

DIAMOND DRILLING

Area:

Beckington Lake

Report No:

WORK PERFORMED FOR: Umex Inc.

RECORDED HOLDER: SAME AS ABOVE [x]

: OTHER []

CLAIM NO.	HOLE NO.	FOOTAGE	DATE	NOTE
PA 486040	B-17	215.5m	Mar/86	(1)
PA 486033	B-18	233.8m	n	(1)
PA 486062	B-19	215.5m	II .	(1)
PA 486033	B-20	227.7m	11	(1)
PA 436825	B-21	197.2m	н	(1)
11	B-21A	25m	n	(1)

TOTAL

6DH

1114.7 mg

NOTES: (1) #86-63

UMEX INC

PROJECT: BECKINGTON

Hole No.: B-17

Local Coord.: 62.5N; 200E

Started: 01 March 1986

Drilled By : Morissette

ANOMALY: Creek Zone

Bearing: 250°

Depth : 215.5 metres

Completed: 07 March 1986

Described By: David Unger

CLAIM : Pa 486040

Dip : -64°

Core Diameter: BQ

Machine : Boyles 35A

De	pth	•.,	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		As	say Resi	ults	
From	То	Core	Description a Entitlogy	Willeranzation	C.A.	Number	Interval	Length					
0 31.1	31.1 32.2		SUMMARY LOG Casing Broken Core										
32.2 34.3 38.1 49.6 59.6 61.9 81.4 84.0 94.4 105.8	34.3 38.1 49.6 59.6 61.9 81.4 84.0 94.4 105.8 126.1 134.0 145.2		Strongly sericitized and reworked tuffs Sericite schist Intercalated reworked tuffs and sericite schist Silicified and sericitized tuffs Sericite schist Silicified quartz porphyritic intermediate tuff Silicified and sericitized lapilli tuff or autobreccia Intermediate to mafic tuff Quartz porphyritic intermediate to mafic tuff Weakly silicified quartz porphyritic intermediate to mafic tuff Quartz porphyritic intermediate to mafic tuff Garnetiferous quartz porphyritic intermediate to mafic tuff	ASS RES	O GEOLOG ESSMEN EARCH AY 6	FILES Office 1986	2.7.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.	CIA (A DE TATAL APR 2)	요 YO A. V . A SO)				
148.4 150.9 168.2 169.5 182.9 184.8	148.4 150.9 168.2 169.5 182.9 184.8 204.4		Strongly silicified tuff Intensely silicified rock Quartz porphyritic intermediate to mafic tuff Chlorite rich mafic flow? intrusive? Weakly silicified quartz porphyritic intermediate to mafic tuff Chlorite rich mafic flow? intrusive? Silicified quartz porphyritic intermediate to mafic tuff					4					
204.4	209.2		Strongly silicified tuffs				4 + 3 4 + 2 4 + 2 4						

. HOLE No.:

B-17

Page

ot

Depth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	Assay Resu	ılts
From To		Description & Entidiogy	Willeranzation	C.A.	Number	Interval	Length		
209.2 211. 211.7 213. 213.5 215.	5	SUMMARY LOG (cont'd.) Moderately silicified tuffs Intensely silicified tuffs Moderately silicified quartz porphyritic tuff END OF HOLE							

UMEX INC DRILL RECORD

PROJECT:

BECKINGTON

Hole No.:

Local Coord. : 62.5N; 200E

Started: 01 March 1986

Drilled By : Morissette

ANOMALY:

Creek Zone

250° Bearing:

B-17

Description & Lithology

Beckrock likely begins at 32.2

- reworked, randomly oriented, white tuffaceous fragments

- 2-3% deep blue-black quartz "eyes" scattered throughout

- very intense sericitization, some silicification

- very well bedded, very small fragments compared to

- 1-2% blue quartz "eyes", generally rounded but

32.0 - reddish Fe oxidization 34.3 - 3-5% py along bedding planes

probably boulders at base of overburden.

Broken core: various rock types but mostly mafics -

: 215.5 metres

Completed: 07 March 1986

Described By: David Unger

CLAIM	
-------	--

Depth

31.1

32.2

34.3

38.1

85

From

0

31.1

32.2

34.3

Pa 486040

CASING

%

Core

80

Dip

STRONGLY SERICITIZED AND REWORKED TUFFS

set in a strongly sericitized matrix

- probably an altered tuff or ash tuff

31.5- 32.2 - broken core

occasionally elongated

SERICITE SCHIST

32.2-34.3

Core Diameter: BQ

	Mac	hine : B	oyles 35A		 	avid o	nger	
Mineralization	Dip ic C.A.	Sample Number	Sample Interval	Sample Length	As	say Resu	ılts	
<0.5% sulphides								
< 0.5% sulphides						-	_	

B-17

Page 2 of 13

De	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resu	ılts	
From	То	Core			C.A.	Number	Interval	Length			'	
34.3	38.1		(cont'd.) - to 37.1 reddish Fe oxidization									
			- after 37.1 increasingly chloritic									
			35.1- 35.4 - broken core			1						
38.1	49.6	95	INTERCALATED REWORKED TUFFS AND SERICITE SCHIST	< 1% py								
			- intercalations of the previous two units									
			 strong scricitization is the dominant feature, as is a very well developed, bedded, tuffaceous texture 									
			 some intervals are dark grey in colour, reflecting increased chlorite; lighter sections exhibit silicifica- tion 	•								
			- 1-3% rounded to angular blue-gray quartz "eyes"									
			 tuffaceous fragments generally white in colour; relict bedding? may be observed in some fragments. 									
			- variable fragment size and random orientation									
			41.5- 43.2 - fine grained, well bedded chlorite- sericite schist	43.1-44.6		89901	43.1- 44.6					
			43.5- 43.9 - numerous, irregular, dark grey quartz veining with 1-3% py, local intense sericitization	1-3% ру	42.7	89902 89903	44.6- 46.1 46.1- 47.6	1.5 1.5				
			43.1- 44.6 - 1-3% py as streaks and pods along foliation planes		58° @							
			48.8 - broken core		48.0		·					
			- GRADATIONAL CONTACT -									
	į			. *								

B-17

Dep	oth	%	Denderstian & Litheless		Dip	Sample	Sample	Sample		As	say Resi	ults
From	То	Core	Description & Lithology	Mineralization	C.A.	Number	Interval	Length		I		
34.3	38.1		(cont'd.) - to 37.1 reddish Fe oxidization - after 37.1 increasingly chloritic 35.1- 35.4 - broken core						 1 1.			
38.1	49.6	95	 INTERCALATED REWORKED TUFFS AND SERICITE SCHIST intercalations of the previous two units strong sericitization is the dominant feature, as is a very well developed, bedded, tuffaceous texture some intervals are dark grey in colour, reflecting increased chlorite; lighter sections exhibit silicification 1-3% rounded to angular blue-grey quartz "eyes" tuffaceous fragments generally white in colour; relict bedding? may be observed in some fragments. variable fragment size and random orientation 	<17 py								
			41.5- 43.2 - fine grained, well bedded chlorite- sericite schist 43.5- 43.9 - numerous, irregular, dark grey quartz veining with 1-3% py, local intense sericitization 43.1- 44.6 - 1-3% py as streaks and pods along foliation planes 48.8 - broken core	43.1-44.6 1-3% py		89901 89902 89903	43.1- 44.6 44.6- 46.1 46.1- 47.6	1.5 1.5 1.5				
			- GRADATIONAL CONTACT -									

B-17

Page 3 of 13

Dep	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Res	ults	
From	То	Core			C.A.	Number	Interval	Length				
49.6	59.6	90	SILICIFIED AND SERICITIZED TUFFS	<1% py					 			
			- similar to 38.1-49.6, except for increased silicification and decrease in fragment size	n			·					
			- 1-3% rounded blue quartz "eyes" (secondary)									
			54.6-59.6 - considerable quartz veining, mostly in irregular veins and patches; intense local folding, chloritization and sericitization of host rock; negligible sulphides			89905	54.6- 56.1 56.1- 57.6 57.6- 59.6	1.5 1.5 2.0				
			57.8- 61.6 - considerable broken core	40.59	52° @							
59.6	61.9	80	SERICITE SCHIST	< 0.5% sulphides	60.6					i		
			- cream coloured, extremely schistose				·					
			- light coloured, tuffaceous fragments discernible									
			- ~ 1% white to light blue quartz "eyes" elongated parallel to foliation, these are likely secondary									
			- probably an altered intermediate or felsic tuff									
61.9	81.4	near 100	SILICIFIED QUARTZ PORPHYRITIC INTERMEDIATE TUFF	<1% py,	46° @							
		.00	 grey, well bedded, sericitic and chloritic intermediate tuff 	some po	67.6		·			-		
			- 1-3% rounded to subangular blue to grey quartz "eyes"									
			- very fine, light coloured tuffaceous fragments									
			- occasional patchy silicification as at 65.6 and 66.7									
			 occasional thin (<1 cm) quartz veinlets parallel to foliation, with streaks and pods of py, some po; very minor py, po otherwise 				·					

B-17

Page 4 of 13

Dep		%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resu	ilts	
From	То	Core			C.A.	Number	Interval	Length				بتناس بوس
61.9	81.4	near 100	(cont'd.) 62.0-63.1 - quartz veining and silicification, very minor py, po 71.6-79.4 - increase in dark green chloritized bands and patches, frequently caused by very thin, irregular quartz ± carbonate veinlets; slight increase in py, po in these areas; also some patchy silicification	71.6-79.4 1% py, some po	50° @ 72.2	89907 89908	62.0- 63.1 71.6- 73.1	1.1				:
			76.8- 77.2 - several carbonate veinlets (< 5 mm) parallel to foliation			89909 89910	76.8- 77.9 77.9- 79.0	1.1				:
81.4	84.0	near 100	SILICIFIED AND SERICITIZED LAPILLI TUFF OR AUTOBRECCIA - irregular light coloured fragments, up to several cm in size in a grey silicic and sericitic groundmass; fragments may be lapilli or autobrecciated fragments - numerous, irregular white quartz veins - considerable chlorite	<0.5% cp, py		89911 89912	81.4- 82.7 82.7- 84.0	1.3	,			
			- occasional specks of cp in the quartz veins 82.5 - 6 cm white quartz vein		56° @ 83.9							
84.0	94.4	95	 INTERMEDIATE TO MAFIC TUFF dark green, strongly chloritic, well bedded occasional anhedral almandine garnets (< 5 mm), particularly in the most chloritic sections extremely fine grained in places, but rock retains its well bedded texture throughout 	1% py,po								

B-17

Page 5 of 13

Dep	oth	%	Operation 2 Lithology	Miggaritati	Dip	Sample	Sample	Sample	As	ssay Resi	ults	
From	То	Core	Description & Lithology	Mineralization	to C.A.	Number	Interval	Length				
84.0	94.4	95	(cont'd.) - some carbonate in streaks along foliation planes - py, po occur as streaks along foliation planes 86.8-89.7 - strongly chloritized interval - 1-2% py, po 91.5-94.4 - weakly silicified - 2-4% po, py as interstitial fillings, veinlets, blebs and disseminations associated mainly with quartz ± carbonate veins - intense local chloritization associated with quartz veining	86.8-89.7 1-2% py,po 91.5-94.4 2-4% po,py		89913 89914 89915 89916	86.8- 88.3 88.3- 89.7 91.5- 93.0 93.0- 94.4	1.4				
94.4	105.8	near 100	92.7- 93.6 - schistose sericitic interval - GRADATIONAL CONTACT - QUARTZ PORPHYRITIC INTERMEDIATE TO MAFIC TUFF - grey to gren in colour - 1-2% rounded to slightly elongated blue quartz "eyes" - banding varies from indistinct to well developed - appears to be some degree of silicification in places - major alteration products are chlorite and sericite - very fine grained staurolite in places	1-2% ру,рс								
			- rare garnet, usually in the most chloritic sections - sulphides occur as disseminations and occasional veinlets									

B-17

Page 6 of 13

Dep	pth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	Assa	y Results	
From	То	Core	Description a Entrology	WINICIGIIZATION	C.A.	Number	Interval	Length			
94.4	105.8	near 100	(cont'd.) 95.1- 96.6 - 2-4% staurolite 96.6- 97.0 - 1 cm py-po vein parallel to core axis 99.9 - 4 cm white quartz vein, minor po along contacts 102.7-105.3 - light coloured (silicified?) interval		52° @ 102.4	89917 89918	96.6- 97.6 99.0-100.1	1.0			
05.8°	126.1	100	- GRADATIONAL CONTACT - WEAKLY SILICIFIED QUARTZ PORPHYRITIC INTERMEDIATE TO MAFIC - a. above, except with weakly silicified bands - well developed chloritic, dark green banding - occasional quartz veining, generally parallel to foliation - 1 to 2% rounded to subangular blue quartz "eyes" (secondary)	TUFF 1-3% py,po	65° @ 116.4		·				~
			 occasional staurolite and garnet white tuffaceous fragments visible in places sulphides occur as disseminations and in weak bands parallel to foliation 						-		

Page 7 of 13

De	pth	%	Description & Lithology		Dip	Sample	Sample	Sample		Assa	ıy Resu	its
From	То	Core	Description & Enthology	Mineralization	to C.A.	Number	interval	Length				
105.8	126.1	100	, , , ,	110.7-113.0 3-5% py,po	,	89919 89920 89921	106.5-107.5 110.8-112.0 112.0-113.0	1.0 1.2 1.0				
				114.4-115.4 2-3% po,py	1							
			118.8-120.6 - 3 to 5% very fine grained staurolite 121.0-123.3 - distinct felsic, white tuffaceous fragments elongated parallel to foliation		And the same of th							
126 1	134.0	100	- GRADATIONAL CONTACT - QUARTZ PORPHYRITIC INTERMEDIATE TO MAFIC TUFF	1-2% py,po	59° A		·					
120.1	154.0		- as from 105.8 to 126.1, except for increased chlorite content	1 2% py,po	126							
			- considerable staurolite in bands parallel to foliation						Í			
			- 1 to 2% blue quartz "eyes", likely secondary						İ			
			- sulphides in bands and weak disseminations						, 			
			- well banded throughout						,			
			- occasional garnet 129.7 - 4 cm white quartz vein	·					:			
134.0	145.2	100	GARNETIFEROUS QUARTZ PORPHYRITIC INTERMEDIATE TO MAFIC TUFF	1-2% py, po, rare cp	67° @ 140.1							
							, / Louis a rice				•	l

B-17

Page 8 of 1

Dip Assay Results Depth Sample Sample Sample Description & Lithology Mineralization Core Number Interval Length C.A. From To 145.2 100 (cont'd.) 134.0 - noticeable increase in aluminosilicates (garnet, staurolite) - 3 to 5% almandine garnet, anhedral, frequently elongated parallel to foliation - biotite present in occasional thin (< 5 mm) dark coloured bands - some weak silicification of this unit - this unit may be a reworked sediment - staurolite also present in bands parallel to foliation - sulphides in disseminations and thin stringers and 89922 | 136.5-137.5 1.0 89923 143.6-145.1 bands 1.5 140.4 - broken core - 1 cm quartz vein with 25% po 142.6 1-2% py 145.2 148.4 STRONGLY SILICIFIED TUFF 89924 145.5-147.0 1.5 89925 147.0-148.5 1.5 - mottled white-dark grey colour - some apple green sericite - 2 to 4% round, transluscent quartz "eyes" - well banded but banding is partly obscured by silicification - minor disseminated py

of 13

B-17

Page 9 of

13

6

Dej	oth	%	Description & Lithology	Mineralization	Dip	Sample	Sample	Sample		As	say Resu	ults	
From	То	Core	bescription & Enhology	Mineralization	to C.A.	Number	Interval	Length		T			
148.4	150.9	100	INTENSELY SILICIFIED ROCK	<1% py		89926	148.5-150.5	2.0					1.42.50
150.9	168.2	100	 greenish-white in colour very intense silicification obscures most primary features, but a weak banding is present rock is almost entirely silica, with some sericite 150.5 - minor tourmaline QUARTZ PORPHYRITIC INTERMEDIATE TO MAFIC TUFF chloritic, well banded 2 to 4% rounded blue quartz "eyes" (secondary) minor po, py in disseminations and bands parallel to foliation 	12% po,py	58° @ contact @ 150.9								- And the colour course and the colour and the colo
			 some weak silicification and occasional thin quartz + carbonate veins otherwise identical to previous intersections of this rock type 		68° @ 160.4				·	man, statute dankaliffikte dankalifikte dank			
			165.7-167.2 - increased silicification 167.2-168.2 - silicified and weakly biotitic interval, with biotite appearing to be an alteration product within the groundmass of the tuff			89927	167.2-168.2	1.0					
168.2	169.5	100	<pre>CHLORITE RICH MAFIC FLOW? INTRUSIVE? - dark green, dense, massive, strongly chloritized flow or intrusive - weakly carbonated, quite dense - some biotitic bands</pre>	1-2% po		89928	168.2-169.5	1.3					

B-17

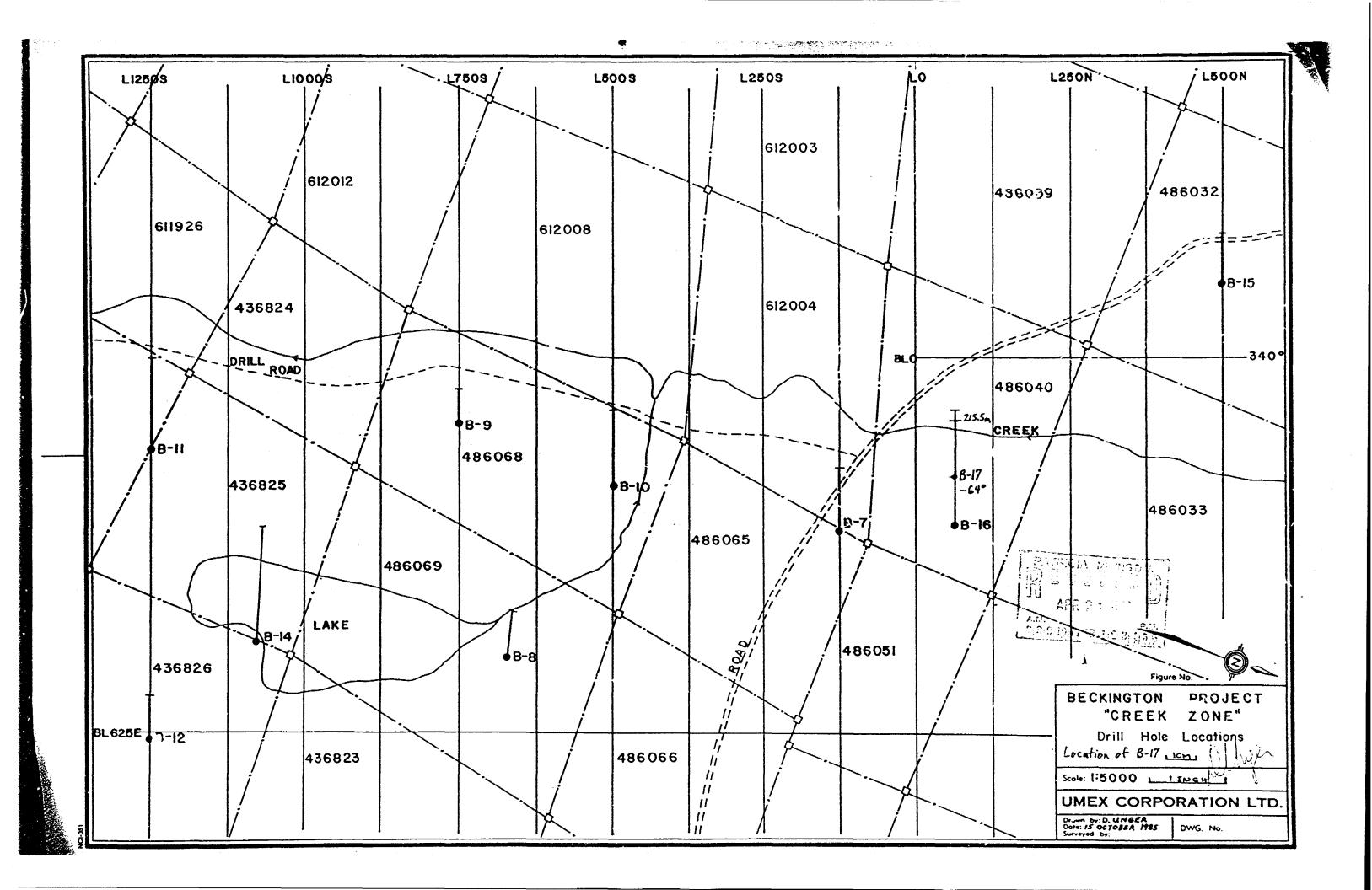
Pag: 10 of 13

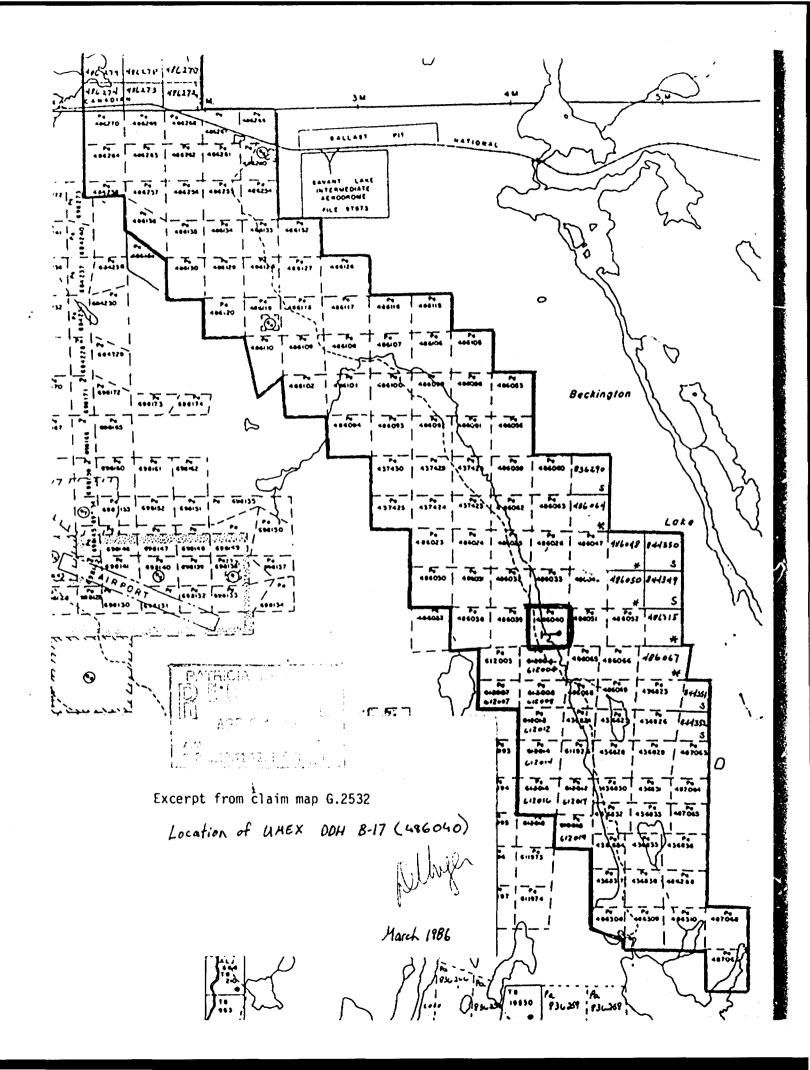
Depth Dip Assay Results % Sample Sample Sample **Description & Lithology** Mineralization 10 Core Number Interval From To Length C.A. WEAKLY SILICIFIED QUARTZ PORPHYRITIC INTERMEDIATE TO MAFIC TUFF 169.5 182.9 100 1% py, po 74° @ - well banded, grey-green, chloritic and sericitic 170.7 - 1-3% rounded blue quartz "eyes" (secondary) - very fine, light coloured tuffaceous fragments, visible in places - otherwise identical to above mentioned units. - very minor sulphides - weak silicification throughout 172.8 - 3 cm white quartz vein 180.5-182.9 - slight increase in silicification plus 1-3% very fine grained staurolite in bands parallel to foliation 1% po,py 77° @ |89929 |182.9-184.8 1.9 184.8 | 100 CHLORITE RICH MAFIC FLOW? INTRUSIVE? 182.9 contact @ 182.9 - dense, massive, strongly chloritized, minor biotitic banding - same as 168.2 to 169.5 183.2-183.45- irregular white quartz veining with minor - intense local chloritization, minor carbonate SILICIFIED QUARTZ PORPHYRITIC INTERMEDIATE TO MAFIC TUFF 1-2% py,po 184.8 204.4 100 - pervasive weak to moderate silicification, but presence of considerable chlorite suggests this rock was originally intermediate to mafic in composition

1

Page 11 of 13

1	_
//	
9	


Dep	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resi	ults	
From	То	Core	ocsemption a Emilionary,		C.A.	Number	Interval	Length				
184.8	204.4	100	<pre>(cont'd.) - well banded, with alternating chloritic and sericitic- weakly biotitic intervals - 1 to 2% round, blue, secondary quartz "eyes"</pre>		58° @							
			 - 1 to 2% found, blue, secondary quartz eyes - sulphides occur in weak disseminations and bands parallel to foliation 		194.0							
			184.8-188.3 - garnet and staurolite occur in this interval									
			194.0 - 5 cm quartz-carbonate vein with intense local chloritization									
			196.9-204.4 - up to 5% anhedral almandine garnet and up to 15% staurolite in bands parallel to foliation - strongly chloritic, but still with a weak pervasive silicification - very minor sulphides				197.8-199.3 199.3-200.8	.5 1.5				
			198.1-198.4 - quartz-carbonate stringer parallel to core axis									
204.4	209.2	near 100	- 2 to 4% transluscent to blue secondary quartz "eyes"	27. ру			204.4-205.9 205.9-207.4 207.4-209.2	1.5 1.5 1.8				
			- 1 to 2% cream coloured felsic fragments elongated parallel to foliation									
			- moderate to intensely silicified, considerable sericite & chlorite									
			- about 2% disseminated py									


HOLE No.: B-17
Page 12 of 13

De	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Res	ults	
From	То	Core	bescription a citiology	Phineranzación	C.A.	Number	Interval	Length				
204.4	209.2	near 100	(cont'd.) 206.2-206.3 - white quartz vein									
			207.7 - 5 mm chert?									
209.2	211.7	near 100	MODERATELY SILICIFIED TUFFS	∠1% py								
			- variable degree of silicification, but overall less than 204.4-209.2									
			- rock is weakly banded and quite fine grained									
			- occasional garnet									
			210.0 - 7 cm quartz vein, intense local chloritization, minor py									
211.7	213.5	75	INTENSELY SILICIFIED TUFFS	∠ 0.5% sulphides		89935	211.7-213.5	1.8				
			- very intensely silicified rock, probably tuffaceous	sulphides								
			- some apple-green sericite									
			- banded, fragmentary nature still clearly discernible however.									
			211.8-212.1 - broken core - extremely silicified		77° @							
213.5	215.5	100	MODERATELY SILICIFIED QUARTZ PORPHYRITIC TUFF	2-3% ру	215.0	89936	213.5-215.0	1.5				
			- mottled, white-dark grey colour, very similar to 145.2-148.4									
			- 2 to 4% round, transluscent quartz eyes									
			μy occurs as disseminated cubes									
			- banding is somewhat obscured by silicification	1								

Page 13 of 13

Dept	th	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	,	Assay Resu	ults
From	То	Core	Description a Cathology	Mineralization	C.A.	Number	Interval	Length			
213.5	215.5	100	(cont'd.) 213.5-213.8 - quartz carbonate vein causing intense local silicification								
<u>ا</u> ر ا	215.5		END OF HOLE								
			ACID DIP TESTS: 45.7 m -69° 91.4 m -65° 137.2 m -63° 182.9 m -61°								
			My								
							į				
\$. !				
							·				
	1				. 1						

UMEX INC

PROJECT: B

BECKINGTON

Hole No.: 6-13

Local Coord.: L375N; 250E

Started : 09 March 1986

Drilled By : Morissette

ANOMALY:

Creek Zone

Bearing: 250°

Depth : 233.8 metres

Completed: 12 March 1986

Described By: David Unger

CLAIM :

Pa 486033

Dip : −60°

Core Diameter: BQ

Machine : Boyles 35A

De	, .	% Core	Description & Lithology	Mineralization	Dip to	Sample Number	Sample Interval	Sample Length		Ass	say Resul	lts
From	То				C.A.			cenga				
			SUMMARY LOG					-				
0	6.7		Casing								j	
6.7	9.0		Mafic Flow								į	
9.0	18.1		Silicified tuffs									-
18.1	21.3		Moderately silicified intermediate tuffs								İ	İ
21.3	39.4		Intensely silicified lapilli tuff-volcanic breccia									į
39.4	43.1		Chloritic, garnetiferous tuff-silicate iron formation								1	
43.1	53.9		Silicified coarse fragmental (tuff?)								1	1
53.9	61.2		Intermediate tuffs								-	
61.2	72.2		Silicified and sericitized tuffs		ļ							1
72.2	85.3		Mafic tuff?								1	1
85.3	99.1		Silicified and sericitized intermediate tuffs			1 / 3		 		[- [
99.1	106.8		Mafic tuff or epiclastic sediment			1 1 1 1 1 1 1	提高器式工			1	1	
106.8	117.2	1	Intensely silicified tuffs		1	121						1
			107.3-107.7 - 40% py CONDUCTOR			1 /	APROL					
117.2	125.3		Sericite schist	,		1 2.50	100	221				1
			119.7-120.8 - 20-40% py CONDUCTOR			L. 2000	10.17.72	3.1			ì	ļ
125.3		1	Silicified and sericitized tuffs			•		4.7			Ì	Į.
137.2			Mafic tuff or sediment			İ	1	1-1				l
142.8		1	Quartz porphyritic intermediate to mafic tuff			İ	, ,	ļ			ì	1
156.9		}	Silicified tuffs									1
167.1	3	i	Silicified quartz porphyritic intermediate tuffs									1
176.5		1	Staurolitic tuff or metasediment		}							İ
1	188.3		Silicified tuffs	1					!}			1
1	194.1	1	Silicified quartz porphyritic intermediate tuff									1
	206.1		Quartz porphyritic intermediate tuff/tuffaceous sediment	1							İ	
206.1	208.2	l	Quartz porphyritic intermediate tuff				1					
		1			1							-
1		1		1	1]	[]	ì		-

B-18

Page

of

Deg	pth	%	Description & Lithology	Mineralization	Dip	Sample	Sample	Sample	As	ssay Resi	ults
From	То	Core	Description & Lithology	Mineralization	to C.A.	Number	Interval	Length			
208.2 210.8 217.9	217.9		SUMMARY LOG (con't.) Silicified tuffs Intermediate tuffs Quartz porphyritic intermediate to mafic tuff or tuffaceous metasediment								
	233.8		END OF HOLE								
			,								

UMEX INC DRILL RECORD

PROJECT: BECKINGTON

Hole No.: B-18

Local Coord. : L375N; 250E

Started : 09 March 1986

Drilled By : Morissette

ANOMALY: Creek Zone

Bearing: 250°

Depth : 233.8 metres Completed: 12 March 1986

Described By: David Unger

CLAIM : Pa	a 486033
------------	----------

Dep	th	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		As	say Resu	ılts
rom	То	Core	Description a chilology	Milleralization	C.A.	Number	Interval	Length	Au ppb	Cu ppm	Pb ppm	Zn ppn
0	6.7		Casing									
6.7	9.0	near 100	MAFIC FLOW - dark grey-black, very fine grained - some chloritic alteration	Nil								
			- generally featureless; minimal sulphides	•								
9.0	18.1	95	SILICIFIED TUFFS	∠0.5% cp								
			- greenish-grey in colour, generally well banded									
			 occasional streaky, crenulated, slightly pinkish bands parallel to foliation may represent tuffaceous fragments or injections of silica along foliation planes 		52° @ 14.1		11.3- 12.8 12.8- 14.3 14.3- 15.3	1.5 1.5 1.0				
			 silica has also accumulated into veins and blebs of white bull quartz 									
			- very weakly disseminated cp									
			 vague, light coloured tuffaceous fragments, irregular in outline, are discernible in places, but detail is obscured by silicification 	·								
			- general chloritization									
			16.7- 17.0 - intensely chloritic with 30% almandine garnet									

B-18

Page 2 of 15

Dept	th	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		Ast	say Resul	Its	
From	То	Core			C.A.	Number	Interval	Length	Au ppb	Cu ppm	Pb ppm_	Zn ppm _	
18.1	21.3	near 100	MODERATELY SILICIFIED INTERMEDIATE TUFFS						1	1		1	i
	1	100	- green and chloritic with weak to moderate silicification	1	1		1		1		1	1	1
	,		- occasional silica rich patches and bands				1		1		•	'	
	1		- negligible sulphides	1			1		1		!	•	1
			19.8- 20.2 - intensely chloritic with 30% almandine garnet										
21.3	39.4	near 100	INTENSELY SILICIFIED LAPILLI TUFF-VOLCANIC BRECCIA	1-3% py	1		1	1	1	1		,	:
		100	- fragments, often quite angular, up to core diameter in size, comprise 20-40% of the rock										:
			 fragments generally light coloured and felsic, and are of several different types: cream coloured, white coloured and light green; also some dark mafic fragments. 									a so consession and strong a restored made in a s	
	,		- fragments frequently fractured and injected with silica		1		1		1	1	'		1
			- strong pervasive silicification and moderate sericiti- zation										
	1		- occasional tourmaline		1		1		1	1			!
			- sulphides, chiefly pyrite, occur as disseminations, fracture fillings, as matrix between fragments, and in pods which may themselves be ejecta.										
	·			26.5-30.3				1.5	1	1			
			32.1- 32.3 - quartz tourmaline? veining with reddish Fe oxidation	3-6% ру				1.5 0.8					
	. 1		32.5 - broken core		1				1				

Page 3 of 15

Dep	oth	%	Description & Lithology	Mineralization	Dip	Sample	Sample	Sample		As	say Res	ults	
From	То	Core	Description a Litrology	mineranzadon	to C.A.	Number	Interval	Length	Au ppb	Cu ppm	РЬ	Zn ppm	
21.3	39.4	near 100	Cont'd. 32.7- 33.7 - broken core caused by fracture parallel to core axis, also reddish Fe oxidation										
			35.7- 39.4 - some very large breccia-sized siliceous fragments in this interval; also an increase in po	35.7- 39.4 2-4% py,po	1		35.7- 37.2 37.2- 38.7	1.5					
			36.4 - 1 cm band of 75% py										
39.4	43.1	near	CHLORITIC, GARNETIFEROUS TUFF-SILICATE IRON FORMATION	3-5% po some mt?	58° @		40.0- 41.5 41.5- 43.0	1.5					-
		100	 dark green, strongly chloritized tuff with 30-40% ragged, anhedral, almandine garnet aligned parallel to foliation 	some art:	40.3	63733	41.5- 43.0	1.5					
			- numerous silica rich bands and pods										
			- moderately to strongly magnetic due to 3-5% very finely disseminated po ± mt?										1
43.1	53.9	near	SILICIFIED COARSE FRAGMENTAL (TUFF?)	1-3% ро,ру									
		100	- moderate to intense silicification obscures most primary features							,			
			 very difficult to assign an original lithologic type to this unit; but likely a tuff-breccia or debris flow 										
			- may be some "in situ" brecciation						·				
·			 this unit is darker in colour than previous silicified sections, reflecting an increase in chlorite and probably a more intermediate original composition 		8.								
			- some pods and irregular stringers of white quartz										
										,			

Page 4 of 15

Der	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		As	say Resi	ults	
From	То	Core			C.A.	Number	Interval	Length	Au ppb	Cu	Pb _ppm	Zn ppia	
43.1	53.9	near 100	Cont'd.										
			- occasional garnet and blue quartz "eyes"										
			 po is dominant sulphide occurring in blebs and stringers and weak disseminations 										
			43.3 - broken core, fault gouge										
			44.6 - 3 cm quartz chlorite vein										
			45.4- 45.8 - vuggy rusty interval										
			45.6 - broken quartz vein			85754	51.2- 52.7	1.5					
53.9	61.2	near 100	INTERMEDIATE TUFFS	1-2% po, py									
		100	- less silicified and much finer grained than 43.1 to 53.9										
			 moderate silicification persists however, with some local areas of intense silicification 	•	64° @ 57.7								
			- pervasive chloritization; occasional garnet		3,.,								
			 general grey-green colour, with good colour banding reflecting variable silicification 										
			56.2- 56.4 - irregular quartz veining with 3-5% interstitial po, py										
			60.9 and 61.1 - two 10 cm intervals of magnetic chlorite-garnet iron formation			85755	60.3- 61.3	1.0					
61.2	72.2	near 100	SILICIFIED AND SERICITIZED TUFFS	1% py,po									
		100	 siliceous, well banded tuffs, with considerable sericitization 		58° @ 63.4								
			- quite schistose; considerable chloritization		05.4								

B-18

Page 5 of 15

Dep	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		As	say Res	ults
From	То	Core	Description & Enhology	Mineralization	C.A.	Number	Interval	Length	Au ppb_	Cu _ppm	Pb ppm	Z
61.2	72.2	near 100	Cont'd.						eriko, irak erakuntaken er			
		100	- patchy quartz veining									
			- local cherty? horizons									
			- minimal sulphides									
			63.1- 63.6 - perhaps some cherty intervals			85756	62.9- 64.4	1.5				
			64.6- 65.4 - considerable quartz veining		58° @	85757	64.4- 65.7	1.3				
			After 68.0 - increasingly intermediate in bulk composition									
			71.0 - 2 cm quartz vein									
			71.0- 72.7 - considerable irregular quartz veining associated with lithologic contact; increase in po	1-3% po,py 71.0- 72.7		85758	71.0- 72.7	1.7				
			71.3- 72.0 - broken core									
72.2	85.3	90	MAFIC TUFF?	2-4% po								
			- dark green, strongly chloritic	<u> </u>								
			 fresh surface texture suggests a flow or intrusive, but fine banding appears tuffaceous 									
			- weakly magnetic, with 2-4% very finely disseminated po									
			- occasional patchy and irregular white quartz veins									
			75.0 - 3 to 4 cm irregular white quartz vein									
			75.0 - 3 to 4 cm irregular white quartz vein 75.5 - 7 cm white quartz vein			85759	74.6- 75.6	1.0				
									İ			

Page 6 of 15

Depth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		As	say Res	uits	
From To	Core	Description a Entitles	Willie Bill Billion	C.A.	Number	Interval	Length	Au ppb	Cu	Pb	Zn ppm	
72.2 85.3	90	Cont'd.										
85.3 99.1		78.3- 83.2 - general pervasive carbonatization 78.3 - broken core 79.0- 79.3 - broken core 82.4- 83.7 - considerable irregular patches and veins of white quartz, causing intense local chloritization; up to 30% po, lesser py, minor cp over several cm in some of these veins 83.1- 85.3 - silicified, with highly contorted and folded bedding and quartz veins, patches and injections	1% po, py	51° @	85760 85761 85762	81.4- 82.9 82.9- 84.1 84.1- 85.3	1.5 1.2 1.2					

B-18

Page 7 of 15

Depth Dip Assay Results % Sample Sample Sample Description & Lithology Mineralization to Core Number Interval Length From To C.A. РЬ ppb ppm prm | prm 99.1 100 Cont'd. 85.3 92.5- 92.9 - chloritic, garnetiferous section 85763 91.1- 92.9 1.8 96.0 and 97.0-97.5 - vein-like masses of fine grained, 85764 | 96.0- 97.1 1.1 85765 97.1- 98.2 cubic? brown mineral, possibly an 1.1 aluminosilicate 97.6-98.2 - chloritic, garnetiferous interval, feebly magnetic - 20% ragged, almandine garnet 99.1 106.8 100 MAFIC TUFF OR EPICLASTIC SEDIMENT - dark green, with numerous 1-3 cm biotite rich bands - mineralogy and fine banding suggest a tuff or epiclastic 63° @ sediment 102.6 - finely disseminated po associated mostly with the biotite rich bands - a few <1 cm siliceous bands - minor carbonate in places 85766 99.9-101.4 1.5 - rare garnet 85767 101.4-102.9 1.5 102.3 - 5 cm white quartz vein with minor po 85768 102.9-104.4 1.5 85769 104.4-105.7 1.3 104.9-105.2 - silicified interval 1-2% po,py 53° @ 106.8 | 117.2 | near INTENSELY SILICIFIED TUFFS contact 100 @ 106.8 - 1 to 2% round blue quartz eyes - white, very intensely silicified; likely a felsic tuff originally

Page 8 of 15

Der	oth	%	Description & Lithology	Mineralization	Dip	Sample	Sample	Sample		As	ssay Resu	ılts	
From	То	Core		acion acion	C.A.	Number	Interval	Length	Au ppb	Cu ppm	Pb ppm	Zn ppm	
<u> </u>	То	~	- 40% py in bands and remobilized interstitial fillings - quartz veins and probable cherty bands - these may have initially been exhalative sulphides 108.1 - 2 cm of 60% po 108.3 - 4 cm white quartz vein 109 4 cm white quartz vein 107.7-109.3 - 2 to 4% po, py in very thin streaks along foliation planes		56° @ 109.3	Number	1		11 i	Cu	Pb	Zn	
117.2	125.3	80	 114.0 - 5 cm white quartz vein SERICITE SCHIST silicified, intensely sericitized and schistose tuff cut by numerous white quartz veins, up to 8 cm in width, parallel to bedding 2 to 4% py in thin bands and stringers parallel to 	2-5% py									

Page 9 of 15

De	pth	%	Description & Lithology	Mineralization	Dip	Sample	Sample	Sample		A:	ssay Res	ults	;
From	То	Core	Description & Entrology	Milieralization	C.A.	Number	Interval	Length	Au ppb	Cu ppm	Pb ppm	Zn	
117.2	125.3	80	Cont'd.									****	sr
			- light grey colour										
			119.7-120.8 - 20 to 40% py in bands parallel to bedding, possibly with cherty horizons. CONDUCTOR		8		118.5-119.7 119.7-120.8	1.2					
			121.5-123.2 - very schistose and badly broken core				122.6-124.1	1.5	!				
125.3	137.2	100	SILICIFIED AND SERICITIZED TUFFS	2-4% py,po	68° @		124.1-125.3	1.2					
			 well bedded, mottled light grey to dark grey-black in colour 		@ 125.3	1							
			 mafic fragments comprise a significant proportion (up to 30%) of the rock 										; ;
			 many mafic fragments are comprised of metamorphic biotite 					·					:
			 mafic fragments are often stretched out along foliation planes 										
			- 1 to 2% small, oval, blue quartz "eyes"										
			- a few highly irregular veins of coarse chlorite with minor py, po and garnet		62° @								-
			 variable sulphide coetent, but generally 1-3% py,po in bands, pods and lenses following foliation planes 		131.1	85776	126.0-127.5	1.5					-
				133.6-134.0 4-8% py,po		85777	133.6–135.1	1.5					j
			134.0-137.2 - increasingly silicified		67° @								
			136.7 - broken core		137.2								

Page 10 of 15

Dep	pth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		As	ssay Res	ults	
From	То	Core	Description & Chilology	······CranzatiOii	C.A.	Number	Interval	Length	Au ppb	Cu ppm	Pb ppm	Zn ppm	I
137.2	142.8	near 100	MAFIC TUFF OR SEDIMENT	2-4% po, minor py									
		100	- dark green, strongly chloritic, well banded	laner by		85778	137.7-139.3	1.6					
			- variable garnet content, but up to 10% locally		58° @	85779	139.3-140.8	1.5					
:			- considerable biotite along foliation planes			85780	140.8-142.3	1.5					
			- 20 to 40% light coloured fragments										
			- finely disseminated po throughout										
			- this may be a metamorphosed silicate iron formation							1			
			140.8 - 8 cm white quartz vein										
142.8	156.9	near 100	QUARTZ PORPHYRITIC INTERMEDIATE TO MAFIC TUFF	1-3% ру,ро									
			 well banded; strongly chloritic with green and grey colour banding reflecting variable chloritization and sericitization 										
			- 1 to 2% round blue quartz eyes										
			 1 to 3% anhedral almandine garnet, though this is variable 				·						
			 occasional quartz veining causing locally intense chloritization 										
	-		 variable sulphide content, but generally 1-3% py,po as weak disseminations and thin bands and stringers 										
			146.9-147.3 - broken core caused by fracture parallel to core axis										

E-18

Page 11 of 15

De	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		As	say Resi	ılts	
From	То	Core		- The state of the	C.A.	Number	Interval	Length	Au ppb	C(1 ppm	Pb ppm	Zn ppm	
156.9	167.1	100	SILICIFIED TUFFS	1% po,py	71° @ 156.9	85781	151.0-152.0	1.0					:
			- pervasive silicification, poorly bedded		150.9								:
			- very fine, light coloured tuffaceous fragments										;
			- 10 to 20% specks, pods and fine stringers of metamorphic biotite is the most distinctive feature										
			- minimal sulphides in fine disseminations; mostly po										
167.1	176.5	100	SILICIFIED QUARTZ PORPHYRITIC INTERMEDIATE TUFFS	1% po		85782	166.7-167.7	1.0					j
			 similar to 156.9 to 167.1 except for development of transluscent to light blue, round quartz porphyroblasts and coarser fragments 										
			- bedding better developed than from 156.9 to 167.1										
			- weakly chloritic and biotitic; rare garnet									·	
			 moderate silicification; light and dark coloured fragments 									,	
			- weakly disseminated po										
			167.1 - 10 cm quartz vein										1
			170.5-170.8 - irregular quartz veining with intense local chloritization		70° @ 171.9	85783	170.0-171.0	1.0					
			173.8 - 10 cm of silicification and quartz veining									·	
			175.6-176.5 - increasing silicification										
			176.2-176.5 - 5% almandine garnet									·	
}							·						İ

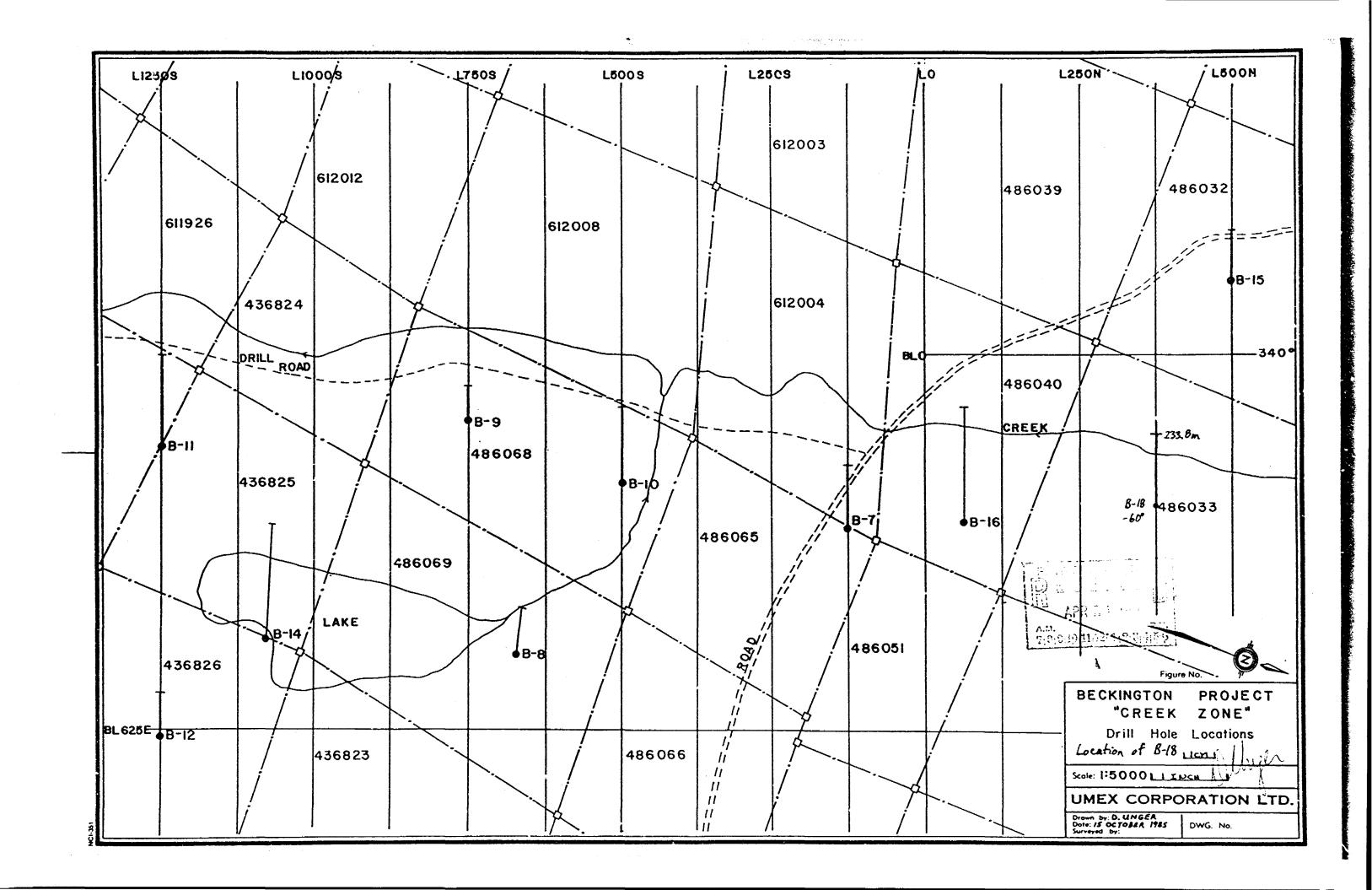
B-18

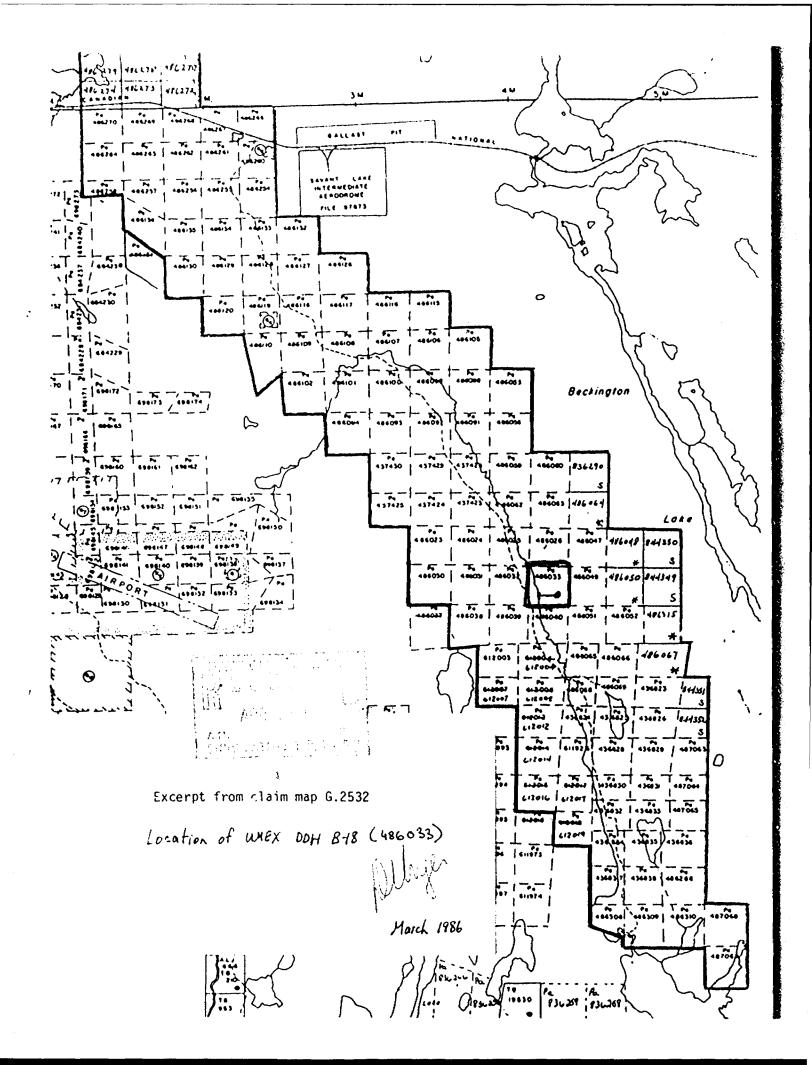
Page 12 of 15

Dep	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		As	say Resu	ilts	
From	То	Core	Description a Enhology	witterastzation	C.A.	Number	Interval	Length	Au ppb	Cu ppm	Pb ppm	Zn ppm	
176.5	181.4	near 100	STAUROLITIC TUFF OR METASEDIMENT	1-3% ру,ро									
		100	- 20 to 40% very fine grained, amber coloured staurolite										
			 up to 30% round quartz fragments or porphyroblasts occur in places, esp. after 179.5 	•									
			- chloritic, sericitic, and intermediate in chemistry										
			- patchy silicification										
			176.5-176.7 - fine grained mafic flow			85784	175.9-176.9 178.3-178.9	1.0					
			177.1-177.9 - 10% py,po in very fine disseminations, stringers and bands parallel to foliation	177.1-177.9 10% ру,ро	A Company of the Comp		176.9-178.3	1.4					
				179.2-179.4 3-5% po,py	1	85786	178.9-180.4	1.5					-
181.4	188.3	100	SILICIFIED TUFFS	1% po,py									
			 very similar to 156.9 to 167.1 except for presence here of vague feldspar? crystals suggesting a crystal tuff 										-
			- occasional specks and pods of biotite		53° @								
			- rare garnet		e 188.3								
			- frequent irregular quartz stringers with local sericitization			85787	185.0-186.5	1.5					
188.3	194.1	100	SILICIFIED QUARTZ PORPHYRITIC INTERMEDIATE TUFF	<17 po,py									
į			- similar to 167.1 to 176.5 except this is more coarsely fragmental				·						
			- felsic and mafic fragments elongated parallel to foliation										

Page 13 of 15

То	Core	Description & Lithology	Mineralization	to	Sample	Sample	Sample	Ĺ				
			Ordingation	C.A.	Number	Interval	Length	Au ppb	Cu ppm	Pb ppm	Zn ppm	
94.1	100	Cont'd.										
		mafic fragments reach lapilli in size, though some of these may be due to in situ brecciation and may not be ejecta										
		- 3 to 6% large (up to 1 cm) blue quartz "eyes" (secondary)										
		- sericitic and chloritic; occasional garnet										
06.1	100	QUARTZ PORPHYRITIC INTERMEDIATE TUFF/TUFFACEOUS METASEDIME	NT 1-27 pv po	·								
		- 15-20% very fine grained amber coloured staurolite		61° @ 195.7								
		- 2-4% round blue quartz "eyes"	1-2% py,po	193.7								
		- chloritic; weakly silicified, usually in thin bands										
		- light coloured felsic fragments occur as streaks parallel to foliation										
		- occasional garnet; occasional quartz veining										
		 abundance of 'uminosilicates suggests a sedimentary origin 										
		196.3 - 3 cm white quartz vein					1.8					
		202.6-203.1 - considerable white quartz veining with intense local chloritization, minor remobilized py		72° @ contact @ 206.1		202.3-204.0	1-/					
		203.9 - 6 cm white quartz vein										
1		i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		•	. 1							
			- light coloured felsic fragments occur as streaks parallel to foliation - occasional garnet; occasional quartz veining - abundance of 'uminosilicates suggests a sedimentary origin 196.3 - 3 cm white quartz vein 202.6-203.1 - considerable white quartz veining with intense local chloritization, minor remobilized py	- light coloured felsic fragments occur as streaks parallel to foliation - occasional garnet; occasional quartz veining - abundance of 'uminosilicates suggests a sedimentary origin 196.3 - 3 cm white quartz vein 202.6-203.1 - considerable white quartz veining with intense local chloritization, minor remobilized py	- light coloured felsic fragments occur as streaks parallel to foliation - occasional garnet; occasional quartz veining - abundance of 'uminosilicates suggests a sedimentary origin 196.3 - 3 cm white quartz vein 202.6-203.1 - considerable white quartz veining with intense local chloritization, minor remobilized py 72° @ contact of the contact o	- light coloured felsic fragments occur as streaks parallel to foliation - occasional garnet; occasional quartz veining - abundance of 'uminosilicates suggests a sedimentary origin 196.3 - 3 cm white quartz vein 202.6-203.1 - considerable white quartz veining with intense local chloritization, minor remobilized py 85788 85789	- light coloured felsic fragments occur as streaks parallel to foliation - occasional garnet; occasional quartz veining - abundance of 'uminosilicates suggests a sedimentary origin 196.3 - 3 cm white quartz vein 202.6-203.1 - considerable white quartz veining with intense local chloritization, minor remobilized py 85788 85789 72° @ contact @ 206.1	- light coloured felsic fragments occur as streaks parallel to foliation - occasional garnet; occasional quartz veining - abundance of 'uminosilicates suggests a sedimentary origin 196.3 - 3 cm white quartz vein 202.6-203.1 - considerable white quartz veining with intense local chloritization, minor remobilized py 85788 85789 202.3-204.0 1.7	- light coloured felsic fragments occur as streaks parallel to foliation - occasional garnet; occasional quartz veining - abundance of 'uminosilicates suggests a sedimentary origin 196.3 - 3 cm white quartz vein 202.6-203.1 - considerable white quartz veining with intense local chloritization, minor remobilized py 85788 85789 72° @ contact @ 206.1	- light coloured felsic fragments occur as streaks parallel to foliation - occasional garnet; occasional quartz veining - abundance of 'uminosilicates suggests a sedimentary origin 196.3 - 3 cm white quartz vein 202.6-203.1 - considerable white quartz veining with intense local chloritization, minor remobilized py 85788 85789 196.1-197.9 1.8 85789 202.3-204.0 1.7	- light coloured felsic fragments occur as streaks parallel to foliation - occasional garnet; occasional quartz veining - abundance of 'uminosilicates suggests a sedimentary origin 196.3 - 3 cm white quartz vein 202.6-203.1 - considerable white quartz veining with intense local chloritization, minor remobilized py 85788 85789 202.3-204.0 1.7	- light coloured felsic fragments occur as streaks parallel to foliation - occasional garnet; occasional quartz veining - abundance of 'uminosilicates suggests a sedimentary origin 196.3 - 3 cm white quartz vein 202.6-203.1 - considerable white quartz veining with intense local chloritization, minor remobilized py 85788 85789 202.3-204.0 1.7


Page 14 of 15


					 								
De	pth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	<u></u>	A:	say Res	ults	
From	То	Core			C.A.	Number	Interval	Length	Au ppb	Cu ppm	Pb ppm	Zn ppm	
206.1	208.2	100	QUARTZ PORPHYRITIC INTERMEDIATE TUFF	N11									
			- similar to 167.1 to 176.5 except for presence here of 5-10% garnet							***************************************			
			- little silicification, rock looks quite fresh										
			- felsic fragments predominate										
208.2	210.8	100	SILICIFIED TUFFS	< 0.5% sulphides									
			 virtually identical to 181.4-188.3, except for presence here of up to 5% almandine garnet 										
			210.5-210.8 - fine grained mafic flow or tuff		1								
210.8	217.9	100	INTERMEDIATE TUFFS	< 1% py,po									
			- grey, finely banded with fine felsic fragments										
			- up to 20% fine grained staurolite to 214.0										
			<pre>- mm sized light blue quartz "eyes" (secondary?) prominent to 214.0</pre>										
			 after 214.0 rock becomes increasingly schistose, sericitic, and chloritic 			85790	211.7-213.2	1.5					
			217.9 - 8 cm white quartz vein at contact										
217.9	233.8	100	QUARTZ PORPHYRITIC INTERMEDIATE-MAFIC TUFF/TUFFACEOUS META										
			 excellent colour banding, with dark green, chloritic and garnetiferous bands alternating with light coloured siliceous, sericitic, staurolitic bands on a cm scale 	< 1% py,po	63° @ 221.5								
			- 1 to 2% round, blue, quartz eyes		72° @ 233.0								

Page 15 of 15

To Cose Ca Number Interval Length Au Cu Ph Zn pph ppm	Depth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		As:	ssay Resu		
217.9 233.8 100 Cont'd. - minimal sulphides, confined primarily to quartz veins 219.6 - 2 cm white quartz vein 222.3 - 7 cm quartz vein 224.0-225.0 - considerable quartz veining with intense 100cal chloritization 225.0 - 1 cm pod of py,po 233.8 END OF HOLE ACID DIP TESTS: 45.7 m -63° 91.4 m -63° 137.2 m -58° 182.9 m -53° 232.6 = 53°	From To			- Sization		1 ' 1	1		11 1		1 1	5 1	<u> </u>
		100	- minimal sulphides, confined primarily to quartz veins 219.6 - 2 cm white quartz vein 222.3 - 7 cm quartz vein 224.0-225.0 - considerable quartz veining with intense local chloritization 225.0 - 1 cm pod of py,po END OF HOLE ACID DIP TESTS: 45.7 m -63° 91.4 m -63° 137.2 m -58° 182.9 m -53° 229.6 - 53°			85791	223.8-225.5	1.7	SP.D.	ppm	ppm	ppm	

B-18

UMEX INC

PROJECT. BECKINGTON

Hole No.: B-19

Local Coord. : 1155N; 325E

Started : 14 March 1986

Drilled By : Morissette

ANOMALY: Creek Zone

CLAIM : Pa 486062

Bearing: 225°

Dip : -60°

Depth : 215.5 metres

Core Diameter: BQ

Completed: 17 March 1986

Machine : Boyles 35A

Described By: David Unger

De	pth	%	Description & Lithology	Mineralization	Dip	Sample	Sample	Sample		Assay Re	sults	
From	То	Core	Description & Ethology	Mineralization	C.A.	Number	Interval	Length				T
			SUMMARY LOG									İ
0	12.8		Casing							l		
12.8	17.7		Intermediate tuffs							1		!
17.7	41.0		Siliceous and sericitic lapilli tuff-tuffs/metasediment									
41.0	53.3		Finely banded alternating sericitic and chloritic tuffs and sediments									
53.3	57.9		Carbonated mafic volcanic, probably tuff				}					
57.9	61.1		Finely banded mafic tuff or sediment									
61.1	74.8		Mafic volcanic, probably tuff	i	ł						Ì	l
74.8	90.3]	Siliceous and sericitic tuffs		-				1 1			1
90.3	97.1	1	Well bedded siliceous and sericitic tuffs									İ
97.1	107.5		Siliceous and sericitic lapilli tuffs		Ì	ļ.			1 1		İ	
107.5	110.0	İ	Sericite schist		-	1-7 1-	L 15					ŀ
110.0	115.3	ļ	Intensely sericitized tuffs			1	l	101				
115.3	116.9		Fault Zone				林保 复生 分二					1
116.9	119.0	1	Siliceous and sericitic tuffs	İ		£:1.		1	1 1	ļ	Í	1
119.0	126.9	Ì	Siliceous and staurolitic tuff or metasediment		}	\$ 2 ₁ 2 ₁ 5 ₁	9/11/32/11/2 清了	5.3		į	1	
126.9	134.0	1	Intermediate staurolitic tuffs or metasediment					1		ļ		İ
134.0	137.5	1	Siliceous and staurolitic tuffs	-			1 1			-		
137.5	138.7	j	Intensely silicified rock (chert?)	}			ļ]		j	Ì	
138.7	140.1		Strongly silicified tuffs		l							
140.1	148.9	1	Staurolitic intermediate tuffs			İ				1		
148.9	151.0	1	Strongly silicified and sericitized tuffs								i	
151.0	157.3	1	Quartz porphyritic intermediate to mafic tuff			1						
157.3	159.1	1	Mafic volcanic? intrusive?									
159.1	185.0		Variably silicified quartz porphyritic and garnetiferous									
			tuffs								İ	
185.0	215.5	1	Quartz porphyritic and staurolitic intermediate to mafic			1		1			1	1
			tuffs			1		1		ļ		
	215.5	1	END OF HOLE		-	1.	1	1		I		1

UMEX INC

Core Diameter: BQ

PROJECT: BECKINGTON

Hole No.: B-19

Local Coord.: 1155N; 325E

Started: 14 March 1986

Drilled By : Morissette

ANOMALY: Creek Zone

CLAIM : Pa 486062

Bearing: 225°

Depth

: 215.5 metres

Completed: 17 March 1986

Machine : Boyles 35A

Described By: David Unger

Dep	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As:	say Resu	ılts	
rom	То	Core	bescription a canology	Nineranzación	C.A.	Number	Interval	Length				I
0	12.8		Casing									T
2.8	17.7	60?	INTERMEDIATE TUFFS - grey, with occasional cm wide dark green chloritic bands	< 0.5% sulphides								
			- some siliceous bands; weakly biotitic									
			- minor disseminated po 12.8- 15.3 - broken core									
			16.7- 17.7 - increasingly siliceous 17.4- 17.7 - quartz veining with intense chloritization				·					
L7.7	41.0	85	SILICEOUS AND SERICITIC LAPILLI TUFFS-TUFFS/METASEDIMENT	< 0.5% sulphides		89801	18.9- 20.4	1.5				
·			- green, cream and pink colour banding and some fine laminations	Surprises			10.9 20.4	1.5				
			- foliation occasionally wavey and crenulated								·	
			- generally felsic fragments up to lapilli size, many have indistinct outlines due to degree of alteration									
			- variable degree of silicification, sericitization and chloritization									

.

Page 2 of 14

De	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resu	ılts	
From	То	Core			C.A.	Number	Interval	Length				
17.7	41.0	85	Cont'd.									
			- this rock is quite intensely altered									
			- considerable broken core to 27.0									
			- crenulated features may represent soft sediment deformation									
			 many large (core diameter) mafic clasts may represent sedimentary rip-up clasts formed in a high energy sedimentary environment 									
			- numerous veins and injections of quartz						;			
			- occasional secondary quartz "eyes"			89802	29.7- 31.1	1.4	,			
			31.4- 32.1 - quartz veining with local development of chlorite and biotite		45° @ 35.2	89803	31.1- 32.6	1.5				
			36.6- 37.0 - quartz veining with intense local chloritization and local development of		35.2	89804	36.8-38.3	1.5				
			apple green sericite			89805	38.3- 39.8	1.5				
			38.6- 40.8 - considerable irregular, patchy quartz veining with local development of chlorical scricite, and biotite	,		89806	39.8- 41.0	1.2				
41.0	53.3	95	FINELY BANDED ALTERNATING SERICITIC AND CHLORITIC TUFFS &	SEDIMENTS								
			- finely banded, fine grained sediments or tuffs alternate between grey, sericite rich and green chlorite ± garnet rich horizons of up to 1 m each	2-6% po variable								
			- very finely disseminated po accompanies the more chloritic intervals									
			- parts of this unit represent a sulphide-silicate iron formation									

HOLE No.:

B-19

Page 3 of 14

Assay Results Dip Depth % Sample Sample Sample **Description & Lithology** Mineralization to Core Number Interval Length To From C.A. 53.3 Cont'd. 41.0 59° @ - fine grained biotite throughout, especially in the 45.0 chloritic horizons where it is the result of retrograde metamorphism 41.0- 42.8 41.3- 41.6 - 30% almandine garnet, 4-6% po 41.3-41.6 89807 4-6% po 44.6- 46.3 42.1 - 10 cm quartz vein 89808 1.7 42.8- 44.4 - grey, sericitic interval 89809 46.3- 47.9 1.5 89810 47.9~ 49.7 1.8 46.3- 47.1 - 10-15% anhedral almandine garnet 48.8- 49.7 - chloritic, mafic horizon with fine biotitic banding 49° @ 49.7- 51.5 - sericitic, grey tuffs 51.9 51.7- 53.3 89811 51.5-53.3 - finely banded grey-green tuffs or sediments 51.8 - 3 mm seam of po 1-2% po CARBONATED MAFIC VOLCANIC, PROBABLY TUFF 57.9 53.3 near 100 - dark green and chloritic - weakly biotitic in bands parallel to foliation - streaks, stringers and general interstitial carbonate 2-5% po 57.9- 61.1 FINELY BANDED MAFIC TUFF-SEDIMENT 89812 2.2 57.9 61.1 | near minor py,cp 100 - as from 53.3 to 57.9 but with less carbonate, more sulphides, and better developed biotitic (brown)chloritic (green) banding, alternating over 1-3 cm widths - 1 to 4% garnet (variable)

Page 4 of 14

De	pth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resu	its	
From	То	Core	Joseph Jo		C.A.	Number	Interval	Length				
57.9	61.1	near 100	Cont'd.									
		100	 sulphides occur as very fine disseminations of po with minor py,cp; also in bands parallel to bedding 		60° @ 60.4							
		 	- sulphides prefer the biotite rich material									
			61.0- 61.5 - weakly silicified, with 30% quartz porphyroblasts									
61.1	74.8	1	MAFIC VOLCANIC, PROBABLY TUFF	1-3% ро,ру								
		100	- similar to 53.3 to 47.9, but only very weakly carbonated									
			- chloritic, with occasional secondary quartz porphyro- blasts									
			- weakly biotitic in bands parallel to foliation									
			- 1 to 3% finely disseminated po,py									
			- occasional pods and veins of carbonate and/or quartz									
			- rare garnet									
			63.2 - irregular quartz vein with 3-5% po,py									
			66.6 - broken core		70° @ 69.6	89813	67.0- 68.5	1.5			,	
			70.5 - broken core		03.0	89814	72.7- 74.2	1.5				
			73.1 - 4 cm quartz vein									
							·					

Page 5 of 14

-	•
	-

Dep	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Res	ults	
From	То	Core	Description & Entrology	Mineralization	C.A.	Number	Interval	Length				
74.8	90.3	90		minor sulphides								
			 grey, fine grained and finely bedded, much finer grained than 17.7-41.0 	Sulphildes								
			- variable degree of silicification and sericitization									; ;
			- some fine tuffaceous fragments discernible in places									
			- variable chloritization									
			- sporadic quartz veining									•
			- negligible sulphides									
			76.2 - 8 cm quartz vein									
			76.2- 77.2 - strongly sericitic and schistose									
			81.2- 81.7 - chloritic section with 20% highly elongated garnet									
			83.9- 84.9 - 20 to 30% staurolite			89815	83.9- 85.8	1.9				l
			84.6-84.9 - considerable quartz veining									
			85.8 - 5 cm quartz vein									
		·	85.7-89.7 - very siliceous, with crenulated foliation and well defined tuffaceous fragments		59° @ 92.6							
			87.5-89.7 - 2 to 5% py as streaks, pods and hairline fracture fillings	87.5- 89.7 2-5% py		89816	87.5- 89.7	2.2				
		,	89.7- 90.3 - shear zone with broken core and fault gouge				·					
							·					

Page 6 of 14

Dep	th	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resu	ılts	
From	То	Core	bosonpriori di ciniorogy		C.A.	Number	Interval	Length				
90.3	97.1	100	WELL BEDDED SILICEOUS AND SERICITIC TUFFS	1-3% py.po								
			- very similar to 74.8 to 90.3 except for a well developed foliation (bedding?) developed here			39817	92.9- 94.4	1.5				:
			 very fine tuffaceous fragments comprise perhaps 50% of the rock 									
			- siliceous and sericitic; weakly chloritic									
			 sulphides occur as small (mm sized) disseminations, pods and very thin stringers 									
97.1	107.5	100	SILICEOUS AND SERICITIC LAPILLI TUFFS	1-3% ру,ро								,
			- identical to above except for presence of intermediate to mafic lapilli accounting for 10-15% of the rock		58° @ 98.2							
			- lapilli are greatly elongated parallel to foliation									
	:		- sulphides as from 90.3 to 97.1									
			103.0-103.3 - silicified interval			89818	103.1-104.6	1.5				
			105.7 - 12 cm white quartz vein			89819	104.6-106.0	1.4				
107.5	110.0	80?	SERICITE SCHIST	1-3% ру,ро		89820	107.5-110.0	2.5				
			- strongly schistose and broken core									
			- intensely sericitic; considerable silicification									
			- possibly some cherty horizons?									
			 greasy, talcose feel and pearly lustre on some fracture planes 									
							e Linksin Linksins					

HOLE No.:

B-19

Page 7 of 14

	×	٠		
- 4				
- 1		ı		
			н	

De	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resu	ilts	
From	70	Core			C.A.	Number	Interval	Length				
107.5	110.0	80?	Cont'd.									
			- generally minor sulphide content, but occasional bands (mm sized) parallel to foliation contain up to 3% py,po									
110.0	115.3	80?	INTENSELY SERICITIZED TUFFS	1% py,po								
			 intense sericitization resulting in very schistose and broken core 									
			- moderate silicification; numerous quartz veins		58° @							
			- occasional blue quartz "eyes"	·								
			- weakly banded									
			110.2 - 7 cm quartz vein				:					
			110.0-111.9 - intensely crenulated foliation									İ
			111.3-111.6 - irregular quartz veining				·					
			111.7-112.1 - 5% py in pods and bands	111.7-112.1 5% py		89821	110.0-112.1	2.1				
115.3	116.9	70?	FAULT ZONE	Tr. sulphides		89822	115.3-116.9	1.6				
			 core fractured and broken, particularly at 116.0-116.2, where fault gouge occurs 									
			- core muddy and rusty									
			- Fe oxidation makes it difficult to discern the original rock type, though it appears to be fairly siliceous									
			- only trace amounts of carbonate and sulphides									

Page 8 of 14

•	
 	_

De	pth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resi	ults	
From	То	Core	·		C.A.	Number	Interval	Length				
116.9	119.0	95	SILICEOUS AND SERICITIC TUFFS	1-2% ро,ру								
			- grey, well bedded, fine to medium grained									
			- 2 to 3% small, blue quartz "eyes" (secondary?)									
			- chloritic			 						
			- minor disseminated po,py		<u> </u>							
19.0	126.9	97	SILICEOUS AND STAUROLITIC TUFF OR METASEDIMENT	2-5% py,po except								
			 10 to 20% fine grained amber coloured staurolite in bands and disseminations 	where noted								-
			- moderate to locally intense silicification		59° @							
			- fragmental nature only locally discernible		122.3				j j			
			- chlorite is present but there is little, if any, biotite									
			 occasional quartz veining and transluscent to blue quartz "eyes" 									
			 locally abundant concentrations (5-10% over 1-5 cm) of py, po in remobilized stringers, hairline fracture fillings and bands 					-				
			119.5 - 5-10% po			89823	119.1-121.0	1.9				
			120.6 - 10 cm of 10% stringer py,po									
			123.9 - 4 cm quartz vein									
			123.2-123.3 - 10% py,po in pods and stringers			89824	123.2-124.1	0.9				
			123.9-124.1 - 5-10% stringer py,po				V.					

Page 9 of 14

(2.5)	4	
	•	•

Deg	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resu	ılts	
From	То	Core			C,A.	Number	Interval	Length				
119.0	126.9	97	Cont'd.									
			124.2-125.3 - considerable quartz veining		54° @	89825	124.1-125.3	1.2				
			127.6 - 3 cm quartz vein		126.9							
126.9	134.0	100	INTERMEDIATE STAUROLITIC TUFFS OR METASEDIMENT	1-3% ру,ро								
			- as above, but with less silica and more sericite and chlorite									
			- fewer sulphides and only minor quartz veining									
			- a few siliceous intervals, esp. 132.2-133.8						,			
			133.2-133.7 - 5-10% stringer py,po	133.2-133.7 5-10% py,po	E .	89826	133.2-134.0	0.8				
134.0	137.5		SILICEOUS STAUROLITIC TUFFS	1-3% ру,ро								
		100	- better foliated and more sericitic than 119.0-126.9		 							
			- 20 to 30% staurolite in bands parallel to foliation									
			- greenish, chloritic bands faintly visible									ĺ
			- 2 to 3% blue, secondary, quartz "eyes"									
			137.1-137.5 - 10% stringer py,po	137.1-137.5 10% py,po		89827	137.1-138.7	1.6				
137.5	138.7	100	INTENSELY SULICIFIED ROCK (CHERT?)	locally 10% py,po			,					
			- white, almost 100% silica	102 py,po								
			- practically featureless, though with some faint tuffaceous banding									
	no Star cristos		- local bands (<1 cm) of 10% py, some po	The second of th	يعدده كالبريو مزرعان		e nicht er nechte Graffen.					ĺ

Page 10 of 14

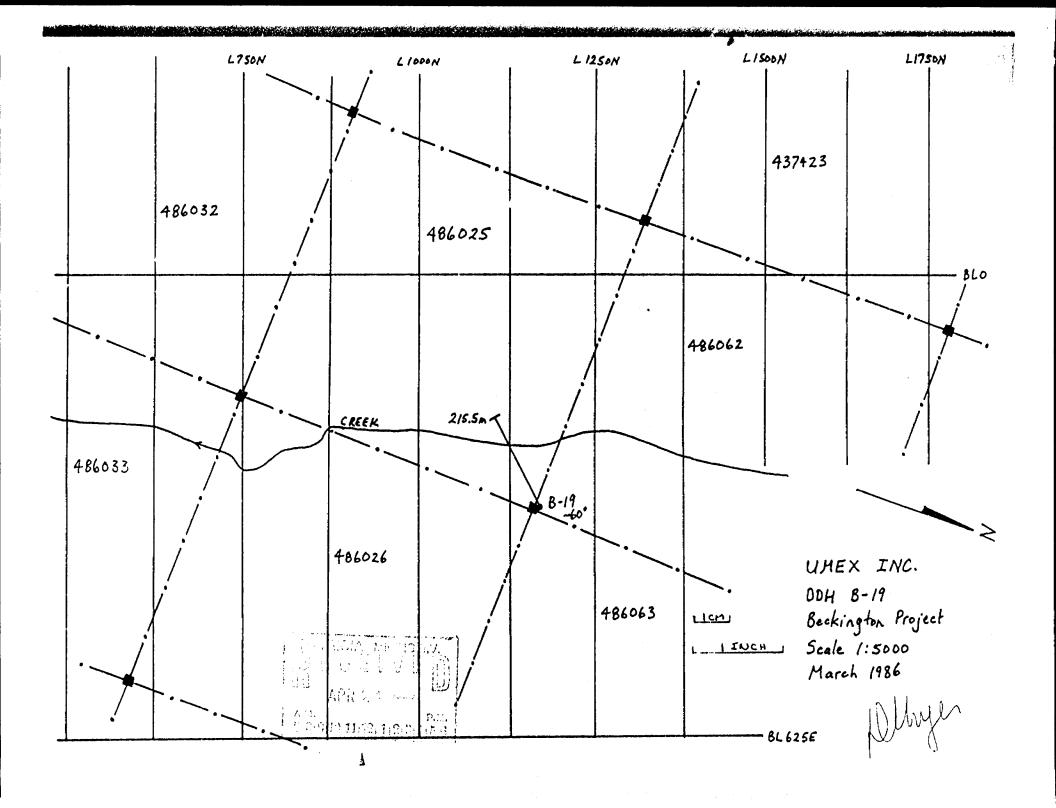
Dep	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resu	ults	
From	То	Core	a country of the country		C.A.	Number	Interval	Length				
138.7	140.1	100	STRONGLY SILICIFIED TUFFS	Tr.								
			- mm sized felsic fragments clearly discernible in places									
			- 5 to 10% banded staurolite		52° @							
			- very siliceous									
			- very minor sulphides									
140.1	148.9	near 100	STAUROLITIC INTERMEDIATE TUFFS	1-2% ру,ро								
			- strongly chloritic and sericitic, patchy silicification									
			- 1 to 2% round blue, secondary quartz "eyes"		1							:
			- variable staurolite content, but locally up to 20%									
			- occasional garnet									
			- sulphides in streaks, stringers, and disseminations	•								
			- increasingly siliceous toward the bottom of this unit.									
			141.5-143.3 - considerable white quartz veining with intense local chloritization			89828	141.5-143.3	1.8				
148.9	151.0	98.	STRONGLY SILICIFIED AND SERICITIZED TUFFS	< 0.5%			,					
			- mmm sized quartz fragments throughout (crystal tuff?)	ру,ро							·	
			 greenish grey, reflecting strong sericitization and chloritization 									
			- vague banding									
			- minor sulphides								-	
			150.9 - 6 cm white quartz vein									

...

Page 11 of 14

Dep	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	Assay	Resu	lts	
From	То	Core	Doddington & Lindowy,		C.A.	Number	Interval	Length				
151.0	157.3	near 100	QUARTZ PORPHYRITIC INTERMEDIATE TO MAFIC TUFF	1-2% ро,ру								
		100	- similar to 140.1 to 148.9, except for increase here in chlorite									
			- 1 to 2% round, blue quartz "eyes" (secondary)		66° @							
			- local concentrations of staurolite up to 20% in bands parallel to foliation									
			 occasional very ragged almandine garnet blobs, up to l cm, elongated parallel to foliation and associated with chlorite-rich material 			89829	154.6-155.6	1.0				
			- a few minor, local concentrations of stringer py,po									
			 weak silicification in places; locally sericitic and/or biotitic 									
157.3	159.1	100	MAFIC VOLCANIC? INTRUSIVE?	Nil			·					
			- medium grained, green, chloritic							1		
			 fresh surface texture is intrusive, i.e. dense, inter- locking, massive 									
			 some evidence of banding on core surface, however this effect may be metamorphic 									
			- siliceous bands and fragments or phenocrysts in places			89830	157.1-158.5	1.4				
			157.3-157.4 - irregular quartz veining						i.			
										Ì		
							San James Const.					

Page 12 of 14


De	pth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resu	ilts	
From	То	Core	occomption a survively	······Cianganon	C.A.	Number	Interval	Length				
159.1	185.0	100	VARIABLY SILICIFIED QUARTZ PORPHYRITIC AND GARNETIFEROUS T									
			- grey to green in colour, generally well bedded	< 1% sulphides								
	-		 variable degree of silicification, but original rock appears to have been a tuff of intermediate or intermediate to mafic composition 		71° @ 172.9							
			- variable amounts of chlorite and sericite									
			- light and/or dark coloured fragments comprise less than 50% of the rock									
			 very ragged almandine garnets concentrated primarily in chlorite rich intervals; occasional staurolite bands 									
			- 1 to 2% round secondary blue quartz "eyes"									
			- occasional patches and veins of quartz									
			162.1-163.0 - sericitic interval									
			164.9-165.0 - patchy quartz veining			89831	164.3-165.8	1.5			į	
			168.5-168.7 - sericitic interval									
			169.9-170.2 - strongly chloritic; 30% garnet			89832	169.8-170.8	1.0				
			170.2-179.3 - sericite rich, negligible garnet		ŀ							
			179.1-179.9 - considerable irregular patchy quartz veining causing intense local chloriti- zation	·	71° @ 184.0	89833	178.9-180.5	1.6				
			180.3-181.2 - fine grained chloritic faintly banded mafic flow?			89834	180.5-182.0	1.5				
			181.2-185.0 - 1-2% py,po in stringers and disseminations	181.2-185. 1-2% py,po		89835 89836	182.0-183.5 183.5-185.0	1.5 1.5				

Page 13 of 14

De	oth				Dip				As	say Res	ults	
From	То	% Core	Description & Lithology	Mineralization	to C.A.	Sample Number	Sample Interval	Sample Length		-		
From	,		QUARTZ PORPHYRITIC AND STAUROLITIC INTERMEDIATE TO MAFIC To remarkably uniform throughout - grey-green colour reflecting predominance of chlorite and sericite - rare garnet - light coloured (felsic?) fragments, mm sized, elongated parallel to foliation comprise > 50% of the rock - round to angular blue quartz "eyes" (secondary) comprise 1-2% - occasional concentrations of staurolite in bands parallel to foliation - occasional dark green, chlorite rich bands - rare sulphides, but occasional minor concentrations of py, po - minor silicified patches	UFFS < 1% sulphides	to	Sample Number	Sample Interval	Sample Length				
			191.5 - 10 cm white quartz vein, minor associated py, po			89837		1.0				
			205.0-206.3 - silicified veinlets		63° @ 200.0	89838	205.0-206.3	1.3				
			206.1 - 5 cm quartz vein 208.0-209.4 - fine grained mafic flow, chloritic		63° @ 207.2							
			213.3 - 3 cm quartz vein									
	215.5		END OF HOLE									

Page 14 of 14

Dep	oth	%	Description * Litheless		Dip	Sample	Sample	Sample	Ass	say Resu	ilts	
From	То	Core	Description & Lithology	Mineralization	to C.A.	Number	Interval	Length				
			ACID DIP TESTS: 45.7 m -65° 91.4 m -65° 137.2 m -63° 182.9 m -62°									
			Myer									

UMEX INC

PROJECT: BECKINGTON

Hole No.: B-20

Local Coord. : 187.5N; 225E

Started : 20 March 1986

Drilled By : Morissette

ANOMALY: Creek Zone

ek Zone Bearing: 245°

Depth : 227.7 metres

Completed: 23 March 1986

Described By: David Unger

CLAIM : Pa 486033

Dip : -62°

Core Diameter: BQ

Machine : Boyles 35A

Dep		% Core	Description & Lithology	Mineralization	Dip to	Sample Number	Sample	Samp.		As	say Resu	ılts	T
From	То	W16			C.A.	Rumber	intervai	Sample Interval Length Assay Results 2 1 12 12 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15					
			SUMMARY LOG										
0	18.9		Casing										
18.9	19.7		Sericitized tuff							İ			1
19.7	20.9		White quartz vein										l
20.9	24.1		Sericitized and altered tuffs										
24.1	29.4		Garnetiferous and chloritic tuff	[
29.4	46.3		Amphibolitized mafic volcanic										
46.3	65.5		Weakly banded mafic flow or tuff										
65.5	81.4		Sericitized and silicified tuffs										
81.4	86.8		Silicified quartz porphyritic tuffs										
86.8	90.5		Chloritized and sericitized tuffs		,		•						
90.5	91.1		Chlorite sericite schist			Q 15 4	المال الماطية	1					
91.1	93.1		Quartz porphyritic intermediate tuffs					21					
93.1	95.5		Silicified quartz porphyritic tuffs-lapilli tuffs		5	A:	R 22 1 부사	4					١
	100.8		Sericitized and silicified intermediate tuffs			et.1.	F.:						
	106.2		Intermediate to mafic tuffs		L	713:9:10:		į .					ı
	111.9		Biotitic and garnetiferous intermediate tuffs					ر.					
	116.5		Weakly silicified garnetiferous tuffs				Å			;			-
	122.9		Weakly silicified quartz porphyritic intermediate tuffs Chloritic and garnetiferous tuffs										
	124.7 126.0		Weakly silicified quartz porphyritic intermediate tuffs										l
	143.6		Weakly silicified intermediate tuffs			}							
	143.6		Moderately silicified tuffs										
	158.0		Variably silicified intermediate tuffs										1
	175.0	1	Quartz porphyritic and garnetiferous intermediate to]				
.50.0	175.0		mafic tuff or metasediment							:			
						1			l !		l	l	-

HOLE No.:

Page

of

Dep	pth	%	Description & Lithology	Mineralization	Dip	Sample	Sample	Sample	As	say Res	ults	
From	То	Core	Description a Citiology	mineralization	to C.A.	Number	Interval	Length				
			SUMMARY LOG (con't.)									
175.0	204.5		Quartz porphyritic intermediate to mafic tuff or metasediment									
204.5	214.3		Moderately silicified quartz porphyritic intermediate	•								
214.3	217.8		tuffs or sediment Silicified and strongly altered tuffs				1					
217.8	227.7		Quartz porphyritic intermediate to mafic tuff or metasediment				·					
	227.7		END OF HOLE									
				1								
					! 							
											<u> </u>	

UMEX INC DRILL RECORD

PROJECT: BECKINGTON

Hole No.: B-20

Local Coord.: 187.5N; 225E

Started: 20 March 1986

Drilled By : Morissette

ANOMALY: Creek Zone

Bearing: 245°

Depth

: 227.7 metres

Completed: 23 March 1986

Described By: David Unger

%

Core

75?

75

Depth

From

18.9

19.7

20.9

To

18.9

20.9

24.1

19.7 100

Dip : -62° Core Diameter: BQ		Mac	hine : E	Boyles 35A		 .,. D.			
Description & Lithology	Mineralization	Dip to C.A.	Sample Number	Sample Interval	Sample Length	Ass	say Resu	Its	
Casing									
SERICITIZED TUFF	Nil						1	į	
- well foliated and strongly sericitized tuff								ŀ	İ
- numerous dark coloured chloritic fragments									
WHITF QUARTZ VEIN	Nil		89839	19.7- 20.9	1.2				
 white bull quartz with occasional streaks and patches of strongly sericitized and chloritized country rock 									
- considerable broken core									
- negligible sulphides									
SERICITIZED AND ALTERED TUFFS	N11								
 strongly sericitic, with some silicification and chloritization 									
 occasional, patchy quartz veining, very irregular in outline 		-			-				
- core is strongly broken and fractured throughout					İ				
- negligible sulphides									

Page 2 of 13

	-	•	
- 4		i	۰
•			

De	pth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resi	ults	
From	То	Core			C.A.	Number	Interval	Length				
24.1	29.4	80	GARNETIFEROUS AND CHLORITIC TUFF	1 % po								
			 intermediate to mafic in composition, though with local silicification 				۵					
			- angular, glassy blue-black fragments comprise ~ 15% of the rock									
			 ragged, anhedral almandine garnet comprises 10-25% of the rock, and is generally elongated parallel to foliation 									
			- strongly chloritic; considerable broken core throughout				,					
			- minor disseminated po			89840	27.6- 29.1	1.5				
			- a few very minor veinlets of epidote									
			24.1- 24.6 - broken, muddy core, with some fault gouge and Fe oxidation; also, a broken 5 cm quartz vein									
29.4	46.3	90	AMPHIBOLITIZED MAFIC VOLCANIC	1-3% ро,ру								
			- green, fine to medium grained, very weakly banded amphibolite, likely of mafic volcanic origin									ı
			- some chlorite and minor biotite									
			- occasional carbonate patches, veins, and hairline stringers									
			- generally 1-3% disseminated po, py with occasional local concentrations of up to 5%		51° @ 40.5		38.9- 40.3	1.4				i I
			- considerable broken core		-0.5							
]		i

52J/02NE - 0017 #3

HOLE No.: B-20

Page 3 of 13

Dep	oth	%	Description & Lithology	Mineralization	Dip	Sample	Sample	Sample	As	say Resu	ılts	
From	То	Core	Description & Ethology	Mineralization	to C.A.	Number	Interval	Length				
29.4	46.3		Cont'd.									
			29.1- 29.8 - broken core				,					
			43.3- 46.3 - considerable broken core and some fault gouge									
			- some weak quartz veining and silicification	n								
46.3	65.5	95	WEAKLY BANDED MAFIC FLOW OR TUFF	1-2% po,py								
			 much as above except this unit is better banded, with a slight increase in biotite, mostly in bands parallel to foliation 									
			 amphibole altering to chlorite remains the dominant mineralogy 									
			 continued carbonate (calcite) stringers and veins and patches 		51° @ 53.9							
			 disseminated and weakly banded po, py tend to be concentrated in the biotite rich sections 									
			49.4- 50.0 - silicified section									
			50.1- 50.6 - chlorite-garmet-po rich zone with 3-5% garnet and po	50.1-50.6 3-5% po								
			51.1- 51.3 - considerable calcite veining			89842 89843	50.0- 51.4 55.8- 57.3	1.4 1.5				
			56.4- 57.0 - 5-10% garnet with 5% disseminated po. pv	56.4-57.0 5% po.py		89844						
			55.0- 55.0 - broken core	DO DO		07044	57.3- 58.8	1.5				
			57.1 - 4 cm carbonate vein									
			57.4 - 10 cm quartz-carbonate vein with 5-10% remobilized po. py						!			

525/02 NE-0017 44

HOLE No.: B-20

Page 4 of 13

Dep	th	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		As:	say Resu	ilts	
From	То	Core			C.A.	Number	Interval	Length					
46.3	65.5	95	Cont'd.										
			62.7 - 20 cm of irregular quartz-carbonate veining with 3-5% remobilized po, py		, ,	89845 89846	61.7- 63.0 63.0- 64.4	1.3					
				63.1-63.8 5-10% po.pv									
		١	63.6 - 5-10% banded py, possibly within chert					1	1	f 1	1	1	
65.5	81.4	90	SERICITIZED AND SILICIFIED TUFFS	< 1% sulphides	570 0		'	'	1	1	1	1	
		1	- fairly well banded greenish-grey to white tuffs	sarburges	65.6		'	1	1	+	1		
			 strong though locally variable sericitization and silicification 										
		1	- occasional patches and veins of chloritized material					1	1	1	1	1	1
			- some fine tuffaceous fragments visible in places					1	1	1	1		
	1		- occasional transluscent to blue quartz "eyes"						1	1	1	1	! <u> </u>
		1	- occasional quartz veining					1		•	1	1	
		1	- after 69 m: very strongly sericitic and schistose	i	1			1	1	1	1		
ļ			- 5to 10 cm white quartz veins at 71.8; 72.4; 73.8; 74.3			1.	1		1	1	1	1.	
			66.3- 67.7 - 3-5% po. py as disseminations, streaks and bands	66.3-67.7 3-5% po,py		89847 89848	66.1- 67.4 67.4- 68.7	1.3					
				67.7-68.2 20-30% py									
ì	1		- some late quartz veining associated				1		1	1			
			- possible chert?				1	1	1	1	1		t

525/02 NE-00:1 #5

HOLE No.: E-20

Page 5 of 13

De	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resi	ults	
From	То	Core			C.A.	Number	Interval	Length				
65.5	81.4	90	Cont'd.									
			75.5- 75.8 - irregular quartz veining			89849	74.9- 76.4	1.5				
			76.0 - 5 cm quartz vein									
			79.9 - 5 cm quartz vein		30° @ 77.8							
			80.6- 81.4 - broken and schistose core									
81.4	86.8	100 to	SILICIFIED QUARTZ PORPHYRITIC TUFFS	1-2% ру,ро		89850	81.4- 82.9	1.5				
		83.9 75	- strongly silicified, with weak to moderate sericitization	n								
		to 86.8	- less schistose and sericitic than above unit		54° @ 86.3							
			- 1 to 2% round, blue secondary quartz "eyes"									
			 fragments are siliceous, banded, and crenulated, and comprise 30-40% of the rock 									
			- sulphides occur as streaks and disseminations									
			83.9- 86.8 - no change in mineralogy, but core is very broken and schistose in this interval		·							
86.8	90.5	95	CHLORITIZED AND SERICIFIZED TUFFS	1-3% py								
			- greenish grey, well foliated and schistose									
			- more strongly chloritized than previous units			89851	87.5- 89.0	1.5				
			- patchy silicification									
			- occasional quartz veining and blue quartz "eyes"									
			- 1 to 3% disseminated py									

5231221/6-0017 立。

HOLE No.: B-20

Page 6 of 13

De	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resi	ılts	
From	То	Core			C.A.	Number	Interval	Length				
90.5	91.1	85?		minor								
			- as above, but extremely schistose	sulphides								
			- possibly a fault zone									
91.1	93.1	near 100	QUARTZ PORPHYRITIC INTERMEDIATE TUFFS	1-2% ру								
		100	- green, chloritic, well banded, fine grained tuffs		52° @ 91.6							
			- 1 to 2% blue quartz eyes elongated parallel to foliation		1 31.0							
			- 1 to 2% disseminated py									
93.1	95.5	100	SILICIFIED QUARTZ PORPHYRITIC TUF S-LAPILLI TUFFS	1-2% ру	50° @ 95.0							j I
			- similar to 81.4 to 86.8, excelt for an increase in fragment size here									
			- silicified and sericitized									
			- sulphides as weak disseminations									
			- 1 to 2% round, blue quartz eyes									
95.5	100.8	98	SERICITIZED AND SILICIFIED INTERMEDIATE TUFFS	< 1% py, po	1							
			- somewhat similar to 65.5 to 81.4, except for an increase in chlorite here									
			- patchy but occasionally intense sericitization and silicification		53° @							
			- very well foliated and banded in places		77.0							
			- 1 to 2% blue, secondary quartz "eyes"									
1					1				1			i

525102 NE -0017 #7

HOLE No.:

B-20

Page 7 o

Dej	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Samp	Sample	As	say Resu	ilts	
From	То	Core			C.A.	Number	Interv	Length				
95.5	100.8	98	Cont'd. - fine tuffaceous fragments clearly discernible in places									
100.8	106.2	near 100	97.9 - 5 cm quartz vein 99.0-100.8 - 2-4% po in stringers, thin bands, and fracture fillings 100.1-100.8 - strong silicification INTERMEDIATE TO MAFIC TUFFS - well foliated, green, strongly chloritic, weakly sericitic	99.0-100.8 2-4% po < 0.5% sulphides		89852	99.0-100.8	1.8				
			 fine, light coloured tuffaceous fragments rare garnet occasional quartz veining very minor sulphides 102.2 - 4 cm quartz vein 105.8 - 3 cm quartz vein with 10% po 		65° @ 109.6							
106.2	111.9	near 100	BIOTITIC AND GARNETIFEROUS INTERMEDIATE TUFFS - slightly more siliceous than the previous unit - about 5-10% biotite along foliation planes - considerable chlorite	1% po								

52-3702 NE-0017 = 8

HOLE No.: B-20

Page 8 of 13

Dep	th	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Re	ılts	
From	То	Core	occomplian a chinology	C.GIZGIOII	C.A.	Number	Interval	Length				
106.2	111.9	near	Cont'd.									
		100	- well banded (bedded?)									
			- variable garnet content, but generally 2 to 4%									
			 minor disseminated po, occasionally in the 1 to 2% range over short intervals 				107.4-108.4 110.4-111.9	1.° 1.5		 		
111.9	116.5	190	WEAKLY SILICIFIED GARNETIFEROUS TUFFS	4 0.5%								
			 prominent light coloured tuffaceous fragments elongated parallel to foliation 	py, po								
·			- 1 to 2% round, secondary, blue quartz eyes									
			- 5 to 10% almandine garnet concentrated mainly in chloritic sections			·						
			- light coloured, silicified bands									
			- very minor disseminated sulphides									
116.5	122.9	100	WEAKLY SILICIFIED QUARTZ PORPHYRITIC INTERMEDIATE TUFFS	< 0.5% sulphides	54° @							
			 similar to above, except garnet content here is about 1 to 3% 	arthuras	117.8							
			- 1 to 2% round blue quartz eyes									
			- light coloured tuffaceous fragments elongated parallel to foliation									
			- weak pervasive silicification									
			- weakly chloritic and biotitic									

Page 9 of 13

Der	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resi	ults	
From	То	Core			C.A.	Number	Interval	Length				
122.9	124.7	100	CHLORITIC AND GARNETIFEROUS TUFFS	minor sulphides								
			- intermediate to mafic in composition									
			 similar to 116.5-122.9 except for chlorite here instead of biotite 									:
			- 1-2% blue quartz "eyes"; 3-5% garnet									
124.7	126.0	100	WEAKLY SILICIFIED QUARTZ PORPHYRITIC INTERMEDIATE TUFFS									
			- as from 116.5-122.9									
126.0	143.6	100	WEAKLY SILICIFIED INTERMEDIATE TUFFS	Tr. py,po	66° @							
			 very pronounced light coloured felsic fragments elongated parallel to foliation comprise 30-40% of the rock; some are quite angular 		132.2							v 17. adapti adapti d v 17. a
			 groundmass is dark coloured and weakly biotitic and weakly silicified; biotite is mostly confined to foliation planes 				-					#
			- variable garnet content, though generally 1-3%									
			- rock is rather "fresh" looking in places			89855	131.7-133.2	1.5			-	
			- occasional thin, chloritic bands									
			- 1 to 2% round, transluscent to blue quartz "eyes"									
			- rare sulphides		61° @							
			After about 137 m - becoming increasingly silicified and intermediate to felsic in composition		139.9				·			
			- 3 to 6 cm white quartz veins at 141.5; 141.8 and 142.0									
	· · · · · · · · · · · · · · · · · · ·			ting Selan Jeen en teatstolene	i de la compania del compania del compania de la compania del compania de la compania del compania de la compania de la compania de la compania de la compania del compania	No.	: #2.					

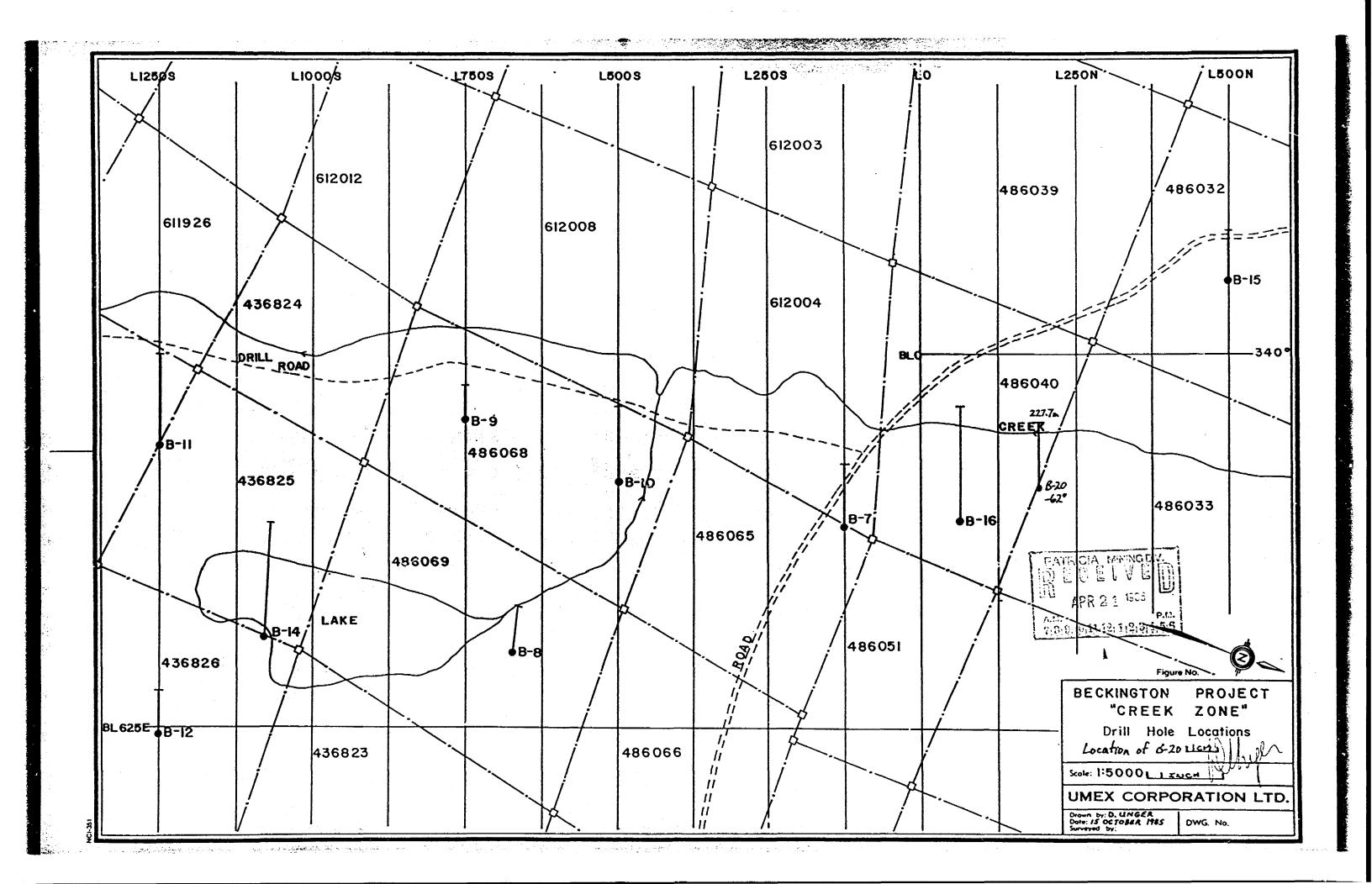
HOLE No.:

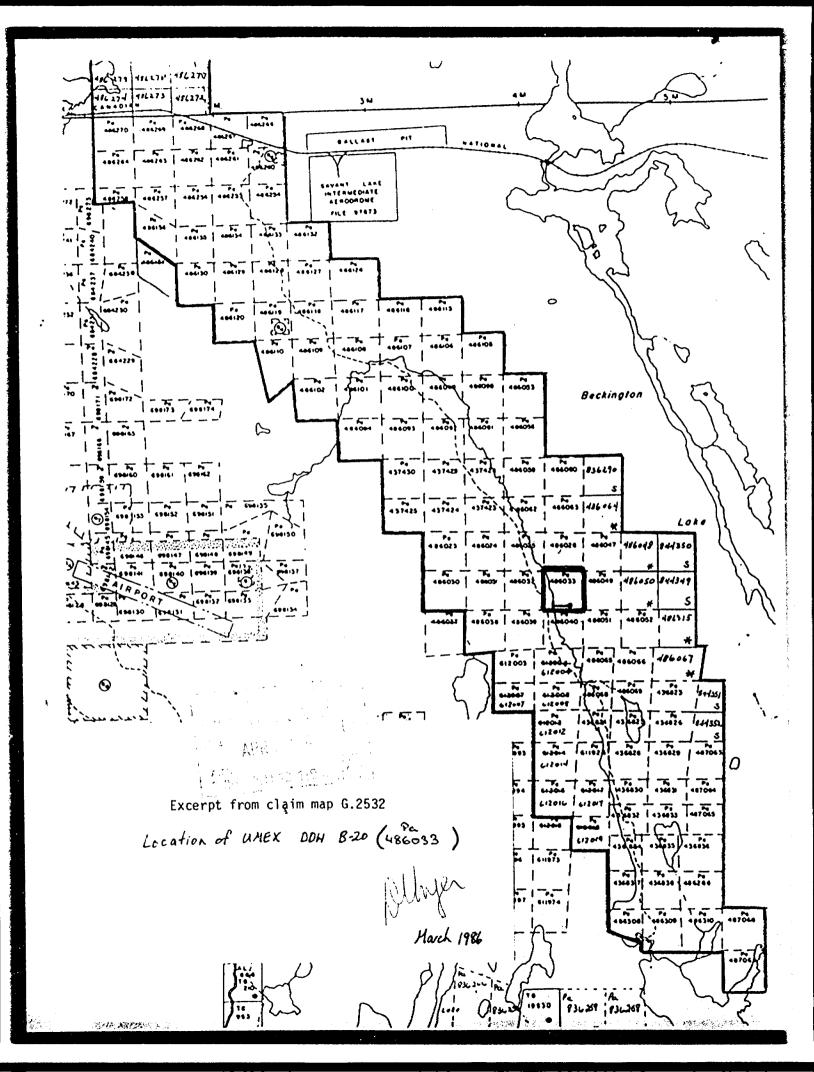
B-20

Page 10 of 13.

Dep	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	Assay F	lesults	!
From	10	Core	,		C.A.	Number	Interval	Length			
143.6	149.1	100	MODERATELY SILICIFIED TUFFS	1-3% po		89856 89857	143.5-145.4 145.4-147.2	1.9 1.8			:
			 probably a more silicified version of 126.0 to 143.6, since there are short intervals here of that unit 			89858	147.2-148.6	1.7			i
			 variable silicification and sericitization, some chloritization 		65° @ 150.0						
			 increase in po, which occurs mainly as vein-like remobilizations associated with chlorite rich bands (< 3 cm thick) 								
			- minimal biotite, occasional quartz "eyes"								
			 fragmentary nature distinct only in the less altered intervals 								
149.1	158.0	100	VARIABLY SILICIFIED INTERMEDIATE TUFFS	1-3% po variable							
			 something of a mixture of 126.0 to 143.6 and 143.6 to 149.1 								
			 variable silicification, chloritization, and fragmental development 								
			 increasing development of chloritic and garnetiferous banding toward the bottom of the unit 		60° @ 160.5	89859	150.8-152.8	2.0			
158.0	175.0	100	QUARTZ PORPHYRITIC & GARNETIFEROUS INTERMEDIATE TO MAFIC	UFF OR MET	SEDIME	NT.					
			 green, well banded, with colour banding reflecting varying proportions of chlorite and sericite 	< 1% po, py			·	·			
			 anhedral almandine garnets concentrate locally in several cm wide dark green chloritic bands; they may comprise 50% of the rock locally 		61° @ 166.0						
				1				-			

Page 11 of 13


De	oth	%			Dip	Sample	Sample	Sample	As	say Resu	ılts	
From	То	Core	Description & Lithology	Mineralization	to C.A.	Number	Interval	Length				
58.0	175.0	100	Cont'd.									=
			 1 to 2% blue, secondary, quartz "eyes" occasional thin quartz veins very fine fragmental texture may be dealing here with a tuff or an interbedding of tuffs and reworked tuffs (metasediments) minor fine disseminations of py, po, or in association with chlorite-garnet material general chloritization is the main alteration 160.8-162.3 - up to 70% garnet in numerous 2-10 cm wide dark green, chloritic bands 			89860	160.8-162.3	1.5				
75 . 0	204.5	100	After 166.0 - becoming less garnetiferous and increasingly staurolitic - GRADATIONAL CONTACT - QUARTZ PORPHYRITIC INTERMEDIATE TO MAFIC TUFF OR METASEDIN - as above, except with only minor garnet here - strong pervasive chloritization - 5 to 10% staurolite, generally in bands parallel to	ENT < 1% po,py	55° @ 182.5							
			- 5 to 10% staurolite, generally in bands parallel to foliation - well banded, with staurolite rich and chlorite rich bands - staurolite rich bands are quite pronounced in some sections									


Page 12 of 1

Del		% Core	Description & Lithology	Mineralization	Dip to	Sample Number	Sample Interval	Sample Length		As	say Resi	ults
From	То	55/6			C.A.	- Troilloef	micital	Lengin				l
175.0	204.5	100	Cont'd.									
			179.3-179.5 - white quartz vein with intensely chloritized wallrock xenoliths			89861	178.9-179.7	0.8				
			187.3 - 4 cm white quartz vein									
			- a few sections, generally <2 m in length, exhibit moderate silicification, as from 191.1 to 194.2; also short (< 5 cm) siliceous bands occur periodically		57° @ 194.9						:	
			195.9 - 7 cm white quartz vein									
			200.1 - quartz vein causing intense local chloriti zation and sericitization	_								
			200.3-204.5 - increasingly garnetiferous			89862	200.0-201.4	1.4				
			- GRADATIONAL CONTACT -									
204.5	214.3	near 100	MODERATELY SILICIFIED QUARTZ PORPHYRITIC INTERMEDIATE TUFF	OR SEDIME	59° @							
		100	- as above, but with moderate pervasive silicification	<1% po,p	,							
			- staurolite continues in thin bands parallel to foliation									
			- 2 to 4% secondary blue quartz "eyes"			ŀ						
			- silicification occurs mostly in bands						-			
			After 212.5 - becoming increasingly silicified toward the contact at 214.3; also strong staurolitic banding in this interval			1	212.7-214.2 214.2-215.7 215.7-217.0	1.5 1.5 1.3				
						87866	217.0-218.9	1.9				
												1

Page 13 of 13

De	pth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	Assay	Results	
From	То	Core			C.A.	Number	Interval	Length			
214.3	217.8	100	SILICIFIED AND STRONGLY ALTERED TUFFS	< 1% sulphides							
			- strong silicification and sericitization	Surprizes							
			- rock is strongly altered leaving few primary textures								
			- some patchy, vein-like areas of intense silicification								
			 numerous dark chloritic bands, otherwise rock is very light coloured 								
			- scattered tourmaline?								
			217.7 - 8 cm carbonate vein causing intense local chloritization								
			218.3-218.7 - biotitic banding								
217.8	227.7	100	QUARTZ PORPHYRITIC INTERMEDIATE TO MAFIC TUFF OR METASEDIN	ENT < 1%							
			- idenrical to 175.0 to 204.5	sulphides	71° @ 221.7						
	227.7		END OF HOLE								
			ACID DIP TESTS 45.7 m -68° 91.4 m -68° 137.2 m -67° 182.9 m -64° 213.4 m -67°								

UMEX INC

PROJECT: BECKINGTON

Hole No.: B-21

Local Coord. : L1000S; 150E

Mineralization

Started : 28 March 1986

Drilled By : Morissette

ANOMALY: Creek Zone

Bearing: 250°

Depth : 197.2 metres

Completed: 30 March 1986

Machine : Boyles 35 A

Described By: David Unger

CLAIM	:	Pa	436825	
OCAIIII	•			

To

3.7

9.7

18.1

51.7

66.7

94.6

97.5

105.2

194.7

197.2

%

Core

Casing

Mafic volcanic

Mafic volcanic

END OF HOLE

Mafic Intrusive (gabbro)

Mafic volcanic or intrusive

Mafic tuff or metasediment

Weakly silicified and sericitized tuffs

Altered tuffs and sericite schist

Intensely silicified and sericitized tuffs

Intensely sericitized tuffs - lapilli tuff

Altered tuff with garnetiferous intervals

Silicified, sericitized and chloritized tuffs

Depth

From

0

3.7

9.7

18.1

51.7

66.7

94.6

97.5

189.0

105.2 1109.0

109.0 115.5

115.5 156.6

156.6 162.7

162.7 179.7

179.7 189.0

194.7 197.2

Dip : -60°

Description & Lithology

SUMMARY LOG

Feldspar porphyritic intermediate to felsic intrusive

Altered tuffs with occasional garnetiferous intervals

Quartz porphyritic silicified and sericitized tuffs

Strongly silicified and sericitized tuffs - lapilli tuffs

Core Diameter: BQ

ults	say Res	As		Sample	Sample	Sample	
 Zn ppm	РЬ	Cu	Au ppb	Length	Interval	Number	

UMEX INC DRILL RECORD

PROJECT: BECKINGTON

Hole No: B-21

Local Coord. : L1000S; 150E

Started: 28 March 1986

Orilled By : Morissette

ANOMALY: Creek Zone

Bearing: 250°

: 197.2 metres Depth

Completed: 30 March 1986

Described By: David Unger

CLAIM : Pa 436825

Core Diameter: BQ

Machine : Boyles 35 A

Dep	th	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		Ass	say Resu	ilts	
From	То	Core			C.A.	Number	Interval	Length	Au ppb	Cu pom	РЬ ррш	Zn ppm	
0	3.7		Casing										
3.7	9.7	100	MAFIC VOLCANIC	< 1% sulphides									
			 medium grained, green, composed primarily of feldspar and amphibole altering to chlorite 	outhurdes.									
			- some very weak banding observable in places, but generally the unit is massive										
		1	- possibly an altered mafic tuff or flow										
			- cut by numerous thin (< 1 cm) quartz-carbonate veins								1		
			- weak pervasive carbonatization				1						
	1		- minor disseminated sulphides										
9.7	18.1	100		1	61° @								
	1		- grey, siliceous with 3-5% plagioclase phenocrysts		contact @ 9.7	1					! ,		
			 unit has a medium grained interior and very fine grained margins, suggesting an intrusive 										
	l .		- a few minor quartz-carbonate veinlets							1	!		
			- very sharp upper and lower contacts										
	!	1.	- negligible sulphides				. á,				!		
	t The grant by	1		La res News November	the matter of the second	27.500	The Mark Town Labor 180		V . 1	1 1	!		1

Page 2 of 10

Der	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resu	ılts	
From	То	Core			C.A.	Number	Interval	Length				
18.1	51.7	100	MAFIC VOLCANIC	1% py,po					 			-
			· identical to 3.7 to 9 $^{\circ}$ though with some coarse grained intervals							j		
			- strong chloritic alteration			89937	18.6- 20.1	1.5			B. Case	
			- occasional patches of coarse grained amphibole							1		
			 sulphides cacur as weak disseminations and as remobilizations into thin veinlets and seams 									
			- massive to very weakly foliated									
			- occasional quartz carbonate veinlets		ŀ							
			29.9- 30.5 - irregular quartz-carbonate veining, with xenoliths of mafic volcanic within the vein material			89938	29.6- 30.7	1.1				
			47.3- 50.3 - fine grained mafic flow with numerous quartz-carbonate veins			89939 89940	47.5- 49.3 49.3- 50.3	1.8				
			49.7 - 10 cm epidote vein	·		09940	49.3- 50.3	1.0				
51.7	66.7	100	MAFIC INTRUSIVE (GABBRO)	1-37 ро	55° @							
			 mineralogically and texturally similar to the above volcanic unit, except this unit is coarser grained 		@ 51.7							
			 coarse grained assemblage of plagioclase and amphibole altering to chlorite, also minor quartz 									
			- minor quartz-carbonate stringers and veinlets									٠.
			- massive to weakly foliated									
			 up to 3% disseminated py, po locally, with po predominating 				-					

Page 3 of 10

Depth Dip **Assay Results** % Sample Sample Sample **Description & Lithology** Mineralization to Core Number Interval Length To From C.A. Cont'd. 66.7 100 51.7 57.0 - carbonated fault gouge 89941 58.0- 59.1 1.1 89942 59.1- 60.8 1-3% po 66.7 94.6 100 MAFIC VOLCANIC OR INTRUSIVE - similar to 18.1 to 51.7, except for medium to coarse grained intervals which appear to be intrusive - difficult to tell whether this material is volcanic or intrusive, since it shares features of both - local concentrations of disseminated po up to 3% 89943 66.1- 67.6 1.5 - continued occasional quartz-carbonate veining - occasionally banded and foliated 74.2 - 15 cm irregular white quartz vein 89944 73.8- 75.5 1.7 78.8- 79.2 - quartz-carbonate-epidote vein, with late 89945 78.3- 79.8 1.5 carbonate brecciating the vein quartz 87.5-89.0 - coarse grained, dendritic amphiboles 86.0-86.2 - irregular quartz and late carbonate 89946 85.9-86.9 1.0 veining 2-4% py,po 97.5 WEAKLY SILICIFIED AND SERICITIZED TUFFS 94.6 near 100 - grey, well banded and foliated - weak to locally moderate silicification and sericitization - weak chloritic banding

Page 4 of 10

	epth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resu	ılts	
From	То	Core	3 /		C.A.	Number	Interval	Length				
94.6	97.5	near 100	Cont'd.									
			 numerous <1 cm quartz-carbonate veinlets generally parallel to foliation 									
			 sulphides occur as fine disseminations and thin bands parallel to foliation 			89947	94.6- 95.6	1.0				
			96.5 - 10 cm white quartz vein			89948	95.6- 97.0	1.4				
97.5	105.2	near 100	MAFIC TUFF OR METASEDIMENT	1-3% ро,ру								
		100	 well banded rock consisting of alternating chlorite, feldspar, and biotite rich bands 		60° @ , 98.0							
			 considerable quartz ± carbonate veins aligned parallel to foliation 									
			- very small, light coloured tuffaceous fragments discernible in places			89949	97.5- 99.0	1.5			ı	
			- occasional siliceous bands			89950 89951	99.0-100.5 100.5-102.0	1.5 1.5				
			- sulphides, predominantly po, occur as fine dissemination and thin bands parallel to foliation	S		89952	102.0-103.6	1.6				
			103.6-105.2 - increasingly silicified toward the contact at 105.2									
105.	109.0		INTENSELY SILICIFIED AND SERICITIZED TUFFS	1-2% py								
		100	- light coloured intensely altered rock		61° @							
			- original? banding clearly visible however, suggesting a tuffaceous origin		100.0	89953	105.7-107.3	1.6				

Page 5 of 10

Dep	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		Assa	ay Resu	Its	
From	То	Core			C.A.	Number	Interval	Length					
105.3	109.0	near 100	Cont'd occasional darker, chloritic intervals			89954	107.3-109.0	1.7					
100.5	135 5	000	- 1 to 2% disseminated py 108.4 - 5 cm of 15% py	17									
109.0	115.5	98	ALTERED TUFFS WITH OCCASIONAL GARNETIFEROUS INTERVALS - moderately to strongly silicified, sericitized and chloritized	1% po,py									
			 local concentrations of chlorite-garnet material, occasionally pyrrhetite rich, generally <10 cm in width 	1 3	62° @ 112.1								
			- sulphides confined mainly to the garnetiferous intervals	*					f .				# # # *
			- a few thin, vuggy, weathered intervals										
			109.8-110.3 - 20-30% garnet, 3-5% pyrrhotite, some magnetite?			89955	109.0-110.3	1.3					
:			strongly magneticcarbonate veining								-	Henry Parketing of Street	er gegeg war : : His dem agency
į			111.8-113.8 - minor red Fe oxidation			89956	111.4-112.8	1.4					***
115.5	156.6	98		1-2% py,po to 123.2	•			1					
			- greyish-green in colour, with light coloured tuffaceous fragments										***
			 strong though locally variable degree of silicification, sericitization and chloritization 					1					
1					1	1	Committee of the Commit	i l	1	. [1	1	l

Page 6 of 10

Dep	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample		As	ssay Resu	ılts	
From	То	Core	,		C.A.	Number	Interval	Length					
115.5	156.6	98	Cont'd.										
			- well banded, foliated and schistose, also talcose in places										
Statement Statem			 fine grained intervals alternate with more coarsely fragmental (lapilli) intervals, with fragments generally siliceous in composition 										
		1	- also, silica rich and chlorite rich sections alternate										1
			 pyrite is the dominant sulphide, occurring as disseminations and thin stringers in sporadic local concentrations of up to 2% 										
				118.0-119.0 5-10% py		89957	118.0-119.0	1.0					
			122.6-122.8 - white quartz vein		İ	89958	122.1-123.1	1.0	1				
· [de de de de de de de de de de de de de d		123.2-128.7 - lapilli tuff, with rounded to angular siliceous clasts, occasionally exhibiting relict banding or bedding; very minor sulphides	< 1% py,po after 123.2									
į			126.8; 126.6; 126.4 - three 3 cm quartz veins										
			128.7-131.6 - increased chlorite content here, plus numerous very irregular white quartz veins				128.9-130.1 130.1-131.5	1.2					
ĺ			- negligible sulphides							1		1	
ļ			132.8-135.0 - very intensely silicified coarse fragmental, likely a lapilli tuff			89961	133.1-134.1	1.0					
		1	- negligible sulphides										

Page 7 of 10

Del	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As:	say Resu	ılts	
From	То	Core	Description a Entitledy	Willet Bill 28:1011	C.A.	Number	Interval	Length		!		
115.5	156.6	98	Cont'd.									moderate supplier in their source
			137.7-139.7 - intensely silicified 141.9 - 6 cm white quartz vein 144.7-146.9 - intensely silicified coarse fragmental with light coloured fragments, as from 132.8-135.0			1	141.3-142.3	1.0				 - -
			143.5-144.7 - chloritic and sericitic 153.2-156.5 - considerable coarse fragmental material - possibly a lapilli tuff or autobreccia - fine banding is present in some of the fragments 154.8; 155.1 - two 1 cm bands of 20-30% py 155.1 - 15 cm of dark, intermediate to mafic material		65° @ 156.5	89964	154.5~155.5	1.0				
156.6	162.7	95	ALTERED TUFFS AND SERICITE SCHIST - strong silicification, sericitization and chloritization, as above - locally intense sericitization has created very schistose and broken intervals - several quartz veins, generally < 2 cm wide, parallel to foliation - occasional carbonate veining	1-3% ру								

Page 8 of 10

Dep	oth	%	Description & Lithology	A4:4:4:	Dip	Sample	Sample	Sample	As	say Resul	ts	
From	То	Core	Description a Emblogy	Mineralization	to C.A.	Number	Interval	Length				
156.6	162.7	95	Cont'd.									1
			 difficult to make out primary textures 									
			 py occurs as disseminations, stringers and in association with quartz-carbonate veins 									
			161.2-162.2 - considerable quartz-carbonate veining with strong local chloritization				160.6-162.3 162.3-163.8	1.7				
			- vuggy carbonate veining with up to 3% py									
			161.7 - staurolite? associated with an irregular chloritic band									
162.7	179.7	near 100	SILICIFIED, SERICITIZED AND CHLORITIZED TUFFS	1% py								
		100	 similar to 115.5 to 156.6, except for generally finer fragment size here as well as a slight but pervasive increase in chlorite 									
			- this rock is most likely an altered intermediate tuff									
		·	 vague banding resent throughout, though silicification has obscured most primary features 									
			 tuff and occasionally lapilli sized clasts are visible in places 									
			- rare garnet and occasional very small blue quartz "eyes"									
			 py is by far the dominant sulphide, occurring as disseminations, veinlets and stringers 									
			165.2-166.1 - garnet chlorite unit with 25% garnet, minor po			89967	165.2-166.1	0.9				

D-21

Page 9 of 10

Deg	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resi	ults	
From	То	Core	bescription a chilology	Cranzation	C.A.	Number	Interval	Length				
162.7	179.7	near 100	Cont'd.									
				168.9-170.1 1-2% py		89968	168.9-170.1	1.2				:
			171.6-176.8 - 2-3% py as <1 cm bands; also in stringers and disseminations and irregular			89970	171.6-173.1 173.1-174.9 174.9-176.8	1.5 1.8 1.9				
179.7	189.0		INTENSELY SERICITIZED TUFFS-LAPILLI TUFFS	1-2% ру								
		100	- as from 162.7 to 179.7 but with increased sericitization and fragment size									
			 considerable yellow-brown and some apple-green sericite/ talc 		73° @ 182.7							
			- siliceous clasts, often highly elongated parallel to foliation, reach lapilli in size							·		
			- occasional blue quartz "eyes", probably secondary									İ
			- well banded									
			- py occurs in stringers, disseminations, and thin bands									
			179.9 - 4 cm quartz vein			89972	179.6-181.5	1.9				
			179.9-180.2 - shear zone with fault gouge and broken core		70° @ 187.3	89973	184.2-185.8	1.6				
			186.2-189.0 - increasing abundance of dark green, chloritic bands									
			184.2-184.5 - 15% banded py in two <1 cm bands			89974	185.8-187.6	1.8				
			185.6 - 4 cm quartz vein			89975	187.6-189.0	1.4				

Page 10 of 10

Deg	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resu	ılts	
From	То	Core	Description a Enhology	IVIII ET BIZZATION	C.A.	Number	Interval	Length				
189.0	194.7	100	- chloritic, sericitic, well banded tuffs with numerous	5% po locally		89977 89978	189.0-190.4 190.4-191.9 191.9-193.4	1.4 1.5 1.5				
			chloritic-garnetiferous intervals up to several cm in widthchlorite-garnet horizons contain up to 5% disseminated			89979	193.4-194.7	1.3				
			po and represent silicate iron formationscontinued strong sericitization and local silicification									
			193.4-194.1 - siliceous interval with 3-5% stringer py, po									
!			194.3 - 1.5 cm of semi-massive po, py									
194.7	94.7 197.2 100		Nil									
		- mottled grey-green colour										
		- siliceous fragments in a sericitic, chloritic groundmass										
		- 1 to 2% transluscent to blue secondary quartz "eyes"- no visible sulphides										
	197.2		FND OF HOLF									
	197.2		ACID DIP TESTS: 45.7 m -66° 91.4 m -65° 137.2 m -61° 197.2 m -59°									

UMEX INC DRILL RECORD

PROJECT: BECKINGTON

Hole No.: B-21A

Local Coord. : L1000S; 150E

Started: 25 March 1986

Drilled By : Morissette

ANOMALY: Creek Zone

Bearing: 250°

Depth : 25.0 metres

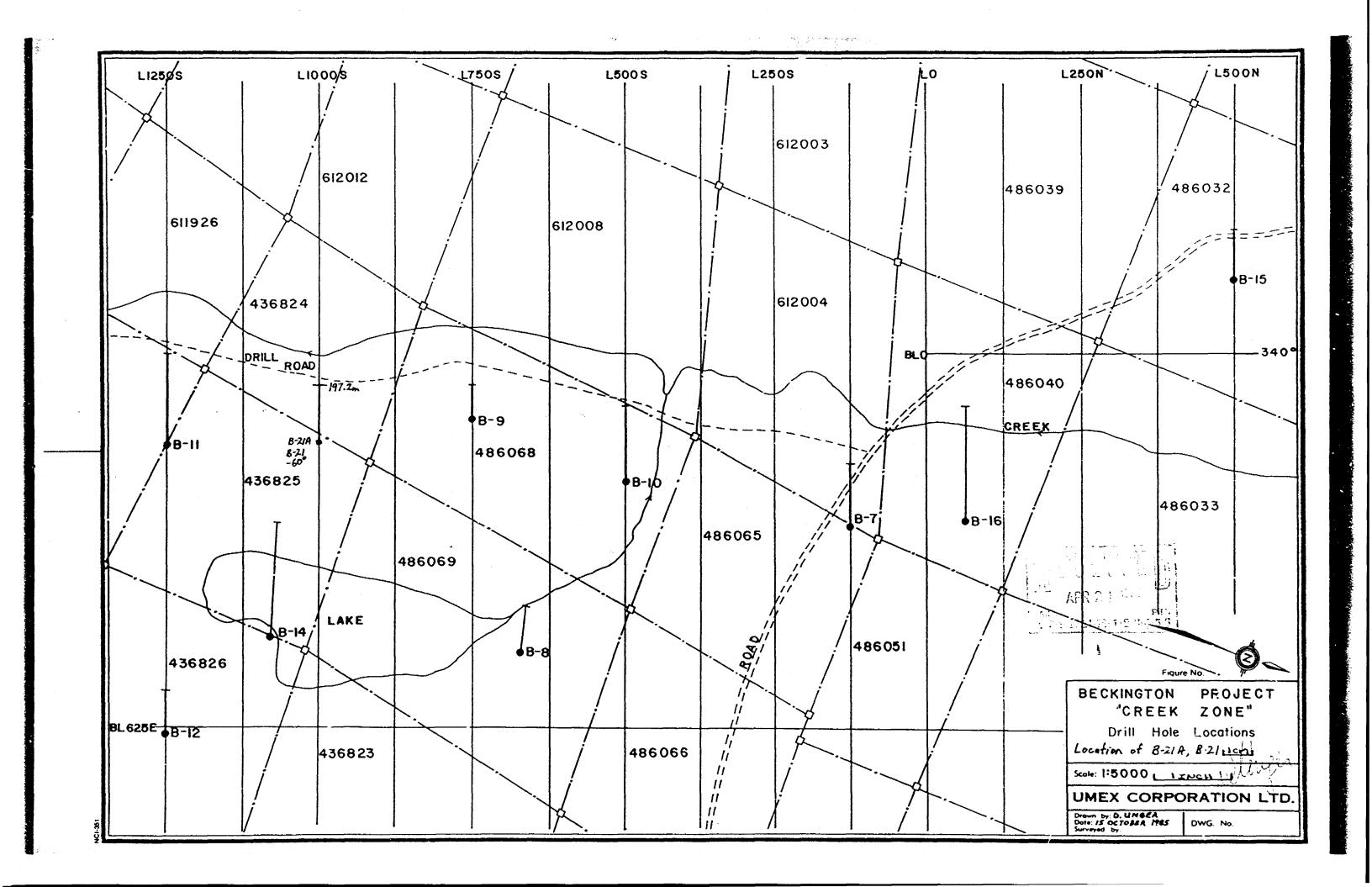
Completed: 27 March 1986

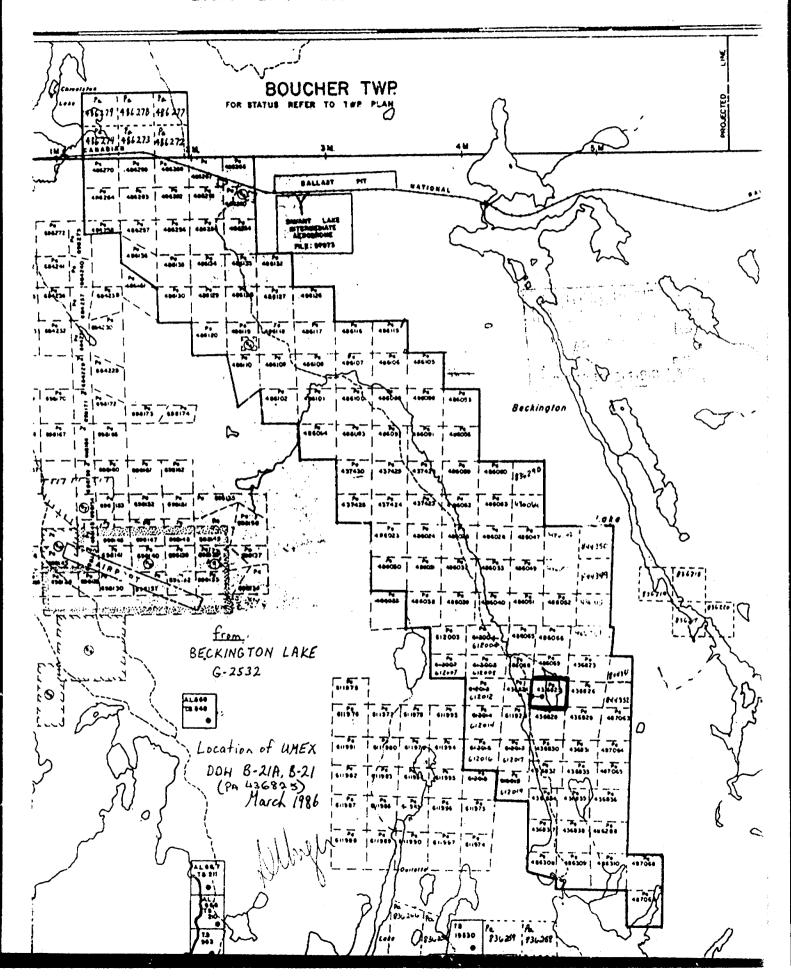
Described By: David Unger

CLAIM : Pa 436825

Dip : -60°

Core Diameter: BQ


Machine : Boyles 35A


Dep	oth	%	Description & Lithology	Mineralization	Dip to	Sample	Sample	Sample	As	say Resu	ilts	
From	То	Core	bescription a citiology	Milleranzation	C.A.	Number	Interval	Length			<u> </u>	T
0	3.7		Casing									T
3.7	9.7	98	MAFIC VOLCANIC	<1% py,po								
			 medium to coarse grained assemblage of feldspar and amphibole altering to chlorite 									
			- numerous quartz-carbonate stringers									
			- some metamorphic biotite									
			- minor py, po associated mainly with quartz-carbonate veining									
9.7	18.1	100	FELDSPAR PORPHYRITIC INTERMEDIATE TO FELSIC INTRUSIVE	minor								
			- fine grained chill margins extend for about a metre into the unit from both the upper and lower contact	sulphides								
			- fine to medium grained assemblage of quartz, feldspar, amphibole and some biotite, probably metamorphic									
			- plagioclase phenocrysts comprise about 5% of the unit and are best developed near the contacts of the unit									
			- negligible sulphides									

HOLE No.: B-21A

Page 2 of 2

Depth		%	Description & Lithology	Mineralization	Dip to	Sample Number	Sample Interval	Sample Length	Assay Results		
From	То	Core	bescription a Entitlogy	Militeralization							
18.1	25.0	100	MAFIC VOLCANIC OR INTRUSIVE - as from 3.7 to 9.7, except for coarser grained intervals that may be intrusive	minor sulphides			•				
			- frequent carbonate veining								
			- negligible sulphides							!	
	25.0		HOLE ABANDONED DUE TO SAND SEAM								
			ONTARIO GEOLOGICAL SURVEY ASSESSMENT FILES RESEARCH OFFICE MAY 6 1986 RECEIVED								

Ministry of Northern Affairs and Mines

Bockington Lake G2532 ort #86-39

Instructions -

Supply required data on a separate form for each type of work to be recorded (see table below).

For Geo-technical work use formino, 1362 "Report of Work (Geological, Geophysical, Geochemical and Expenditures)".

486278

486279

60

of Work

Mining Act

Name and Postal Address of Recorded Holder Prospector's Licence No. UMEX Inc T-133 1935 Leslie Street, Don Mills, Ontario M3B 2M3

Summary of Work Performance and Distribution of Credits Total Work Days Cr. claim Mining Claim Work Days Cr Mining Claim Work Days Cr. Work Days Cr. Mining Claim Profix 1,315 Numbe for Performance of the following work. (Check one only) Pa 612014 40 Pa 486107 60 Pa 486255 48 612016 40 486108 60 486263 40 Manual Work 612019 40 60 41 486117 486269 Shaft Sinking Orifting or other Lateral Work. 437428 60 486118 60 486270 60 Compressed Air, other Power driven or mechanical equip. 486091 60 486127 60 486272 41 Power Stripping 486092 43 486128 60 486273 60 Diamond or other Core drilling 486133 60 486274 41 486099 60

60

All the work was performed on Mining Claim(s): Pa 486269, 436826, 486032 and 486040, Required Information eg: type of equipment, Names, Addresses, etc. (See Table Below)

486100

Remaining from Submissions #85-172 and 85-216 Used this submission

Remainling

Land Survey

PATHICIA MININGPA DECETVE 7-3-9-10-11-12-1-12-3-1-5-9 1,319.3 1,315.

486134

4.3

60

436825

February 5, 1986

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work ennexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying

David Unger, c/o UMEX Inc. 1935 Leslie Street, Don Mills, Ontario M3B 2M3

Date Certified

February

Table of Information / Attachments Required by the Mining Recorder

rable of imprimation racia	cultients usdanisa by the mining necolosi		/		
Type of Work Specific Information per type		Other information (Common to 2 or more types)	Attachments		
Manuel Work			·		
Sheft Sinking, Drifting or other Lateral Work	Nit	Names and addresses of men who performed menual work / operated equipment, together with dates and hours of employment.	Work Sketch: these are required to show the location and		
Compressed air, other power driven or mechanical equip.	Type of equipment		extent of work in relation to the nearest claim post.		
Power Stripping	Type of equipment and amount expended. Note: Proof of actual cost must be submitted within 30 days of recording.	Names and addresses of owner or operator together with dates when drilling/stripping	A CONTRACT COMM POST.		
Distribute of other core	Singled core tou showing footage, trameter of	done,	Work Shetch Ins		

Ministry of

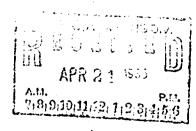
Report

Beckington Lake \$2532 525/02NE (83)
Instructions - Supply required data on a separate form for each type of work to be recorded (see table below).

For Geo-technical work use form no. 1362 "Report of Work (Capitalist).

Northern Affairs and Mines	of Work	# 80		
Access 1	:h	·		

For Geo-technical work use form no. 1362 "Report
of Work (Geological, Geophysical, Geochemical and
Expenditures)",


Masess. Min			Mii	ning Act	l					
Name and Postel Address of Re	corded Halde	N					Prospector		e No.	
UMEX Inc T-133										
1935 Leslie Street, Don Mills, Ontario M3B 2M3 Summary of Work Performance and Distribution of Credits										
Summary of Work Performs Total Work Days Cr. claimed				 -		1	·			Y
3595	Profix	Vining Claim Number	Work Days Cr.	Prefix	Mining Cleim Number	Work Days Cr.	Profix	fining Clai Nun	m nber	Work Days Cr.
for Performence of the following work. (Check one only)	-	See Attach	d App	endix		ONTA	RID GEO	LOGICA	SURVE	1
Manual Work						AE		ENT F	ILES	
Shaft Sinking Drifting or				1				H OS	FIGE	
Other Lateral Work. Compressed Air, other Power driven or		Years	X		1		; ;	198	36	-
mechanical equip. Power Stripping		1. L. Aman			7	R		EIVI	F D	╂
Diamond or other Core	•	pris 1000	 							
Land Survey],					1
All the work was performed on	Mining Clair	m(s): Pa 4860	40, 48	6033,	486062, 4860	55 , 43	6825, 4	13682 5		- <u>4</u>
Required Information eg: 1										
1	·····									
DDH B-17 - Depth 215.5 m - Bearing 250 ⁰ , Dip -64 ⁰ - Core Size BQ, drilled by Morissette Drilling, March 1 to March 7, 1986 707'										
· · · · · · · · · · · · · · · · · · ·										
B-18 - Depth 233.8 m - Bearing 250°, Dip -60° - Core Size BQ, drilled by Morissette Drilling, March 9 to March 12, 1986 767'										
B-19 - Depth 215.5 m - Bearing 225 ⁰ , Dip -60 ⁰ - Core Size BQ, drilled by Morissette Drilling, March 14 to March 17, 1986 707'										
B-20 - Depth 227.7 m - Bearing 245 ⁰ , Dip -62 ⁰ - Core Size BQ drilled by Morissette Drilling, March 20 to March 23, 1986 747'										
B-21 - Depth 197.2 m - Bearing 250°, Dip -60° - Core Size BQ 7 drilled by Morissette Drilling, March 28 to March 30, 1986 6 holes 646'										
B-21A- Depth					0 ⁰ - Core Siz			595		
		rissette Dri	lling,	Marc	h 25 to March	27, 1	986 ⁵	2,12	851	20
Remaining from #8	36-39			99	$\varphi = \varphi$	(0.50			(4)	DHIT
Used this submiss	ion		3,0	60 -da <u>185</u>	Date of Report	6823	TRecorded	Holder e	-3660 ¹	- 3579
Remaining for future submission 5/4 575 days April 18, 1986										
Certification Verifying Report of Work										
I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.										
Name and Postel Address of Pe David Unger, c/o		•	ie Str	eet.	Don Mills. On	tario	мзв :	2M3		
David Unger, c/o UMEX Inc, 1935 Leslie Street, Don Mills, Ontario M3B 2M3 Date Cartified Cartified by (Signapura):										
Table of Information/Attachments Required by the Mining Recorder										
Type of Work		ecific information pe			Other Information (Co	mmon to	2 or more t	(sequi	Attach	ments

Type of Work	Specific information per type	Other information (Common to 2 or more types)	Attachments	
Manual Work				
Shaft Sinking, Drifting or other Lateral Work	Nil	Names and addresses of men who performed menual work/operated equipment, together with dates and hours of employment.	Work Sketch: these are required to show	
Compressed eir, other power driven or mechanical equip.		With dates and floor of amployment.	the location and extent of work in relation to the	
Power Stripping	Type of equipment and amount expended. Note: Proof of actual cost must be submitted within 30 days of recording.	Names and addresses of owner or operator together with dates when drilling/stripping	neerest claim post.	
Diamond or other core Signed core log showing; footage, diameter of core, number and angles of holes.		done.	Work Sketch (as above) in duplicate	
Land Survey	Name and address of Ontario land surveyer.	Nil	Nii	

APPENDIX

Pa 436832		•	days	Pa 486	113	C.D	days
436834	6	0	44		120	60	11
835	5	5	n	486	126	60	н
836	6	0	11	486	129	60	u
837	6	0	н		130	60	н
838	6	0	H	485	132	60	H
437423	5	3	#1	486	135	60	11
424	6	0	*1		136	60	**
437429	, 6	0	Ħ	486	254	60	n
430	6	0	н	486	257	60	11
486023	6	0	**	486	261	60	**
024	4	0	*1	486	267	60	**
486031	6	0	"	486	277	60	11
032	5	3	11	486	288	60	н
486038	6	0	**	486	309	50	**
039	5	3	11		310	48	**
486056	6	0	41	611	926	80	**
486060	6	0	H	612	003	40	11
486093	6	0	11		004	40	+1
094	6	0	11	612	8008	40	н
486098	6	0	11	612	2012	40	H .
486101	6	0	н	612	2014	40	
102	6	0	н	612	2017	40	*11
486105	6	0	"	612	2019	40	
106	6	0	"	836	290	20	.,,
486109	6	0	н	844	1349	20	, "
110) 6	0	**		350	20	, "
486115	6	0	11		351	20	"
116	6	0	ja		352	20) "

Total: 3,085 days

1