

010

REPORT OF WORK PERFORMED

ŌΝ

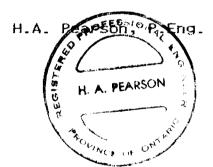
MADELEINE MINES LTD.

Ι

SAWDO CLAIM GROUP

II

TIB LAKE PROPERTY


III

LAC DES ILES PROPERTY

Thunder Bay Mining Division Ontario

January 1, 1988 - December 31, 1988

June 27, 1989

MADELEINE MINES LTD.

I

SAWDO CLAIM GROUP

TABLE OF CONTENTS

- 1. SUMMARY
 - A. The Property and its History
 - B. Geology and Mineralogy
- 2. THE EXPLORATION PROGRAMME
 - A. The Diamond Drilling Programme
- 3. COST INCURRED

Appendix A

Figure 1 - Diamond Drill Hole Plan Logs and Assays in pocket. 1

SAWDO CLAIM GROUP

Lac des Iles Area Thunder Bay Mining Division Ontario

OMEP PROGRAMME

January 1 - December 31, 1988

SUMMARY

A. The Property and its History

The Sawdo Property is located approximately 50 miles north of Thunder Bay, Ontario; and ties onto the northeast corner of Madeleine Mines Lac des Iles Property. It is on the east shore of Lac des Iles.

The 6 claim group is comprised of claims 864416 to 864421, inclusive.

The property is approximately 10 miles due west of mile 60 on Highway 527 and can be reached by the 12 mile access road to Madeleine Mines Lac des Iles Property and thence by Lac des Iles to the claim group. It is also accessible by a logging road that branches off the Madeleine Mines access road at a point one and one half miles east of the Madeleine Mines open pit.

It may also be reached by float-or-ski-equipped aircraft from Thunder Bay.

In 1987, a grid was out over the 6 claim group, with grid lines established at 300 foot intervals, stations at 100 foot spacing, with numerous 50 foot stations in anomalous areas.

The group was covered by a magnetic survey; and by an electromagnetic survey employing the Max-Min instrument in a horizontal-coil configuration.

The electromagnetic survey located a major Conductor A (see Figure 1 Appendix A) and a lesser conductor B. Conductor A has extremely good magnetic correlation; and was believed to represent a complex zone of sulphide mineralization.

Prospecting in the vicinity of Conductor A located sulphide bearing gabbros carrying anomalous PGM values slightly northeast of conductor A.

Diamond drilling on the adjoining Madeleine Mines Lac des Iles Property has indicated ore reserves, to a depth of 1500 feet, of 20,400,000 tons with an average grade of 0.18 ozs. per ton of platinum group metals (PGM).

B. Geology and Mineralogy

The area around Lac des Iles is underlain by rocks of Precambrian Age. Basic and ultrabasic rocks of the Lac des Iles complex are completely surrounded by younger granites and tonalites.

The Lac des Iles complex includes anorthosite, anorthositic gabbros, norite, pyroxenite, peridotite, serpentinite, quartz gabbro and their altered equivalents.

The southern section is divided into two mafic units. The Eastern Gabbro is a medium grained gabbro to norite; and is a medium grained gabbro to norite; and is oxide-rich, sulphide poor. The Western Gabbro is coarsergrained and sometimes pegmatitic consisting of gabbro (70%), norite (20%), clinophyroxenite, and minor anorthosite.

The latter are layered, steeply dipping and contain copper, nickel, iron sulphides, arsenides, antimonides and tellurides.

The principal platinum group minerals are:

Vysotskite - (Pd,Ni) S Braggite - (Pt,Pd,Ni) S Kotulskite - Pd (Te,Bi) Isomertieite - Pd,Sb2,As2 Merenskyite - Pd,Te2 Sperrylite - Pt,As2 Stibiopalladinite - Pd5 (Sb,As,Te) 2 Stillwaterite - Pd8,As3

2. THE EXPLORATION PROGRAMME

A. The Diamond Drilling Program

During January and February, 1988, 3 holes were diamond drilled to investigate Conductor A, See Figure 1, Appendix A.

This drilling was conducted by Alex Cande Enterprises Canada Limited, Timmins, Ontario under the supervision of H.A. Pearson, P.Eng. and W.B. Murphy.

A total of 1558 feet were diamond drilled. All three holes intersected ultramafic intrusive - peridotite, pyroxenite and narrow bands of serpentinite. Up to 10 percent of terrestrial iron, in narrow bands was intersected in some sections.

A total of 157 samples were assayed. No platinum group metals were encountered. Only minor nickel values were found (up to 0.16 percent nickel). Locations and lengths of the drill holes are as follows:

Hole No.	Location	<u> Length (feet)</u>
\$88-1 \$88-2	10+50 E 0+50 N 8+00 E 1+50 S	580 479
\$88-3	12+00 E 2+50 N	499
		1558

No further work is recommended for this property.

3. COST INCURRED

A total of \$25,409 was expended on the Sawdo Property during the period January 1 - December 31, 1988. A breakdown of the apportioned cost accompanies the application for the Ontario Mineral Exploration Programme Grant.

H.A.

POVINCE OF

HAILEYBURY, ONTARIO

Certificate of Analysis

NO.

0580

March 9, 1988

SAMPLE(S) OF:

Core (61)

RECEIVED: March 1988

SAMPLE(5) FROM: Boston Bay Mines Ltd.

Saudo Group

Sample No.	Cu %	N1 %	Sa	mple No.	Cu %	N1 %
581002011.5-2	0.002	0.064	290 -300' S	<i>\$</i> 10300	0.011	0.058
<i>د</i> - 30	0.002	0.070	-310'	10	0.003	0.080
40 -4	0.002 ن	0.078	-320'	20	0.003	0.082
	0.002	0.072	-330	30	0,004	0.076
	0.002 م	0.070	-340	40	0.004	0.072
	0.002	0.090	- 350	50	0.002	0.066
	0.002	0.076	-360`	60	0.001	0.072
90 -9	0.002	0.092	-370	70	0.002	0,074
5\$10100 -10	20.002	0.088	-380_	80	0.004	0.068
	10'0.002	0.088	-390	90	0.028	0,088
20 -1	20.002	0.090	-400 5	\$10400	0.001	0.074
30 -/	30.002	0.104	-410	10	0.001	0.084
40 -/	40' ND	0.084	-420	20	0.004	0.086
50 -/	500.002	0.080	-428.5	28.5	0.006	0.084
S\$10154.5-15	4.50.002	0,070	-432	32	0.006	0.088
55.5 <i>-/5</i>	550.004	0.086	-438.5	38.5	0.002	0.080
60 -16	0.004	0.074	-443	43	0.004	0.006
70 -17	も 0.002	0.080	-450'	50	0.001	0.076
80 -18	30'0,002	0.068	- 460	60	0.004	0.082
	0.002	0.084	-470	70	0.006	0.046
5\$10200 -2	0.004	0.092	-480	80	0.010	0.038
10 -2	2/0.0.004	0.092	-489	89	0.017	0.038
20 -2	220.004	0.078	-499	99	0.072	0.054
30 -2	2300.032	0.090		\$10508.5	0.022	0.038
40 -z	400.026	0.102	-520	20	0.006	0.038
50 -2	500.001	0.084	-530	30	0.009	0.050
60 - 2	600.001	0.080	-540	40	0.016	0.048
70 -2	700.003	0.090	-550	50	0.002	0.017
80 - 2	2800.003	0.110	-560	60	0.005	0.042
90280-	2900.003	0.098	-570	70	0.017	0.040
NOTE. NO			-580	80	0.018	0.038

NOTE: ND denotes not detected.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

0548

DATE:

February 29, 1988

JAMPLE(S) OF: Core (61)

RECEIVED: February 1988

SAMPLE(5) FROM: Boston Bay Mines Ltd.

Sawdo Group

mpie No. Au oz.	Pt oz.	Pd oz.	Sample No.	Au oz.	Pt oz.	Pd oz.
581002 <u>0-11.5-20</u> Trace	Trace	Trace	300-310 S810310	Trace	Trace	Trace
30 20-30 Trace	Trace	Trace	-320 20	Trace	Trace -	Trace
46 - 40Trace	Trace	Trace	-330 30	Trace	Trace	Trace
50 -50 irace	Trace	Trace	-340 40	Trace	Trace	Trace
· no -60Trace	Trace	Trace	-350 50	Trace	Trace	Trace
/0 -701race	Trace	Trace	-360 60	Trace	Trace	Trace
80 <i>-80</i> Trace	Trace	Trace	70 70	Trace	Trace	Trace
90 - % 1race	Trace	Trace	80 80	Trace	Trace	Trace
5,910100 -100 Trace	Trace	Trace		Trace	Trace	Trace
10 -//o Trace	Trace	Trace	-400 £10400	Trace	Trace	Trace
20 -/20 Trace	Trace	Trace	-410 10	Trace	Trace	Trace
30 <u>-/30</u> Trace	Trace	Trace	-420 20	Trace	Trace	Trace
60 <u>-740</u> Trace	Trace	Trace	-428.5 28.5	Trace	Trace	Trace
50 -150 race	Trace	Trace	-43Z 32	Trace	Trace	Trace
54.5-1 545 3 race	Trace	Trace	<u>-438.5</u> 38.5	Trace	Trace	Trace
55.57race	Trace	Trace	- <i>443</i> . 43	Trace	Trace	Trace
60 -160 Trace	Trace	Trace	-450 50	Trace	Trace	Trace
/(170 Trace	Trace	Trace	-460 60	Trace	Trace	Trace
80 <u>-</u> -180 Trace	Trace	Trace	-47 ₀ 70	Trace	Trace	Trace
9(<u>l -/90</u> Trace	Trace	Trace	-480 80	Trace	Trace	Trace
\$10200 -200 race	Trace	Trace	-499 89	Trace	Trace	Trace
10 - 210 Trace	Trace	Trace	-499 S 99	Trace	Trace	Trace
20 <u>-zzo</u> Trace	Trace	Trace	-508.5\$10508.5	Trace	Trace	Trace
30 <i>-23</i> 51race	Trace	Trace	-5 Zo 20	Trace	Trace	Trace
40 -240 Trace	Trace	Trace	-530. 30	Trace	Trace	Trace
50 -250Trace	Trace	Trace	-540 40	Trace	Trace	Trace
60 -260 Trace	Trace	Trace	-550 50	Trace	Trace	Trace
/1 -270 Trace	Trace	Trace	-560 60	Trace	Trace	Trace
೮೮ – Zgo Trace	Trace	Trace	-570 70	Trace	Trace	Trace
90 -290 Trace	Trace	Trace	-580 80	Trace	Trace	Trace
5\$10300290-300Trace	Trace	Trace				

CORDANCE WITH LONG-ESTABLISHED NORTH CASAY CISTON UNLESS IT & SPECIFICALLY STATED WHILE AND SILVER VALUES REPORTED ON COLUMN HAVE NOT HEEN ADJUSTED TO COMPEN. CO. COLU. AND GAINS INHERENT IN THE PIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187.

HAILEYBURY, ONTARIO

Certificate of Analysis

0267 NO.

DATE: January 26, 1988

SAMPLE(S) OF: 22(core)

RECEIVED: January 1988

SAMPLE(S) FROM: Alic Pearson, Boston Bay Mines Ltd.

Sawdo Group

5-88-Z

Sample No. Footage Au ppb	Pt ppb	Pd ppb	Cu %	Ni %_
2035 <i>25-35</i> Trace	Trace	Trace	0.011	0.022
60 50-60' Trace	Trace	Trace	0.005	0.044
70 60-70 Trace	Trace	Trace	ND	0.108
80 70 - 80 Trace	Trace	Trace	0.006	0.096
90 <i>20 - 90</i> Trace	Trace	Trace	ND	0.040
20100 <i>90-100</i> Trace	Trace	Trace	ND	0.110
10 100 - 110 Trace	Trace	Trace	ND	0.078
20 110-120 Trace	Trace	Trace	ND	0.070
30 <i>120-130</i> Trace	Trace	Trace	ND	0.084
40 <i>130-14</i> 0 Trace	Trace	Trace	ND	0.108
50 <i>140-150</i> Trace	Trace	Trace	ND	0.106
60 <i>150-16</i> 0 Trace	Trace	Trace	ND	0.100
70 <i>160-17</i> 0 Trace	Trace	Trace	N D	0.076
80 <i>170-18</i> 0 Trace	Trace	Trace	ND	0.058
90 <i>180-19</i> 0 Trace	Trace	Trace	ND	0.038
20200 <i>190-20</i> 0 Trace	Trace	Trace	ND	0.100
10 200-210 Trace	Trace	Trace	ND	0.032
20 <i>210-220</i> Trace	Trace	Trace	ND	0.082
30 zzo-z 3 0 Trace	Trace	Trace	ND	0.122
40 z30-Z40 Trace	Trace	Trace	ND	0.110
50 <i>z40-z5</i> oTrace	Trace	Trace	ND	0.096
202575 <i>250-257.5</i> Trace	Trace	Trace	ND	0.160

NOTE: ND denotes not detected.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 0483

DATE:

February 25, 1988

SAMPLE(S) OF:

Core (25)

RECEIVED: February 1988

SAMPLE(S) FROM:

Boston Bay Mines Ltd.

SAWDO GROUP 5-88-2

0-235.5 Willed by crew #1 (error made in fortage)

260-479 " by " #2 (rodo counted when drilling started)

Sample	No. Footage	Au oz.	Pt oz.	Pd o	z .
Gar # 1 20267		Trace	Trace	0.00	2
≠Z20270		Trace	Trace	0.00	
#/20274		Trace	Trace	0.00	
#Z20280		Trace	Trace	0.00	
# 120200	270-280	0.002			
-/ 20280.	5274-280.5	0.002	Trace	0.00	
#220290	280-290	Trace	Ţrace	0.00	
(20300	290 - 300	Trace	Trace	0.00	
20310	300-310	Trace	Trace	Traç	
(20320	310-320	Trace	Trace	0.00	2
/ 20330	320-330	Trace	race	0.00	2
/ 20340	330-340	Trace ·	Trace	0.00	2
20350	340-350	Trace	Trace	0.00	2
/ 20360	350-360	-	Trace	0.00	
20370	360 - 370		Trace	0.00	
20380	_	_	Trace	Trac	
20390	370-381 380-390	-	Trace	0.00	
20400	390 - 400		Trace	0.00	
20410	390-400	Trace	Trace	0.00	
20420	400-410		Trace	0.00	
20430	470 - 420	Trace	Trace	Trac	
20440	420-430	Trace	Trace	0.00	
				Trac	
20450	440-45		Trace		
20460	450-46		Trace	0.00	
20470	460-470		Trace	0.00	
20479	470-47	9 Trace	Trace	0.00	2

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORT AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATE OFFICE SPECIFICALLY STATE OFFICE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN \$41; FOR LOSSES AND GAINS INHERIENT IN THE FIR ASSAY FROCESS.

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO.

0513

DATE:

February 29, 1988

SAMPLE(S) OF: Core (25)

RECEIVED:

February 1988

SAMPLE(S) FROM: Boston Bay Mines Ltd.

Saudo Group

S-88-Z

Sample No.	<u>Cu %</u>	<u>Ni %</u>
Crew #1 20267 257. #2 20270 260 #1 20274 267 20280 (270 20280.527. 20290 (28 20310 300 20310 300 20320 3/0 20340 33 20350 34 20360 33 20370 30 20380 37 20380 37 20390 38 20390 38 20410 4 20420 4	5-267 0.001 5-276 0.001 6-274 0.012 0.004 6-280,5 0.001	Ni % 0.106 0.120 0.118 0.078 0.114 0.088 0.110 0.106 0.102 0.100 0.094 0.064 0.056 0.058 0.058 0.054 0.082 0.062 0.068
20430 4	20-430 0.001 30-440 0.005	0.056 0.052
20450 <i>4</i> 20460 <i>4</i>	40-450 0.004 50-460 0.002 60-470 0.002	0.048 0.080 0.122
	0.002	0.064

NOTE: ND denotes not detected

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187

HAILEYBURY, ONTARIC

TEL: 672-3107

Certificate of Analysis

NO. 0611

DATE: March 14, 1988

SAMPLE(S) OF: core (49)

RECEIVED: March 1988

SAMPLE(S) FROM: Boston Bay Mines Ltd.

Sawdo Group 5-88-3

Sample No. Au oz.	Pt oz.	Pd oz.	Sample No. Au oz.	Pt oz.	Pd oz.
5 % 30020 15-20 Trace	Trace	Trace	S\$30260 250-Trace	Trace	Trace
30 <i>-3</i> ₀ 0.038	Trace	Trace	70 -270 Trace	Trace	Trace_
40 -40 Trace	Trace	Trace	8 <u>0 - 2%</u> Trace	Trace	Trace
50 -50 Trace	Trace	Trace	90 <u>-290</u> Trace	Trace	Trace
60 -6 Trace	Trace	Trace	S#30300 -30 Trace	Trace	Trace
70 -70 Trace	Trace	Trace	10 -3/0 Trace	Trace	Trace
80 -20 Trace	Trace	Trace	20 -320Trace	Trace	Trace
90 - 90 Trace	Trace	Trace	30 -336Trace	Trace	Trace
5 \$30100 -100 Trace	Trace	Trace	40 <u>-34</u> 5Trace	Trace	Trace
10 -110 Trace	Trace	Trace	50 -35bTrace	Trace	Trace
20 -120 Trace	Trace	Trace	60 36 Trace	Trace	Trace
30 -130 Trace	Trace	Trace	7 <u>0 -37</u> 6Trace	Trace	Trace
40 -140 Trace	Trace	Trace	80 -380 Trace	·Trace	Trace
50 -/50 Trace	Trace	Trace	9 0 -39 0Trace	Trace	Trace
60 -160 Trace	Trace	Trace	S \$304 <u>00 -40</u> Trace	Trace	Trace
70 -/70 Trace	Trace	Trace	10 -410 Trace	Trace	Trace
80 -180Trace	Trace	Trace	20 _ 470Trace	Trace	Trace ·
90 -190 Trace	Trace	Trace	30 <u>-43</u> Trace	Trace	Trace
5830200 -200 Trace	Trace	Trace	40 _440 Trace	Trace	Trace
10 -Z/oTrace	Trace	Trace	5 <u>0</u> -450Trace	Trace	Trace
20 -zzoTrace	Trace	Trace	60 -46oTrace	Trace	Trace
30 <i>-23</i> ∞Trace	Trace	Trace	70 -47oTrace	Trace	Trace
40 -240Trace	Trace	Trace	80 <i>-48</i> 0Trace	Trace	Trace
50 -Z5oTrace	Trace	Trace	90 -4%Trace	Trace	Trace
and the state of t			<i>\$</i> 830499 - <i>499</i> Trace	Trace	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH
AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED

OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN. SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 0267

DATE: January 26, 1988

SAMPLE(S) OF: 22(core)

RECEIVED: January 1988

SAMPLE(S) FROM: Alic Pearson, Boston Bay Mines Ltd.

SANDO Group 588-2

Sample No.	Au ppb	Pt ppb	Pd ppb	Cu %	Ni %
2035	Trace	Trace	Trace	0.011	0.022
60	Trace	Trace	Trace	0.005	0.044
7 0	Trace	Trace	Trace	ND	0.108
0.8	Trace	Trace	Trace	0.006	0.096
90	Trace	Trace	Trace	ND ·	0.040
20100	Trace	Trace	Trace	ND	0.110
10	Trace	Trace	Trace	ND	0.078
20	Trace	Trace	Trace	ND	0.070
30	Trace	Trace	Trace	ND	0.084
40	Trace	Trace	Trace	ND	0.108
50	Trace	Trace	Trace	ND	0.106
60	Trace	Trace	Trace	ND	0.100
70	Trace	Trace	Trace	ND	0.076
80	Trace	Trace	Trace	ND	0.058
90	Trace	Trace	Trace	ND	0.038
20200	Trace	Trace	Trace	ND	0.100
10	Trace	Trace	Trace	ND	0.032
20	Trace	Trace	Trace	ND	0.082
30	Trace	Trace	Trace	ND	0.122
40	Trace	Trace	Trace	ND	0.110
50	Trace	Trace	Trace	ND	0.096
2025 7. 5	Trace	Trace	Trace	ND	0,160

NOTE: ND denotes not detected.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 0483

DATE:

February 25, 1988

SAMPLE(S) OF:

Core (25)

RECEIVED: February 1988

SAMPLE(S) FROM:

Boston Bay Mines Ltd.

5-83-2

Sample No.	Au oz.	Pt oz.	Pd oz.
	_	_	
20267 2578 267	Trace	Trace	0.002
20270 (260 270)	Trace	Trace	0.002
20274 767 774	Trace	Trace	0.002
20280 (270 - Z80)	Trace	Trace	0.002
20280.5274-2805	0.002	Trace	0.002
20290 (280-290)	Trace	Trace	0.002
20300	Trace	Trace	0.002
20310	Trace	Trace	Trace
20320	Trace	Trace	0.002
20330	Trace	Trace	0.002
20340	Trace	Trace	0.002
20350	Trace	Trace	0.002
20360	Trace	Trace	0.002
20370	Trace	Trace	0.002
20380	Trace	Trace	Trace
20390	Trace	Trace	0.004
20400	Trace	Trace	0.002
20410	Trace	Trace	0.002
20420	Trace	Trace	0.002
20430	Trace	Trace	Trace
20440	Trace	Trace	0.002
20450	Trace	Trace	Trace
20460	Trace	Trace	0.003
20470	Trace	Trace	0.003
20479 470-179	Trace	Trace	0.002

BELL-WHITE ANALYTICAL LABORATORIES LTD.

Pen

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO.

0513

DATE:

February 29, 1988

SAMPLE(S) OF:

Core (25)

RECEIVED:

February 1988

SAMPLE(S) FROM:

Boston Bay Mines Ltd.

Sample No.	Cu %	Ni %
20267 2575 767 20270 (760 - 270) 20274 767 - 774 20280 (270 - 280) 20280.5 274 280.5 20290 (280 270) 20300 20310 20320 20330 20340 20350 20360 20370 20380 20390 20400 20410 20420 20430 20450 20470 20470 20479	0.001 0.001 0.012 0.004 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.106 0.120 0.118 0.078 0.114 0.088 0.110 0.106 0.102 0.100 0.094 0.064 0.056 0.058 0.058 0.054 0.062 0.062 0.062 0.062 0.062 0.052
E O 47 3		

ND denotes not detected

NOTE:

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHELTS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSET AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

MADELEINE MINES LTD.

II

TIB LAKE PROPERTY

TABLE OF CONTENTS

- 1. SUMMARY
 - A. The Property and its History
 - B. Geology and Mineralogy
- 2. THE EXPLORATION PROGRAMME
 - A. The Diamond Drilling Programme
- 3. COST INCURRED

Appendix B

Figure 1 - Location Map

Figure 2 - Drill Hole Plan and Claim Group

Figure 3 - Drill Hole Plan and Max-Min

Electromagnetic Conductor Check (in pocket)

Logs & Assays in pocket

MADELEINE MINES LTD.

II

TIB LAKE PROPERTY

Schoor, Ranta, Kuehner, Bumbu Claim Groups

Tib Lake - Armistice Lakes Area Thunder Bay Mining Division Ontario

OMEP PROGRAMME

January 1 - December 31, 1988

1. SUMMARY

A. The Property and its History

The property is comprised of four contiguous groups of optioned claims. Altogether there are 190 unpatented mining claims as follows:


Tib/Armistice/Manfred Schoor Claim numbers 908542 to 908553 (inclusive), 908555 to 908561 (inclusive), 909497 to 909519 (inclusive), 909521 to 909535 (inclusive), 909554, 926816 to 926821 (inclusive), 926831 to 926839 (inclusive), 961366 to 961370 (inclusive), 962987 to 962988 (inclusive), 962999, 963000, 986822 to 986824 (inclusive).

Ranta Claim numbers 464199, 730823, 730824, 746272 to 746276 (inclusive), 746583, 746586, 746588 to 746589 (inclusive), 746592 to 746595 (inclusive), 759925 to 759928 (inclusive), 759931 to 759934 (inclusive).

Kuehner Claim numbers 645906 to 645915 (inclusive), 845583.

Bumbu Claim numbers 888148 to 888166 (inclusive), 908752 to 908791 (inclusive), 909201 to 909211 (inclusive).

The Tib Lake Property is located approximately 65 miles northwest of Thunder Bay, Ontario in the Tib Lake - Armistice Lake Area of the Thunder Bay Mining Division. It is

approximately 10 miles northwest of Madeleine Mines Lac des Iles Property. (See Figure 1, Appendix B).

It is also 20 miles due west of Mile 60 on Highway 527; and can be reached by the 12 mile access road to Madeleine Mines Lac des Iles Property and thence by a series of logging roads.

It may also be reached by float or ski equipped aircraft from Thunder Bay.

The claim-group overlies the major portion of a gabbro intrusive which is one of several forming a roughly circular structure approximately 30 km in diameter which includes the Lac des Iles gabbro complex. Important deposits of platinum-palladium mineralization associated with copper-nickel sulphides have been outlined within the Lac des Iles complex, so that the similarities to the possible association with the Tib Lake intrusive have attracted past exploration activities to the area.

Initial exploration activities of the area were directed to copper-nickel sulphide showings which is evidenced in old trenches in claims T.B. 845583 and T.B. 730824 within 250 metres of the east shore of Laurion Lake.

In 1972, therefore, Tex-Sol Explorations carried out magnetic and electromagnetic surveys in the western section of the South Group of claims, exploring for massive sulphide Cu-Ni In 1975, Leeward Mines Limited re-sampled the old showings of Laurion Lake, the results of which returned several anomalously PGM values. Steppingstone Explorations high conducted a magnetometer and electromagnetic (VLF) survey which would have covered the most southwesterly five claims of the North Group of claims. This company subsequently drilled four holes totaling 350 metres in 1976, with no sampling of the core reported.

In 1978, K. Kuhner diamond drilled one hole to a depth of 150 metres directed to intersect the mineralization occurring within the old trenches located approximately 250 metres east of the east shore of Lake Laurion, with no significant values encountered. Westmin Resources followed with work over a 10-claim group to the east and north of the Kuhner claim in an attempt to trace any extensions of the mineralization.

The exploration and prospecting activities carried out on the various sections indicate that sulphide mineralization in the form of pyrite, pyrrhotite and chalcopyrite is quite widespread, although a greater concentration would appear to be in the southern section of the property associated with coarse or pegmatitic gabbro. The best PGM mineralization encountered has been located within or in the vicinity of the old trenches of the eastern side of Laurion Lake where selected character samples have indicated PGM values as high as 0.16 oz/ton.

B. <u>Geology and Mineralogy</u>

The claim group covers the major portion of the Tib Lake intrusive which is a predominantly mafic intrusive roughly 7 km by 5 km in dimensions, with its long axis north-south. The geological work to date has indicated the mafic rock to vary from norites to pyroxene-hornblende gabbro, locally displaying layering which trends east-west and dips 40 to 80 degrees north. The gabbros in the northern section of the property tend to be fine to medium-grained, whereas the gabbros to the south display medium to coarse textures with pods of pegmatitic gabbro, indicating probable differentiation.

Sulphide mineralization in the form of pyrite, pyrrhotite and chalcopyrite occurs within sections of the gabbro, predominantly associated with the medium-to-coarse phase of the gabbro. Two sulphide showings containing PGM occur on claims T.B. 845583 and 730824, approximately 240 metres east of the shore of Lake Laurion, which have been sampled several times with the best selected character sample grading 0.16 oz/ton PGM.

2. THE EXPLORATION PROGRAMME

A. The Diamond Drilling Programme

In 1987, a grid was cut over the Tib Lake claim group, with grid lines established at 300 foot intervals, stations at 100 foot spacing, with 50 foot stations in anomalous areas.

The Group was covered by a magnetic survey; and by an electromagnetic survey employing the Max-Min instrument in a horizontal-coil configuration.

The electromagnetic survey located several good conductors on claims 908763, 908764 and 908778. Figure 3, Appendix B.

During February and March 1988, four diamond drill holes, T88-1, 2, 3 and 4, were bored to investigate the above conductors. In the 4 holes, a total of 2,061 feet were diamond drilled.

The drill holes intersected gabbro, quartz-gabbro, mafic metavolcanics and a few felsic (granitic) dikes. Figures 2 and logs - Appendix B.

Locations and lengths of the drill holes are as follows:

<u>Hole No.</u>	<u>Location</u>	Length <u>(feet)</u>
T88-1 T88-2 T88-3 T88-4	L93E 152+50N L90E 148+60N L84E 144+90N L78E 151+90N	587 467 550 457
		2,061

This drilling was conducted by Oakley Drilling, #602-4676 Yew Street, Vancouver, B.C. V6L 2J6 under the supervision of H.A. Pearson, P.Eng. and W.B. Murphy.

The conductivity was provided by sulphides principally pyrite and pyrrhotite - but with minor amounts of chalcopyrite.

A total of 213 samples were taken; and these were assayed for gold, platinum, palladium, copper and nickel.

Only traces of gold, platinum, palladium were detected; and negligible amounts of copper and nickel.

No further work is recommended for the Tib Lake Property.

3. COST INCURRED

A total of \$74,812 was expended on the Tib Lake group properties during the period January 1 - December 31, 1988. A breakdown of the apportioned cost accompanies the application for the Ontario Mineral Exploration Programme Grant. \bigcirc

H. A. PEARSON

TOVINGE OF

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 1 of 4

DATE: April 6, 1988

SAMPLE(S) OF: Core (108)

RECEIVED: April 1988

SAMPLE(S) FROM: Boston Bay Mines Ltd.

TIB LK. PROPERT

D.DH. T-88-1

Sample No. Footage	<u>Au Oz.</u>	Pt. Oz.	Pd. 0z.	Cu %	Ni %
T10017 /0'-17'	Trace	Trace	Trace	0.008	0.003
. 27 <i>17 - 27</i>	Trace	Trace	Trace	0.003	0.002
37 <i>27-3</i> 7	Trace	Trace	Trace	0.003	0.002
47 37-47	Trace	Trace	Trace	0.004	0.003
56 47-56		Trace	Trace	0.003	0.002
66 56-66	Trace	Trace	Trace	0.002	0.001
76 66 - 76	Trace	Trace	Trace	0.002	0.002
86 76-86	Trace	Trace	Trace	0.002	0.001
96 <i>86 - 96</i>	Trace	Trace .	Trace	0.002	0.001
T10106 96-106	Trace	Trace	Trace	0.002	0.001
16 106-116		Trace	Trace	0.002	0.001
26 116-126	Trace	Trace	Trace	0.001	0.001
36 126-136	Trace	Trace	Trace	0.003	0.002
46 136-146		Trace	Trace	0.004	0.002
51 146-151	Trace	Trace	Trace	0.005	0.004
57 151-157	Trace	Trace	Trace	0.019	0.005
62.8 157-162	gTrace	Trace	Trace	0.011	0.004
69 /628-169		Trace	Trace	0.004	0.003
76 169-176	Trace	Trace	Trace	0.010	0.006
86 176-186	Trace	Trace	Trace	0.010	0.005
97 186-197	Trace	Trace	Trace	0.013	0.004
T10207 197-207		Trace	Trace	0.009	0.004
17 207-217	Trace	Trace	Trace	0.007	0.003
27 217-227		Trace	Trace	0.018	0.004
37 227-237		Trace	Trace	0.009	0.003
47 237-247	Trace	Trace	Trace	0.016	0.005
57 247-257	Trace	Trace	Trace	0.002	0.002

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 4

NO. 0716

DATE: April 6, 1988

SAMPLE(S) OF: Core (108)

RECEIVED: April 1988

SAMPLE(S) FROM:

Boston Bay Mines Ltd.

TIB LK . PROPERTY

T 38-1

Sample No. Footage Au Oz.	Pt. Oz.	Pd. Oz.	Cu %	Ni %
T10267 257-267Trace	Trace	Trace	0.002	0.002
77 267 - 277 Trace	Trace	Trace	0.002	0.002
87 <u>277- 287</u> Trace	Trace	Trace	0.002	0.002
97 <i>287- 297</i> Trace	Trace	Trace	0.002	0.001
T10307 297-307Trace	Trace	Trace	0.002	0.002
17 307-317 Trace	Trace	Trace	0.004	0.003
27 <i>317-327</i> Trace	Trace	Trace	0.005	0.004
37 327-337 Trace	Trace	Trace	0.004	0.003
47 <u>337-34</u> 7 Trace	Trace	Trace	0.003	0.004
57 347-357 Trace	Trace	Trace	0.002	0.002
67 357-367 Trace	Trace	Trace	0.003	0.001
77 <i>367-37</i> 7 Trace	Trace	Trace	0.001	0.002
87 377-387 Trace	Trace	Trace	0.002	0.001
97 387-397 Trace	Trace	Trace	0.002	0.001
T10407 <i>397-407</i> Trace	Trace	Trace	0.002	0.003
17 407-417 Trace	Trace	Trace	0.002	0.002
27 417-427 Trace	Trace	Trace	0.002	0.001
37 427-437 Trace	Trace	Trace	0.002	0.001
47 <i>437-44</i> 7 Trace	Trace	Trace	0.002	0.001
57 <i>447-45</i> 7 Trace	Trace	Trace	0.002	0.001
67 457-467 Trace	Trace	Trace	0.003	0.003
77 <i>467-4-</i> 77 Trace	Trace	Trace	0.007	0.005
87 <i>477- 48</i> 7 Trace	Trace	Trace	0.011	0.008
97 <i>487-497</i> Trace	Trace	Trace	0.017	0.006
T10507 497 - 507 Trace	Trace	Trace	0.016	0.006
17 507-517 Trace	Trace	Trace	0.014	0.010
27 <i>5</i> 17- <i>5</i> 27′ Trace	Trace	Trace	0.007	0.004

BELL-WHITE ANALYTICAL LABORATORIES LTD.

BELL-WHITE ANALYT

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 3 of 4

NO. 0716

DATE: April 6, 1988

SAMPLE(S) OF: Core (108)

RECEIVED: April 1988

SAMPLE(S) FROM: Boston Bay Mines Ltd.

TIB LAKE PROPERTY

T88-1 T88-Z

Sample No. Footage Au Oz.	<u>Pt. Oz.</u>	<u>Pd. 0z.</u>	Cu %	Ni %
T10537 <i>527-5</i> 37 Trace	Trace	Trace	0.009	- 0.004
47 537-547 Trace	Trace	Trace	0.008	0.004
57 <u>547-557</u> Trace	Trace	Trace	0.009	0.004
67 <i>557-5</i> 67 Trace	Trace	Trace	0.012	0.005
77 567-577 Trace 7-88	7_/ Trace	Trace	0.013	0.005
8/577-587 Trace	Trace	<u> Irace </u>	0.013	0.006
T20017 9.5-17' Trace 788		Trace	0.007	0.003
27 17 - 27 Trace	Trace	Trace	0.005	0.002
37 27- 3 7 Trace	Trace	Trace	0.004	0.002
47 37-47 Trace	Trace	Trace	0.003	0.002
57 47-57 Trace	Trace	Trace	0.002	0.001
67 57-67 Trace 77 67-77 Trace	Trace	Trace	0.002	0.001
77 67-77 Trace	Trace	Trace	0.003	0.006
87 77-87 Trace	Trace	Trace	0.004	0.013
97.5 87-97.5 Trace	Trace	Trace	0.003	0.002
T20102.5 97.5-102.5Trace	Trace	Trace	0.014	0.003
T20111 1025-111 Trace	Trace	Trace	0.016	0.008
19 111-119 Trace	Trace	Trace	0.017	0.008
T20127.5 //g-/27.5 Trace	Trace	Trace	0.018	0.008
T20130.5 1275-130.5 Trace	Trace	Trace	0.156	0.008
37 <i>130.5-137</i> Trace	Trace	Trace	0.011	0.005
47 137-147 Trace	Trace	Trace	0.008	0.003
57 147-157 Trace	Trace	Trace	0.005	0.002
68 157-168. Trace	Trace	Trace	0.009	0.002
79 168179 Trace	Trace	Trace	0.007	0.004
88 179-188. Trace	Trace	Trace	0.001	0.001
96 <i> 88- 96</i> Trace	Trace	Trace	0.001	0.001

BELL-WHITE ANALYTICAL LABORATORIES LTD.

Pen D

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 4 of 4

NO. 0716

DATE: April 6, 1988

SAMPLE(S) OF: Core (108)

RECEIVED:

April 1988

SAMPLE(S) FROM: Boston Bay Mines Ltd.

TIB LAKE PROPERT

T88-Z

Sample No. Footage Au Oz.	Pt. 0z.	Pd. Oz.	<u>Cu %</u>	Ni %
T20207 <i>196- 20</i> 7 Trace	Trace	Trace	0.004	0.004
17 207-217 Trace	Trace	Trace	0.010	0.006
27 Z17-227 Trace	Trace	Trace	0.011	0.005
37 ZZ7- Z37 Trace	Trace	Trace	0.009	0.005
47 237-247 Trace	Trace	Trace	0.005	0.002
57 <i>247-25</i> 7 Trace	Trace	Trace	0.004	0.002
67 257-267 Trace	Trace	Trace	0.003	0.002
77 267-277 Trace	Trace	Trace	0.003	0.002
87 277-287 Trace	Trace	Trace	0.004	0.002
97 297-297 Trace	Trace	Trace	0.004	0.003
T20307 <i>297-3</i> 07 Trace	Trace	Trace	0.003	0.001
17 <i>307-317</i> Trace	Trace	Trace	0.001	0.001
27 <u>3</u> 17-327 Trace	Trace	Trace	0.002	0.001
37 327-337 Trace 47 337-347 Trace	Trace	Trace	0.002	0.001
47 337- 347 Trace	Trace	Trace	0.002	0.001
57 347-357 Trace	Trace	Trace	0.006	0.003
67 357-367 Trace	Trace	Trace	0.012	0.005
77 <i>367_377</i> Trace	Trace	Trace	0.015	0.006
87 <u>377</u> -387Trace	Trace	Trace	0.004	0.002
97 387-39 7 Trace	Trace	Trace	0.002	0.001
T20407 <i>397-407</i> Trace 17 <i>407-417</i> Trace	Trace	Trace	0.004	0.002
17 407-417 Trace	Trace	Trace	0.003	0.001
27 <i>417- 4</i> 27 Trace	Trace	Trace	0.003	0.001
37 <i>427-437</i> Trace	Trace	Trace	0.008	0.003
47 <i>437-447</i> Trace	Trace	Trace	0.008	0.004
56 <i>447-456</i> Trace	Trace	Trace	0.008	0.004
67 456-467 Trace	Trace	Trace	0.001	0.002

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187.

HAILEYBURY, ONTARIO

Certificate of Analysis

Page 1 of 3

NO. 0682

DATE:

March 24, 1988

SAMPLE(S) OF:

Core (80)

RECEIVED: March 1988

SAMPLE(S) FROM:

Boston Bay Mines Ltd.

TIB LAKE PROPERT

T88-3

Sample No. Footage Au oz.	Pt oz.	Pd oz.	Cu %	Ni %_
T30020 9 <u>'-20'</u> Trace	Trace	Trace	0.003	0.001
T30026.820-26.8 Trace	Trace	Trace	0.002	0.001
T30028 268-28 Trace	Trace	Trace	0.220	0.001
T30035 <i>z8-35'</i> Trace	Trace	Trace	0.002	0.001
T30045 35'-45' Trace	Trace	Trace	0.004	0.002
T30055 45-55 Trace	Trace	Trace	0.005	0.003
T30065 <i>55-65</i> Trace	Trace	Trace	0.004	0.002
T30075 65-75 Trace	Trace .	Trace	0.010	0.004
T30085 <i>75-85</i> Trace	Trace	Trace	0.013	0.004
T30095 <i>85-9</i> 5 Trace	Trace	Trace	0.013	0.004
T30105 95-105 Trace	Trace	Trace	0.014	0.005
T30115 <i>Jos-IIS</i> Trace	Trace	Trace	0.012	0.004
T30125 //5-/25 Trace	Trace	Trace	0.012	0.003
T30135 125-135 Trace	Trace	Trace	0.017	0.005
T30145 /35-/45 Trace	Trace	Trace	0.015	0.004
T30155 145-155 Trace	Trace	Trace	0.012	0.002
T30165 155-165 Trace	Trace	Trace	0.007	0.005
T30175 165-175 Trace	Trace	Trace	0.004	0.005
T30185 175-185 Trace	Trace	Trace	0.011	0.003
T30195 / <i>85-195</i> Trace	Trace	Trace	0.011	0.004
130205 /95-205 Trace	Trace	Trace	0.013	0.003
T30215 <i>Zos-zis</i> Trace	Trace	Trace	0.018	0.003
T30225 2/5-225 Trace	Trace	Trace	0.011	0.006
T30235 225-235 Trace	Trace	Trace	0.006	0.003
T30245 <i>Z3</i> 5- 24 5 Trace	Trace	Trace	0.019	0.003
T30255 245-255 Trace	Trace	Trace	0.011	0.003
T30265 <u>255-265</u> Trace	Trace	Trace	0.007	0.005

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 3

NO.

0682

DATE:

March 25, 1988

SAMPLE(S) OF:

Core (80)

RECEIVED: March 1988

SAMPLE(S) FROM:

Boston Bay Mines Ltd.

TIB LAKE PROPERTY

T88-3

Sample No. Footage Au oz.	Pt oz.	Pd oz.	<u>Cu %</u>	Ni %
T30275 265-275 Trace	Trace	Trace	0.003	0.004
	Trace	Trace	0.007	0.004
T30 <u>285 <i>275-285</i> Tr</u> ace T30295 <i>285-</i> 2 <i>9</i> 5 Trace	Trace	Trace	0.005	0.005
T30305 <i>Z95-305</i> Trace	Trace	Trace	0.005	0.002
	Trace	Trace	0.004	0.001
T30315 305-3/5 Trace				0.002
T30327 <i>3/5-327</i> Trace	Trace	Trace	0.005	
T30337 327-337 Trace	Trace	Trace	0.006	0.002
T30347 <i>3</i> 37-347 Trace	Trace	Trace	0.005	0.002
T30357 <i>347-357</i> Trace	Trace	Trace	0.004	0.002
T30367 <u>357-367</u> Trace	Trace	Trace	0.002	0.001
T30377 <i>367-377</i> Trace	Trace	Trace	0.002	0.001
T30387 Z77-387 Trace	Trace	Trace	0.003	0.001
T30397 387-397 Trace	Trace	Trace	0.004	0.001
T30407 397-407 Trace	Trace	Trace	0.003	0.001
T30417 407-417 Trace	Trace	Trace	0.003	0.001
T30417 407-417 Trace T30427 417-427 Trace	Trace	Trace	0.004	0.001
T30437 427-437 Trace	Trace	Trace	0.004	0.002
T30447 437-447 Trace	Trace	Trace	0.004	0.001
T30457 447-457 Trace	Trace	Trace	0.004	0.001
T30467 451-467 Trace	Trace	Trace	0.008	0.004
T30477 467-477 Trace	Trace	Trace	0.017	0.005
T30487 477-487 Trace	Trace	Trace	0.003	0.001
T30494 487-494 Trace	Trace	Trace	0.003	0.002
T30504 494-504 Trace	Trace	Trace	0.003	0.002
	Trace	Trace	0.007	0.003
T30514 54-5/4 Trace	Trace	Trace	0.003	0.001
T30524 5/4 - 524 Trace	Trace	Trace	0.003	0.001
T30534 <i>524-534</i> Trace	irace	irace	0.003	0.001

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 3 of 3

NO. 0682

rage 5 or 5

March 25, 1988

SAMPLE(S) OF:

Core (80)

RECEIVED:

DATE:

March 1988

SAMPLE(S) FROM:

Boston Bay Mines Ltd.

TIB LAKE PROPERTY

T88-3 T88-4

	100-4					
	Sample No. Footage Au	0 Z .	Pt oz.	Pd oz.	Cu %	Ni %
	T30542 <i>534-542</i> Tra	ice.	Trace	Trace	0.002	0.001
	T30550 <i>542-55</i> Tra			Trace		0.001
	T40245 235'-7451ra	1CP	Trace	Trace		0.002
	140255 245-255 Tra	ICA 738-4	Trace	Trace		0.004
	T40265 255.2650.0		Trace	Trace		0.002
·	T40268.5 265- 268.5 Tr.		Trace	Trace		0.001
:	T40271.5 z68.5-27/.5Tra		Trace	Trace		0.001
	T40280 271.5-280 Tra		Trace	Trace		0.001
	T40290 200-290 Tra		Trace	Trace	0.003	0.001
	T40300 290-300 Tra		Trace	Trace		0.002
	T\$0310 300-310 Tra	100	Trace	Trace		0.002
	T40320 3/0-320 0.0	008	Trace	Trace		0.001
	T40330 320-330 Tra		Trace	Trace		0.001
	T40340 330-340 Tra	ACC	Trace	Trace	0.003	0.001
	T40350 340-350 Tra	3 C E	Trace	Trace		0.002
	T40356.539-356.5Tra		Trace	Trace	0.005	0.002
	T40367.53565-367.5Tra		Trace	Trace	0.004	0.001
	T40378.53675-378.5fra	ace ace	Trace	Trace	0.004	0.001
	140387 378.5-387 Ira	ace	Trace	Trace	0.006	0.001
	T40397 387-377 Tra	ace	Trace	Trace		0.001
	T40407 397-407 Tra	ace	Trace	Trace	0.006	0.001
	T40417 407-417 Tra	ice	Trace	Trace	0.007	0.001
	T40427 417-427 Tra	ace	Trace	Trace		0.001
	T40437 427-437 Tra	ace	Trace	Trace	0.008	0.001
	T40447 437-447 Tra	ace	Trace	Trace	0.009	0.001
	T40457 447-457 Tra	ace	Trace	Trace	0.008	0.001

BELL-WHITE ANALYTICAL LABORATORIES LTD.

PER

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO.

0657

DATE:

March 21, 1988

SAMPLE(S) OF:

Core (25)

RECEIVED: March 1988

SAMPLE(S) FROM:

Boston Bay Mines Ltd.

TIB LAKE PROPERTY

T88-4

Sample No. Footage Au oz.	Pt oz.	Pd oz.	<u>Cu %</u>	<u>Ni %</u>
T40020 9-20 Trace	Trace	Trace	0.009	0.004
T40030 <i>20-3</i> o Trace	Trace	Trace	0.006	0.004
T40040 30-40 Trace	Trace	Trace	0.002	0.002
T40050 40-50 Trace	Trace	Trace	0.003	0.002
T40060 <u>50-</u> 60 Trace	Trace	Trace	0.004	0.002
T40070 60-70 Trace	Trace	Trace	0.003	0.003
T40076 70-76 Trace	Trace	Trace	0.004	0.002
T40082 <i>76-8</i> 2 Trace	Trace	Trace	0.003	0.003
T40085.582-85.5Trace	Trace	Trace	0.016	0.003
T40095 <i>85.5-95</i> : Trace	Trace	Trace	0.002	0.002
T40105 95-105 Trace	Trace	Trace	0.004	0.002
T40115 105-115 Trace	Trace	Trace	0.004	0.001
T40125 115-125 Trace	Trace	Trace	0.003	0.001
T40135 /25-/35 Trace	Trace	Trace	0.003	0.001
T40145 <i>135-145</i> Trace	Trace	Trace	0.002	0.001
T40155 /45-155 Trace	Trace	Trace	0.002	0.001
T40165 /55-/65 Trace	Trace	Trace	0.003	0.003
T40175 <i>165-175</i> Trace	Trace	Trace	0.003	0.001
T40180.5175-180.5Trace	Trace	Trace	0.002	0.001
T40186 /80,5-186. Trace	Trace	Trace	0.003	0.002
T40195 /86-/95 Trace	Trace	Trace	0.002	0.001
T40205 195-Zo5 Trace	Trace	Trace	0.003	0.001
T40215 205-215 Trace	Trace	Trace	0.002	0.001
T40225 2/5-zz5.Trace	Trace	Trace	0.003	0.001
T40235 225-235 Trace	Trace	Trace	0.003	0.001

BELL-WHITE ANALYTICAL LABORATORIES LTD.

0716

NO.

Bell - White analytical laboratories Ltd.

Certificate of Analysis

Page 1 of 4

DATE: April 6, 1988

SAMPLE(S) OF: Core (108) RECEIVED: April 1988

SAMPLE(S) FROM: Boston Bay Mines Ltd.

T-88-1

Sample No.	Au Oz.	Pt. 0z.	Pd. Oz.	Cu %	Ni %
T10017 10'-17'	Trace	Trace	Trace	0.008	0.003
27	Trace	Trace	Trace	0.003	0.002
37	Trace	Trace	Trace	0.003	0.002
. 47	Trace	Trace	Trace	0.004	0.003
56	Trace	Trace	Trace	0.003	0.002
[:] 66	Trace	Trace	Trace	0.002	0.001
76	Trace	Trace	Trace	0.002	0.002
86	Trace	Trace	Trace	0.002	0.001
96	Trace	Trace	Trace	0.002	0.001
T10106	Trace	Trace	Trace	0.002	0.001
16	Trace	Trace	Trace	0.002	0.001
26	Trace	Trace	Trace	0.001	0.001
36	Trace	Trace	Trace	0.003	0.002
46	Trace	Trace	Trace	0.004	0.002
51	Trace	Trace	Trace	0.005	0.004
. 57	Trace	Trace	Trace	0.019	0.005
62.8	Trace	Trace	Trace	0.011	0.004
69	Trace	Trace	Trace	0.004	0.003
76	Trace	Trace	Trace	. 0.010	0.006
86	Trace	Trace	Trace	0.010	0.005
97	Trace	Trace	Trace	0.013	0.004
T10207	Trace	Trace	Trace	0.009	0.004
17	Trace	Trace	Trace	0.007	0.003
27	Trace	Trace	Trace .	0.018	0.004
37	Trace	Trace	Trace	0.009	0.003
47	_,Trace	Trace	Trace	0.016	0.005
57 247'-25 '	7 Irace	Trace	Trace	0.002	0.002

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 4

NO. 0716

DATE: April 6, 1988

SAMPLE(S) OF: Core (108)

RECEIVED: April 1988

SAMPLE(S) FROM: Boston Bay Mines Ltd.

T-88-1

Sample No.	Au Oz.	Pt. Oz.	Pd. Oz.	Cu %	Ni %
T10267 257- 267'	Trace	Trace	Trace	0.002	0.002
77	Trace	Trace	Trace	0.002	0.002
87	Trace	Trace	Trace	0.002	0.002
97	Trace	Trace	Trace	0.002	0.001
T10307	Trace	Trace	Trace	0.002	0.002
. 17	Trace	Trace	Trace	0.004	0.003
27	Trace	Trace	Trace	0.005	0.004
37	Trace	Trace	Trace	0.004	0.003
4 7	Trace	Trace	Trace	0.003	0.004
57	Trace	Trace	Trace	0.002	0.002
67	Trace	Trace	Trace	0.003	0.001
77	Trace	Trace	Trace	0.001	0.002
87	Trace	Trace	Trace	0.002	0.001
9 7	Trace	Trace	Trace	0.002	0.001
T10407	Trace	Trace	Trace	0.002	0.003
١٦	Trace	Trace	Trace	0.002	0.002
27	Trace	Trace	Trace	0.002	0.001
37	Trace	Trace	Trace	0.002	0.001
4 7	Trace	Trace	Trace	0.002	0.001
5 7	Trace	Trace	Trace	0.002	0.001
6 7	Trace	Trace	Trace	0.003	0.003
77	Trace	Trace	Trace	0.007	0.005
87	Trace	Trace	Trace	0.011	0.008
97	Trace	Trace	Trace	0.017	0.006
T10507	Trace	Trace	Trace	0.016	0.006
17	Trace	Trace	Trace	0.014	0.010
27 517-527	Trace	Trace	Trace	0.007	0.004

BELL-WHITE ANALYTICAL LABORATORIES LTD.

A

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 3 of 4

NO. 0716

DATE: April 6, 1988 .

SAMPLE(S) OF: Core (108)

RECEIVED: April 1988

SAMPLE(S) FROM: Boston Bay Mines Ltd.

T88-1 T-88-2

Sample No.	Au Oz.	Pt. 0z.	Pd. 0z.	Cu %	Ni %
110537 <i>527-537</i>	Trace	Trace	Trace	0.009	0.004
47	Trace	Trace	Trace	0.008	0.004
5 7	Trace	Trace	Trace	0.009	0.004
. 67	Trace	Trace	Trace	0.012	0.005
7.7	Trace	Trace	Trace	0.013	0.005
87 577-587	_Trace	Trace	Trace	0.013	0.006
T20017 9.5'-17'	Trace	Trace	Trace	0.007	0.003
2 7	Trace	Trace	Trace	0.005	0.002
37	Trace	Trace	Trace	0.004	0.002
4 7	Trace	Trace	Trace	0.003	0.002
57	Trace	Trace	Trace	0.002	0.001
67 .	Trace	Trace	Trace	0.002	0.001
77	Trace	Trace	Trace	0.003	0.006
87	Trace	Trace	Trace	0.004	0.013
97.5	Trace	Trace	Trace	0.003	0.002
T20102.5	Trace	Trace	Trace	0.014	0.003
T20111	Trace	Trace	Trace	0.016	0.008
19	Trace	Trace	Trace	0.017	0.008
T20127.5	Trace	Trace	Trace	0.018	0.008
T20130.5	Trace	Trace	Trace	0.156	0.008
3 7	Trace	Trace	Trace	0.011	0.005
4 7	Trace	Trace	Trace	0.008	0.003
5 7	Trace	Trace	Trace	0.005	0.002
68	Trace	Trace	Trace	0.009	0.002
7 9	Ţrace	Trace	Trace	0.007	0.004
88	Trace	Trace	Trace	0.001	0.001
96 188 - 196	'Trace	Trace	Trace	0.001	0.001

BELL-WHITE ANALYTICAL LABORATORIES LTD.

PER PER ANALYTICA

NO. 0716

Bell - White analytical laboratories Ltd.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 4 of 4

DATE: April 6, 1988

SAMPLE(S) OF: Core (108)

RECEIVED: April 1988 .

Te	98-Z				
ample No.	Au Oz.	Pt. 0z.	Pd. Oz.	<u>Cu %</u>	Ni %
T20207 196-207	Trace	Trace	Trace	0.004	0.004
17	Trace	Trace	Trace	0.010	0.006
2 <i>7</i> 3 <i>7</i>	Trace Trace	Trace Trace	Trace Trace	0.011 0.009	0.009
47	Trace	Trace	Trace	0.009	0.005
57	Trace	Trace	Trace	0.004	0.002
6 <i>7</i> 7 <i>7</i>	Trace	Trace	Trace	0.003	0.00
87	Trace Trace	Trace Trace	Trace Trace	0.003 0.004	0.00
97	Trace	Trace	Trace	0.004	0.00
T20307	Trace	Trace	Trace	0.003	0.00
17 . 27	Trace Trace	Trace Trace	Trace Trace	0.001 0.002	0.00
37	Trace	Trace	Trace	0.002	0.00
47	Irace	Trace	Trace	0.002	0.00
5 7 6 7	Trace Trace	Trace Trace	Trace	0.006	0.00
77	Trace	Trace	Trace Trace	0.012 0.015	0.00
87	Irace	Trace	Trace	0.004	0.00
97 T20407	Trace Trace	Trace Trace	Trace Trace	0.002 0.004	0.00
17	Trace	Trace	Trace	0.004	0.00
27	Trace	Trace	Trace	0.003	0.00
	Tace		10162		
200 (1997) (1997	anart	Traco			
The state of the s					
		S. S			
		T-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			
I I					
11					
11	1 1 11 11 1	1 1 11 1	1 1 111 1	11 111111	11 111

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 4 of 4

NO. 0716

DATE: April 6, 1988

SAMPLE(S) OF: Core (108)

RECEIVED:

April 1988

SAMPLE(S) FROM: Boston Bay Mines Ltd.

T-88-Z

Sample No.	Au Oz.	Pt. 0z.	Pd. Oz.	<u>Cu %</u>	Ni %
T20207 196-207	Trace	Trace	Trace	0.004	0.004
17	Trace	Trace	Trace	0.010	0.006
27	Trace	Trace	Trace	0.011	0.005
3 7	Trace	Trace	Trace'	0.009	0.005
4 7	Trace	Trace	Trace	0.005	0.002
5 7	Trace	Trace	Trace	0.004	0.002
67	Trace	Trace	Trace	0.003	0.002
77	Trace	Trace	Trace	0.003	0.002
87	Trace	Trace	Trace	0.004	0.002
97	Trace	Trace	Trace	0.004	0.003
T20307	Trace	Trace	Trace	0.003	0.001
17 .	Trace	Trace	Trace	0.001	0.001
27	Trace	Trace	Trace	0.002	0.001
3 7	Trace	Trace	Trace	0.002	0.001
47	Trace	Trace	Trace	0.002	0.001
5 7	Trace	Trace	Trace	0.006	0.003
67	Trace	Trace	Trace	0.012	0.005
77	Trace	Trace	Trace	0.015	0.006
87	Trace	Trace	Trace	0.004	0.002
97	Trace	Trace	Trace	0.002	0.001
T20407	Trace	Trace	Trace	0.004	0.002
1 7	Trace	Trace	Trace	0.003	0.001
2 7	Trace	Trace	Trace	0.003	0.001
3 7	Trace	Trace	Trace	0.008	0.003
4 7	Trace	Trace	Trace	0.008	0.004
56	Trace	Trace	Trace	0.008	0.004
67456-467	Trace	Trace	Trace	0.001	0.002

BELL-WHITE ANALYTICAL LABORATORIES LTD. IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

Al

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 1 of 3

NO. 0682

DATE:

March 24, 1988

SAMPLE(S) OF:

Core (80)

RECEIVED: March 1988

SAMPLE(S) FROM:

Boston Bay Mines Ltd.

T88-3

Sample No.	Au oz.	Pt oz.	Pd oz.	Cu %	Ni %
T30020 9'-2	% _Trace	Trace	Trace	0.003	0.001
T30026.8	Trace	Trace	Trace	0.002	0.001
T30028	Trace	Trace	Trace	0.220	0.001
T30035	Trace	Trace	Trace	0.002	0.001
T30045	Trace	Trace	Trace	0.004	0.002
T30055	Trace	Trace	Trace	0.005	0.003
T30065	Trace	Trace	Trace	0.004	0.002
T30075	Trace	Trace	Trace	0.010	0.004
T30085	Trace	Trace	Trace	0.013	0.004
T30095	Trace	Trace	Trace	0.013	0.004
T30105	Trace	Trace	Trace	0.014	0.005
T30115	Trace	Trace	Trace	0.012	0.004
T30125	Trace	Trace	Trace	0.012	0.003
T30135	Trace	Trace	Trace	0.017	0.005
T30145	Trace	Trace	Trace	0.015	0.004
T30155	Trace	Trace	Trace	0.012	0.002
T30165	Trace	Trace	Trace	0.007	0.005
T30175	Trace	Trace	Trace	0.004	0.005
T30185	Trace	Trace	Trace	0.011	0.003
T30195	Trace	Trace	Trace	0.011	0.004
T30205	Trace ·	Trace	Trace	0.013	0.003
T30215	Trace	Trace .	Trace	0.018	0.003
T30225	Trace	Trace	Trace	0.011	0.006
T30235	Trace	Trace	Trace	0.006	0.003
T30245	Trace	Trace	Trace	0.019	0.003
T30255 .	Trace	Trace	Trace	0.011	0.003
T30265 255 -		Trace	Trace	0.007	0.005

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 3

NO. 0682 DATE:

March 25, 1988

SAMPLE(S) OF:

Core (80)

RECEIVED: March 1988

SAMPLE(S) FROM:

Boston Bay Mines Ltd.

Sample No.	Au oz.	Pt oz.	Pd oz.	Cu %	Ni %.
T30275265-	<i>275</i> Trace	Trace	Trace	0.003	0.004
T30285	Trace	Trace	Trace	0.007	0.004
T30295	Trace	Trace	Trace	0.005	0.005
T30305	Trace	Trace	Trace	0.005	0.002
T30315	Trace	Trace	Trace	0.004	0.001
T30327	Trace	Trace	Trace	0.005	0.002
T30337	Trace	Trace	Trace	0.006	0.002
T30347	Trace	Trace	Trace	0.005	0.002
. T30357	Trace	Trace	Trace	0.004	0.002
T30367	Trace	Trace	Trace	0.002	0.001
T30377	Trace	Trace	Trace	0.002	0.001
T30387	Trace	Trace	Trace	0.003	0.001
T30397	Trace	Trace	Trace	0.004	0.001
T30407	Trace	Trace	Trace	0.003	0.001
T30417	Trace	Trace	Trace	0.003	0.001
T30427	Trace	Trace	Trace	0.004	0.001
T30437	Trace	Trace	Trace	0.004	0.002
T30447	Trace ·	Trace	Trace	0.004	0.001
T30457	Trace	Trace .	Trace	0.004	0.001
T30467	Trace	Trace	Trace	0.008	υ.004
T30477	Trace	Trace	Trace	0.017	0.005
T30487	Trace	Trace	Trace	0.003	0.001
T30494	Trace	Trace	Trace	0.003	0.002
T30504	Trace	Trace	Trace	0.003	0.002
T30514	Trace	Trace	Trace	0.007	0.003
T30524	Trace	Trace	Trace	0.003	0.001
T30534 <i>524</i>		Trace	Trace	0.003	0.001

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AVER CAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 3 of 3

0682

DATE:

March 25, 1988

SAMPLE(S) OF:

NO.

Core (80)

RECEIVED:

March 1988

SAMPLE(S) FROM:

Boston Bay Mines Ltd.

T88-3 T88-4

Sample No.	Au oz.	Pt oz.	Pd oz.	Cu %	Ni %
T30542	Trace	Trace	Trace	0.002	0.001
T30550 54Z-	<i>550'</i> Trace	Trace	Trace	0.002	0.001
T40245 Z35'-	Z45' Trace	Trace	Trace	0.005	0.002
T40255	Trace	Trace	Trace	0.005	0.004
T40265	0.002	Trace	Trace	0.004	0.002
T40268.5	Trace	Trace	Trace	0.003	0.001
T40271.5	Trace	Trace	Trace	0.002	0.001
T40280	Trace	Trace	Trace	0.003	0.001
T40290	Trace	Trace	Trace	0.003	0.001
T40300	Trace	Trace	Trace	0.003	0.002
T\$0310	Trace	Trace	Trace	0.003	0.002
T40320	0.008	Trace	Trace	0.003	0.001
T40330	Trace .	Trace	Trace	0.005	0.001
T40340	Trace	Trace	Trace	0.003	0.001
T40350	Trace	Trace	Trace	0.005	0.002
T40356.5	Trace	Trace	Trace	0.005	0.002
T40367.5	Trace	Trace	Trace	0.004	0.001
T40378.5	Trace	Trace	Trace	0.004	0.001
T40387	Trace	Trace	Trace	0.006	0.001
T40397	Trace	Trace	Trace	0.005	0.001
T40407	Trace	Trace	Trace	0.006	0.001
T40417	Trace	Trace	Trace	0.007	0.001
T40427	Trace	Trace	Trace	0.008	0.001
T40437	Trace	Trace	Trace	0.008	0.001
T40447 ,	Trace	Trace	Trace	0.009	0.001
T40457 447-	<i>45</i> 7' Trace	Trace	Trace	0.008	0.001

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

PER

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO.

0657

DATE:

March 21, 1988

SAMPLE(S) OF:

Core (25)

RECEIVED: March 1988

SAMPLE(S) FROM: Boston Bay Mines Ltd.

Sample No.	Au oz.	Pt oz.	Pd oz.	Cu %	Ni %
T40020 9'-	ZO' Trace	Trace	Trace	0.009	0.004
T40030	Trace	Trace	Trace	0.006	0.004
T40040	Trace	Trace	Trace	0.002	0.002
T40050	Trace	Trace	Trace	0.003	0.002
T40060	Trace	Trace	Trace	0.004	0.002
T40070	Trace	Trace	Trace	0.003	0.003
T40076	Trace	Trace	Trace	0.004	0.002
T40082	Trace	Trace	Trace	0.003	0.003
T40085.5	Trace	Trace	Trace	0.016	0.003
T40095	Trace	Trace	Trace	0.002	0.002
T40105	Trace	Trace	Trace	0.004	0.002
T40115	Trace	Trace	Trace	0.004	0.001
T40125	Trace	Trace	Trace	0.003	0.001
T40135	Trace	Trace	Trace	0.003	0.001
T40145	Trace	Trace	Trace	0.002	0.001
T40155	Trace	Trace	Trace	0.002	0.001
T40165	Trace	Trace	Trace	0.003	0.003
T40175	Trace	Trace	Trace	0.003	0.001
T40180.5	Trace	Trace	Trace	0.002	0.001
T40186	Trace	Trace	Trace	0.003	0.002
T40195	Trace	Trace	Trace	0.002	0.001
T40205	Trace	Trace	Trace	0.003	0.001
T40215	Trace	Trace	Trace	0.002	0.001
T40225	. Trace	Trace	Trace	0.003	0.001
T40235225	•	Trace	Trace	0.003	0.001

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

MADELEINE MINES LTD.

III

LAC DES ILES PROPERTY

TABLE OF CONTENTS

- 1. INTRODUCTION
- 2. THE PROPERTY, LOCATION AND ACCESS
- 3. HISTORY
- 4. GEOLOGY AND MINERALOGY
- 5. ORE RESERVES AND METALLURGY
- 6. THE EXPLORATION PROGRAMME
 - A. The Stripping and Trenching Programme
 - B. Temporary Construction Camp, Access Roads Infrastructure
 - C. Metallurgical Tests
 Figure 5 Metallurgical Balance

7. COST INCURRED

Appendix C

Figure 1 - Plan of Stripping (in pocket)

Figure 2 - Access Road (in pocket)

Figure 3 - Pilot Plant - Flow Sheet

Figure 4 - Pilot Plant - Water Circuit

Metallurgical Assays

MADELEINE MINES LTD.

III

LAC DES ILES PROPERTY

Thunder Bay Mining Division
Ontario
OMEP Programme
January 1 - December 31, 1988

1. INTRODUCTION

The Madeleine Mines Ltd. property is located approximately 50 miles north of Thunder Bay, Ontario; and consists of 85 leased claims located at the south end of Lac des Iles.

The claims cover the basic and ultra basic rocks of the Lac des Iles complex. This complex and the surrounding granites and tonalities are of Archean Age.

In 1963, prospectors discovered copper-nickel sulphide mineralization south of Lac des Iles.

Gunnex Limited acquired a large block of claims in the area; and located eight sulphide zones some of which contained palladium and platinum. Anaconda Canada Exploration Ltd. optioned the claims from Gunnex in 1966; and conducted further diamond drilling.

When Anaconda dropped the properties in 1973, Boston Bay Mines Ltd., acquired the claims by option and staking.

Drilling by Boston Bay Mines encountered platinum group metals associated with minor copper-nickel concentrations. The location of a new zone, called the Roby Zone sparked renewed interest in the property.

Texasgulf optioned the property in the spring of 1975 and continued the diamond drilling programme.

This drilling proved up considerable reserves on two important zones, the Roby Zone and the C Zone.

The Texasgulf and Boston Bay drilling outlined approximately 6,490,000 tons available by open pit mining to 500 feet. The deepest drill hole indicates the platinum-palladium mineralization extending to a depth of 1,465 feet; and it is open at that depth.

The drilling of the C Zone has indicated 900,000 tons minable by open pit methods.

Texasgulf and Boston Bay drilling amounted to 64,356 feet in 117 holes.

In April of 1986, Madeleine entered into an agreement with The Platinum Group Mines Limited. Under the agreement, Madeleine Mines and The Platinum Group will work towards a final amalgamation which will see Madeleine acquire a 100% interest in the property.

Under the terms of the agreement with The Platinum Group, if a suitable amalgamation acceptable to all cannot be arranged, Madeleine will have the option to bring the property to production at 3,000 tons per day and earn a 50% interest in the property for so doing.

In early June, 1986, Madeleine Mines commenced an exploration programme on the Lac des Iles property. The programme consisted of diamond drilling, line-cutting (to establish grids), clearing timber and stripping overburden from the Roby Zone.

The purpose of the drilling programme was to detail the Roby Zone for open pit mining; explore the depth extensions of the Roby Zone; and investigate the extent of the lower grade halo to the west of the Roby Zone.

In 1986, a total of 36,777 feet were diamond drilled in 34 holes.

In 1987, Madeleine Mines continued the diamond drilling programme and a total of 11,319 feet was drilled in 16 holes.

In addition, 935,000 cubic yards of trenching were completed to assist in outlining the extent of the orebody for open pit production.

Further a 12 mile access road was completed from Mile 60 on Highway 527.

2. THE PROPERTY, LOCATION AND ACCESS

The property consists of 85 leased claims in the Thunder Bay Mining Division. It is located approximately 50 miles north of Thunder Bay, Ontario. The claim numbers are indicated in the accompanying Figure 2.

The claim numbers are as follows:

TB	352256-352264	inclusive	ТВ	384889-384909	inclusive
TB	352370-352379	inclusive	TB	404122-404135	inclusive
TB	384484-384492	inclusive	TB	405357-405378	inclusive

The property is located at the south end of Lac des Iles; and covers the basic and ultrabasic rocks of the Lac des Iles complex.

The property is approximately 12 miles due west of Mile 60 on Highway 527 (Figure 2). The access road covering the 12 miles has been completed.

The property may also be reached by float or skiequipped aircraft from Thunder Bay.

HISTORY

A general chronology of the exploration of the property is covered in the Introduction to this report.

The Gunnex Limited exploration in 1963, 1964, included geological mapping, geochemistry, ground geophysical surveys and

diamond drilling. Eight sulphide zones (A, B, C, D, E, F, G, H), some bearing platinum-palladium mineralization, were located

During the summer seasons of 1964 and 1965, the Ontario Department of Mines conducted a geological survey of the area under the director of Dr. E.G. Pye.

Drs. MacDonald and Sutcliffe of the Ontario Geological Survey have carried out detailed mapping of the property and its environs during the summer of 1986.

The Boston Bay Mines exploration consisted of detailed geophysical surveys (magnetic and electromagnetic) and diamond drilling. The Texasgulf programme was essentially diamond drilling.

The complete drill holes were divided into 10 foot lengths for assay purposes. The core was split and one half was sent for assay; the remainder kept as a record.

Assaying was for platinum group metals using the fire assays method. Bell-White Laboratories, Haileybury, did this work. Later, Bell-White were requested to assay all samples for copper and nickel. In the current programme Bell-White is also assaying for gold.

Representatives of Rustenberg Mines of South Africa visited the property in 1975. They checked a number of the Bell White assays; and their results show good correlation with Bell-White (Figure 5).

The Rustenberg assays are slightly higher than Bell-White due to the fact that their results include gold values with the platinum group metals, while Bell-White assays only cover the platinum group metals.

They show roughly a palladium-platinum ratio of 8:1.

4. GEOLOGY AND MINERALOGY

The area around Lac des Iles is underlain by rocks of Precambrian Age. Basic and ultrabasic rocks of the Lac des Iles complex are completely surrounded by younger granite and tonalities.

There are erosional remnants of the Keweenawan diabase sills. There is a small remnant of a sill just south of the Roby Zone.

The Lac des Iles complex includes anorthosite, anorthositic gabbros, norite, pyroxenite, peridotite, serpentinite, quartz gabbro and their altered equivalents.

The southern section is divided into two mafic units. The Eastern Gabbro is a medium grained gabbro to norite; and is oxide-rich, sulphide poor. The Western Gabbro is coarsergrained and sometime pegmatitic consisting of gabbro (70%), norite (20%), clinopyroxenite, and minor anorthosite.

The latter are layered, steeply dipping and contain copper, nickel, iron sulphides and platinum group sulphides, arsenides, antimonides and tellurides.

The principal platinum group minerals are:

Vysotskite - (Pd,Ni) S
Braggite - (Pt,Pd,Ni) S
Kotulskite - Pd (Te,Bi)
Isomertieite - Pd,Sb2,As2
Merenskyite - Pd,Te2
Sperrylite - Pt,As2
Stibiopalladinite - Pd5 (Sb,As,Te)2
Stillwaterite - Pd8,As3

5. ORE RESERVES AND METALLURGY

The palladium-platinum minerals have been found in a number of zones in the area of Lac des Iles. The most important zones found to date are the Roby Zones and the C Zone.

The Roby Zone has received the most investigation and is the zone of immediate economic importance.

The Roby Zone strikes approximately N2O degrees W, dips vertically to steeply east and extends for some 2,000 feet. It has a maximum width of 375 feet.

It is amenable to open pit mining. The pit area requires the clearing of 34 acres.

The deepest drill hole to date, Hole D1, shows the mineralization extending downwards to 1,465 feet; and open at depth. In this hole a section from 1,095 feet to 1,245 feet averaged 0.235 platinum group metals per ton; and from 1,245-1,465 feet, 0.0725 ounces PGM per ton.

The Roby mineralization appears to be syngenetic and a product of magmatic segregation and magma mixing.

An open pit on this zone would have a length of 1,700 feet and an average width of 83 feet.

Glenn R. Clark, P.Eng. estimates: an open pit reserve of the Roby Zone to 500 feet of 6,490,000 tons with an average grade of 0.18 ounces of platinum group metals per ton, 0.01 ounces gold per ton, 0.1% copper and 0.1% nickel. Subsequent assaying indicates an average grade of 0.02 ounces gold per ton. Clark's reserves were based on 52 drill holes totalling 32,000 feet of drilling.

For the C Zone, Clark estimates 900,000 tons with an average grade of 0.14 ounces of platinum group metals per ton. This is open pit material.

Total reserves to 1,500 feet are estimated at 20,400,000 tons with an average grade of 0.18 ounces of platinum group metals.

It will be noted that the Roby Zone, C Zone, H Zone and B Zone are closely related to the West Gabbro - East Gabbro contact.

The palladium-platinum mineralization does not appear to be directly related to the total sulphides present.

Heavier concentrations of platinum group metals occur in the clinopynoxenite in proximity to the West Gabbro - East Gabbro contact; and in the mineralized norites of the West Gabbro.

The platinum-palladium ores are amenable to concentration by flotation. The recovery circuit uses gravity ahead of flotation. Early indications show a high grade jig concentrate.

It is intended to treat the concentrates in the hydrometallurgical facility. The concentrates are pressure leached and produce a PGM rich residue which is sent to the refinery. A combined recovery of the significant metals of approximately 85% is expected from the combined gravity and flotation circuit.

Flotation tests have been conducted by four laboratories including Falconbridge, Placer and Noranda.

It is expected that minor but recoverable amounts of Rhodium, Ruthenium, Osmium and Iridium will be produced.

6. THE EXPLORATION PROGRAMME

The exploration programme consisted of:

- (a) stripping and trenching to expose the Central and West Zones for bulk sampling and metallurgical testing;
- (b) temporary construction camp, access roads, infrastructure;
- (c) further metallurgical testing. Programmes (a) and (b) were conducted under the supervision of James Vernon P.Eng. Programme
- (c) was supervised by G.W. Reschke, metallurgist.

A. The Stripping and Trenching Programme

The 1988 programme extended the 1987 programme, which exposed the surface of the Roby Zone, 400 feet to the westward to

expose the Central and West Zones for bulk sampling and metallurgical testing.

The 1986 and 1987 diamond drilling programme had outlined the better grade mineralization of the Central Zone and the West Zone in the mineralized halo to the west of the Roby Zone.

A section drawn through the Roby, Central and West Zones indicates an average grade of 0.085 ozs. PGM per ton across a true width of 1,100 feet.

Between Sections 505 and 512 and to a depth of 700 feet, this would indicate 49,000,000 tons with an average grade of 0.085 ozs. PGM per ton. The northern extensions of the Central and West Zones remain to be drilled.

The westward extension of the stripped area over the Roby Zone exposed the Central and West Zones during the period January to August, 1988. This stripping and trenching exposed an area 2,700 feet by 400 feet. The average depth of the stripping is conservatively estimated to be 16 feet. Estimation of the average depth of the stripped areas is rendered difficult by the extreme irregularity of the surface of the deposit due to strong longitudinal and transverse faulting. In some areas the depth is as much as 30 - 35 feet.

On the basis of the 16 foot average depth and the area outlined in Figure 1, Appendix C, approximately 640,000 cubic yards of stripping and trenching were completed in 1988.

B. <u>Temporary Construction</u> - Camp, Access Roads, Infrastructures

During 1988 work continued on improvement of the 12 mile access road from Mile 60 on Highway 527 to the property. This included the elimination of several curves: and adding further gravel surfacing of the road. Figure 2 - Appendix C.

Within the Lac des Iles property, the infrastructure was upgraded by installing 4 septic tanks and temporary water lines.

In addition, the internal access roads were constructed. These included: (a) an access road to the pit area (stripped area); (b) the main haulage road from the pit to the mill; (c) the road from the mill via the stripped area to the powder house. Plan of the roads on the property to follow.

C. <u>Metallurgical Tests</u>

A 60-ton sample, taken from trenches 1A, 1B, 1C, 2A, ____ 2B, 3A, 3B, 3C, was processed through the Thunder Bay pilot plant of Canadian Concentrators in a series of concentration tests under the supervision of Madeleine metallurgist G.W. Reschke. The tests were entirely for concentration purposes and not to establish grade. This work was conducted in November - December, 1987.

The Canadian Concentrators pilot plant, owned by R. Miron, is a simple flotation mill consisting of a small ball mill, 6 cells, a Denver jig, a thickener and filter. Figure 3-Appendix C.

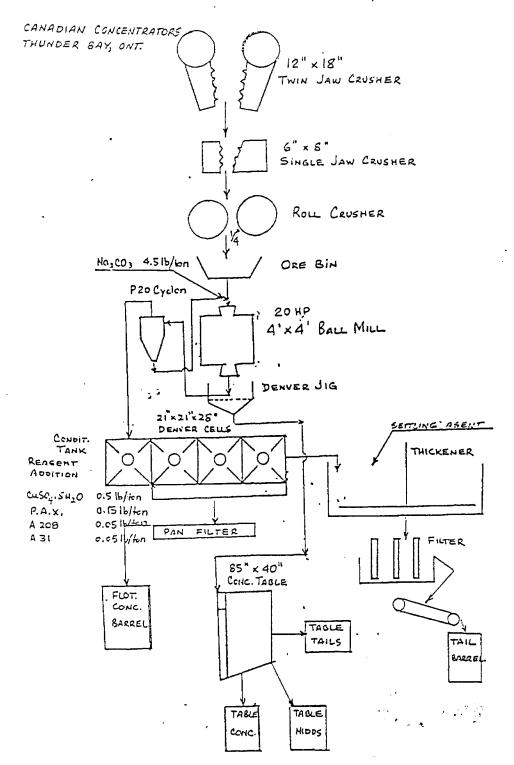
The water was recirculated from the thickener to the ball mill. Figure 4 - Appendix C.

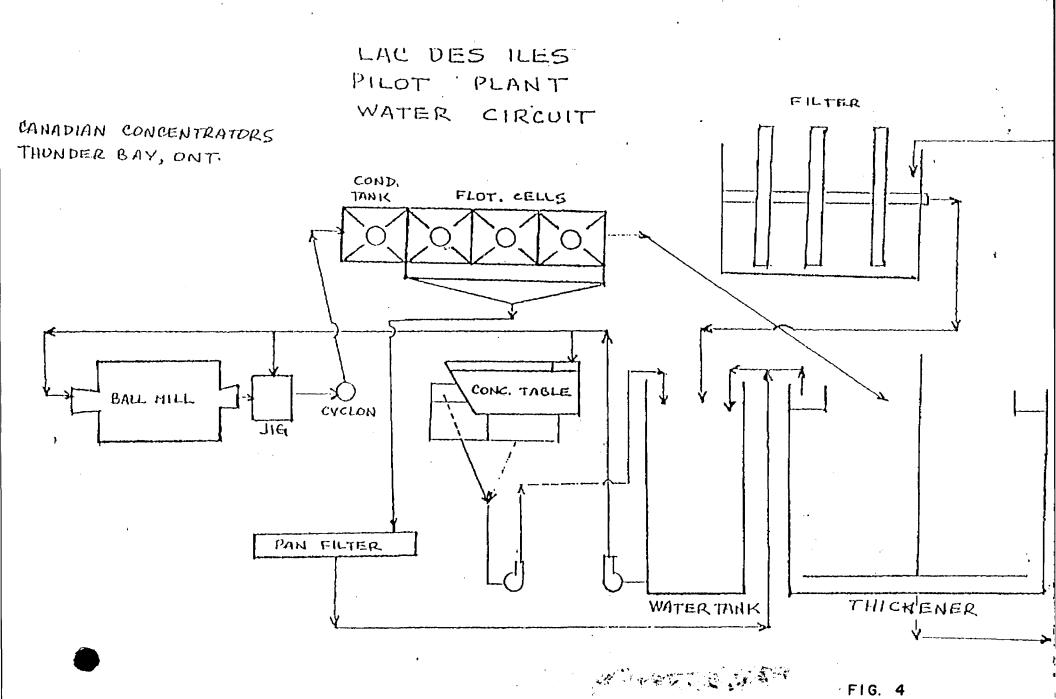
Metallurgical testing of the concentrates continued throughout 1988 under the supervision of Madeleine metallurgist G. Reschke; and resulted in establishing the accompanying Metallurgical Balance. Figure 5.

This demonstrates the importance of inserting jigs into the Madeleine mill circuit.

7. COST INCURRED

A total of \$4,026,370 was expended on the property during the period January 1 - December 31, 1988.


A breakdown of the apportioned cost accompanies the application for the Ontario Mineral Exploration Programme Grant.


HA. Pearson, P.Eng.

. _...

が、「大学の関係には、これのでは、これでは、これでは、これでは、これでは、これできます。 では、「「「「「」」というできます。

LAC DES ILES PILOT PLANT FLOWSHEET

•

LAC DES ILES PILOT PLANT METALLURGICAL BALANCE SUMMARY OF "ROBY ZONES" 8"C"

<u>Product</u>	<u>WI X</u>	Au <u>Oz/Ton</u>	Pt <u>Oz/Ton</u>	Pd <u>Oz/Ton</u>	<u>0. %</u>	<u>Ni %</u>	Au <u>Dist %</u>	Pt <u>Dist %</u>	Pd Dist %	Ou Dist %	Ni <u>Dist %</u>
Jig R. Conc	0.11	3.50	0.75	8.43	9.50	8.8	7.2	5.6	4.5	2.9	5.8
Jig S. Conc	0.29	0.50	0.15	2.93	0.90	2.1	2.7	2.9	4.2	0.7	3.6
Jig R & S Conc	0.40	1.357	0.321	4.50	3.36	4.0	9.9	8.5	8.7	3.6	9.4
Flot. Conc	8.10	0.333	0.112	1.86	3.20	1.32	50.9	<i>€</i> 0.8	65.8	71.5	€3.7
Jig R & S Conc & Flot. Conc	8.50	0.384	0.122	1.791	3.20	1.32	60.8	69.3	<i>7</i> 4.5	75.1	73.1
Jig Flot Tails	1.5	0.026	0.007	0.05	0.04	0.09	0.7	0.7	0.4	0.1	8.0
Flot. Tails		0.023	0.005	0.057	0.10	0.06	38.5	30.0	25.1	24.8	26.1
Total Tails	90.4	0.023	0.005	0.057	0.10	0.06	39.2	30. <i>7</i>	25.5	24.9	26.9
Calc'd Head	100.0	0.054	0.015	0.204	0.36	0.17	100.0	100.0	100.0	100.0	100.0

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO.

0493

DATE:

February 26, 1988

SAMPLE(S) OF:

Pulps (4)

RECEIVED:

February 1988

SAMPLE(S) FROM:

Mr. George W. Reschke, Boston Bay Mines Ltd.

Lac des Iles Metallurgical Tests.

Samples: 147-160 incl. 164-183 incl.

These are concentration tests carried out on grab samples from the 60 - ton bulk

sample; and form the basis of the Pilot Plant Metallurigical Balances

Figure 5. ("Roby" and "C" Zones)

Sample No.	Au oz.	Pt oz.	Pd oz.	Cu %	Ni %
147	0.053**	0.014	0.075	0.110	0.064
8	4.390**	0.292**	1.700**	2.600	1.780
9	0.195**	0.051**	0.250**	0.300	0.300
150	0.020	0.008	0.031	0.044	0.036

** Checked

BELL-WHITE ANALYTICAL LABORATORIES LTD.

Pen

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO.

0644

DATE:

March 18, 1988

SAMPLE(S) OF:

Pulp (4)

RECEIVED: March 1988

SAMPLE(S) FROM:

Mr. George Reschke, Boston Bay Mines Ltd.

Lac des Iles Metallurgical Tests

Sample No.	Au oz.	Pt oz.	Pd oz.	<u>Cu %</u>	<u>Ni %</u>
151	0.464**	0.020	0.219	0.840	0.780
2	0.030	0.009	0.038	0.148	0.124
3	0.644**	0.014	0.086	0.280	0.098
4	0.014	0.004	0.021	0.024	0.026

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO.

0688

DATE:

March 29, 1988

SAMPLE(S) OF:

Pulp (6)

RECEIVED:

March 1988

SAMPLE(S) FROM:

Boston Bay Mines Ltd.

Lac de Iles Metallurgical Tests

Sample No.	Au oz.	Pt oz.	Pd oz.	<u>Cu %</u>	Ni %
155	0.514**	0.175**	2.530**	1.800	0.580
156	0.244**	0.122**	-2.250**	0.640	0.840
157	0.008	0.004	0.057	0.046	0.024
158	0.040**	0.014	0.311**	0.240	0.106
159	0.642**	0.235**	3.700**	1.540	1.400
160	0.006	0.002	0.050	0.038	0.019

** Checked

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

1354

DATE: August 8, 1988

SAMPLE(S) OF: Fines (3)

RECEIVED: August 1988

SAMPLE(S) FROM:

Mr. George W. Reschke, Boston Bay Mines Ltd.

Lac des Iles Metallurgical Tests

Sample No.	Oz. Gold	Oz. Pt	<u>Cu %</u>	Ni %
164	1.31**	0.062	0.76	0.50
5	7.64**	0.032	0.26	0.46
6	0.018	0.006	0.04	0.04

**Checked

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO.

1489

DATE: September 16, 1988

SAMPLE(S) OF:

Pulp (3)

RECEIVED: September 1988

SAMPLE(S) FROM: Mr. George Reschke, Boston Bay Mines

Lac des Iles Metallurgical Tests

Sample No.	Oz. Gold	Oz. Pt	Oz. Pd	<u>Cu %</u>	Ni %
167 168	0.012 0.084**	0.004 0.028	0.065 0.634	0.06 0.46	0.06 0.38
169	1.860**	0.213	4.910	3.60	4.00

**Checked

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 1653

DATE:

October 24, 1988

SAMPLE(S) OF: Fines (4)

nes (4)

RECEIVED:

October 1988

SAMPLE(S) FROM:

Mr. Pat Sheridan, Boston Bay Mines

Lac des Iles Metallurgical Tests

Sample No.	Oz. Gold	Oz. Pt	Oz. Pd	Cu %	·N1 %
170	15.980**	1.640	17.070	22.0	0.92
171	0.615**	0.193	2.890	10.0	0.68
172	2.760**	0.587	6.720	19.6	0.96
173	0.311**	0.128	2.530	9.6	0.76

BELL-WHITE ANALYTICAL LABORATORIES LTD.

Pro ANALYTICA

ACCORDANCE WITH LONG-ESTABLISHED NORTH HER CAN CUSTOM UNLESS IT IS SPECIFICALLY STATED THE FIRE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-ATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187, POJ 1KO HAILEYBURY, ONTARIO

TEL: 672-3107

FAX: (705) 672-5843

Certificate of Analysis

NO. 1870

DATE:

December 15, 1988

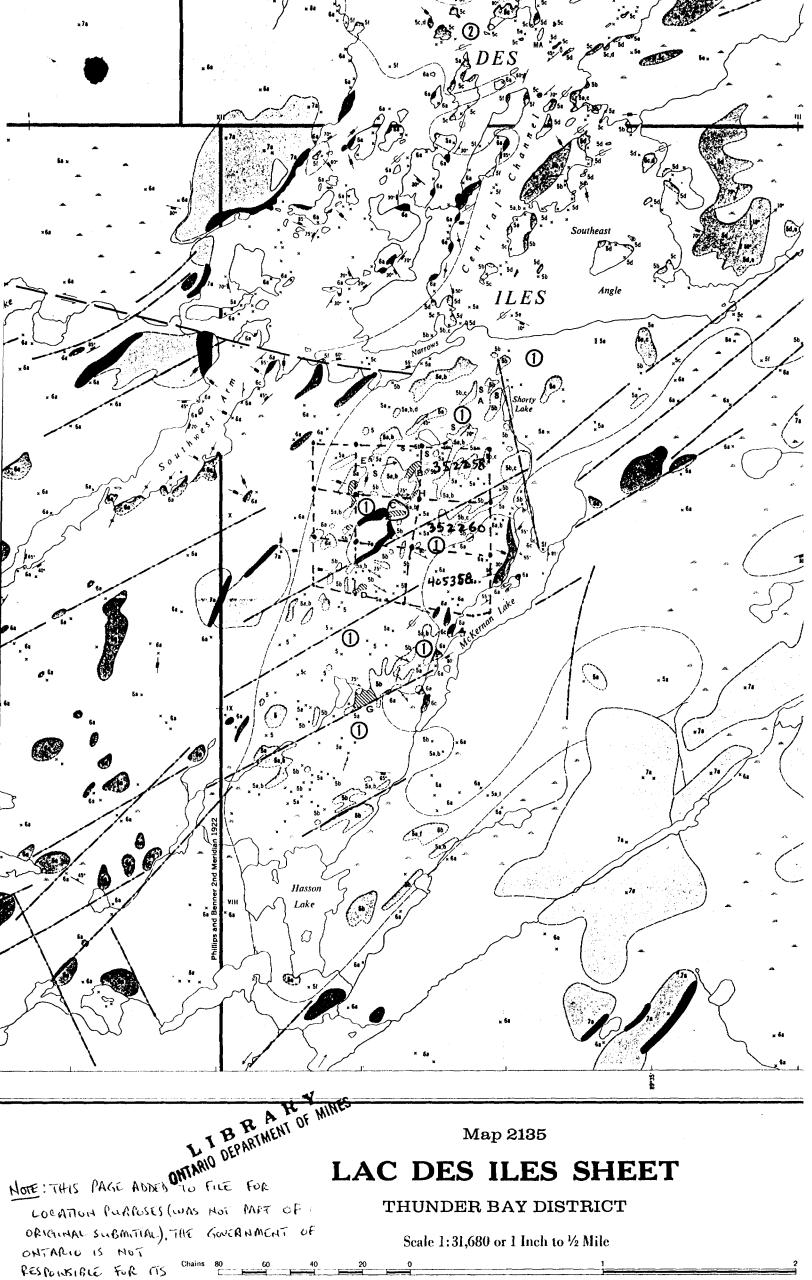
SAMPLE(S) OF:

Fines (10)

RECEIVED:

December 1988

SAMPLE(S) FROM:


Mr. G.W. Reschke, Boston Bay Mines

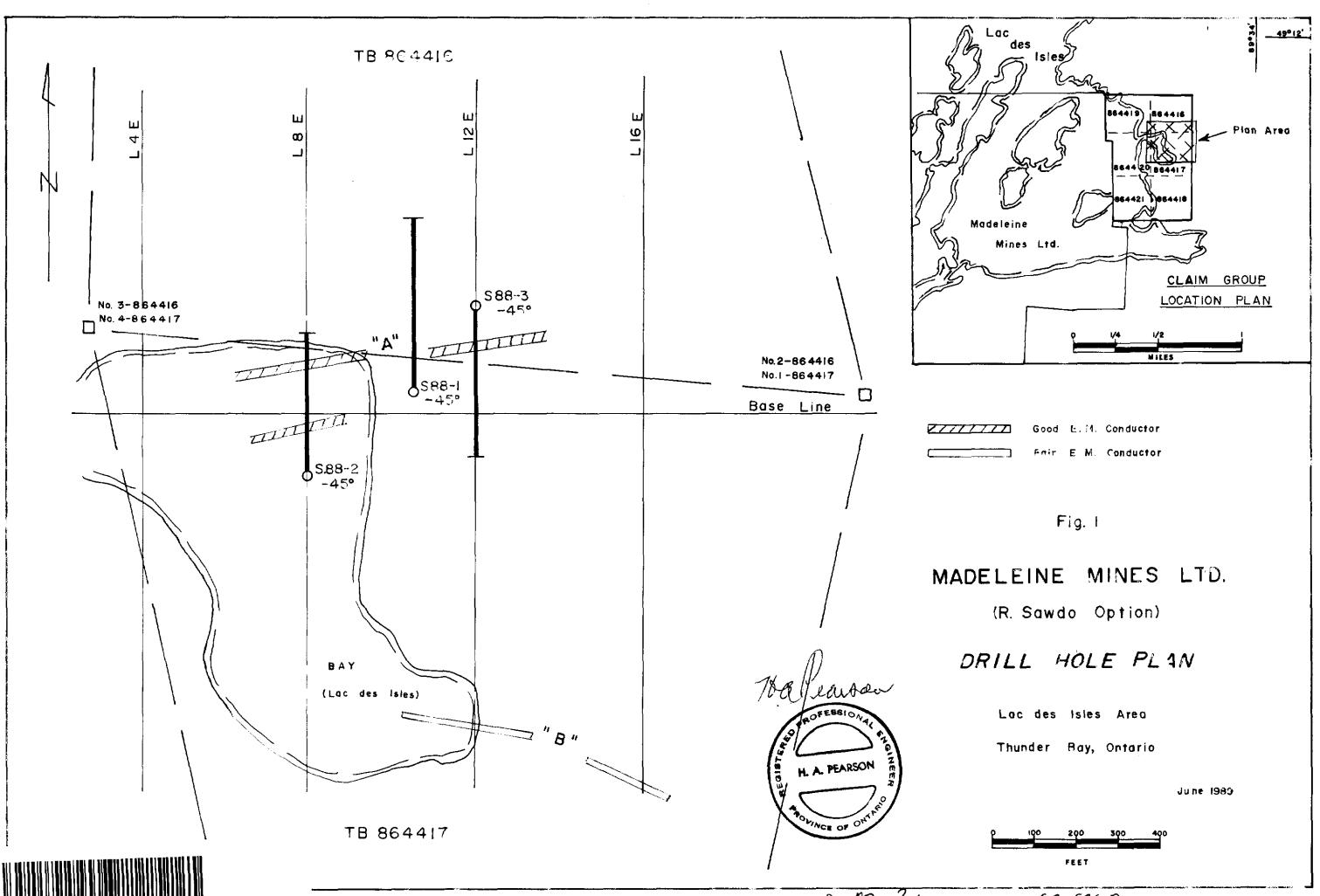
Lac des Iles Metallurgical Tests						
Sample No.	Oz. Au	Oz. Pt	Oz. Pd	% Cu	% Ni	
174 175 176 177 178 179 180 181 182 183	0.006 0.005 1.43** 0.012 0.170** 0.208** 0.008 0.543** 0.028**	Trace Trace 0.479** 0.011 0.114** 0.042** 0.002 0.314** 0.064** 0.004	0.065 0.071 7.87** 0.571 1.50** 0.940** 0.078 5.15** 1.23** 0.070	0.06 0.04 5.00 0.36 1.30 0.38 0.04 2.60 0.68 0.04	0.06 0.04 4.40 0.38 0.60 0.74 0.06 2.60 0.96	

** Checked

BELL-WHITE ANALYTICAL LABORATORIES LTD.

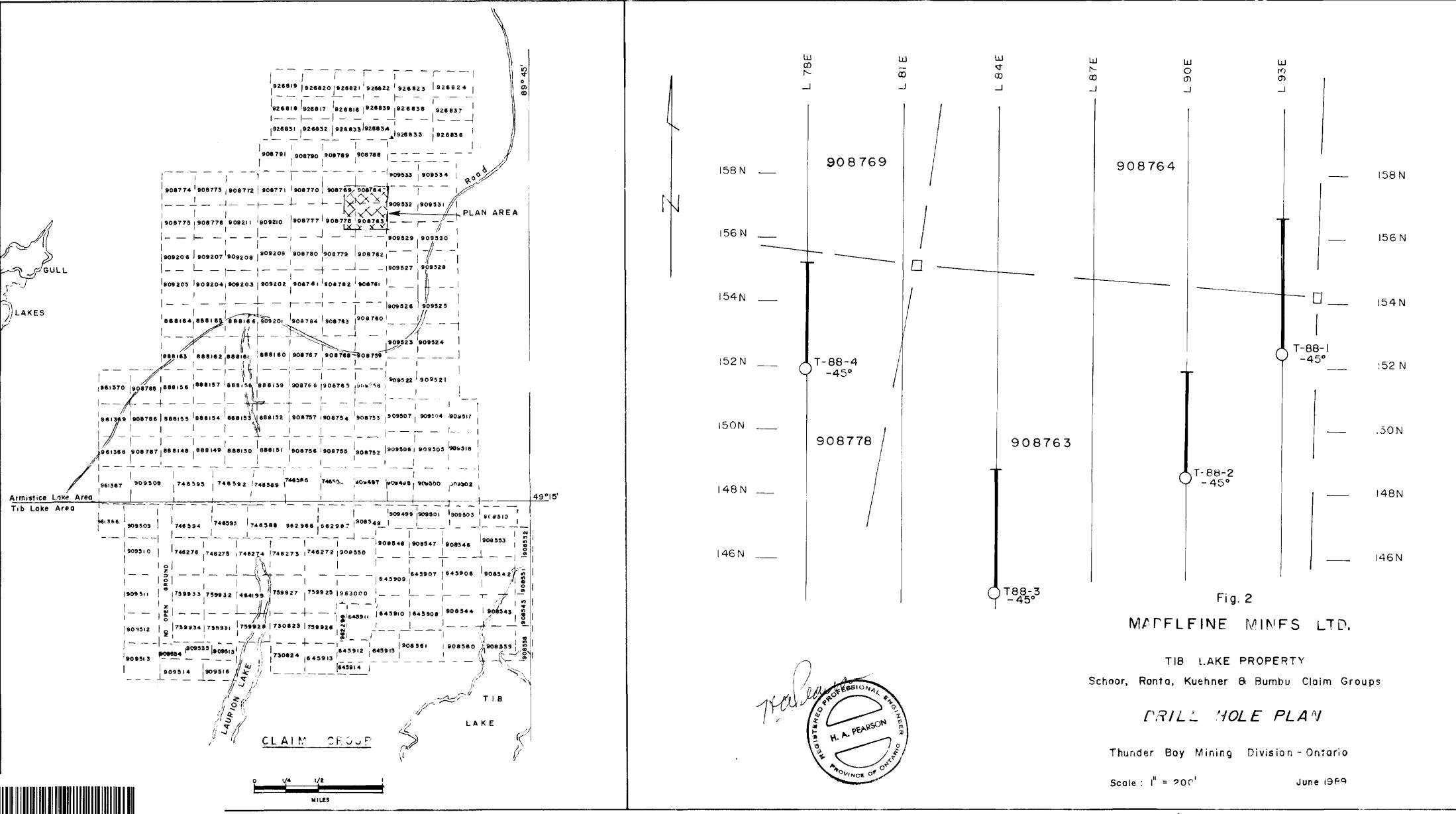
MERICAN CUSTOM UNLESS IT IS SPECIFICALLY STATED
THERWISE GOLD AND SILVER VALUES REPORTED ON
HESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENGATE FOR LOSSES AND GAINS INHERENT IN THE FIRE
ASSAY PROCESS.

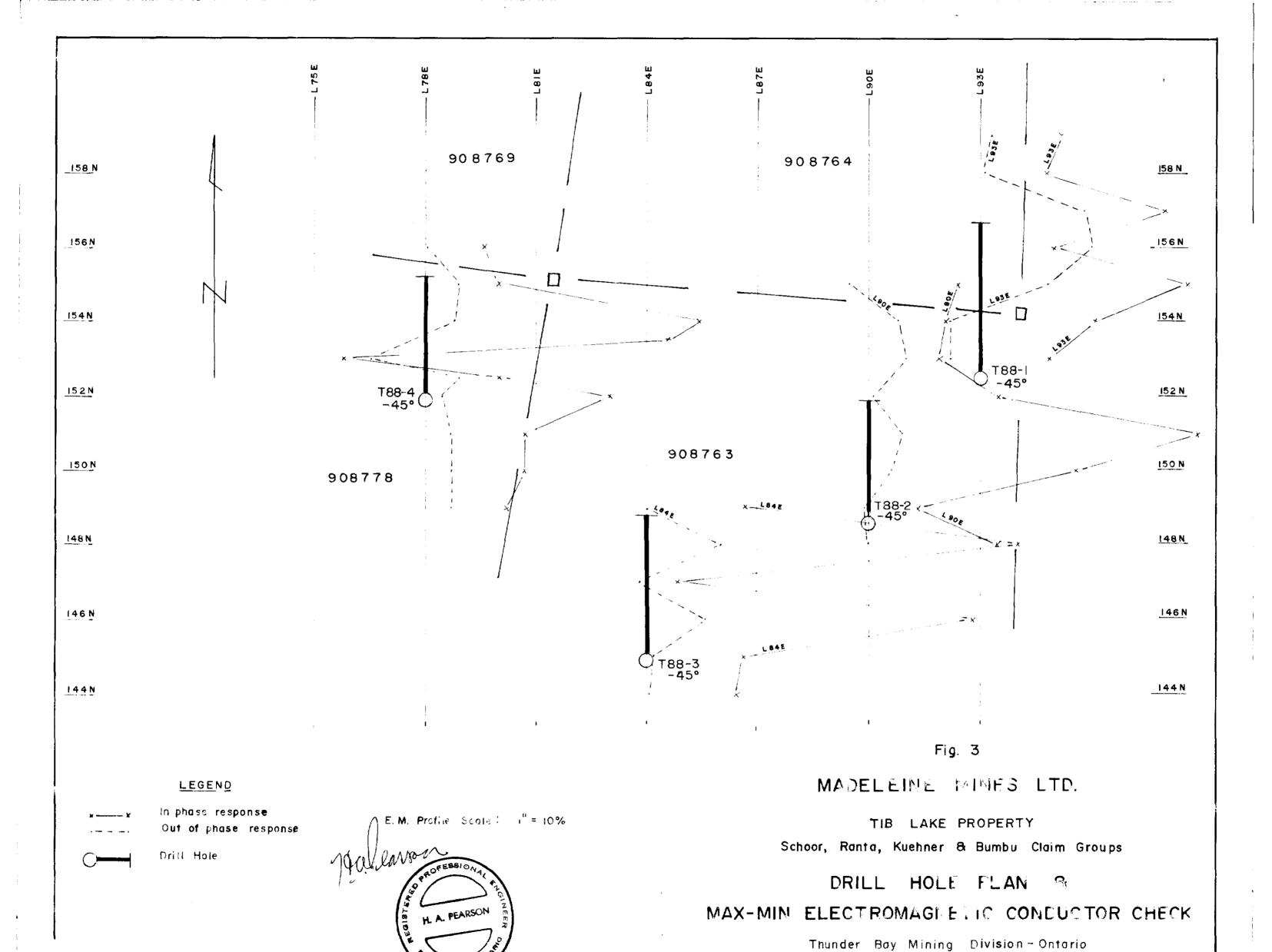
RESPONSIBLE FOR MIS Accuracy. PCB. HOU 1690



163.5408

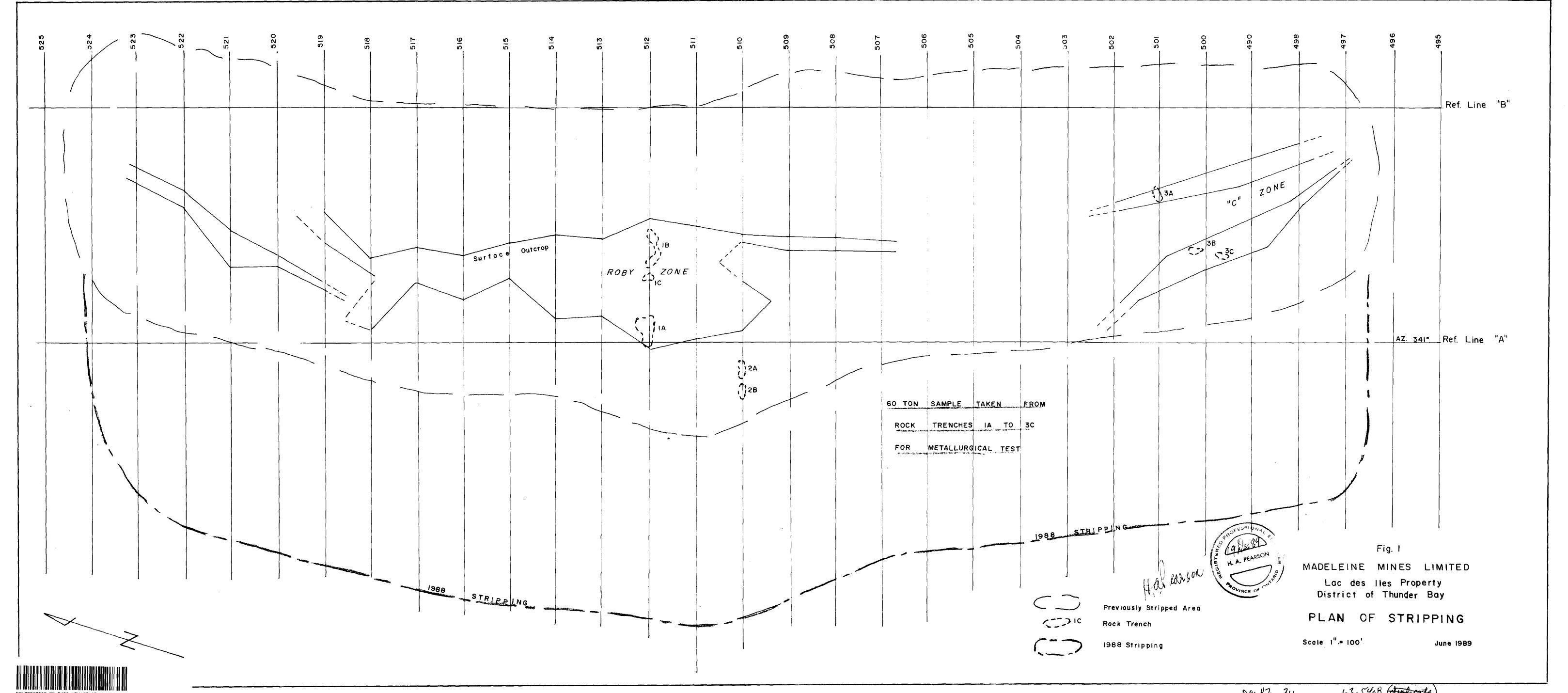
OM 87- 4-C-311


THIS SUBMITTAL CONSISTED OF VARIOUS REPORTS, SOME OF WHICH HAVE BEEN CULLED FROM THIS FILE. THE CULLED MATERIAL HAD BEEN PREVIOUSLY SUBMITTED UNDER THE FOLLOWING RECORD SERIES (THE DOCUMENTS CAN BE VIEWED IN THESE SERIES):


D Drilling on the Sawdo Claim Group,	=> Sec file: LAC DES (LES DDR
Holes 588-1 to 588-3, Dec. /87 to	# 19, Report of Worle * w 8884-
Feb. 188, R. Sawdo + Madeleine Mines	
Ltd.	
2) brilling on the Tib Lake Property,	=> See File: ARMISTICE LAKE DDR
Holes T88-1 to T88-4, Feb. to	#19 Report of Work # w 8804 - 636
March 188, J.P. Sheridan + Madeleine	, ,
Mines Ltd.	
,	

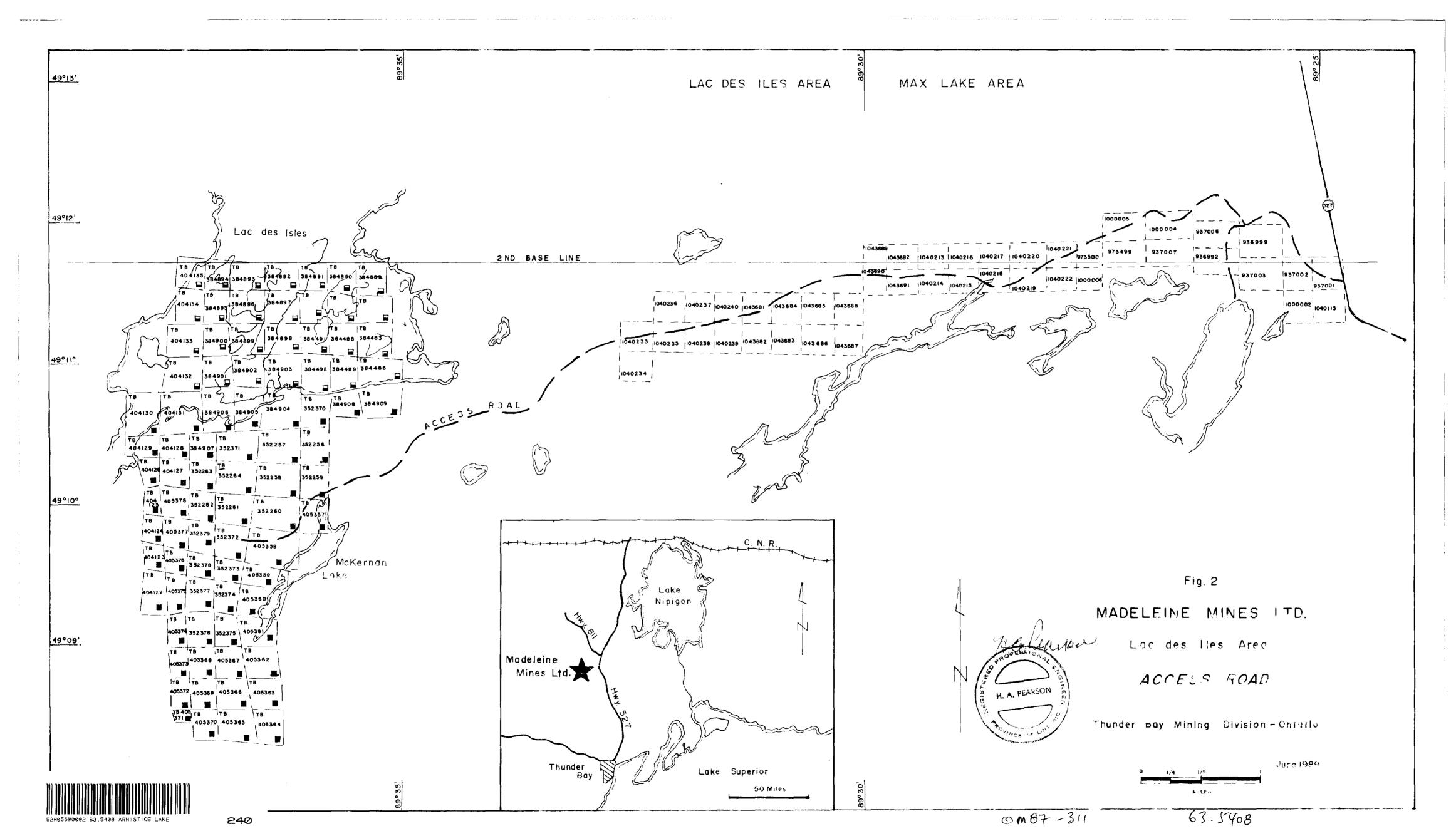
OM87-311

63.5408



OM87-311

Scale : 1" = 200'


63.5408

June 1989

Om 87 - 311

63.5408 (duplicate)

