sherritt

s2jezNeeose 52J@2NEe日52 beckington Lake

GEOPHYSICAL REPORT
ELECTROMAGNETIC AND MAGNETOMETER
SURVEYS
DAVIDSON-CARR PROPERTY
N.T.S. 52J/2 M-1740

Beckington Lake Area

\author{

- V. R. Venn -
}

REC:MED

Arn 2 ○ 1982
hanifg lands secilun

GEOPHYSICAL REPORT

Electromagnetic and Magnetometer Surveys

Beckington Lake Area
Mining District of Patricia
N.'I.S. 52J/2NE M-1740

Mining Claims	
Pa 487308	Pa 487317
487309	487318
487310	487671
487311	487672
487312	560609
487313	560593
487314	560594
487315	560595
487316	560598

Sherritt Gordon Mines Limited Dryden, Ontario

April 15, 1982
V. R. Venn

Chief Geologist

SHERRITTGORDON MINES LIMITED
 INDEX

 $010 C$

Topic Page
LOCATION MAP 1
I INTRODUCTION 2
II PROPERTY, LOCATION, ACCESS 3
III PREVIOUS WORK 3
IV GENERAL GEOLOGY 1
V PRESENT WORK 4
VI GEOPHYSICAL INTERPRETATION 5
VII CONCLUSIONS 7
VIII RECOMMENDATIONS 7
IX REFERENCES 8
X QUALIFICATIONS OF AUTHOR 9

APPENDICES

APPENDIX A

Technical Data

APPENDIX B

General Description and Application of - MP2 Magnetometer

APPENDIX C

General Description and Application of Apex Max/Min Horizontal Loop.

MAPS

1-1 Magnetometer Survey (proton)
Scale 1 inch to 200 feet
Contour interval 100 gammas

1 - Electromagnetic Survey (Horizontal Loop) Scale: Horizontal - 1 inch to 200 feet

Vertical - 1 inch to 20\% Frequencies 888 Hz .

1 - Electromagnetic Survey (Horizontal Loop)
Horizontal Scales 1 inch to 200 feet
Vertical Scaler 1 inch to 20\%
Frequency 3555 Hz .
page 1

!roject Number 12.56
H.'4.:. 5. 51/2!!! Ni-1740

Beckington Lake Area

IOCATION MAI.

D Davidson-Carr Project

SHERRITT'GORDON MINES LIMITED

page 2

The property consists of 18 contiguous claims staked for gold mineralization-in Beckington Lake Area on the NorthEast Arm of Sturgeon Lake. The claims are presently held under option from Mr. S. Johnson of Sioux Lookout, ontario.

The area of the claim group embraces several old gold deposits. The Davidson-Carr located on the east side of the East Arm of Sturgeon Lake, lies directly across from the Powell Prospect, located on the west side of the same lake, a distance of about $1 \frac{1}{4}$ miles. The Richelieu property, not included in the present option, lies one mile to the southwest and on strike with the Powell Prospect. All of the gold deposits are associated with quartz veins intruding Archean Volcanic rocks.

The Davidson-Carr and the Powell Occurrances have had very limited work done on them prior to and after 1900. The work has involved limited trenching and some shaft sinking. The work is very poorly documented. The present work has involved linecutting and geophysical surveys, to help delineate any mineralization or associated geological structures on the ground. The present report on 18 claims is an addendum to work previously submitted on the total claim group of 34 claims.
page 3

The property consist of 18 mining claims which form part of the total group of 34 claims located on the NorthEast Arm of Sturgeon Lake in Beckington Lake Area. Map M-1740; N.T.S. 52J/2NE.

The property is located 9 miles south-east of Savant Lake Station on the Canadian Pacific Railway. Access can be made by float plane or by a 3 mile bush road, south to Sturgeon Lake and thence by water to the NorthEast Arm of Sturgeon Lake.

PREVIOUS WORK

Davidson-Carr - (O.D.M. Report, Volume XXXIX Part II
During the winter of 1928-1929, the Golden Centre Mining Company carried out considerable exploration work on this property under option. An inclined shaft was put down 165 feet and 150 feet to underground lateral work completed.

The main vein follows a drag fold at the contact between Keewatin greenstone and interbanded acid volcanic breccia, rhyolite, and tuff. Quartz porphyry dikes cut through the property. A slight fault occurs at the crest of the drag fold. Apparently the values are confined to the centre of the drag. The vein is 6 feet wide at the top of the shaft and has been traced for 600 feet on the surface. The width of the vein decreases at depth.
page 4

Powell Occurrance

- there is little if any work recorded on this ground. Several trenches and two shallow shafts in evidence on the property appear to have been completed prior to 1900.

GENERAL GEOLOGY

The general geology of the area of the claim group (Trowell, 1980, map 2420) consists of an area of intermediate to felsic Archean flows and associated volcanoclastics, striking $N 25^{\circ} E$ and dipping $80^{\circ}-85^{\circ}$ north easterly. These rocks have in turn been intruded by a series of gabbroic rocks striking parallel to the flows but at times forming discordant relationships. These intrusive rocks have a strike length on the property of over 2 miles and vary in width from 50' to over 400'.

Gold mineralization in the area is generally known to be associated with quartz veins which intrude the Archean volcanics.

PRESENT WORK

The present work comprises linecutting, proton magnetometer and horizontal electromagnetic surveys. The linecutting was completed by Mr. Alex Kozowy of Ignace, Ontario (Contractor) during February and March of 1981. The geophysical surveys were completed by Sherritt Gordon Mines Limited's own personnel during February 1982.

The present grid being reported on - 18 claims forms part
of a larger grid put in on a 34 claim group. Two parallel baselines 4,000 feet apart were cut at an azimuth of $N 25^{\circ} \mathrm{E}$. Cross lines were cut at 90° to the baselines and at 400 foot intervals over the entire claim group. Pickets were erected on all liries at 100 foot intervals.

The magnetorieter survey (proton precession) was completed at 100° intervals on all lines including baselines. Diurnal correctionswere completed using a base recorder and day-to-day corrections applied to all readings. A map of the survey results has been plotted at a scale of $1^{\prime \prime}$ to 200° and contoured at 100 garma intervals, 60,000 gammas have been subtracted from all readings.

The horizontal electromagnetic survey was completed over all lines and readings taken at 100^{\prime} intervals using a 400' spread. Both \% inphase and \% cutphase were read on the 888 Hz and 3555 Hz . Naps of each frequency were plotted at a scale of $1^{\prime \prime}$ to 200'.

For further technical data see Appendix A.

GEOPHYSICAL INTERPRETATION

The magnetometer survey indicates a series of ienticular, parallel to sub-parallel en echlon magnetic anomalies which are aligned with the regional strike of the volcanic rocks in the area ($\mathrm{N} 25^{\circ} \mathrm{E}$). The higher magnetics appear to form anomalous trends associated with wide gabbroic intrusions which parallel the regional geology. There are at least. 4 to 5 such magnetic trends occuring separately or merging together on the claim group.

The background in the area of the more felsic volcanic rocks ranges from 100 up to about 500 ganmas, total field. The high magnetic trends associated with the gabbroic intrusives-tend to range from 400 gammas up to 10,000 gammas or more. These later intensities form individual magnetic highs several hundred feet long within the main magnetic trends. The delineation of the magnetic trends is in places not well defined particularily where the magnetic contrast between the felsic volcanic rocks and the gabbroic rocks is low. This tends to give a somewhat disjointed or en echlon appearance to the magnetics.

Magnetic anomalies within the gabbroic rocks and associated magnetic trends, probably. in part result from localized polarization of magnetite during intrusion or later metamorphism. In many instances the anomalies appear to be associated with geological contacts rather than effects from within the central part of the intrusion itself. In general the magnetic highs appear to be the result of structural implications and infer a very uneven distribution of magnetite within the gabbrointrusives.

Magnetic lows are frequently encountered over the gai ro. They are possibly caused by narrow inclusions of the more felsic volcanic country rock within the intrusive. (L-456S to L-484S; 190 to 196E) The negatives, which range from a few hundred gamnas up to several thousand gammas may result from the effects of a shallow lower negative magnetic pole associated with wedges of country rock of short vertical extent which have been included in

$$
\text { page } 7
$$

the gabbro during its emplacement. This in turn indicates a merging of the gabbro-intrusion at a shallow depth of possibly several hundreds of feet.

The horizontal electromagnetic survey does not seem to reveal any anomalous effects that can be attributed to sulfide mineralization. Generally the overburden is non-conductive, although some areas that appear swamp related have higher conductivities.

CONCLUSIONS

The present work has not indicated any mineral deposits of economic significance. Essentially it has served as a basis upon which further geological investigation can be directed. The most beneficial aspects of the present work relates to the magnetometer survey, which if coupled with further geological investigation may illucidate any relationship of the gold bearing quartz to structural control.

RECOMMENDATIONS

A detailed mapping study of the Powell Occurrence and its structural relationship to the Richelieu Occurrence are recommended. This might best be done using the magnetometer survey to relate any relationship between the two deposits. A thorough propsecting of the area directly between these two deposits is recommended along with detailed mapping and sampling of mineralized zones.

SHERRITTGORDON MINES LIMITED
page 8

IX KEFERENCES
O.D.M. Report, Volume XXXIX, Part II, 1980

Trowell 1980 Map 2420

Ontario Geological Series Map 2456

Aero Nagnetic Map $1118 G$

X QUALIFICATIONS OF THE AUTHOR

1957 - BSc. Geological Engineering
Michigán College of Mining and Technology Houghton, Michigan USA

1961 - Ontario Society of Professional Engineers

1957-1969 - Senior Geologist - Exploration
Algoma Ore Division
Algoma Steel Corporation Ltd.
Sault Ste. Marie, Ontario

1969-1981 - Teaching Master - Geology Department
Sault College of Applied Arts and Tech.
Sault Ste. Marie, Ontario

1981-present-Chief Geologist - Exploration Sherritt Gordon Mines Limited Dryden, Ontario

APPENDIX A

LINECUTTING

2 Baselines - Azimuth - 025°
Total Length - 9,100' (1.72 miles)
crosslines 90° to baselines and 400' intervals Total Length - 11.2 miles

Total Miles Line cut - 12.9 miles

GEOPHYSICS

Magnetometer Survey - proton procession
Type of Inst. - Sintrex MP-2
Sensitivity - 1 gamna
Total Stations 490
Base Recorder - Sintrex MB S-2
Sensitivity - 1 ganma
Diurnal corrections applied from base recorder andcorrections made for day to day variations.
Total stations occupied 490
Total Miles Read 11.2
Horizontal Electromagnetic
Type of instrument - Apex Max/Min II
Sensitivity - 0.25\% - 0.5\%
Tilt - 1\%
Stations Occupied - 490
No. Readings 1960

SHERRITT GORDON MINES LINITED

APPENDIX A

Frequencies used - 888 Hz ; 3555 Hz Survey method - In 'line

PERSONNEL

Linecutting: July 13 - July 31, 1981
Contractor - Kozy Explorations Box 1260 Ignace, Ontario

Geophysics: Feb. 10 - Feb. 24, 1982
Geophysical Staff Sherritt Gordon Mines Limited,
2 Claybanks Road, Dryden, Ontario
D. Hancock - foreman
K. Longe - assistant
S. Wilson - assistant

APPENDIX B

（1＇re－cestsion）

frocessizion of nucled around a mannotic field direction isi ＂wesl known phemomenon in macjear physics．Somo atomice mabei have a net magnctic monemt which coupled with their spin，cause：s lhom la prece：ss about an axial mannetic field．
＇fhe profon macinetometer depends upon the neasurement of the Iren－proc：es：sion frequency of protons（hydrogen nucloi）which hove been polarized in a direction approximately normas to the direction of thr terrestrial field．When the polarizing ficld is sudflenly removed，the protons precess like a spiming top，the earlins field supplying the precessing force corresponding to that of gravily in the case of the top．

Proton precession and the ppinaing－tup analogit．

Jhe proton precesses at an angular velocity W ，known us the larmor precessing frequency，which is proportional to the magnetic fiold strenglh F ，so that $W=\gamma p \cdot r$
Ihe constant γ_{p} is the gyromagnefic ratio of the proton，that，s ， tife ratio of ils magnetic moprent to its spin nngular molientun． The value of γ_{p} is known to an accuracy of $1 / 1 \times 10-4$ ，sine precifeg frequoncy measurments are relatively easy the magnetic field can be dutcrinined to the same accuracy if it is possible to detcet $\&$
a ：ignal derived from thm precession of the proton．
The promom manmelomel consist：；of a sumber of proturn （water or rluid rich in hydrogen），a polarizinc magnetic ficfa directed roughly normal io the earth＇s maqnetic field，a pick up coil coupled tiohtly to the source（ container of water），in amplifier to boost vollage in the pick－up cojl and a frequency measuring device．

The polari\％ing fiesd of 50－100 oerstiads is obtained by passifine dirert curcent through a solenoid wound around the bottle．When the soblenoid current is turned off the proton precession about the farth＇s field is detected by a second coil as a transient voltacie over an interval of about 3 seconds，modulated by the precession frequency．The modulation signal is amplified to a suitable level and the frequency measured．This in turn can be related to line earth＇s Lotal field．
＇Ihe proton magnetometer can measure the carth＇s lotal field to an accuracy of about 1 gamma．The instrunent requires no orientation or leveling．It has no mechanical parts，so it is essentially trouble free．

Block diagram of nuckear precession magnetometer．（u）Recording magnetumeter （friom Dubrin，19（0）；（b）porlable dire：i－seadoul magnetometer．

APPENDIXC

'JUH: HOAK MJN JI I:M

 horizontal in-ihase (IV) and ghadrature phase (QI) canponents of the anomalon: field from electrically condur:live zonles. Nore wecurately, the directions of the measured component: atr per-
 coil (l'x) ally the reosiving coil (RX).

The plane of the ixx is kept parallet to the man slope betwetn
 cfecel a horizontal loop (HIS) system, when the recteiver measure:s whmallu: cosprounts perpendicular to the mean sjupe betwoen the cojl: It: is; a minimull-coupled (Min. C) system, whun the racejver neasurce anumbus components parallel to the mean slope betweon the coils.
benctally the Maxijn it is run in the HL mole with the Minc mode being used in the few instances, where jt can jumorve on the datia of the III, moxic.

The maxlin 11 has the following principal features designed into it:
(1) fout :;ystem frequencies -222, 1919, $18 B$, and 1777 Hz - tudeal effect.jvely with a wide range of overburden and bedrock conductor conductivities,
(2) six lix-ix separations $-100,200,300,100,600$, and 800 it. to cope with a wide range of problems from thecsearch fur larye deep conductive zones to the resulution of shallow, parallel conductive zones
(3) built-in lilt meters to control the coil lilts in rouch terrain, and thus reduce the 'noise' in the ll readinas.

900

Ministry of Natural Resources

File \qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL technical data statement

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACT'S SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

AIRBORNE CREDITS (Special provision credits do not apply to aiboote curveyp)NiNI Magnetometer \qquad Electromagnetic \qquad 487671

DATE: apsalez/82 SIGNATURE:
 487672 $5606093 / 4$

Res. Geol. Previous Surveys

560593 560594

GROUND SURVEYS -- If more than one survey, specify data for each type of survey

Number of Stations 590	of Reading Mag. -590 : EM-2000
Number or Stations 100^{\prime}	Number of Readings
$1 "+20 \%$	
Protile scale 100 gammas	

MAGNETIC

Instrument _ Scintrex -MBS-2 Base station, Mp-2 Magnetometer

looping and base recorider
Base Station check-in interval (hours)
N/A
Basc Station location and value
N / A

Instrument
Apex Max-Min II
Coil configuration $\frac{1 "=20 \%}{400}$
Coil separation \qquad
Accuracy

Instrument
Scale constant
Corrections made \qquad

Base station value and location

Elevation accuracy

Instrument

Method Time Domain
Parameters - On time \quad Frecguency

- Off time Range.
- Delay time
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode

Type of survey and number of Assessment days credil per claim	Mining Claims Assessod
	PA 487308 to 14 inclusive 487316 to 18 inclusive 487671 560593 to 95 inclusive

Special credits under section
10 day Electromagnetic \& 20 Days Magnetometer
PA 487315
487672
560598
560609

No credits have been allowed for the following mining claims
] not sulliciently covered by the surver
\square Insufficient technical data filed

0

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological-40; Geochemical - 40; Section $88 \% \times 7(\%)$

Ministry al Natural Resources	Geotechnical Report Approval
Mining Lands Comments	
Ontario	

DIr: Gnomic Ma. Barlow

| Comments | |
| :--- | :--- | :--- |
| | |
| Dabprovod \quad []wish io sos sasin with corrections | |
| To: Geology. Expenditures | |

\square To: Geology - Expenditures

| Comments | | |
| :--- | :--- | :--- | :--- |
| | \square | |
| | \square | |
| | | |

\square To: Geochemistry

\square To: Mining Lands Section, Room 6462, Whitney Block. (Tel: 5.1380)
$\overline{693(81 / 10)}$

April 22, 1982

Mr. E. F. Anderson
Director
Lands Management Branch
Whitney Block, Rm. 6450
Queen's Park
Toronto, Ontario
M7A 1W3

RECROED
Arri 2 उ 1982
MINING LANDS SLui:ON

Dear Sir:
Enclosed are work reports and maps on 18 mining claims in the Beckington Lake Area, M-1740, Mining District of Patricia.

We are applying for assessment credits under special provisions for magnetometer and electromagnetic surveys.

Mining Claims: Pa 487308-487318 inclusive.
$\mathrm{Pa} \quad 487671+487672$

Pa $560609+560593$
Pa $560594+560595+560598$
Enclosures: duplicated copies of one magnetometer map duplicated copies of two electromagnetic maps 888 Hz duplicated copies of two electromagnetic maps 3555 Hz .

V. R. Venn

Chief Geologist
Sherritt Gordon Mines Limited
Dryden, Ontario
VRV: jl
Encl.

Mining Recorder
Ninistry of Natural Resources
F.O. Dox 669

Sioux Lookout, Ontario
POV 2T0

Dear Sir:
We have received reports and maps for a Geophysical (Electromannetic and Magnetometer) Survey submittod under Special provisions (credit for performance and Coverage) on Mining Claims pa 467308 et al in the Area of Beckington Lake.

This material will be examined and assensed and a statement of assessment work credits will be issued.

Yours very truly,
E.F. Anderson

Director
Lind Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: 416/965-1316
J. Skura/amc
cc: Sherritt Gordon Mines Ltd. Dryden, Ontario
cC: Mr. V.R. Venn Sherritt Gordon Mines Ltd. Dryden, Ontario

Enclosed are two copies of a Notice of Intent with statements listing a reduced rate of assessment work credits to be allowed for a technical survey. Please forward one copy to the recorded holder of the claims and retain the othe. approximately fifteen days from the above date, a $:$ ter or approval of these credits will be sent to . receipt of the approval letter, you may then che:. he work entries on the claim record sheets.

Yours very truly,
E.F. nderson

Director
Lands Administration Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: 416/965-1316
D. Kinvig:mc

Encl.
cc: Sherritt Gordon Mines Ltd
Box 723
Dryden, Ontario
cc: Mr. G.H. Ferguson
Mining \& Lands Commissioner Toronto, Ontario

For further information, if required, please contact Mr.F.W. Matthews at (416) 965-1380.

845 ($8 / 79$)

.

An examination of your survey report indicates that the requirements of The Ontario Mining Act have not been fully met to warrant maximum assessment work credits. This notice is merely a warning that you will not be allowed the number of assessment work days credits that you expected and also that in approximately 15 days from the above date, the mining recorder will be authorized to change the entries on his record sheets to agree with the enclosed statement. Please note that until such time as the recorder actually changes the entry on the record sheet, the status of the claim remains unchanged.

If you are of the opinion that these changes by the mining recorder will jeopardize your claims, you may during the next fifteen days apply to the Mining and Lands Commissioner for an extension of time. Abstracts should be sent with your application.

If the reduced rate of credits does not jeopardize the status of the claims then you need not seek relief from the Mining and Lands Commissioner and this Notice of Intent may be disregarded.

If your survey was submitted and assessed under the "Special Provision-Performance and Coverage" method and you are of the opinion that a re-appraisal under the "Man-days" method would result in the approval of a greater number of days credit per claim, you may, within the said fifteen day period, submit assessment work breakdowns listing the employees names, addresses and the dates and hours they worked. The new work breakdowns should be submitted direct to the Lands Management Branch, Toronto. The report will be re-assessed and a new statement of credits based on actual days worked will be issued.

-0052 4715

Mr. Albert Hanson
Mining Recorder
Ministry of Natural Resources
P.O. Box 669

Sioux Lookout, Ontario
POL 2 TO
Dear Sir:
RE: Geophysical (Electromagnetic and Magnetometer) Survey on PAining Claims PA 187300 et al in the Area of leckington Lake

The Geophysical (Electromagnetic and Magnetometer) Survey assessment work credits as listed with my Notice of Intent dated June 17, 1983 have been approved as of the above date.

Please inform the recorded holder of these intoning chains and so indicate on your records.

Yours very truly,
E.F. Anderson

Director
Land Management Branch
Whitney Block, Room 6150
Queen's Park
Toronto, Ontario
MFA 1 WU
Phone: (416)965-1380
D. Kinvig:me

Encl.
cc: Sherritt Gordon Mines Ltd
Box 723
Dryden, Ontario
cc: Resident Geologist
Sioux Lookout, Ontario

SEE ACCOMPANYING

 MAP(S) IDENTIFIED AS
LOCATED IN THE MAP

CHANNEL IN THE

 FOLLOWING SEQUENCE(X)

FOR ADDITIONAL
INFORMATION
SEE MAPS:

52 J102NE-0052 \# 4-5

1^{456}	1^{452}	1^{448}	1^{444}	1^{40}	1^{436}	1^{432}	1^{428}
4020							

SHERRITT GORDON MINES LIMITED
outside exploration geophysical survey
area itutgeon lake contourinterval EOUIPMENT. SCI NTREX. MP-2 . MAGNETOMETER? NTS. $52 \mathrm{~J} / 2 \mathrm{SE}$
SCALE
$\mathrm{I}^{\prime \prime}=200$ C. \triangle IIM MAP NO $M-1740$

