

~1

PROJECTS BECTION

010

AIRBORNE ELECTROMAGNETIC SURVEY

COPPER-LODE MINES LTD

BELANGER TWP. AREA, ONTARIO

FILE NO: 14023

INTRODUCTION

This report contains our interpretation of the results of an <u>airborne electromagnetic survey</u> flown in the Belanger Twp. Area, Ontario on <u>August 10 and 11, 1972</u>. A brief description of the survey procedure together with recommendations for ground follow-up is included.

- 1 -

The survey totalled 450 line miles and within the claim blocks, the line mileage has been calculated to be 90 miles. The survey was performed by <u>Questor Surveys</u> Limited and the survey <u>aircraft</u> was a Skyvan CF-QSL. The <u>operating base was</u> Red Lake, Ontario.

The area outline is shown on a map at the end of this report.

MAP COMPILATION

The base maps are uncontrolled mosaics constructed from Ontario Department of Lands and Forests 1" = 1/4 mile photographs. The mosaics were reproduced at a scale of 1" = 1320feet on stable transparent film from which white prints can be made.

Flight path recovery was accomplished by comparison of the prints of the 35mm film with the mosaic in order to locate the fiducial points. These points are approximately one mile apart.

SURVEY PROCEDURE

Terrain clearance was maintained as close to <u>400 feet</u> as possible, with the <u>E. M. Bird at approximately 150 feet</u> above the ground. A normal S-pattern flight path using approximately one mile turns was used. The equipment operator logged the flight details and monitored the instruments.

- 2 -

A line spacing 1000 feet was used.

INTERPRETATION AND RECOMMENDATIONS

Two conductors were intercepted as a result of the INPUT survey. One anomaly, located in the north-west corner of the claim block, displays a good E. M. response and its apparent conductivity-width has been estimated to be 15 mhos. There is also good direct magnetic correlation, in the order of 720 gammas. The geology has been indicated to be amphibolite biotite gneiss.

The second conductor, which is located in the southern part of Fredart Lake, displays a very poor E.M. response. The anomalies also correlate with a magnetic low. The probable cause of the conductor is lake bottom sediments.

The magnetic highs correlate with gabbroic intrusions and basic volcanics while the magnetic lows correlate with granite and meta-sediments.

Ground follow-up is suggested on the anomaly that is located in the north-west corner of the claim block to determine the cause of the conductor.

QUESTOR SURVEYS LIMITED

R. de Carle

R. de Carle Geophysicist.

APPENDIX

EQUIPMENT

The aircraft are equipped with <u>Mark VI INPUT (R)</u> <u>airborne E.M. systems and Barringer AM-104 or AM-101A</u> <u>proton precession magnetometers</u>. Radar altimeters are used for vertical control. The outputs of these instruments together with fiducial timing marks are recorded by means of galvanometer type recorders using light sensitive paper. Thirty-five millimeter continuous strip cameras are used to record the actual flight path.

(1) BARRINGER/QUESTOR MARK VI INPUT (R) SYSTEM

The Induced Pulse Transient (INPUT) system is particularly well suited to the problems of overburden penetration. Currents are induced into the ground by means of a pulsed primary electromagnetic field which is generated in a transmitting loop around the aircraft. By using half sine wave current pulses and a loop of large turns-area, the high output power needed for deep penetration is achieved.

The induced current in a conductor produces a secondary electromagnetic field which is detected and measured after the termination of each primary pulse. Detection is accomplished by means of a receiving coil towed behind the aircraft on four hundred feet of cable,

(i)

and the received signal is processed and recorded by equipment in the aircraft. Since the measurements are in the time domain rather than the frequency domain common to continuous wave systems, interference effects of the primary transmitted field are eliminated. The secondary field is in the form of a decaying voltage transient originating in time at the termination of the transmitted pulse. The amplitude of the transient is, of course, proportional to the amount of current induced into the conductor and, in turn, this current is proportional to the dimensions, the conductivity and the depth beneath the aircraft.

The rate of decay of the transient is inversely proportional to conductivity. By sampling the decay curve at six different time intervals, and recording the amplitude of each sample, an estimate of the relative conductivity can be obtained. By this means, it is possible to discriminate between the effects due to conductive near-surface materials such as swamps and lake bottom silts, and those due to genuine bedrock sources. The transients due to strong conductors such as sulphides exhibit long decay curves and are therefore commonly recorded on all six channels. Sheet-like surface materials, on the other hand, have short decay curves and will normally only show a response in the first two or three channels.

(ii)

The samples, or gates, are positioned at 260, 480, 755, 1100, 1575 and 2100 micro-seconds after the cessation of the pulse. The widths of the gates are 225, 225, 320, 410, 500, and 540 micro-seconds respectively.

For homogeneous conditions, the transient decay will be exponential and the time constant of decay is equal to the time difference at two successive sampling points divided by the log ratio of the amplitudes at these points.

(II) BARRINGER AM-104 OR AM-101A PROTON PRECESSION MAGNETOMETER

The magnetometers which measure the total magnetic field have a sensitivity of 5 gammas and a range from 20,000 gammas to 100,000 gammas.

Because of the high intensity field produced by the INPUT transmitter, the magnetometer results are recorded on a time-sharing basis. The magnetometer head is energized while the transmitter is on, but the read-out is obtained during a short period when the transmitter is off. Using this technique, the head is energized for 1.15 seconds and then the transmitter is switched off for 0.15 seconds while the precession frequency is being recorded and converted to gammas. Thus a magnetic reading is taken every 1.3 seconds.

(iii)

DATA PRESENTATION

The symbols used to designate the anomalies are shown in the legend on each map sheet, and the anomalies on each line are lettered in alphabetical order in the direction of flight. Their locations are plotted with reference to the fiducial numbers on the analog record.

A sample record is included to indicate the method used for correcting the position of the E.M. Bird and to identify the parameters that are recorded.

All the anomaly locations, magnetic correlations, and the amplitudes of channel number 2 are listed on the data sheets accompanying the final maps.

GENERAL INTERPRETATION

The INPUT system will respond to conductive overburden and near-surface horizontal conducting layers in addition to bedrock conductors. Differentiation is based on the rate of transient decay, magnetic correlation and the anomaly shape together with the conductor pattern and topography.

Power lines sometimes produce spurious anomalies but these can be identified by reference to the monitor channel.

(iv)

Railroad and pipeline responses are recognized by studying the film strips.

Graphite or carbonaceous material exhibits a wide range of conductivity. When long conductors without magnetic correlation are located on or parallel to known faults or photographic linears, graphite is most likely the cause.

Contact zones can often be predicted when anomaly trends coincide with the lines of maximum gradient along a flanking magnetic anomaly. It is unfortunate that graphite can also occur as relatively short conductors and produce attractive looking anomalies. With no other information than the airborne results, these must be examined on the ground.

Serpentinized peridotites often produce anomalies with a character that is fairly easy to recognize. The conductivity which is probably caused in part by magnetite, is fairly low so that the anomalies often have a fairly large response on channel #1; they decay rapidly, and they have strong magnetic correlation. INPUT E.M. anomalies over massive magnetites show a relationship to the total Fe content. Below 25 - 30%, very little or no response at all is obtained, but as the percentage increases the anomalies become quite strong with a characteristic rate of decay which is usually greater than that produced by massive sulphides.

(v)

Commercial sulphide ore bodies are rare, and those that respond to airborne survey methods usually have medium to high conductivity. Limited lateral dimensions are to be expected and many have magnetic correlation caused by magnetite or pyrrhotite. Provided that the ore bodies do not occur within formational conductive zones as mentioned above, the anomalies caused by them will usually be recognized on an E.M. map as priority targets.

(vi)

Representative INPUT, Magnetometer and Altimeter Recording

Questor Surveys Limited

E.

Area BELANGER Twp.

File No. 14023

Page No. _____

	Anomaly	Fiducial	Number	Channel	Direct Magnetic	Flanking Mag	lanking Magnetic Peak	
	Number	riuuciai	Channels	Amplitude	Correlation	Location	Value	Remarks
	36 A	298.00	3	-	600 8			
	37A	212:74	6	.40	720 8			
	38A	278.71	4	-10	-	278.65	500 8	
	39A	194.75			860 8			
	40A	260.36	5	.20	1425 8			
	41A	177.01	5	.20				
	41B	177.12	6	.70	ZZ80 8			
.	42 A	2.42.34	6	.30				
	42 B	242.40	6	.40				
	47 D	124.02	1					
	48A	187.01	1					
	49 B	106.00	1					
	50 A	168.85	2					
	51 B	087.70	2		~			
							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
								·
						1		
			<u>+</u>	1				· · · · · · · · · · · · · · · · · · ·
	}	{						
		L	4	<u>ا</u>	• · · · · · · · · · · · · · · · · · · ·	+		

52K15NW0006 2.1179 BELANGER

GEOPHYSICAL – GEOLOG TECHNICAL DATA STATEMENT

900

MAR 2 3 1973

PROJECTS SECTION

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

.

Type of SurveyElectromag	gnetic & Magnetic	
Township or Area Belanger	Township	
Claim holder(s) Copper Lode	e Mines Ltd.	MINING CLAIMS TRAVERSED
3rd Floor	- 55 Yonge St., Toronto	List numerically
Author of Report. Robert de	e Carle	
Address 20 Canso	Rd., Rexdale, Ont.	(prefix) (number)
Covering Dates of Survey. Aug	ust 10th & 11th, 1972 (linccutting to office)	
Total Miles of Line cut		
SPECIAL PROVISIONS CREDITS REQUESTED	DAYS Geophysical ^{per claim}	
ENTER 40 days (includes line cutting) for first	Electromagnetic Magnetometer	
survey.	-Radiometric	SEE -
ENTER 20 days for each	Other	
additional survey using	Geological	
same griu.	Geochemical	,
AIRBORNE CREDITS (Special pro	ovision credits do not apply to airborne surveys)	
Magnetometer <u>40</u> Electroma (enter	gnetic <u>40</u> Radiometric <u> </u>	
DATE: <u>Mar. 21/73</u> SIGN	NATURE: <u><i>Kobert de Carle</i></u> Author of Report	
PROJECTS SECTION	0 11/7	
Res. Geol う コミ ひ	- Qualifications 2.967	(Grown down ching
Previous Surveys 2.1	43 2 1 Leophyperate	Am /1968
Checked by Kown h	date	different el notrumen
GEOLOGICAL BRANCH		
Approved by	date	
GEOLOGICAL BRANCH		
Approved by	date	TOTAL CLAIMS 99 claims

OFFICE USE ONLY

GEOPHYSICAL TECHNICAL DATA

,

<u>GROUND SURVEYS</u>			
Number of Stations	Nun	nber of Readings_	
Station interval			
Line spacing		· · · · · · · · · · · · · · · · · · ·	
Profile scale or Contour intervals			
(specity f	or each type of survey)		
MAGNETIC			
Instrument			
Accuracy - Scale constant	·	······································	
Diurnal correction method			·····
Base station location		· · · · · · · · · · · · · · · · · · ·	······
ELECTROMAGNETIC			19
Instrument			
Coil configuration			
Coil separation	······································		
Accuracy	······································		
Method:	Shoot back	🗆 In line	Parallel line
Frequency			·····
Parameters measured	(specify V.L.F. station)		
	<u> </u>		
Instrument			
Scale constant			
Corrections made			
concetions made	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Base station value and location		<u> </u>	
base station value and location		. /	
Elevation accuracy			
INDUCED POLARIZATION RESISTIVITY			
Instrument			
Time domain	Frequency	domain	
Frequency	Range		
Power	~		
Electrode array			
Electrode spacing			
Type of electrode			

SELF POTENTIAL

Instrument	Range
Survey Method	
Corrections made	

r

•

RADIOMETRIC

Instrument
Values measured
Energy windows (levels)
Height of instrumentBackground Count
Size of detector
Overburden
(type, depth — include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey
Instrument
Accuracy
Parameters measured
<u>AIRBORNE SURVEYS</u>
Type of survey(s) <u>Electromagnetic</u> Instrument(s) <u>Barringer / Questor Mk VI INPUT®E.M.</u> Barringer AM-104 Mag (specify for each type of survey) Accuracy INPUT® E.M. 100 ppm. Magnetometer 5 gammas
Aircraft usedShort_Skyugn_CF-QSL
Sensor altitude 150 feet
Navigation and flight path recovery method <u>Flight mesales and the use of 35 mm</u>
Aircraft altitude 400 feet Line Spacing 1000 feet 600
Miles flown over total area <u>450 miles</u> Over claims only <u>90 miles</u>

GEOCHEMICAL SURVEY – PROCEDURE RECORD

. .

Numbers of claims from which samples taken_____

Total Number of Samples	ANALYTICAL METHODS						
Type of Sample (Nature of Material) Average Sample Weight	Values expressed in:	per cent p. p. m. p. p. b.					
Method of Collection	Cu, Pb, Zn, Ni, Co.	Ag, Mo,	As,-(circle)				
Soil Horizon Sampled	Others						
Horizon Development	Field Analysis (tests)				
Sample Depth	Extraction Method						
Terrain	Analytical Method	<u>.</u>					
	Reagents Used	~ <u></u>					
Drainage Development	Field Laboratory Analysis						
Estimated Range of Overburden Thickness	No. (<u> </u>	tests)				
	Extraction Method						
	Analytical Method						
	Reagents Used		<u>-</u>				
SAMPLE PREPARATION	Commercial Laboratory (tests)				
(Includes drying, screening, crushing, ashing)	Name of Laboratory.						
Mesh size of fraction used for analysis	Extraction Method						
	Analytical Method						
	Reagents Used						
General	General						

•	Claim No.	Days			Claim No.	Days
KRL	67456	80		KRL	67511	80
•	67457	80			67512	80
	67458	80			67513	80
	67459	80			67514	80
	67460	80			67515	· 80
	67461	80			67516	80
	67462	80	,		67517	80
	67463	80	•		67518	00
	67464	80			67519	80
	67465	80			67520	· 80
	67466	80			67520	80
	67467	80			67522	00
	67468	80			67523	80
	67469	80			67524	80
	67470	80			67525	80
	67471	80			67526	00
	67472	80			67527	80
	67473	80			67520	80
	67474	80			67520	80
	67475	80			67530	00
	67476	80			67521	80
	67477	80			67522	80
	67478	80			67522	80
	67479	80			67534	80
	67480	80			67525	80
	67481	80		•	60000	80
	67482	80		•	60800	80
	67483	80			60000	80
	67484	80			60001	80
	67485	80		•.	60017	80
	67486	80			C0010	80
	67487	80			60010	80
	67488	80		te.	60022	80
	67489	80			60022	80
	67490	80			69925	00
	67491	80			60027	80
	67492	80			69938	00
	67493	80			69941	80
	67494	80			69949	80
	67495	80			69950	80
	67496	80	•		69951	80
	67497	80	•		69952	80
	67498	80			69955	80
	67499	80			69956	80
	67500	80			07700	00
	67501	80				
	67502	80				
s.,	67503	80			2 × 1	
-	67504	80			= 99 claime	
	67505	80			55 CIUIND	
	67506	80				
	67507	80				
	67508	80				
	67509	80				
	67510	80 80			•	
	01010	00				

Legend
6 Channel Anomaly
5 Channel Anomaly
4 Channel Anomaly
3 Channel Anomaly
2 Channel Anomaly
1 Channel Anomaly
Direct Magnetic Correlation
Flanking Magnetic Correlation
Limits of Conductive Overburden

