QUESTOR SURVEYS LIMITED

AIRBORNE ELECTROMAGNETIC AND MAGNETIC SURVEY REPORT

AREA 1970 - 53

INPUT SURVEY OVER CONWEST EXPLORATION CLAIMS

STURGEON LAKE AREA

PREPARED FOR

CONWEST EXPLORATION COMPANY

- and -

SELCO EXPLORATION COMPANY LIMITED

FEBRUARY 1971
CONTENTS

INTRODUCTION...............................1
MAP COMPILATION.............................1
SURVEY PROCEDURE...........................1
INTERPRETATION
AND RECOMMENDATIONS.....................2

APPENDIX
EQUIPMENT..................................(i)
MARK V INPUT SYSTEM.......................(i)
BARRINGER AM 101A PROTON
PRECESSION MAGNETOMETER...............(ii)
DATA PRESENTATION.........................(iii)
GENERAL INTERPRETATION...................(iii)

SAMPLE RECORD
AREA OUTLINE
INTRODUCTION

This report contains our interpretation of the results of an airborne electromagnetic survey and magnetic survey flown in the Sturgeon Lake Area, Ontario, on January 7 and 8, 1971. A brief description of the survey procedure together with recommendations for ground follow-up is included.

The survey totalled 114 line miles and was performed by Questor Surveys Limited. The survey aircraft was a Super Canso CF-JMS and the operating base was Dryden, Ontario.

The area outline is shown in a 1:250,000 map at the end of this report. This is part of the National Topographic Series sheet numbers 52G and J.

MAP COMPILATION

The base maps are uncontrolled mosaics constructed from Ontario Department of Lands and Forests 1" = 1/4 mile photographs. These mosaics were reproduced at a scale of 1" = 1320 feet on stable transparent film from which white prints can be made.

Flight path recovery was accomplished by comparison of the prints of the 35 mm film with the mosaic in order to locate the fiducial points. These points are approximately one mile apart.

SURVEY PROCEDURE

Terrain clearance was maintained as close to 400 feet as possible, with the E.M. "bird" at approximately 150 feet above the ground. A normal S-pattern flight path using approximately one mile turns was used.

The equipment operator logged the flight details and
monitored the instruments.

A line spacing of 1/8 mile was used.

INTERPRETATION AND RECOMMENDATIONS

BLOCK "A"

Conwest No. 1

Because intercept 7A displays a weak E.M. response, its conductivity is difficult to estimate. The conductor does have good direct magnetic correlation.

Conductors #1 and #2, indicated on the mosaic, display weak E.M. responses. It is, therefore, difficult to estimate their conductivities.

The geology of the area is described as being metasediments.

The conductors are being recommended as low priority targets.

Conwest No. 2

The only intercept located in this group, intercept 18B, is associated with an extremely high magnetic intensity anomaly. It is felt that magnetite could be the cause of this anomaly.

Conwest No. 4

While intercepts 47E and 49B display weak E.M. responses, intercept 48B shows a good electromagnetic response. The latter also has good conductivity. The trend is associated with a flanking magnetic anomaly which appears to be isolated from the regional magnetic trend. It appears that the conductor could coincide with an andesitic, rhyolitic contact. A reconnaissance survey is suggested for this zone.
BLOCK "B"

A number of parallel conductors pass through this block, striking roughly north-south. Near the north end of the block, the conductive trends change strike direction to the east indicating a minor fold. The government isomagnetic map indicates a high magnetic intensity anomaly covering most of this block. It is felt that iron formation is the source of this magnetic anomaly and that the iron formation is also causing the longer conductive trends. The geology is metasediments with some metavolcanics. The one conductor which might be of interest is indicated on the mosaic as Zone 1. It is an isolated anomaly having good conductivity along with good direct magnetic correlation. A vertical loop E.M. survey is recommended for this zone.

BLOCK "C"

There are two parallel conductors in this block with both trends having a north-east strike. The good direct magnetic correlation on the most southerly trend appears to coincide with a moderate magnetic high. The northerly trend flanks the main conductor. The stronger E.M. response on the eastern portion of the main trend could indicate the presence of iron formation, whereas the E.M. response on the intercepts to the west could indicate the presence of economic sulphides or lesser concentrations of iron formation or both. The conductivity along the entire trend is good. The geology has been described as being metasediments with some metavolcanics. A reconnaissance survey is recommended.

BLOCK "D"

The conductors within this block are essentially
associated with basic metavolcanics along with some metasediments. Conductor #1 has good conductivity, but has no magnetic correlation. It is felt, therefore, the conductor could be due to massive non-magnetic sulphides, i.e. pyrite, or lesser concentrations of graphite within metasediments. There is no magnetic correlation for conductors #2 or #3. Similar circumstances as for conductor #1 could prevail for both conductors #2 and #3. It is also possible that conductors #1 and #2 are one and the same conductor and not separate conductors as indicated on the mosaic.

Intercept 1078 displays a moderate E.M. response and shows good conductivity. There is no magnetic correlation. Non-magnetic sulphides or graphite could be the cause of this anomaly.

Conductor #5 displays a weak E.M. response and has a low intensity magnetic anomaly associated with it. Barren sulphides could be the cause.
APPENDIX

EQUIPMENT

The aircraft are equipped with Mark V INPUT airborne E.M. systems and Barringer AM-101 proton precession magnetometers. APN-1 radio altimeters are used for vertical control. The outputs of these instruments together with fiducial timing marks are recorded by means of galvanometer type recorders using light sensitive paper. 35 mm continuous strip cameras are used to record the actual flight path.

(I) MARK V INPUT(R) SYSTEM

The Induced Pulse Transient (INPUT) system is particularly well suited to the problems of overburden penetration. Currents are induced into the ground by means of a pulsed primary electromagnetic field which is generated in a transmitting loop around the aircraft. By using half sine wave current pulses and a loop of large turns-area, the high output power needed for deep penetration is achieved.

The induced current in a conductor produces a secondary electromagnetic field which is detected and measured after the termination of each primary pulse. Detection is accomplished by means of a receiving coil towed behind the aircraft on five hundred feet of cable, and the received signal is processed and recorded by equipment in the aircraft. Since the measurements are in the time domain rather than the frequency domain common to continuous wave systems, interference effects of the primary transmitted field are eliminated. The secondary field is in the form of a decaying voltage transient originating in time at the termination of the transmitted pulse. The amplitude of the transient is, of course, proportional to the amount of current induced into the conductor and, in turn, this current is
proportional to the dimensions, the conductivity and the depth beneath the aircraft.

The rate of decay of the transient is inversely proportional to conductivity. By sampling the decay curve at six different time intervals, and recording the amplitude of each sample, an estimate of the relative conductivity can be obtained. By this means, it is possible to discriminate between the effects due to conductive near-surface materials such as swamps and lake bottom silts, and those due to genuine bedrock sources. The transients due to strong conductors such as sulphides exhibit long decay curves and are therefore commonly recorded on all six channels. Sheet-like surface materials, on the other hand, have short decay curves and will normally only show a response in the first two or three channels.

The samples, or gates, are positioned at 300, 500, 700, 1100, 1500 and 1900 micro-seconds after the cessation of the pulse. The widths of the gates are 200, 300, 400, 600, 600 and 600 micro-seconds respectively.

For homogeneous conditions, the transient decay will be exponential and the time constant of decay is equal to the time difference at two successive sampling points divided by the log ratio of the amplitudes at these points.

(II) BARRINGER AM-101A PROTON PRECESSION MAGNETOMETER

The AM-101A magnetometer which measures the total magnetic field has a sensitivity of 5 gammas and a range from 20,000 gammas to 100,000 gammas.

Because of the high intensity field produced by the input transmitter, the magnetometer results are recorded on a time-sharing basis. The magnetometer head is energized while the transmitter is on, but the record is obtained during a short period when the trans-
mitter is off. Using this technique, the head is energized for 1.15 seconds and then the transmitter is switched off for 0.15 seconds while the precession frequency is being recorded and converted to gammas. Thus a magnetic reading is taken every 1.3 seconds.

DATA PRESENTATION

The symbols used to designate the anomalies are shown in the legend on each map sheet, and the anomalies on each line are lettered in alphabetical order in the direction of flight. Their locations are plotted with reference to the fiducial numbers on the visiorder record.

A sample record is included at the end of the report identifying the method used to correct for the position of the E.M. "Bird" and identifies the parameters on each channel. Occasionally, a question mark may be shown alongside the anomaly symbol. This may occur when the response is very low and there is some doubt as to whether or not it is caused by turbulence or compensation noise caused by large changes in the position of the "bird" relative to the aircraft.

All the anomaly locations, magnetic correlations, and the amplitudes of channel number 4 are listed on the data sheets accompanying the final maps.

GENERAL INTERPRETATION

The INPUT system will respond to conductive overburden and near-surface horizontal conducting layers, in addition to bedrock conductors. Differentiation is based on the rate of transient decay, magnetic correlation and anomaly shape together with the conductor pattern and topography.

Power lines sometimes produce spurious anomalies,
but these can be identified by reference to the monitor channel.

Railroad and pipeline responses are recognized by studying the film strips.

Graphite or carbonaceous material exhibits a wide range of conductivity. When long conductors without magnetic correlation are located on or parallel to known faults or photographic linears, graphite is most likely the cause.

Contact zones can often be predicted when anomaly trends coincide with the lines of maximum gradient along a flanking magnetic anomaly. It is unfortunate that graphite can also occur as relatively short conductors, and produce attractive looking anomalies. With no other information than the airborne results these must be examined on the ground.

Serpentized peridotites often produce anomalies with a character that is fairly easy to recognize. The conductivity which is probably caused in part by magnetite, is fairly low so that the anomalies often have a fairly large response on channel number 1, they decay rapidly, and they have strong magnetic correlation.

INPUT E.M. anomalies over massive magnetites show a relationship to the total Fe content. Below 25-30%, very little or no response at all is obtained, but as the percentage increases the anomalies become quite strong, with a characteristic rate of decay which is usually greater than that produced by massive sulphides.

Commercial sulphide ore bodies are rare, and those that respond to airborne survey methods usually have medium to high conductivity. Limited lateral dimensions are to be expected and many have magnetic correlation caused by magnetite or pyrrhotite. Provided that the ore bodies do not occur within formational
conductive zones as mentioned above, the anomalies caused by them will usually be recognized on an E.M. map as priority targets.
QUESTOR SURVEYS LIMITED
AIRBORNE ELECTROMAGNETIC AND MAGNETIC SURVEY REPORT
AREA 1969 - 53 B
CONWEST CLAIM BLOCK
ALCONA AREA
ONTARIO

PREPARED FOR
SELCO EXPLORATION COMPANY LIMITED

APRIL 1971
CONTENTS

INTRODUCTION 1
MAP COMPILATION 1
SURVEY PROCEDURE 1
INTERPRETATION
and RECOMMENDATIONS 2

APPENDIX

EQUIPMENT (i)
MARK V INPUT SYSTEM (i)
BARRINGER AM-101A PROTON
PRECESSION MAGNETOMETER (ii)
DATA PRESENTATION (iii)
GENERAL INTERPRETATION (iii)

SAMPLE RECORD

AREA OUTLINE
INTRODUCTION

This report contains our interpretation of the results of an airborne electromagnetic and magnetic survey flown in the Alcona Area, Ontario, on February 4th and 5th, 1970. A brief description of the survey procedure together with recommendations for ground follow-up is included.

The survey totalled 30.8 line miles and was performed by Questor Surveys Limited. The survey aircraft was a Super Canso CF-JMS and the operating base was Dryden, Ontario.

The area outline is shown in a 1:500,000 map at the end of this report. This is part of the National Topographic Series sheet number 52 N.E.

MAP COMPILATION

The base maps are uncontrolled mosaics constructed from Ontario Department of Lands and Forests 1" = 1/4 mile photographs. These mosaics were reproduced at a scale of 1" = 2640 feet on stable transparent film from which white prints can be made.

Flight path recovery was accomplished by comparison of the prints of the 35 mm film with the mosaic in order to locate the fiducial points. These points are approximately one mile apart.

SURVEY PROCEDURE

Terrain clearance was maintained as close to 400 feet as possible, with the E.M. bird at approximately 150 feet above the ground. A normal 5-pattern flight path using approximately one mile turns was used. The equipment operator logged the flight details and monitored the instruments.

A line spacing of 1/4 mile was used.
INTERPRETATION AND RECOMMENDATIONS

A good portion of the survey area is covered by favourable geology, but there were no anomalies intercepted within the claim boundary. Although there are known mineralized locations within the claim block, there were not sufficient amounts to be picked up during the INPUT survey.

With the aid of a geology map, it can be seen that the magnetic low within the claim block correlates well with the granite and acid volcanics. There are two local magnetic anomalies of about 50 gammas each to the south-west of Mullen Lake which might be attributed to basic intrusives. North of the claim block, iron formation is responsible for the magnetic high while to the south of the claim block, basic volcanics could be the source of the moderate magnetic high.

R. J. de Carle
W. G. LAZENBY
APPENDIX

EQUIPMENT

The aircraft are equipped with Mark V INPUT airborne E.M. systems and Barringer AM-101 proton precession magnetometers. APN-1 radio altimeters are used for vertical control. The outputs of these instruments together with fiducial timing marks are recorded by means of galvanometer type recorders using light sensitive paper. 35 mm continuous strip cameras are used to record the actual flight path.

(I) MARK V INPUT(R) SYSTEM

The Induced Pulse Transient (INPUT) system is particularly well suited to the problems of overburden penetration. Currents are induced into the ground by means of a pulsed primary electromagnetic field which is generated in a transmitting loop around the aircraft. By using half sine wave current pulses and a loop of large turns-area, the high output power needed for deep penetration is achieved.

The induced current in a conductor produces a secondary electromagnetic field which is detected and measured after the termination of each primary pulse. Detection is accomplished by means of a receiving coil towed behind the aircraft on five hundred feet of cable, and the received signal is processed and recorded by equipment in the aircraft. Since the measurements are in the time domain rather than the frequency domain common to continuous wave systems, interference effects of the primary transmitted field are eliminated. The secondary field is in the form of a decaying voltage transient originating in time at the termination of the transmitted pulse. The amplitude of the transient is, of course, proportional to the amount of current induced into the conductor and, in turn, this current is
proportional to the dimensions, the conductivity and the depth beneath the aircraft.

The rate of decay of the transient is inversely proportional to conductivity. By sampling the decay curve at six different time intervals, and recording the amplitude of each sample, an estimate of the relative conductivity can be obtained. By this means, it is possible to discriminate between the effects due to conductive near-surface materials such as swamps and lake bottom silts, and those due to genuine bedrock sources. The transients due to strong conductors such as sulphides exhibit long decay curves and are therefore commonly recorded on all six channels. Sheet-like surface materials, on the other hand, have short decay curves and will normally only show a response in the first two or three channels.

The samples, or gates, are positioned at 300, 500, 700, 1100, 1500 and 1900 micro-seconds after the cessation of the pulse. The widths of the gates are 200, 300, 400, 600, 600 and 600 micro-seconds respectively. For homogeneous conditions, the transient decay will be exponential and the time constant of decay is equal to the time difference at two successive sampling points divided by the log ratio of the amplitudes at these points.

(II) BARRINGER AM-101A PROTON PRECESSION MAGNETOMETER

The AM-101A magnetometer which measures the total magnetic field has a sensitivity of 5 gammas and a range from 20,000 gammas to 100,000 gammas.

Because of the high intensity field produced by the INPUT transmitter, the magnetometer results are recorded on a time-sharing basis. The magnetometer head is energized while the transmitter is on, but the record is obtained during a short period when the trans-
mitter is off. Using this technique, the head is energized for 1.15 seconds and then the transmitter is switched off for 0.15 seconds while the precession frequency is being recorded and converted to gammas. Thus a magnetic reading is taken every 1.3 seconds.

DATA PRESENTATION

The symbols used to designate the anomalies are shown in the legend on each map sheet, and the anomalies on each line are lettered in alphabetical order in the direction of flight. Their locations are plotted with reference to the fiducial numbers on the visicorder record.

A sample record is included at the end of the report identifying the method used to correct for the position of the E.M. "Bird" and identifies the parameters on each channel. Occasionally, a question mark may be shown alongside the anomaly symbol. This may occur when the response is very weak and there is some doubt as to whether or not it is caused by turbulence or compensation noise caused by large changes in the position of the "bird" relative to the aircraft.

All the anomaly locations, magnetic correlations, and the amplitudes of channel number 4 are listed on the data sheets accompanying the final maps.

GENERAL INTERPRETATION

The INPUT system will respond to conductive overburden and near-surface horizontal conducting layers, in addition to bedrock conductors. Differentiation is based on the rate of transient decay, magnetic correlation and anomaly shape together with the conductor pattern and topography.

Power lines sometimes produce spurious anomalies,
but these can be identified by reference to the monitor channel.

Railroad and pipeline responses are recognized by studying the film strips.

Graphite or carbonaceous material exhibits a wide range of conductivity. When long conductors without magnetic correlation are located on or parallel to known faults or photographic linears, graphite is most likely the cause.

Contact zones can often be predicted when anomaly trends coincide with the lines of maximum gradient along a flanking magnetic anomaly. It is unfortunate that graphite can also occur as relatively short conductors, and produce attractive looking anomalies. With no other information than the airborne results these must be examined on the ground.

Serpentized peridotites often produce anomalies with a character that is fairly easy to recognize. The conductivity which is probably caused in part by magnetite, is fairly low so that the anomalies often have a fairly large response on channel number 1. They decay rapidly, and they have strong magnetic correlation. INPUT E.M. anomalies over massive magnetites show a relationship to the total Fe content. Below 25-30%, very little or no response at all is obtained, but as the percentage increases the anomalies become quite strong, with a characteristic rate of decay which is usually greater than that produced by massive sulphides.

Commercial sulphide ore bodies are rare, and those that respond to airborne survey methods usually have medium to high conductivity. Limited lateral dimensions are to be expected and many have magnetic correlation caused by magnetite or pyrrhotite. Provided that the ore bodies do not occur within formational
conductive zones as mentioned above, the anomalies caused by them will usually be recognized on an E.M. map as priority targets.
Claims Covered by Magnetic Survey

Flown by Questor Surveys, January 1971

SIX MILE LAKE AREA - X-2877

Conwest Group 1 - Questor Block A 1 - 6 claims

Pa 220454 - 20 days
Pa 220455 - 20 days
Pa 220456 - 20 days
Pa 220464 - 20 days
Pa 220465 - 20 days
Pa 220466 - 20 days

SIX MILE LAKE AREA - M-2877

Conwest Group 2 - Questor Block A 2 - 96 claims

(18) Pa 215180 - 215197 - both numbers inclusive - 20 days per claim
(4) Pa 218250 - 218253 - both numbers inclusive - 20 days per claim
(20) Pa 227395 - 227414 - both numbers inclusive - 20 days per claim
(15) Pa 227420 - 227434 - both numbers inclusive - 20 days per claim
(19) Pa 235547 - 235565 - both numbers inclusive - 20 days per claim
(20) Pa 235567 - 235586 - both numbers inclusive - 20 days per claim

(96) claims total

QUEST LAKE AREA - X-2875

Conwest Group 3 - Questor Block B - 24 claims

Pa 227445 - 227468 - both numbers inclusive - 20 days per claim

SIX MILE & FOURBAY LAKE AREAS - M-2877 & 2879

Conwest Group 4 - Questor Block A 4 - 15 claims

Pa 235407 - 20 days
Pa 235408 - 20 days
Pa 235409 - 20 days
Pa 235410 - 20 days
Pa 235411 - 20 days
Pa 235415 - 20 days
Pa 235530 - 20 days
Pa 235531 - 20 days
Pa 235532 - 20 days
Pa 235533 - 20 days
Pa 235534 - 20 days
Pa 235535 - 20 days
Pa 235536 - 20 days
Pa 235537 - 20 days
.../2
SIX MILE & FOURBAY LAKE AREAS - M-2877 & 2879

Conwest Group 4 - Questor Block A 4 - 15 claims (cont'd)
Pa 235529 - 20 days
Pa 235538 - 20 days

SQUAW LAKE AREA - M-1904

Conwest Group 6 - Questor Block C - 16 claims
Pa 227570 to 227585 - both numbers inclusive - 20 days per claim

BECKINGTON LAKE AREA - M-1740

Conwest Group 7 - Questor Block D - 70 claims
(1) Pa 244126 - 20 days
(5) Pa 249483 to 249487 - both numbers inclusive - 20 days per claim
(5) Pa 252874 to 252908 - both numbers inclusive - 20 days per claim
(29) Pa 252945 to 252973 - both numbers inclusive - 20 days per claim

(70) claims total

GRAND TOTAL - 6 Groups of claims - 229 claims

@ 20 days per claim - 4,580 days of work
Claims Covered by Airborne Electromagnetic Survey
Flown by Questor Surveys, January 1971

SIX MILE LAKE AREA - X-2877

Conwest Group 1 - Questor Block A 1 - 8 claims

<table>
<thead>
<tr>
<th>Claim Numbers</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa 220454</td>
<td>20</td>
</tr>
<tr>
<td>Pa 220455</td>
<td>20</td>
</tr>
<tr>
<td>Pa 220456</td>
<td>20</td>
</tr>
<tr>
<td>Pa 220464</td>
<td>20</td>
</tr>
<tr>
<td>Pa 220465</td>
<td>20</td>
</tr>
<tr>
<td>Pa 220466</td>
<td>20</td>
</tr>
<tr>
<td>Pa 220467</td>
<td>20</td>
</tr>
<tr>
<td>Pa 220468</td>
<td>20</td>
</tr>
<tr>
<td>Pa 220469</td>
<td>20</td>
</tr>
</tbody>
</table>

SIX MILE LAKE AREA - X-2877

Conwest Group 2 - Questor Block A 2 - 96 claims

- Pa 215180 - 215197 - both numbers inclusive - 20 days per claim
- Pa 218250 - 218253 - both numbers inclusive - 20 days per claim
- Pa 227395 - 227414 - both numbers inclusive - 20 days per claim
- Pa 227420 - 227434 - both numbers inclusive - 20 days per claim
- Pa 235547 - 235565 - both numbers inclusive - 20 days per claim
- Pa 235567 - 235586 - both numbers inclusive - 20 days per claim

(96) claims total

QUEST LAKE AREA - X-2875

Conwest Group 3 - Questor Block B - 24 claims

- Pa 227445 - 227466 - both numbers inclusive - 20 days per claim

SIX MILE & FOURBAY LAKE AREAS - X-2877 & 2879

Conwest Group 4 - Questor Block A 4 - 15 claims

<table>
<thead>
<tr>
<th>Claim Numbers</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa 235547</td>
<td>20</td>
</tr>
<tr>
<td>Pa 235548</td>
<td>20</td>
</tr>
<tr>
<td>Pa 235549</td>
<td>20</td>
</tr>
<tr>
<td>Pa 235410</td>
<td>20</td>
</tr>
<tr>
<td>Pa 235411</td>
<td>20</td>
</tr>
<tr>
<td>Pa 235415</td>
<td>20</td>
</tr>
<tr>
<td>Pa 235530</td>
<td>20</td>
</tr>
<tr>
<td>Pa 235531</td>
<td>20</td>
</tr>
<tr>
<td>Pa 235533</td>
<td>20</td>
</tr>
<tr>
<td>Pa 235534</td>
<td>20</td>
</tr>
<tr>
<td>Pa 235535</td>
<td>20</td>
</tr>
<tr>
<td>Pa 235536</td>
<td>20</td>
</tr>
<tr>
<td>Pa 235537</td>
<td>20</td>
</tr>
</tbody>
</table>
SIX MILE & FOURDAY LAKE AREAS - X-2877 & 2879

Conwest Group 4 - Questor Block A - 15 claims (cont'd)
Pa 235329 - 20 days Pa 235538 - 20 days

SQUAW LAKE AREA - X-1904

Conwest Group 6 - Questor Block C - 16 claims
Pa 227370 to 227385 - both numbers inclusive - 20 days per claim

BECKINGTON LAKE AREA - X-1740

Conwest Group 7 - Questor Block D - 70 claims
(1) Pa 244126 - 20 days
(5) Pa 249463 to 249487 - both numbers inclusive - 20 days per claim
(35) Pa 252874 to 252908 - both numbers inclusive - 20 days per claim
(29) Pa 252945 to 252973 - both numbers inclusive - 20 days per claim
(70) claims total

GRAND TOTAL - 6 Groups of claims - 229 claims
@ 20 days per claim - 4,580 days of work
Claims Covered by Airborne magnetic Survey
Flown by Questor Surveys, January 1971

SIX MILE LAKE AREA - M-2877

Conwest Group 1 - Questor Block A 1 - 8 claims
Pa 220454 - 20 days
Pa 220455 - 20 days
Pa 220456 - 20 days
Pa 220464 - 20 days
Pa 220465 - 20 days
Pa 220467 - 20 days
Pa 220468 - 20 days
Pa 220469 - 20 days

SIX MILE LAKE AREA - M-2877

Conwest Group 2 - Questor Block A 2 - 96 claims
(18) Pa 215180 - 215197 - both numbers inclusive - 20 days per claim
(4) Pa 218250 - 218253 - both numbers inclusive - 20 days per claim
(20) Pa 227395 - 227414 - both numbers inclusive - 20 days per claim
(15) Pa 227420 - 227434 - both numbers inclusive - 20 days per claim
(19) Pa 235547 - 235565 - both numbers inclusive - 20 days per claim
(20) Pa 235567 - 235586 - both numbers inclusive - 20 days per claim
(96) claims total

QUEST LAKE AREA - M-2875

Conwest Group 3 - Questor Block B - 24 claims
Pa 227445 - 227468 - both numbers inclusive - 20 days per claim

SIX MILE & FOURBAY LAKE AREAS - M-2877 & 2879

Conwest Group 4 - Questor Block A 4 - 15 claims
Pa 235407 - 20 days
Pa 235408 - 20 days
Pa 235409 - 20 days
Pa 235410 - 20 days
Pa 235411 - 20 days
Pa 235415 - 20 days
Pa 235530 - 20 days
Pa 235531 - 20 days
Pa 235533 - 20 days
Pa 235534 - 20 days
Pa 235535 - 20 days
Pa 235536 - 20 days
Pa 235537 - 20 days
Claims Covered by Airborne Electromagnetic Survey

Flown by Questor Surveys, February 1970

DRAYTON TOWNSHIP & AREA NORTH -

Conwest Group 8 - Questor's "Alcona Area" - 118 claims

(10) Pa 246611 to 246620 - both numbers inclusive - 10 days per claim
(4) Pa 248522 to 248525 - both numbers inclusive - 10 days per claim
(6) Pa 248527 to 248532 - both numbers inclusive - 10 days per claim
(3) Pa 248535 to 248537 - both numbers inclusive - 10 days per claim
(10) Pa 248539 to 248548 - both numbers inclusive - 10 days per claim
(6) Pa 248555 to 248560 - both numbers inclusive - 10 days per claim
(6) Pa 248567 to 248572 - both numbers inclusive - 10 days per claim
(3) Pa 248579 to 248581 - both numbers inclusive - 10 days per claim
(10) Pa 249411 to 249450 - both numbers inclusive - 10 days per claim
(10) Pa 249688 to 249717 - both numbers inclusive - 10 days per claim

118 total claims

@ 10 days per claim 1,180 days of assessment work.
TECHNICAL ASSESSMENT WORK CREDITS

Recorder Holder
Conwest Exploration Company Limited
Beckington, Fourbay, Quest, Sixmile & Squaw Lakes

<table>
<thead>
<tr>
<th>Type of Survey and number of Assessment Days</th>
<th>Credits per claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOPHYSICAL</td>
<td></td>
</tr>
<tr>
<td>Magnetometer</td>
<td>20 days</td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>20 days</td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
</tr>
<tr>
<td>GEOLOGICAL</td>
<td></td>
</tr>
<tr>
<td>GEOCHEMICAL</td>
<td></td>
</tr>
<tr>
<td>Man days</td>
<td>Ground</td>
</tr>
<tr>
<td>Special Provision</td>
<td>Airborne</td>
</tr>
</tbody>
</table>

NOTICE OF INTENT TO BE ISSUED

☐ Credits have been reduced because of partial coverage of claims.

☐ Credits have been reduced because of corrections to work dates and figures of applicant.

☐ NO CREDITS have been allowed for the following mining claims as they were not sufficiently covered by the survey:

<table>
<thead>
<tr>
<th>Mining Claims</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lists A, B, & C)</td>
</tr>
<tr>
<td>Pa. 215180 to 97 inclusive</td>
</tr>
<tr>
<td>218250 to 53 "</td>
</tr>
<tr>
<td>220454 to 56 "</td>
</tr>
<tr>
<td>220464 - 65</td>
</tr>
<tr>
<td>220467 to 69 inclusive</td>
</tr>
<tr>
<td>227370 to 85 "</td>
</tr>
<tr>
<td>227395 to 414 "</td>
</tr>
<tr>
<td>227420 to 34 "</td>
</tr>
<tr>
<td>227445 to 68 "</td>
</tr>
<tr>
<td>235407 to 11 "</td>
</tr>
<tr>
<td>235415</td>
</tr>
<tr>
<td>235529 to 31 inclusive</td>
</tr>
<tr>
<td>235533 to 38 "</td>
</tr>
<tr>
<td>235547 to 65 "</td>
</tr>
<tr>
<td>235567 to 86 "</td>
</tr>
<tr>
<td>244126</td>
</tr>
<tr>
<td>249483 to 87</td>
</tr>
<tr>
<td>252874 to 908 inclusive</td>
</tr>
<tr>
<td>252945 to 73 "</td>
</tr>
</tbody>
</table>

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40;
TECHNICAL ASSESSMENT WORK CREDITS

Recorder Holder: Conwest Exploration Company Limited
Township: Drayton Township

<table>
<thead>
<tr>
<th>Type of Survey and number of Assessment Days</th>
<th>Credits per claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOPHYSICAL</td>
<td></td>
</tr>
<tr>
<td>Magnetometer</td>
<td>10 days</td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>10 days</td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
</tr>
<tr>
<td>GEOLOGICAL</td>
<td></td>
</tr>
<tr>
<td>GEOCHEMICAL</td>
<td></td>
</tr>
<tr>
<td>Man days × Ground</td>
<td></td>
</tr>
<tr>
<td>Special Provision × Airborne</td>
<td></td>
</tr>
</tbody>
</table>

NOTICE OF INTENT TO BE ISSUED

☐ Credits have been reduced because of partial coverage of claims.

☐ Credits have been reduced because of corrections to work dates and figures of applicant.

☐ NO CREDITS have been allowed for the following mining claims as they were not sufficiently covered by the survey:

<table>
<thead>
<tr>
<th>Mining Claims</th>
</tr>
</thead>
<tbody>
<tr>
<td>(List D)</td>
</tr>
<tr>
<td>Pa. 246611 to 20 inclusive</td>
</tr>
<tr>
<td>248522 to 25</td>
</tr>
<tr>
<td>248527 to 32</td>
</tr>
<tr>
<td>248535 to 37</td>
</tr>
<tr>
<td>248539 to 48</td>
</tr>
<tr>
<td>248555 to 60</td>
</tr>
<tr>
<td>248567 to 72</td>
</tr>
<tr>
<td>248579 to 81</td>
</tr>
<tr>
<td>249411 to 50</td>
</tr>
<tr>
<td>249688 to 717</td>
</tr>
</tbody>
</table>

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geophysical - 40; Geochemical - 40.

Mr. F. W. Matthews,
Supervisor, Projects Section,
Dept. of Mines & Northern Development,
Whitney Block, Queen's Park,
Toronto, Ontario.

Dear Mr. Matthews:

Re: Airborne Geophysical Surveys
Sturgeon Lake Area, Ontario

Enclosed are reports and maps in duplicate of airborne electromagnetic and magnetic surveys performed by Quescor Surveys. We ask for credits on a total of 347 claims as listed in Lists "A, B, C & D" attached hereto.

Please refer to notices from the Mining Recorder (Patricia) dated June 14 and 15, numbered 158 and 157.

Yours very truly,

CONWEST EXPLORATION COMPANY LIMITED

Bruce M. Pone
Lands Secretary

Enc.
December 16, 1971

Mr. W. A. Buchan,
Mining Recorder,
P. O. Box 669,
Sioux Lookout, Ontario.

Dear Sir:

Re: Mining Claims Pa. 215180 et al, Beckington, Fourbay, Quest, Sixmile & Squaw Lakes and Pa. 246611 et al, Drayton Township
File 2.500

The Airborne Geophysical (Magnetometer and Electromagnetic) assessment work credits as shown on the attached list have been approved as of the date above. Please inform the recorded holder and so indicate on your records.

Yours very truly,

Fred W. Matthews,
Supervisor
Projects Section

encl.

cc: Conwest Exploration Company Ltd.,
10th floor, 85 Richmond Street W.,
Toronto 1, Ontario.
Attn: Mr. Bruce W. Pope

cc: Selco Exploration Co., Ltd.,
6th floor,
55 Yonge Street,
Toronto 1, Ontario.
Attn: Mr. J. A. Gribben

cc: Mr. Trevor L. Horsely,
73 Cameron Crescent,
Toronto, Ontario.

Resident Geologist,
Kenora, Ontario.
AREA OF

QUEST LAKE

Claim Map

DISTRICT OF
THUNDER BAY

PATRICIA
MINING DIVISION

SCALE: 1-INCH = 40 CHAINS
NOTES

400' SURFACE RIGHTS RESERVATION AROUND ALL LAKES AND RIVERS.

PARCELS INDICATED THUS

- PATENTED MINING & SURFACE RIGHTS
- PATENTED SURFACE RIGHTS ONLY

SURFACE RIGHTS ON ALL ISLANDS "N MINNITAKI LAKE RESERVED TO THE DEPT OF LANDS & FORESTS.
FILE: 67051.

Areas withdrawn from staking under Section 42 of the Mining Act.

<table>
<thead>
<tr>
<th>File</th>
<th>Date Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>163474</td>
<td>10/3/71 540</td>
</tr>
</tbody>
</table>

DRAHTON TWP

SCALE: 1" = 4000'
For additional information see maps:

52 J/02 SE-0044# 1-4
CONTOUR INTERVAL

[Contour Details]

Questor Surveys Limited
Airborne Magnetometer Survey
Airborne Electromagnetic Survey

Conwest Claim Block
Alcona Area

52J/02 SE-0044, #4

File No.

Published