
0-50E	4	14	0:	0:	0	0	0:	0:	0
0-75E	8	26	0	0	0	0	0	0	0
0-100E	10	22	0	0	0	0	0	0:	0
0-125E	11	28	0	0	0	0	0	0	0
0-150E	7	34	0:	0:	0	0	0	0:	0
0-175E	4	16	0:	0:	0:	0	0:	0	0
0-225E	7	20	0:	0:	0	0	0:	0	0
0-225E	3	20	0:	0:	0:	0	0:	0	0
0-250E	10	26	0:	0:	0:	0	0:	0:	0
0-300E	18	20	0:	0:	0:	0	0:	0:	0
0-325E	19	142	0:	0:	0	0	0:	0:	0
0-350E	15	22	0:	0:	0	0	0:	0:	0
0-375E	4	18	0	0:	0:	0	0:	0:	0
0-425E	: 2:	8 :	0:	0:	0:	0:	0: :	0: :	0
0-450E	9:	22:	0:	0:	0:	0:	0:	0:	0

RF192 GCI NO. PROJECT NO. NTS NO. LOCATION COLLECTOR 52 J/2 THUNDER BAY 1320 ANALYST GM BG
MATERIAL SOILS
NUMBER OF SAMPLES 957
DATE COMPLETED STORAGE BOX DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92 DATE COMPLETED 09/24/92
REMARKS REG FELIX

# / LOCATION	: CU	ZN :	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
0-425E	: 15	54:	0:	0:	0:	0:	0:	0:	0
0-525E	: 5:	10	0:	0	0:	0	o:	o:	0
0-525E	: 16:	34:	0:	0:	0:	0	0:	0:	0
0-550E	9	20:	0:	0:	0:	0:	0:	0:	0
0-550E	: : 13:	50	0:	0:	0:	0	0:	0:	0
0-600E	: 21:	32:	: 0:	0:	: 0:	0:	0:	: 0:	0
0-625E	: : 9:	50:	: 0:	: 0:	0:	0:	: 0:	0:	0
0-650E	: 13:	18:	: 0:	0:	: 0:	0:	0:	0:	0
0-675E	: 13:	30	: 0:	0:	: 0:	0:	: 0:	0:	0
0-700E	: : 13	26:	0:	0:	: 0:	0:	0:	0:	0
0-725E	: : 36:	50	0:	: 0:	0:	0:	: 0:	0:	0
0-750E	: 69:	88:	0:	0:	: 0:	0:	0:	: 0:	0
0-775E	: 16	24:	: 0:	0:	: 0:	0:	: 0:	0:	0
0-800E	: 10:	:	: 0:	0:	: 0:	0:	:	0:	0
0-825E	: : 20:	:	:	: 0:	: 0:	0:	:	0:	0
0-850E	: 12	:	:	: 0:	: 0:	0:	:	0:	0
0-875E	: 4	:	:	0:	0:	0:	:	0:	0
0-900E	: 15	:	:	0:	0:	:	:	0:	0
	:	:	:	:	:	:	:	:	
0-925E	: 19	:	:	0:	0:	:	:	0:	0
0-950E	: 14:	: :	:	0:	0:	:	:	0:	0
0-975E	: 8 :	:	:	0:	0:	:	:	0:	0
0-1000E	: 15	12:	0:	0:	0:	0:	0:	0:	0

GCI NO. RF192
PROJECT NO. 1320
ANALYST GM BG
MATERIAL SOILS
NUMBER OF SAMPLES 957 NTS NO. LOCATION COLLECTOR 52 J/2 THUNDER BAY STORAGE BOX DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92 DATE COMPLETED 09/24/92
REMARKS REG FELIX

REMARKS	REG I	EDIV							
, ,	CU PPM	ZN :	Undef:	Undef:	Undef:	Undef	Undef:	Undef:	Undef
0-1025E	17	32:	0:	0:	0:	0	0:	0:	0
0-1050E	8	14:	0:	0:	0:	0:	0:	0:	0
0-1075E	8	24:	0:	0:	0:	0:	. 0:	0:	0
0-1100E	46	92	0:	0:	0:	0	0:	0:	0
0-1125E	7	18:	0:	0:	0:	0	0:	0:	0
0-1175E	14	22:	0:	0:	0:	0:	0:	0:	0
0-1225E	25	42	0:	0:	0:	0:	o:	0:	0
0-1250E	29	132	0:	0:	0:	0:	0:	0:	0
0-1275E	5	14:	0:	0:	0:	0:	0:	: 0:	0
0-1300E	4	8:	0:	0:	0:	0:	0:	0:	0
0-1325E	11:	26:	0:	0:	0:	0:	: 0:	: 0:	0
0-1350E	40	42:	0:	0:	: 0:	0:	: 0:	0:	0
0-1375E	13:	32:	: 0:	0:	: 0:	0:	: 0:	0:	0
0-1400E	: 24:	98:	: 0:	: 0:	: 0:	0:	: 0:	: 0:	0
0-1400E	: 3	6:	0:	0:	: 0:	0:	0:	0:	0
0-1425E	: 33:	84:	0:	0:	: 0:	0:	0:	0:	0
0-1450E	24:	84:	: 0:	0:	: 0:	0:	: 0:	0:	0
0-1475E	: : 7:	12:	: 0:	0:	: 0:	0:		: 0:	0
0-1500E	: : 25:	: : 38:	: 0:	0:	: 0:	0:	: 0:	0:	0
0-1525E	: : 31	: :	0:	0:	0:	0:	:	0:	0
0-1550E	; 7	:	:	0:	0:	0:	:	0:	0
0-1575E	• • 9	: :	0:	0:	0:	0:	:	0:	0

52 J/2 GCI NO. PROJECT NO. NTS NO. LOCATION COLLECTOR RF192 1320 THUNDER BAY GM BG SOILS ANALYST STORAGE BOX MATERIAL DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92 NUMBER OF SAMPLES 957 DATE COMPLETED 09/24/92 REMARKS REG FELIX

# / LOCATION	: CU :	ZN :	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
0-1600E	21:	48:	0:	0:	: 0:	0:	0:	0:	0
0-1625E	: 11:	20:	: 0:	: 0:	: 0:	0:	0:	: 0:	0
0-1650E	: 16:	20:	: 0:	: 0:	: 0:	0:	0:	: 0:	0
0-1675E	: 7:	22:	0:	: 0:	: 0:	0:	0:	: 0:	0
0-1700E	10:	34:	0:	0:	0:	0:	0:	: 0:	0
0-1725E	: 4:	28:	: 0:	0:	: 0:	0:	: 0:	: 0:	0
0-1750E	: 8:	32:	: 0:	: 0:	: 0:	0:	: 0:	0:	0
0-1775E	: 8:	:	:	: 0:	0:	0:	:	0:	0
	:	:	:	:	:	:	:	:	
0-1800E	: 19:	22:	0:	0:	0:	0:	0:	0:	0
0-1825E	: 3	8:	0:	0:	0:	0:	0:	0:	0
0-1850E	: 21:	32:	0:	: 0:	: 0:	: 0:	: 0:	0:	0
0-1050 <u>L</u>	: 21	:	:	:	:	:	:	:	U
0-1875E	: 25:	36:	0:	0:	0:	0:	0:	0:	0
0 1000B	:		:	:	:	:	:		_
0-1900E	: 4:	10:	0:	0:	0:	0:	0:	0:	0
0-1925E	: 11:	18:	0:	0:	0:	0:	0:	0:	0
	:	:	:	:	:	:	:	:	•
0-1950E	: 12:	100:	0:	0:	0:	0:	0:	0:	0
0-1925E	: 12:	42:	0:	0:	0:	0:	0:	: 0:	0
0.19231	:	12.	:	:	:	:	:	:	U
0-2000E	: 63	18:	0:	0:	0:	0:	0:	0:	0
A 0005B	3.4	16.	:	:	:	:	:	:	_
0-2025E	: 14:	16:	0:	0:	0:	0:	0:	0:	0
0-2050E	20	32:	0:	0:	0:	0:		0:	0
	:	:	:	:	:	:	:	:	
0-2075E	: 48:	292:	0:	0:	0:	0:	0:	0:	0
0-2100E	: 19:	52:	: 0:	0:	0:	0:	: 0:	: 0:	0
O STOOP	:		:	:	:	;	:	:	J
0-2125E	: 38	72:	0:	0:	0:	0:	0:	0:	0

GCI NO. RF192 NTS NO. 52 J/2 PROJECT NO. 1320 LOCATION THUNDER BAY ANALYST GM BG COLLECTOR SOILS STORAGE BOX MATERIAL NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92 09/24/92 DATE COMPLETED 09/24/92 DATE ENTERED REMARKS REG FELIX

" / =======	CU PPM	ZN :	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
0-2150E	11	36:	0:	0:	0:	0:	0:	0:	0
0-2175E	15	22	0:	0:	0:	0:	0	0:	0
0-2225E	3	10	0:	0:	0:	0:	0	0:	0
0-2250E	13	32	0:	0:	0:	0:	0	0:	0
0-2275E	8	20	0:	0:	0:	0:	0	0:	0
0-2300E	15	24	0:	0:	0:	0:	0	0:	0
0-2325E	25	48	0:	0:	0:	0:	0	0:	0
0-2350E	26	128	0:	0:	0:	0:	0	0:	0
0-2375E	15	48	0:	0:	0:	0:	0	0:	0
0-2400E	13	32	0:	0:	0	0:	0	0:	0
0-2425E	23	46	0:	0:	0:	0:	0	0:	0
0-2450E	17	58	0:	0:	0:	0:	0	0:	0
0-2475E	7:	40	0:	0:	0:	0:	0	0:	0
0-2500E	7	26	0:	0:	0	0:	0	0:	0
0-2525E	19	62	0:	0:	0:	0:	0	0:	0
0-2550E	14	34	0:	0:	0	0	0	0:	0
0-2575E	7:	26	0:	0	0:	0:	0	0:	0
0-2600E	: 37	58	0:	0:	0:	0:	0	0:	0
0-2650E	: 16	38	0	0:	0	0:	0	0:	0
0-2675E	9	40	0:	0:	0	0:	0	0:	0
0-2700E	: : 17	34:	0	0:	0	0:	0	0:	0
0-2725E	: : 2	10	0:	0:	0:	0:	0:	0:	0

RF192 GCI NO. PROJECT NO. 1320 GM BG ANALYST MATERIAL SOILS NUMBER OF SAMPLES 957 DATE COMPLETED 09/24/92 REMARKS REG FELIX

NTS NO. LOCATION COLLECTOR STORAGE BOX

52 J/2 THUNDER BAY

DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92 09/16/92

REMARKS	REG F	EDIV							
# / LOCATION	CU :		Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
0-2750E	6:	54:	0:	0:	0:	0:	0:	0:	0
0-2775E	. 5:	22:	0:	0:	0:	0:	0:	0:	0
0-2800E	. 5:	14:	0	0:	0:	0:	0:	: 0:	0
0-2825E	6:	12:	0	0:	0:	0:	0:	: 0:	0
0-2850E	: : 2:	6:	0	0:	0:	0:	0:	0:	0
0-2875E	: : : 21:	22:	0:	0:	: 0:	0:	: 0:	: 0:	0
0-2900E	: 3:	10:	0:	0:	0:	0:	0:	0:	0
0-2925E	: : : 8:	36:	0:	0:	: 0:	0:	o:	: 0:	0
0-2950E	: : 2:	6:	0:	0:	: 0:	: 0:	: 0:	: 0:	0
0-2975E	: : 19:	: 46:	0:	0:	: 0:	: 0:	: 0:	: 0:	0
0-3000E	: : : 12:	: 54:	0:	0:	: 0:	: 0:	: 0:	: 0:	0
0-3025E	: : : 7:	28:	0:	0:	: 0:	: 0:	: 0:	: 0:	0
0-3050E	: : : 15:	54:	0:	0:	: 0:	0:	: 0:	: 0:	0
0-3075E	: : : 4:	18:	0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
0-3100E	: : : 12:	28:	0:	0:	: 0:	: 0:	: 0:	: 0:	0
0-3125E	: : : 5:	302:	0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
0-3150E	: 7:	: 16:	0:	0:	: 0:	o:	: 0:	: 0:	0
0-3175E	20:	140:	0:	o:	: 0:	: 0:	: 0:	: 0:	0
0-3225E	2:	16:	0:	0:	0:	0:	0:	0:	0
0-3250E	17:	134:	0	0:	0:	0:	0:	0:	0
0-3225E	7:	54:	0:	0:	0:	0:	0:	0:	0
0-3300E	: : : 2:	: 8:	0:	: 0:	: 0:	0:	: 0:	: 0:	0

GCI NO. RF192 PROJECT NO. 1320 ANALYST GM BG SOILS MATERIAL NUMBER OF SAMPLES 957 DATE COMPLETED 09/24/92
REMARKS REG FELIX NTS NO. LOCATION COLLECTOR STORAGE BOX

52 J/2 THUNDER BAY

DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92

KEMARKS	REG I	. EPTY							
. ,	CU PPM	ZN PPM		Undef:	Undef:	Undef:	Undef:	Undef:	Undef
0-3325E	3	10	0:	0:	0:	0:	0:		0
0-3350E	34			0:	0:	0:	0:		0
0-3375E	7:	32:	_	0:	0:	0:	0:	0:	0
0-3400E	3:		0:	0:	0:	0:	0:		0
0-3425E	: 4:	22:	0:	0:	o:	0:	0:		0
0-3450E	3			: 0:	o:	: 0:	: 0:	0:	0
0-3475E	3	14:	0:	0:	0:	: 0:	: 0:		0
0-3500E	: 20:	38:	0:	0:	0:	0:	: 0:	0:	0
0-3525E	: 3:			0:	0:	: 0:	0:	0:	0
0-3550E	: 4:	22	0:	0:	: 0:	: 0:	0:	0:	0
0-3525E	: : 6:		0:	: 0:	0:	: 0:	0:	: 0:	0
0-3600E	: : : 6:		0:	0:	0:	: 0:	: 0:	: 0:	0
0-3625E	: 6:		0:	0:	: 0:	: 0:	: 0:	0:	0
0-3650E	: 4:	: :	:	0:	: 0:	: 0:	: 0:	:	0
0-3675E	8	:	:	0:	0:	0:	0:	:	0
0-3700E	7:	: :	:	0:	0:	0:	0:	:	0
0-3725E	5:	: :	:	0:	0:	:	0:	:	0
0-3750E	2:	: :	:	0:	0:	0:	0:	:	0
0-3775E	26:	:	:	0:	0:	0:	0:	:	0
	: :	: :	:	:	:	:	:	:	
0-3800E	: 8:	: :	:	0:	0:	0:	0:	:	0
0-3825E	: 7:	;	:	0:	0:	0:	0:	:	0
0-3850E	: 5:	24:	: 0: 	0:	0: 	0:	0: 	0:	0

NTS NO. LOCATION GCI NO. RF192 52 J/2 GCI NO. PROJECT NO. 1320 THUNDER BAY COLLECTOR ANALYST GM BG MATERIAL SOILS STORAGE BOX NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92 DATE ENTERED DATE COMPLETED 09/24/92 09/24/92 REG FELIX REMARKS

REMARKS	NDO :	EDIX							
" /		ZN :		Undef:	Undef:	Undef:	Undef:	Undef:	Undef
0-3875E	10	24	0:	0:	0:	0:	0:	0:	0
0-3900E	6	28	0	0:	0:	0:	0:	0:	0
0-3925E	5	12	0:	0:	0:	0:	0:	0:	0
0-25S	31	130	0:	0:	0:	0:	0:	0:	0
0-50S	36	112	0	0:	0:	0:	0:	0:	0
0-75S	: : 7:	14	0:	0:	0:	0:	0:	o:	0
0-100S	: : 2:	6	0:	0:	0:	: 0:	0:	0:	0
0-100S	: 13	40	0:	0:	0:	: 0:	o:	0:	0
0-150S	: : 5:	12:	0:	0:	: 0:	0:	: 0:	0:	0
0-175S	5	14:	0:	0:	0:	: 0:	0:	: 0:	0
0-200S	: 7:	36	0:	: 0:	0:	: 0:	: 0:	0:	0
0-225S	: : 2:	8 :	0:	: 0:	: 0:	: 0:	: 0:	0:	0
0-250S	: 10	28:	0:	: 0:	0:	0:	: 0:	0:	0
0-275S	: 7:	28:	0:	: 0:	: 0:	: 0:	0:	0:	0
0-300S	: 4	10	0:	: 0:	: 0:	: 0:	0:	0:	0
2E-ON	: 3:	10	0:	: 0:	: 0:	: 0:	0:	0:	0
2E-25N	: 36:	254	0:	: 0:	: 0:	: 0:	0:	0:	0
2E-50N	: 3	8 :		: 0:	: 0:	: 0:	0:	: 0:	0
2E-75N	: : 21	14	0:	: 0:	: 0:	: 0:	0:	0:	0
2E-225N	: : 3	18	0:	: 0:	: 0:	: 0:	0:	: 0:	0
2E-275N	: : 13:	40	0:	: 0:	0:	: 0:	0:	: 0:	0
2E-300N	: 5:	14	0:	: 0:	: 0:	: 0:	0:	: 0:	0

GCI NO. RF192 NTS NO. 52 J/2
PROJECT NO. 1320 LOCATION THUNDER BAY
ANALYST GM BG COLLECTOR
MATERIAL SOILS STORAGE BOX
NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92
DATE COMPLETED 09/24/92 DATE ENTERED 09/24/92
REMARKS REG FELIX

# / LOCATION	CU PPM	ZN PPM	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
2E-325N	9	16	0:	0:	0:	0:	0:	0:	0
2E-350N	8	34	0:	0	0:	0	0:	0	0
2E-400N	6	16	0:	0	0	0	0:	0	0
2E-425N	6	32	0:	0	0:	0	0:	0	0
2E-450N	3	8	0:	0	0:	0	0:	0	0
2E-475N	16	116	0:	0	0:	0	0:	0:	0
2E-500N	6	48	0:	0	0:	0	0:	0:	0
2E-525N	5	36	0:	0	0:	0	0:	0:	0
2E-550N	5	30	0:	0	0:	0	0:	0:	0
2E-575N	10	30	0:	0	0:	0	0:	0	0
2E-600N	6	38	0:	0	0:	0	0:	0	0
2E-625N	10	32	0:	0:	0:	0	0:	0:	0
2E-650N	20	46	0:	0	0:	0	0:	0:	0
2E-675N	9	50	0:	0	0:	0	0:	0	0
2E-700N	22	56	0:	0:	0:	0	0:	0:	0
2E-25S	20	30	0:	0	0:	0	0:	0:	0
2E-50S	4	_	0:	0:	0:	0	0:	0:	0
2E-75S	6	28	0:	0	0:	0	0:	0:	0
2E-100S .	18	42	0:	0	0:	0		0	0
2E-125S	5	18	0:	0:	0:	0	0:	0:	0
2E-150S	23	68	0:	0	0:	0	0:	0:	0
2E-225S	: : 5	18:	0:	0:	0:	0	0:	0:	0

PROJECT NO. 1320
ANALYST GM BG
MATERIAL SOILS
NUMBER OF SAMPLES 957

NTS NO.
LOCATION
COLLECTOR
STORAGE BOX
DATE RECEIVE

THUNDER BAY

52 J/2

NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92
DATE COMPLETED 09/24/92 DATE ENTERED 09/24/92
REMARKS REG FELIX

REMARKS		FITTY							
# / LOCATION			Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
2E-250S	5	12:	0:	0:	0:	0:	0:	0:	0
2E-250S	8	26:	0:	0:	0:	0:	0	0:	0
2E-275S	8	26:	0:	0:	0:	0:	0:	0	0
2E-300S	11	54:	0:	0:	0:	0:	0:	0:	0
2W-ON	5	22:	0:	0:	0:	0:	0:	0:	0
2W-25N	9	28:	0:	0:	: 0:	0:	: 0:	0:	0
2W-50N	13:	: 26:	0:	: 0:	: 0:	: 0:	: 0:	0:	0
2W-75N	19:	66:	: 0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
2W-100N	14	30:	0:	: 0:	0:	: 0:	: 0:	0:	0
2W-125N	6:	28:	0:	: 0:	: 0:	: 0:	: 0:	0:	0
2W-150N	7	18:	0:	: 0:	: 0:	0:	: 0:	0:	0
2W-175N	15	:	0:	: 0:	: 0:	: 0:	0:	0:	0
2W-200N	15	:	0:	0:	0:	0:	0:	0:	0
:	: :	:	:	:	:	:	:	:	
2W-225N	8	:	0:	0:	0: :	0:	0: :	0:	0
2W-250N	2 :	8:	0:	0: :	0:	0:	0:	0:	0
2W-275N	16:	32:	0:	0:	0:	0:	0:	0:	0
2W-300N	16		0:	0: :	0: :	0:	0:	0:	. 0
2W-325N	21		0:	0:		0:	0:	0:	0
2W-350N	8	28:	0	0:		0:	0:	0	0
2W-375N	20	40:	0	0:		0	0	0	0
2W-400N	37	46:	0	0:	0:	0:	0:	0:	0
2W-425N	5:	16:	0:	0: 	0:	0:	0:	0:	0

GCI NO. RF192
PROJECT NO. 1320
ANALYST GM BG
MATERIAL SOILS NTS NO. LOCATION COLLECTOR 52 J/2 THUNDER BAY STORAGE BOX DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92 NUMBER OF SAMPLES 957 DATE COMPLETED 09/24/92
REMARKS REG FELIX

# / LOCATION	: CU :	ZN :	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
	-:		:	:	:		:	:	
2W-450N	: 7:	36:	0:	0:	0:	0:	0:	0:	0
2W-475N	: 6:	40	0:	0:	0:	0	0:	0:	0
2W-500N	: 41:	112:	0:	0:	0:	0	0:	0:	0
2W-525N	: 10	20	0:	0:	0:	0:	0:	o:	0
2W-550N	: 9:	38	0:	: 0:	0:	0:	0:	: 0:	0
2W-575N	: 12:	24	: 0:	: 0:	0:	0:	0:	0:	0
2W-600N	: 14:	56:	: 0:	: 0:	0:	0	0:	: 0:	0
2W-625N	: 26:	46	: 0:	: 0:	0:	0:	: 0:	: 0:	0
2W-675N	: 4	: :	:	: 0:	0:	:	:	0:	0
2W-700N	: 4	:	:	0:	0:	:	:	0:	0
2W-25S	: 9	:	:	0:	0:	:	:	0:	0
ZW-255	:	20	:	:	:	:	:	:	U
2W-50S	: 5	20:	0:	0:	0:	0:	0:	0:	0
	:	: ;	:	:	:	:	:	:	_
2W-75S	: 2	6:	0:	0:	0:	0:	0:	0:	0
2W-100S	: 2	8	0:	0:	0:	0:	0:	0:	0
2W-1002	:		:	:	:	:	:		U
2W-125S	: 5	52	0:	0:	0:	0:	0:	0:	0
J.: 2000	:		:	:	:	:	:	:	
2W-150S	: 7	34:	0:	0:	0:	0:	0:	0:	0
	:	: :	:	:	:	:	:	:	
2W-175S	: 6	50:	0:	0:	0:	0:	0:	0:	0
	:	:	:		:	:	:	:	_
2W-200S	: 4	10:			0:	0:			0
AN AAEG	. 15	14	•		0:				0
2W-225S	: 15	14			0.	0:			0
2W-250S	: 2	6	0:		0:	0:	: 0:		0
211 ° 2 J U U	:	:	:		:	:	:		U
2W-275S	: 11	22			0:	0:			0
	:	:	:	:	:		:	:	•
2W-300S	: 9	56:	0:	0:	0:	0:	0:	0:	0

GCI NO. RF192 NTS NO. 52 J/2 LOCATION THUNDER BAY PROJECT NO. 1320 ANALYST GM BG COLLECTOR SOILS STORAGE BOX MATERIAL NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92 DATE COMPLETED 09/24/92 DATE ENTERED 09/24/92 REG FELIX REMARKS

# / LOCATION	: CU :	ZN PPM	Undef:	Undef:	Undef:	Undef	Undef	Undef:	Undef
4E-ON	7	24:	0:	0:	0	0	0	0:	0
4E-25N	8	20	0:	0:	0	0	0	0:	0
4E-50N	5	14	0:	0	0	0	0	0:	0
4E-75N	11	20	0:	0:	0	0	0	0:	0
4E-100N	15	16	0	0:	0	0	0	0:	0
4E-125N	4	8	0:	0:	0	0	0	0:	0
4E-150N	6	16	0:	0:	0	0	0	0:	0
4E-175N	11	38	0:	0:	0	0	0	0:	0
4E-450N	3	6	0:	0:	0	0	0	0:	0
4E-475N	2	12	0:	0:	0	0	0	0:	0
4E-500N	7	32	0:	0:	0	0	0	0:	0
4E-525N	9	54	0:	0:	0:	0	0	0:	0
4E-25S	4	14:	0:	0:	0	0	0	0:	0
4E-50S	14	22	0:	0:	0	0	0	0:	0
4E-75S	2	6	0:	0:	0:	0	0	0:	0
4E-100S	20	26	0:	0:	0:	0	0	0:	0
4E-125S	18	46	0:	0:	0:	0	0	0:	0
4E-150S	: 6:	28	0:	0:	0:	0:	0:	0:	0
4E-175S	: 17:	58:	0:	0: :	0:	0:	0:	0:	0
4E-200S	: 7:	30:	0:	0: :	0:	0:	0:	0:	0
4E-225S	: 2:	8 :	0:	0:	0:	0:	0:	0:	0
4E-250S	: 2	10:	0:	0:	0:	0:	0:	0:	0

GCI NO. RF192
PROJECT NO. 1320
ANALYST GM BG
MATERIAL SOILS
NUMBER OF SAMPLES 957
DATE COMPLETED GCI NO. PROJECT NO. NTS NO. LOCATION COLLECTOR 52 J/2 THUNDER BAY STORAGE BOX DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92 DATE COMPLETED 09/24/92
REMARKS REG FELIX

# / LOCATION	CU PPM	ZN :	Undef:	Undef:	Undef	Undef	Undef:	Undef:	Undef
	:	:							
4E-275S	: 3:	12:	0:	0:	0:	0:	0:	0:	0
4E-300S	3	14:	0:	0:	0:	0:	0:	0:	0
4W-ON	14	44	0	0	0	0	0:	0:	0
4W-25N	4	14	0	0	0	0	0:	0:	0
4W-50N	3	20	0	0:	0	0	0:	0	0
4W-75N	2	10	0	0	0	0	0:	0:	0
4W-100N	: 3	14	0	0:	0	0	0:	0:	0
4W-125N	: 2	10	0:	0:	0	0	0:	0:	0
4W-150N	: 10	30	0:	0:	0	0	0:	0:	0
4W-200N	8	48	0	0	0	0	0:	0:	0
4W-225N	: 6	42	0	0	0	0	0:	0:	0
4W-250N	: 4	20	0	0	0	0	0:	0:	0
4W-275N	: 6	28	0:	0:	0	0	0:	0:	0
4W-300N	: : 6	12	0:	0	0	0	0:	0:	0
4W-325N	: 10	80	0	0	0	0	0:	0:	0
4W-350N	: : 9	54	0	0	0	0	0:	0:	0
4W-375N	: : 15							0:	0
4W-400N	10	26	0:	0:		0:	0:	0:	0
4W-425N	5 •	18	0				0:		0
4W-450N	: : 9	20				0,:	0:	0:	0
4W-425N	15			0:			0:	0:	0
4W-500N	: 2	: 6:	0:		0:	0	-	0:	0

NTS NO. LOCATION COLLECTOR GCI NO. PROJECT NO. RF192 1320 52 J/2 THUNDER BAY ANALYST GM BG
MATERIAL SOILS
NUMBER OF SAMPLES 957
DATE COMPLETED 09/24/92
REMARKS REG FELIX STORAGE BOX DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92

# / LOCATION	: CU :		Undef:	Undef:	Undef:	Undef	Undef	Undef	Undef
4W-25S	6	24	0:	0:	0	0	0	0:	0
4W-50S	4	16	0:	0:	0	0	0	0:	0
4W-75S	4	26	0:	0	0	0	0	0:	0
4W-100S	3	20	0:	0:	0	0	0	0	0
4W-125S	14	30	0:	0:	0	0	0	0:	0
4W-150S	6	26	0:	0:	0	0	0	0:	0
4W-175S	27	56	0:	0:	0		0	0:	0
4W-200S	5	60	0:	0:	0	-	0	0:	0
4W-225S	8	18:	0:	0:	0:	0	0	0:	0
4W-250S	11	72:	0:	0:	0:	0:	0:	0:	0
4W-275S	14	36	0:	0:	0	0	0	0:	0
4W-300S	9	38:	0:	0:	0	0	0	0:	0
TL4S-1025W	3	10:	0:	0:	0	0	0	0:	0
TL4S-1050W	9	26:		0:	0	0	0	0:	0
TL4S-1075W	3	14:	0:	0:	0:	0	0:	0:	0
TL4S-1100W	16	50:	0:	0:	0	0	0:	0:	0
TL4S-1125W	14:	46:	0:	0:	0	0	0:	0:	0
TL4S-1150W	13:	34:	0:	0:	0	0	0:	0:	0
TL4S-1175W	10	18:	0:	0:	0	0:	0:	0:	0
TL4S-1200W	: 3:	14:	0:	: 0:	0:	0:	0:	: 0:	0
TL4S-1225W	: 2:	12:	0:	0:	0:	0:	0	: 0:	0
TL4S-1250W	: 4:	32	0:	0:	0:	0:	0	: 0:	0

RF192 1320 GM BG SOILS 52 J/2 NTS NO. LOCATION COLLECTOR GCI NO.
PROJECT NO. THUNDER BAY ANALYST MATERIAL STORAGE BOX DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92 NUMBER OF SAMPLES 957 DATE COMPLETED 09/24/92
REMARKS REG FELIX

# / LOCATION	CU :	ZN :	Undef:	Undef:	Undef:	Undef:	Undef	Undef	Undef
TL4S-1275W	7	28:	0:	0:	0:	0:	0:	0:	0
TL4S-1300W	: 2:	20	0:	0:	0:	0:	0	0:	0
TL4S-1325W	8:	26:	0:	0:	0:	0:	0:	0:	0
TL4S-1350W	6:	24	0:	0:	0:	0	0:	0:	0
TL4S-1375W	: 6:	30:	0:	0:	0:	0:	0:	0:	0
TL4S-1400W	5	:	:	0:	0:	:	:	:	
	: :	:	:	:	:		:	:	O
TL4S-1425W	3 :	14:	0:	0:	0:	0:	0:	0:	0
TL4S-1400W	12:	26:	0:	0:	0:	0:	0:	0:	0
DI EW-OON	: 14:	46	:	:	:	:	:	:	0
RL5W-00N	: 14:	40	0:	0:	0:	0:	0:	0:	0
RL5W-25N	: 5:	22:	0:	0:	0:	0:	0:	0:	0
RL5W-50N	: : 16:	40	0:	0:	: 0:	0:	0:	: 0:	0
	: :	:	:	:	:	:	:	:	
RL5W-75N	: 6:	16:	0:	0:	0:	0:	0:	0:	0
RL5W-100N	12:	44:	0:	0:	0:	0:	0:	0:	0
	: :	:	:	:	:	:	:	:	
RL5W-125N	: 6:	32:	0:	0:	0:	0:	0:	0:	0
RL5W-150N	2	10	0:	0:	0:	0:	0:	0:	0
	: :	:	:	:	:	:	:	:	_
RL5W-175N	: 2:	10:	0:	0:	0:	0:	0:	0:	0
RL5W-200N	: 6:	48	0:	0:	0:	0:	0:	0:	0
DIEW ANEW	: 7			:	:				
RL5W-225N	: 7: :	16:	0:	0:	0:	0:	0:		0
RL5W-250N	: 12:	50:		0:	0:	0:	0:	0:	0
RL5W-275N	: 14:	18:	0:	: 0:	0:	0:	: 0:		0
KIDW-613N	. 14	10:	:	:	:	:	:		U
RL5W-300N	: 6:	8 :	0:	0:	0:	0:	0:	0:	0
RL5W-325N	: 3:	10	0:	0:	0:	0:	0:	0:	0

RF192 GCI NO. PROJECT NO. ANALYST GCI NO. GM BG SOILS MATERIAL NUMBER OF SAMPLES 957 DATE COMPLETED 09/24/92

NTS NO. LOCATION COLLECTOR

52 J/2 THUNDER BAY

STORAGE BOX
DATE RECEIVED 09/16/92
DATE ENTERED 09/24/92

REMARKS	REG F	ELIX							
# / LOCATION		ZN :	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
RL5W-350N	3	10:	0:	0:	0:	0:	0:	0:	0
RL5W-375N	14:	20:	0:	0:	0:	0:	0:	0:	0
RL5W-400N	25	34:	0:	0:	0:	0:	0:	0:	0
RL5W-450N	23:	42:	0:	o:	o:	: 0:	: 0:	0:	0
RL5W-475N	122	58:	0:	o:	o:	: 0:	o:	: 0:	0
RL5W-500N	16	24:	0:	0:	0:	0:	0:	: 0:	0
5W-00N	: 11:	52:	0:	0:	: 0:	0:	0:	: 0:	0
5W-25N	: 6:	42:	: 0:	0:	: 0:	: 0:	: 0:	: 0:	0
5W-50N	7	36:	: 0:	0:	: 0:	: 0:	: 0:	: 0:	0
5W-75N	7:	56:	0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
5W-100N	: 10:	14:	0:	: 0:	: 0:	: 0:	: 0:	0:	0
5W-125N	: 11:	22:	: 0:	0:	: 0:	: 0:	: 0:	0:	0
5W-150N	: 3:	8:	: 0:	: 0:	: 0:	: 0:	: 0:	0:	0
5W-175N	: 10:	20	0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
5W-200N	: 5:	18	0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
5W-225N	: 8:	18:	0:	: 0:	: 0:	: 0:	0:	: 0:	0
5W-250N	: 3:	8 :	0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
5W-275N	: 10:	:	:	: 0:	: 0:	: 0:	: 0:	:	0
5W-300N	: 9:	:	:	:	: 0:	: 0:	:	:	0
5W-325N	: 24:	:	:	:	: 0:	0:	:	:	0
5W-350N	: 16:	: :	:	:	0:	0:	:	:	0
5W-375N	: 22:	: :	:	:	0:	0:	:	:	0

GCI NO. RF192
PROJECT NO. 1320
ANALYST GM BG
MATERIAL SOILS
NUMBER OF SAMPLES 957
DATE COMPLETED 09/24/92
REMARKS REG FELIX

NTS NO. LOCATION COLLECTOR STORAGE BOX

52 J/2 THUNDER BAY

DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92

REMARKS	REG	FELIX							
# / LOCATION		ZN :	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
5W-400N	26	106	0:	0:	0:	0:	0:	0:	0
5W-425N	: 6	8	0:	0:	0:	0:	0:	0:	0
5W-25S	: 14	56		0:	0:	0	0:	0:	0
5W-50S	: 11	44:		0:	0:	0:	: 0:	: 0:	0
5W-75S	: : 25	120		0:	0:	0:	: 0:	0:	0
5W-100S	: : 12	26:	0:	0:	0:	0:	0:	0:	0
5W-125S	: : 24	60:	0:	: 0:	0:	: 0:	: 0:	; 0:	0
5W-150S	: : 24	124:	0:	: 0:	0:	0:	: 0:	0:	0
5W-175S	: : 10	26:	0:	: 0:	0:	0:	: 0:	: 0:	0
5W-200S	: : 5	18:	0:	: 0:	0:	: 0:	: 0:	: 0:	0
5W-225S	: 7	20:	0:	: 0:	0:	: 0:	: 0:	: 0:	0
5W-250S	: : 8	36:	0:	: 0:	0:	: 0:	: 0:	: 0:	0
5W-275S	: : 8	20:	0:	: 0:	: 0:	: 0:	: 0:	0:	0
5W-300S	: : 13	: : : 34:	0:	0:	0:	0:	: 0:	0:	0
6W-00N	: : 6	: : 22:	0:	0:	: 0:	0:	: 0:	: 0:	0
6W-25N	: 4	:	:	: 0:	: 0:	0:	: 0:	: 0:	0
6W-50N	: : 5	: :	:	: 0:	: 0:	: 0:	: 0:	0:	0
6W-75N	: : 5	: :	:	0:	0:	0:	0:	0:	0
6W-100N	: 11	: :	:	0:	0:	0:	0:	0:	0
	:	: :	:	:	:	:	:	:	
6W-125N	=	: :	:	0:	0:	0:	0:	0:	0
6W-150N	: 3	: :	:	0:	0:	0:	0:	0:	0
6W-175N	: 8	: 36:	0:	0:	0:	0:	0:	0:	0

GCI NO. RF192 NTS NO. 52 J/2
PROJECT NO. 1320 LOCATION THUNDER BAY
ANALYST GM BG COLLECTOR
MATERIAL SOILS STORAGE BOX
NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92
DATE COMPLETED 09/24/92 DATE ENTERED 09/24/92
REMARKS REG FELIX

# / LOCATION			Undef:	Undef:	Undef:	Undef:	Undef	Undef:	Undef
6W-200N	10	50:	0:	0:	0:	0:	0:	0:	0
6W-225N	6	24:	0:	0:	0:	0:	0	0:	0
6W-250N	24	62	0:	0:	0:	0:	0	0:	0
6W-275N	17	42	0:	: 0:	: 0:	0:	0	0:	0
6W-350N	10	16:	0:	: 0:	: 0:	0:	0:	: 0:	0
6W-375N	: : 5:	16:	0:	0:	: 0:	0:	0:	0:	0
6W-400N	3:	14:	: 0:	: 0:	: 0:	0:	0:	: 0:	0
6W-425N	6	:	:	0:	0:	0:	:	:	0
0W-425N		24	:	:	:	:	:	:	U
6W-450N	7:	46	0:	0:	0:	0:	0:	0:	0
6W-475N	8	26	0:	0:	0:	0:	0	0:	0
6W-500N	10	28:	0:	0:	0:	0:	0	0:	0
6W-25S	: : 12:	108	0:	: 0:	: 0:	0:	0:	0:	0
	: :	: :	:	:	:	:	:	:	
6W-50S	15:	80:	0:	0:	0:	0:	0:	0:	0
6W-75S	: 35:	82	0:	0:	0:	0:	0:	0:	0
	:		:	:	:	:		:	_
6W-100S	37:	160:	0:	0:	0:	0:	0:	0:	0
6W-125S	12	42	0:	0:	0:	0:	0	0:	0
	: :	10	:	:	:	:	:	:	•
6W-125S	4:	10:	0:	0:	0:	0:	0:	0:	0
6W-150S	6	22	0:	0:	0:	0:	0	0:	0
6W 17EC	: : 5:	24	:	:	0:	:			0
6W-175S	. 5	24	0:		:				0
6W-200S	: 10:	36			0:				0
6W-2E0C	: 1:	6:	: : 0:		: 0:	0:	0:		0
6W-250S	• 13		:	:	:			:	J
6W-275S	: 19:	60	0:	0:	0:	0:	0:	0:	0

52 J/2 קינויניי GCI NO. RF192
PROJECT NO. 1320
ANALYST GM BG
MATERIAL SOILS
NUMBER OF SAMPLES 957 NTS NO. LOCATION COLLECTOR THUNDER BAY STORAGE BOX DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92 DATE COMPLETED 09/24/92
REMARKS REG FELIX

# / LOCATION	CU PPM	ZN :	Undef:	Undef:	Undef:	Undef	Undef:	Undef:	Undef
6W-300S	8	34:	0:	0:	0:	0:	0:	0:	0
8W-00N	17	42:	0:	0:	0:	0	0:	0:	0
8W-25N	16	44:	0:	0:	0:	0	0:	0:	0
8W-50N	17	28:	0:	0:	0:	0	0:	o:	0
8W-75N	3	12:	0:	0:	0:	0	0:	0:	0
8W-100N	14:	26:	0:	0:	o:	0:	0:	: 0:	0
8W-150N	19	28:	: 0:	: 0:	0:	0:	0:	: 0:	0
8W-175N	15	30:	0:	0:	0:	0:	0:	: 0:	0
8W-200N	12	40:	0:	: 0:	0:	0:	0:	: 0:	0
8W-225N	10	56:	0:	: 0:	0:	0:	0:	: 0:	0
8W-250N	9	22:	: 0:	0:	0:	0:	: 0:	: 0:	0
8W-275N	9	172:	: 0:	: 0:	0:	0:	: 0:	: 0:	0
8W-300N	9:	156:	: 0:	: 0:	: 0:	0:	: 0:	: 0:	0
8W-325N	17:	256	: 0:	: 0:	: 0:	0:	: 0:	: 0:	0
8W-350N	26:	212:	0:	: 0:	: 0:	0:	: 0:	: 0:	0
8W-375N	16:	130:	0:	: 0:	: 0:	0:	: 0:	: 0:	0
8W-400N	10:	116	0:	: 0:	0:	0:	: 0:	: 0:	0
8W-425N	9:	166	0:	: 0:	: 0:	0:	: 0:	: 0:	0
8W-450N	: 6:	32	0:	: 0:	: 0:	0:	: 0:	: 0:	0
8W-475N	: 4:	62:	0:	o:	: 0:	0:	: 0:	0:	0
8W-500N	: 5:	38:	0:	: 0:	0:	0:	: 0:	: 0:	0
8W-25S	: 36	76:	0:	0:	0:	0:	0:	0:	0

GCI NO. RF192
PROJECT NO. 1320
ANALYST GM BG
MATERIAL SOILS
NUMBER OF SAMPLES 957
DATE COMPLETED 09/24/92

NTS NO. LOCATION COLLECTOR STORAGE BOX

52 J/2 THUNDER BAY

DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92

REMARKS	REG 1			DATE	ENTERE		03/24/3	.	
•		ZN : PPM :	Undef:	Undef:	Undef:	Undef	Undef:	Undef:	Undef
8W-50S	19	68	0:	0:	0:	0	0:	0:	0
8W-75S	15	32:	0:	0:	0:	0:	0:	0:	0
8W-100S	74	56 :	o:	0:	0:	0	0:	: 0:	0
8W-125S	24	68:	: 0:	0:	0:	0	0:	0:	0
8W-150S	23	30:	: 0:	0:	0:	0	0:	0:	0
8W-175S	32	310:	: 0:	: 0:	0:	0:	0:	0:	0
8W-200S	10	24:	: 0:	0:	0:	0:	0:	; 0:	0
8W-225S	19	: 36:	: 0:	0:	0:	0	: 0:	0:	0
8W-250S	7:	: 14:	: 0:	0:	0:	0:	: 0:	0:	0
8W-275S	18:	: 158:	: 0:	0:	0:	0:	: 0:	0:	0
8W-300S	46:	:	: 0:	: 0:	0:	0:	:	0:	0
RL10W-00N	12:	: :	0:	0:	0:	:	:	0:	0
RL10W-25N	8	: :	0:	0:	0:	0:	:	0:	0
	34:	: :	:	:	0:	:	:	:	
RL10W-50N	:	: :	0:	0:	:	:	:	0:	0
RL10W-100N	: 22:	:	0:	0:	0:	:	:	0:	0
RL10W-125N	: 3: :	:	0:	0:	0:	:	:	0:	0
RL10W-150N	: 6: :	: :	0: :	0:	0:	:	:	0:	0
RL10W-175N	: 3: :	6:	0: :	0:	0:	0:	0:	0:	0
RL10W-200N	: 8: :	62:	0:	0:	0:	0:		0:	0
RL10W-225N	: 12	34:	0:	0:	0:	0:	0:	0:	0
RL10W-250N	: 17	26:	0:	0:	0	0		0:	0
RL10W-275N	24	36:	0:	0:	0:	0	0:	0:	0

GCI NO. RF192 NTS NO. 52 J/2 GCI NO. PROJECT NO. LOCATION THUNDER BAY 1320 ANALYST COLLECTOR GM BG SOILS STORAGE BOX MATERIAL NUMBER OF SAMPLES 957 09/16/92 DATE RECEIVED DATE COMPLETED 09/24/92 DATE ENTERED 09/24/92 REG FELIX REMARKS

# / LOCATION	CU:	ZN :	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
10W-00N	3	16	0:	0:	0:	0:	0	0:	0
10W-00N	22:	26	0:	0:	0:	0:	0	0:	0
10W-25N	21:	56 :	0:	0:	0:	0	0	: 0:	0
10W-25N	12:	24:	0:	0:	0:	0:	0	o:	0
10W-50N	18:	74:	0:	o:	0:	0:	0:	: 0:	0
10W-50N	10:	36:	0:	: 0:	0:	0:	0:	: 0:	0
10W-75N	20	26:	0:	: 0:	0:	0:	0	: 0:	0
10W-75N	: 4:	14:	0:	0:	: 0:	0:	0:	: 0:	0
10W-100N	: : 6:	12:	0:	: 0:	: 0:	0:	0:	: 0:	0
10W-100N	10:	14:	0:	: 0:	0:	0:	0	: 0:	0
10W-125N	10	22:	0:	: 0:	0:	0	0	: 0:	0
10W-125N	: 11:	10:	0:	: 0:	0:	0:	0:	o:	0
10W-150N	: 21:	84:	: : : 0:	: 0:	0:	0:	0:	: 0:	0
10W-150N	: : 16:	16:	0:	0:	0:	0	0	: 0:	0
10W-175N	: : : 11:	82	0:	0:	0:	0:	0:	: 0:	0
10W-175N	: :	14:	0:	0:	0:	0	0	: 0:	0
10W-200N	: : 2:	4:	: : 0:	: 0:	0:	0:	0:	: 0:	0
10W-200N	: 31:	36:	0:	0:	0:	0:	0:	: 0:	o
10W-225N	28:	: :	:	:	:	:		:	
10W-225N	: 12:	:	:	:	:	:	:	:	
10W-250N	: 29:	:	:	0:	:	:	:	:	0
10W-250N	: 9:	: :	:	:	:	:	:	:	

GCI NO. RF192
PROJECT NO. 1320
ANALYST GM BG
SOILS NTS NO. LOCATION COLLECTOR 52 J/2 THUNDER BAY STORAGE BOX DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92 NUMBER OF SAMPLES 957 DATE COMPLETED 09/24/92 REMARKS REG FELIX # / LOCATION : CU : ZN : Undef: Undef

# / LOCATION	PPM	ZN PPM	under:	Under:	under:	Under:	under	Under	Under
10W-275N	19	80	0:	0:	0:	0:	0	0:	0
10W-300N	17:	26	0:	0:	0:	0:	0:	0:	0
10W-300N	32	28	0:	0:	0:	0:	0:	0:	0
10W-325N	: 11:	26	0:	0:	0:	0	0	0:	0
10W-325N	. 7	12	0:	0:	0:	0:	0	0:	0
10W-350N	9	66	0:	0:	0:	0:	0	0:	0
10W-350N	: 5:	10	0:	0:	0:	0:	0	0:	0
10W-375N	: 21	54	0:	0:	0:	0:	0:	0:	0
10W-400N	: 8	60	0:	0:	0:	0:	0	0:	0
RL10W-25S	26	34	0:	0:	0:	0:	0	0	0
RL10W-50S	21	50	0:	0:	0:	0:	0	0	0
RL10W-75S	: 62	48	0:	0:	0:	0:	0	0:	0
RL10W-100S	: : 60	44	0:	0:	0:	0:	0	0	0
RL10W-175S	: 18	48	0:	0:	0	0:	0	0:	0
RL10W-200S	: 6	18	0:	0:	0:	0:	0	0	0
RL10W-225S	: : 26	20	0:	0:	0:	0:	0	0	0
RL10W-250S	20	20	0:	0:	0:	0	0	0:	0
RL10W-275S	3				0				
RL10W-300S	; ; 7	12		0:	0				
10W-25S	21	60	0	0	0	0	0	0	0
10W-50S	38	54	0	0:	0	0	0	0	0
10W-75S	: 19	: 40	0:	0:	0:	0:	0	0	0

GCI NO. PROJECT NO. ANALYST MATERIAL	RF192 1320 GM BG SOILS	NTS NO. LOCATION COLLECTOR	52 J/2 THUNDER BAY
NUMBER OF SAMPLES DATE COMPLETED REMARKS	- ·	STORAGE BOX DATE RECEIVED DATE ENTERED	09/16/92 09/24/92

	KEG 1	LETTY							
* *		ZN :	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
10W-100S	38	68:	0:	0:	0:	0:	0:	0:	0
10W-125S	12	38:	0:	0:	: 0:	: 0:	: 0:	: 0:	0
10W-150S	12:	58:	0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
10W-175S	13	74:	0:	: 0:	0:	: 0:	: 0:	:	0
10W-200S	4	16:	: 0:	0:	0:	: 0:	:	0:	0
10W-225S	12:	: 42:	: 0:	0:	: 0:	: 0:	0:	0:	0
10W-250S	6:	: 14:	: 0:	: 0:	: 0:	0:	0:	0:	0
10W-275S	7:	: 16:	: 0:	: 0:	: 0:	0:	0:	0:	
10W-300S	5:	: 12:	0:	: 0:	0:	: 0:	0:	0:	0
10W-325S :	: 3:	: 12:	: 0:	: 0:	0:	0:	0:	0:	0
10W-350S	: 6:	: 26:	0:	: 0:	0:	0:	0:	0:	0
10W-375S :	: 11:	22:	: 0:	0:	0:	0:	0:	:	0
10W-400S	2:	: 6:	0:	0:	0:	0:	:	0:	
10W-425S :	: 2:	12:	0:	0:	0:	0:	0: :	0:	0
10W-450S :	9:	20:	0:	0:	0:	:	0:	0:	0
10W-475S :	6:	26:	0:	0:	:	0:	0:	0:	0
: 10W-500s	8:	28:	0:	:	0:	0:	0:	0:	0
: 12E-00N	15:	70:	:	0: :	0:	0:	0:	0: :	0
: 12E-25N :	6:	32:	0:	0:	0:	0: :	0: :	0: :	0
: 12E-50N :	:	:	0:	0:	0:	0:	0: :	0: :	0
12E-30N :	24:	64:	0:	0:	0:	0:	0: :	o: :	0
:	12:	14:	0:	0:	0: :	0 :	0:	0: :	0
12E-150N :	8: 	20: 	0:	0: 	0:	0:	0:	0:	0

52 J/2

THUNDER BAY

NORANDA EXPLORATION CO. LTD. PAGE 31 P.O. BOX 30 BATHURST, N. B. E2A 3Z1

GCI NO. GCI NO. PROJECT NO. ANALYST RF192 1320

GM BG

NTS NO. LOCATION

COLLECTOR

ANALYST MATERIAL NUMBER OF SAMPL DATE COMPLETED REMARKS	GM BG SOILS ES 957 09/24 REG F	s 1/92		2 2 					
# / LOCATION	: CU :	ZN :	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
12E-175N	4:	22:	0:	0:	0:	0:	0:	0:	0
12E-200N	43	662:	0:	0:	0:	0:	0:	0	0
12E-225N	10	32:	0:	0:	0:	0:		0:	0
12E-250N	10	30:	0:	0:	0:	0:	0:	0:	0
12E-275N	5	26:	0:	0:	0:	0:	0:	0:	0
12E-300N	2:	10:	0:	0:	0:	0:		0:	0
12E-325N	: 7:	12:	0:	0:	0:	0:		0:	0
12E-350N	: 11:	22:	0:	0:	0:	0:		0:	0
12E-375N	5:	24:	0:	0:	0:	0:		0:	0
12E-400N	5:	12:	0:	0:	0:	0:		0:	0
12E-425N	5:	16:	0:	0:	0:	0:		0:	0
12E-450N	: 11:	48:	0:	0:	o: :	0:		0:	0
12E-25S	48:	162:	0:	0:	o: :	0:	0:	0:	0
12E-50S	: 8:	38:	0:	0:	0:	0:	0:	0:	0
12E-75S	: 8:	20:	0:	0:	0:	0:	0:	0:	0
12E-100S	: 6:	42:	0:	0:	0:	0:	0:	0:	0
12E-125S	: 19:	54: : :	0:	0:	0:	0:	0:	0:	0
12E-150S	: 6:	24:	0:	0:	0:	0:	0:	0: :	0
12E-175S	: 9:	20:	0:	0:	0:	0:	0:	0:	0
12E-200S	: 6:	:	0:	0:	0: :	0:	0:	0: :	0
12E-225S	: 12:	: :	0:	0: :	0: :	:	:	0:	0
12E-250S	: 45:	66:	0:	0:	0:	0:	0:	0:	0

GCI NO. RF192
PROJECT NO. 1320
ANALYST GM BG
MATERIAL SOILS
NUMBER OF SAMPLES 957
DATE COMPLETED 09/24/92
REMARKS REG FELIX NTS NO. 52 J/2
LOCATION THUNDER BAY
COLLECTOR STORAGE BOX DATE RECEIVED 09/16/92
DATE ENTERED 09/24/92

# / LOCATION		ZN PPM	Undef:	Undef:	Undef:		Undef	Undef	Undef
12E-275S	16:	32		0:	0:	0	0:	0:	0
12E-300S	21	24		0:	0	0			0
RL12W-00N	21:	24		0:					0
RL12W-25N	24:	76:	0:	0:	0:		0:		0
RL12W-50N	24	50:	0:	0:	0:	0:	0:	_	0
RL12W-75N	17:	40:	0:	0:	0:	0	0:	0:	0
RL12W-100N	: 16:	90:	0:	: 0:	0:	0	0:	0:	0
RL12W-125N	: 8:	24:	0:	: 0:	0:	0:	0:	0:	0
RL12W-150N	: 9:	18:	0:	: 0:	0:	0:	0:	0:	0
RL12W-175N	: 29:	46	0:	: 0:	0:	0:	0:	0:	0
RL12W-200N	: 13:	172:	0:	: 0:	0:	0:	0:	0:	0
RL12W-25S	: 14:	50:	0:	: 0:	0:	0	0:	: 0:	0
KDIEW 200	: :		:	:	:			:	· ·
RL12W-50S	: 39:	68:	0:	0:	0:	0:	0:	0:	0
RL12W-75S	: 3:	8:	0:	: 0:	0:	0	0:	0:	0
KL12W-755	: :		:	:	:				0
RL12W-100S	: 11:	40:	0:	0:	0:	0	0:	0:	0
	:	:	:	:	:	:	:	:	
RL12W-125S	: 8:	22:	0:	0:	0:	0:	0:	0:	0
DT 10W_150C	: 8:	30:	0:	: 0:	0:		:	:	0
RL12W-150S		30		0;	•	0:	0:	0:	0
RL12W-175S	11:	42	0:	0:	0:	0	0:	0:	0
	:	:	:	:	:	:	:	:	
RL12W-200S	: 13:	44	0:	0:	0:	0:	0:	0:	0
RL12W-225S	: 19:	32	0:	0:	0:	0	0:	: 0:	0
VIITSM_552	. 198	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	:	:	:		:	:	J
RL12W-250S	30	54	0:	0:	0:	0	0:	0:	0
	:	:	:	:	:		:	:	
RL12W-275S	: 4:	: 8:	0:	0:	0:	0:	0:	0:	0

52 J/2 THUNDER

THUNDER BAY

NORANDA EXPLORATION CO. LTD. P.O. BOX 30 BATHURST, N. B. E2A 3Z1

NTS NO. LOCATION

COLLECTOR

RF192

1320

GM BG

GCI NO.

PROJECT NO. ANALYST

SOILS STORAGE BOX MATERIAL NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92 DATE ENTERED DATE COMPLETED 09/24/92 09/24/92 REMARKS REG FELIX # / LOCATION : CU : ZN : Undef: Undef: Undef: Undef: Undef: Undef: Undef : PPM : PPM : : : : : : RL12W-300S 0: : 0: RL15W-00N : 0: 0: RL15W-25N : 0: : 0: RL15W-50N 0: 0 : 0: : 0: 0: : 0: : 0: : 0: 0: 0: : 0: : 0: n : 0: 11: 56: 0: 0: : : : : : : : 0: 0: 0: 0: RL15W-350N : : : : 31: 18: 0: 0: 0: 0: RL15W-375N : 0: 0: : : : : : : 0: 59: 70: 0: 0: 0: 0: 0: 18W-00N : 0: : 0: : 0: : 0: 18W-25N : : : : : : : 6: 14: 0: 0: : : : o: : 0: 0: 0: 0 6: : 18W-50N : : 7: 10: 0: 0: 0: 0: 0: 178: 22: 0: 0: 0: 0: 0: 0: 18W-75N 18W-100N : 0:

52 J/2 NTS NO. LOCATION GCI NO. RF192 PROJECT NO. THUNDER BAY 1320 COLLECTOR ANALYST GM BG STORAGE BOX MATERIAL SOILS NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92 DATE COMPLETED 09/24/92 REMARKS REG FELIX DATE ENTERED 09/24/92

# / LOCATION	CU PPM	ZN PPM	Undef:	Undef:	Undef	Undef	Undef	Undef	Undef
18W-125N	23	24	0:	0:	0:	0:	0:	0:	0
18W-150N	17	48	0:	0:	0:	0	0:	0:	0
18W-175N	4	10:	0:	0:	0:	0:	0:	0:	0
18W-200N	4	16:	0:	: 0:	0:	0:	0:	0:	0
18W-25S	33:	34	0:	0:	0:	0:	0:	0:	0
18W-50S	32	18:	: 0:	0:	0:	0:	0:	0:	0
18W-75S	67	:	:	0:	0:	0:	•	0:	0
10#-755		, , ,	:	:	:	:	:	:	U
18W-100S	48	36:	0:	0:	0:	0:	0:	0:	0
18W-125S	32	26	0:	0:	0:	0:	0:	0:	0
18W-150S	11	12:	0:	0:	0:	0:	0:	0:	0
18W-175S	53	26	: 0:	: 0:	0:	0:	0:	0:	0
10M-1/22	. 55	20:	:	:	:	:	:	:	U
18W-200S	10:	20:	0:	0:	0:	0:	0:	0:	0
18W-225S	13	26	0:	: 0:	: 0:	0:	: 0:	0:	0
10W-2235		20.	:	:	:	:	:	:	U
18W-250S	: 101:	58:	0:	0:	0:	0:	0:	0:	0
100 0750	76		:	:	:	:	:	:	•
18W-275S	76:	72:	0:	0:	0:	0:	0:	0:	0
18W-300S	2	16:	0:	0:	0:	0:	0:	0:	0
;	:	: :	:	:	:	:	:	:	
20W-00N	4:	12:	0:	0:	0:	0:	0:	0:	0
20W-25N	6	18	0:	0:	0:	0:	0:	0:	0
	:	:	:	:	:	:	:	:	
20W-50N	: 8:	22:	0:	0:	0:	0:	0:	0:	0
20W-75N	5:	14:	0:	: 0:	: 0:	: 0:	: 0:	0:	0
20H / JN	•		:	:	:	:	:	:	3
20W-100N	: 16:	22:	0:	0:	0:	0:	0:	0:	0
20W-125N	: 7	14:	0:	0:	0:	0:	0:	: 0:	0

GCI NO. NTS NO. RF192 52 J/2 LOCATION COLLECTOR PROJECT NO. THUNDER BAY 1320 ANALYST GM BG SOILS MATERIAL STORAGE BOX DATE RECEIVED 09/16/92 NUMBER OF SAMPLES 957 DATE COMPLETED 09/24/92 09/24/92 DATE ENTERED REG FELIX REMARKS

# / LOCATION	CU :	ZN :	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
20W-150N	6	16:	0:	0:	0:	0	0:	0:	0
20W-175N	7	12:	0:	0:	0:	0	0	0:	0
20W-200N	4:	12:	0:	0:	0:	0	0:	0:	0
20W-225N	3:	8:	0:	0:	0:	0	0:	0:	0
20W-250N	5:	26:	0:	0:	0:	0	0:	0:	0
20W-275N	3:	18:	0:	0:	0:	0	0:	0:	0
20W-300N	1:	4:	0:	0:	o:	0:	o:	0:	0
20W-325N	23:	28:	: 0:	0:	: 0:	0:	: 0:	0:	0
20W-350N	4 :	20:	0:	0:	o:	0:	0:	0:	0
20W-375N	5:	20:	: 0:	: 0:	: 0:	0:	: 0:	0:	0
20W-400N	27:	38:	: 0:	0:	: 0:	0:	: 0:	0:	0
20W-425N	42:	34:	: 0:	: 0:	: 0:	0:	0:	0:	0
20W-450N	20:	34:	: 0:	: 0:	: 0:	0:	: 0:	0:	0
20W-475N	11:	44:	: 0:	: 0:	: 0:	0:	: 0:	0:	0
20W-500N	6:	18:	: 0:	: 0:	: 0:	0:	: 0:	: 0:	0
22E-00N	22:	44:	0:	0:	0:	0:	0:	0:	0
22E-25N	27:	90:	: 0:	: 0:	: 0:	0:	: 0:	0:	0
22E-50N	22:	46:	: 0:	: 0:	: 0:	0:	: 0:	: 0:	0
22E-75N	6:	:	:	: 0:	: 0:	0:	:	0:	0
22E-100N	6:	:	:	: 0:	: 0:	0:	:	: 0:	0
22E-125N	7	:	:	0:	0:	0:	:	0:	0
22E-150N	11	:	:	:	0:	:	:	0:	0

GCI NO. RF192 NTS NO. 52 J/2
PROJECT NO. 1320 LOCATION THUNDER BAY
ANALYST GM BG COLLECTOR
MATERIAL SOILS STORAGE BOX
NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92
DATE COMPLETED 09/24/92 DATE ENTERED 09/24/92
REMARKS REG FELIX

REMARKS		ETTY							
# / LOCATION		ZN : PPM :	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
22E-175N	9	34:	0:	0:	0:	0:	0:	0:	0
22E-200N	8	48:	0:	0:	0	0:	0:	0:	0
22E-225N	5:	36:	0:	0:	0:	0:	0:	0:	0
22E-250N	31:	26:	0:	0:	0:	0:	0:	o:	0
22E-275N	28:	50:	0:	0:	0:	0:	0:	: 0:	0
22E-300N	3:	12:	0:	0:	0:	0:	0:	0:	0
22E-325N	4:	10:	0:	0:	0:	o:	0:	0:	0
22E-25S	16:	38:	0:	0:	0:	o:	0:	0:	0
22E-50S	17:	26:	0:	0:	0:	o:	0:	0:	0
22E-75S	18:	20:	0:	0:	0:	0:	: 0:	0:	0
22E-100S	12:	: 26:	: 0:	0:	: 0:	0:	: 0:	0:	0
22E-125S	10:	24:	0:	0:	0:	: 0:	0:	0:	0
22E-150S	6:	: 16:	0:	0:	: 0:	: 0:	0:	0:	0
22E-175S	8:	26:	0:	0:	: 0:	: 0:	0:	0:	0
22E-200S	17:	28:	0:	0:	0:	0:	0:	: 0:	0
22E-225S	13:	28:	0:	: 0:	0:	: 0:	0:	: 0:	0
22E-250S	5:	16:	0:	0:	: 0:	: 0:	0:	: 0:	0
22E-275S	15:	: 26:	0:	0:	: 0:	0:	: 0:	: 0:	0
22E-300S	17:	70:	0:	0:	: 0:	0:	: 0:	: 0:	0
32E-00N	29:	262:	0:	0:	0:	: 0:	: 0:	: 0:	0
32E-25N	34:	264:	0:	0:	: 0:	: 0:	0:	: 0:	0
32E-50N :	9:	54:	0: 	o:	0:	0:	0:	: 0:	0

52 J/2 NTS NO. LOCATION COLLECTOR GCI NO. PROJECT NO. RF192 1320 THUNDER BAY ANALYST ANALYST GM BG
MATERIAL SOILS
NUMBER OF SAMPLES 957
DATE COMPLETED STORAGE BOX 09/16/92 09/24/92 DATE RECEIVED DATE ENTERED DATE COMPLETED 09/24/92
REMARKS REG FELIX

# / LOCATION	: CU :		Undef:	Undef:	Undef:	Undef	Undef	Undef	Undef
32E-75N	8	66	0:	0:	0:	0	0	0:	0
32E-100N	4	22	0:	0:	0:	0	0	0	0
32E-125N	3	14		0:	0:	0	0	0	0
32E-150N	5	10	0:	0:	0:	0	0	0:	0
32E-175N	: 4:	18		0	0:	0	0	0	0
32E-200N	24	72	0:	0:	0:	0	0	0	0
32E-225N	6	20		0:	0:	0	0:	0:	0
32E-250N	38	20:	0:	0:	0:	0	0:	0:	0
32E-275N	: 15	34	0:	o:	0:	0	0:	0:	0
32E-300N	: 21	178	0:	0:	: 0:	0:	0:	0:	0
32E-325N	: 25	102	0:	: 0:	0:	0:	0	0:	0
32E-350N	: 10:	34:	0:	: 0:	0:	0:	0:	0:	0
32E-375N	: 6:	20	: : 0:	: 0:	0:	0:	0:	0:	0
32E-400N	: 3:	14:	: : 0:	: 0:	0:	0:	0:	0:	0
32E-425N	: 3	:	:	0:	0:	;		0:	
32E-450N	: 9	;	:	0:	0:			:	
32E-475N	: 8	:	: :	0:	0:	;	: :	:	
	: 4:	•	:	0:	0:		;	: :	
32E-500N	:	:	:	:	:	:	;	: :	
32E-25S	: 2	:	: :	0:	:	:	; ;	:	
32E-50S	: 3	:	: :	0:	:	:	;	: :	
32E-75S	: 3 :	:	: :	0:	:	:	:	: :	
32E-100S	: 28	: 178	: 0:	0:	0:	0:	0:	: 0:	0

NTS NO. 52 J/2 LOCATION THUNDER BAY

NORANDA EXPLORATION CO. LTD. PAGE 38 P.O. BOX 30 BATHURST, N. B. E2A 3Z1

GCI NO. RF192 PROJECT NO. 1320

ANALYST MATERIAL NUMBER OF SAMPLI DATE COMPLETED REMARKS	GM BG SOILS ES 957 09/24 REG I	5 1/92		STOR DATE	ECTOR AGE BOX RECEIV ENTERE	ED	09/16/9 09/24/9		
# / LOCATION		ZN :	Undef:	Undef:	Undef:	Undef	Undef:	Undef:	Undef
32E-125S	2:	10:	0:	0:	: 0:	0:	0:	0:	0
32E-150S	46	126:	0:	0:	0	0:	•	0:	0
32E-175S	2	10:	0:	0:	0:	0:	0:	0:	0
32E-200S	: 4 :	18:	0:	0:	0	0	0:	: 0:	0
32E-225S	7	32:	0:	0:	0:	0:	0:	0:	0
32E-250S	6	18:	0:	0:	0	0	0:	0:	0
32E-275S	19	20:	0:	0:	0:	0	0:	0:	0
32E-300S	22	74:	0:	0	0	0	0:	0:	0
32E-325S	12	70:	0:	0:	0:	0:	0:	0:	0
32E-350S	25	54:	0:	0	0	0	0	0:	0
32E-375S	13:	24:	0:	0:	0:	0:	0:	0:	0
32E-400S	7	18:	0:	0	0	0	0:	0:	0
32E-425S	49	72:	0:	0:	0:	0	0:	0:	0
32E-450S	61	198:	0:	0:	0	0	0:	0:	0
32E-475S	198	120:	0:	0:	0:	0:	0:	0:	0
32E-500S	: : 38:	34:	0:	0:	0	0	0:	0:	0
32E-525S	: 44	134:	0:	0:	0:	0:	0:	0:	0
32E-550S	34	48:	0:	0:	0	0	0:	0:	0
32E-575S	: 6	26:	0:	0:	0:	0	0:	0:	0
32E-600S	: 14: : 14:	92	0:	o: :	0	0	0:	0:	0
32E-625S	49	122:	0:	0:	0:			0:	0
32E-650S	: 3	14:	0:	0:	0:	0:	-	0:	0

NORANDA EXPLORATION CO. LTD. PAGE 39 P.O. BOX 30 BATHURST, N. B. E2A 3Z1

GCI NO.

GCI NO. PROJECT NO. ANALYST MATERIAL NUMBER OF SAMPL DATE COMPLETED REMARKS		/92		STOR	TION ECTOR AGE BOX RECEIV	'ED	52 J/2 THUNDER 09/16/9 09/24/9	2	
# / LOCATION	: CU :	ZN : PPM :	Undef:	Undef:	Undef:		Undef:	Undef:	Undef
32E-675S	20	34:	0	0:	0	0	0:	0:	0
32E-700S	6	24:	0	0:	0		0	0	0
32E-725S	46	50	0	0	0:	0:	0	0:	0
32E-750S	12:	30:	0:	0:	0:		0:	0:	0
32E-775S	14:	66:	0:	0:	0:	0	0:	0:	0
32E-800S	22:	86:	0:	0:	0:		0:	0:	0
32E-825S	30:	58 :	0:	0:	0:		0:	0:	0
32E-850S	8:	12:	0:	: 0:	0:		0:	0:	0
32E-875S	: 5:	10:	0:	: 0:	0:	0:	0:	0:	0
32E-900S	13:	46:	o:	0:	0:		0:	: 0:	0
32E-925S	11:	16:	0:	0:	0:		0:	0:	0
32E-950S	8	: 28:	: 0:	: 0:	0:	0:		0:	0
32E-975S	: 4:	10:	: 0:	0:	0:	0	0:	0:	0
32E-1000S	: 4:	: 16:	0:	0:	0:	0	0:	0:	0
32E-1025S	: 5:	22:	: 0:	: 0:	0:	0:	0:	0:	0
32E-1050S	: 4:	: 16:	0:	: 0:	0:	0	0:	0:	0
32E-1075S	: 15:	52:	0:	0:	0:	0	0:	0:	0
32E-1100S	: 21:	: 58:	: 0:	: 0:	0:	0:	0:	0:	0
1W-00N	: 39:	100:	0:	0:	0:	0:	: 0:	: 0:	0
1W-25N	: 19:	:	0:	0:	0:	:	:	: 0:	0
1W-50N	: 15:	:	0:	: 0:	0:	:	:	: 0:	0
1W-75N	: 12:	:	0:	0:	0	:	:	0:	0

GCI NO. RF192 NTS NO. 52 J/2 PROJECT NO. THUNDER BAY 1320 LOCATION ANALYST GM BG COLLECTOR MATERIAL SOILS STORAGE BOX NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92 DATE COMPLETED 09/24/92
PEMARKS REG FELIX DATE ENTERED 09/24/92

# / LOCATION									
	: CU :	ZN:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
1W-100N	4:	12:	0:	0:	0:	0:	0:	0:	0
1W-125N	9:	14:	0:	0:	0:	0:	0:	. 0:	0
1W-150N	: : : 4:	: 4:	0:	0:	0:	0:	: 0:	: 0:	0
1W-175N	: : 6:	: 16:	0:	: 0:	: 0:	: 0:	0:	: 0:	0
1W-200N	: : : : : : : : : : : : : : : : : : :	: 58:	0:	0:	0:	0:	0:	: 0:	0
1W-225N	: : 4:	: 14:	: 0:	: 0:	0:	0:	: 0:	: 0:	0
1W-25S	: : : 10:	: 18:	0:	0:	: 0:	: 0:	0:	: 0:	0
1W-50S	: 52:	: 158:	0:	0:	: 0:	: 0:	: 0:	: 0:	0
1W-75S	: : 14:	: 108:	: 0:	0:	0:	: 0:	0:	: 0:	0
1W-100S	: 39:	:	: 0:	: 0:	: 0:	: 0:	0:	0:	0
1W-125S	: 22:	:	0:	0:	0:	0:	0:	0:	0
1W-150S	: 3:	:	0:	0:	0:	0:	0:	0:	0
	:	:	:	:	:	:	:	:	
1W-175S	: 41:	28:	0:	0:	0:	0:	0:	0:	0
1W-200S	: 36:	110:	0:	0:	0:	0:	0:	0:	0
1W-225S	: 3:	: 16:	0:	0:	0:	0:	0:	0:	0
	:	:	:	:	:	:	:	:	•
1W-250S	: 2:	14:	0:	0:	0:	0:	0:	0:	0
2W-00N	10	28:	0:	0:	0:	0:	0:	0:	0
	:	:	:	:	:	:	:	:	J
2W-25N	: 40:	60:	0:	0:	0:	0:	0:	0:	0
2W-50N	: 4:	36:	: 0:	:	o:	:	:	:	0
ZW-SUN	: 4:	:	:	0:	:	0:	0:	0:	0
2W-75N	: 11:	26:		0:	0:	0:	0:	0:	0
	:	:	:	:	:	:	:	:	
2W-100N	: 14:	16:	0:	0:	0:	0:	0:	0:	0
2W-125N	3	8:	0:	0:	0:	0:	0:	0:	0

NTS NO. LOCATION 52 J/2 THUNDER BAY GCI NO. RF192 PROJECT NO. 1320 ANALYST GM DC SOILS COLLECTOR STORAGE BOX DATE RECEIVED 09/16/92 NUMBER OF SAMPLES 957 DATE COMPLETED 09/24/92 REMARKS REG FELIX DATE ENTERED 09/24/92 # / LOCATION : CU : ZN : Undef: Undef: Undef: Undef: Undef: Undef: Undef

# / LOCATION	: CU	PPM	under:	under:	under	unaer	Under	under	under
2W-150N	18:	24:	0:	0:	0	0:	0	0:	0
2W-175N	14:	30:	0:	0:	0	0	0	0:	0
2W-200N	: 6:	12:	0:	0:	0	0	0	0:	0
2W-225N	13	38	0:	0	0	0	0	0:	0
2W-250N	10	34	0:	0	0	0	0	0:	0
2W-25S	5	14	0:	0	0	0	0	0:	0
2W-50S	29	16	0	0	0	0	0	0	0
2W-75S	10	26	0	0	0	0:	0	0	0
2W-100S	12	18	0	0	0	0	0	0	0
2W-125S	26	54	0	0	0	0	0	0	0
2W-150S	4	12	0	0	0	0	0	0	0
2W-175S	: 4:	14	0		0	0	0	0	0
2W-200S	9	26			0	0	0	0	0
2W-225S	12	24	0		0	0	0		0
2W-250S	12	16		0:	0		0:	0:	0
3W-00N	5	12				0:			0
3W-25N	40	96	0	0			0	0	0
3W-50N	5	16							_
3W-75N	: 14		0:				0:		
3W-100N	5			0	0	. 0:	: 0:	0	0
3W-125N	16	24	0	0				0	0
3W-150N	: 22	30	0	0	0	0	0	0:	0

52 J/2 NTS NO. LOCATION COLLECTOR GCI NO. PROJECT NO. RF192 THUNDER BAY 1320 ANALYST GM BG SOILS MATERIAL STORAGE BOX DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92 NUMBER OF SAMPLES 957 DATE COMPLETED 09/24/92
REMARKS REG FELIX

# / LOCATION	CU :	ZN :	Undef:	Undef:	Undef:	Undef	Undef:	Undef:	Undef
3W-175N	9	20	0	0	0	0	0	0	0
3W-200N	12	18:	0:	0	0	0	0	0:	0
3W-225N	16:	36:	0:	0:	0:	0	0:	0:	0
3W-250N	15:	22:	: 0:	: 0:	0:	0	0:	0:	0
3W-25S	18:	44:	0:	: 0:	0:	0:	: 0:	: 0:	0
3W-50S	17:	26:	0:	: 0:	0:	0:	0:	: 0:	0
3W-75S	145:	60:	: 0:	: 0:	0:	0:	: 0:	0:	0
3W-100S	32:	:	: 0:	: 0:	0:	0:	: 0:	: 0:	0
*	; ;	: :	:	:	:	:	:	:	
3W-125S	32:	34:	0:	0:	0:	0:	0:	0:	0
3W-150S	45	68:	0:	0:	0:	0:	0:	0:	0
3W-175S	35	48	0:	0:	0	0	0:	0:	0
3W-200S	41	86:	0:	0:	0:	0:	0:	0:	0
3W-250S	3	38:	0:	0:	0:	0	0:	0:	0
3#"2505		: 30.	:	:	:		:	:	J
5W-00N	24:	72:	0:	0:	0:	0:	0:	0:	0
5W-25N	21:	36:	0:	0:	0:	0	0:	0:	0
JN-25N		:	:	:	:		:	:	Ū
5W-50N	36	42:	0:	0:	0:	0:	0:	0:	0
:	:	:	:		;	:	:	:	
5W-75N	22			0:	0:			0:	0
5W-100N	20:	118:		: 0:	: 0:			0:	0
SW-IOON .	20	: 110.	:	:	:	:	:	:	U
5W-125N	12	60		0:	0:	0		0:	0
:	;	: :	:	:	:		:	:	
5W-150N	: 10:	: 56:	0:	0:	0:	0:	0:	0:	0
EM 17EN		. 20.	:	:	0:		:	:	^
5W-175N	3	20:	0:	0:	•	0:	0:	0:	0
5W-200N	6	26	0:	0:	0	0		0:	0

GCI NO. RF192 NTS NO. 52 J/2 NTS NO. LOCATION COLLECTOR GCI NO. PROJECT NO. THUNDER BAY 1320 ANALYST GM BG SOILS STORAGE BOX MATERIAL NUMBER OF SAMPLES 957 DATE RECEIVED 09/16/92 DATE ENTERED 09/24/92 DATE COMPLETED 09/24/92 REG FELIX REMARKS

KEMAKKS	KEG I	EDIA							
. , —		ZN PPM		Undef:	Undef:	Undef:	Undef:	Undef:	Undef
5W-225N	3		_	0:	0:	0:	0:	0:	0
5W-250N	6			0:	0:	0	0	0:	0
5W-25S	22		_	0:	0	0:	0:		0
5 W- 50S	61:	56:		0:	0:	0:	0:	0:	0
5W-75S	23			0:	0:	0:	0:	0:	0
5W-100S	: 17:	20:		0:	0:	0:	0:	-	0
5W-125S	: 25:	42:		0:	0:	0:	0:	o:	0
5W-150S	: 24:		: 0:	0:	: 0:	: 0:	: 0:	-	0
5W-175S	: 119	70:	0:	: 0:	: 0:	: 0:	: 0:	=	0
5W-200S	: 68		0:	: 0:	: 0:	0:	0:	0:	0
5W-225S	: 8:		: 0:	: 0:	0:	: 0:	: 0:		0
5W-225S	: 3:	26:	0:	: 0:	0:	0:	: 0:	: 0:	0
5W-250S	: 2:	20:	0:	: 0:	0:	0:	: 0:		0
7W-00N	: 76		: 0:	: 0:	0:	0:	: 0:	=	0
7W-25N	: 65	48:	: 0:	: 0:	0:	0:	0:	-	0
7W-50N	: 27:	142:	: 0:	: 0:	0:	0:	: 0:	: 0:	0
7W-75N	: 3:	16:	: 0:	: 0:	0:	: 0:	: 0:	: 0:	0
7W-100N	: 18:	48:		: 0:	0:	: 0:	: 0:	: 0:	0
7W-125N	: 46	110:	0:	: 0:	0:	0:	: 0:	0:	0
7W-150N	: 7:	24:	: 0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
7W-175N	: 3	16:	0:	: 0:	: 0:	: 0:	: 0:	: 0:	0
7W-225N	: 7	: :	:	: 0:	0:	: 0:	: 0:	:	0

PAGE 44

NORANDA EXPLORATION CO. LTD. P.O. BOX 30 BATHURST, N. B. E2A 3Z1

GCI NO. PROJECT NO. ANALYST MATERIAL NUMBER OF SAMPLE DATE COMPLETED REMARKS	RF192 1320 GM BG SOILS ES 957 09/24 REG F	; ; ;/92		STOR DATE		ED	52 J/2 THUNDER 09/16/9: 09/24/9:	2	
# / LOCATION		ZN : PPM :	Undef:	Undef:	Undef:	Undef:	Undef:	Undef:	Undef
7W-250N	5	114:	0:	0:	0:	0:	0:	0:	0
7W-25S	7	32:	0	0	0:	0	0:	0	0
7W-50S	24	53 :	0:	0:	0:	0:	0:	0:	0
7W-75S	14:	34:	0:	0:	0:	0:	0:	0:	0
7W-100S	31:	48: :	0:	0:	0: :	0:	0: :	0:	0
7W-125S	3:	30:	0:	0:	0:	0:	0:	0: :	0
7W-150S	21:	:	:	0:	0:	0: :	0: :	0: :	0
7W-175S	10:	44:	0:	0:	0:	0: :	0:	0: :	0
7W-200S	18:	82:	0:	0: :	0:	0: :	0:	0: :	0
7W-225S	: 11:	48:	0:	0:	0:	0:	0:	o: :	0
7W-250S	: 7:	42:	0:	0: :	0: ÷	0: :	0:	0: ÷	0

2G15NW1031 2.15020 SIXMILE LAKE

900

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

Willet Green Miller Centre 933 Ramsey Lake Rd., 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (705) 670-5853 Fax: (705) 670-5863

Our File: 2.15020

Transaction #: W9330.00022

August 4, 1993

Mining Recorder
Ministry of Northern
Development and Mines
Court House Building
P.O. Box 3000
Sioux Lookout, Ontario

Dear Madam:

RE: APPROVAL OF ASSESSMENT WORK ON MINING CLAIMS PA 1195525 ET.AL. IN THE PENASSI AND SIX MILE LAKE AREAS.

The Assessment Credits for GEOLOGY, GEOCHEMISTRY AND GEOPHYSICS sections 12, 13 and 14 of the Mining Act Regulations, as listed on the original submission, have been approved as of AUGUST 3, 1993.

Please indicate this approval on the claim record sheets.

If you have any questions please call Clive Stephenson at (705) 670-5856.

Yours sincerely

Rone. Gashinski

Senior Manager, Mining Lands Section Mining and Land Management Branch

Mines and Minerals Division

CDS/dm

cc: Resident Geologist
Sioux Lookout, Ontario

Assessment Files Library Toronto, Ontario

Report of Work Conducted After Recording Claim Transaction Number UJ 9330. 00022 **After Recording Claim**

Mining Act

hation collected on this form is obtained under the authority of the Mining Act. This information will be used for correspondence. Questions about ction should be directed to the Provincial Manager, Mining Lands, Ministry of Northern Development and Mines, Fourth Floor, 159 Cedar Street, abury, Ontario, P3E 6A5, telephone (705) 670-7264.

Instructions: - Please type or print and submit in duplicate.

- Refer to the Mining Act and Regulations for requirements of filing assessment work or consult the Mining

	- Technic	rate copy of this cal reports and n th, showing the c	naps must ac	company this	form in duplic	ate.	orm.	
					,	, , , , , , , , , , , , , , , , , , , ,		1320
	orded Holder(s) Noranda Exploration	Company, Limit	ed			C	ient No. 176	
Add C/	o 960 Alloy Drive, T	hunder Bay, On	tario P7B 6A	A1		To	lephone (80	^{8 No.} 7) 623-4339
	ng Division atricia			ip/Area nassi & Six Mi	le Lakes	м	or G P	lan No. 526/G-2561
W	tes ork From: rformed	April 23, 1992		***************************************	To:	ombor 21 10		
	rk Performed (Chec				Dec	ember 31, 19	992	
110	Work Group	K OHE WORK GIO	up Only)		Туре			ယ်
x	Geotechnical Survey	Geology, Ge	ophysics, G	eochemistry, L			7	МАҮ
	Physical Work, Including Drilling	(w10)	GEOL	GCHEH	MAG	Š.	0 (C)	_
	Rehabilitation			RECEI	V=D	DIV	CO	A io
	Other Authorized Work			BEASE 4 OF	4060	SIO	RDER	 ພ
	Assays			MAY 1 7	199,		윘	
	Assignment from Reserve		М	INING LAND	S bhariur			
I	al Assessment Work	O 1.2 - 1 - 1	A.A. . I. . I. O.		s \$	46,150		
Not Per		erify expenditures	s claimed in t	the statement of	of costs within	1 30 days of a	ı requ	itted if the recorded est for verification. Report)
H.	Nam ng Felix (Author)	18	0/03	960 Alloy Drive		Address	70.6	
	Sullivan, J.Gingerich	, C. MacDougall		960 Alloy Drive			7B 6	A1 🖙
A.	Smith, M.Stares, S.	Stares	c/o \$	960 Alloy Drive	e, Thunder Ba	ay, Ontario P	78 6/	—————————————————————————————————————
Fo	r contractors See A	ttached List				THE NO	ੂ ਨੂੰ	7
						<u>D</u>		2
(atta	ach a schedule if nece	essary)				DIVIS	A OS	
Cer	tification of Benefic	cial Interest • S	See Note No	. 1 on reverse	side		DER	2
reg	ertify that at the time the woort were recorded in the cu	rrent holder's name o		ed in this work	Apr.28/93	Recorded H		Agent (Signature)
Cer	tification of Work R	leport						RECORDED .
			facts set forth i	n this Work report	, having performe	ed the work or w	inesse	d same during and/or after MAY ~ (1993
	ne and Address of Person (under Beit C)			Rec	eipt K
	cilia M. Barrett, 960 pone No.	Date Date	under Bay, C	C	ertified By (Signat	ure)	127	COLD TO SECURITY OF THE PROPERTY OF THE PROPER
(8	07) 623-4339	Apr.	28/93		13	ane		
For	Office Use Only				<u> </u>	רס דד	/111	L BULLER.
	4.1	Date Recorded 93 MA Deemed Approval Dat 93 AU		Mining Recorder Dale Approved 93 A	JUG 07		Stamp\ 31/43 31/43 31/43	Alle de la constante de la con

Date Notice for Amendments Sent

W 9330, 00022 2 · 15020 Page 1

1,195,525 1,195,526 1,195,527 1,195,554 1,195,575 1,195,575	15 16 12 12 12	12,650.0 5,600.0 450.0 4,850.0 4,900.0	6,000.00 6,400.00 0 4,800.00	6,650.00 0.00 0.00	
1,195,527 1,195,554 1,195,574 1,195,575	16 12 12 15	450.0 4,850.0 4,900.0	6,400.00 0 4,800.00		
1,195,554 1,195,574 1,195,575	12 12 15	4,850.0 4,900.0	4,800.00	0.00	
1,195,574 1,195,575	12 15	4,900.0		l 1	
1,195,575	15		00 4 800 00	0.00	50.00
			-,000.00	0.00	100.00
1,195,577		4,100.0	6,000.00		
	16	1,200.0	00	1,200.00	
1,195,578	15	600.0	00	600.00	
, 195, 579	16	500.0	00	500.00	
1,195,580	15	800.0	6,000.00		
, 195, 581	16	500.0	00	500.00	
, 195 , 582	3	200.0	00	200.00	
, 195, 584	15	8,000.0	00	8,000.00	
, 195 , 585	15	900.0	6,000.00		
,195,802	3	900.0	00	900.00	
					င္မ
					3/88/1
					53
		DECI	EVER		
		HEW			
		MAY	1 7 1993		
				2	93
		MINING LA	NDS BHANGH	S Z	MA .
				2 7	
15		46,150.0	46,000.00	£ 550.00	150.00
Number	U.	Total Value Work		Total Assigned	≱ stal Reserve
	,195,580 ,195,581 ,195,582 ,195,585 ,195,802 15 Number Claims ming in 1	15 Number Claims 195,580 15 1,195,581 16 1,195,582 3 1,195,585 15 1,195,802 3	195,580 15	195,580 15	195,580 15

LIST OF CONTRACTORS

Vytyl Exploration Services
Northwest Geophysics
Stares Contracting Ltd.
Bayshore Geology Inc.
Accurassay Labs
T.S.L. Labs
Vancouver Petrographics

Thunder Bay, Ontario Mississauga, Ontario Fort Langley, B.C.

2 15020

STATEMENT OF COSTS

CONTRACTOR'S AND CONSULTANT'S FEES

	/
Linecutting	9,975
Ground Geophysics	2,750
Soil Sampling	2,500
Petrographic Descriptions	1,030 🗸
Computer Plotting	370 /
Geochem Analyses	6,800
Total	23,425

April 28, 1993

RECEIVED

MAY 1 7 1993

MINING LANDS BRANCH

7,517,50 DER 547 100 NOVISION 1

93 MAY 7 AIO: 2 I

Ministry of Northern Development and Mines

eloppement du Nord es mines

Statement of Costs for Assessment Credit

État des coûts aux fins du crédit d'évaluation

Mining Act/Loi sur les mines

Transaction No./N° de transaction 9330.0002Z

Personal Information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claim(s). Questions about this collection should be directed to the Provincial Manager, Minings Lands, Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, telephone (705) 670-7264.

Les renseignements personnels contenus dans la présente formule sont recueillis en vertu de la Lol sur les mines et serviront à tenir à jour un registre des concessions minières. Adresser toute quesiton sur la collece de ces renseignements au chef provincial des terrains miniers, ministère du Développement du Nord et des Mines, 159, rue Cedar, 4⁶ étage, Sudbury (Ontario) P3E 6A5, téléphone (705) 670-7264.

1. Direct Costs/Coûts directs

Туре	Description	Amount Montant	Totals Total global
Wages Salaires	Labour Main-d'oeuvre	6,500	
	Field Supervision Supervision sur le terrain	10,500	17,000
Contractor's and Consultant's	SEE ATTACHED		
Fees Droits de l'entrepreneur	LIST		
et de l'expert- conseil			23,425
Supplies Used Fournitures	Type Flagging, markers,		
utilisées	Field Books, Sample Be	ogs	
	& Boxes, Hammers, M	aps &	
	Publications	925	925
Equipment Rental Location de	Type Truck	600	
matériel	Quadrunner	220	
	Bost & Motor	180	1,000
	Total Dir Total des coû	rect Costs	42,350

Note: The recorded holder will be required to verify expenditures claimed in this statement of costs within 30 days of a request for verification. If verification is not made, the Minister may reject for assessment work all or part of the assessment work submitted.

2. Indirect Costs/Coûts indirects

Note: When claiming Rehabilitation work Indirect costs are not allowable as assessment work. Pour le remboursement des travaux de réhabilitation, les coûts indirects ne sont pas admissibles en tant que travaux

Description	Amount Montant	Totals Total global
Type Ground Transport	900	
Fixed Wing Aircraft	200	
Freight	290	
Repairs	310	
		1,700
Food & Lodging	2,100	2,100
		3,800
		8,470
Allowable d'évaluat	ion w	46,150
	Fixed Wing Aircraft Freight Repairs Food & Lodging Sub Total of Inc Total partiel des cou (not greater than 20% of De (n'excédant pas 20 % des	Description Montant Type Ground Transport 900 Fixed Wing Aircraft 200 Freight 290 Repairs 310 Food & Lodging 2,100 Sub Total of Indirect Costs Total partiel des coûts Indirects (not greater than 20% of Direct Costs) (n'excédant pas 20 % des coûts directs) essment Credit Valeur totale of Frédit

Note : Le titulaire enregistré sera tenu de vérifier les dépenses demandées dans le présent état des coûts dans les 30 Jours suivant une demande à cet effet. Si la vérification n'est pas effectuée, le pumistre peut rejeter tout ou une partie des travaux devaussion présentés.

Filing Discounts

- Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.
- 2. Work filed three, four or five years after completion is claimed at 50% of the above Total Value of Assessment Credit. See calculations below:

Total Value of Assessment Credit Total Assessment Claimed \times 0.50 =

Certification Verifying Statement of Costs

I hereby certify:

to make this certification

that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.

Lands Administrator (Recorded Holder, Agent, Position in Company)

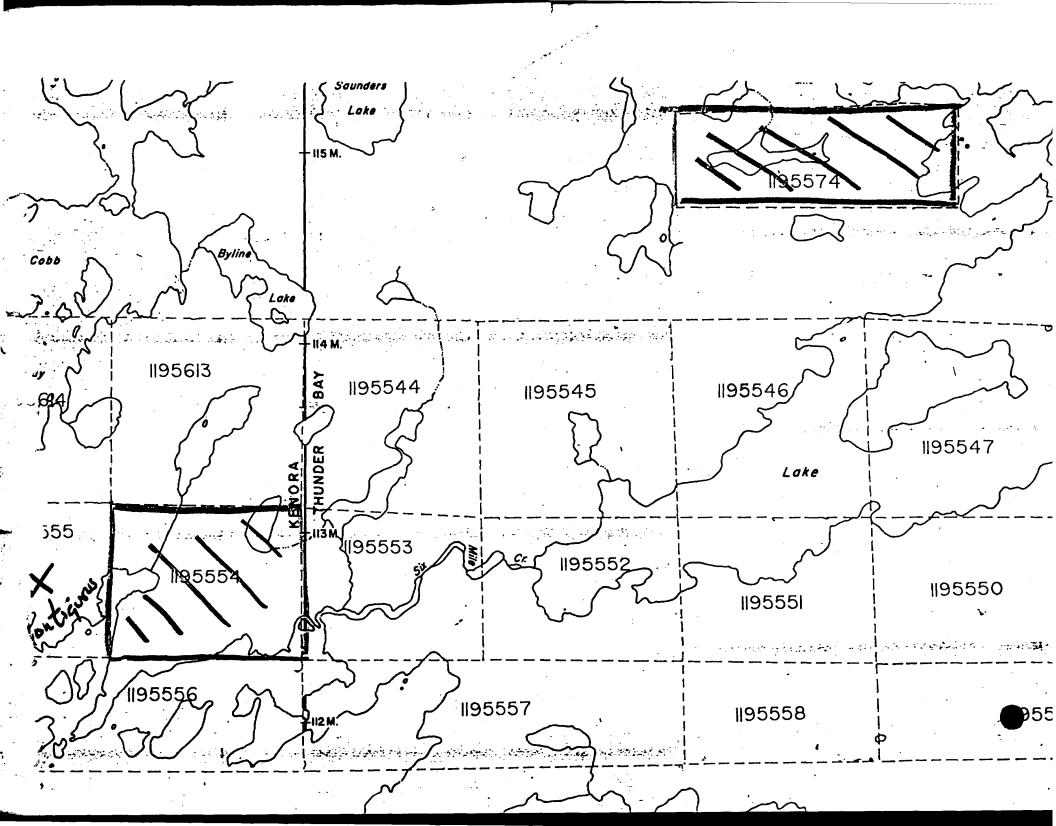
I am authorized

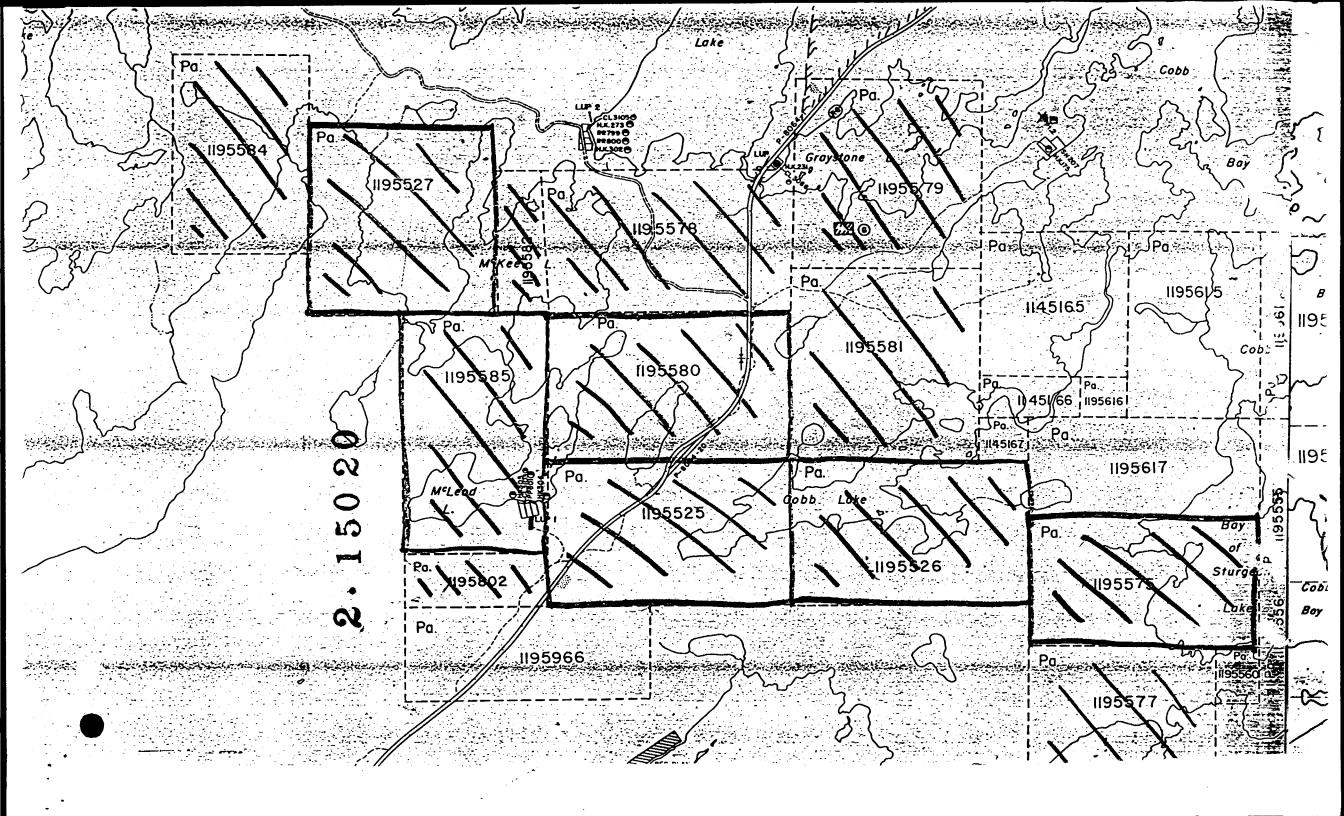
Remises pour dépôt

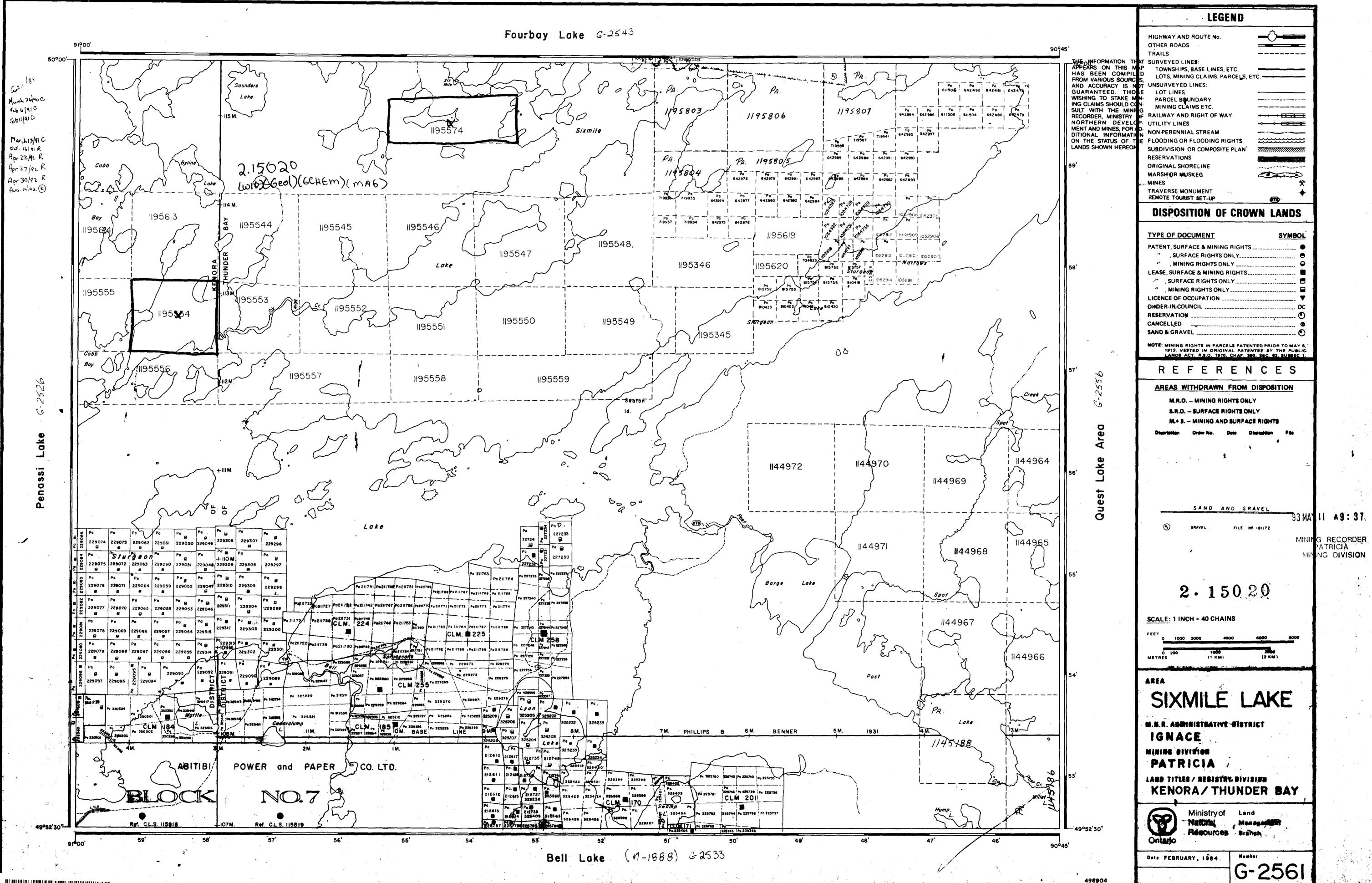
- 1. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à 100 % de la valeur totale susmentionnée du crédit d'évaluation
- 2. Les travaux déposés trois, quatre ou cinq ans après leur achèvement sont remboursés à 50 % de la valeur totale du crédit d'évaluation susmentionné. Voir les calculs ci-dessous.

Valeur totale du crédit d'évaluation	Evaluation totale demandée
×	0,50 =

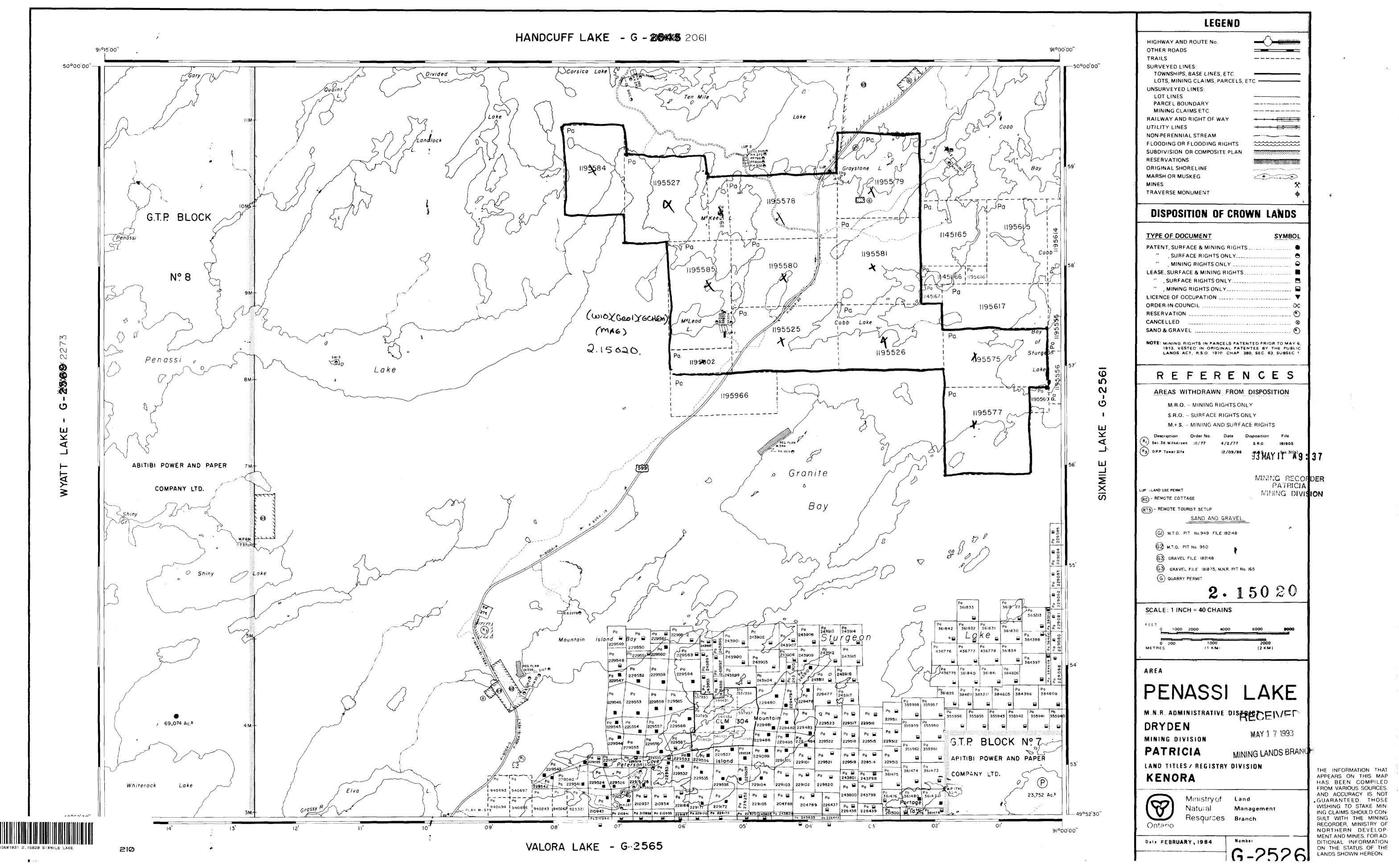
Attestation de l'état des coûts

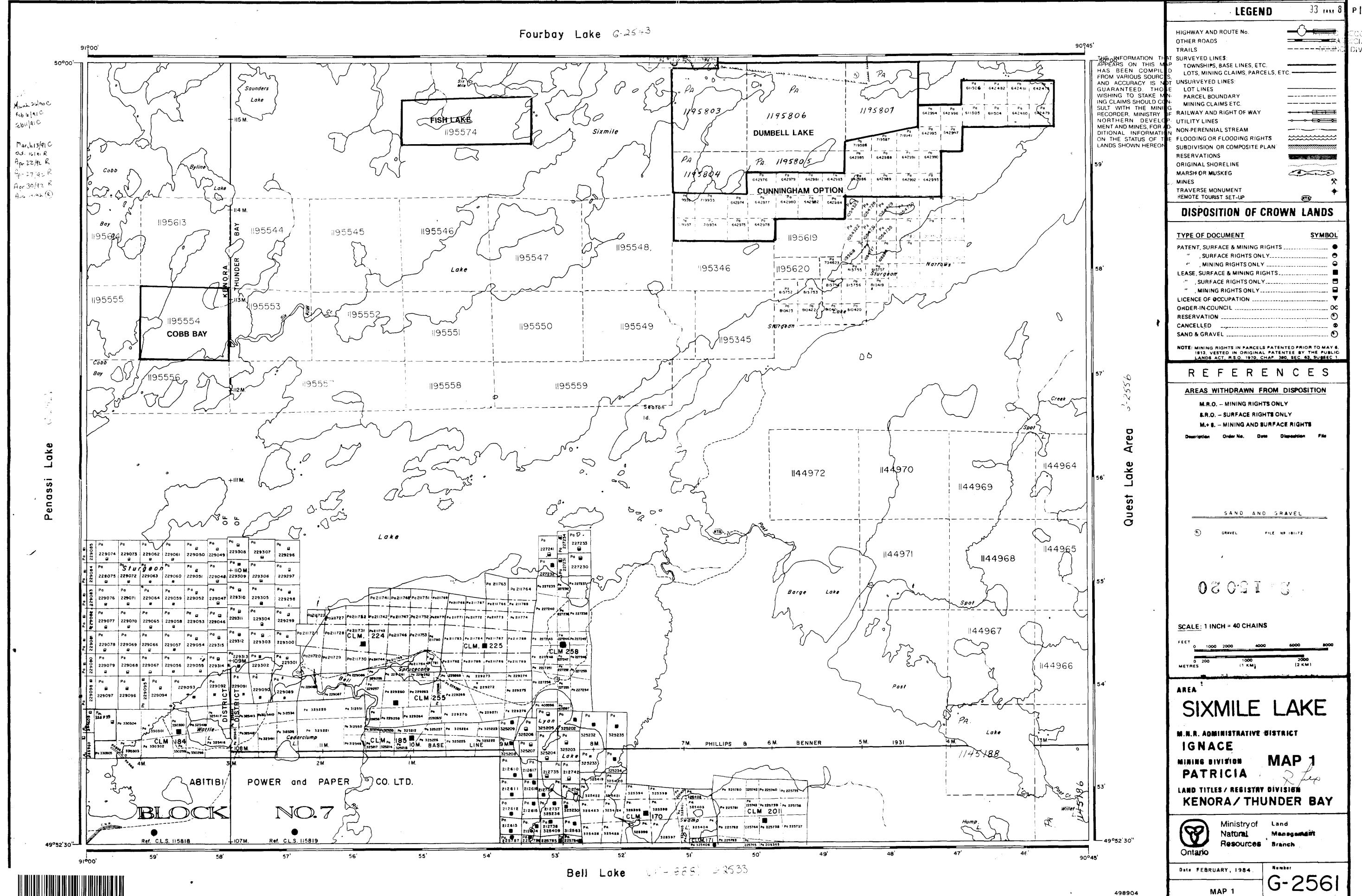

J'atteste par la présente : que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'évaluation sur les terrains indiqués dans la formule de rapport de travail ci-joint.

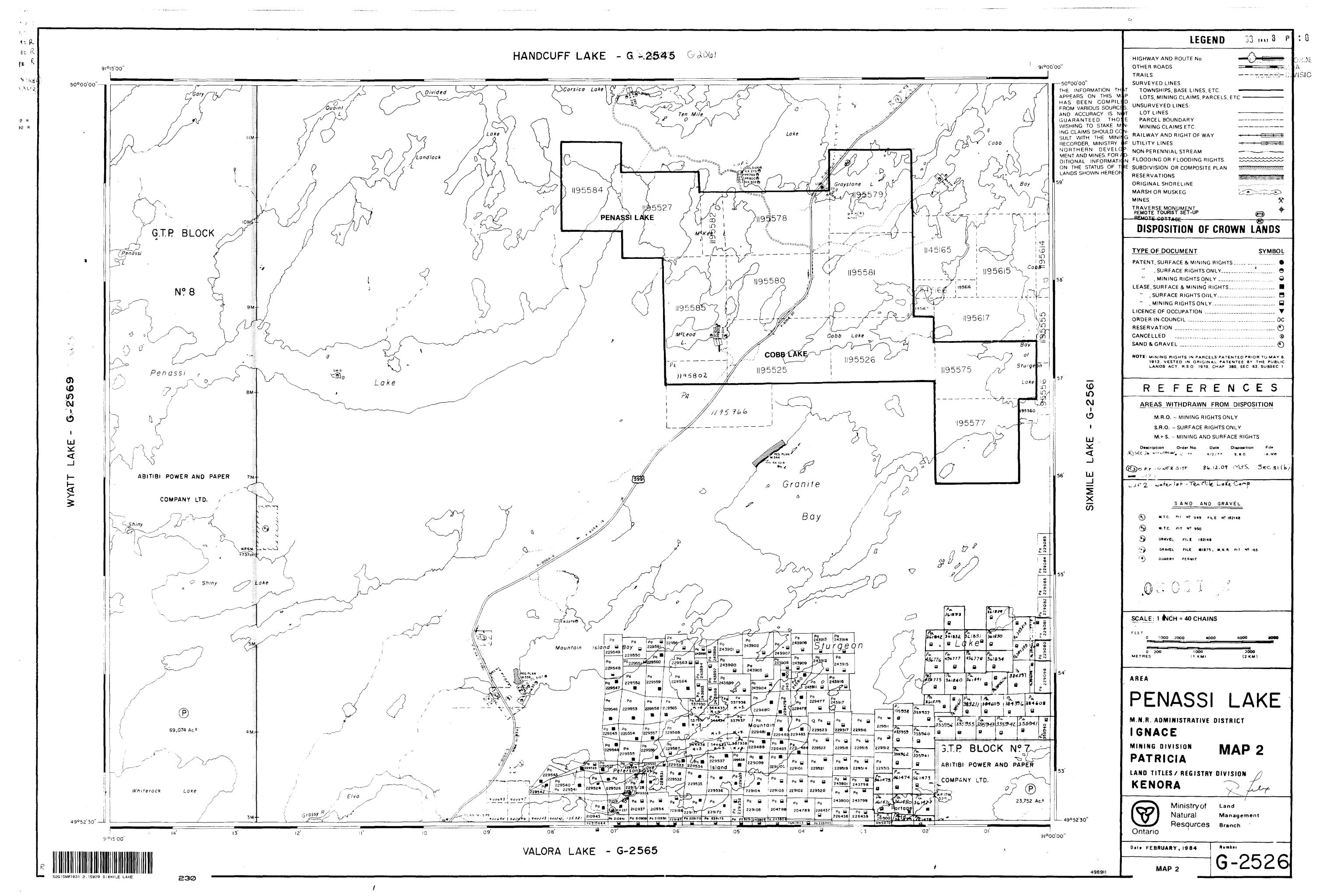

Et au	'à titre de			 je suis aut	orisé
	(titulaire enregistré,	représentant,	poste occupé		

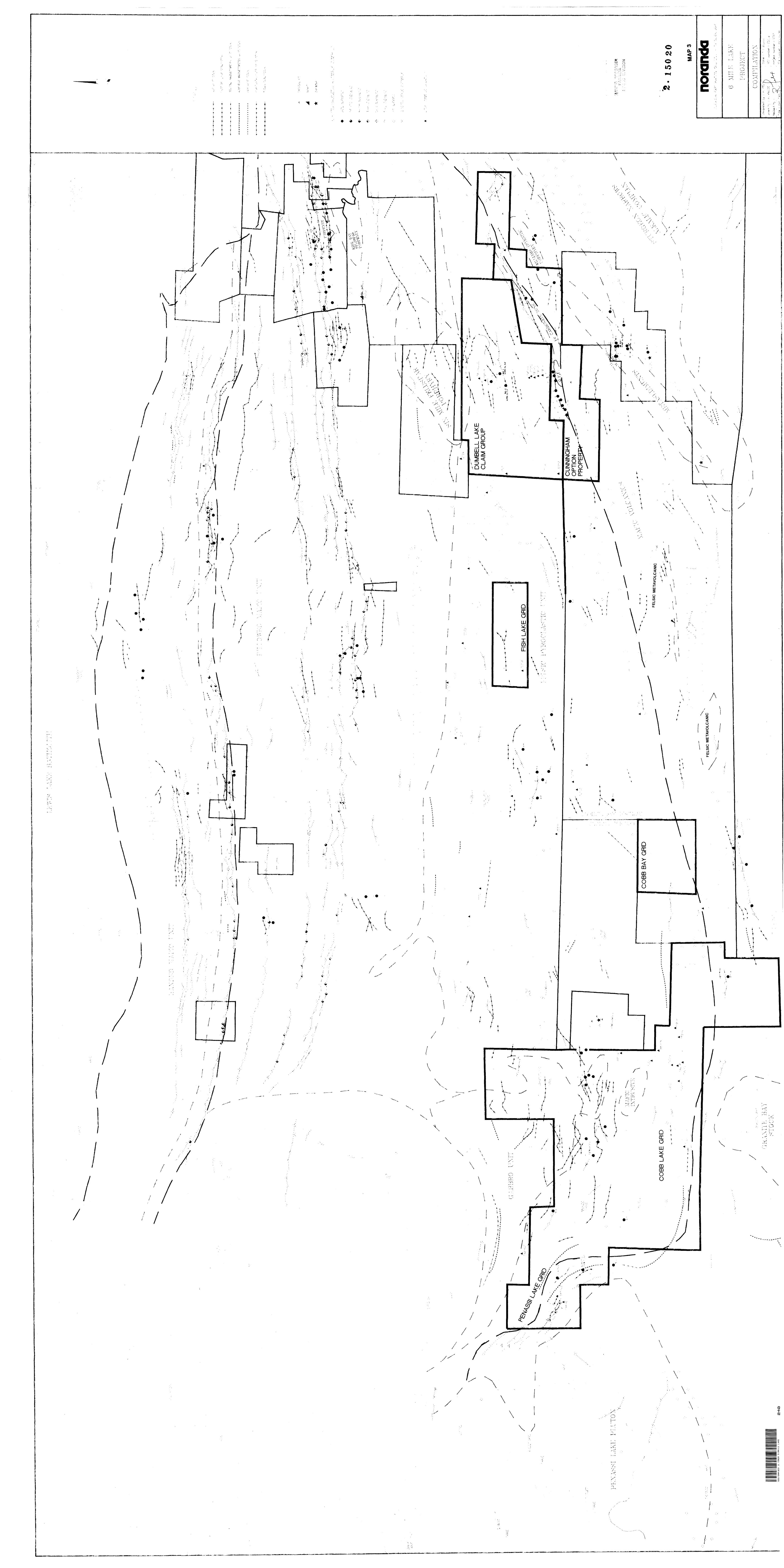

à faire cette attestation.

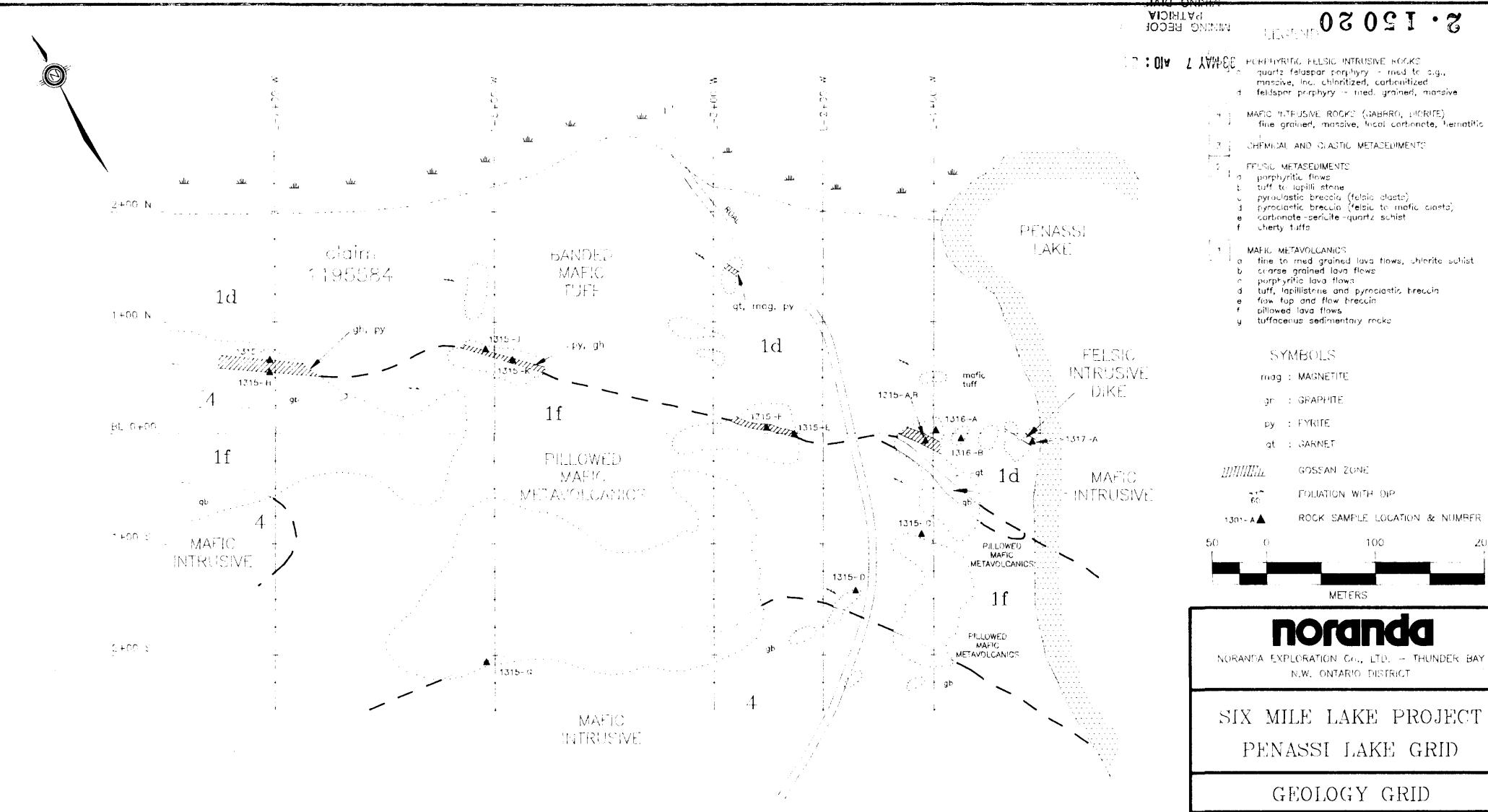
Signature	Date
60 -11	
1 Sant	Apr.28/93


Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.



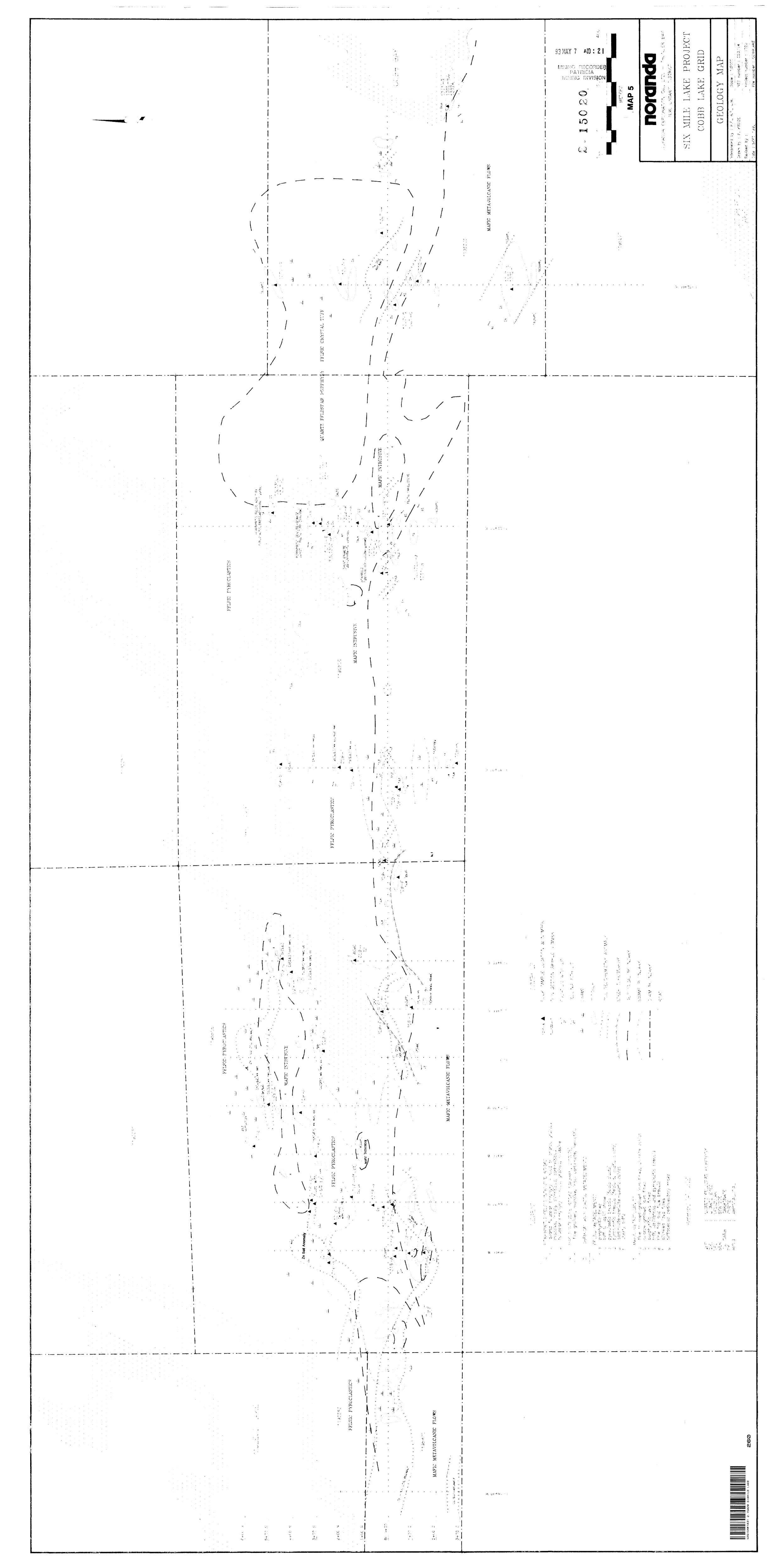


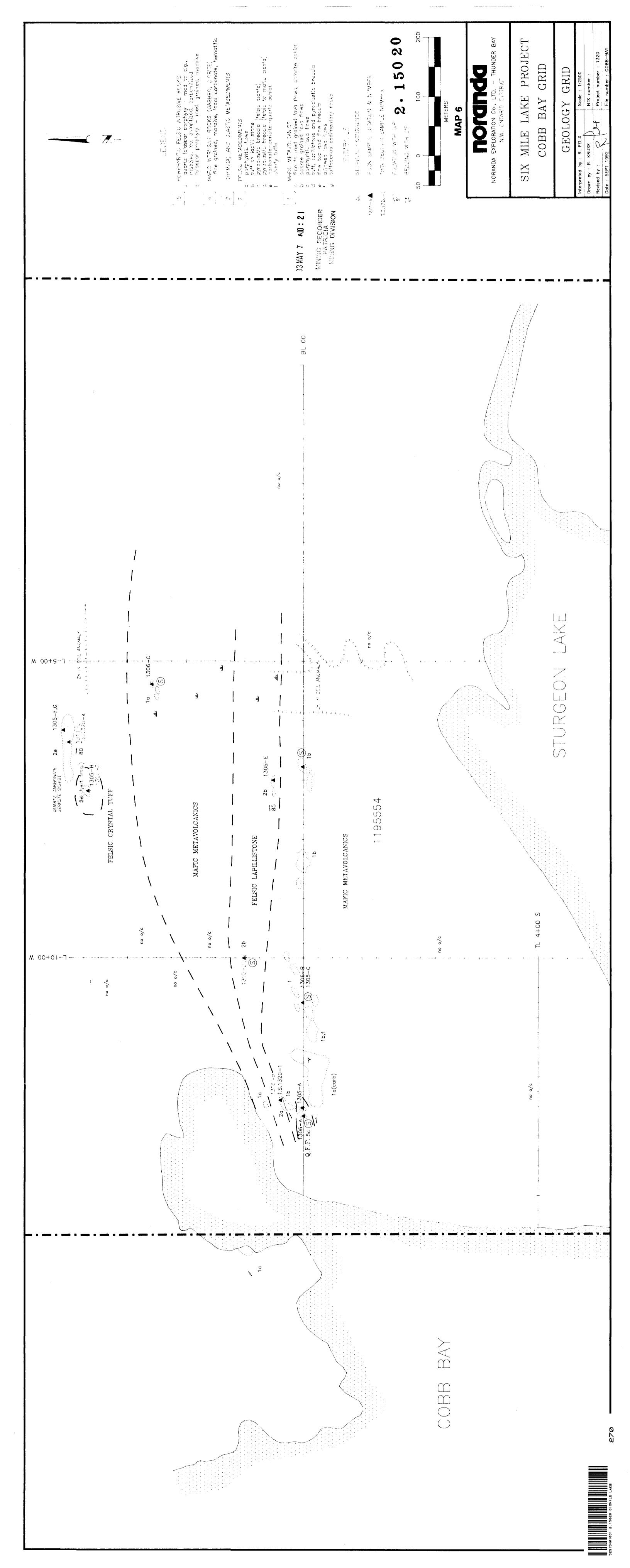

52G15NW1031 2 15020 SIXWH 5 1 W5

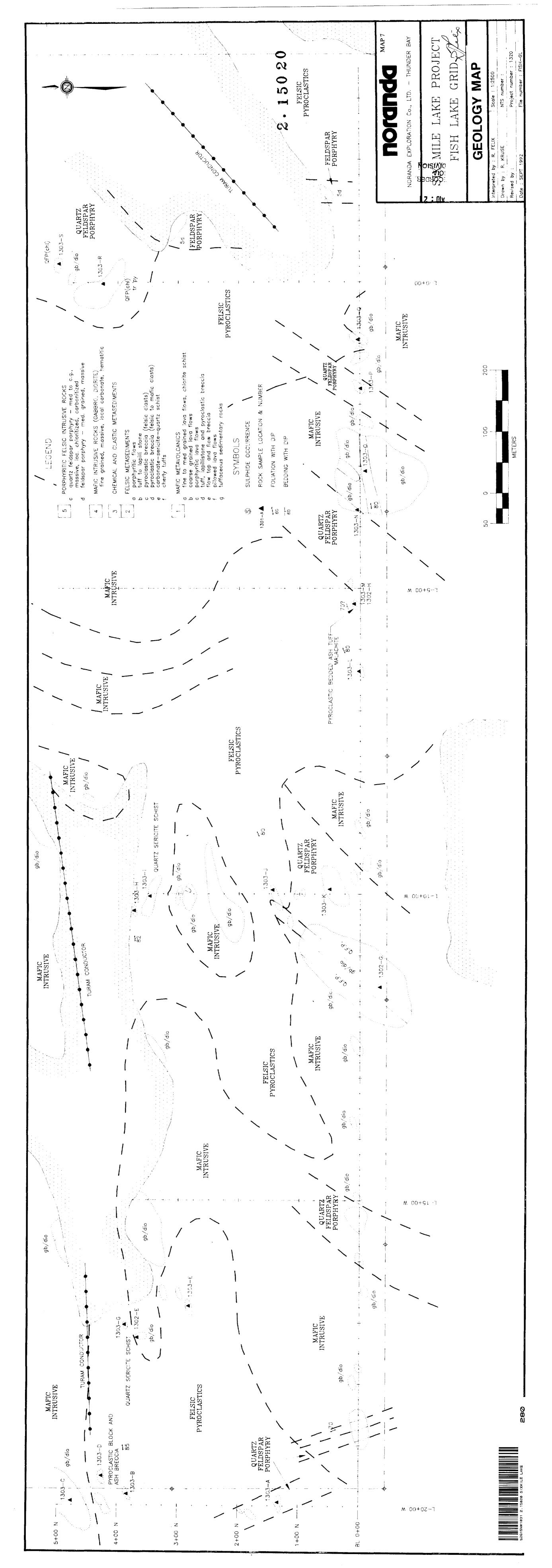


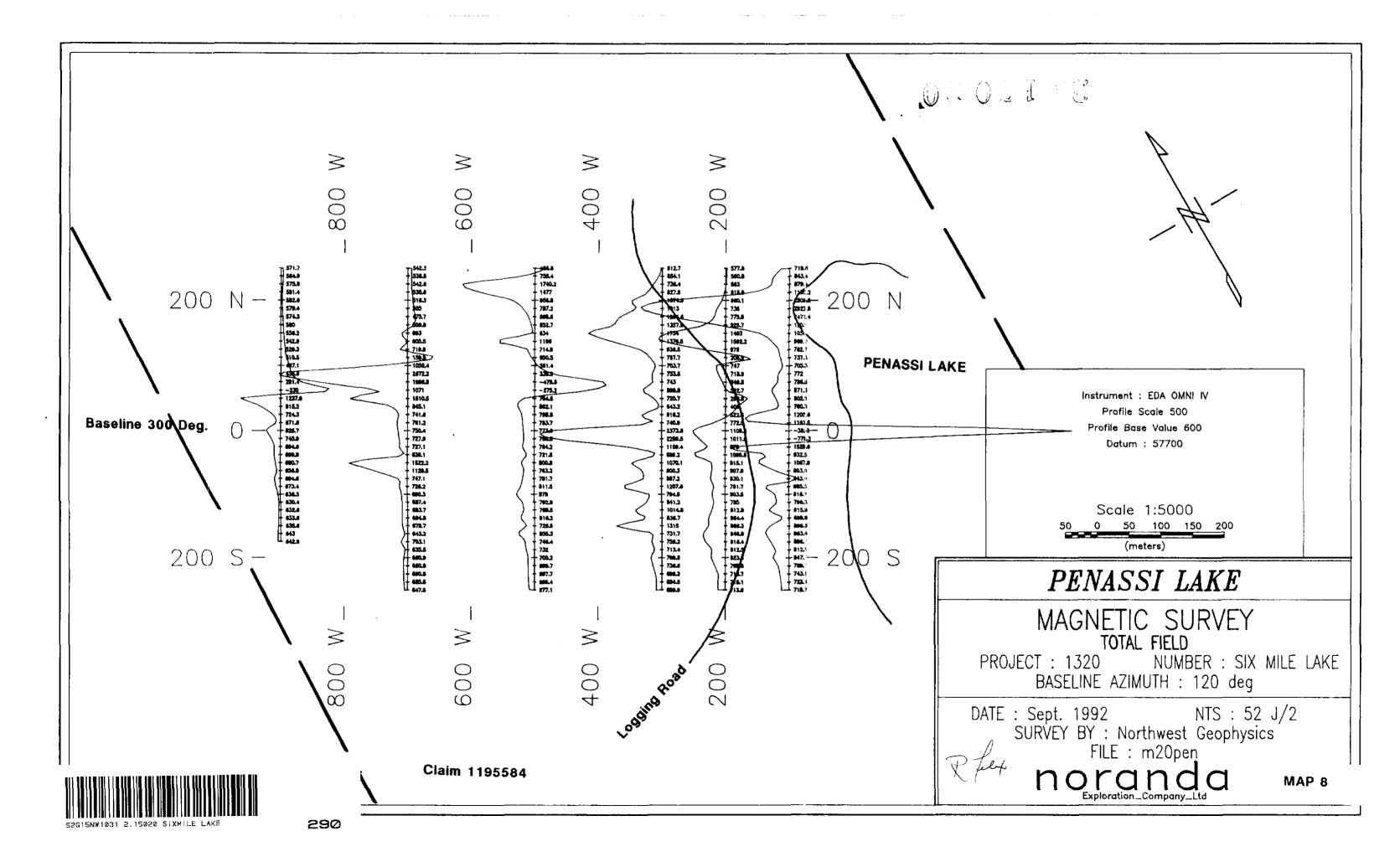
MAP 1

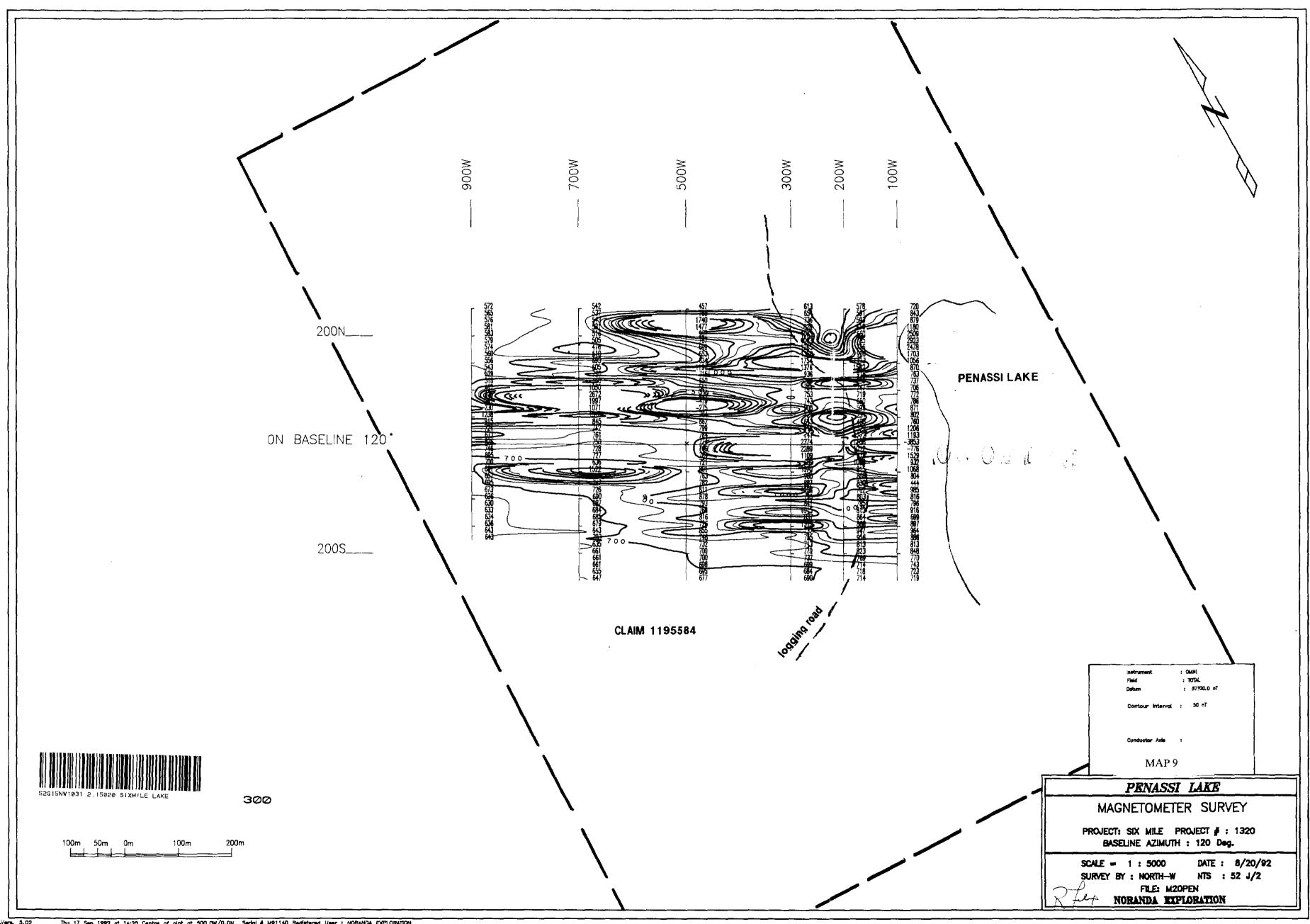
250

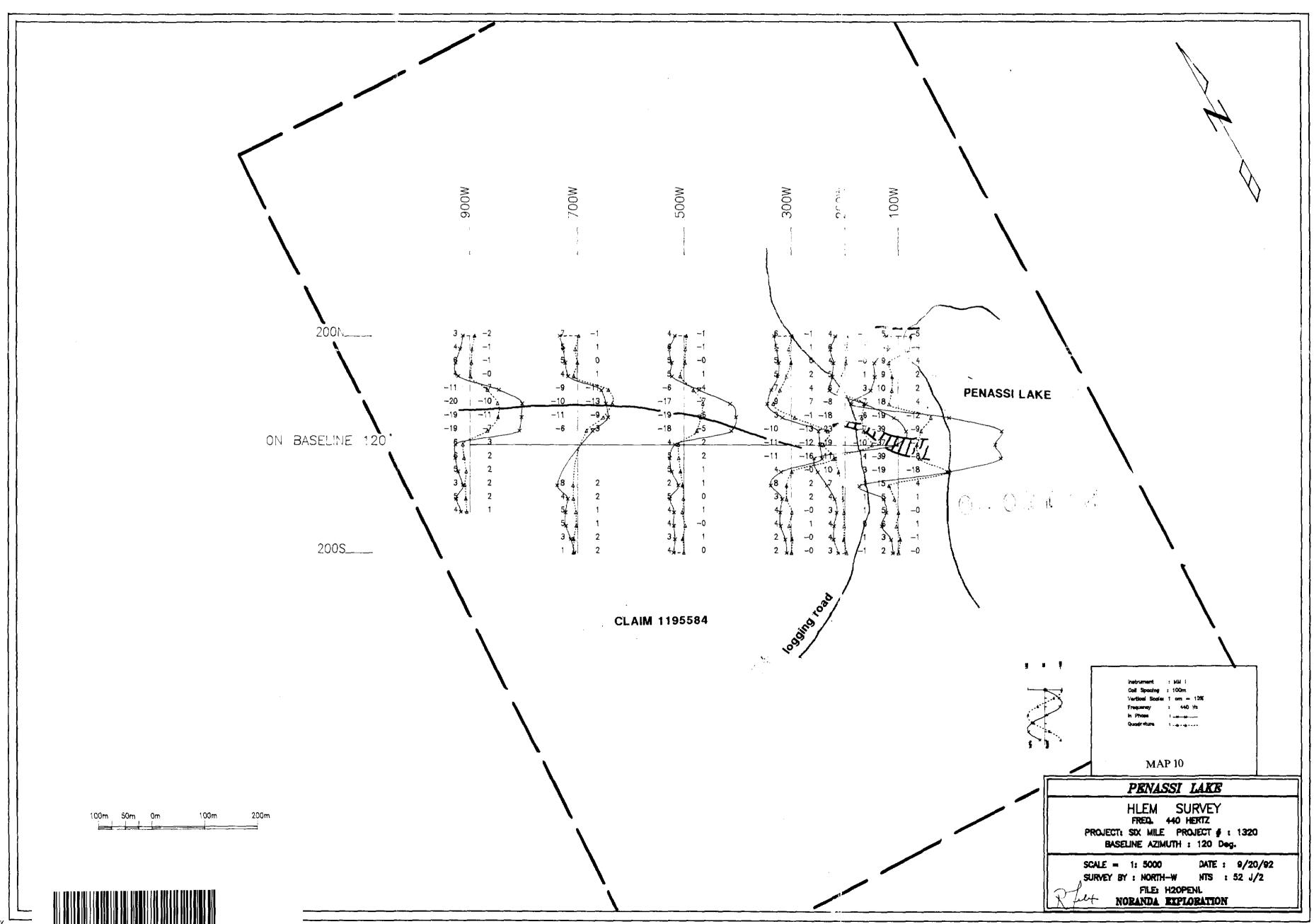

Scale : 1:2500

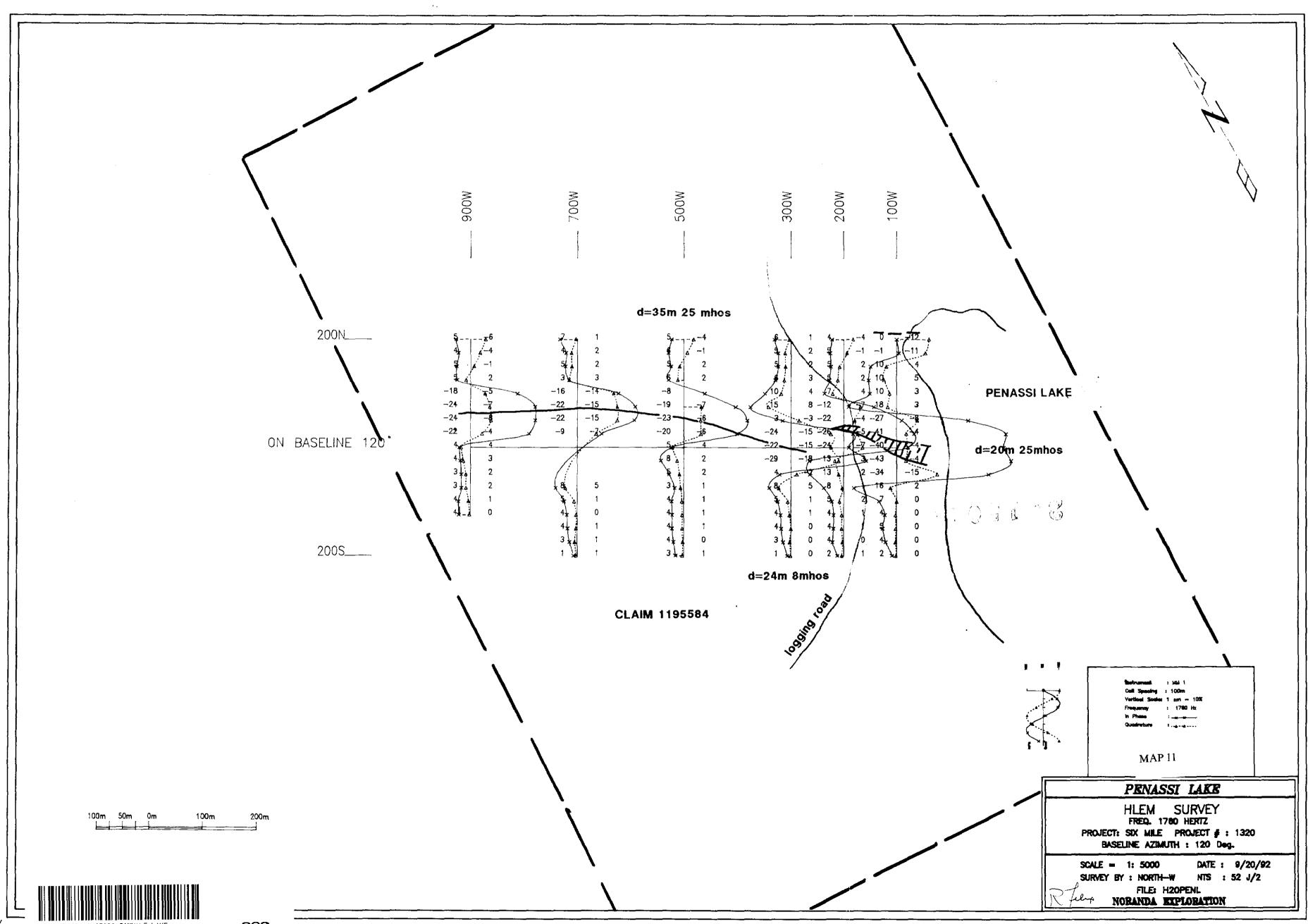

Interpreted by : R. FEHX Drawn by : R. KRUSE /

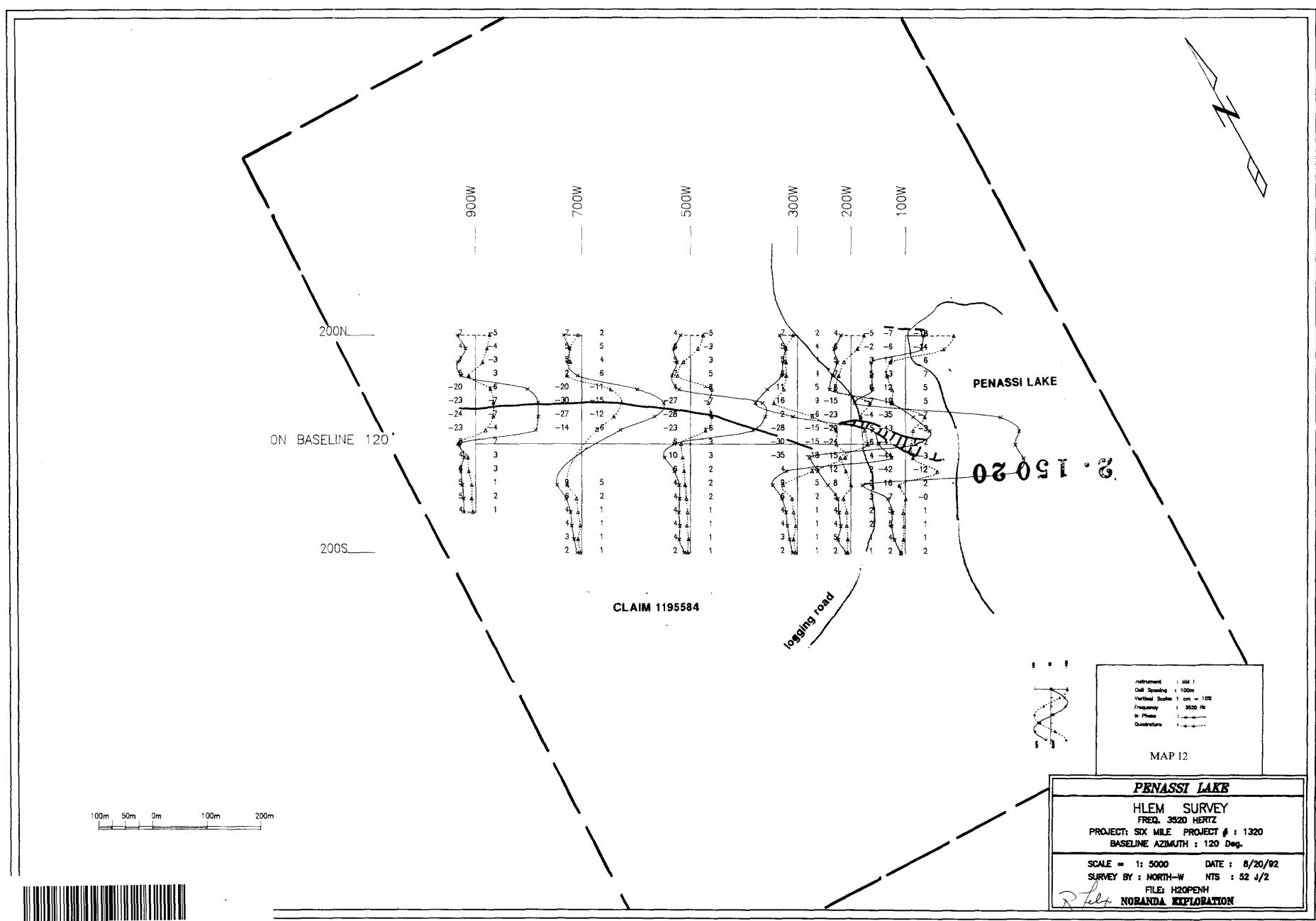

Date : FEBRUARY 1993

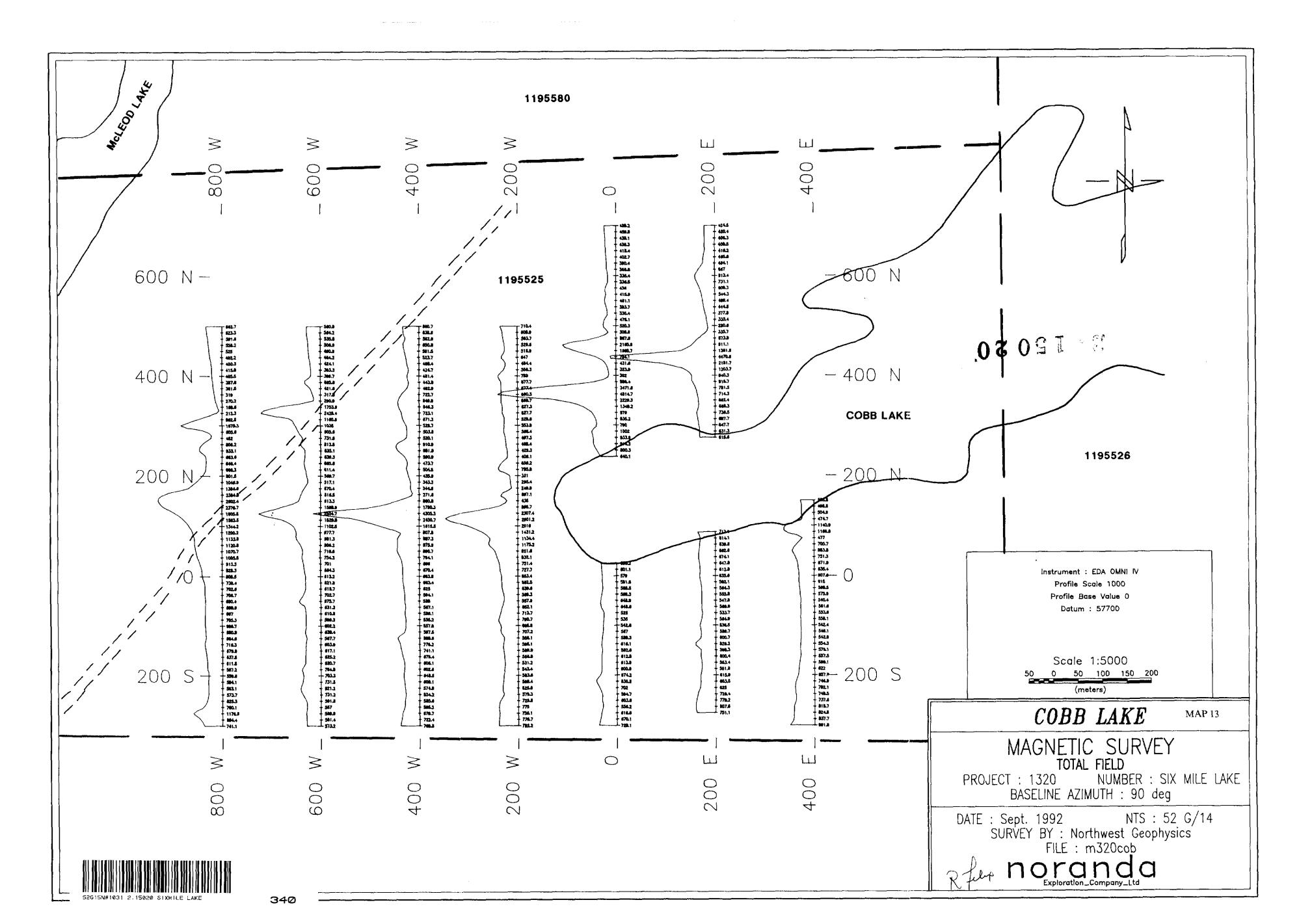

Revised by: Dely

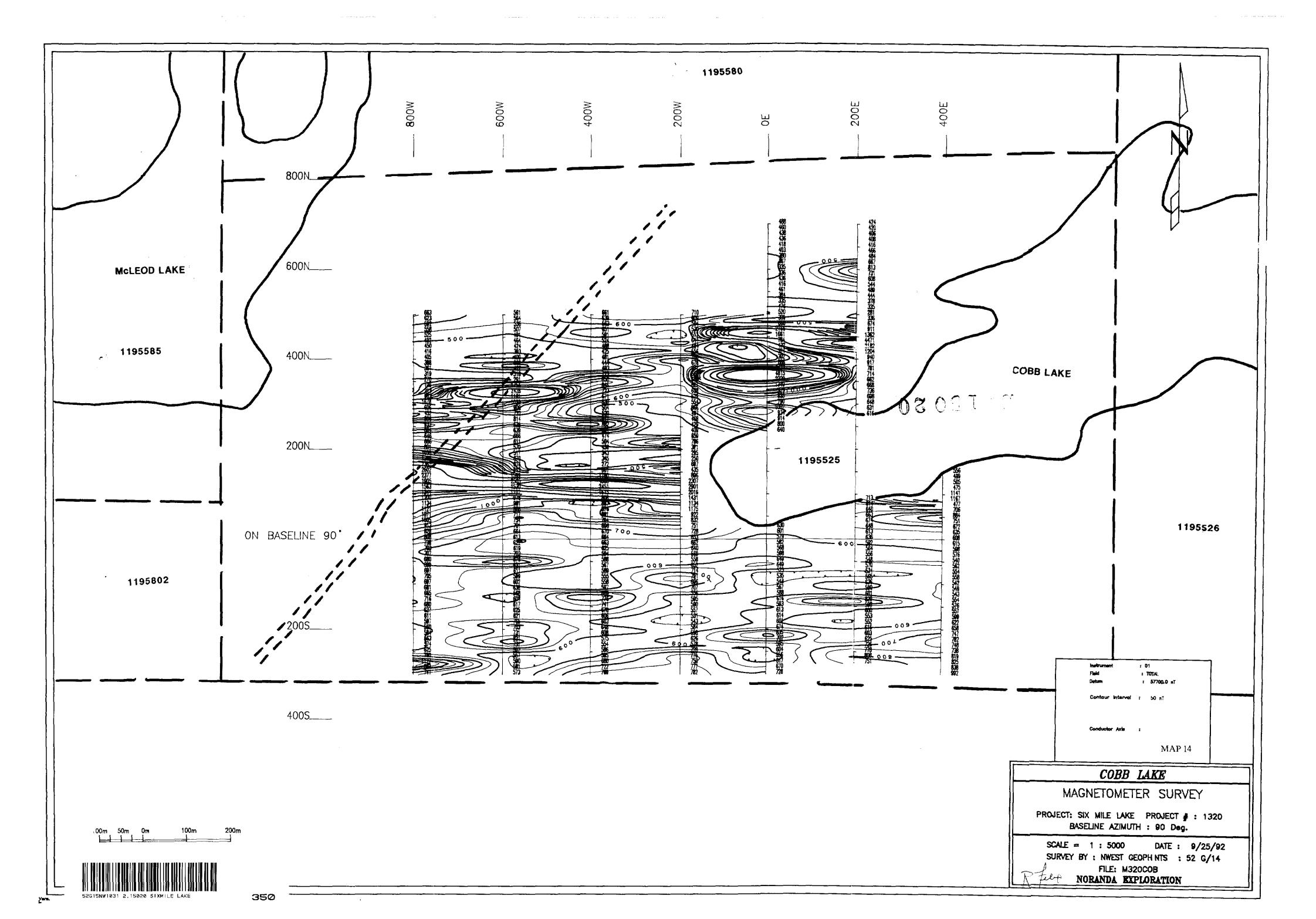

NTS number : Project number: 1320 File number : PENAS-GL 200

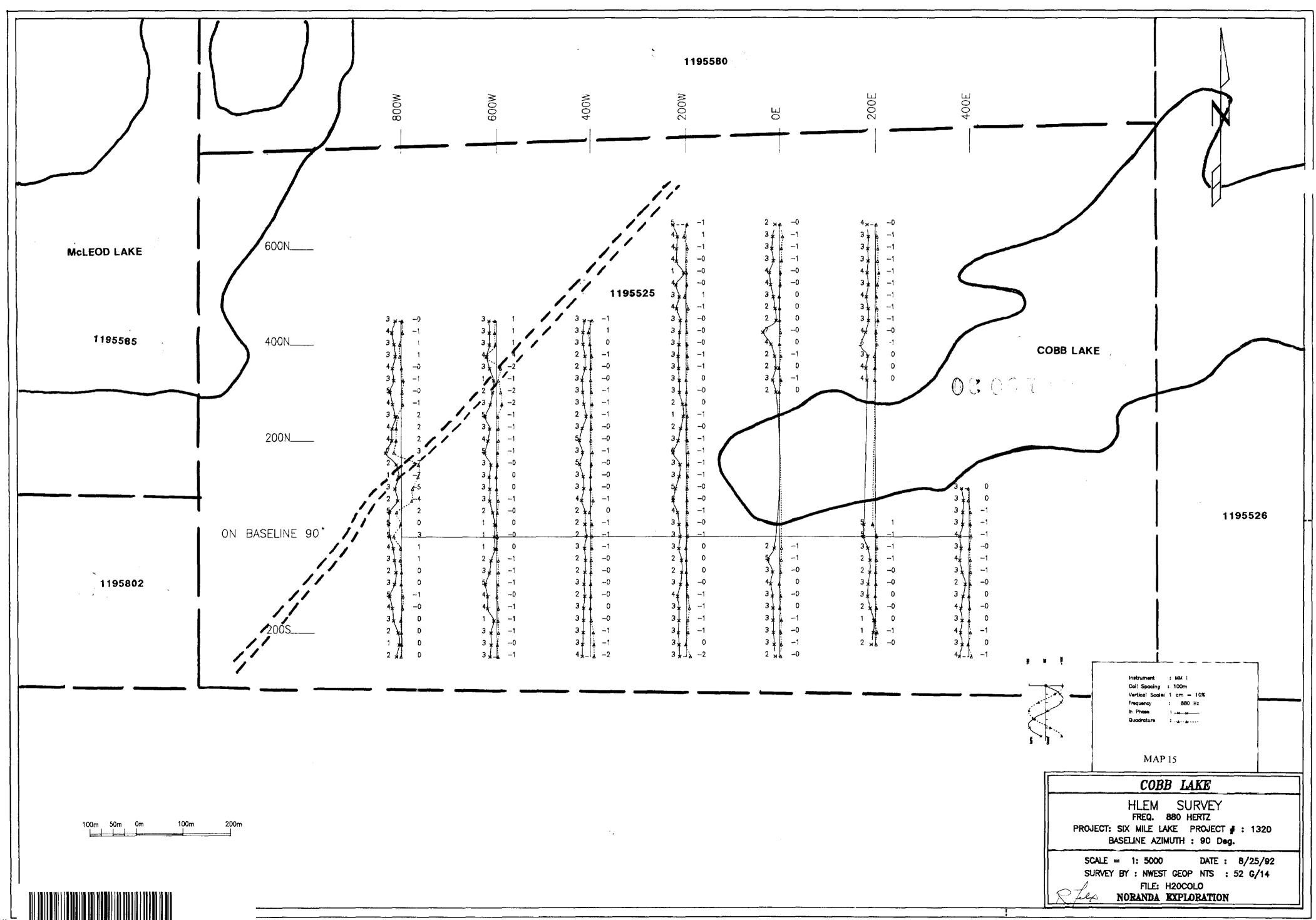


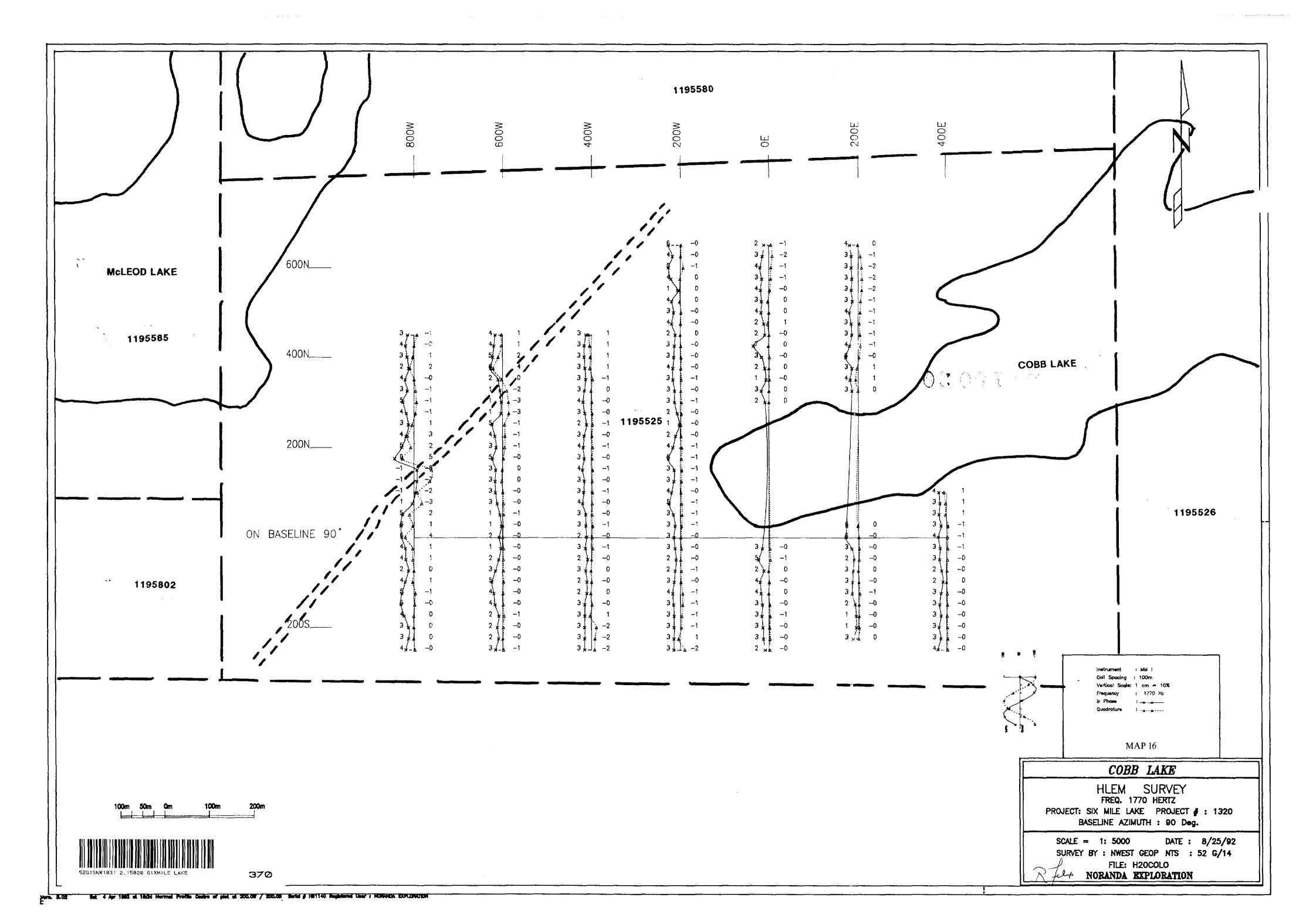


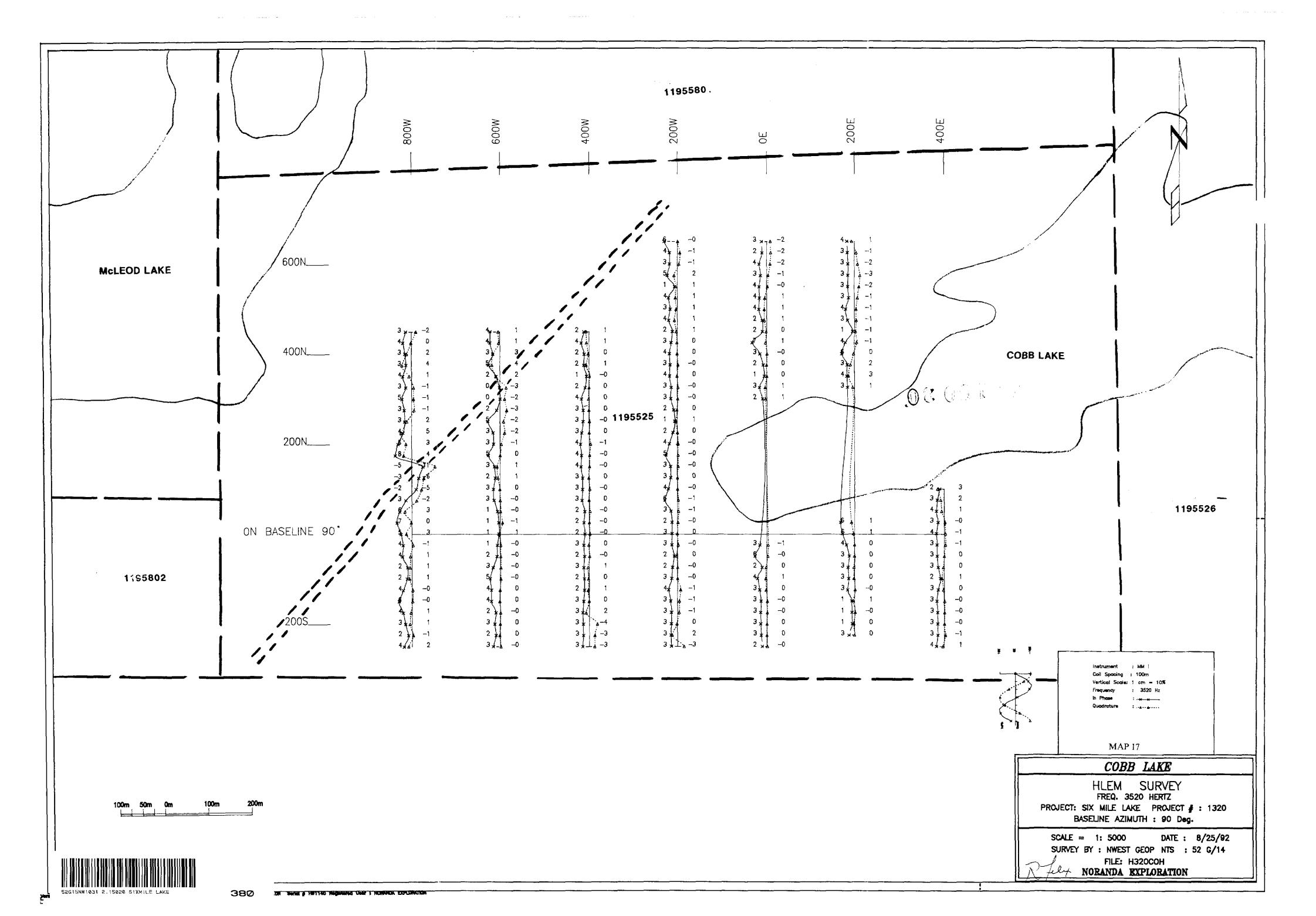


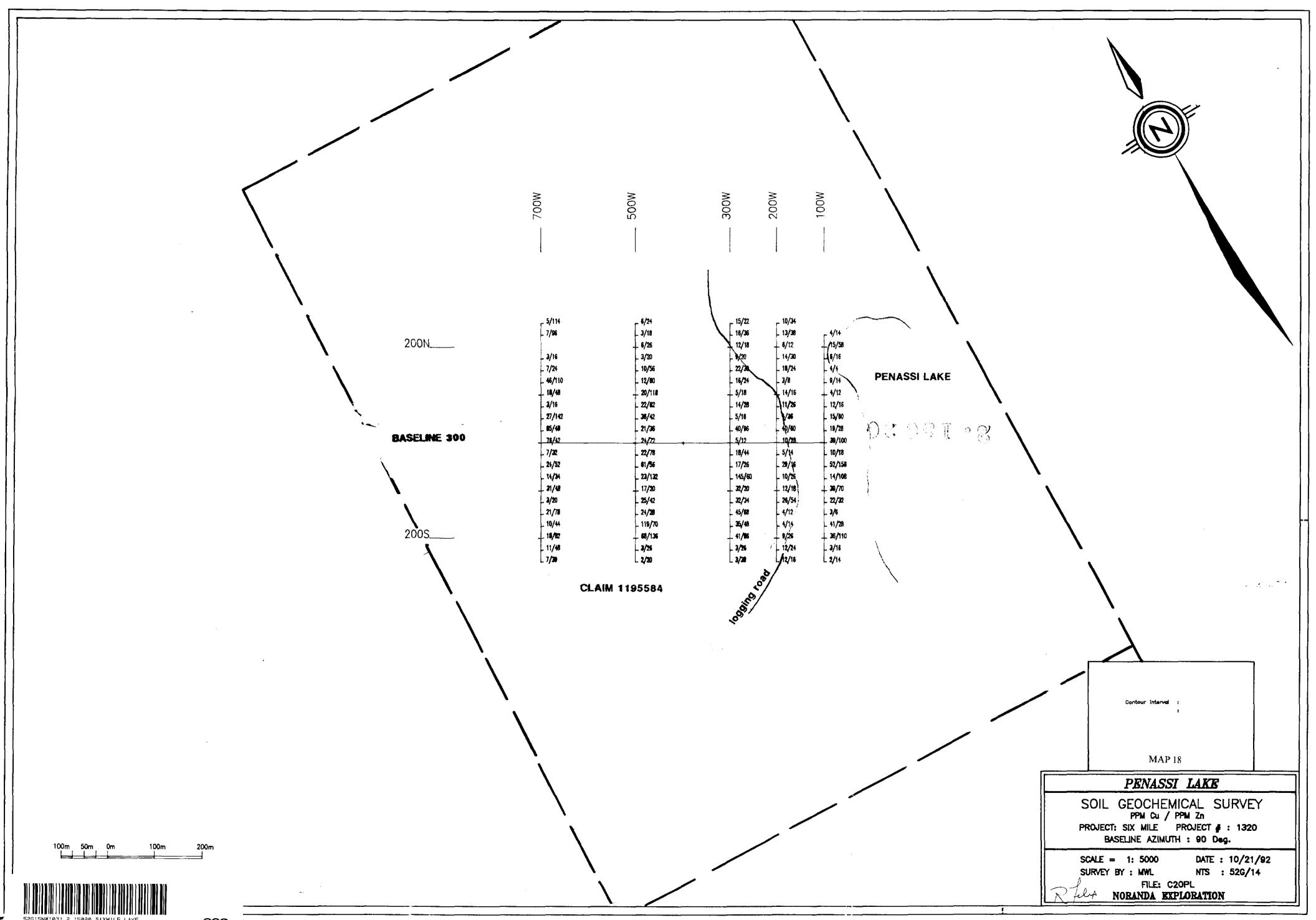


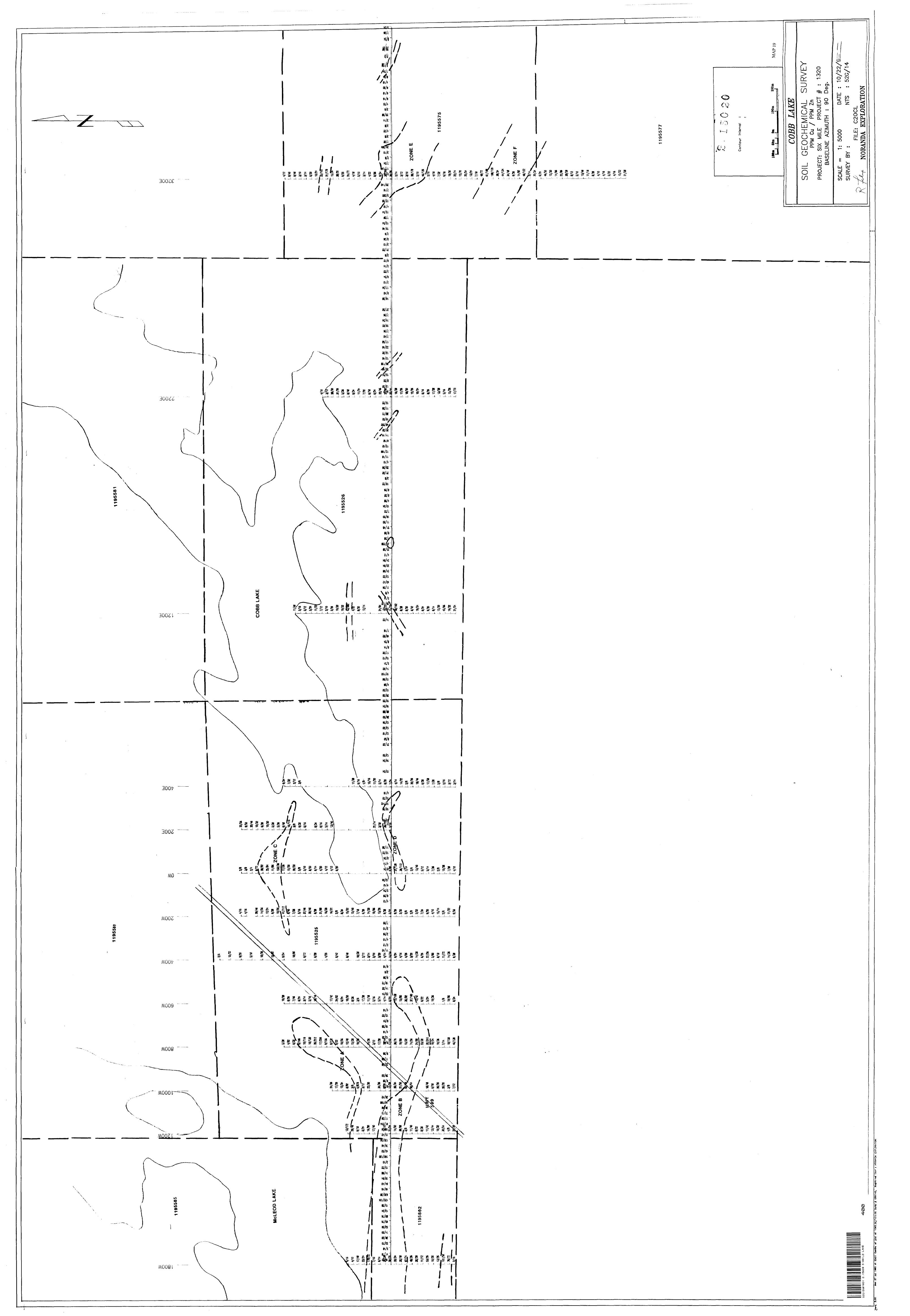


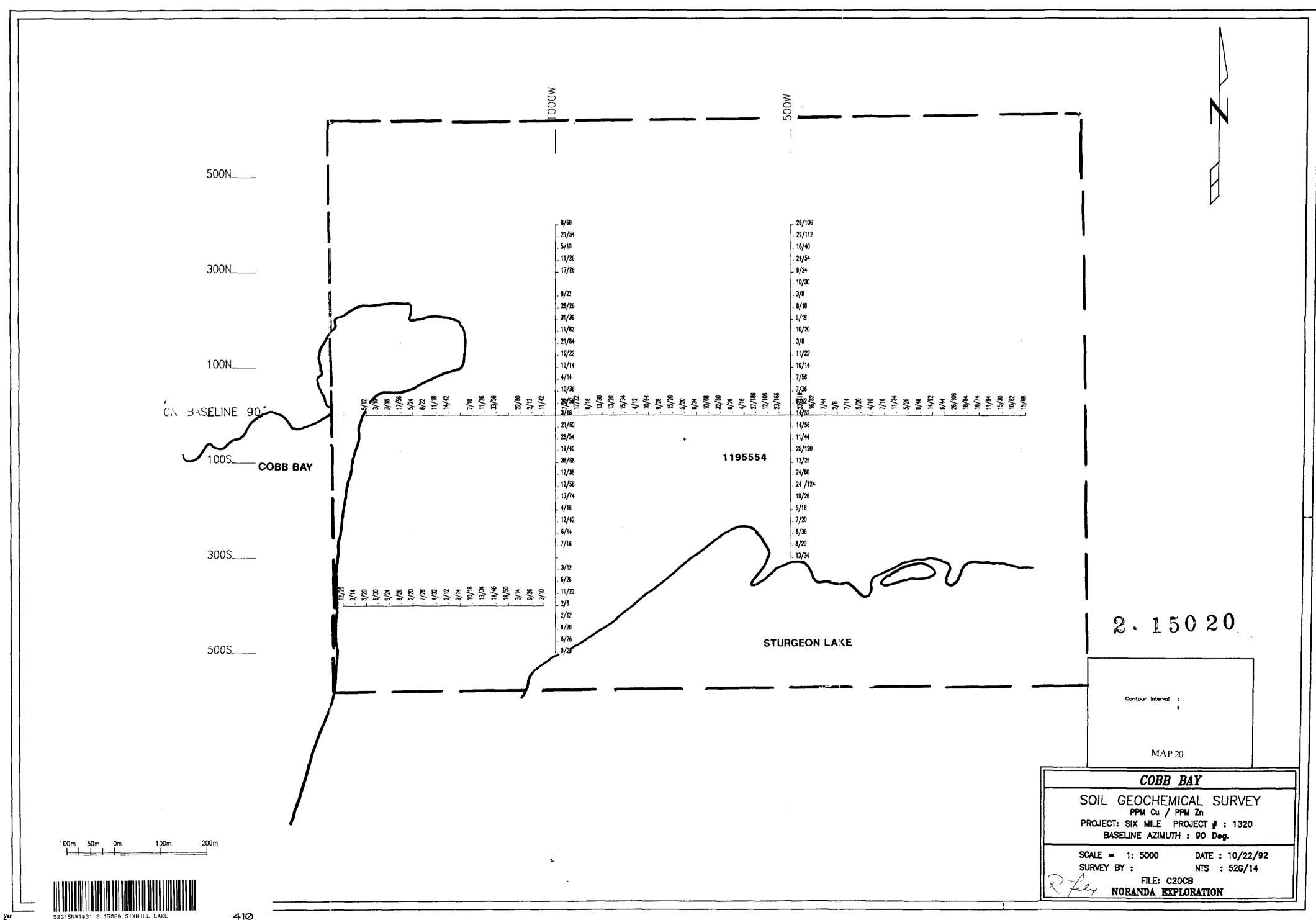


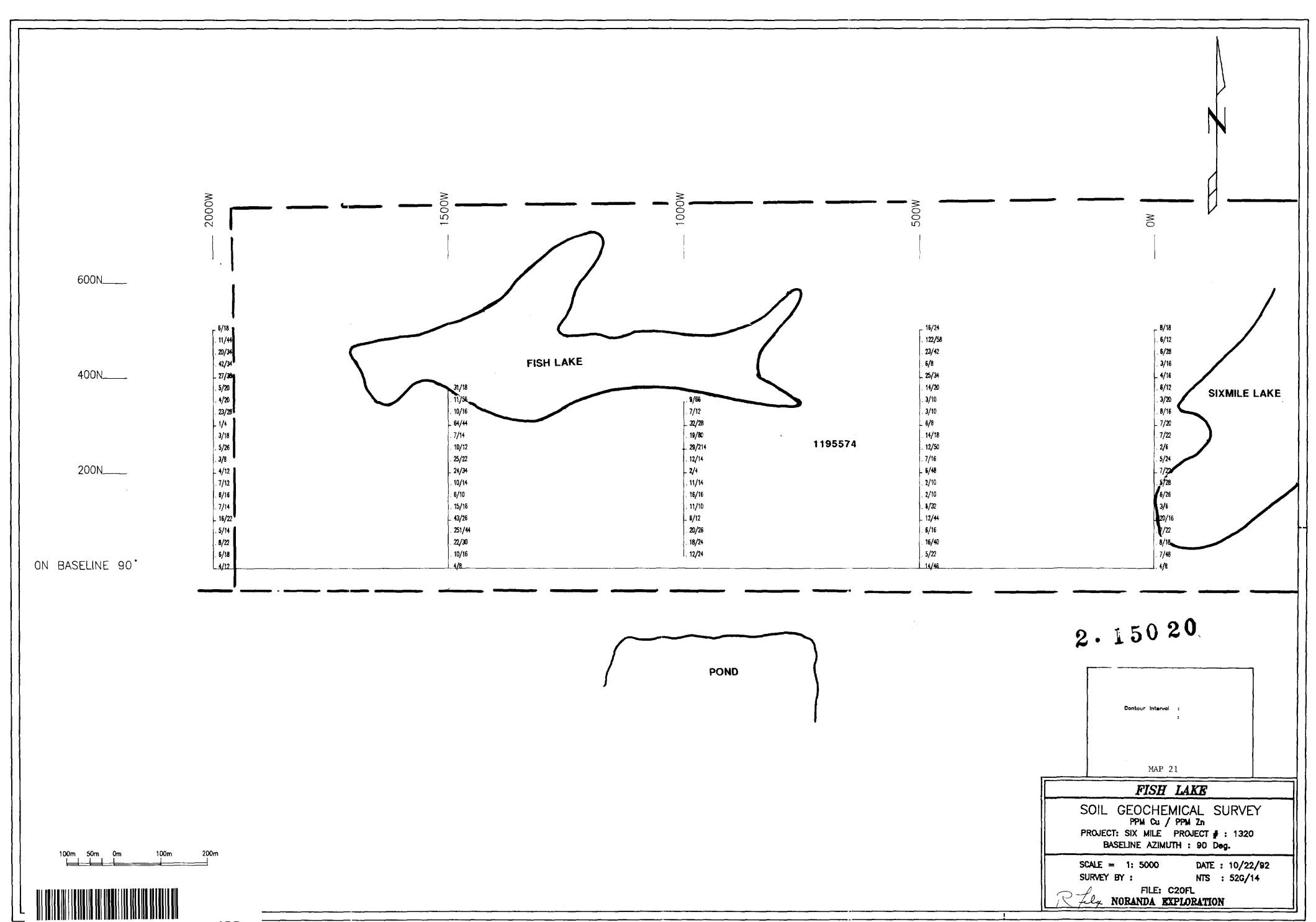












31 2.15020 SIXMILE LAKE