$$
525 / 02 \sin (36) \quad 2.128
$$

010

$$
\begin{gathered}
R E P O R T \\
F O R
\end{gathered}
$$

MATTAGAMI LAKE MINES LIMITED
covering MAGNETIC AND ELECTROMAGNETIC surveys
over their \# 33 - 34 CLAIM GROUP (Jumping Lake)

STURGEON LAKE AREA, PATRICIA MINING DIVISION, ONTARIO

CLAIMS: 非 225529-41
\# 225563-74
\# 225609-20 Total 37

SURVEYS: - Magnetic

- McPhar Ejuxgate
- Electromagnetic - Crone RADEM-VLF

Maps 6

SEPTEMBER 1970

MATTAGAMI LAKE MINES LTMITED
进 33 －非 34 CLAIM GROUP（JUMPING LAKE）
STURGEON LAKE AREA，PATRICIA MINING DIVISION，ONTARIO
September 1970
CLAIMS：225529－41『
225563－64
225609－20 Total 37
SURVEYS：－Magnetic－McPhar Fluxgate
－Electromagnetic－Crone RADEM－VLF
$/$ Maps 6

1，OCATION AND ACCESS：

This group of 37 contiguous claims numbered 225529－41， 225563－64，and 225609－20，is located south of Jumping Lake and 1 mile north of Six Mile Lake．Access is via bush plane or trail from the Savant Lake road 3 miles to the northwest．

PREVIOUS WORK AND REPORTS：
Maps
Ontario Department of Kines
Sturgeon Lake \＃11186 Ontario Department of Mines Sioux Lookout \＃2169

The area is ped as being underlain by mafic volcanic rocks．The government airborne magnetic map shows the area as being exceptionally flat magnetically．The area was flown by Questor for Mattagami Lake Mines Limited in March of 1969 and the claim group staked to cover airborne anomalies detected by this survey．

A horizontal loop EM survey was contracted to Prospecting Geophysics by Mattagami Lake Mines in July of 1970 using a 400' spread GEONICS EM-1" instrument.

EQUTPMENT USED AND OPERATORS:

Magnetic - A McPhar fluxgate magnetometer was used measuring the vertical component 0^{2} the earth's magnetic field dinectly in gammas. Base stations were establisned and normal drift correction procedures carried out. Instrument accuracy is ± 10 gammas. Number of stations read was 2083. Field supervisor was Robert Major, Mattagami Lake Mines staff, Box 190, Ignace, Ontario. Survey dates were between July 1 and 31, 1970.

Electromagnetic - A Crone RADEM-VLF-EM instrument was used measuring both dip angle of the resultant field in degrees and the Field Strength of the horizontal component of the resultant field. Brochure enclosed with this report. Survey dates were July 2 to 31, 1970; number of stations 1765.

LINECUTTING:

A total of 29.5 miles were cut under contract to Fred Corcoran, 116 Villeneuve Street, Val D'Or, P.Q. during the period June 1 to 30, 1970. The grid has a 400' line interval.

INTERPRETATION:

A total of 10 VLF conductors were detected by the survey.
Conductor 33-1 This conductor extends from line 12E to line 204E. The conductor is magnetic over most of its length althougir the coincident magnetic highs vary from almost nil to 11,000 gammas. The conductive portions of the anomaly are generally wider tian the magnetic portions indicating a banded structure. Overburden is shallo: dip near vertical but slightly to the north. Test drill hole proposed on line $96 \mathrm{E}, 14+50 \mathrm{~N}$ drilling grid south at -45 for 500^{\prime}. Conductor here is 200° wide and very weakly magnetic. A second proposed hole collared at $6+50 \mathrm{~N}$ line 60 E drilling grid south at -45° for 400^{\prime}. Conductor here is approximately 70° wide with a 1700 gamna magnetic high. A third proposed drill hole collared at $4+00 N$ line $32 E$, drilling grid south at -45° for 600^{\prime}. Expected width of conductor 200', may be banded.

Conductor 33-2 This strong, narrow conductor is detected on lines $32 \mathrm{~W}, 28 \mathrm{~W}$ and 20 W but probably continues below the lake from line $4 W$ to 32 W and is open towards the west. There is magnetic coincidence on line 28 W and 32 W in the order of 1000 gammas. A test hole is proposed collared at $10+50 \mathrm{~N}$, line 32 W drilling grid south at -45° for 300^{\prime}. Width of conductor is expected to be less than 50^{\prime}.

Conductor 33-3 This is a 1000^{\prime} long conductor with magnetic correlation in the order of 2000 gammas. A test drill hole is proposed
$-4-$
collared at $0+50 \mathrm{~N}$ (South Base Line), line 8 W drilling grid south at -45° for 400^{\prime}. Width of conductor in the order of 100°.

Conductor 33-4 A weak conductor without magnetic or horizontal loop EM support. No drilling recommended.

Conductor 33-5 This conductor has weak magnetic and horizontal loop EM support. Drilling dependent on further geological or geochemical support.

Conductor 33-6 This conductor is much the same as 33-5 and thus is not recommended for testing with infornation available to date.

Sonductor 33-7 This is a broad, weak anomaly without support of magnetics on horizontal loop. It could be a clay-bed anomaly and thus is not recommended for drilling.

Conductor 33-8 This conductor is 2000' long. A magnetic high flanks it to the south but the conductor is probably non-magnetic. The conductor is supported by the horizontal loop survey. A cirill hole is proposed collared at $16+50 \mathrm{~N}$, line 68 E drilling grid south at -45° for 300^{\prime}.

Conductor 33-9 This is a weak, broad anomaly with no magnetic support and weak horizontal loop support on line $0+00$. It may be caused by a fault or shear zonc. No drilling recommended without further information.

Conductor 33-10 This anomaly is similar to 33-9 and does not merit testing with the information available at present.

Six drill holes are proposed totalling 2500 feet.

Respectfully submitted,

$$
52 \text { J/02 } 5 w(37)
$$

52 ye2swoe67 52je2swee42 fourbay lake \square

REPORT ON ELECTROMAGNETIC SURVFY GROUP SN $33-34$ MATTAGAMI LAKE MINES ITD. STURGEON IAKE AIEA, ONT.:
L
REPORT
ON
ELECTROMAGNETIC SURVEY
ON
GROUP SL 33-34
MATTAGAMI LAKE MINES L'PD.
STURGEOH LAKE AREA, OINT.

Montreal, Que.
July 23, 1970.

REPORT
 ON
 ELECTROMAGNETIC SURVEY

ON

GROUP SL 33-34

MATTAGAMI LAKE MINES LTD.
STURGEON LAKE AREA, ONT.

INTRODUCTION

An electromagnetic survey using the EM- 17 unit with a 400 foot coil interval for added penetration has been carried out over the property referred to as Group SL 33-34, held by Mattagami Lake Mines Ltd. in the Sturgeon Lake area of Ontario.

The following report and accompanying map describe the results of the survey and give a geological interpretation of the results.

PROPERTY AND LOCATION
The property referred to as Group SL $33-34$ consists of 37 claims of approximately 40 acres each, situated
near Jumping Lake, north of Sturgeon Lake. The claims are registered with the Patricia Mining Division of the Ontario Department of Mines under the following claim numbers:

PA 225563 to PA 225574 inclusive
PA 225529 to PA 225541°. "
PA 225609 to PA 225620 "

GEOLOGY
The geology of the area is described in Geological Report No. 24, published by the Department of Mines of Ontario. A more recent map, $P 353$, covering the Sturgeon Lake area, was published in 1966.

From this data, it is seen that the underlying rocks of the area are of Precambrian age and consist of sedimentary and volcanic rocks that have been intruded by both basic and granitic rocks and their metamorphosed equivalents. The regional foliation is generally east-west.

Group SL 33-34 appears to be largely underlain by volcanic rocks which include pyroclastics and andesite. The northern portion appears to be underlain by pyroclastics and this should be the favorable horizon for mineral deposition.

The survey was carried out using a network of picket lines cut in a north-south direction at 400 foot intervals, as shown on the accompanying map. Stations were at 100 foot intervals along the lines.

The electromagnetic survey was carried out using the Geonics EM-17 horizontal loop equipment with a 400 foot coil interval. The use of the 400 foot coil interval with this equipment obtains extra penetration over the conventional equipment. In the horizontal loop type of survey both the in-phase and out-of-phase components of the secondary field are measured, whose special characteristics make possible a fairly accurate evaluation of the conductivity. A conductor caused by sulphide mineralization will produce a curve going from positive readings through zero to negative and back again to positive. Both the in-phase and out-of phase readings show the same general curve. The ratio between the in-phase and out-of-phase readings over a conductor is an indication of the conductivity of the body. A good conductor would cause a greater deviation of the in-phase component than the out-of-phase
component. The opposite is true of a poor conductor. RESULTS OF THE ELECTROMAGNEIIC SUIVEY AND INTERPRETATION

The electromagnetic survey outlined a series of conductive zones that extend across the property in a general direction slightly north of east. These conductors are lettered A, B, C, etc. for reference purposes.

The majority of the conductive zones appear to line up along the same structure which probably extends across the property. The conductivity is weak and considering a 400 foot coil interval is used, fairly deep overburden can be expected. The ground survey showed considerably more continuity than the airborne survey, probably due to the greater penetration of the equipment.

The following is a bricf description of the main conductive zones:

ZONE "A"

This is a fairly well defined zone for a minimum length of 1,600 feet and is the most easterly conductor. It possibly continues further west in the lake and "B" zone would appear to be the westerly extension of the same
structure. The conductor does not show much width but is reasonably strong with ratios up to 5. There is probably a fair depth of overburden and thus the conductor could be quite strong.

ZONE "B"

This has a length of approximately 800 feet and is quite similar to " $A^{\prime \prime}$ zone and, as mentioned above, it probably represents the same structure. It does not show on line 72E which may be due to a combination of deep overburden and weaker conductivity.

ZONE "C"

This lies to the north of and parallels "H3" zone. It shows on two lines only and is rather weak but there are irregular resporses on the lines on ejther side that suggest the conductor may extend further and is either too weak or too deep to be detected.
"D" AND "E" ZONES

These two are grouped together as they are very similar and at the east end the readings represent one broad response rather than two separate conductors. These
appear to lie along the same structure as "A" and "B" zones but are weaker and not as well defined. The conductivity appears to be over a ereater width but this may be partially caused by conductive overburden from swampy ground that overlies some of the area.

ZONE "P"
This zone appears to have a more easterly strike but on lines 0 and $4 E$ the interpretation shows the northeast strike. There is a broad response over a swampy area and it is possible the interpretation is wrong.

The conductivity is fairly weak but again it depends on the overburden existing in the vicinfty.

ZONE "G"
This shows the strongest resuonse obtained in the survey on line 32 W , close to the west boundary of the property. The conductor here is 50 feet wide and is quite strong and probably very little overburden. The dip appears to be to the south. On the next line east the conductivity is very weak but this is on the edge of the lake. It is very likely the conductor continues to the
west and may also continue to the east under the lake.

OTHER RESSONSES

There are a few weak one line conductive responses but these do not appear to be of much significance. There are other irregular responses but these are probably due to the sensitivity of the equipment using a 400 foot coil interval. In some cases, such as "C" zone, these may represent conductivity at depth.

CONCLUSIONS AND RECOMHNDATIONS

The electromagnetic survey outlined several conductive zones, most of which follow a structural trend across the property. Generally they are weak with the exception of the west end of "G" zone but this may be due in part to overburden.

Some outcrops exist fairly close to some of the conductivity and the results of this survey should be correlated with geological and magnetic data for a proper interpretation. The conductors, with the exception of " G " zone, appear to be similar and probably represent similar mineralization, possibly a combination of sulphides and graphite.

"G" zone does not lie on the same structure and

 the response on line $32 W$ is more typical of sulphides.Respectfully submitted, PROSPECTING GEOPHYSICS LTD. H.J. Bergman, P. AnE.

Montreal, Que., July 23, 1970.

NAMES AND ADDIESSM.
Chief Line Cutter or Contractor \qquad Fe cores erin Viler naca \qquad
Party Chic -il rerderbor, In Pelotion inion nus. \qquad

covering; dates
Line Cutting \qquad JUNE - JUNE 30,1970
Field and Office June 28, 1970 to July 24,1970
instrument data
Gconics Em-17 Horimontal loop :3loctro:inmotic Unit \therefore in
Make, Model and Type LiON SOOt coil Eiparniilon \qquad .
Scale Constant or Sensitivity \qquad ± 28
or provide copy of instrument data /rom Manufacturer's brochure
Total Number of Stations Within Claim Group 1800

Number of Miles of Line cut Within Claim Group _ 29.5

ASSESSMENT WORK Chedrts Requested
Geological Survey \qquad Days per Claim
40
Geophysical Survey _— _Days per Claim
mining claims thaveinsed
225563 to 225574 incl.
225529 to 225541 incl.
225609 to 225620 incl.
\qquad

Assessment Work ireakdown

SPECIAL PIOVISION

ASSESSMENT WORK DETAILS

MAGNETOMETER

Total Number of Stations Within Claim Group 2083 Number of Niles of Line cut Within Claim Group 29. 5

Work to be applied on the following erantiguous mining claime:
CI.AIM NO.

CINMNS:
nAYS

PA $225529 \quad 20$
PA $225530 \quad 20$
PA 22553120
PA 22553220
PA 225533 20
PA 22553420
PA 225535 20
PA $225536 \quad 20$
PA 225537 20
PA 225538 20
PA 2255.39 20
PA $225540 \quad 20$
PA 225541 20
PA 225563 2n
PA 225564 20
PA $225565 \quad 20$
PA 225566 2.0
PA 225567 20
PA 225568 20
Prt 225569 20
PA 22.5570 20
PA 22.5571 20
PA 27.557? 20
PA 2.:5573 20
PA 2.355.74 20
PA 2356(1)? 20
PA 225610 20
$P_{\text {A }} 225611$ 20
PA 225612 20
DA 225613 20
PA 225614 20
PA 225615 20
PA 225616 20
PA 225617 20
PA 225618 20
P_{A} 225:619 20
PA 225620 20

SPECIAL PROVISION
ASSESSMENT WORK DETAILS

Field Geology or Geophysics JULY 1-31, 1970.

Office \qquad AUGUST 1-10, 1970.
INSTRUMENT DATA Make, Model and Type $\frac{\text { CRONE VLF RADEM }}{ \pm 0 \text { DIP ANGLE }}$

Or: suide copy of instrumemt data from Manu/aciurer's brochure.

Total Number of Stations Within Claim Group 1765 Number of Miles of Line cut Within Claim Group

ASSESSMENT FORK CREDITS REQUESTED

> Geological Survey___Days pes Claim Geophysical Survey_20_Days per Claim

MINING CLALMS TRAVERSED.

Work to be applied on the following contiguous mining claima；

CLAIM NO．	N＾YS	CLAMM NO．	DAYS
PA 225529	20	P＾225569	20
PA 225530	20	「へ225570	20
PA 225531	20	P＾225571	20
PA 225532	20	PA． 2.25572	20
PA 225533	20	1×2.25573	20
PA 225534	20	1ヘ 2.25574	2.0
PA 225535	20	「へ 22.5609	20
PA 225536	20	リ＾ 22.5610	20
PA 225537	20	「へ 225611	2.0
［A 225538	20	ワ＾ 2.25612	20
PA 225539	20	19 225613	2.0
PA 225540	20	1＾＾225614	20
PA 225541	20	19 2.2 .5615	20
PA 225563	20	1＾ 2.25616	20
PA 225564	20	1， 2.25617	20
PA 225565	20	1＾225618	20
PA 225566	20		7.0
PA 225567	2.0	1＇A 2251．20	7.0
PA 225568	20		

CRONE GEOPHYSICS LIMITED

3607 WOLFEDALE ROAD, MISSISSAUGA, ONTARIO, CANADA.

Phone: 270-0096

This is a rugged, simple to operate, ONE MAN EM unit. It can be used without line cutting and is thus ideally suited for GROUND LOCATION OF AIRIBORNE CONDUCTORS and the CIIECKING OUT OF MINERAL SHOWINGS. This instrument utilizes higher than normal EM frequencies and is capable of detecting DISSEMINATED SULPHIDE DEPOSITS and SMALL SULPHIDE BODIES. It accurately isolates BANDED CONDUCTORS and operates through arcas of HIGH HYDRO NOISE. The method is capable of deep penetration but due to the high frequency used its penetration is limited in areas of clay and conductive overburden.

The DIP ANGLE measurement detects a conductor from a considerable distance and is used primarily for locating conductors. The FIELD SIRENGTII measurement is used to define the shape and allitude of the conductor.

SPECIFICATIONS

Source of Primary Field:
Number of Stations:

VLF Communication Stations 12 to 24 KHz
7 switch sclectable

Stations Available:
The seven standard stations are Cutler, Maine, 17.8; Scaltle, Washington, 18.6; Collins, Colorado, 20.0; Annapolis, Md., 21.4; Panama, 24.0; Hawaii, 23.4; England, 16.0. Alternative stations which may be substituted arc: Gorki, Russia, 17.1; Japan, 17.4; England, 19.6; Australia, NWC, 22.3 KHz.

Check that Station is Transmitting: Audible signal from speaker,

Parameters Measured and Mcans:

(1) DIP ANGLE in degrecs, from the horizontal of the magnetic component of the VLF ficld. Detected by minimum on the ficld strength meter and read from an inclinometer with a range of $: \pm 80^{\circ}$ and an accuracy of $\pm 12^{\circ}$.
(2) Field Strength (total or horizontal component) of the magnetic component of the Vifi field. Measured as a per cent of normal fiedd strength established at a base station. Accuracy $\pm 2 \%$ dependent on signal. Meter has two ranges: $0-300 \%$ and $0-600 \%$. Switch ror "Kcycd" or "F.S." (steady) signal.
(3) Out of Phase component of the magnetic field, perpendicular in direction to the resultant field, measured without sign, as a per cent of normal field strength. This is the minimum reading of the Ficld Sirength meter obtained when measuring the dip angle. Accuracy $\pm 2 \%$.

Operating J'emperature Range: $\quad-20^{\circ}$ to $+110^{\circ} \mathrm{F}$.

Dimensions and Weight:

Stripping:
Baticries
$3.5^{\prime \prime} \times 7.5^{\prime \prime} \times 10.5^{\prime \prime}-6 \mathrm{lb}$.
Foan lined wooden case - shipping wt. -- 15 lb .
2 of 9 volt: Evercady 216, Burgess 2U6, Mallory M-1604
Average life expectancy - 3 weeks to 3 months dependent on amount of usage.

Whitley y nock
ours: s sank Toronto is 2 0 If

DEPARTMENT OF MINES AND NORTHERN AFFAIRS

March 8th, 1971.

Mr. W. A. Buchan,
Mining Recorder,
Court House,
Sioux Lookout, Ontario.

Re: Mining Claims PA. 225527 et al Fourbay Lake Area, File io, 2.128

Dear Sir:
The Geophysical (Magnetometer and Electromagnetic) assessment work credits as listed with my Notice of Intent dated February 19 th, 1971, have been approved as of the date above. Please inform the recorded holder and so indicate on your records.

Yours very truly,

Fred W. Matthews, Supervisor, Projects Section.
csc. Mattagemis Lake Mines Ltd., 205-8 King St., E., Toronto, Ontario.
cc. J. Duncan Crone, 3607 Volfedale hoad, Mississauga, Ont.,
csc. Mr. H.L. King, Resident Geologist, 808 Robertson Street, Kenora, Ontario. \checkmark

SEE ACCOMPANYING

MAP (S) IDENTIFIED AS

52J/025w-0042 非1-2

LOCATED IN THE MAP

CHANNEL IN THE
FOLLOWING SEQUENCE
(X)

FOR ADDITIONAL

INFORMATION

SEE MAPS:

$$
52 J / 025 \omega-0042 \# 3-7
$$

$\underbrace{(1)}$

