

McILRAITH

52K01SW2002 2.19906

010

2.19906

Report on the

GEOLOGICAL MAPPING and LITHOGEOCHEMICAL & MMI SAMPLING PROGRAM for SYNERGY EXPLORATIONS LTD.

PD BLOCK PROPERTY

PATRICIA MINING DIVISION, ONTARIO

52F/16NW 52K/01SW

Lynda Bloom, M.Sc. December 10, 1999

. . . .a.

SUMMARY AND RECOMMENDATIONS

Synergy Exploration Ltd.'s ("Synergy") 1998 exploration program focussed largely on preliminary geological mapping and sampling of the PD Block Property in the Sioux Lookout area in Northwestern Ontario, Canada. Synergy's initial exploration program, completed in August 1998, entailed linecutting, geological mapping, lithogeochemical and MMI sampling. Further lithogeochemical sampling and geological reconnaissance mapping was conducted in 1999. Results from this evaluation indicate a high potential for the discovery of volcanogenic massive sulphide deposits.

The property comprises a total of 9 claim units (137 ha) in the Patricia Mining Division. Synergy has an option to purchase agreement with Stuarton Resources Ltd., the claim holder.

The property is near the top of the Abram Lake Greenstone Belt, where a succession of basalt is overlain by rhyolites, which are in turn truncated and overlain by alluvial sedimentary rocks. The lower basalt formation is host to disseminated and massive sulphide mineralization as well as iron formation. Between the rhyolite and basalt there are disseminated sulphides in a tuffaceous member. The upper rhyolites contain previously drill-intersected, base metal massive sulphide horizons. The overlying coarse sediments contain sulphide clasts presumably derived from an eroded sulphide source.

9.1990h

i

MCILRAITH

52K01SW2002 2.19906

010C

TABLE OF CONTENTS

		و مرد بر	4' 	- 1 - 1	•	• * * * * * * * * * * * * * * * * * * *	
SUMM	IARY AND RECOMMENDATIONS	9****	ليه ک محمد محمد		•••••		. i
1.0	INTRODUCTION	•••••	•••••		•••••		.1
2.0	LOCATION, ACCESS AND PHYSIOGRAPHY	•••••					.2
3.0	CLAIM STATUS AND OWNERSHIP	•••••	•••••		••••••		.2
4.0	EXPLORATION HISTORY	•••••	•••••				.4
5.0	SYNERGY 1998 PRELIMINARY PROGRAM	• • • • • • • • • • • • •	•••••		••••••		.5
	5.1 Linecutting	••••••					6
	5.2 Lithogeochemical Sampling	•••••					6
	5.3 MMI Sampling & Procedure					1	2
6.0	REGIONAL GEOLOGY	•••••				1	3
7.0	PROPERTY GEOLOGY					1	6
8.0	CONCLUSIONS					1	9
9.0	RECOMMENDATIONS				•••••	2	0
10.0	REFERENCES	•••••			•••••	2	1

LIST OF FIGURES

Figure 1. Location Map, Sioux Lookout area, Ontario, Canada	3
Figure 2. $(Na_2O + K_2O)$ vs SiO ₂ plot of samples collected from the PD Block property	8
Figure 3. SiO ₂ vs Log Zr/TiO ₂ plot of samples taken from the PD Block property	9
Figure 4. Y vs Nb tectonic discrimination diagram from samples taken from the PD Block	
property	. 10
Figure 5. Log Zr/Y vs Log Zr tectonic discrimination diagram for samples taken from the PD	
Block property	. 11
Figure 6. Property Location, Abram Lake Greenstone Belt, Sioux Lookout, Ontario	. 14
Figure 7. Sioux Lookout-Mattabi Belt, Wabigoon Subprovince	. 15
Figure 8. Stratigraphic location of the Sioux Lookout properties	. 18

LIST OF TABLES

Table 1:	PD Block Sample Data	
----------	----------------------	--

t

...

APPENDICES

Appendix 1	PD Block	Lithogeochemical Sampling Data
Appendix 2	PD Block	MMI Sampling Data
Appendix 3	PD Block	GPS File Data

ŗ

END POCKET

Map I PD Block Property

••• •••

1.0 INTRODUCTION

This report summarizes results and provides recommendations for future work based on the 1998 exploration program completed for Synergy Explorations Ltd. ("Synergy") on its PD Block property. The exploration targets are volcanogenic massive sulphide deposits, similar to economic deposits mined by Noranda Mines and Falconbridge Ltd. in the Mattabi Camp (total production, 18.38 million tons of 8.48% Zn, 1.05% Cu, 0.91% Pb).

Synergy engaged Andreas Lichtblau of Touchstone Consulting (an independent consulting geologist) to carry out its 1998 exploration program and Terrence Bottrill of Bottrill Geological Services to carry out its 1999 exploration program. Previous exploration and research data available in the public record were reviewed

2.0 LOCATION, ACCESS AND PHYSIOGRAPHY

The property is situated in McIlraith Township, Patricia Mining Division, Ontario. The towns of Dryden (to the southwest) and Hudson (to the northeast) are situated approximately 30 km equidistant from the property Thunder Bay is approximately 360 road-km to the southeast (Fig. 1).

The property is easily accessed either by forestry roads southwest from Hudson (at the termination of Hwy #664); or from the Kathlyn Lake Road, which terminates in the south at Hwy #72, the Sioux Lookout Highway.

The area is generally underlain by glacial deposits of sand and gravel with outcrop exposures not exceeding 10%.. The PD Block property is relatively flat lying, with most exposure being in the north and sand plains to the south.

The entire area has been logged over, probably twice, since the mid-forties, The latest logging on the PD Block would appear to have been before the 1970's, since tree cover is extensive.

3.0 CLAIM STATUS AND OWNERSHIP

The claim number 1216293 (9 units) is recorded 100% under Stuarton Resources Ltd. The claims are subject to an Option to Purchase Agreement between Synergy Explorations Ltd. and Stuarton Resources Ltd.

map courtesy of Town of Sioux Lookout

Fig. 1. Location Map, Sioux Lookout area, Ontario, Canada

4.0 EXPLORATION HISTORY

A ground geophysical survey was undertaken by the Phelps Dodge Corporation in 1968. The results indicate that the magnetics can be roughly separated into 3 main zones, all trending approximately east-west. Zone 1 is characterized by erratic sharp high amplitude positive and negative anomalies usually continuous on only 2 or 3 adjacent lines. The anomalies are strongest in the East half of the area and weaken to the west. Zone 2 is similar to Zone 1 (e.g. magnetic amplitude and sharpness) but is has a definite continuity across the length of the property. Zone 2 is characterized by parallel anomalous highs and lows. Zone 3 is characterized by 2 broad continuous anomalies continuous across 5/6 lines.

The magnetics in Zone 1 and possibly Zone 2 are caused mainly by presence of iron formation (magnetite and pyrrhotite) covered by shallow overburden. Zone 3 is a different character and caused by magnetic material occurring at a greater depth than the formations to the north. It is possibly caused by an intrusive rather than formational structure.

Drilling by the Phelps Dodge Corporation in 1970 gives a good picture of the extensive nature of the mineralization. Holes 70-1, 2, 3 and 7 intersected identical sulphide mineralization; hole 70-3 was sampled in 3 m (10 ft) lengths from surface to 84.4 m (277 ft), the hole terminated at 94.2 m (309 ft). An average of 0.16% Cu was obtained in this 79.2 m (260 ft) length; including a 15.2 m (50 ft) section of 0.39% Cu. Biotite-mica schist zones were frequently intersected in core, probably representing strongly altered pillow rims and interpillow material.

Copper-rich sulphide mineralization is known between BL1000N and 1400N, across the grid. Phelps Dodge holes 70-4, 5, 6 and 9 tested the area lying south of grid 700N, underneath the sand plain. Sulphide mineralization intersected here was directly related to argillaceous and graphitic horizons, and magnetite iron formation.

Government Airborne Electromagnetic and Total Intensity Magnetic surveys were published for the region in 1987. The following Geophysical/Geochemical Series maps cover the Centrefire Property and surrounding area: 80953, 80954, 80955, 80956 and 80957.

5.0 SYNERGY 1998 PRELIMINARY PROGRAM

During the period August 19, 1998 to August 31, 1998, Synergy performed a preliminary program of limited linecutting, lithogeochemical and MMI sampling, and geological mapping on the property. A total of 3918 m of line were cut, chained and picketed; a total of 20 rock samples were taken for lithogeochemical analysis, and 61 soil samples were taken for MMI analysis.

Locations of all lithogeochemical sample points were determined with a Trimble Geoexplorer GPS unit (Appendix 3). Points on base and grid lines, claim posts and topographic features were also referenced. Field data was reduced and plotted on 1:5000 scale maps by Geo-Sat Enterprises, Thunder Bay, Ontario.

Contract personnel involved during this period were:

Andreas Lichtblau, Geologist RR#1, Nolalu, Ontario, P0T 2K0 Prospector's Licence #E33626	(807) 473-8172
James Martin, Linecutter, Prospector RR# 7, Site 1, Comp. 12 Thunder Bay, Ontario, P7C 5V5	(807) 475-9138
Ben Whitney Geological Assistant	

Ben Whitney, Geological Assistant Box 250 21 Classic Ave. Toronto, Ontario, M5S 2Z3

Contract personnel for the 1999 reconnaissance geological mapping and lithogeochemical sampling were:

Terrence Bottrill, Senior Geologist 192 Weldon Ave. Oakville, ON L6K 2H6	(905) 842-9884
Peter Eunson, Geological Assistant	
99 Harbour Square, Suite 130B	
Toronto, ON M4J 2H2	(416) 861-1469

5.1 LINECUTTING

Baseline 1000N was cut and chained for 900 m, on Azimuth N070°E, in part parallelling the old Dryden-Hudson road. Cross lines were turned-off every 100 m, and chained/flagged for the lengths shown below, for a total of 3,918 m.

Cut, chained, picketed:

Base Line	0+00E- 9+00E	Azimuth N070°E
Dube Dille		

Chained, flagged:

L0+00E	10+00N-13+64N
L1+00E	10+00N-13+55N
L2+00E	10+00N-13+49N
L3+00E	7+50N-13+47N
L4+00E	10+00N-13+45N
L5+00E	10+00N-13+43N
L6+00E	7+50N-13+50N
L7+00E	10+00N-13+90N
L8+00E	10+00N-13+25N
L9+00E	10+00N-12+50N

5.2 LITHOGEOCHEMICAL SAMPLING

A total of 20 samples of variably mineralized pillow lava were collected on the property (Table 1).

Geochemical data for the PD Block property are presented in Figures 2 to 5. Data are plotted as $(Na_2O + K_2O)$ vs SiO₂ (Fig. 2) and as SiO₂ vs Log (Zr/TiO₂) (Fig. 3). These classification diagrams indicate that the PD Block property samples are primarily basalts or basaltic andesites. Two samples classify as picro-basalts and one classifies as a dacite. Sample BGS/8-99/014, described as a siliceous gossanous inter-pillow cannot be classified according to these diagrams. Figure 4 is an Y vs Nb tectonic discrimination diagram for several of the PD Block samples. All samples, except for BGS/8-99/014 plot within the subalkaline field. Figure 5 is a Log Zr/Y vs Log Zr tectonic discrimination diagram which indicates that the majority of the samples analyzed for these elements have geochemical signatures comparable to Island Arc and Ocean-Floor basalts.

TABLE 1:PD BLOCK SAMPLE DATA

3**6** 1

bey a t

Č. 1

3

CLAIM	SAMPLE#	UTME	UTM N	DESCRIPTION
BLOCK				
PD	2497	540920	5541129	Litho #2497: 80% sil rim, amphib seams; Photo3/11
PD	2498	540940	5541097	Litho #2498: Bslt, pillowed, Si-alt rims, weakly rusty
PD	2499	540956	5540889	Litho #2499: Gabbro, glomeroporphyritic
PD	2500	540959	5540855	Litho #2500: Bslt, massive
PD	2501	540973	5540676	Litho #2501: Bslt, anthophyllite?, rusty, Calcite vesic, at Post 2, #1216293
PD	2502	540620	5541923	Litho #2502: Bslt, pillow core and rim, siliceous rusty rims, "putty" weathered
				Interior
PD	2503	540342	5541779	Litho #2503: FP intermediate dyke, massive
PD	2504	540342	5541779	Litho #2504: siliceous, anthophylitic interpillow, 2.5% Cpy
PD	2505	540342	5541779	Litho #2505: Bslt, massive pillow core, amphibolitic
PD	2506	540311	5541683	Litho #2506: Bslt, pillow core, weakly chl
PD	2507	540311	5541683	Litho #2507: interstitial, rusty, cherty; 20%Py, 1% Cpy
PD	2508	540260	5541693	Litho #2508: Bslt, rusty pillow core
PD	2509	540260	5541693	Litho #2509: AQ split core, basalt; rotten core box
PD	2510	540222	5541760	Litho #2510: Bslt, pillow core, not altered
PD	2511	540148	5541820	Litho #2511: Bslt, pillow core, not altered
PD	2512	540065	5541684	Litho #2512, Basalt, weakly chl, rusty selvedges
PD	2513	539924	5541710	Litho #2513: Bslt, weakly chl core of pillow
PD	2514	539924	5541710	Litho #2514: interpillow material, siliceous, 20%Py, tr Cpy; Py massive over 2-
				4mm
Į				
PD	BGS/8-99/013	539924	5541710	Gossanous fractures in basalt; unit 1d (pillowed basalt)
PD	BGS/8-99/014	539924	5541710	Siliceous gossanous inter-pillow; unit 1d (pillowed basalt)

Ì

Figure 2. $(Na_2O + K_2O)$ vs SiO₂ plot of samples collected from the PD Block property

.....

Figure 3. SiO₂ vs Log Zr/TiO₂ plot of samples taken from the PD Block property

....

Figure 4. Y vs Nb tectonic discrimination diagram from samples taken from the PD Block property

10

. . .

Figure 5. Log Zr/Y vs Log Zr tectonic discrimination diagram for samples taken from the PD Block property

5.3 MMI SAMPLING & PROCEDURE

A total of 61 soil samples were collected for eventual MMI (Mobile Metal Ion) analysis (Appendix 2). The MMI geochemical soil survey can be an effective tool over deep, glacially derived overburden. Sampling was done of the soil layer at a constant depth of 10 cm-15 cm, below the whitish leached layer ('Ae') situated at the base of the 'A' horizon. A minimum 500 g (1 lb.) sample was collected, if possible every 50 m along the grid line. Samples were kept in securi-sealed plastic bags, and stored before processing, along with the lithogeochemical samples, at the facilities of Clark-Eveleigh Consulting, Thunder Bay, Ontario.

Particular care was paid to MMI sampling techniques. A stainless steel shovel (which had all traces of paint and preservative removed) was used to dig the hole and collect the sample at a constant depth of 10 cm-15 cm. The soil was sieved through a coarse plastic mesh, allowing for passage of 5 mm soil clumps, but retaining all leaves and forest litter, root matts, etc. The site was assessed according to vegetation type (i.e. tree species, thickness of moss or other cover) sometimes moss cover was too thick (»20 cm) so that sampling was aborted. Several photographs were taken to catalogue forest cover (see Photographs in separate volume). No samples were taken in clear-cut areas since no soil was available. Mechanized tree harvesting techniques were such that the first 20 cm consisted of powdered and mixed dead moss/organics in a jumble of decaying tree roots and newly sprouting shrubs.

It was subsequently recognized that the MMI samples had been collected in areas of relatively thin overburden. The MMI technique is not applicable for shallow overburden areas and it was determined that the samples would not be analyzed.

6.0 REGIONAL GEOLOGY

The property is underlain by rocks of the Wabigoon Subprovince of the Canadian Shield. This is a 900 km long by 150 km wide granite-greenstone terrain in the NW Superior Province. The greenstone belt has been mapped on many occasions (cited in Turner and Walker, 1973). Particular attention was paid by early researchers to the sedimentary stratigraphy of the area, within the context of defining terms such as Keewatin and Coutchiching. Later authors (cited by Blackburn et al, 1992) defined stratigraphic relationships within belts and, using geochronology, relationships between belts within the subprovince.

In the area of Sioux Lookout, granitoid gneisses of the 3.00 Ga Winnipeg River Subprovince are basement to the lowermost volcanic stratigraphy of the Abram Lake Greenstone Belt, dated at between 2.73 Ga and 2.80 Ga (Blackburn et al, 1992). The Synergy property lies within the Northern Volcanic rocks of the Abram Lake Belt (Fig. 6).

Development of volcanic belts within the eastern portion of the Wabigoon Subprovince, particularly the Sioux Lookout portion and South Sturgeon Lake-Mattabi Camp area 100 km to the east (Fig. 7), was essentially coeval. At Sturgeon Lake, predominantly mafic volcanic rocks overlie the Central Wabigoon Gneiss terrain; felsic ash flow tuffs hosting the VMS Deposits of the Mattabi Camp are dated at 2.73 Ga. The volcanic rocks are overlain by the Sturgeon Lake sedimentary package, indicating a cessation of volcanic activity. A similar sequence of events is recorded in Sioux Lookout, at similar times.

The Sioux Lookout succession begins with a mafic volcanic sequence (lower Northern Volcanics) in fault (?) contact with underlying Winnipeg River gneiss. The southward facing mafic volcanic rocks are overlain by an upper mixed unit of intermediate and felsic units. Minor felsic intrusive activity was followed by erosion and deposition of alluvial sediments of the Ament Bay formation (Turner and Walker, 1973). The Sioux Lookout property are underlain by the prospective mafic and felsic portions of the succession (Fig. 8).

The most recent mapping in the Sioux Lookout area was by Page and Christie (1980). Of structural importance to the current exploration program is their interpretation of an overturned, westerly plunging syncline parallelling the east-west line between McIllraith and Lomond Townships to the north, and Webb and Echo Townships to the south. The PD Block property lies on the northern limb. The core of the syncline is occupied by late alluvial fan sediments: erosional products of the underlying volcanic pile.

from Blackburn et al (1992)

from Blackburn et al. (1992)

Fig.7. Sioux Lookout-Mattabi Belt, Wabigoon Subprovince

7.0 PROPERTY GEOLOGY

The property is predominantly underlain by weakly vesicular pillow basalt. Most exposures are concentrated in the northern third of the block, north of BL1000N, and south of the Hydro line. A sand plain covers most of the southern portions, however a few scattered outcrops of basaltic flow, and one of glomeroporphyritic gabbro, were mapped in the SE corner (Map I).

Pillows are small (approximately 1 m x 0.30 m) and moderately stretched along the general strike of N075°E. Hence, top determinations were not possible, except for an equivocal southerly top (overturned) from exposures under the Hydro line in the NW corner of the property. Dips are generally 75°N.

Most pillowed outcrops have development of rusty selvedges, often with siliceous, sulphidebearing interpillow material. Often a black amphibole mineral is present in the interstitial material, rarely anthophyllite. Sample# 2504 (Table 1) is of weakly anthophyllitic siliceous interpillow material, with 2%-3% disseminated and laminated coarse chalcopyrite.

On polished/glaciated outcrops it is evident that pillow rims are somewhat more resistant than the cores, implying at least incipient silicification. Broken rock does not reveal appreciable evidence of a strong alteration event. Rarely however, pillow cores exhibit a "putty" type alteration reminiscent of chlorite altered pillows in the Noranda Camp.

Mineralization & Alteration

Mineralization of pyrite, chalcopyrite and pyrrhotite is concentrated in interpillow sites. Both disseminated and laminated sulphides were noted. Massive sulphides occur as centimetre-scale pods in two shallow pits (Map I) presumably blasted in the 60's by prospectors E. Ranta and W. Young of Thunder Bay. Sulphide mineralization, as evidenced by rusty selvedges and gossanous interpillow material, is exposed across the breadth of the property along the Hydro line, for a minimum distance of 750 m. Surface exposures indicate a north-south width of mineralization to be at least 300 m; drillhole information (see further below) extends the mineralized package to 450 m horizontal thickness.

The presence of silicified pillow rims and siliceous interpillow material indicates a replacement origin for the sulphides and silica. Circulation of hydrothermal fluids through relatively permeable interpillow hyaloclastic debris led to incipient silicification of pillow rims, and replacement and sulfidation of interpillow material. Laminated sulphides may reflect replacement of originally bedded hyaloclastite or tuffaceous beds. The pillowed basalt unit acted as conduit for the hydrothermal solutions, but it is not presently known whether fluid flow was across (as in typical alteration pipes) or lateral, along a particular stratigraphic unit (as is well represented in Snow Lake, Manitoba).

A significant thickness and lateral extent of mineralization and alteration is known on the

property. If the basaltic pillows face south, then the graphitic sediments/iron formation package represents a possible cap to the system, as in the same way that Tetsusekiei iron formation occurs stratigraphically above massive sulphide horizons/deposits of the Kuroko district, Japan. The distance separating these units is only in the order of one metre to 100 metres, and represent the waning stage of hydrothermal activity.

.

from Turner and Walker (1973)

 \cdot

Fig. 8. Stratigraphic location of Sioux Lookout Properties

8.0 CONCLUSIONS

The geological setting of the PD Block property is prospective in terms of its potential for hosting volcanogenic massive base metal sulphide deposits. The Mattabi Camp exhibits a similar succession of volcanic units deposited at a similar time in the development of this portion of the eastern Wabigoon Greenstone Belt. The nature and scale of alteration and mineralization in this area indicate the presence of a significant VMS-style hydrothermal system. Whether mineralization on the PD Block represents part of a cross-cutting pipe leading up to the iron formation horizon or whether the pillowed basalt unit acted as a permeable horizon, with lateral hydrothermal fluid flow, is not presently known.

Lateral flow, confined to permeable volcanic units has been well documented in the Snow Lake Camp, Manitoba (Galley et al., 1990). These semi-conformable zones of alteration may attain a thickness of 300 m-700 m comparable to PD Block and a length of up to 12 km. Break-out eventually occurs at local syn-volcanic structures, and a more typical cross-cutting relationship is established. The semi-conformable zone of alteration may be found within 500 m to 3000 m stratigraphically below the ore-producing horizon.

.....

9.0 RECOMMENDATIONS

Work on the PD Block property should include a detailed mapping program to define potential horizons unrecognised by the cursory nature of previous surveys. Some additional sampling for lithogeochemistry could enhance knowledge of the generally weak alteration found to date. The flagged grid on PD Block is sufficient for the mapping program.

Geophysical surveying (HLEM or TEM) of selected targets is recommended. Broad-scale lithogeochemical alteration and/or base metal enrichment anomalies would define the larger setting for potential mineralization.

<u>10.0</u> <u>REFERENCES</u>

Blackburn, CE, Johns, GW, Ayer, J and DW Davis

1992 *Wabigoon Subprovince*, in "Geology of Ontario", Ont. Geol. Surv. Spec. Vol. 4, Pt. 1, ed. Thurston, P.C. et al.

Bottrill, T.

1999 Lithogeochemical Sampling Program for Synergy Explorations Ltd. Centrefire and PD

Block Properties, Patricia Mining Division, Ontario.

Galley, AG, Bailes, AH, Syme, EC, Bleeker, W, Macek JJ and TM Gordon
1990 Geology and Mineral Deposits of the Flin Flon and Thompson Belts, Manitoba
Geol. Surv. Can. Open File 2165, 8th IAGOD Symposium, Field Trip #10

Lichtblau, A.

1998 Geological Mapping and Lithogeochemical and MMI sampling Program for Synergy Explorations Ltd. Needle Lake, Centrefire Creek and PD Block Properties

Morton, RL, Hudak, GJ, Walker, JS and JM Franklin

1990 Physical Volcanology and hydrothermal Alteration of the Sturgeon Lake Caldera Complex, pp74-94, in "Mineral Deposits of the Western Superior Province, Ontario", ed. Franklin, J.M., et al. Geol. Surv. Can. Open File 2164, 8th IAGOD Symposium, Field Trip #9.

Page, RO and BJ Christie

1980 Lateral Lake Area (East & West Halves), District of Kenora Ont. Geol. Surv. Prelim. Maps P2371 & P2372, 1":1/4 mile

Turner, CC and RG Walker

1973 Sedimentology, Stratigraphy and Crustal Evolution of the Archean Greeenstone Belt near Sioux Lookout, Ontario, pp 817-845, Can. J. Earth Sci., v.10, no.6

APPENDIX 1:

PD BLOCK LITHOGEOCHEMICAL DATA

1

.

Clain	n Block Sample #	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	MnO	Cr ₂ O ₃	LOI	TOTAL
			A					an a			÷		a dud to see	100 a
PD	2497	56.11	11.44	12.07	6.99	9.14	1.59	0.16	0.6	0.05	0.2	<0.01	0.81	99.16
PD	2498	47.8	14.73	13.83	8.77	9.57	2.21	0.16	0.81	0.06	0.15	<0.01	1.24	99.33
PD	2499	47.72	24.4	6.48	4.13	10.54	3.12	0.53	0.39	0.04	0.1	< 0.01	1.51	98.96
PD	2500	47.94	12.46	13.45	8.34	12.06	1.9	0.15	0.71	0.07	0.22	0.02	1.43	98.75
PD	2501	50.55	15.55	11.44	4.51	10.61	1.99	0.21	0.96	0.08	0.22	<0.01	3.04	99.16
PD	2502	48.46	15.49	11.25	7.19	12.29	1.89	0.6	0.81	0.07	0.22	0.02	0.89	99.18
PD	2503	62.28	16.12	4.91	2.88	5.34	4.45	1.65	0.54	0.31	0.09	<0.01	0.91	99.48
PD	2504	46.43	14.92	13.36	2.87	14.46	<0.01	0.38	0.96	0.06	0.22	0.01	1.28	94.95
PD	2505	49.13	16.64	13.28	3.45	10.06	2.44	1.08	1.08	0.13	0.25	< 0.01	1.59	99.13
PD	2506	49.09	15.65	11.99	6.72	12.32	1.56	0.36	0.76	0.14	0.17	0.01	0.62	99.39
PD	2507	41.07	9.51	25.26	5.69	8.71	0.12	0.48	0.45	0.07	0.2	< 0.01	4.69	96.25
PD	2508	49.07	14.85	13.47	5.5	10.65	2.85	0.37	1.45	0.07	0.23	< 0.01	0.68	99.19
PD	2509	47.28	14.06	12.56	7.33	11.73	1.76	1.04	0.72	0.08	0.2	0.02	1.75	98.53
PD	2510	49.99	13.1	12.39	7.49	10.42	2.43	0.83	1.07	0.07	0.22	0.01	0.76	98.78
PD	2511	48.01	16.24	11.34	6.78	12.75	1.71	0.56	0.77	0.08	0.19	0.02	0.61	99.06
PD	2512	49.89	14.92	11.92	6.66	10.68	2.69	0.66	0.81	0.08	0.21	0.02	0.66	99.2
PD	2513	50.79	15.17	11.4	6.34	11.03	2.05	0.67	1.01	0.09	0.25	0.02	0.58	99.4
PD	2514	43.82	14.46	18.7	4.31	9.24	1.87	0.72	0.8	0.06	0.21	< 0.01	5.25	99.44
PD	BGS/8-99/013	53.97	13.51	12.42	4.64	9.82	1.75	0.58	0.73	0.06	0.24	< 0.01	1.29	99.01
PD	BGS/8-99/014	88.48	2.33	4.11	0.92	1.7	0.25	0.13	0.2	0.03	0.06	< 0.01	0.71	98.92

i

APPENDIX 1: PD BLOCK LITHOGEOCHEMICAL DATA

APPENDIX 1: PD Block Lithogeochemical Data

Claim Bloc	k Sample#	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd	Co	CO2	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo
		ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm.	ppm	%	ppm	%	ppm	ppm
a di la binanya funan Manazartan anatari Manazartan anatari						A De Principal																
PD	2497					41																
PD	2498					27																
PD	2499					234																
PD	2500					59																
PD	2501					104																
PD	2502					44																
PD	2503					348																
PD	2504					161																
PD	2505	i				162																
PD	2506					38																
PD	2507	ļ				47																
PD	2508					37																
PD	2509					100																
PD	2510					50																
PD	2511					50																
PD	2512					69																
PD	2513					46																
PD	2514					83																
PD	BGS/8-99/013	<0.2	1.32	<2	<10	110	<0.5	<2	0.21	<0.5	7		108	6	2.16	<10	<1	0.59	10	0.66	105	<1
PD	BGS/8-99/014	0.2	0.38	<2	<10	<10	< 0.5	8	0.41	< 0.5	4		274	353	2.12	<10	<1	0.06	<10	0.24	170	8

.....

i

Claim Block	Sample #	Na	Nb	Ni	P	Pb	Rb	S	Sb	Sc	Sr	Ti	Tl	U	V	W-	· Y ·	Zn	Zr
	C. C. C. C. C. C.	~%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
PD	2497		7				10		the first of the		71			1999		510 (1 . 1997)	17		42
PD	2498		5				12				94						18		48
PD	2499		5				23				141						11		32
PD	2500		5				10				89						14		50
PD	2501		7				11				121						16		57
PD	2502		5				32				89						18		49
PD	2503		11				100				809						16		160
PD	2504		6				26				124						19		51
PD	2505		6				38				157						20		62
PD	2506		4				21				118						17		43
PD	2507		3				34				33						11		31
PD	2508		8				14				89						27		94
PD	2509		4				81				92						16		45
PD	2510		5				59				92						21		60
PD	2511		4				31				106						18		46
PD	2512	ł	5				45				76						18		50
PD	2513	1	5				45				60						20		57
PD	2514		5				87				50						16		48
PD	BGS/8-99/013	0.08		22	580	8		0.4	2	2	29	0.06	<10	<10	22	<10		44	
PD	BGS/8-99/014	0.04		11	60	2		0.1	<2	3	3	0.07	<10	<10	26	30		14	

.

APPENDIX 1: PD Block Lithogeochemical Data

i

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

ANALYTICAL SOLUTIONS LTD.

1214 - 3266 YONGE ST. TORONTO, ON M4N 2L6

Page Numl 1 Total Pages :2 Certificate Date: 06-SEP-1999 Invoice No. : [9926703 P.O. Number PIE Account

Project : Comments: ATTN: LYNDA BLOOM FAX: ANDREAS LICHTBLAU

21 Site April /10 Contreprie / 18 PD

	31 Strike	Point /	10 6	nticfo	,e/	68	PD				CE	RTIF	CATE	OF	NAL	(SIS	A	99267	'03		
	SAMPLE	PREP CODE	A1203 % XRF	CaO % XRF	Cr2O3 % XRF	Fe2O3 % XRF	K20 % XRF	MgO % XRF	MnO % XRF	Na20 % XRF	P205 % XRF	SiO2 % XRF	TiO2 % XRF	LOI % XRF	TOTAL %	Ba ppm	Rb ppm	Sr ppm	Nb ppm	Zr ppm	Y ppm
	2481 2482 2483 2484 2485	208 226 208 226 208 226 208 226 208 226 208 226	9.01 13.95 12.18 13.16 16.95	13.52 5.18 9.50 8.80 3.88	< 0.01 < 0.01 0.02 0.01 < 0.01	11.73 10.38 9.78 12.19 4.09	0.21 1.37 0.46 0.71 1.59	5.88 2.86 8.44 6.45 2.02	0.37 0.17 0.16 0.17 0.06	0.12 0.46 1.26 1.41 4.32	0.08 0.09 0.06 0.07 0.12	54.29 61.00 46.30 45.71 63.48	0.31 0.57 0.57 0.81 0.46	3.52 2.63 9.88 9.27 2.34	99.04 98.66 98.61 98.76 99.31	70 217 48 116 370	12 53 17 22 35	43 71 70 102 207	5 7 5 7 9	68 67 39 57 151	15 19 15 14 17
- hefe''	2486 2488 2489 2490 2491	208 226 208 226 208 226 208 226 208 226 208 226 208 226	15.86 14.54 15.40 14.92 14.81	1.82 1.26 1.51 1.95 2.83	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	5.83 2.03 1.83 2.11 3.09	0.81 2.25 3.20 3.23 1.42	3.98 0.84 1.16 1.32 1.54	0.09 0.04 0.04 0.06 0.04	4.71 5.27 4.37 3.78 5.12	0.13 0.08 0.07 0.09 0.16	62.46 71.12 69.94 69.64 67.98	0.63 0.23 0.23 0.24 0.35	2.37 1.27 1.47 1.71 1.89	98.69 98.93 99.22 99.05 99.23	111 1075 1600 1250 596	20 72 88 93 33	104 467 289 228 569	10 8 8 8 7	127 168 161 169 123	15 15 15 12 8
- inu¥	2492 2493 2494 2495 2496	208 226 208 226 208 226 208 226 208 226 208 226	15.73 10.83 3.90 14.74 15.76	2.95 5.86 1.92 3.39 2.60	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	2.99 16.66 48.22 3.71 3.44	3.35 2.63 0.09 2.91 4.43	1.55 3.80 1.43 1.72 1.60	0.04 0.38 0.10 0.07 0.06	2.74 0.24 0.14 3.49 2.64	0.17 0.10 0.04 0.12 0.29	66.25 50.90 19.34 65.12 65.98	0.39 0.33 0.20 0.49 0.43	3.32 7.11 23.06 3.60 2.19	99.48 98.84 98.44 99.36 99.42	627 241 22 460 1050	72 70 22 82 96	357 216 < 2 379 218	6 8 7 8	131 84 42 107 160	12 11 4 14 19
Lookourt	2497 2498 2499 2500 2501	208 226 208 226 208 226 208 226 208 226 208 226 208 226	11.44 14.73 24.40 12.46 15.55	9.14 9.57 10.54 12.06 10.61	< 0.01 < 0.01 < 0.01 0.02 < 0.01	12.07 13.83 6.48 13.45 11.44	0.16 0.16 0.53 0.15 0.21	6.99 8.77 4.13 8.34 4.51	0.20 0.15 0.10 0.22 0.22	1.59 2.21 3.12 1.90 1.99	0.05 0.06 0.04 0.07 0.08	56.11 47.80 47.72 47.94 50.55	0.60 0.81 0.39 0.71 0.96	0.81 1.24 1.51 1.43 3.04	99.16 99.33 98.96 98.75 99.16	41 27 234 59 104	10 12 23 10 11	71 94 141 89 121	7 5 5 5 7	42 48 32 50 57	17 18 11 14 16
	2502 2503 2504 2505 2506	208 226 208 226 208 226 208 226 208 226 208 226 208 226	15.49 16.12 14.92 16.64 15.65	12.29 5.34 14.46 10.06 12.32	0.02 < 0.01 0.01 < 0.01 0.01	11.25 4.91 13.36 13.28 11.99	0.60 1.65 0.38 1.08 0.36	7.19 2.88 2.87 3.45 6.72	0.22 0.09 0.22 0.25 0.17	1.89 4.45 < 0.01 2.44 1.56	0.07 0.31 0.06 0.09 0.06	48.46 62.28 46.43 49.13 49.09	0.81 0.54 0.96 1.08 0.76	0.89 0.91 1.28 1.59 0.62	99.18 99.48 94.95 99.09 99.31	44 348 161 162 38	32 100 26 38 21	89 809 124 157 118	5 11 6 6 4	49 160 51 62 43	18 16 19 20 17
	2507 2508 2509 2510 2511	208 226 208 226 208 226 208 226 208 226 208 226	9.51 14.85 14.06 13.10 16.24	8.71 10.65 11.73 10.42 12.75	< 0.01 < 0.01 0.02 0.01 0.02	25.26 13.47 12.56 12.39 11.34	0.48 0.37 1.04 0.83 0.56	5.69 5.50 7.33 7.49 6.78	0.20 0.23 0.20 0.22 0.19	0.12 2.85 1.76 2.43 1.71	0.13 0.14 0.07 0.07 0.08	41.07 49.07 47.28 49.99 48.01	0.45 1.45 0.72 1.07 0.77	4.69 0.68 1.75 0.76 0.61	96.31 99.26 98.52 98.78 99.06	47 37 100 50 50	34 14 81 59 31	33 89 92 92 106	3 8 4 5 4	31 94 45 60 46	11 27 16 21 18
	2512 2513 2514 2981 2982	208 226 208 226 208 226 208 226 208 226 208 226 208 226	14.92 15.17 14.46 15.81 13.78	10.68 11.03 9.24 3.57 2.48	0.02 0.02 < 0.01 < 0.01 < 0.01	11.92 11.40 18.70 4.55 2.26	0.66 0.67 0.72 2.05 1.45	6.66 6.34 4.31 2.01 1.07	0.21 0.25 0.21 0.06 0.05	2.69 2.05 1.87 4.02 4.41	0.08 0.09 0.06 0.22 0.14	49.89 50.79 43.82 63.69 70.82	0.81 1.01 0.80 0.57 0.39	0.66 0.58 5.25 2.02 1.86	99.20 99.40 99.44 98.57 98.71	69 46 83 935 645	45 45 87 73 55	76 60 50 711 544	5 5 6 7	50 57 48 132 122	18 20 16 14 12
1	2983 2984 2985 2986 2987	208 226 208 226 208 226 208 226 208 226 208 226	13.75 16.42 12.68 11.09 8.99	2.52 3.20 8.18 4.95 14.09	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	2.13 4.99 3.66 4.45 8.29	1.40 2.66 1.73 1.96 1.19	0.99 2.05 1.63 2.05 6.34	0.05 0.05 0.09 0.10 0.30	4.47 3.50 2.74 2.33 2.19	0.12 0.23 0.19 0.21 0.19	70.85 63.65 61.47 67.59 38.21	0.36 0.61 0.38 0.45 0.37	1.99 1.51 5.93 4.00 19.05	98.63 98.87 98.68 99.18 99.21	614 1150 949 725 440	53 109 69 70 39	564 792 864 616 917	8 9 7 7 6	119 135 101 99 95	12 15 12 13 17

CERTIFICATION:_

· Naid

L

C. S.I.Y A

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: ANALYTICAL SOLUTIONS LTD.

1214 - 3266 YONGE ST. TORONTO, ON M4N 2L6

Page Number :2 Total Pages :2 Certificate Date: 06-SEP-199 Invoice No. :19926703 P.O. Number : PIE Account

Project : Comments: ATTN: LYNDA BLOOM FAX: ANDREAS LICHTBLAU

											CE	RTIF	ICATE	EOF	ANAL	rsis	<i>H</i>	19926	703		
SAMPLE	PRE COD	P E	A1203 % XRF	CaO % XRF	Cr2O3 % XRF	Fe2O3 % XRF	K20 % XRF	Mg0 % XRF	MnO % XRF	Na20 % XRF	P205 % XRF	SiO2 % XRF	TiO2 % XRF	LOI % XRF	TOTAL %	Ba ppm	Rb ppm	Sr ppm	ND ppm	Zr ppm	Y ppm
2988 2989 2991 2992 2993	208 208 208 208 208 208	226 226 226 226 226 226	14.48 15.50 15.13 14.25 15.81	4.45 5.36 3.90 9.91 6.91	< 0.01 < 0.01 0.01 0.01 < 0.01	17.00 14.19 7.47 14.49 4.51	0.52 0.87 0.63 0.28 0.37	2.88 3.50 4.01 6.24 2.19	0.24 0.17 0.11 0.21 0.10	1.65 2.54 3.43 2.19 3.45	0.09 0.11 0.12 0.15 0.12	52.68 50.51 60.59 47.74 62.73	0.93 1.49 0.61 1.36 0.54	4.65 4.98 3.06 2.40 2.53	99.57 99.22 99.07 99.23 99.26	136 312 102 46 83	26 37 20 10 15	142 108 168 83 188	6 8 10 7 6	71 87 134 76 129	15 22 16 29 16
2994 2995 2996 2997 2998	208 208 208 208 208 208	226 226 226 226 226 226	14.69 14.42 12.52 10.68 9.34	9.65 10.66 10.39 1.74 0.78	0.02 0.03 < 0.01 < 0.01 < 0.01	11.99 11.76 10.37 2.29 9.99	0.22 0.16 0.35 1.43 1.13	7.65 7.95 6.97 0.46 3.08	0.21 0.19 0.16 0.04 0.34	1.87 1.51 1.63 2.62 0.78	0.10 0.08 0.09 0.09 0.16	49.37 49.17 44.26 77.36 68.74	0.93 0.88 0.75 0.22 0.48	2.41 2.36 11.78 1.41 4.37	99.11 99.17 99.27 98.34 99.19	34 56 19 252 175	9 12 9 46 28	99 103 55 77 18	6 7 6 10 9	64 58 53 151 105	20 18 19 15 12
2999 3000 3001 3002 3003	208 208 208 208 208 208	226 226 226 226 226 226	15.18 13.40 14.11 13.33 14.31	2.00 1.74 10.97 1.73 10.08	< 0.01 < 0.01 0.01 < 0.01 < 0.01	8.01 1.08 11.85 1.69 13.37	0.98 0.87 0.29 0.94 0.20	3.69 0.49 7.42 0.21 7.14	0.21 0.02 0.19 0.02 0.21	4.02 5.22 1.82 4.90 1.89	0.13 0.02 0.09 0.04 0.09	61.59 75.55 49.95 75.50 48.24	0.59 0.08 0.86 0.12 0.98	2.89 0.63 1.47 0.60 2.75	99.29 99.10 99.03 99.08 99.26	153 174 55 207 25	31 21 8 20 10	144 61 86 111 103	7 7 6 12 7	138 113 57 145 64	13 13 19 20 20
3004 3005 3006 3007	208 208 208 208	226 226 226 226	14.75 14.93 15.32 15.39	1.92 4.41 5.17 3.64	< 0.01 < 0.01 < 0.01 < 0.01	6.80 5.47 6.16 4.10	0.95 0.98 0.92 0.96	3.84 3.03 3.25 1.80	0.10 0.15 0.14 0.06	3.28 2.91 3.12 4.43	0.14 0.12 0.14 0.15	63.71 64.30 61.81 66.81	0.55 0.55 0.57 0.48	2.46 2.46 2.43 1.45	98.50 99.31 99.03 99.27	256 199 296 157	27 31 27 25	82 174 162 216	8 11 11 10	133 143 139 131	14 18 16 15
																		(4	

÷

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers Mississauga L4W 2S3

5175 Timberlea Blvd., Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163 a): ANALYTICAL SOLUTIONS LTD.

1214 - 3266 YONGE ST. TORONTO, ON M4N 2L6

Page Nu. Jar :1 Total Pages :1 Certificate Date: 31-AUG-1999 Invoice No. : 19926737 P.O. Number : PIE Account

Project :

Comments: ATTN: LYNDA BLOOM FAX: ANDREAS LICHTBLAU

*

CERTIFICATE OF ANALYSIS A9926737 PREP Cu Zn SAMPLE CODE ppm ppm 2494 299 238 1155 4170 2502 299 238 57 25 2503 299 238 922 34 2504 299 238 >10000 90 2507 299 238 >10000 127 2514 299 238 683 30 299 238 2998 77 186 3002 299 238 22 12 3004 299 238 135 107

FIAD

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

Mississauga L4W 2S3 5175 Timberlea Blvd. Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163

: ANALYTICAL SOLUTIONS LTD.

1214 - 3266 YONGE ST. TORONTO, ON M4N 2L6

Page Nu r : 1 Total Pages : 1 Certificate Date: 01-SEP-1999 Invoice No. 19927521 P.O. Number Account PIE

Project :

Comments: ATTN: LYNDA BLOOM FAX: ANDREAS LICHTBLAU

CERTIFICATION:

*

CERTIFICATE OF ANALYSIS A9927521 PREP Cu SAMPLE CODE % 2504 212 --2.62 2507 212 --3.15

÷

SAMPLE

i

70

PREP

CODE

A1203

% XRF

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers

Mississauga L4W 2S3 5175 Timberlea Blvd., Ontario, Canada PHONE: 905-624-2806 FAX: 905-624-6163

CaO

% XRF

Cr203

% XRF

ANALYTICAL SOLUTIONS LTD.

1214 - 3266 YONGE ST. TORONTO, ON M4N 2L6

Page Numt Total Pages 1 :1 Certificate Date: 20-SEP-1999 Invoice No. :19927928 P.O. Number ٠ PIE Account

Project : CENTREFIRE CCK-03 Comments: ATTN: LYNDA BLOOM

CC: TERRY BOTTRIU

CERTIFICATE OF ANALYSIS A9927928 Fe203 K20 MgO MnO Na20 P205 sio2 TiO2 LOI TOTAL % XRF % XRF % XRF % XRF X XRF * XRF % XRF % XRF % XRF *

BGS/8-99/001 BGS/8-99/002 BGS/8-99/003 BGS/8-99/004 BGS/8-99/005	205 226 205 226 205 226 205 226 205 226 205 226	14.95 13.86 17.01 14.99 16.78	6.00 3.50 3.58 2.11 1.97	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	4.35 7.22 3.44 2.04 1.79	2.40 1.78 2.37 2.83 3.34	2.41 3.25 1.32 0.83 1.29	0.11 0.11 0.07 0.06 0.03	3.13 2.66 3.44 3.25 3.33	0.19 0.13 0.22 0.08 0.16	60.36 64.92 65.46 70.74 67.37	0.43 0.66 0.51 0.31 0.43	4.27 1.34 1.44 1.58 2.14	98.60 99.43 98.86 98.82 98.63	
BGS/8-99/006 BGS/8-99/007 BGS/8-99/008 BGS/8-99/009 BGS/8-99/009	205 226 205 226 205 226 205 226 205 226 205 226	15.67 15.19 17.45 16.30 15.39	2.55 2.54 1.33 1.65 2.86	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	2.39 2.88 2.81 2.76 3.50	2.06 1.78 2.09 2.52 2.35	1.52 1.35 1.19 0.96 1.67	0.06 0.04 0.02 0.03 0.05	4.93 4.51 4.49 4.59 4.27	0.17 0.14 0.11 0.15 0.15	66.60 68.65 66.92 68.07 66.71	0.41 0.35 0.41 0.38 0.42	2.76 1.80 1.72 1.68 2.05	99.12 99.23 98.54 99.09 99.42	
BGS/8-99/011 BGS/8-99/012 BGS/8-99/013 BGS/8-99/014	205 226 205 226 205 226 205 226	14.62 13.51 15.28 2.33	2.26 9.82 1.65 1.70	< 0.01 < 0.01 < 0.01 < 0.01	3.31 12.42 3.55 4.11	2.18 0.58 1.90 0.13	1.29 4.64 1.21 0.92	0.05 0.24 0.02 0.06	3.99 1.75 4.13 0.25	0.13 0.06 0.17 0.03	68.78 53.97 69.46 88.48	0.36 0.73 0.35 0.20	1.75 1.29 1.71 0.71	98.72 99.01 99.43 98.92	

APPENDIX 2:

MMI SAMPLING DATA

SYNERGY EXPLORATIONS LTD.

PD BLOCK PROPERTY

MMI SAMPLING

	Sample #	Northing	Easting	sting Description						
	3283	1000	0	Spruce forest, thin spaghnum, brown sand						
	3284	1050	0	Spruce & poplar, thin spaghnum, brown sand						
	3285	1100	-0-	Spruce & poplar, thin spaghnum, brown & gray sand						
	3286	1150	0	Spruce & poplar, thin spaghnum, brown & gray sand						
	3287	1200	0	Spruce & poplar, thin spaghnum, gray sand						
	3288	1250	0	Spruce & poplar, thin spaghnum, brown & gray sand						
	3289	1300	- 0	Spruce & poplar, thin spaghnum, brown sand						
	NS	1350	0	Shallow Rock						
	3290	1000	100	Spruce, thin spaghnum, brown sand						
	3291	1050	100	Spruce, thin spaghnum, brown sand						
	3292	1100	100	Spruce & poplar, thin spaghnum, brown & gray sand						
	3293	1150	100	Spruce & poplar, thin cover, gray sand						
	3294	1200	100	Spruce, thin cover, brown sand						
	3295	1250	100	Spruce, thin spaghnum, brown sand						
	NS	1300	100	Outcrop						
	NS	1350	100	Spruce bog						
	NS	1350	200	Spruce bog						
	3296	1300	200	Spruce, medium spaghnum, brown sand						
	NS	1250	200	Outcrop						
L	3297	1200	200	Spruce, thin cover, brown sand						
. <u> </u>	3298	1150	200	Spruce, thin cover, brown sand						
	3299	1100	200	Spruce, thin cover, brown sand						
	NS	1050	200	Outcrop						
0110	3300	1000	200	Spruce & poplar, thin cover, brown sand						
DUP	3301	1000	200	Spruce & poplar, thin cover, brown sand						
	3302	975	300	Spruce, thin spagnnum, brown sand						
	3303	950	300	Spruce, thin spagnnum, brown sand						
	3304	900	300	Spruce, thin spagnhum, brown sand						
	3305	800	300	Spruce, thin spaghnum, brown sand						
	3300	1000	300	Spruce, thin spagninum, brown sand						
· · · · ·	3308	1050	300	Spruce, thin cover, brown sand						
	3300	1100	300	Spruce, thin spaghnum, brown sand						
	NS	1150	300	Outeron						
	NS	1200	300	Outcrop						
	NS	1250	300	Outcrop						
	NS	1300	300							
	NS	1350	400	Outcrop						
	NS	1300	400	Deep Spachnum, shallow rock						
	NS	1250	400							
	3310	1200	400	Spruce thin cover brown sand						
	3311	1150	400	Soruce near outcrop brown sand						
	3312	1100	400	Spruce & poplar, thin cover, loose rocks, brown sand						
	3313	1050	400	Spruce & poplar, thin cover, brown sand						
	NS	1000	400	Roadway						
ŀ	NS	1000	500	Roadway						
·········	3314	1050	500	Spruce, medium spaghnum, brown sand						
	3315	1100	500	Spruce, deep spaghnum, gray sand						

7

.....

.

PD BLOCK PROPERTY

MMI SAMPLING

	Sample #	Northing	Easting	Description
	3316	1150	500	Spruce, medium spaghnum, brown & gray sand
	3317	1200	500	Spruce & alder, medium spaghnum, gray sand
	NS	1250	500	Medium spaghnum, outcrop
	NS	1300	500	Outcrop
	NS	1350	500	Outcrop
	NS	1350	600	Bog
	3318	1300	600	Spruce, thin spaghnum, brown & gray sand
	NS	1250	600	Spruce bog
	NS	1200	600	Spruce bog
	3319	1150	600	Spruce & poplar, thin cover, brown sand
	3320	1100	600	Spruce & poplar, thin cover, brown sand
	3321	1050	600	Spruce, near old road, med. spaghnum, gray sand
	NS	1000	600	Roadway
	3322	950	600	Spruce, thin spaghnum, brown sand
	3323	900	600	Spruce, thin spaghnum, brown sand
	3324	850	600	Spruce, thin spaghnum, brown sand
	3325	800	600	Spruce, thin spaghnum, brown sand
DUP	3326	800	600	Spruce, thin spaghnum, brown sand
	NS	750	600	Outcrop just below surface
	3327	1050	700	Spruce, medium spaghnum, brown sand
	3328	1100	700	Spruce, medium spaghnum, brown & gray sand
L	3329	1150	700	Spruce, thin spaghnum, gray sand
	3330	1200	700	Spruce, grasses, black sandy soil
	NS	1250	700	Grassy spruce bog
	995	1300	700	Old roadway, spruce & firs, no cover, brown sand
	996	1350	700	Spruce & poplar, thin cover, brown sand
	3331	1050	800	Spruce & poplar, thin spaghnum, brown sand
	3332	1100	800	Spruce & poplar, thin cover, brown sand
	NS	1150	800	Spruce bog
	NS	1200	800	Spruce bog
<u> </u>	3333	1250	800	Spruce, thin spaghnum, brown sand
	3334	1300	800	Spruce & alder, medium spaghnum, brown & gray sand
	3335	1300	900	Spruce & poplar, thin cover, brown sand
	NS	1250	900	Outcrop just below surface
	3336	1200	-900	Spruce & alder bog, medium spaghnum, gray sand
	3337	1150	900	Spruce, thin cover, brown sand
	3338	1100	900	Spruce & poplar, thin spaghnum, brown sand
	3339	1050	900	Spruce & poplar, thin spaghnum, brown sand
	3340	1000	_900	Spruce, thin spaghnum, brown sand
DUP	3341	1000	900	Spruce, thin spaghnum, brown sand
	TOTAL 61			

.....

APPENDIX 3:

GPS DATA FILE

. . .

Feature Name	Comment 1	Comment 2	GPS File #	GRID E	GRID N	UTM EAST	UTM NORTH	
PD PROPER	TY							
GPS FILE DATA	N .			FIELD DATA &	DESCRIPTIO	NS		
]			CORRECTE	D GPS	
Feature Name	Comment 1	Comment 2	GPS File #	GRID E	GRID N	UTM EAST	UTM NORTH	
LITHOGEOCHE	MICAL SAMPL	ES						
SampleS	2497		A082814a.cor			540920	5541129	
SampleS	2498		A082814a.cor	-	-	540940	5541097	
SampleS	2499	ļ	A082814a.cor	-		540956	5540889	
SampleS	2500		A082814a.cor	-	-	540959	5540855	
	2501			-		540973	5540676	
-	700	1390		700	1390	540620	5541923	
-		1		-	-	540342	5541779	
-				-	-	540342	5541779	
SampleS	2505	JIM'S	A082814a.cor	-		540342	5541779	
SampleS	2507.2506		A082713a.cor	-	-	540311	5541683	
-	2506			-	-	540311	5541683	
SampleS	2508 .2509		A082713a.cor	300	1250	540260	5541693	
	2509		-	300	1250	540260	5541693	_
SampleS	2510		A082713a.cor	275	1325	540222	5541760	
SampleS	2511		A082713a.cor	220	1400	540148	5541820	
-	100	1300		100	1300	540065	5541684	
SampleS	2513	 +	A082713a.cor	0	1364	539924	5541710	{
-				0	1364	539924	5541710	
CLAIM INFORM	ATION							
Point Feature		CL.HYDRO	A082713a.cor		-	539860	5541700	
Point Feature		CL.RD	A082814a.cor			540998	5541598	
Point Feature		CL.RD	A082814a.cor	-	-	540982	5540807	
Line Feature ave	rage	CL.RD	A082713a.cor	-	-	539876	5541611	
Line Post	1216292		A082515a.cor	-	-	534513	5533997	
Line Post	1216292		A082515a.cor	-	-	533935	5534495	_
Line Post	1216292		A082616a.cor	-	-	534572	5535691	_
Line Post	1161503		A082616a.cor	-	-	534384	5535658	
Line Post	1216292		A082616a.cor	-	-	534211	5535670	
Line Post	1216292		A082616a.cor	-		533856	5535258	
Line Post	1076866		A082814a.cor			540657	5541912	
CL Post	1216293	2	A082814a.cor	-	-	540973	5540676	
GRID LINES	1							
				-				
Grid Pt	0	1000	A082713a.cor	0	1000	540060	5541361	
Grid Pt	200	1349	A082713a.cor	200	1349	540144	5541762	
Grid Pt	300	1347	A082713a.cor	300	1347	540237	5541/90	
Grid Pt	300	985	A082713a.cor	300	985	540359	5541448	
Grid Pt	340	1000	A082814a.cor	340	1000	540389	5541478	
Grid Pt	400	1000	A082814a.cor	-	-	540446	5541487	

10 11-1

Feature Name	Comment 1	Comment 2	GPS File #	GRID E	GRID N	UTM EAST	UTM NORTH
Grid Pt	400	1345	A082814a.cor	400	1345	540337	5541822
Grid Pt	500	1343	A082814a.cor	500	1343	540441	5541855
Grid Pt	600	1350	A082814a.cor	600	1350	540527	5541876
Grid Pt	700	1390	A082814a.cor	700	1390	540620	5541923
Grid Pt	800	1325	A082814a.cor	-800	1325	540748	5541877
Grid Pt	900	1250	A082814a.cor	900	1250	540846	5541852
Grid Pt	300	BL10	A082820a.cor	300	1000	540350	- 55414 62
Grid Pt	350	BL10	A082820a.cor	350	1000	540396	5541473
Grid Pt	400	BL10	A082820a.cor	400	1000	540446	554149 5
Grid Pt	500	BL10	A082821a.cor	500	1000	540539	5541518
Grid Pt	600	BL10	A082821a.cor	600	1000	540639	5541546
Grid Pt	700	BL10	A082821a.cor	700	1000	540738	5541550
Grid Pt	800	BL10	A082821a.cor	800	1000	540840	5541569
Grid Pt	900	BL10	A082821a.cor	900	1000	540928	5541623
Grid Pt	400	850	A082914a.cor	400	850	542642	5538882
Grid Pt	100	1300	A082713a.cor	100	1300	540065	5541684
TOPOGRAPHY	MISCELLANE	ous					
Point Feature		PIT	A082713a.cor	-	-	540324	5541652
Point Feature		TP.LINE	A082914a.cor	-	-	542173	5539463
Grid Pt			A082820a.cor	-	-	540537	5541515
SampleS	SRL.#2		A082814a.cor	376	1075	540408	5541552

Y	Ontario	Ministry of Northern Developme and Mines

Declaration of Assessment Work Performed on Mining Land

Transaction Number (office use)
1)9930 00100
Assessment Files Research Imaging
•••

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

52K01SW2002	2.19906	MCILRAITH	

52K01SW2002 2.19906

psection 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, this esment work and correspond with the mining land holder. Questions about this n Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario,

Telephone Number

Fax Number

Instructions: - For work performed on Crown Lands before recording a claim - Please type or print in ink.	, use form 0240.
1. Recorded holder(s) (Attach a list if necessary)	
Name Stoarton Resources Limited	Client Number 301184
Address 175 Shanley Terrace	Telephone Number 905 - 845 - 3650
Oakville, ON L6K 2H6	Fax Number 905 - 844-4107
Name	Client Number

900

Address

١, .

Type of work performed: Check () and report on only ONE of the following groups for this declaration. 2.

ľ	Geotechnical: prospecting, s assays and work under section	urveys, on 18 (regs)	Physic trenchi	al: drilling strippin	ig, d assays	Rehabilitation
Work	Туре				······	Office Use
	mapping, prospecting, linecu	thing, assorying	TC(ommodity	· · · · · · · · · · · · · · · · · · ·	
				Tc W	otal \$ Value of	827.2
Dates V Perform	Work From 23 08 0 med Bay Month +	48 To 31 14 3 14 0		98 99 Year	TS Reference	
Global	Positioning System Data (if available)	Township/Area MC	Ilraith	М	ining Division	Patrician
		M or G-Plan Number	- 2.882	Re Di	esident Geologi strict	st Jour Lettart

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

- provide proper notice to surface rights holders before starting work;

- complete and attach a Statement of Costs, form 0212;

- provide a map showing contiguous mining lands that are linked for assigning work;

- include two-copies of your technical report.

Person or companies who prepared the technical report (Attach a list if necessary) 3.

Name	Lynda Bloom	Telephone Number 416 - 462 - 9124
Address	1214 - 3266 Yonge St., Toronto, ON M4N 216	Fax Number 416 - 462 - 1637
Name		Telephone Number
Address		Fax Number
Name	The state of an una beau.	Telephone Number and on the talenthan approximation
Address		Fax Number

Certification by Recorded Holder or Agent 4,

LYNDA BLOOM (P.GED) (Print Name) _____, do hereby certify that I have personal knowledge of the facts set forth in

this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holdes or Agent Soon, nender Amergy Exclorations Ltd.	Date Dec. 13/99
Agent's Address Suite 890, 151 Bloor St. W. Jonanto, ON M55 ISY 416-927-7000	Fax Number 416 - 927-1222
0241 (03/97)	RECEIVED
Deemer Hareh 13 2000	DEC 14 1999
	GEOSCIENCE ASSESSMENT OFFICE

Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining 5. land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form. 1000

					<u>u 1991</u> X	1. 66700
Vinin vork v minin olum indica	g Claim Number. Or if vas done on other eligible g land, show in this n the location number ted on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	-Value of work assigned to other mining claims.	Bank. Value of wo to be distributed at a future date
eg 🛛	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
g	1234567	12	0	\$24,000	0	0
g	1234568	2	\$ 8,892	\$ 4,000	0	\$4,892
	PA 1216293	9	\$ 8272.20	\$ 3600	O	\$4672.20
2						
3						
ŀ						
5						
3					······································	
7						
3	······					
•						
10	······································					
11						
12						
13						
14			-			
15						
	Column Totals		8272.20	\$3600		\$4672.20

н, under _, do hereby certify that the above work credits are eligible

(Print Full Name) subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim

where the work was done.

_									_
1	Signati	re of	Rea	orded Holder or Agent Authorized in Writing	Date	N	1		
	\sim		- K			1) 12	lan	2	
_		1		Loom		00. 0	177		_
			~~				1		_

6. Instruction for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (✓) in the boxes below to show how you wish to prioritize the deletion of credits:

I. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

2. Credits are to be cut back starting with the claims listed last, working backwards; or

3. Credits are to be cut back equally over all claims listed in this declaration; or

4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe) to studion correction. A the second second

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

Deemed Approved Date	Date Notification Sent
Date Approved	Total Value of Credit Approved
Approved for Recording by Minin	ng Recorder (Signature)
Γ	RECEIVED
-	Deemed Approved Date Date Approved Approved for Recording by Minir

DE: GEOSCIENCE ASSESSMENT OFFICE

Statement of Costs for Assessment Credit Transaction Number (office use) 19930 00/00

10

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Work Type	Units of work Depending on the type of work, list the number of hours/day worked, metres of drilling, kilometres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
Geological Mapping & Report	8 Lays	\$375.84 / day	3006.74
Linecotting	3.92 Km	\$ 86.10 / Km	\$337.50
Geochemical Sampling	2.5 days	\$ 2.5 days	\$ 450.00
Assavina	10 Samples	47.18/sample	\$ 943.59
Prospecting	2 days	\$225.00/ day	\$450.00
Associated Costs (e.g. sup Field Supplies Maps & Reports	oplies, mobilization and demobilization).		\$ 340.54 \$ 24.53
Trar	isportation Costs		1939.19
Food	and Lodging Costs		780.11
			\$ 8277 20

Total Value of Assessment Work

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.

2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK	x 0 50 =	Total \$ value of worked claimed	

Note:

Work older than 5 years is not eligible for credit.

A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a _ request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

I, LYNDA	BLOOM	, do here	by certify, that the amounts show	n are as accurate as may reasonabl	ly
(ple	ase print full name)				
be determined a	and the costs we	are incurred while cor	nducting assessment work on the	lands indicated on the accompanyir	ng
Declaration of \	Nork form as	(recorded holder, agent, or str	ate company position with signing authority)	I am authorized to make this certific	cation.
0212 (03/97)			Signature	Date Dec. 13/99	

0212 (03/97)

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

March 3, 2000

STUARTON RESOURCES LTD. 178 SHANLEY TERRACE OAKVILLE, ON L6K-2H6

Subject: Transaction Number(s):

🐨 Ontario

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mismnpge.htm

Dear Sir or Madam:

Submission Number: 2.19906

Status W9930.00100 Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact LUCILLE JEROME by e-mail at lucille.jerome@ndm.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

- the

ORIGINAL SIGNED BY Blair Kite Supervisor, Geoscience Assessment Office Mining Lands Section

Work Report Assessment Results

Submission Num	iber: 2.19906				
Date Correspond	ence Sent: March (03, 2000	Assessor:LUCIL	LE JEROME	
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	
W9930.00100	1216293	MCILRAITH	Approval	March 03, 2000	
Section: 12 Geological GEO	OL				
Correspondence	to:		Recorded Hold	er(s) and/or Agent(s):	
Resident Geologis	ŧ		Lynda Bloom		
Sioux Lookout, ON	٩		TORONTO, ON	CAN	
Assessment Files	Library		STUARTON RE	SOURCES LTD.	
Sudbury, ON			OAKVILLE, ON		

5544000 N				•	· · ·	·	
• • •						•	
	: .					• •	
-	· · · · · · · · · · · · · · · · · · ·						
		•				• · ·	
			-				
5543500 N	• • • • • • • • • • • • • • • • • • • •			···· ·· <u>-</u> ·- <u>-</u>			····
· ,	:						
	÷.						
			·				
5543000 N		······································		-		- · · · · · · · · · · · · · · · · ·	
	i	ł					
	· · ·						
-			1				
		,					
5542500 N		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
						:	
	, , , ,					-	
•	: :						
	2 					•	
5542000 N			-				· · · · · · · · · · · · · · · · · · ·
•		4	•			•	
						• •	ç
		:					
	;						
5541500 N		······	<u></u>			1 <u>-</u>	
							, ; ; ;
			\$				1
- 		·	•			: • •	
			- -				
5541000 N		· · · · ·					<u> </u>
x -		· .					
			a			•	1
• • ••.3				•	-		1 7
-							3
			:			:	
5540500 N	·····						
-			1			·	
	· ·					-	
			4			· · · · · · · · · · · · · · · · · · ·	
5540000 N	· · · · · · · · · · · · · · · · · · ·	· · · ·					
5385(00 E		539000 E			539500 E	•
as de la signa de la signa En la signa de l En la signa de			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	

·····

S ____ 4 < 30 X -----. - _____ . ----------

-

-

•

-

-1 --• • . . . e Z ş i ÷ .

•

· · · · · · ·

-

•

Adjoins Centrefire Sheet

and a second second

.

• •

542000 E

•

.

-

•

.

542500 E

.

and the second second

	LEGEND .	
	Diabase	
	Sediments	
	Tuff	
	Breccia	
· ·	Felsic Intrusive	
	Intermediate Intrusive	
	Mafic Intrusive	
	Felsic Volcanics	
	Intermediate Volcanics	
	Mafic Volcanics	
	•	
m	Fault	
	Strike and dip of bedding	
55 55	Strike and dip of foliation	
30	Plunge of Fold Axis or Mineral Lineation	
XX	Mag Axis	
••-•	EM Conductor	
	Airborne Conductors	
	Diamond Drill Hole	
	Claim Post and Boundary (GPS)	
	non-GPS	
▲ ⓒ	Sample Location (non GPS; GPS)	
	Outcrop Location	
		•
	Swamp	
	Lake	12
	Political Boundary	
	Road/Trail	

HIGHWAY/Koad-all weather

SYNERGY EXPLORA	TIONS LIMITED
PD BLOCK	SCALE 1:5000
McILRAITH & LOMOND TOWNSHIPS	UTM ZONE 15 NAD 83
by: Andreas Lichtblau	DATE Nov 198