

52L08SW2008 2.20238

TREELINED LAKE

010

REPORT ON THE 1998 LITHOGEOCHEMISTRY, GEOLOGICAL MAPPING AND STRUCTURAL ANALYSIS SEPARATION LAKE, ONTARIO (52 L/8 SW) SUMMER 1998

CLAIMS K 1178295, K 1178296, K 1178297, K 1178437, K 1162989, K 1162990, K 1162991, K 1178574, K 1178575, K 1178598, K 1178678, K 1178689, K 1178690, K 1178730, K 1178787, K 1149774, K 1149772, K 1149773, K 1149775, K 1149776, K 1178866, K 1178867, K 1220538, K 1220539, K 1220540, K 1220541, K 1220542, K 1166804, k 1220596

CLAIM SHEETS

Treelined Lake Paterson Lake Stop Lake Snook Lake

G-2651 G-2634 G-2523 G-2644

APR - 6 2000

GEOSCIENCE ASSESSMENT OFFICE

TANTALUM MINING CORPORATION OF CANADA LIMITED P.O. BOX 200, LAC DU BONNET, MANITOBA, R0E 1A0 / (204) 884-2400

2.201 - 8

CAREY GALESCHUK, B.Sc, P. Geo PROJECT GEOLOGIST MARCH 21st, 2000 BERNIC LAKE, MANITOBA

52L08SW2008 2.20238

TREELINED LAKE

010C

TABLE OF CONTENTS

Introduction	. 1
Claim Group	. 1
Location and Access	. 1
Previous Work	. 3
Regional Geology Setting	. 5
Property Geology	. 7
Local Geology	. 7
Description of Rock Units	. 9
Structural Mapping of Two Pegmatitic Granites	11
Structural Analysis of the Separation Lake Property	13
1998 Lithogeochemical and Mapping Field Program	14
Lithogeochemical Survey Methods	15
Analytical Methods	15
Statistical Analysis	15
Treatment of Results	16
Description of the Geology and Lithogeochemical Anomalies	17
Discussion and Recommendations of the Lithogeochemical Anomalies	18
References	20
Appendix A: Program Expenditures for 1998 Lithogeochemistry, Geological Mapping and Structural Analysis	
Appendix B: Structural Mapping of Two Pegmatitic Granites - N. Wiebe's Report	
Appendix C: Structural Analysis of the Separation Lake Property – F. de la Fuente's Report	
Appendix D: 1998 Lithogeochemical Sample Descriptions	
Appendix E: 1998 Assay Results – Bondar Clegg	
Appendix F: Analytical Techniques – Bondar Clegg	
Appendix G: Pegmatite Sketches	

Appendix H: Statement of Qualifications

List of Tables:

Table 1: Claim List	. 2
Table 2: Separation Lake Project 1996 Lithogeochemical Anomaly Thresholds	16
Table 3: Separation Lake Project, 1998 Lithogeochemical Survey, Anomaly Coding	17

List of Figures:

Figure 1: Location Map	3
Figure 2: Claim Location Map	4
Figure 3: Geological Location of Separation Lake Area	7
Figure 4: General Geology Of Separation Lake Property, Ontario	8
Figure 5: Location of Mapped and Sketched Pegmatites	. 12

1

Map Pocket Report:

Map 1 of 6 1998 West Claims – Geology and Structure Map 2 of 6 1998 West Claims – Samples and Assay Results Map 3 of 6 1998 West Claims – Anomaly Map Map 4 of 6 1998 East Claims – Geology and Structure Map 5 of 6 1998 East Claims – Samples and Assay Results Map 6 of 6 1998 East Claims – Anomaly Map

INTRODUCTION

During of the summer of 1998, numerous field activities were carried out by the Tantalum Mining Corporation of Canada Limited (Tanco) in the Separation Lake region of northwest Ontario. This report focuses on the lithogeochemistry, geological mapping and structural investigations associated with the 1998 field season. Work was completed in order to provide insight into the potential of buried deposits of mineralized rare-element pegmatites.

N. Wiebe, one of the summer geological assistants, for purposes of an undergraduate thesis at the University of Saskatchewan, carried out comparison structural mapping of two pegmatitic granites. A consultant, Fernando de la Fuente, was brought to the property in the later part of the summer to examine the structural emplacement and controls of the exposed surface pegmatites.

Copies of N. Wiebe's and F. de la Fuente's reports are presented in the appendices.

All supervision and report writing has been carried out by the author of this report.

The expenditures for this program may be viewed in Appendix A (Program Expenditures for 1998 Lithogeochemistry, Geological Mapping and Structural Analysis).

CLAIM GROUP

The Separation Lake property is under a joint venture agreement between Gossan Resources Limited (Gossan Resources) of Winnipeg, Manitoba and Tantalum Mining Corporation of Canada Limited (Tanco). At present, the property consists of 33 claims totaling 147 claim units (Table 1). All claims are held jointly with Tanco (operators) holding 50.1% and Gossan holding 49.9%.

The addresses and contact names for the holders of the claims are as follows:

Tantalum Mining Corporation of Canada Limited PO Box 2000 Lac du Bonnet, Manitoba R0E 1A0

Contact: Peter Vanstone Chief Geologist (204) 884-2400 ext. 226

a camera and a second second

Gossan Resources Limited 52 Donald Street Winnipeg, Manitoba R3C 1L6

Contact: Jim Campbell President (204) 943-1990

LOCATION AND ACCESS

The property is situated approximately 75 kilometres north of Kenora, Ontario (Figure 1). The 33 claims are mainly situated north of the English River and to the northwest of Separation Lake (Figure 2).

. .

	CLAIM	LIST					
CLAIM		CLAIM SHEET		DATE	DATE	CLAIM	CLAIM
NUMBER	NUMBER	NAME	NTS NUMBER	STAKED	RECORDED	HECTRES	UNITS
K 1178866	G-2651	Treelined Lake	52-L-8SW	11-Jan-97	13-Jan-97	32	2
K 1149772	G-2651	Treelined Lake	52-L-8SW	1-Sep-96	11-Sep-96	16	1
K 1178867	G-2651	Treelined Lake	52-L-8SW	11-Jan-97	13-Jan-97	32	2
K 1178575	G-2651	Treelined Lake	52-L-8SW	11-Jan-96	17-Jan-96	32	2
K 1178574	G-2651	Treelined Lake	52-L-8SW	11-Jan-96	17-Jan-96	64	4
K 1178787	G-2651	Treelined Lake	52-L-8SW	28-May-96	7-Jun-96	48	3
K 1178730	G-2634	Paterson Lake	52-L-7SE	2-May-96	5-May-96	48	3
K 1178295	G-2651	Treelined Lake	52-L-8SW	1-Jun-95	5-Jun-95	16	1
K 1178296	G-2634	Paterson Lake	52-L-7SE	1-Jun-95	5-Jun-95	256	16
K 1178690	G-2651	Treelined Lake	52-L-8SW	11-Apr-96	15-Apr-96	16	1
K 1178598	G-2651	Treelined Lake	52-L-8SW	29-Mar-96	10-Apr-96	32	2
K 1178689	G-2651	Treelined Lake	52-L-8SW	29-Mar-96	10-Apr-96	128	8
K 1178678	G-2634	Paterson Lake	52-L-7SE	29-Mar-96	10-Apr-96	208	13
< 1 1629 91	G-2634	Paterson Lake	52-L-7SE	12-Dec-95	14-Dec-95	128	8
K 1178297	G-2634	Paterson Lake	52-L-7SE	2-Jun-95	5-Jun-95	96	6
K 1162990	G-2634	Paterson Lake	52-L-7SE	13-Dec-95	14-Dec-95	64	4
K 1149773	G-2634	Paterson Lake	52-L-7SE	1-Sep-96	11-Sep-96	32	2
K 1149776	G-2634	Paterson Lake	52-L-7SE	1-Sep-96	11-Sep-96	48	3
K 1149775	G-2634	Paterson Lake	52-L-7SE	1-Sep-96	11-Sep-96	16	1
K1162989	G-2634	Paterson Lake	52-L-7SE	13-Dec-95	14-Dec-95	96	6
K 1178437	G-2634	Paterson Lake	52-L-7SE	22-Sep-95	29-Sep-95	192	12
K 1149774	G-2634	Paterson Lake	52-L-7SE	27-Jul-96	7-Aug-96	96	6
K 1220538	G-2651	Treelined Lake	52-L-8SW	3-Jun-97	2-Jul-97	48	3
K 1220539	G-2634	Paterson Lake	52-L-7SE	4-Jun-97	2-Jul-97	48	3
K 1220540	G-2634	Paterson Lake	52-L-7SE	10-Jun-97	2-Jul-97	48	3
K 1220541	G-2651	Treelined Lake	52-L-8SW	5-Jun-97	2-Jul-97	64	4
K 1220542	G-2651	Treelined Lake	52-L-8SW	5-Jun-97	2-Jul-97	48	3
K 1220915	G-2651	Treelined Lake	52-L-8SW	9-Oct-99	29-Oct-99	16	1
K 1220669	G-2651	Treelined Lake	52-L-8SW	9-Oct-99	29-Oct-99	160	10
K 1133795	G-2651	Treelined Lake	52-L-8SW	9-Oct-99	29-Oct-99	32	2
K 1166804	G-2634	Paterson Lake	52-L-7SE	5-Apr-98	1-May-98	16	1
K 1220664	G-2634	Paterson Lake	52-L-7SE	2-Jul-99	16-Jul-99	16	1
K 1220596	G-2651	Treelined Lake	52-L-8SW	20-May-98	10-Jun-98	32	2
Total Claims = 2		·L	<u> </u>	· · · · · · · · · · · · · · · · · · ·	Totala	2 224	120

Table 1: Claim List, Separation Lake Property

Access to the area is via the English River Road, an all-weather gravel road. The English River Road turn-off is 24 kilometres north of the Trans-Canada Highway along Highway 566 to Reddit, Ontario. The property is dissected by a network of abandoned secondary clay and sand based logging and drill roads. The southern and central portions of the property are accessible by boat via the English River.

The physiography of the area is typical of the PreCambrian shield with most overburden consisting of tills and clay. Much of the area has experienced blow downs and consequently, in these areas, the forest consists of small pines, alders and poplars. Logging as also been carried out in the region. In isolated areas, mature spruce stands exist.

FIGURE 1: Location Map of the Separation Lake Profect

PREVIOUS WORK

The area has a history of base and precious metals exploration with some work for uranium and iron. Since 1993, work by the Ontario government has increased interest in the rare-element pegmatite potential of the area.

Records of mineral exploration in the Umfreville-Separation Lake area date back to the mid-1930's. The first work in the area appears to be around Minaki, where work was conducted on the Minaki Pyrite Prospect on Vermillion Lake. Sporadic work for base metals was conducted near Redditt in 1956, by Stratmatt Limited and south of Patterson Lake in 1963, by the Canadian Nickel Company. Both programs consisted of diamond drilling.

The iron formations in the Separation Lake area were examined for their iron potential. W.S. Moore Company of Duluth conducted trenching and feasibility studies of the property in the period 1948-1955. Tombill Gold Mines and Glen Echo Mines Limited conducted work in 1957.

Results of these studies indicated that the iron mineralization has excellent concentration characteristic, but does not occur in sufficient widths to apply open pit mining methods (Breaks et al, 1975).

÷

÷

During the 1960's and into the 1970's, several companies explored in the region for uranium. Much of the work consisting of airborne scintillometer surveys with follow-up ground work. Some of the major work was carried out by Headvue Mines Limited (1967), Bralorne Resources Limited, and Can-Fer Mines Limited (1968-1971). These surveys encountered anomalous, but sporadic uranium mineralization associated with the pegmatites in the area (Breaks, et al, 1975). Selco Mining Corporation, Sherritt Gordon Mines and Champion Bear Resources have conducted extensive exploration work in the area with numerous programs of mapping, sampling, geophysics and drilling. The main focus was on base metals with some work being done on precious metals.

The most recent government geological map covering the region is Open File Map 241 (Blackburn, et al, 1994). The Ontario Geological Survey has recently carried out numerous detailed programs on the pegmatite field in the Separation Lake/English River area. Dr. F.W. Breaks of the Mineral Field Services Section, Ontario Geological Survey, has carried out most of the work. This work has spawned great interest in the Separation Rapids pegmatite field. Several companies and individuals are presently in the process of exploring the rare-element potential of the area. These companies include Champion Bear Resources, Avalon Ventures, Tanco, and Emerald Fields Resources Corporation.

From 1996 to 1998, Tanco completed several programs of geological mapping and lithogeochemical sampling over the entire claim area. The results for 1996 and 1997 have been filed for assessment. The results for the 1998 work are the topic of this report.

During the field seasons of 1998 and 1999, Tanco performed a B-horizon soil geochemistry program over a portion of the property. This work has been filed for assessment.

Tanco, to date, has completed two diamond drill programs in the area. In 1996, seven holes totaling 1872 feet (570.73 metres) were drilled to test the geological character of exposed pegmatites at depth with respect to mineralization, mineralogy and structure. The 1997 diamond drill program was a continuation of the 1996 diamond drill program, with emphasis placed on examining several other surface pegmatite exposures. This program consisted of ten holes totaling 2803 feet (854.35 metres). Both diamond drill reports have been filed for assessment.

REGIONAL GEOLOGICAL SETTING

The Separation Lake property occurs almost completely in the Separation Lake Greenstone Belt (Blackburn and Young, 1992). It is part of a package of metavolcanic rocks which occur discontinuously along the boundary of the English River and Winnipeg River subprovinces of the Archean Superior Province (Figure 3). The belt constitutes the boundary zone between the high grade, metasedimentary-dominant English River Subprovince to the north and the granite-tonalite-dominant Winnipeg River Subprovince to the south (Breaks 1991; Breaks and Bond 1993; Beakhouse 1991).

It has been suggested that the Separation Lake greenstone belt may represent an extension of the 2.74 Ga Bird River metametavolcanic-metasedimentary belt to the west (Timmins et al, 1985). This belt is known to host other pegmatite fields such as the Greer Lake, Rush Lake and Bernic.

Figure 3: Geological Location of Separation Lake Area (from Breaks, F.W. and Tindle, A.G., 1997) The pegmatite field at Separation Lake is seven kilometres long by three kilometres wide and trends in an east to west direction. It is hosted by supracrustal rocks (Blackburn et al., 1992; Blackburn and Young, 1992). The area is predominantly underlain by mafic metavolcanic units and associated gabbroic units. Felsic metavolcanic and metasedimentary rocks exist to the north of the property and pinch out to the east. Most rock units are strongly deformed and metamorphosed to at least lower amphibolite facies (Blackburn and Young, 1993).

F.W. Breaks (1993) has described the Separation Rapids pegmatite field as divisible into two clusters. These clusters have been divided into the eastern subgroup and the southwestern subgroup. The eastern subgroup has further been divided into three distinct zones, based on mineralogy in surface exposures of pegmatites. These are the interior beryl-columbite zone, cassiterite-beryl-petalite zone, and columbite-cassiterite-beryl zones. Occurrences of petalite, cassiterite and tantalum bearing minerals have been reported. The pegmatites in this area would belong to the complex type, petalite subtype of the rare-element pegmatite class of Cerny (Cerny, 1982).

PROPERTY GEOLOGY

The Tanco/Gossan claim block lies within the Separation Lake greenstone belt. The areas mapped in the 1998 field program covered essentially the eastern and western margins of the property holdings. Following is a brief overall description of the local geology followed by a description of the encountered rock units. Of the rock units, only units 1, 7, and 8 (mafic metavolcanics, granite, and pegmatitic granite) were encountered in the 1998 field mapping program. A generalized geology map is presented in Figure 4.

Local Geology

The predominant rock type in the area is a fine to medium grained, medium gray to black, wellfoliated mafic metavolcanic, possibly of basaltic composition. This unit comprises most of the central portion of the claim group. Coarse grained, dark coloured gabbro has been mapped in the center of the mafic metavolcanic unit. It appears to indicate a folding pattern. As well, narrow bands of chemical metasedimentry iron formation occur throughout the region. These iron formation units tend to display a highly gossaned appearance.

The mafic metavolcanic unit is bounded to the north and to the south by regional granitoid complexes, both of which contain granitic gneissic and pegmatitic units. Well exposed to the north is the Treelined Lake Granite, which is part of the English River Subprovince. The granitic unit to the south is part of the Winnipeg River Subprovince.

To the north of the property a unit of a felsic composition is exposed. This unit is in fault contact with the Treelined Granite. As well, clastic metasedimentary units are exposed to the northeast of the claim group.

On the western flank of the property, the Separation Rapids Pluton is well exposed. The exposed area of the pluton, is 4 square kilometres. It has been described as a fertile, peraluminous S-type

granite (Breaks, 1993). Within this unit there is widespread layering of pegmatitic leucogranite, sodic aplite, potassic pegmatite and coarse grained granitic units.

Numerous pegmatites are exposed on surface. They vary in size and dimensions, as well as complexity. The preferred orientation tends to be east to west, with many of the pegmatite bodies lying parallel to foliation.

The pegmatite field at Separation Lake is seven kilometres long by three kilometres wide and trends in an east to west direction. It is hosted by supracrustal rocks (Blackburn et al., 1992; Blackburn and Young, 1994). The area is predominantly underlain by mafic metavolcanic units and associated gabbroic units. Felsic metavolcanic and metasedimentary rocks exist to the north of the property and pinch out to the east. Most rock units are strongly deformed and metamorphosed to at least lower amphibolite facies (Blackburn and Young, 1992).

Description of Rock Units

Mafic Metavolcanic (Unit 1)

This unit is the predominant rock type in the area, constituting approximately 80% of the belt. The mafic metavolcanics tend to appear basaltic in composition, but no whole rock analyses have been completed to qualify this statement. In the field, this unit usually appears fine to medium grained, medium gray to black in colour. The unit is exposed in outcrops of low to moderate relief.

Texturally, the unit tends to be locally well foliated which lends to the description of basaltic tuff being applied to field descriptions. Pillowed and massive flows appear as the dominant unit type. Numerous pillowed flows were encountered in the field, but were generally to deformed to determine tops. Where possible, pillow tops appeared to indicate that tops were to the northnorthwest.

Felsic Metavolcanic (Unit 2)

The felsic metavolcanic unit encountered in the project area is generally tuffaceous. The texture ranges from tuff to lapilli tuff and appears to be rhyolitic in composition. The unit generally is fine to medium grained and gray to green in colour.

The unit is moderately foliated and situated in a broad deformation zone. The deformation has in many places, obliterated the primary textures and structures. Moderate relief is encountered on the southern exposure of the felsic unit. Flat outcrop exposure occurs in the interior of the unit. Many of the flat surfaces have been highly polished by glaciation, making sampling difficult.

The felsic unit encountered in the northern section of the property appears to be pinching out toward the east. The western extent of this unit was not defined. The northern contact of the unit is with the Treelined Lake Granite. This contact appears fault related as the contact runs along a structural lineament, occupied by a creek. Some units described as felsic metavolcanics, may in part be deformed granite.

.

Iron Formation (Unit 3)

The iron formations are chemical metasediments that occur in the mafic volcanic units. They typically are layered, 1 to 5 metres in thickness, with a chert-magnetite composition. The magnetite is locally replaced by pyrrhotite and minor pyrite. These formations occupy two identified stratigraphic levels within the map area. The lower unit is located at, or close to, the base of the mafic metavolcanic sequence. The upper unit appears separated either by mafic flows or gabbros. The iron formation has a very strong magnetic signature and is highly gossaned. The unit can be used as a marker horizon in trying to determine folding and structure. In several locations, the iron formation was observed in close proximity to pegmatites.

Clastic Metasediments (Unit 4)

The metasedimentary unit has been stratigraphically identified in two levels. One is within the mafic metavolcanics and is a feldspathic arenite to wacke. The other unit is overlying the felsic metavolcanics and is a polymictic conglomerate. In places, the conglomerate is interbedded with wacke. It was noted in the field, that the conglomerate lies directly on top of the felsic metavolcanics in apparent conformity (Appendix C, de la Fuente, 1998).

Mafic Intrusive (Unit 5)

The mafic intrusive units in the area appear to be coarse grained, dark gray to black colored, highly competent gabbro. Commonly, outcrop exposures are of high relief. The coarse grained gabbros may represent thicker sections of flows or subvolcanic sills. The unit outcrop distribution indicates folding.

Granitic Gneiss (Unit 6)

Gneissic and migmatitic rocks have been encountered to the extreme north and south in the western portion of the property. Very little attention was given to this unit. Commonly, it was noted as quartz-feldspar-biotite gneiss or granitic gneiss. The unit is typically gray in colour and medium grained.

Granite (Unit 7)

The granites within the property area are essentially divided into two units.

The Treelined Lake Granite to the north, is a large, broad, well-exposed felsic intrusive of the English River Subprovince. It appears to be a contact with the felsic metavolcanics to the north of the property by means of a structurally controlled deformation zone. This deformation has imprinted itself onto the felsic metavolcanics.

The granite to the south of the property (and the Separation Lake Belt) is a well-exposed felsic intrusive of the Winnipeg River Subprovince. This unit was dominant in the eastern portion (claim K 1149774) of the 1998 field mapping. The unit generally can be described as a well

. . . .

......

jointed, white, homogenous granite with a mafic component consisting of biotitic banding. Compositionally it is more probably a tonolitic granite then a true granite.

Pegmatitic Granite (Unit 8)

The granite or pluton in the situated in the centre of English River and within the western portion of the property, is the Separation Rapids Pluton. It has an aerial extent of approximately four square kilometres.

The Separation Rapids Pluton has been described as a fertile, peraluminous S-type granite (Breaks, 1993). Within this unit there is widespread layering of pegmatitic leucogranite, sodic aplite, potassic pegmatite and coarse grained granitic units. Even though it was originally described in the literature as a pluton, a portion of it appears to be a layered flat lying sheet of pegmatitic granite (Appendix C, de la Fuente, 1998). This is confirmed by texture and contacts, as well as from Champion Bear's 1989 aeromagnetic data as filed in the Ontario assessment files (L07 SE M-6).

Numerous large pegmatitic granites exist elsewhere on the property. They are characterized by being simple in their mineralogy. Their mineralogy consists of megacrystic blocks of potassic feldar, quartz, aplite units and mica banding. The mica commonly occurs as radiating structures called "birds-foot mica".

The accompanying report by Wiebe (1998) (Appendix B) examines two such pegmatitic granites, the Turtleback Pegmatitic Granite (Cliam K 1162991) and the Cook's Pegmatitic Granite (Claim K 1178296). Their location with are indicated in Figure 5. The report examines their mineralogy, structural orientation and their relationship to each other.

Pegmatites

Numerous pegmatite dykes were encountered on the property. To date, several companies and individuals have encountered some 200 plus pegmatites within the Separation Lake Greenstone Belt. Mineralogically, they range from simple potassium feldspar-dominant pegmatites to more complex petalite subtype.

To date, several exposed pegmatites have been tested by diamond drilling programs (Galeschuk 1997, Galeschuk 1998) conducted by Tanco. Detailed examination was initiated this field season. Two detailed pegmatite sketches are presented in Appendix G. Their locations are shown in Figure 5.

STRUCTURAL MAPPING OF TWO PEGMATITIC GRANITES

The mapping by Wiebe of the Turtleback and Cook's Pegmatitic Granites was conducted over the coarse of the summer and amounted to 14 days of mapping and measurements and 3 days of drafting with accompanying data entry.

.

The objective of the project was to examine the structural characteristics of the Turtleback and Cook's Pegmatitic Granite and determine if any relationship existed existed between them.

The Cook's Pegmatitic Granite is located on claim K 1178296. The Turtleback Pegmatitic Granite is located on claim K 1162991.

The four textural phases listed below are commonly indicative of pegmatitic granites (Cerny et al, ap81). Theses textures were noted and mapped in the field:

- Pegmatitic leucogranite
- Fine-grained leucogranite
- Sodic aplite
- Pegmatitic potassic phase

A more detailed description may be found in the body of the report in Appendix B.

The work determined that the two pegmatitic granites were similar topographically, texturally, compositionally and structurally. These similarities suggest that the two units were derived from the same parental source.

The main difference between the two units concerned the texture and composition of the feldspars. The Cook's Pegmatitic Granite had a greater proportion of pink potassium feldspar, whereas the Turtleback Pegmatitic Granite was more enriched in white albitic plagioclase feldspar. As well, the Cook's Pegmatitic Granite tended to have an overall coarser grain size.

From Wiebe's work, two distinct deformation events, D1 and D2, were distinguished in the field,. Both events affected the emplacement of the pegmatitic granites.

Deformation event D1 created the S1 foliation. Both pegmatitic granites appear to be emplaced along the structural weakness in the host metavolcanic rocks generated by this deformation event. The emplacement resulted in parallel orientation of the pegmatitic granite and the host rock along the S1 foliation. This association is commonly observed with other pegmatites and pegmatitic granites in the Separation Lake area.

Deformation event D2 created the S2 foliation and transposed the S1 parallel to S2. This represents the present structural state of the studied pegmatitic granites. The D2 event was a compressional event and caused visible isoclinal folds in the pegmatitic granite.

From structural measurements, it was found that even though the Cook's and Turtleback Pegmatitic Granite are separated by over a kilometre, their foliations and jointing were identical. Due to their similarities, it suggests that the same mechanisms are responsible for the creation of both pegmatitic granite units.

STRUCTURAL ANALYSIS OF THE SEPARATION LAKE PROPERTY

A structural analysis study of of the Separation Lake property was carried out under contract by Fernando de la Fuente Consultores, S.L. A copy of this report is supplied in Appendix C. The work performed by Tanco personal in conjunction with this study amounted to one day of drafting and four days of field investigations.

In the field, seven pegmatite locations and four pegmatitic granites were examined. As well the Treelined Granite, north of the Separation Lake Property area, was examined to observe its relationship with the Separation Lake Greenstone Belt.

The work performed by de la Fuente determined that the pegmatites in the Separation Lake Project area essentially correspond to two main intrusive phases. It was noted that classification of the pegmatites and pegmatitic granites could be performed in regard to the number of deformation events effecting the units. The classification would be based on pre-D2 deformation phase and post-D2 deformation phase.

It has been suggested that the Treelined Granite is the source granite for the pegmatites and pegmatitic granites that belong to the pre-D2 deformation phase. The Separation Lake Pluton is

suggested to be the parent granite of the pegmatites and pegmatitic granites of the post-D2 deformation phase.

De la Fuente (Appendix C) also performed an air-photo structural interpretation. Four orders of lineaments were distinguished.

The first order lineaments are described as long lineaments that effect the other three orders of lineaments. It has been suggested that they correspond to fractures and imply a north-south shortening of the D3 deformation phase (de la Fuente, 1998).

The second order lineaments effect the third and fourth order lineaments. They appear to be distensive fractures formed as a result of release of the north-south compressive stress after the D1 and D2 phase (de la Fuente, 1998).

Third order lineaments are described as short lineaments that did not produce relative movement. De la Fuente suggests that they may correspond to joints.

Fourth order lineaments are described as short lineaments that do not produce realtive movement. They correspond to S1-S2 schistosities, lithological contacts and folds. It was noted, on examination of de la Fuente's report by Tanco exploration personal, that many of the pegmatites encountered in the Separation Lake Project area correspond with the fourth order lineaments. No explanation is offered for this observation, but it does represent a possible exploration tool.

1998 LITHOGEOCHEMICAL AND MAPPING FIELD PROGRAM

The 1998 field program portion of lithogeochemical sampling and geological mapping was performed during a five-day period and encompassed 14 man days. Work was performed on claims K 1220596, K 1149774, and K 1178678. Fieldwork consisted of geological mapping at a scale of 1:5000 carried out on hip chained and compassed traverse lines. Lithogeochemical samples were taken every 25 metres where available.

A total of 86 rock samples were collected in the field (Appendix D). All samples were analysed by ITS Bondar-Clegg & Company Limited (Vancouver, BC) for parts per million lithium, cesium, and rubidium. Results are presented in Appendix E.

Tanco personal carried out the fieldwork with the program being supervised by the author of this report.

The data augments Tanco's geochemical data-base from previous surveys. Mapping was completed to determine rock types, which was later used in the statistical analysis of the lithogeochemical results. For a complete map of the anomalies, sample sites, claim lines, geology, and structure, refer to the map sets in the back of the report.

A small amount of time was spent examining a few known pegmatites. Sketches of two pegmatites are available in Appendix G and their location location is shown in Figure 5.

Lithogeochemical Survey Methods

In the field, samples were taken at 25 metre intervals where available and lithology was noted. Where possible, structural measurements were obtained. Sample sites were marked in the field with flagging tape. At each site, unweathered chip samples were obtained.

The geological premise behind the lithogeochemical survey is based on the relative mobility of the elements and metasomatic aureoles associated with pegmatites. During the emplacement of highly fractionated, rare element pegmatites, exomorphic aureoles consisting of the highly mobile alkali elements and volatile components form in the host rock. Of all the elements within these aureoles, lithium, rubidium and cesium offer the best combination of mobility and target discrimination. The element cesium, although least mobile, is the most discriminatory when trying to differentiate between aureoles generated from simple pegmatites and those of a more complex variety (Vanstone, 1996).

Several problems are associated with this method. One problem is the difficulty in determining a sense of burial depth of the pegmatite with respect to its aureoles. Another problem with this model is that the exomorphic aureoles generated by the pegmatite emplacement envelopes the pegmatite. Consequently, there exists no way to differentiate between hanging and footwall associated aureole. Therefore, a lithogeochemical anomaly could be the hanging wall of a buried pegmatite or a foot wall anomaly of an eroded pegmatite (Vanstone, 1996).

Analytical Methods

All samples were analyzed for parts per million (ppm) elemental lithium, rubidium and cesium utilizing atomic absorption spectroscopy (AAS) for lithium and instrumental neutron activation analysis (INAA) for the latter two elements. Lower detection limits were 1 ppm for lithium and cesium and 10 ppm for rubidium. The analytical methods for both AAS and INAA are outlined in Appendix F. For the lithium analysis, however, a multi-acid dissolution (HF-HNO₃-HClO₄-HCL) was used in place of the aqua regia dissolution.

Quality control was maintained by the internal standards employed by the lab. For lithium and cesium, there is good replication of analyses in the low and middle concentration ranges.

Statistical Analysis

Statistical data for interpretation of the 1998 field samples was done using background and anomaly values determined from 1996 geochemical database. The anomalous threshold values used are in Table 2 (Galeschuk, 1999).

The 1996 anomalous thresholds were determined by first grouping all of the samples (977 in total), at that time, according to their lithology and then these lithology-based data sets were statistically analyzed separately. Each of the lithology based data sets were broken down into three data sets, one for each of the lithium, rubidium and cesium. Each data sets was then statistically analyzed utilizing the PROBPLOT computer program (Stanley, 1987).

In the analysis of a data set, the first step was to construct a histogram from which a cumulative probability plot was generated. Once a cumulative frequency distribution was defined, it was then optimized using the Maximum Likelihood Optimization on Raw Data function, which gave the 'best fit' estimate. The number of populations was then determined from the optimized cumulative probability plot and the plot partitioned. From the partitioning, the value limits for each population were then defined (Sinclair, 1976).

The value limits for each data set are summarised in Table 2 and shows four categories with each category defined by either a maximum value or a minimum value or a value range. The two populations are defined as 'background' and 'anomalous'. The 'possibly anomalous' category is the overlap area between the upper limit of population 1 (background) and the lower limit of population 2 (anomalous). The 'highly anomalous' category includes all values greater than the upper limit of the 'anomalous' category.

ROCK BACKGROUND POSSIBLY ANOMALOUS ANOMALOUS HIGHLY ANOMALOUS										ALOUS		
ТҮРЕ	Li	Cs	Rb	L	Ċs	Rb	Li	Cs	Rb	Li	Cs	Rb
MAFIC VOLCANIC	<35.6	<1.7	<72.2	35.6-55.9	1.7-5.6	72.2-100.9	55.9-227.7	5.6-39.6	100.9-484.6	>227.7	>39.6	>484.6
FELSIC VOLCANIC	<16.6	<3.0	<75.8	16.6-38.9	3.0-5.5	75.8-159.7	38.9-109.8	5.5-21.9	159.7-406.5	>109.8	>21.9	>406.5
MAFIC INTRUSIVE	<46.0	<4.2	<29.6	46.0-54.0	4.2-6.4	29.6-38.4	54.0-334.6	6.4-15.1	38.4-134.3	>334.6	>15.1	>134.3
FELSIC INTRUSIVE	<27.2	<6.6	<302.4	27.2-42.3	6.6-15.2	302.4-485.1	42.3-86.1	15.2-29.4	485.1-1769.4	>86.1	>29.4	>1769.4
PEG. GRANITE	<49.6	<12.4	<230.4	49.6-116.4	12.4-16.2	230.4-321.3	116.4-380.6	16.2-125.7	321.3-3392.7	>380.6	>125.7	>3392.7

 Table 2:
 Separation Lake 1996 Lithogeochemical Anomaly Thresholds (Threshold values in parts per million (ppm))

Treatment of Results

The geology and structural measurements for the area are shown on Map 1 and Map 4 (rear pocket). Sample sites with their corresponding assays for lithium, rubidium and cesium are on Map 2 and Map 5 (rear pocket). Maps 3 and 6 (rear pocket) displays symbols for anomalous sample sites for lithium, rubidium and cesium and interpreted anomalous areas (identified as *SLTA-98A* and *SLTA-98B*).

To aid interpretation of the plotted results while, at the same time, taking into account the relative mobility of the three elements, each anomalous sample, single element and/or multi-element in the survey area was ranked according to the sum of the element anomalies for the sample (Table 3). For this ranking, possibly anomalous was assigned a value of 1, anomalous a value of 2, and highly anomalous a value of 3. Additionally, based on the fact that the mobility of lithium > rubidium > cesium, only samples consisting of above background levels of lithium, or lithium and rubidium or lithium and cesium were taken into account when identifying anomalous areas which may warrant further work. Clusters of anomalous samples were then identified and labelled.

Possibly Anomalous	Anomalous	Highly Anomalous	Elements
A1	A2	A3	Li only
B1	B2	B3	Li + Rb
C1	C2	C3	Li + Rb + Cs

Table 3. Separation Lake Project, 1998 lithogeochemical survey – Coding for anomalous samples

Description of the Geology and Lithogeochemical Anomalies

Essentially three small claims were covered in the 1998 mapping and lithogeochemical field program. Each claim will be covered separately and the results discussed.

Claim 1220596

The majority of this claim is situated over mafic metavolcanic rocks an granite (Map 4, rear pocket). The unit is generally described as black, fine-grained, pillow basalt. Pillows ranged in length from 30 to 60 centimetres. No tops were determined.

Pegmatitic granite was encountered in the northwest portion of the claim. It is described as consisting mainly of a leuco-granititic phase with sporadic dykes and pods of pegmatitic material. Occasional aplite zones were encountered. The unit is pink, moderate to coarse grained, and tends to exhibit high relief with respect to the surrounding mafic metavolcanic units. The contact with the mafic metavolcanic unit is irregular.

The lithogeochemical samples from the metavolcanic unit are within background range. Several anomalous samples are associated with the pegmatitic granite (Map 6, rear pocket). Overall the unit is possibly anomalous in lithium, rubidium and cesium. No anomalous zone is defined here due to lack of coverage and information.

Structurally, it appears as a fold axis may cut through the claim area. It was observed that the foliation dip angles change direction (Map 4, rear pocket). Such an axis would correspond with the 1994 mapping of Blackburn.

Claim 1149774

This claim is situated over mainly outcrops of granite and pegmatitic granite (Map 1, rear pocket). To the north of the claim, mafic metavolcanic units were encountered.

From the field notes, the granite is generally described as gray to white in color, biotite rich, moderate to well foliated, and displaying good joint development. The joints tend to be exhibited in the form of ridges. Within the granitic units, bands and pods of aplite and pegmatitic granite are commonly observed. The granite units represented here are part of the granitoid component of the Winnipeg River Sub-province.

The pegmatitic granite is described as a pink colored, coarse grained, homogenous unit. Mineralogy consisted of potassium feldspar, quartz with minor biotite and albite. Textures ranged from pegmatitic to graphic with finer aplitic sections.

Mafic units encountered in the north section of the claim, were pillow metavolcanics, apparently of basaltic composition. A high amount of deformation observed in these units suggests the presence of some large structural feature. This deformation may be, in part, related to the adjacent granites.

The lithogeochemical study shows that the granite is anomalous with respect to lithium. This may be explained by the concept that this area of the granite may natural be enriched in lithium. The pegmatitic granite and the mafic metavolcanic units do not display any obvious geochemical anomalous trends.

An anomalous area, SLTA-98A, is defined on this claim block (Map 3, rear pocket). It trends at approximately 45° and is 500 metres long and 75 metres long. The extent of this defined area is questionable due to sampling and mapping distribution. SLTA-98A, is hosted in granite, at the contact of the pegmatitic granite. The area is anomalous with respect to its lithium and rubidium levels. It is possible that the anomaly exists due to fluid enrichment derived from the nearby pegmatitic granite.

Claim 1178678

The area mapped in this claim consisted with the northern half of the claim situated over mafic metavolcanic outcrops and the southern portion of the claim situated over granites (Map 1, rear pocket). Nestled between the two units in a localized small wedge of pegmatitic granite. This unit may represent a pegmatitic phase of the neighboring granite.

The description of the a units is identical to those mentioned above. It would still appear that this portion of the granite has an elevated lithium content with respect to what has been calculated background for granites elsewhere on the Separation Lake Project.

An anomalous area, *SLTA-98B*, is defined on this claim block. It trends east to west and is approximately one kilometre long and 150 metres wide (Map 3, rear pocket). The actual extent however, is questionable due to the extent of the field survey. The anomalous area extends over the contact of the granite and mafic metavolcanic. The anomaly is defined as being possibly anomalous to anomalous with respect to the geochemical concentrations of lithium, rubidium and cesium.

Discussion and Recommendations of the Lithogeochemical Anomalies

<u>SLTA-98A</u>

The SLTA-98A anomaly appears to be associated, at least in part, to the nearby presence of the pegmatitic granite and represents a low priority target. It is recommended that a day of field

.

.....

. y. . . .

investigation be completed to examine the relationship of the pegmatitic granite and the anomaly. The priority of this target may change with increased activity in the area.

<u>SLTA-98B</u>

SLTA-98B is a target of low to moderate interest. It is anomalous in all three pathfinder elements. The anomalous zone is not only confined to the granite, but extends into the mafic metavolcanic units that are a more preferred host for rare-element pegmatites. The drawback of SLTA-98B is that it is situated on the south side of English River and has poor access.

It is recommended an 8000 metre mapping and lithogeochemical sampling program be carried out on the southern portion of claim K 1178678. This work would better define the existence of any anomaly and dictate the future of the area in question. Due to the low distribution of outcrop it is suggested that the sampling density will be low and samples would probably total in the range of 100 lithogeochemical samples. All work would be accomplished by hip chain and compass, with no grid being cut.

Costs of Recommendations

SLTA-98A Area	2 mandays of field investigations	\$ 500.00
	10 samples @ \$45.50 (Ta, Sn, Li, Cs)	\$ 455.00
	10 samples @ \$20.75 (Li, Rb, Cs)	\$ 208.00
	Room/Board @ \$90.00 (2 days)	\$ 180.00
	Transportation @ $$50.00$ a day	\$ 100.00
	Report and drafting (3 days @ \$250.00)	\$ 750.00
	SLTA-98A Total:	\$ 2193.00
SLTA-98B Area	10 mandays of field work	\$ 5000.00
	10 samples @ \$12.50 (Ta, Sn, Li, Cs)	\$ 455.00
	100 samples @ \$20.75 (Li, Rb, Cs)	\$ 2075.00
	Room/Board @ \$90.00 (10 days)	\$ 900.00
	Transportation @ $$50.00$ a day	\$ 500.00
	Report and drafting (5 days @ \$250.00)	\$ 1250.00

SLTA-98B Total:

\$ 10180.00

Respectively submitted,

Juleschick

Carey R. Galeschuk, B.Sc., P. Geo. Project Geologist Tantalum Mining Corporation of Canada March 21st, 2000

REFERENCES

- Beakhouse, G.P., 1991. Winnipeg River Subrovince, In: Geology of Ontario, Ontario Geological Survey. Special Volume 4, Part 1, p. 279-301.
- Blackburn, C.E., Beakhouse, G.P., and Young, J.B., 1992. Geology of the Umfreville-Separation Lake area; in Summary of Field Work and Other Activities 1992, Ontario Geological Survey, Miscellaneous Paper 160, p. 20-25.
- Blackburn, C.E. and Young, J.B., 1992. Geology of the Separation Lake Greenstone Belt; in Summary of Field Work and Other Activities 1993, Ontario Geological Survey, Miscellaneous Paper 160, p. 68-73.
- Blackburn, C.E., Young, J.B., Searcy, T.O. and Donohue, K. 1994. Precambrian Geology of the Separation Lake greenstone belt, west part; Ontario Geological Survey. Open File Map 241, scale 1:20 000.
- Breaks, F.W., Bond, W.D., McWilliams, G.H., and Gower, G. 1975. Umfreville -Separation Lakes sheet, Operation Kenora-Sydney Lake: Ontario Division of Mines, Preliminary map1028 and marginal notes.
- Breaks, F.W., 1991, English River Subprovince. In: Geology of Ontario, Ontario Geological Survey. Special Volume 4, Part 1, p. 239-277.
- Breaks, F.W., 1993. Granite-Related Mineralization in Northwestern Ontario: I.
 Raleigh Lake and Separation Rapids (English River) Rare-Element Pegmatite
 Fields; in Summary of Field Work and Other Activities 1993, Ontario Geological
 Survey, Miscellaneous Paper 161, p. 104-110.
- Cerný, P., 1982, Anatomy and Classification of Granitic Pegmatites, In: MAC Short Course in Granitic Pegmatites in Science and Industry, Volume 8, p. 1-32
- Cerný, P., 1986. Exploration Strategy and Methods for Pegmatite Deposits of Tantalum., in Lanthanides, Tantalum and Niobium, Society for Geology Applied to Mineral Deposits, Spec. Publ. No. 7, pp 274 - 302
- Galeschuk, C.R., 1997. Report on Diamond Drilling Activity, Separation Lake, Ontario (52 L/8 SW), Fall 1996, Ontario Assessment Files
- Galeschuk, C.R., 1998. Report on Diamond Drilling Activity, Separation Lake, Ontario (52 L/8 SW), Fall 1997, Ontario Assessment Files
- Galeschuk, C.R., 1999. Report on 1996 and 1997 Lithogeochemistry and Geological Mapping Activity, Separation Lake, Ontario (52 L/8 SW), Summers 1996 and 1997), Ontario Assessment Files

- Timmins, E.A., Turek, A. and Symons, D.T.A., 1985. U-Pb zircon geochronlogy and paleomagnetism of the Bird River greenstone belt, Manitoba, in: *Programs with Abstracts, Geological Association of Canada – Mineralogical Association of Canada.* Vol. 10, p. A62
- Vanstone. P.J., 1996, Report on the 1993 Fill-in Lithogeochemical Survey of the Yitt Claim Group, Bernic Lake Area, Southeastern Manitoba, Claim Map: NW6-52L, Manitoba Assessment Files

Appendix A:

Program Expenditures for 1998 Lithogeochemical, Geological Mapping and Structural Analysis

a particular and and and a second second

1998 FIELD EXPENDITURES FOR SEPARATION LAKE PROJECT AREA

1998 Lithogeochemical Field Work

WORK PERFORMED AND PERSONS RESPONSIBLE	Units	Unit Cost	Totals
1998 Field Preparation:			
C. Galeschuk	1 days	\$ 209.00	\$ 209.00
1998 Lithogeochemical Field Work:			
C. Galeschuk	2 days	\$ 210.00	\$ 420.00
R. Kelly	5 days	\$ 135.00	\$ 675.00
N. Weibe	2 days	\$ 113.00	\$ 226.00
K. Wittmier	5 days	\$ 106.00	\$ 530.00
1998 Data Entrty:			
C. Galeschuk	2 days	\$ 210.00	\$ 420.00
N. Weibe	1 days	\$ 113.00	\$ 113.00
K. Wittmier	1 days	\$ 106.00	\$ 106.00
Drafting:			s -
C. Galeschuk	2 days	\$ 210.00	\$ 420.00
SUB-TOTAL (LABOUR)	21 man days		\$ 3,119.00

EXPLORATION COSTS	Units	Unit Cost	Totals
Transportation: Note: 90 km is from Reddit to property return	90 km @ 5 days	0.3 per km	\$ 135.00
Accommodation: Hideaway Cabins Reddit, Ontario	1 week	\$ 825.00	\$ 825.00
Food: Assays: Activation Laboratories Accaster: Ontario	86 assays	\$ 22.50	\$ 300.00 \$ 1,935.00
Shipping:			\$ 125.00

SUB-TOTAL (COSTS) 1998 LITHOGEOCHEMICAL SURVEY GRAND TOTAL 5 8,439.00

\$ 3,320.00

\$

Field Work for the Report on Structural Mapping of Two Pegmatitic Granites

WORK PERFORMED AND PERSONS RESPONSIBLE	Units	Unit Cost	Totals
1998 Lithogeochemical Field Work:		1	
N. Weibe	14 days	\$ 113.00	\$ 1,582.00
C. Galeschuk	3 days	\$ 210.00	\$ 630.00
R. Kelly	3 days	\$ 135.00	\$ 405.00
K. Wittmier	8 days	\$ 106.00	\$ 848.00
1998 Data Entrty and Drafting			
N. Weibe	3 days	\$ 113.00	\$ 339.00
SUB-TOTAL (LABOUR)	31 man days	5	\$ 3,804.00

EXPLORATION COSTS	Units	Unit Cost	Totals	
NOTE:				
All costs have been absorbed by prevoius				0
survey work.				
SUB-TOTAL (COSTS)			<u> </u>	

SUB-TOTAL (COSTS)

FIELD WORK GRAND TOTAL \$ 3,804.00

Structural Analysis - Fernando de la Fuente Consultores

WORK PERFORMED AND PERSONS RESPONSIBLE	Units	Unit Cost	Totals
Field Work - Tanco Personal C. Galeschuk	4 days	\$ 210.00	\$ 840.00
1998 Data Entrty and Drafting K. Witunier	1 days	\$ 106.00	\$ 106.00
SUB-TOTAL (LABOUR)	5 man days	;	\$ 946.00
Consultant Costs and Report		US	\$15,143.95
	as of in	CAN (1.53)	\$23,170.24

LORATION COSTS	Units	Unit Cost	Totals	
TE: costs have been absorbed by prevoius				(
vey work				
	·		_ _	_

SUB-TOTAL (COSTS)

STRUCTURAL ANALYSIS GRAND TOTAL \$24,116.24

Report Writing and Compilation

.

2000 Office Work - C. Galeschuk	Units	Unit Cost	Totals
Report Writing	8 days	\$ 222.00	\$ 1,776.00
Data Entry	1 days	\$ 222.00	\$ 222.00
Drafting	4 days	\$ 222.00	\$ 888.00
SUB-TOTAL (LABOUR)	13 man days		\$ 2,886.00

EXPLORATION COSTS	υ	nits	Unit Cost	Totals
Photocopy Charges	1	job	\$319.07	\$319.07
SUB-TOTAL (COSTS)		<u>. </u>		\$ 319.07
REPORT WRIT	ING AND CO	MPILATIO	N	\$ 3,205.07

Appenix A: Program Expenditures for 1998 Lithogeochemistry, Geological Mapping and Structural Analysis

SDE: F. de la Fuente Consultores

RECEIVED

FERNANDO DE LA FUENTE CONSULTORES, S.L. Camino de Ronda, 74, 5º - 3 18004 GRANADA SPAIN

(for work performed Prize 15 - Sept 15/98)

-09-28 1998

TANCO

Tel: +34-958-25 72 14

Fax: +34-958-25 60 10

TANTALUM MINING CORPORATION OF CANADA LIMITED Att: Mr Peter Vanstone P.O. Box 2000 LAC DU BONNET MB ROE 1A0 CANADA

	<u>Nº FACTURA:</u> SL-1	<u>FECHA:</u> 28/09/98	·	<u>CODIGO:</u> 01/10/98
			UNIT	TOTAL
N*	CONCEPT	CURRENCY	COST	USS
17	Days F. de la Fuente	US\$	600	10,200
3	Drafting Services	US\$	150	450
1	Air ticket Málaga-Winnpeg-Málaga	US\$	4,253	4,253
	Hotel Winnipeg	US\$	79.75	79.75
_	Other travel expenses	US\$		161.27
-				0
				0
		TOTAL		15,143.95
		VAT 0%		0.00
		TOTAL INVOI	CE	15.143.95

PAYMENT:

Direct transfer to the following account:

Fernando de la Fuente Chacón Account nº: 0500.210.187631 BANCO NACIONAL ULTRAMARINO Rua Conde de Boavista, 20 7800 BEJA PORTUGAL

1. 1 Caminu de /1: 00 -4 . : 20 18054 6 841.0

GRAND TOTALS SUBMITTED FOR ASSESSMENT

1998 Lithogeochemical Field Work

1998 LITHOGEOCHEMICAL SURVEY GRAND TOTAL \$ 6,439.00

Field Work for the Report on Structural Mapping of Two Pegmatitic Granites

FIELD WORK GRAND TOTAL \$ 3,804.00

Structural Analysis - Fernando de la Fuente Consultores

STRUCTURAL ANALYSIS GRAND TOTAL \$24,116.24

Report Writing and Compilation

REPORT WRITING AND COMPILATION \$ 3,205.07

GRAND TOTAL SUBMITTED \$ 37,564.31

Submitted by R. Galeschuk, B.Sc., P. Geo. 100 20th ct/Geoblog Tantalum Mining Corporation of Canada

Appendix A: Program Expenditures for 1998 Lithogeochemistry, Geological Mapping and Structural Analysis

CLAIM DISTRIBUTION ALLOCATION PER PROGRAM

1998 Lithogeochemical Field Work and Report Writing

These two program aspects are combined for purposes of claim distribution of monies spent. Distribution will be based on total samples taken as follows:

CLAIM	No. of Samples	% Distributed	Distributed Costs Per Claim
K 1149774	47	55 %	\$5,270.60
K 1178689	20	23 %	\$2,242.81
K 1220596	19	22 %	\$2,130.67

Total Sample86Total Costs\$ 9,644.07

a construction of the second s

\$9,644.07

......

Field Work for the Report on Structural Mapping of Two Pegmatitic Granites

Work divided equally betwwen K 1162991 and K 1178296:

CLAIM	Distributed Costs Per Claim		
K 1178296	\$	1,902.00	
K 1162991	\$	1,902.00	

Appendix A: Program Expenditures for 1998 Lithogeochemistry, Geological Mapping and Structural Analysis

مسجدة مسجد المارين المراري والم

CLAIM	CLAIM	Calculated	%	Dollar
NUMBER	HECTRES	%	Amounts	Amounts
K 1178866	32	0.016	1.44%	\$386
K 1149772	16	0.008	0.72%	\$193
K 1178867	32	0.016	1.44%	\$386
K 1178575	32	0.016	1.44%	\$386
K 1178574	64	0.032	2.88%	\$772
K 1178787	48	0.024	2.16%	\$579
K 1178730	48	0.024	2.16%	\$579
K 1178295	16	0.008	0.72%	\$193
K 1178296	256	0.128	11.51%	\$3,087
K 1178690	16	0.008	0.72%	\$193
K 1178598	32	0.016	1.44%	\$386
K 1178689	128	0.064	5.76%	\$1,543
K 1178678	208	0.104	9.35%	\$2,508
K 1162991	128	0.064	5.76%	\$1,543
K 1178297	96	0.048	4.32%	\$1,158
K 1162990	64	0.032	2.88%	\$772
K 1149773	32	0.016	1.44%	\$386
K 1149776	48	0.024	2.16%	\$579
K 1149775	16	0.008	0.72%	\$193
K1162989	96	0.048	4.32%	\$1,158
K 1178437	192	0.096	8.63%	\$2,315
K 1149774	96	0.048	4.32%	\$1,158
K 1220538	48	0.024	2.16%	\$579
K 1220539	48	0.024	2.16%	\$579
K 1220540	48	0.024	2.16%	\$579
K 1220541	64	0.032	2.88%	\$772
K 1220542	48	0.024	2.16%	\$579
K 1166804	16	0.008	0.72%	\$193
K 1220596	32	0.016	1.44%	\$386

Structural Analysis - Fernando de la Fuente Consultores Claim Distribution for the Program

Total Hectres2000Costs\$ 24,116.24

Note: Costs were disributed evenly to all claims active at time of report as the structural analysis covered the entire project area

Appendix A: Program Expenditures for 1998 Lithogeochemistry, Geological Mapping and Structural Analysis

and provide a second second

.....

Claim		Stuctural	Other	Total
Numbe	r	Analysis	Programs	Costs
K 1178866		\$386	\$0	\$386
K 1149772		\$193	\$0	\$193
K 1178867		\$386	\$0	\$386
K 1178575		\$386	\$0	\$386
K 1178574		\$772	\$0	\$772
K 1178787		\$579	\$0	\$579
K 1178730		\$579	\$0	\$579
K 1178295		\$193	\$0	\$193
K 1178296		\$3,087	\$1,902	\$4 989
K 1178690		\$193	\$0	\$193
K 1178598		\$386	\$0	\$386
K 1178689		\$1,543	\$2,243	\$3 786
K 1178678		\$2,508	\$0	\$2,508
K 1162991		\$1,543	\$1,902	\$3,445
K 1178297		\$1,158	\$0	\$1,158
K 1162990		\$772	\$0	\$772
K 1149773		\$386	\$0	\$386
K 1149776		\$579	\$0	\$579
K 1149775		\$193	\$0	\$193
K1162989		\$1,158	\$0	\$1,158
K 1178437		\$2,315	\$0	\$2.315
K 1149774		\$1,158	\$5,271	\$6.428
K 1220538		\$579	\$0	\$579
K 1220539		\$579	\$0	\$579
K 1220540		\$579	\$0	\$579
K 1220541		\$772	\$0	\$772
K 1220542		\$579	\$0	\$579
K 1166804		\$193	\$0	\$193
K 1220596		\$386	\$2,131	\$2,517
and make				
Grand Total	\$ \$	524,116.24	13,448.08	\$37,564

TOTAL COST DISTRIBUTION PER CLAIM

Appendix A: Program Expenditures for 1998 Lithogeochemistry, Geological Mapping and Structural Analysis

.....

Appendix B:

Structural Mapping of Two Pegmatitic Granites N. Wiebe

.

a anna a an anna a an anna a ga anna a a an an

STRUCTURAL MAPPING OF TWO PEGMATITIC GRANITES IN THE SEPARATION LAKE GREENSTONE BELT

2

Ę

Ë,

- Implications for Rare Metal Pegmatite Exploration -

Separation Lake Greenstone Belt, Superior Province, Ontario, Canada

Naomi S. Wiebe Department of Geological Sciences University of Saskatchewan, Saskatoon, Saskatchewan

Geol. 492. 6 Special Research Topics: Undergraduate Thesis Supervisor: Dr. Mel Stauffer Submitted: April 1999

ABSTRACT

4

The Separation Lake Greenstone Belt of the Superior Province of northwestern Ontario is an exploration target for rare-element pegmatite deposits. One of the keys to delineation of rare-element pegmatite deposits is understanding their parental sources, pegmatitic granites. Two such pegmatitic granites were studied within the Separation Lake Greenstone Belt, the Turtleback pegmatitic granite and Cook's pegmatitic granite. Although separated by over a kilometer in a north-south direction, these potential sources of highly fractionated rare-element pegmatites are similar with respect to: areal extent, topographic relief, texture, mineralogy, and structure.

Both pegmatitic granites crop out along a west-southwest to east-northeast trend for approximately 280 m east to west and between 100 and 150 m north to south. The Turtleback and Cook's pegmatitic granites both exhibit positive topographic relief in the form of "humps" and ridges of pegmatitic granite outcrop. Four textural phases are recognizable in both outcrops: 1. pegmatitic leucogranite, 2. fine-grained leucogranite, 3. sodic aplite, and 4. pegmatitic potassic phase. These textural phases have consistent mineralogy regardless of in which outcrop they occur.

The Turtleback and Cook's pegmatitic granites, as well as the rocks between these two outcrops, also share many common structural features. S2 foliation was developed during D2 deformation. This strong foliation transposed earlier S1 foliation parallel to itself having similar strikes of: 072° in the Turtleback pegmatitic granite and 069° in Cook's pegmatitic granite. Foliation has steep to subvertical dip in both the pegmatitic granites mapped as well as in the rocks between these two outcrops. Both pegmatitic granites are isoclinally folded with attenuated limbs and minor folding visible in fold noses. Two late stage joint sets are present within each of the two pegmatitic granites. These joint sets both dip subvertically and set one strikes between 159° and 166°. The strike of joint set two ranges from 070° to 079°. It is notable that joint set two is parallel to foliation.

ACKNOWLEDGEMENTS

I would like to thank the many people who encouraged and assisted me throughout the preparation of this undergraduate thesis. First of all, thank you to the TANCO field crew from the summer of 1997. Carey Galeschuk, Ryan Kelly and Krista Wittmier are appreciated for their knowledge, experience, assistance, and humor. Peter Vanstone of TANCO also offered valuable guidance with my thesis.

My advisor, Dr. Mel Stauffer of the University of Saskatchewan, has been a great help with ready information and resources. I would also like to acknowledge the generous assistance offered to me by the technical staff at the University of Saskatchewan, in particular Tom Bonli and Blain Novekovski.

Finally, I would like to thank my fiancé Doug Goda for his support, encouragement, and expertise with the presentation aspects of my thesis. Thank you also to my parents, Clifford and Maxine Wiebe, for bringing me this far and putting up with my endless ramblings about rocks.

TAB	LE OF	CONTENTS	PAGE
Abst	ract		(I)
Ackr	nowledg	ements	(II)
Tabl	e of Co	ntents	(III)
List	of Figur	res	IV
List	of Abbr	reviations Used	(V)
1.	Intro	duction	1
2.	Regio	onal Geology	6
3.	Defin	ition of Pegmatitic Granite	8
4.	Ultin	ate Origin of Pegmatitic Granites	10
5.	Phase	e Classification of Pegmatitic Granites	11
	5.1	Pegmatitic Leucogranite Phase	11
	5.2	Fine-grained Leucogranite Phase	13
	5.3	Sodic Aplite Phase	13
	5.4	Pegmatitic Potassic Phase	14
6.	Cont	act Relationships Between Textural Phases	18
7.	Diffe	rences Observed Between the Pegmatitic Granites Studied	21
8.	Oute	ron Style	23
	8.1	Turtleback pegmatitic granite	23
	8.2	Cook's pegmatitic granite	23
9.	Micr	oscopic and SEM Analysis	26
10.	Struc	etural History	34
	10.1	Deformation D1 - formation of S1 fabric	34
	10.2	Deformation D2 - formation of S2 fabric	35
11.	Stere	ographic Net Representation of Structural Data	41
12.	Struc	tural Features of the Turtleback Pegmatitic Granite	43
	12.1	Foliation	43
	12.2	Jointing	43
	12.3	Veining	44
	11.4	Boudinage	45
13.	Struc	tural Features of Cook's Pegmatitic Granite	51
	13.1	Foliation	51
	13.2	Jointing	51
14.	Struc	ctural Features Between the two Pegmatitic Granites	55
-	14.1	Foliation	55
	14.2	Jointing	55
	14.3	Veins	57
15.	Discu	assion	59
16.	Refe	rences	62

.

Í

Í

Ĩ

LIST OF	FIGURES	PAG
Fig. 1	Map of Canada showing study location	4
Fig. 2	Regional geology	4
Fig. 3	Local geology	5
Fig. 4	Schematic section through a fertile granite - pegmatite system	5
Fig. 5	Dynamically recrystallized K-feldspar megacrysts	15
Fig. 6	Plumose muscovite intergrowths: a) patch b) strands	16
Fig. 7	Garnet-rich zone in sodic aplitic textural phase	16
Fig. 8	Pegmatitic potassic textural phase	17
Fig. 9	Contact between peg. leucogranite and fgr. leucogranite	20
Fig. 10	Graphic intergrowth of quartz and K-feldspar	20
Fig. 11	Map of the Turtleback pegmatitic granite	24
Fig. 12	Map of Cook's pegmatitic granite	25
Fig. 13	Micrograph of quartz and perthite	29
Fig. 14	Micrographs of rutile: a) granular masses b) acicular crystals	29
Fig. 15	Microprobe photo of ghanite	32
Fig. 16	Micrograph of garnet and muscovite-rich zone	32
Fig. 17	Micrograph of ferrocolumbite-ferrotantalite	33
Fig. 18	Microprobe photos of ferrocolumbite-ferrotantalite	33
Fig. 19	Fold noses on the Turtleback pegmatitic granite	37
Fig. 20	Mechanism for buckle-folding	40
Fig. 21	Micrograph showing dynamic recrystallization	40
Fig. 22	Map of the Turtleback peg. granite : selected fol'n measurements	47
Fig. 23	Stereonet representing Turtleback pegmatitic granite foliation	47
Fig. 24	Map of Turtleback peg. granite: selected joint measurements	48
Fig. 25	Stereonet representing Turtleback pegmatitic granite jointing	48
Fig. 26	Stereonet representing Turtleback peg. granite veining	49
Fig. 27	Veining along pillow selvedges	49
Fig. 28	Boudinaged peg. granite within metavolcanic host	50
Fig. 29	Map of Cook's peg. granite: selected foliation measurements	53
Fig. 30	Stereonet representing Cook's peg. granite foliation	53
Fig. 31	Map of Cook's peg. granite: selected joint measurements	54
Fig. 32	Stereonet representing Cook's peg. granite jointing	54
Fig. 33	Stereonet: selected foliation measurements from traverse	56
Fig. 34	Stereonet: selected joint measurements from traverse	56
Fig. 35	Stereonet: selected vein measurements from traverse	58

Ą

M

(IV)

an ann ann an 1997 an ann a
LIST OF ABBREVIATIONS USED

.

ľ

ľ

ľ

9

Albite	Ab
Cook's pegmatitic granite	CPG
Energy Dispersive Spectrometry	EDS
English River Subprovince	ERS
Foliation	Fol'n
Garnet	Gt
Muscovite	Musc ,
Pegmatitic	Peg.
Plagioclase Feldspar	Plag
Potassium Feldspar	K-feldspar
Quartz	Qtz
Scanning Electron Microprobe	SEM
Separation Lake Greenstone Belt	SLGB
Separation Rapids Pluton	SRP
Turtleback pegmatitic granite	TPG
Winnipeg River Subprovince	WRS

1. INTRODUCTION

The Separation Lake Greenstone Belt (SLGB), a greenschist to amphibolite grade metavolcanic belt (personal communication from Dr. Y. Pan, Department of Geology, University of Saskatchewan), is located in the Superior Province of Ontario, sandwiched between the high-grade metasediment-dominated English River Subprovince to the North and the granite-tonalite dominated Winnipeg River Subprovince to the south (Fig. 1, Fig. 2, and Fig. 3). This greenstone belt is of economic interest because it contains Ontario's highest concentration or rare-element class, complex type, petalite-subtype pegmatites. This category of pegmatites is the most desirable target for economic tantalum, cesium, rubidium, and ceramic grade petalite mineralization (Breaks and Tindle, 1997). Another reason for economic interest in the SLGB is the relationships this area has with the TANCO rare-element pegmatite deposit in Manitoba. The SLGB is considered to be a narrow eastward extension of the Bird River metasedimentary and metavolcanic belt (Fig. 2). As the Bird River Belt widens westward into Manitoba (Fig. 2), it hosts the world class TANCO deposit of the Bernic Lake Mine near Lac Du Bonnet Manitoba. Another link between the SLGB and the TANCO deposit is that pegmatites in the Separation Rapids Pegmatite group are regarded as the easternmost extent of the Cat-Lake Winnipeg River pegmatite field. Classification within the same pegmatite field as the TANCO pegmatite suggests that this regional population of pegmatites shares a common formation depth range (in this case intermediate depth between 3.5 km and 7 km), common geological and structural environment, common age and common igneous source (Cerny, 1982). The igneous source for Cook's pegmatitic granite (CPG) and

the Turtleback pegmatitic granite (TPG) is believed to be partial melt derived from the Treelined Lake granite which is located to the north of these pegmatitic granites. The Treelined Lake granite fractionated (accumulated rare metals, and volatiles such as; fluorine, H_20 , boron, chlorine and phosphorus in low-viscosity residual melt as parental melt gradually crystallized) to produce the Separation Rapids pluton (Fig. 3). The Separation Rapids pluton, a fertile granite, then evolved compositionally and texturally to form pegmatitic granites such as the TPG and CPG (Breaks and Tindle, 1997). Pegmatite fields may exhibit extremely different degrees of fractionation due to the level of emplacement of the erosion level (Cerny, 1989) (Fig. 4).

Tantalum Mining Corporation of Canada Ltd. (TANCO) is currently exploring for rare-element pegmatites in the Separation Lake Greenstone Belt (SLGB) of northwestern Ontario. Rare-element pegmatites such as the TANCO rare-element pegmatite deposit of southeastern Manitoba are valued for their tantalum, spodumene, pollucite, and lepidolite mineralization. Tantalum is a rare metal used for capacitors in the electronics industry and for surgical pins, skull plates, and internal joint replacements in the medical industry. Spodumene is a pyroxene group mineral used in glass and ceramics. Pollucite is a cesium rich mineral currently being used to produce cesium formate, an experimental drilling fluid for the petroleum industry. Lepidolite, a lithian muscovite, is valued for it's high Rb and Li content. Rb and Cs have similar properties and uses, and lithium carbonate can be used used in the medical treatment of manic depression.

During summer employment with TANCO, I constructed 1:500 scale maps of two pegmatitic granites within the Separation Rapids Pegmatite Group and gathered structural data at these two locations. The Turtleback pegmatitic granite (TPG) is located on a peninsula jutting into the English River approximately one kilometer south of Cook's pegmatitic granite (CPG) (Fig. 3). These pegmatitic granites are important because they may be potential sources for rare-element pegmatite deposits. Economic rare-element pegmatites may crystallize from fractionated residual melts derived from these pegmatitic granites.

9

Although geographically separated by over a kilometer, the TPG and CPG are topographically, texturally, compositionally and structurally similar. The purpose of this thesis is to describe the structural characteristics of these two pegmatitic granites and to determine the similarities, and differences between them. The importance of this research is that description of parental fertile granites and their derivatives (moderately fractionated pegmatitic granites) will lead to better understanding of these lithologies as potential sources for highly fractionated, economic rare-element pegmatites. An understanding of parental granites and pegmatitic granites, will lead ultimately to better delineation of pegmatite rareelement deposits.

L

Fig. 1 Map of Canada showing location of Separation Lake Greenstone Belt.

Fig. 2 Regional map of geology showing location of the study area and Bernic Lake Mine. Note that both the study area and Bernic Lake Mine are located in a continuous greenstone belt; the Bird River Belt. The Separation Lake Greenstone Belt, the location of the study area, is considered to be a narrow, eastward extension of the Bird River Belt.

STATES.

Fig. 3 Map showing location of Cook's pegmatitic granite and the Turtleback pegmatitic granite within the Separation Lake Greenstone Belt. This map also shows the bounding geological subprovinces; the Winnipeg River Subprovince to the south and the English River Subprovince to the north as well as the extents of the Separation Rapids Pluton with respect to the pegmatitic granites mapped.

Fig. 4 Schematic vertical section through a zoned fertile granite- pegmatite system showing compositional gradation from fertile granite to pegmatitic granite then to rare element pegmatite. Note the gradation vertically and laterally from 1. Fertile granite to; 2. Barren to berylbearing pegmatities, 3. Beryltype columbite- to phosphatebearing pegmatites, 4. Complex spodumene- (or petalite-)bearing pegmatites with tin, tantalum and locally cesium mineralization, 5. Faults. (modified from Cerny, 1989).

2. REGIONAL GEOLOGY

The English River Subprovince of the Superior Province of northwestern Ontario bounds the SLGB to the north (Fig. 3). This subprovince is mainly composed of highly metamorphosed and migmatized metasedimentary rocks. Locally, the regional amphibolitefacies metamorphism decreases to low or medium-pressure granulite-facies metamorphic grade along the English River-Winnipeg River subprovincial boundary. This is the case for the medium-grade metavolcanic rocks of the SLGB occurring where the Bird River Subprovince is in contact with the southern boundary of the English River Subprovince (Breaks, 1991).

The English River Subprovince has been interpreted as a long, narrow, fore-arc basin lying downslope of an island arc to the north (Breaks, 1991). The present day Uchi Subprovince represents this island arc to the north of the English River Subprovince. The Uchi Subprovince contributed both metavolcanic and tonalitic sediments to the fore-arc basin to produce an accretionary prism comprised of turbidites stacked in a southward prograding submarine fan. This accretionary prism was later brought into juxtaposition tectonically with the Uchi Subprovince to the north (Breaks, 1991).

The Winnipeg River Subprovince flanks the SLGB to the south (Fig. 3). This subprovince is dominated by granitoid plutons, which intrude older massive and pillowed

metabasalts as well as minor metasedimentary rocks. These plutons were emplaced between 2.83 and 3.17 Ga (Breakhouse, 1991). The tonalitic plutonic rocks which comprise the Winnipeg River Subprovince were probably derived from melt of mafic rocks at the base of the crust or at upper mantle levels.

The Bird River Subprovince (equivalent to the SLGB of northwestern Ontario) widens to an average of 8 km thick in Manitoba from a relatively narrow 200 m in Ontario. However, in the Separation Lake area, this greenstone belt widens to several kilometers (Breaks, 1991). To the north, the English River Subprovince lies in fault contact with the metavolcanics of the Bird River Subprovince. The Winnipeg River Subprovince contacts the Bird River Subprovince along an intrusive boundary.

5

Previously attained geochronological ages show the Bird River belt volcanics to be younger than the Winnipeg River Subprovince (Breakhouse, 1991). Despite it's age and distinction as a separate subprovince, the Bird River Subprovince is related to both the English River Subprovince and the Winnipeg River Subprovince in many ways. Many metasedimentary units are continuous across these subprovincial boundaries and the granitic plutonism and late sedimentation are synchronous for the Winnipeg River and the Bird River Subprovinces.

3. DEFINITION OF PEGMATITIC GRANITE

ŧ ſ

ł

ſ

1

Ľ

The two outcrops mapped are classified as pegmatitic granites. Pegmatitic granites commonly form outer concentric zones around fertile granite cores. Texturally homogeneous, fine-grained, equigranular, fertile granites grade into more heterogeneous, coarser-grained, inequigranular, pegmatitic granites. This textural gradation is probably due to enrichment in H_2O and other volatiles in the residual melt as the granitic melt crystallizes to form the fertile granite core. Enrichment in volatiles serves to depolymerize residual melts effectively reducing the viscosity of these melts and allowing them to crystallize at lower temperatures.

As well as textural gradation, there is also compositional gradation from fertile granites to pegmatitic granites. This transition may be facilitated by the process of thermogravitational convection-diffusion. According to P. Cerny, this process causes concentration gradients to develop in a multicomponent (liquid and gas) system, which is subjected to a thermal gradient. The thermal gradient causes the lower portions of the system to convect more rapidly and become compositionally separated from the upper portions of the system. Compositional layering leads to enrichment in Nb, Ta, Sb, Sn, Mo, W, U, Th, Li, Rb, Cs, Tl, Be, Sc, Mn, Y, HREE's, H₂O, Cl, and F upwards and outwards from the fertile granite core into the pegmatitic granite (Fig. 4). Thermogravitational convection diffusion also leads to relative depletion of Mg, Ca, Ba, Sr, Fe, P, Ar, and LREE's in pegmatitic granites (Cerny, 1982). The compositional differences between fertile granites

and pegmatitic granites is later exaggerated by fractionation of pegmatitic granites (but not fertile granites) to form pegmatites.

*

.

P

4

Ę

4. ULTIMATE ORIGIN OF PEGMATITIC GRANITES

4

ju

Since pegmatitic granites are derived from fertile granites, the source for fertile granites is intuitively also the ultimate source for pegmatitic granites. Fertile granites were probably formed from a mixture of three melts of different composition (Cerny, 1982). The earliest contribution to a fertile granite is tonalite-granodiorite bodies, which are derived from the melting of basaltic rocks at the base of the crust or the mantle. The second contribution is batholithic granodiorites-granites, which are supplied to fertile granites by partial melting of tonalite to form I-type granites, and the direct anatexis of supracrustals to form peraluminous S-type granites. The last contribution to a fertile granite system are leucogranites and alaskites which are intruded during the late tectonic history of an area or post tectonism (as S-type melts mobilized by anatexis of greenstone belt sediments). Alaskites are defined as plutonic rocks composed of oligoclase, microcline and quartz with minor muscovite and no mafics (Bates *et al.*, 1984).

5. PHASE CLASSIFICATION OF PEGMATITIC GRANITES

Both the TPG and CPG were mapped using a scale of 1:500. This scale was chosen because it is appropriate to show the relatively fine detail of the textural phase contacts within these pegmatitic granites. Four textural phases were identified; in order of decreasing predominance these are: 1) pegmatitic leucogranite, 2) fine-grained leucogranite, 3) sodic aplite, and 4) pegmatitic potassic phase. Phase classification was based on Cerny *et al.* (1981). These phases commonly contact each other gradationally and locally occur together as thin alternating layers. For this reason, mapped units are subdivided based on the dominant phase in each area, and do not indicate that all other phases are absent in the location. In the case of extremely slow gradation from one phase into another, contacts were mapped arbitrarily at some point along the gradation where one phase became noticeably dominant over the other. However, despite these difficulties encountered while mapping, maps generated demonstrate the strongly developed foliation in both the TPG and CPG (Fig. 22, and Fig. 30).

5.1 Pegmatitic Leucogranite Phase

4

Pegmatitic leucogranite is the most abundant textural phase within the mapped pegmatitic granites. This phase is characterized by large (5-100 cm diameter but most commonly 5-10 cm) megacrysts of potassium feldspar (K-feldspar). These megacrysts are

locally intergrown with graphic quartz, a texture created by the coeval and interpenetrative crystallization of quartz and K-feldspar (Fig. 10) (Klein and Hurlbut, 1993). A matrix of fine to medium-grained K-feldspar, albite plagioclase, quartz and muscovite surrounds the K-feldspar megacrysts. Locally, minor garnet and/or tourmaline are also present, although these are not obvious in outcrop.

Megacrysts of K-feldspar are subhedral and exhibit a somewhat winged appearance (Fig. 5). These "winged" megacrysts appear rotated but do not clearly define the sense of rotation, therefore, these "wings" are interpreted as edge effects created by dynamic recrystallization in response to north-northwest to south-southeast directed compression during D1 deformation (described later in this paper). Dynamic recrystallization is a mechanism by which recovery and recrystallization proceed during deformation. Recovery rearranges and destroys dislocations (distortions in the crystal lattice) in order to promote "healing" of grains. Recrystallization transforms old "defective" grains into new grains with more ordered crystal form (Davis and Reynolds, 1996). Dynamic recrystallization often results in reduced grain size, which is evident in the pegmatitic leucogranite textural phase around the edges of and between K-feldspar megacrysts (Fig. 21).

j

Plumose intergrowths of muscovite and quartz in a variety of forms, constitutes another notable texture within the pegmatitic leucogranite phase. Muscovite and quartz may be intergrown: 1) in randomly distributed patches ranging from 2 cm to 10 cm in diameter (Fig. 6a), 2) as radial outgrowths originating at a larger mineral grain such as a garnet crystal,

3) as randomly oriented, interweaving strands several 10's of cm long (Fig. 6b), or 4) as concentrations of quartz and muscovite intergrown along contacts between textural phases (Fig. 9).

5.2 Fine-grained Leucogranite Phase

i

Fine-grained leucogranite is also abundant within the pegmatitic granites mapped. Rocks exhibiting this textural phase are equigranular and relatively homogeneous, but are compositionally similar to the pegmatitic leucogranite phase (Fig. 9). In the field, finegrained leucogranite appears pale-pink mottled with darker patches of muscovite. Perthitic microcline, quartz, albitic plagioclase, and muscovite are abundant whereas zircon, garnet and apatite comprise accessory minerals. The only textural inhomogeneity observable is rare, poorly developed, zones enriched in muscovite and/or garnet. Fine-grained leucogranite commonly has gradational contacts with sodic aplite, the next most abundant textural phase.

5.3 Sodic Aplite Phase

The sodic aplitic phase is easily distinguished from other textural phases by its layered texture. Visible layering is due to concentrations of greenish muscovite and garnet parallel to foliation (Fig. 7). When compared to fine-grained leucogranite, sodic aplite has

more muscovite, albitic plagioclase, and garnet but less K-feldspar (Cerny *et al.*, 1981). Aplite exhibits a sugary texture and appears pale pink to white.

5.4 Pegmatitic Potassic Phase

The fourth and final textural phase of pegmatitic granites is the potassic pegmatitic phase. This phase is very coarse with euhedral K-feldspar megacrysts commonly up to 15 cm in diameter, quartz megacrysts, and large books of muscovite also on the scale of \sim 15 cm diameter (Fig. 8). K-feldspar megacrysts display perthitic exsolution lamellae of albite. The pegmatitic potassic phase crosscuts all other textural phases indicating this is the last phase to crystallize from the pegmatitic melt.

ſ

ſ

r

F

r

r

ſ

ſ

ŗ

ŗ

ŗ

Fig. 5 *K-feldspar megacrysts within the Pegmatitic Leucogranite phase of the Turtleback pegmatitic granite. The "winged" appearance of the megacrysts is due to edge-effects caused by dynamic recrystallization of the megacrysts during compressional deformation events.*

and the second

I

1

T

Sec.

Fig. 6 Examples of Plumose muscovite-quartz intergrowth morphology; a) Patches b) Interweaving strands.

Fig. 7 Layered appearance of the sodic aplite textural phase. Layering is due to zones rich in muscovite and garnet.

ŗ

ŗ

ſ

6. CONTACT RELATIONSHIPS BETWEEN TEXTURAL PHASES

. ie

¥.

Ĩ

As mentioned previously, contacts between textural phases in pegmatitic granites are commonly gradational. In particular, contacts between fine-grained leucogranite and sodic aplite are typically gradational beginning with small layers of sodic aplite appearing within the fine-grained leucogranite phase or vice versa. These small layers gradually widen and become more abundant until equal amounts of sodic aplite and fine-grained leucogranite are present. Locally, within the pegmatitic granites mapped, areas with interlayered sodic aplite and fine-grained leucogranite were quite widespread without either phase obviously dominant. At these sites, it was necessary to map a mixed lithology comprising both the interlayered textural phases. Contacts between fine-grained leucogranite and sodic aplite were mapped at the point where either sodic aplite or fine-grained leucogranite layers became dominant. Within the sodic aplite phase, however, thin layers of fine-grained leucogranite are commonly still present.

Fine-grained leucogranite also has gradational contacts with the pegmatitic leucogranite phase. The transition to pegmatitic leucogranite is characterized by the appearance of K-feldspar megacrysts and contacts were consequently mapped using this criterion. Contacts between the pegmatitic leucogranite and fine-grained leucogranite appear gradational because the dynamically recrystallized matrix of the pegmatitic leucogranite phase looks similar to the fine-grained leucogranite phase. This is because dynamic recrystallization often results in reduced grain size (Davis and Reynolds, 1996). A different

type of contact occurs where plumose muscovite concentrations delineate contacts between pegmatitic leucogranite and fine-grained leucogranite (Fig. 9). The color contrast between the pale pink leucogranite phases and the dark colored plumose muscovite intergrowths emphasizes the contact giving a sharp contact appearance. The shape of these contacts are commonly well defined "scalloped" shapes subparallel to foliation. Plumose muscovite intergrowths at these locations often "finger" away from the contact and into the adjacent pegmatitic granite phases.

ġ

The pegmatitic potassic phase forms the only truly sharp contacts between the textural phases of a pegmatitic granite. This phase crosscuts other textural phases and forms very sharp contacts with no visible gradation. This offers further evidence that the pegmatitic potassic phase was a late stage melt which crystallized only after all other textural phases had solidified.

No. of Lot of Lo

MIL IN

1

and the second

No.

1000

Fig. 9 Scalloped contact between pegmatitic leucogranite (at top left of figure) and fine grained leucogranite (at bottom right of figure).

Fig. 10 Graphic intergrowth of quartz and K-feldspar located within the pegmatitic potassic phase of the Turtleback pegmatitic granite.

7. DIFFERENCES OBSERVED BETWEEN PEGMATITIC GRANITES STUDIED

The phase descriptions above apply to pegmatitic granites in general and describe the textural variability of both the TPG and CPG. However, some notable differences exist between these two outcrops. The TPG is overall lighter pink in color than CPG, which is commonly a dark salmon-pink in many places especially within the pegmatitic leucogranite phase. This may be due to the more elevated relief of CPG, which could have resulted in more intensive weathering of this outcrop when compared to the TPG. The dark pink color observed in CPG may also be due to compositional variations such as a greater proportion of salmon-pink K-feldspar in CPG than in the TPG, which is richer in white albite plagioclase.

N)

CPG is much coarser grained than the TPG, and seems to undergo a gradual coarsening southward across the outcrop. For example, although pegmatitic leucogranite is the predominant phase in both CPG and the TPG, CPG has much more abundant pegmatitic leucogranite (with larger K-feldspar megacrysts) and even the fine-grained leucogranite of CPG is coarser in texture than the fine-grained leucogranite phase of the TPG. Sodic aplite is nearly absent from CPG except for a few small exposures of this textural phase near the southern edge of the outcrop. This may help to explain why the fine-grained leucogranite of CPG appears coarser grained than that of the TPG. The fine-grained leucogranite in CPG is not interlayered with sodic aplite the same way it is in the TPG. This leads to an overall coarser appearance of the fine-grained leucogranite phase in CPG.

Perthitic texture commonly occurs within K-feldspar megacrysts in both the TPG and CPG, however this exsolution texture is much more widespread and visible in CPG. This may simply be because K-feldspar megacrysts are so much more abundant and larger in CPG than in the TPG. The same observations are true of graphic texture in K-feldspar megacrysts (Fig. 10).

No beryl mineralization was observed within the TPG, but at least one large euhedral green beryl crystal was present in CPG. The observed beryl was approximately 4 cm long and 2cm wide, pale-milky-green in color, and was situated in a matrix of megacrystic graphic K-feldspar. Perhaps, beryl mineralization occurs in the TPG and was simply overlooked during mapping. The overall finer grain size on the TPG may have resulted in beryl crystals too fine-grained for field identification.

:

Despite the apparent differences between the two pegmatitic granites mapped, they are similar in many ways. Topographically, compositionally, texturally, and even structurally, the TPG and CPG are closely related.

8. OUTCROP STYLE

e

ţ

8.1 Turtleback Pegmatitic Granite

The TPG crops out for approximately 280 m in an east-west direction as a complex series of north-northeast trending ridges and patches of pale pink to white pegmatitic granite bounded to the north, south and west by pillowed basalt and coarser grained gabbroic units (probably the bases of thick flows rather than "true" gabbros) (Fig. 11). The eastern boundary of this outcrop is not exposed in the area mapped. North to south, the TPG is nearly 150 m wide. This outcrop is so named because the topographic relief is reminiscent of the curved backs of turtles.

8.2 Cook's Pegmatitic Granite

CPG crops out as a narrow west southwest-east northeast trending linear ridge for approximately 280 m (Fig. 12). This pegmatitic granite is approximately 100 m wide from north to south. CPG has moderately high relief and steep north and south flanks. Bounding lithologies are not observed except for a small outcrop of strongly foliated, altered basalt on the southwest tip which appears sheared in an east-west direction, a few small gabbroic outcrops along the base of the southern outcrop flank and another gabbroic outcrop at the easternmost outcrop boundary. **TURTLEBACK PEGMATITIC GRANITE**

LEGEND

AULUN

100

and a

Γ

1

ſ

T

1

FINE GRAINED LEUCOGRANITE

PEGMATITIC LEUCOGRANITE

SODIC APLITE

POTASSIC PEGMATITE

TRANSITIONAL PHASE BETWEEN PEGMATITIC LEUCOGRANITE & FINE GRAINED LEUCOGRANITE

TRANSITIONAL PHASE BETWEEN FINE GRAINED LEUCOGRANITE & SODIC APLITE

METAVOLCANIC HOST

Fig. 11 Map of the Turtleback pegmatitic granite with textural phases delineated.

Π

Π

Π

Π

Γ

0 10 20 30 m SCALE

<u>LEGEND</u>

FINE GRAINED LEUCOGRANITE

PEGMATITIC LEUCOGRANITE

SODIC APLITE

POTASSIC PEGMATITE

TRANSITIONAL PHASE BETWEEN PEGMATITIC LEUCOGRANITE & FINE GRAINED LEUCOGRANITE

TRANSITIONAL PHASE BETWEEN FINE GRAINED LEUCOGRANITE & SODIC APLITE

METAVOLCANIC HOST

Fig. 12 Map of Cook's pegmatitic granite with textural phases delineated.

9. MICROSCOPIC AND SCANNING ELECTRON MICROPROBE ANALYSIS

The major minerals of pegmatitic granites are K-feldspar, plagioclase feldspar, muscovite, and quartz. K-feldspar takes the form of microcline (KAISi₃O₈) in the pegmatitic granites studied. This type of K-feldspar is characterized by tartan twinning when observed under polarized light. Microcline is commonly graphically intergrown with quartz to form graphic granite such as that observed in the pegmatitic potassic textural phase (Fig. 11). Graphic granite is formed by the crystallization of quartz and K-feldspar (usually microcline) simultaneously so that the crystals interpenetrate as they form (Klein and Hurlbut, 1993). Perthitic texture (Fig. 13) is also common within microcline and occurs when slow cooling at considerable depths allow albite to exsolve and form laminae within the microcline crystals.

Albite (NaAlSi₃O₈) is the common plagioclase feldspar of the pegmatitic granites studied. Albite is classified as an alkali feldspar along with microcline and orthoclase. This mineral is the common plagioclase feldspar of granites, syenites, pegmatites, rhyolites and other acid igneous rocks (Klein and Hurlbut, 1993). Albite may be identified by parallel twinning lines (albite twins) and by the white color it exhibits.

Muscovite $(KAl_2(AlSi_3O_{10})(OH_2)$ appears pale greenish to yellow or silvery in the two pegmatitic granites mapped. In the field, the cross-sectional edges of muscovite books

appear dark-grey to brown or even black depending on the thickness of the book and degree of weathering the book has undergone. However, regardless of the color displayed by muscovite books, individual muscovite sheets from the TPG and CPG are transparent and colorless.

As well as the major minerals forming the pegmatitic granites, there are a number accessory minerals of note. Rutile (TiO_2) , also called ilmenite, is a minor constituent of the pegmatitic granites studied. This titanium oxide occurs as granular masses associated with zircons (Fig. 14a) or as reddish brown acicular crystals along the cleavage planes of muscovite (Fig. 14b). Rutile indicates that the rock containing it formed over a high range of pressures and temperatures and is commonly found in granite and granitic pegmatites (Klein and Hurlbut, 1993).

Zircons ($ZrSiO_4$) are also found within pegmatitic granites. This mineral occurs as tiny euhedral stubby or prismatic crystals, which are distributed throughout the textural phases of the pegmatitic granites, studied. Zircons are common in all types of igneous rocks but are especially common in granites and other SiO₂ rich rocks (Mottana *et al.*, 1978).

Gahnite $(ZnAl_2O_4)$ is another accessory mineral of pegmatitic granites (Fig. 15). This rare mineral occurs within granitic pegmatites as striated octohedral-shaped crystals with a characteristic dark green color. Gahnite crystals are pleochroic, euhedral, tiny and pebbly

D

in appearance. Gahnite is a zinc spinel (spinel is defined as an isomorphous series of oxides) (Bates *et al.*, 1984).

ļ

Ľ

4

ļ.

Fig. 13 Perthite exsolution texture. Note the pale colored albite exsolution lamellae within darker microcline. This perthite crystal contacts quartz within the pegmatitc potassic phase of Cook's pegmatitic granite. (50x magnification, crossed polars.)

Income

and a second

10000

and the second

-

Fig. 14 Rutile occurs as:

a) granular masses associated with zircons. (200x magnification, crossed polars.)

b) in the form of acicular crystals parallel to cleavage planes in muscovite. (200x magnification, plane polars.) Apatite $[Ca_5(PO_4)_3(F,Cl,OH)]$, a phosphate mineral, is also present within the pegmatitic granites studied. These crystals are generally long prismatic or short prismatic in crystal form, usually green or brown in color but also sometimes appearing blue, violet, colorless, transparent, or translucent. In the two pegmatitic granites studied, apatite can be recognized in the field by its rich blue color and eubedral crystal form. Apatite is a common accessory in rocks of all types (igneous, metamorphic and sedimentary) but when apatite occurs in pegmatites it probably originated hydrothermally (Klein and Hurlbut, 1993).

Monazite [(Ce,La,Y,Th)PO₄] is yet another accessory mineral in pegmatitic granites. This mineral occurs in granular masses or as small flattened crystals which are translucent and reddish-brown in color. This mineral, like apatite, is also a phosphate mineral but monazite is a phosphate of rare-earth metals so it is much different in composition from apatite. Monazite is quite rare but is occasionally found in granites, gneisses, aplites and pegmatites. It is associated with rutile, magnetite, ilmenite and zircon. Energy Dispersive Spectrometry (EDS) performed on this mineral are characterized by several percent SiO_2 , as well as Th, and Y highs. When extremely rich in Y, this phosphate can be classified as yttrium phosphate instead of as monazite (personal communication from Mr. Tom Bonli, University of Saskatchewan).

ſ

Garnets are the most abundant accessory mineral found within the pegmatitic granites studied (Fig. 16). Scanning electron microprobe (SEM) analysis of garnets indicates that the garnets present within the pegmatitic granites range in composition from spessartine

 $(Mn_3Al_2Si_3O_{12})$ to almandine $(Fe_3Al_2Si_3O_{12})$. Spessartine has a brownish-red color and comprises most of the garnets analyzed. Almandine is usually a deep red to brownish red in color and there is some almandine component present in all the garnets analyzed although the garnets are predominantly the spessartine variety (Klein and Hurlbut, 1993).

One group of accessory minerals of special note is ferrocolumbite - ferrotantalite $[(Fe,Mn)Nb_2O_6 - (Fe,Mn)Ta_2O_6)]$. These rare-metal oxides were first identified as opaques under transmitted and polarized light (Fig. 17). Further investigation using the SEM determined that these opaques were indeed iron rich Nb-Ta oxides. Crystals of this mineral have a short prismatic or thin tabular form occasionally becoming quite elongate (Fig. 17 and Fig. 18). Ferrocolumbite - ferrotantalite crystals have a striated, black, metallic appearance. These oxides are associated with quartz, feldspar, mica, tourmaline, beryl, cassiterite, wolframite, microlite and monazite. Commonly ferrocolumbite - ferrotantalite is found in granitic pegmatites rich in Li-silicates and phosphates associated with spodumene, lepidolite, beryl and other minerals (Klein and Hurlbut, 1993).

1

4

Fig. 15 Microprobe photo of gannite crystal within the sodic aplitic phase of Cook's pegmatitic granite.

Fig. 16 Micrograph of garnets found in association with muscovite within a muscovite and garnet rich zone in the fine grained leucogranite phase of the Turtleback pegmatitic granite. (50x magnification, plane polars.)

Fig. 17 Micrograph of euhedral ferrocolumbite-ferrotantalite crystal observed within the fine grained leucogranite phase of Cook's pegmatitic granite. (50x magnification, plane polars.)

Fig. 18 Two ferrocolumbite-ferrotantalite crystals as seen through a scanning electron microprobe. The crystal on the left is the same crystal shown above. The crystal on the right is another crystal from Cook's pegmatitic leucogranite. Both crystals show zoning within.

10. STRUCTURAL HISTORY

The structural history of the region encompassing the TPG and CPG can be subdivided into two distinct deformation events. Deformation D1 provided the weaknesses within the host metavolcanic along which the pegmatitic granites were emplaced and facilitated the development of S1 fabric. Deformation D2 acted next to cause isoclinal folding of the pegmatitic granites. D2 deformation created S2 foliation, transposed S1 parallel to S2, and resulted in the present orientations of the structural features within the pegmatitic granites studied.

D1 and D2 deformations are named for their relationship with the pegmatitic granites studied only, and do not suggest that D1 is the first deformation in the SLGB. Rather, D1 is the first deformation that affected the pegmatitic granites because this deformation controlled their emplacement and resulting internal fabric (S1). However, metavolcanics were variably deformed prior to pegmatitic granite emplacement by a number of deformation events beyond the scope of this study.

10.1 Deformation D1 - Formation of S1 Fabric

Deformation D1 was the first deformation event, which affected the pegmatitic granites studied. This deformation created an S1 fabric, which overprinted previously

developed fabrics within the variably deformed metavolcanic rocks of the study area. This deformation is referred to D1 for the purposes of this thesis because, although it is not the first deformation affecting the study area metavolcanics, it is the first deformation event affecting the pegmatitic granites which are the focus of this study. This so-called S1 foliation acted as a structural weakness within the host metavolcanics along which pegmatitic granites were emplaced. Emplacement processes resulted in parallel orientations of; 1) the contacts between pegmatitic granites and host metavolcanics, 2) textural phase contacts within the pegmatitic granites, and 3) mineralogical layering with the pegmatitic granites. These three structural phenomena define S1 foliation.

N.

The next deformation event (D2), caused transposition of S1 fabric into the newly developed S2 fabric. This transposition makes definition of the stress regimes associated with D1 impossible. Therefore, the direction D1 stresses acted cannot be determined through field relationships. Perhaps, this information could be attained through careful study of the complete sequence of deformations within the host metavolcanics, however, this is beyond the scope of study.

10.1 Deformation D2 - Formation of S2 Fabric

Deformation D2 was the next deformation event to affect the TPG and CPG. Northnorthwest to south-southeast directed compression during this deformation caused isoclinal
folding of the pegmatitic granites, the development of minor folds on fold noses within these pegmatitic granites, and dynamic recrystallization within the pegmatitic leucogranite textural phase. S2 foliation fabric developed in response to deformation D2. D2 also caused the transposition of previously developed S1 foliation into an orientation parallel S2. S2 foliation strikes roughly west-southwest to east-northeast, therefore so does the transposed S1 foliation in most locations within the pegmatitic granites.

1

Ę

IJ

Þ

S1 and S2 foliations are predominantly parallel within the pegmatitic granites and can only distinguished as different foliations where fold noses are visible and at some locations where pegmatitic granite contacts the host metavolcanics. In fold noses located in the TPG, S1 foliation approximately follows the trace of fold limbs, whereas S2 foliation cuts across fold limbs and noses parallel to fold axial plane orientations and parallel to the predominant foliation within the pegmatitic granite (~072° strike) (Fig. 19). Along some boundaries of the TPG, the metavolcanic host lithology exhibits S1 fabric developed parallel to the contact between the pegmatitic granite and the host regardless of the local contact orientation (i.e. even if this contact has an irregular orientation). In these situations, S1 is not always parallel to S2. These locations display S2 fabric developed roughly parallel to the S1 fabric except where the S1 fabric "bends" around the contact between pegmatitic leucogranite and the host lithology. Here, the S2 fabric appears to overprint the S1 fabric obliquely with the same strike as the predominant foliation in the area (072°) and is not affected by the irregular contact boundary.

Fig. 19 Fold noses in the Turtleback pegmatitic granite. Note that S1 and S2 fabrics can be distinguished at this location. S1 fabric follows the trace of the fold limb (shown in yellow) whereas S2 is parallel to the axial plane of the fold (shown in red). Minor buckle folds are evident on the limbs of the major folds in the vicinity of the fold noses.

Within the TPG and CPG, free folding occurred in response to D2 compressive deformation (Fig. 20). This type of folding occurs when layer-parallel compression causes poly-layer lithologic sequences to shorten and thicken. Next, buckling instabilities develop within the stiffest layers. These buckling instabilities develop fold wavelengths related to the stiffness of the strongest, thickest unit as well as related to the stiffness of the specific layer which is buckling. Continued folding is accommodated by flexural-slip. Flexural slip is a mechanism by which layer-parallel slip occurs along the contacts between rock layers during folding. Flexural slip can be illustrated by bending a phonebook and noting the way the pages slide past one another. Free folding created the minor folds visible in the fold noses in the TPG. Sub-vertically dipping, isoclinal folds were also developed in response to D2 deformation. The limbs of these folds are attenuated and display no minor folds. The noses of these isoclinal folds were undergoing compression while the limbs were in a state of extension during D2 deformation.

1

Dynamic recrystallization of K-feldspar megacryst edges observed within the pegmatitic leucogranite phase (described previously) is evident even on a microscopic scale. A dynamically recrystallized matrix of fine-grained albite, quartz, microcline, and muscovite is deflected around the edges of megacrystic perthite crystals (Fig. 21). Beyond the field of view of Fig. 21, this dynamically recrystallized matrix merges with the fine-grained K-feldspar "wings" which extend away from the K-feldspar megacrysts. These "wings" were also formed by dynamic recrystallization of the pegmatitic leucogranite phase in response

to layer parallel compression during D2 deformation. "Wings" extend out from the K-feldspar megacrysts perpendicular to the direction of compression during D2 deformation. Grain size within these "wings" decreases outward from the central megacryst mass. The edges of the K-feldspar megacrysts appear pitted and rough due to the effects of recrystallization.

Ţ

Ę

Į

-1

IJ

U

IJ

Fig. 20 Simulation of free folding at the subregioinal to regional scale. A) Layer-parallel tectonic loading just begins to compress and shorten a thick sequence of sedimentary strata. B) A buckling instability develops, with a dominant wavelength that relates to the stiffness of the thickest, strongest unit. C) Initial buckling and continued folding are accompanied by flexuralslip and flexural-flow folding. "Minor" structures form as a result of flexural-slip folding, outer arc extension, and inner arc compression. (modified from Davis and Reynolds, 1996).

Fig. 21 Dynamically recrystallized matrix around edges of K-feldspar megacryst (perthite) within the pegmatitic leucogranite phase of the Turtleback pegmatitic granite. Recrystallization such as this develops "edge effects" within the pegmatitic leucogranite textural phase and create the misleading appearance of "wings". (15x magnification, crossed polars.)

11. STEREOGRAPHIC NET REPRESENTATION OF STRUCTURAL DATA

All collected structural data was plotted using Spheristat 2 for Windows 3.1 computer software - Version 2.1. All stereonets were constructed as lower hemisphere projections on a Schmidt net. Contour intervals were chosen individually to best suit the number of relevant data points available for each stereographical plot. The chosen contour intervals attempt to keep the stereonets as simple as possible with the minimum number of contour intervals required to accurately describe the data. All contouring was done using Gaussian counting. This method was chosen over fixed-circle counting because it includes all samples but rather than weighting all data points equally, this counting method allots more statistical weight to those data points near the center of the data cluster. Gaussian counting is favored for the purposes of this paper because it gives much smoother density contours than fixedcircle counting making stereonet interpretations straightforward and representative while reducing the effects of widely scattered data points. The 3x Sigma method of Gaussian counting was used because this method yields smoother contour surfaces than other Gaussian counting methods in which contour surfaces have sharp peaks and valleys. Smooth contour surfaces facilitates rapid comparison between structural data acquired at different locations and between different structural features. Smooth contours emphasize the similarities between data collections rather than the variations. Joint measurements had to be subdivided into two separate joint sets for each location. Subdivision was done by hand picking joints which showed grouping characteristics and were separated from other joint clusters by intervals with no data points.

A general plane has been plotted on each stereonet generated. This plane represents the strike and dip of the plane oriented perpendicular to the plunge and trend of a pole at the center of the highest density contour on the stereonet. This general plane is representative of the most common orientation of the specific structural feature being plotted.

Ľ

D_

12. STRUCTURAL FEATURES OF THE TURTLEBACK PEGMATITIC GRANITE

12.1 Foliation

The TPG has strongly developed foliation. The general foliation plane has a strike of 072° and dip of 86°N. The measured foliation is comprised of both S2 and the transposed S1 foliations which are parallel in most locations. As well as development within the outcrop, foliation is mirrored by the external morphology of the TPG outcrop which is elongated along the strike 072° and was controlled by S1 then transposed into S2. This relationship suggests that emplacement of the TPG occurred in an active tectonic regime at which time compressional deformations developed strong S1 foliation in the host rock. The TPG intruded along the structural weaknesses of the S1 fabric.

12.2 Jointing

Jointing in the TPG occur in two major directions (Fig. 24 and Fig. 25). The first joint set is vertically dipping and strikes at 164°. The second joint set is also vertically dipping and has a calculated average joint plane with 072° strike. This second joint set strikes parallel to foliation in the TPG. These joint sets strike at 92° from one another making them nearly perpendicular sets. Neither joint set one nor joint set two are folded, therefore, jointing must be a late stage structural feature postdating both D1 and D2 deformations. Joints are formed during brittle deformations and therefore are suspected to

have formed after peak metamorphism and also after cooling of the pegmatitic granite intrusions. Regional stress regimes formed these joint sets which are equally developed within the host metavolcanic and the pegmatitic granite. Joints present on the TPG show no offsets and show no significant degree of spreading. These joints appear as narrow, regular, closed cracks which show infill only very rarely where veins of pegmatitic granite are injected into the host metavolcanics.

12.3 Veins

Narrow veins injected into metavolcanics in the vicinity of the TPG a general orientation of 050° with a northwesterly dip of 74° (Fig. 26). This steep dip mirrors the steep dip of both foliation and jointing on the TPG. The strike of veins on the TPG is also similar to the orientation of foliation and joint set two. The general vein orientation of 050° varies by 22° when compared to the general orientation of the second joint set or when compared to foliation. This variation in the orientation of major structural features may be explained by the small number of data points available for vein analysis. However, the departure of 22° between vein strike and joint/foliation could indicate that veins on and near the TPG were not controlled by foliation nor by jointing, and may in fact have formed prior to jointing. It is notable that there are only seven data points representing veining on the TPG. These data points show scatter of nearly 80° variation in strike orientation. This creates an inaccurate general plane estimation because the center of density can vary up to 30°.

correlation suggests that veins are controlled by and infill joints belonging to joint set two. Veins tend to travel along weaknesses in the host lithology. For example, veins are developed along pillow selvedges (a lithological weakness) found within a roof pendant of pillow metabasalt present in the TPG (Fig. 27).

12.4 Boudinage

Į

Ľ

A boudinaged pegmatitic granite layer was found within the roof pendant of pillow basalt in the TPG (Fig. 28). The more mechanically soft pillow basalt layers enveloped the mechanically stiff pegmatitic granite layer so that when compression occurred perpendicular to the pegmatitic granite layer, extension occurred parallel to the layer direction. This extension caused the stiff pegmatitic granite layer to stretch producing pinch-and-swell type boudinage structures. The thin neck of pegmatitic granite was produced by ductile necking of this material as a form of strain. Ductile necking of materials occur when the difference in the stiffness of the materials involved is relatively small, in this case; between the metabasalt and the pegmatitic granite. The pillow basalt wraps around the edges of the pegmatitic granite as a result of compression pushing the basalt inwards towards the neck structures in the pegmatitic granite. This deflection of pillow basalt into the gap between the pegmatitic granite boudins is described as prolapse.

Since the pegmatitic granite material behaved as though it had only slightly higher strength than the metabasalt, this boudinage structure must have been formed when the pegmatitic granite material was in a ductile or semi-ductile state. This suggests that compression acting to create the pinch-and-swell structures occurred soon after emplacement of the pegmatitic granite, or more likely that the pegmatitic granite was boudinaged during amphibolite grade metamorphic conditions. Evidence for the second scenario is that the metamorphic minerals within the pillow basalt are aligned parallel to S1 so it must have been deformed at a temperature of 650°C or higher (personal communication from Dr. Mel Stauffer, University of Saskatchewan). This suggests that the pegmatitic granite was also at a temperature ~650°C. Therefore, the pegmatitic granite would have behaved in a ductile or semi-ductile manner during boudin formation.

,

ł

46

TURTLEBACK PEGMATITIC GRANITE FOLIATION

Fig. 22 Map of the Turtleback pegmatitic granite with selected foliation measurements shown. <u>Turtleback Pegmatitic Granite: Foliation</u>

General Foliation Plane: 072 / 86 N

1

1

1

Π

Π

П

17

Π

Π

П

П

Π

n

Π

Π

Fig. 23 Stereonet representation of Turtleback pegmatitic granite foliation measurements.

TURTLEBACK PEGMATITIC GRANITE JOINTING

Fig. 24 Map of Turtleback pegmatitic granite with selected joint measurements shown.

Π

Π

Π

U

U

IJ

ij

IJ

1

1

]

Fig. 27 Carbonate vein development along pillow selvedges within a roof pendant of metabasalt in the Turtleback pegmatitic granite.

No.

Π

13. STRUCTURAL FEATURES OF COOK'S PEGMATITIC GRANITE 13.1 Foliation Foliation in CPG has a strike of 069° and a steep southerly dip of 74° (Fig. 29 and

Fig. 30). This orientation is similar to the foliation present in the TPG which is 072°/86°S. Strike is only 3° different and dip varies by 17° but acts in the opposite direction (south on CPG). These variations are easily accounted for by sampling errors and by errors in the stereonet calculation of general plane. Although over a kilometer separates CPG from the TPG, both these outcrops were affected by the same regional events. Foliation in CPG was therefore, controlled by the same mechanisms which created the foliation in the TPG. The foliation producing mechanisms were emplacement during D1 and folding during D2 deformation.

13.2 Jointing

There are two identified joint sets present in CPG (Fig. 31 and Fig. 32). Joint set one is oriented at; 159°/84°SW. Joint set two is oriented at; 070°/75°N. These joint sets are similar to the respective joint sets measured on the TPG. Joint set one varies in strike by only 5° and in dip by only 2°. Joint set two varies in strike by only 2° and in dip by a somewhat larger, but still negligible amount; 15° steeper in the TPG. Because the similarities between joint orientations are so striking when the TPG and CPG are compared, it is

interpreted that the same mechanism which created jointing in the TPG was also active in

CPG.

COOK'S PEGMATITIC GRANITE N FOLIATION

0 10 20 30 m SCALE Fig. 29 Map of Cook's pegmatitic granite with selected foliation measurements.

Cook's Pegmatitic Granite: Foliation

General Foliation Plane: 069 / 74 S

Fig. 30 Stereonet representation of foliation measurements taken in Cook's pegmatitic granite.

Contour Interval: 0,2,4,6,8

Fig. 32 Stereonet representations of Cook's pegmatitic granite joint measurements.

ſ

ſ

The rocks between CPG and the TPG contain mainly metavolcanics in which foliation was similar to that measured in the two pegmatitic granites (Fig. 33). Foliation between the two pegmatitic granites has a general orientation of 081°/82°S. The strike of this foliation is 9° off the TPG foliation and 12° off CPG foliation. The dip of foliation between the pegmatitic granites is 4° different than the foliation in the TPG but dipping north instead of south, and 8° steeper than the foliation in CPG.

14.2 Jointing

Jointing in the rocks between pegmatitic granites forms in two distinct joint sets (Fig. 34). Joint set one has a general orientation of $166^{\circ}/84^{\circ}E$. This varies from the foliation strike in the TPG by 2° and only 7° from the foliation strike in CPG pegmatitic granite. The general plane of joint set one shows the dip of joint set one between the pegmatitic granites to be identical to the dip of joint set one in CPG and only 6° shallower than the dip of this joint set in the TPG. Joint set two has a general joint plane of $079^{\circ}/79^{\circ}S$. This varies by only 9° strike from CPG and by only 7° strike from the TPG. The dip of joint set two's general plane between the two pegmatitic granites is 11° shallower than the general dip in the TPG, and 4° steeper than the dip in CPG.

Contour Interval: 0,2,4,6,8

Fig. 33 Stereonet representation of foliation measurements taken between the two pegmatitic granites studied.

Contour Interval: 0,2,4,6,8

1

1

Contour Interval: 0,2,4,6

14.3 Veins

* T

The general orientation of veins measured between the two pegmatitic granites is 081°/77°S. This is 31° than the strike of the veins encountered in the vicinity of the TPG. Veins measured between the TPG and CPG have a general dip which is 3° steeper than the dip of the veins near the TPG pegmatitic granite. Also, between the granite bodies, veins dip south, and in the TPG veins dip northwest. The most likely cause for these variations in vein orientation is error due to a very low number of data points. When data points are so few in number, each point is allotted a large value when density contouring is done. This often results in less accurate calculation of stereonet general planes. Another possible cause for the variation may be that different veining mechanisms act in the metavolcanics significantly distant from the pegmatitic granites than the mechanisms causing veins proximal to the pegmatitic granites.

1

Π

Π

П

Π

П

Π

1

Π

1

Π

Contour Interval: 0,2,4,6

Fig. 35 Stereonet representation of vein measurements taken between the two pegmatitic granites studied.

15. DISCUSSION

I

1

Although separated by over a kilometer in a north-south direction, the TPG and CPG are similar with respect to; areal extent, topographic relief, texture, mineralogy, and structure. Once related by such similarities, the TPG and CPG may be treated as one type of potential source for highly fractionated rare-element pegmatite deposits. Therefore, understanding these pegmatitic granites could lead to better understanding and delineation of rare-element deposits.

As seen in Fig. 11 and Fig. 12, both these pegmatitic granites crop out along a westsouthwest to east-northeast trend for approximately 280m east to west and between 100 and 150m north to south. This relationship with respect to areal extent suggests that the TPG and CPG may; have similar volumes, be emplaced and subsequently deformed by similar mechanisms (i.e. emplaced along S1 foliation then deformed by D2), and may therefore, have similar timing of emplacement. Due to the resistant nature of pegmatitic granite lithologies, both the TPG and CPG crop out as "humps" and ridges of resistant rock. Four textural phases are recognizable in both outcrops: 1. pegmatitic leucogranite, 2. fine-grained leucogranite, 3. sodic aplite, and 4. pegmatitic potassic phase. Since each of these textural phases is characterized by specific mineralogy, the occurrence of these textural phases within both the pegmatitic granites indicates that the pegmatitic granites are similar compositionally as well as texturally. Compositional similarities suggest that the two pegmatitic granites were derived from the same parental fertile granite, or at least they underwent parallel

processes during generation of pegmatitic granite melt. The occurrence of ferrocolumbiteferrotantalite within these two pegmatitic granites reaffirms their potential as sources for rare-element-bearing pegmatites.

Structural features are strikingly similar both between and within the Turtleback and Cook's pegmatitic granites. S2 foliation was developed during D2 deformation. This strong foliation transposed earlier S1 foliation parallel to itself. S2 has similar strikes of: 072° in the Turtleback pegmatitic granite and 069° in Cook's pegmatitic granite. Foliation has steep to subvertical dip in both the pegmatitic granites mapped as well as in the rocks between these two outcrops. The Turtleback and probably Cook's pegmatitic granite are isoclinally folded. Attenuated limbs and minor folding in fold noses are evident in the Turtleback pegmatitic granite only, although hidden isoclinal folding is a distinct possibility for Cook's pegmatitic granite. Two late stage joint sets are present within each of the two pegmatitic granites. These joints sets probably developed in a late brittle stage because they do not show deformation features, are not offset, and are rarely infilled. All joint sets dip subvertically and set one strikes between 159° and 166°, whereas, the strike of joint set two ranges from 070° to 079°. It is notable that joint set two is parallel to foliation. This relationship suggests that S2 foliation acts as planes of weakness along which joint set two develops.

In conclusion, noting the similarities in areal extent, topographic relief, texture, composition, and structure between the Turtleback and Cook's pegmatitic granites allows

these two pegmatitic granites to be considered as analogous structures. Therefore, conclusions drawn for one of these outcrops is probably also applicable to the other.

L

- Bates, Robert L. and Jackson, Julia A. Eds., 1984. Dictionary of Geological Terms 3rd Ed. American Geological Institute, Doubleday, USA.
- Blackburn, C.E. and Young, J.B., 1993. Geology of the Separation Lake Greenstone Belt. Summary of Field Work - Ontario Geological Survey - Project Unit 92-03, pp. 68-73.
- Breakhouse, G. P, 1991. Winnipeg River Subprovince Chpt. 8 in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p. 279-301.
- Breaks, F.W., 1991. English River Subprovince Chpt. 7 in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p. 239-277.
- Breaks, F.W., and Tindle, A.G., 1997. Rare-metal exploration potential of the Separation Lake area: an emerging target for Bikita-type mineralization in the Superior Province of Ontario; Ontario Geological Survey, Open File Report 5966, pp. 1-27.
- Breaks, F.W., and Tindle, A.G., 1996. Granite-Related Mineralization in Northwest Ontario:
 IV. New Rare-Element Pegmatite Discoveries in the Separation Lake Area. Ontario
 Geological Survey Report on Activities Project Unit 93-11, pp. 19-22.

Breaks, F.W., and Pan, Y., 1995. Granite-related mineralization in northwest Ontario. III. Relationship of granulite metamorphism to rare-element mineralization in the Separation Lake area of the English River Subprovince. Summary of Field Work -Ontario Geological Survey - Project Unit 93-11, pp. 79-81.

- Breaks, F.W., 1993. Granite-Related Mineralization in northwest Ontario: I. Raleigh Lake and Separation Rapids (English River) Rare-Element Pegmatite Fields Summary of Field Work - Ontario Geological Survey - Project Unit 93-11, pp. 104-110.
- Brisbin, W. C., 1986. Mechanics of Pegmatite Intrusion. American Mineralogist, 71, pp. 644-651.
- Cerny, P., 1991. Fertile granites of Precambrian rare-element pegmatite fields is geochemistry controlled by tectonic setting or source lithologies? Precambrian Research, 51, pp. 429-468.
- Cerny, P., 1990. Distribution, affiliation and derivation of rare-element granitic pegmatites in the Canadian Shield. Geologische Rundschau, 79/2, pp. 183-226.
- Cerny, P., 1989. Exploration Strategy and Methods for Pegmatite Deposits of Tantalum. Lanthanides, Tantalum and Niobium, pp. 274-300.

- Cerny, P., and Meintzer, R. E., 1988. Fertile granites in the Archean and Proterozoic fields of rare-element pegmatites: crustal environment, geochemistry and petrogenetic relationships. Recent Advances in the Geology of Granite-Related Mineral Deposits; The Canadian Institute of Mining and Metallurgy, Spec. Publ. 39, pp. 170-206.
- Cerny, P., 1982. Anatomy and classification of granitic pegmatites. In:, P. (ed) Granitic pegmatites in science and industry. Mineralogical Association of Canada Short Course Handbook, 8, pp. 1-39.
- Cerny, P., Trueman, D. L., Ziehlke, D. V., Goad, B.E. and Paul, B.J., 1981. The Cat Lake-Winnipeg River and Wekusko Lake Pegmatite Fields, Manitoba. Manitoba Energy and Mines – Mineral Resources Division: Economic Geology Report ER80-1.
- Cerny, P., 1971. Graphic Intergrowths of Feldspars and Quartz in Some Czechoslovak Pegmatites. Contr. Mineral. and Petrol, 30, pp. 343-355.
- Davis, G. H., and Reynolds, S. J., 1996. Structural Geology of Rocks and Regions, Second Edition. John Wiley and Sons Inc., Toronto.
- Klein, C., and Hurlbut Jr., C. S., 1993. Manual of Mineralogy (after James D. Dana) 21st Ed. John Wiley and Sons Inc., USA.

MacKenzie, W.S., Donaldson, C.H., and Guilford, C., 199. Atlas of igneous rocks and their textures, Longman, London.

- Miller, Calvin F., and Mittlefehldt, David W., 1984. Extreme fractionation in felsic magma chambers: a product of liquid state diffusion or fractional crystallization?. Earth and Planetary Science Letters, 68, pp. 151-158.
- Miller, Calvin F., and Mittlefehldt, David W., 1982. Depletion of light rare-earth elements in felsic magmas. Geology, 10, pp. 129-133.
- Möller, P., and Morteani, G., 1987. Geochemical Exploration Guide for Tantalum Pegmatites. Economic Geology, 82, pp. 1888-1897.
- Mottana, A., Crespi, R., Liborio, G., 1978. Simon & Schuster's Guide to Rocks and Minerals. Eds; Prinz, M., Harlow, G., and Peters, J. The American Museum of Natural History, New York, USA.
- Pan, Y., and Breaks, F.W., 1997. Rare-Earth Elements in Fluoroapatite, Separation Lake Area, Ontario: Evidence for S-Type Granite - Rare-Element Pegmatite Linkage. The Canadian Mineralogist, 35, pp. 659-671.

Appendix C:

Structural Analysis of the Separation Lake Property F. de la Fuente

a a construction and a construction of the second second second second second second second second second second

T

,

CAMINO DE RONDA, 74 5°-3 18004 GRANADA SPAIN PHONE: +34-958-257 412 FAX: +34-958-256 010

STRUCTURAL ANALYSIS OF THE TANCO'S SEPARATION LAKE PROPERTY. WESTERN ONTARIO (CANADA)

CLIENT: TANTALUM MINING CORPORATION OF CANADA LIMITED

F. DE LA FUENTE

DECEMBER 1998

INDEX

		Page	
1. INTRODU	JCTION	1	
		2	
2. 2007110			
3. REGION	AL GEOLOGICAL SETTING	3	
3.1.	THE ENGLISH RIVER SUBPROVINCE	4	
3.2.	THE WINNIPEG RIVER SUBPROVINCE	4	
3.3.	THE SEPARATION LAKE GREENSTONE BELT	4	
4. LOCAL G	EOLOGICAL SETTING	5	
4.1.	SEPARATION LAKE GREENSTONE BELT	5	
	4.1.1. MAFIC METAVOLCANICS	5	
	4.1.2. FELSIC METAVOLCANICS	6	
	4.1.3. METASEDIMENTS	6	
	4.1.4. GRANITIC ROCKS	6	
	4.1.4.1. SEPARATION RAPIDS PLUTON.	6 7	
42	MIGMATITES AND GRANITOID ROCKS OF THE ERS	7	
		_	
	4.2.1. THE TREELINED LAKE GRANITIC COMPLEX	7	
4 .3.	GRANITOID ROCKS OF THE WRS	7	
5. PREVIOU	IS EXPLORATION WORK	8	
6 TANCO'S		0	
0. TANGU 3 EAPLUKATIUN ACTIVITT			

7. PRESENT WORK			
7.1.	FIELD WORK	10	
	7.1.1. BALLPEEN PEGMATITE	10	
	7.1.2. PEGMATITE #10	11	
	7.1.3. DRAVEN'S PEGMATITE	11	
	7.1.4. IRON FORMATION	12	
	7.1.5. PEGMATITES N OF DRAVEN'S	12	
	7.1.6. TREELINED LAKE GRANITE	13	
	7.1.7. LOU'S PEGMATITE	13	
	7.1.8. COOK'S PEGMATITIC GRANITE	13	
	7.1.9. POLYMICTIC CONGLOMERATE	14	
	7.1.10. TURTLEBACK PEGMATITIC GRANITE	14	
	7.1.11. FOLDED PEGMATITE IN SHORE OF RIVER	19	
	7.1.12. RED HANDED ISLAND PEGMATITIC GRANITE	19	
	7.1.13. SEPARATION RAPIDS PLUTON	21	
	7.1.14. BIG WHOPPER PEGMATITE	21	
7.2.		25	
	7.2.1. FIRST ORDER LINEAMENTS	25	
	7.2.2. SECOND ORDER LINEAMENTS	25	
	7.2.3. THIRD ORDER LINEAMENTS	26	
	7.2.4. FOURTH ORDER LINEAMENTS	26	
7.3.	EXAMINATION OF CHAMPION BEAR'S CORE	26	

.....

[

Ī

J

8. CONCLUS	SIONS	. 27
8.1.	PEGMATITES AND PEGMATITIC GRANITES	27
8.2.	GRANITES	. 27
8.3.	IMPLICATIONS IN THE EXPLORATION	.28

. ...

STRUCTURAL ANALYSIS OF THE TANCO'S SEPARATION LAKE PROPERTY. WESTERN ONTARIO (CANADA)

1. **INTRODUCTION**

This report on the structural analysis of Separation lake property in western Ontario (Canada) has been commissioned to Fernando de la Fuente Consultores, S.L. by the Tantalum Mining Corporation of Canada Limited (Tanco).

Two days have been devoted to airphoto interpretation, two days were spent at Tanco's mine site reviewing the existing information on the area, four days were devoted to field work, one day was spent at the Ontario Geological Survey office in Kenora to review the available information and to examine selected holes previously drilled by Champion Bear Resources, two more days, after the field work, were devoted to prepare the information and discussions with Tanco geologists and, finally, one day was spent in visiting the Big Whopper area.

Five more days have been devoted to compile the information and reporting.
2. LOCATION, ACCESS AND PROPERTY

The claim group is located N of the English River and N and W of the Separation Lake, some 75 km N of Kenora, Ontario.

Main access to the area is from Redditt via the English River Road, through a well maintained gravel road. Numerous tracks and drilling accesses transept the NE part of the area.

Most of the central and southern portions of the area are accessible by boat.

The Separation Lake property consists of 30 claims at present under agreement between Tanco and Gossan Resources Limited.

The claims cover 137 claim units.

3. **REGIONAL GEOLOGICAL SETTING**

The pegmatites, subject of this report, are hosted by the Separation Lake greenstone belt.

This metavolcanic complex lies within the Superior Province, and constitutes the boundary between the English River Subprovince (ERS) to the north and the Winnipeg River Subprovince (WRS) to the south (Map n° 1). It has been considered to be the eastern continuation of the southern part of the Bird River metavolcanic-metasedimentary belt in Manitoba.

The limit between the Separation Lake Belt and the ERS is a fault contact with metasedimentary rocks to the north.

The southern limit is a clearly intrusive contact with younger plutonic rocks of the WRS.

Map nº 1: Regional Geological Setting.

3.1. THE ENGLISH RIVER SUBPROVINCE

The English River Subprovince is a linear belt, up to 50 kilometres wide and at least 800 kilometres long, characterised by highly metamorphosed and migmatised sedimentary rocks and compositionally diverse intermediate to felsic plutonic rocks.

The intermediate to felsic plutonic rocks include: strongly peraluminous granitoid rocks related to the migmatization process and leucocratic, metaluminous to weakly peraluminous tonalitic to granitic stocks and batholiths that seem to be unrelated to the migmatization process.

3.2. THE WINNIPEG RIVER SUBPROVINCE

This subprovince is a plutonic domain, up to 70 kilometres wide and at least 400 kilometres long. The subprovince is composed of diverse plutonic rocks and minor amounts of supracrustal rocks.

The plutonic rocks intrude the southern part of the Separation Lake greenstone belt. Microcline-megacrystic granodiorites with subordinate granites with locally foliated to gneissic tonalites have been described.

3.3. THE SEPARATION LAKE GREENSTONE BELT

The Separation Lake Greenstone Belt is the largest segment of the metavolcanic rock belt that occurs discontinuously along the English River-Winnipeg River subprovincial boundary.

It extends from the east shore of Umfreville Lake to Helder Lake, 45 kilometres, and has a maximum width of 5 kilometres.

The Separation Lake belt is characterised by a bimodal volcanic sequence comprising mainly mafic volcanics and minor felsic pyroclastic rocks overlying the mafics to the north.

The mafic volcanics, composed of pillowed and massive flows, are strongly deformed and metamorphosed to amphibolites. The gabbros occurring in the area seem to be thicker parts of the flows.

The felsic pyroclastics comprise mainly tuffs and lapilli tuffs.

Chemical metasediments occur within the mafic volcanics. They typically are layered chert-magnetite iron formations 1 to 5 thick. Pyrrhotite and minor pyrite locally replace magnetite.

Polymictic conglomerates, in places interbedded with wackes, overly the metavolcanics to the north of the area.

4. LOCAL GEOLOGICAL SETTING (Map n° 2)

Map nº 2: Geology of the Separation Lake Belt (After Blackburn and Young 1994a,b).

4.1. SEPARATION LAKE GREENSTONE BELT

4.1.1. MAFIC METAVOLCANICS

Mafic metavolcanic rocks constitute approximately 80% of the belt. They are mainly pillowed and banded flows metamorphosed to amphibolites.

Coarser grained gabbros may correspond to thicker sections of flows or subvolcanic sills.

4.1.2. FELSIC METAVOLCANICS

They are mainly composed of tuffs and lapilli-tuffs. Because of the location of a broad deformation zone in its vicinity, primary textures and structures have been obliterated in many places.

4.1.3. METASEDIMENTS

Chemical metasediments occur within the mafic volcanics. They typically are layered chert-magnetite iron formations 1 to 5 thick. Pyrrhotite and minor pyrite locally replace magnetite.

They occupy two presently identified stratigraphic levels:

- The lower unit is located at, or close to, the base of the mafic metavolcanic sequence.
- Two upper units separated either by mafic flows or gabbros.

Clastic metasediments occur at two stratigraphic levels:

- Within the mafic metavolcanics as feldspathic arenite to wacke.
- Overlying the felsic metavolcanics as polymictic conglomerates, in places interbedded with wacke, up to 30 metres thick.

In places it has been observed that the conglomerates lie directly on top of the felsic volcanics in apparent conformity. This might question the placement of the subprovincial boundary.

4.1.4. GRANITIC ROCKS

4.1.4.1. Separation Rapids Pluton

This 4 km² pluton has been described as a fertile, peraluminous S-type granite. Salient petrographic features include:

- Widespread layering between pegmatitic leucogranite, sodic aplite, potassic pegmatite and coarse-grained granite units.
- Beryl-garnet-muscovite-biotite pseudomorphs after cordierite megacrysts.
- Metasomatic reactions with widespread amphibolite enclaves.
- Sporadic ferrocolumbite and beryl in potassic pegmatite units.

On the basis of geochemical studies it was suggested that the Separation Rapids Pluton was derived from the Treelined Lake granitic complex.

4.1.4.2. Separation Rapids Pegmatite Group

These pegmatites constitute the most mineralogically evolved part of the granitic rocks.

On the basis of columbite group mineral compositions, the pegmatites can be divided into a Fe-suite and a Mn-suite. The two largest pegmatites of the originally identified are both from the Mn-suite. This was tentatively interpreted as products of two distinct magmas.

4.2. MIGMATITES AND GRANITOID ROCKS OF THE ERS

Migmatites and associated granitic rocks corresponding to the English River Subprovince outcrop to the north of the greenstone belt.

The granites have been described as derived from the migmatites by melting of predominantly sedimentary rocks.

The pegmatitic granites that intrude the Separation Lake Belt area derived from the fractionation of magmas produced by melting of the ERS sediments and should by considered part of that subprovince.

4.2.1. THE TREELINED LAKE GRANITIC COMPLEX

It is a large S-type peraluminous granite containing cordierite-orthopyroxene-garnetbiotite.

Mineralogical and geochemical analyses suggest an origin involving mainly partial melting of the clastic sedimentary rocks of the English River Subprovince during granulite-facies metamorphism with input from the mantle.

4.3. GRANITOID ROCKS OF THE WRS

In the project area, they mainly comprise medium to coarse grained late-tectonic tonalites and granodiorites.

Abundant enclaves of mafic to ultramafic blocks are common near the margins.

5. **PREVIOUS EXPLORATION WORK**

Exploration work carried out on the area prior to 1993 was focused on iron, base metals, gold and uranium.

Several companies, W.S. Moore Company, Tombill-Glen Echo Mines and Centurion Mines, examined the potential for iron of the iron formations between 1948 and 1957.

In the 60's and 70's, Can-Fer Mines Limited, Consolidated Summit Mines Limited and Noranda Inc., carried out exploration work for uranium, and erratic mineralization was encountered associated with pegmatites.

Selco Mining Corporation Limited, Sherritt Gordon Mines Limited and, specially, Champion Bear Resources conducted intensive exploration work in the area for base metals and gold.

In 1993, the Ontario Geological Survey started an inventory of known rare-element mineralization occurrences.

In June 1996, fieldwork carried out by the OGS in the Separation Lake area, leaded to the discovery of seventeen new occurrences of rare-element pegmatites, nearby the Separation Rapids Pluton (SPR). A total of 55 occurrences are known within the area.

These occurrences lie in an area of at least 7 x 3 km.

The pegmatitic area, located near the SW end of the Separation Rapids Pluton, can be subdivided, from N to S, into beryl and petalite zones, indicating zonation from N to S, away from the SRP.

The largest pegmatite, named Big Whopper, is petalite-rich, up to 80 m thick and up to 450 m in strike length.

6. TANCO'S EXPLORATION ACTIVITY

Tanco conducted two diamond drilling programmes in 1996 and 1997 to determine the mineralogical and structural characteristics of the pegmatites at depth. Several pegmatites were drilled.

In the period September-October 1996 a total of 1,700 feet was drilled in seven holes named SL-96-03 to SL-96-09.

The conclusions were:

- Pegmatites general strike is 70°, dipping to the NW.
- "Mineralization was not too encouraging". Pegmatites to the NE encountered the best values up to 0.035% Ta₂O₅.
- Pegmatites likely pinch and swell at depth and at surface.

854.35 A second drilling programme was undertaken in September-October 1997 with the same objective that the previous year programme. Nine pegmatites were drilled in 10 holes, SL-97-01 to SL-97-10, totalling 854.36 metres.

Remarkable results were:

- Best tantalum results were obtained from the Turtleback Pegmatitic Granite.
- Significant lithium (1.82%) was intersected in Draven's pegmatite.
- Maximum Caesium value encountered so far was 0.01%.

7. PRESENT WORK

7.1. FIELD WORK

The following are notes recorded at the different localities visited during the fieldwork. They are located in Map nº 3.

7.1.1. BALLPEEN PEGMATITE

This pegmatite, intruded in mafic metavolcanics, is quite fractionated.

It is strongly deformed and folded (Photograph n° 1). The pegmatite contacts are concordant with the S_1 planes in the metavolcanics indicating that likely the pegmatite was intruded along those planes and both the hosts and the pegmatite are folded by D_2 phase folds.

Photograph nº 1: Tight D₂ deformation phase vertical folds at Ballpeen Pegmatite.

The second deformation phase, D_2 , produced tight folds with sub-vertical axis (Photograph n° 1). S_2 is sub-parallel to S_1 planes except at the hinges of the folds where S_1 and S_2 are easily identifiable. General schistosity attitudes are:

- S₁ = N60° 70° SW
- S₂ = N60° vertical

FERNANDO DE LA FUENTE CONSULTORES, S.L.

Two sets of joints, likely related to late deformation phase D₂ can be measured: N10° and N150° both sets vertical.

7.1.2. PEGMATITE #10

Less fractionated, more feldspathic and finer grained than Ballpeen Pegmatite, is intruded in felsic meta-tuffs and tuffites. Folded by D_2 in tight folds with sub-vertical axis. S_2 is sub-parallel to S_1 planes.

Measured schistosities are: $S_1 = N80^\circ$ dipping 70° SW and $S_2 = N80^\circ$, vertical

D₂ late joints strike N10° and N160° respectively and dip vertical.

7.1.3. DRAVEN'S PEGMATITE

It is fine-grained, mostly feldspathic and appears strongly deformed. Rotated feldspar and garnet crystals are easily identifiable (Photograph n° 2). It intrudes in mafic meta-volcanics parallel to S_1 planes. Folded by D_2 in tight folds with sub-vertical axis, being S_2 sub-parallel to S_1 . It seems to have been deformed in semi-plastic stage during D_2 .

S₁ = N100° 70° SW

 $S_2 = N100^\circ$ vertical

Photograph nº 2: Draven's Pegmatite showing rotate feldspars and garnet within a strongly sheared feldspar groundmass.

7.1.4. IRON FORMATION

The iron formation was observed a few hundred of metres to the north of Draven's Pegmatite. It has an equigranular recrystalised quartz matrix with biotite and sulphides. Magnetite-pyrrohite minor pyrite, sphalerite and chalcopyrite were identified.

7.1.5. PEGMATITES N OF DRAVEN'S

Outcropping in the road from Draven's to Treelined Lake Granite, there is a set of finegrained aplites and pegmo-aplites intruded in mafic meta-volcanics.

Mainly feldspathic in composition, appear little fractionated and show contacts parallel to S₁ planes.

They are folded by D_2 in tight folds with sub-vertical axis, being S_2 planes sub-parallel to S_1 .

D₃ deformation phase gives open folds with sub-horizontal axis striking N70°. S₃ fracture cleavage offsets joints N10° and N160°, all of them later filled by quartz (Photograph n° 3).

Photograph nº 3: S₃ fracture cleavage offsetting D₂ late joints.

 S_1 strikes N80° and dips 70° SW. S_2 strikes N80° and dips vertical. Fracture cleavage S_3 strike is N70° dipping sub-vertically. The two late D_2 phase joints have N10° and N160° directions and vertical dips.

FERNANDO DE LA FUENTE CONSULTORES, S.L.

7.1.6. TREELINED LAKE GRANITE

It shows an equigranular texture and layering (better developed towards the edges). The layering, generally striking N60-70°, is folded by D_2 in sub-vertical axis folds as well as later thin pegmatitic veins.

Two sets of joints, N10° and N160° with vertical dips are also visible.

Late-stage quartz veins are strongly sheared (Photograph nº 4).

Photograph nº 4: Strongly sheared late-stage quartz veins in Treelined Lake Granite.

7.1.7. LOU'S PEGMATITE

This pegmatite has a maximum thickness of 2 metres. It is also poorly fractionated, feldspathic and fine grained. Garnet, Beryl and Tourmaline have been observed. Columbite-tantalite and cassiterite have been previously recorded.

Intruded in matics, the contacts are parallel to S_1 planes striking N60° and dipping 50° to the SW. It is folded by D_2 tight folds with sub-vertical axis.

7.1.8. COOK'S PEGMATITIC GRANITE

It outcrops along two prominent ridges that might correspond to the flanks of a D_3 phase fold. It seems to be intruded in mafic metavolcanics but the contacts are not exposed. The linear shape of the ridges suggests tectonic contacts. It is strongly deformed.

The mineralogical composition is mostly feldspathic and contains coarse-grained pegmatitic pods.

7.1.9. POLYMICTIC CONGLOMERATE

Between the felsic volcanics and the migmatites of the English River Subprovince lies a polymictic conglomerate and sandstone horizon.

The conglomerates are composed of granite, quartz and mafic metavolcanic clasts in a silt and sand matrix. The clasts are strongly flattened and folded. Rotation of clasts has been also noticed (Photograph n° 5).

These conglomerates show a strong deformation and two schistosities S_1 and S_2 corresponding to deformation phases D_1 and D_2 , respectively (Photograph n° 6).

Within the conglomerate there are folded pegmatite pods. These folds are of phase D_2 and they have and associated S_2 striking N70-80° and dipping subvertical (Photograph n° 7).

Photograph nº 5: General aspect of the conglomerate.

Photograph nº 8 shows a deformed pegmatitic dike intruding the conglomerate near the Treelined Lake Granite contact.

Near this last locality, a deformed pegmatite intruded in felsic metavolcanics is in its turn intruded by an undeformed, coarse-grained, quartz-rich pegmatite.

7.1.10. TURTLEBACK PEGMATITIC GRANITE

This porphyritic pegmatitic granite shows layering structures oriented N70° and a mineralogical composition of coarse K-feldspar crystals in an equigranular finer-grained matrix mainly feldspathic (Photograph n° 9). Feldspar megacrysts are rotated and sheared evidencing the strong deformation suffered during D₂.

FERNANDO DE LA FUENTE CONSULTORES, S.L.

Photograph nº 6: Detail of D₂ folds.

Photograph nº 7: Folded and boudinaged pegmatite pods in sandstone.

Photograph nº 8: Deformed pegmatite intruding conglomerates.

The pegmatitic granite has contacts parallel to S1.

The layering seems to have been deformed in semi-plastic stage by D_2 giving ptygmatic folds as the ones displayed in Photograph n° 10

Photograph nº 11 illustrates an example of the S_1 - S_2 relationship at the hinge of a D_2 fold.

1

]

]

]

]

]

]

]

Photograph nº 9: Aspect of Turtleback pegmatitic granite showing layering and rotated and sheared K-feldspar megacrystals.

Photograph n° 10: D_2 phase ptygmatic folds of the layering.

SEPARATION LAKE

Photograph n° 11: $S_1 - S_2$ relationship visible at the hinge of a D_2 fold at the contact between the Turtleback granite and the host mafic metavolcanics. Note S_1 adapted to the granite contact.

]

]

]

]

1

1

FERNANDO DE LA FUENTE CONSULTORES, S.L.

7.1.11. FOLDED PEGMATITE IN SHORE OF RIVER

It is located some 1,800 metres to the west of the English River bridge in the northern shore of the Separation Rapids. It is a thin, 40-60 cm, pegmatite tightly folded by D_2 vertical axis folds as illustrated by Photograph n° 12.

Photograph nº 12: D₂ phase folded pegmatite.

7.1.12. RED HANDED ISLAND PEGMATITIC GRANITE

This flat lying lepidolite-bearing pegmatitic granite is mostly undeformed, post-dating deformation phases D_1 and D_2 ,

It is affected by D₃ phase open folds with E-W axes gently plunging to the W.

Photographs n° 13 and 14 show the pegmatitic granite contact clearly crosscutting S_1 and S_2 schistosities.

1

1

1

5

]

Photographs nº 13 and 14: Pegmatitic granite contact crosscutting S₁ and S₂ schistosities developed in host mafic metavolcanics.

7.1.13. SEPARATION RAPIDS PLUTON

It is originally described as a pluton but seems to be a flat lying, sheet-like, layered, very fractionated pegmatitic granite.

The observed contacts during the field visit confirm the above, as well as the Champion Bear's 1989 aeromagnetic data consulted at the OSG office in Kenora.

These magnetic data show continuity, with the same amplitude and intensity, of the magnetic structures under the SRP, at least in the eastern part of the pluton (Map n° 4). The root of the pluton could be either in its western portion or related to the mainly undeformed WRS granites outcropping to the south.

The Separation Rapids Pluton seems to be just affected by D₃ phase gentle folds.

It is clearly related with the Red Handed Island pegmatitic granite and the later could be an external facies of the same pluton.

7.1.14. BIG WHOPPER PEGMATITE

The Big Whopper Pegmatite System comprises a set of large pegmatite lenses within an area 1350 metres long by 160 metres wide.

These pegmatites are the most fractionated ones of all pegmatites visited during the fieldwork.

The Big Whopper is a steeply-dipping layered pegmatite that seems to have been deformed in plastic stage.

During the field visit pegmatites of several phases have been identified:

- Strongly deformed and sheared pegmatites affected by D₂ and D₃ deformation phases with contacts parallel to S₁-S₂ schistosities (Photographs n° 15, 16 and 17).
- Much less deformed pegmatites, just affected by D₃ deformation phase with contacts crosscutting S₁ and S₂ (Photographs nº 18, 19 and 20)
- In places a third, undeformed, pegmatitic event has been recognised intruding the other two pegmatite groups (Photograph n° 22).

Two lithium events have been previously described: one pre-tectonic and a second one post-tectonic. The author interpretation is that the first one is pre D_2 deformation phase and that the second one is post- D_2 pre- D_3 .

The relationship between the different pegmatitic phases and their mineralogical assemblages should be further investigated.

FERNANDO DE LA FUENTE CONSULTORES, S.L.

Photograph nº 15: Strongly deformed pegmatite affected by D₂ and D₃ deformation phases.

Photograph n° 16: D_3 phase folds affecting pegmatites deformed by D_2 .

Photograph nº 17: D₂ folds in lepidolite-rich pegmatite.

Photograph n° 18: Pegmatite just affected by D_3 . Note the contacts crosscutting S_1 and S_2

1

1

1

Ŷ

Photograph nº 19: Detail of photograph nº 18.

Photograph n° 20: Another example of pegmatite affected by D_3 with contacts crosscutting $S_1 - S_2$.

Photograph n° 21: Latest undeformed pegmatite intruding a strongly deformed pegmatite affected by D₂ and D₃ deformation phases

7.2. PHOTOINTERPRETATION

In this study the different lineaments have been grouped in families taking into account criteria such as length, strike and relationship between them.

Four groups or orders have been differentiated (Map nº 5):

7.2.1. FIRST ORDER LINEAMENTS

Shown in Map nº 5 as red lines, they are long lineaments that affect the second, third and fourth order lineaments.

They seem to correspond to fractures implying N-S shortening of the D₃ phase. They display two preferential strikes:

- ✓ E-W Lineaments: The likely are D₂ thrust faults, later reactivated as normal faults.
- N-S Lineaments: Corresponding to shears.

7.2.2. SECOND ORDER LINEAMENTS

Shown in the map as green lines, these lineaments affect the third and fourth order lineaments.

They seem to be distensive fractures formed as a consequence of release of the N-S compressive stress after the D_1 and D_2 phases.

Several preferential strikes are displayed: NE-SW, ENE-WSW and NW-SE. Other sensibly N-S structures might correspond to NE-SW structures rotated during the formation of the first order structures.

7.2.3. THIRD ORDER LINEAMENTS

These short lineaments apparently do not produce relative movement of the blocks. Marked in map as blue lines they likely are joints striking NNE-SSW, NE-SW y SSE-NNW.

7.2.4. FOURTH ORDER LINEAMENTS

Although they show great continuity they are short lineaments that do not produce relative movements.

They correspond to S_1 - S_2 schistosities striking E-W, lithological contacts and folds.

7.3. EXAMINATION OF CHAMPION BEAR'S CORE

Selected core sections of Champion Bear's drillholes, drilled in the area, were examined at the OGS offices in Kenora.

Holes CB-031, CB-033 and CB-057 were selected on the basis of recorded pegmatitic intervals in the logs.

The pegmatites intersected in CB-031 and CB-033 are all of them strongly deformed showing contacts parallel to S_1 - S_2 .

In hole CB-057, thin pegmatites remained in the racks. Of those, some pegmatitic stringers were strongly deformed but other veinlets seem to be mainly undeformed with contacts at an angle with S_1 - S_2 . The later are also the more fractionated.

The core examined confirmed the impressions from the field visit of the existence of two pegmatitic episodes.

8. CONCLUSIONS

8.1. PEGMATITES AND PEGMATITIC GRANITES

The pegmatites visited in the Separation Lake project seem to correspond to two main phases of intrusions and could be classified according to the number of deformation episodes affecting them:

Pegmatites and Pegmatitic Granites pre D₂ deformation phase

These pegmatites and pegmatitic granites show contacts parallel to S_1 schistosity, likely indicating that they have been intruded along S_1 planes.

They are strongly deformed, usually sheared and affected by D_2 and D_3 deformation phases. Some of them seem to have been deformed in plastic or semi-plastic stage during D_2 .

Good examples are: Ballpeen, Pegmatite #10, Draven's, Lou's, Cook's, Turtleback, first phase pegmatites in the Big Whopper area and other pegmatites described in chapter 7.

Pegmatites and Pegmatitic Granites post D₂ deformation phase

These are much less deformed pegmatites and pegmatitic granites, just affected by D_3 deformation phase with contacts clearly crosscutting S_1 and S_2 .

Examples are: Red Handed Island pegmatitic granite and other mainly undeformed pegmatites described in chapter 7.

8.2. **GRANITES**

The Treelined Lake granite shows the same deformation than the first phase pegmatites and it is affected by D_2 and D_3 deformation phases.

In our opinion it is the source granite for the pegmatites and pegmatitic granites pre D_2 deformation phase.

The Separation Rapids Pluton, as described above, is post D_1 and D_2 deformation phases, and in our opinion the parent granite of the pegmatites and pegmatitic granites post D_2 deformation phase.

This is contradictory with the previous assumptions for the area where the Treelined Lake granite is the source area of the SRP and this in its turn is the parent granite of all the pegmatites.

A proposed geological history synthesis is presented in graphic for min the following page.

8.3. IMPLICATIONS IN THE EXPLORATION

The existence of more than one phase of pegmatitic intrusions rises the key question of which of the phases is responsible for the rare-element mineralization.

At this stage is very difficult to give an accurate answer to the question and only a few facts can be pointed out as the guide-lines to be followed by further investigations:

- The pegmatites and pegmatitic granites pre D_2 deformation phase seem to be less fractionated than the post D_2 deformation phase pegmatites and pegmatitic granites.
- For Big Whopper, two lithium events, one pre-tectonic and another post-tectonic, have been previously recognised.
- The richer pegmatites so far encountered in the area are either completely or partially (Big Whopper) post D₂ deformation phase.
- The Treelined Lake Granite seems to be the source for the pre D₂ deformation phase pegmatites and pegmatitic granites.
- The Separation Rapids Pluton seems to be the parent granite for the post D₂ deformation phase pegmatites and pegmatitic granites.
- The source granite for the Separation Rapids Pluton is not the Treelined Lake Granite, as previously invoked, and it has to be located either at grater depth within the Separation Lake Belt or within the mainly undeformed Winnipeg River Subprovince late granites outcropping to the south.

Granada, 17th December, 1998

Fernando de la Fuente Economic Geologist

F. DE LA FUENTE

9. **BIBLIOGRAPHY**

- Blackburn, C.E. and Young, J.B. Project Unit 92-03. Geology of the Separation Lake Greenstone Belt.
- Breaks, F.W. (1993). Project Unit 93-11. Granite-Related Mineralization in Northwestern Ontario: I. Raleigh Lake and Separation Rapids (English River) Rare-Element Pegmatite Fields. Ontario Geological Survey.
- Breaks, F.W., Bond, W.D. and Stone D. (1978). Preliminary Geological Synthesis of the English River Subprovince. Ontario Geological Survey, Miscellaneous Paper 72.
- Breaks, F.W. and Tindle, A.G. (1996). New discovery of rare-element pegmatite mineralization, Separation Lake area, northwestern Ontario. Ontario Geological Survey, Open File Report 5946.
- Breaks, F.W. and Tindle, A.G. (1996). Project Unit 93-11. Granite-Related Mineralization in Northwestern Ontario: IV. New Rare-Element Pegmatite Discoveries in the Separation Lake Area. Ontario Geological Survey.
- Breaks, F.W. and Tindle, A.G. (1997). Rare-Metal Exploration Potential of the Separation Area: an Emerging Target for Bikita-Type Mineralization in the Superior Province of NW Ontario. Ontario Geological Survey, Open File Report 5966.
- Galeschuk, C. (1997) Report on Diamond Drilling Activity. Separation Lake, Ontario. Fall 1996.Tanco Internal Report.
- Galeschuk, C. (1998) Report on Diamond Drilling Program. Separation Lake, Ontario. 1997. Tanco Internal Report.
- Gower, C. F. and Clifford, P.M. (1981). The structural geometry and geological history of Archean rocks at Kenora, northwestern Ontario-a proposed type area for the Kenoran Orogeny. Can. J. Earth Sci. Vol 18.
- Pan, Y. and Breaks, F.W. (1997). Rare-Earth Elements in Flourapatite, Separation Lake Area, Ontario: Evidence for S-Type Granite – Rare-Element Pegmatite Linkage. The Canadian Mineralogist. Vol 35.
- Tindle, A.G. and Breaks, F.W. Oxide Mineralogy of the Separation Rapids Rare-Element Pegmatite Group. N.W. Ontario, Canada.
- Various authors. Geology of Ontario. OGS Special Volume 4. Winnipeg River Subprovince (G.P. Beakhouse) English River Subprovince (Breaks, F.W.)

Appendix D:

1998 Lithogeochemical Sample Descriptions

a come y i a a que a avere

-

1

.

-

1998 SEPARATION LAKE PROJECT, LITHOGEOCHEMICAL SAMPLE DESCRIPTIONS											
Sample #	Rock Type	Date Sampled	Claim #	Rock #	Foliation	Joint 1	Joint 2	Structure (Other)	Description		
11875	pillow basalt	09/26/1998	1220596	1			1		lyfo dk grev, wk gossan and slfd		
11876	nillow basalt	09/26/1998	1220596	li	082/vert			nillows @ 090-100°	folded gtz vn axizt plane @ 082°		
11877	pillow basalt	09/26/1998	1220596		090*			pillows @ 090-100°			
11878	pillow basalt	09/26/1998	1220596		090°						
11879	oranite	09/26/1998	1220596		000				nk kspartatzthiotmuse ma		
11880	oranite	09/26/1998	1220596	7				ct with MV @ 040°	pk, kspar + dz + bio+ musc. mg		
11881	nillow basalt	09/26/1998	1220596		060*				vfa. dk. arev		
11882	haealt	00/26/1008	1220506		064*			ct with granite @ 050°	3m wide dyke		
11883	nillow basalt	09/26/1998	1220506		078*			ct with granite @ 060*	vfa dk arev		
11884	haealt	09/26/1998	1220506		046*			ct with granite @ 070°	10m section in sharp contact		
11885	granite	09/26/1998	1220590	+ '	040		<u>+</u>		nk kepar +atz+bio+musc. ma		
11886	granite	09/26/1990	1220590	7	ļ				pk, kspar + qtz+bio+musc.,mg		
11887	granite	09/26/1990	1220596	7		150°	175°	atz vn @ 025*	permetitic node within		
11888	pillow basait	09/26/1098	1220506		050°	130	1 113		dk grav vta		
11890	pillow basalt	00/26/1008	1220590		050				dk grey, vig		
11800	pillow basalt	09/26/1990	12205508		030		╉───				
11801	oillow basalt	09/26/1990	1220590		079				dk grev sta		
11892	pillow basalt	09/26/1990	1220586		000			10 cm wide at yo @ 075°	dk grey, vig		
11802	pillow basalt	09/20/1990	1220580		}		Į.		luk grey, vig		
13435	pillow basan	06/02/1990	1140774				1	Tobled peg (g ax. Pl. 007 760 SW	why pag ranite modie or page trand EW		
13435	granite foliated	06/02/1998	1149774	7	280/70 NE		<u> </u>	zolied peg kspar to main dill	why peg fame, med or		
13430	grey bi granite - foliated	06/02/1998	1149/74	7	280/70 NE			lyneissic, kspai peg vens (g 110			
12420	grey bi granite - rollated	06/02/1990	4140774		203/50			med as well folt ansissio	veins (g 500 01 200		
12430	grey of granite - foliated	06/02/1996	4440774	'	200/ NE			ned gr, well fort, gneissic	come of EX 12428		
12440	grey or granite - ronateu	00/02/1990	149774		204/80			75% a as kepper ato bit muse	Same as CA 13430		
13440	pegmatic granite	06/02/1998	1149774	- <u>-</u>				75% c gr kspar, qtz, bt, musc			
13441	pegmatitic granite	06/02/1998	1149774		! [salite as EX13440			
13442	pegmatitic granite	06/02/1998	11/077/	8			l	some as previous EX13442			
13443	pegmatitic granite	06/02/1990	1140774	8		l		same as previous EX13442			
13445	peginatitic granite	06/02/1998	1140774	7	200/00	I	1	wk fol'n m-c or kenar atz ht	neg kenar, nink-wht		
13445	granite	06/02/1998	1149774	- '	290/90		<u>├</u>	same as previous EX13445			
13440	granite	06/02/1998	11/077/	7	280/ 514/			wk fol'n semi-graphic texture	bt noor mainly kenar + atz		
13448	permetitic granite	06/02/1990	1140774	Ŕ	200/ 011	I.		w c or keper med ar keper atz bt			
13449	pegmatitic granite	06/02/1998	1140774		275/78 5			semi-oranhic texture	o ar kenar med ar kenar atz		
13450	grey bt granite - foliated	06/02/1998	1149774	7	285/2			neg veins 3-8cm thick // fol'n	wht-lt arev nink		
13451	grey bt granite - foliated	06/02/1998	1149774	7	110/80 5			well folt aneissic			
13452	grey bt granite - foliated	06/02/1998	1149774	7	105/60			40cm wide peg dike @ 105			
13453	grey bt granite - foliated	06/02/1998	1140774	1 7	125/70 SW	072/90	115/80 5	wt-onk med-c or kenar atz bt			
13454	permatitic granite	06/05/1998	1149774	Ŕ	120/10 011	07200	110/00 0	$r_{\rm respins}$, mouto gi, kapar, que, or	mostly kenar atz, nink and white		
13455	pegmatitic granite	06/05/1998	1140774	Å		140/61 NE		coarse grained~2.5cm	kspar otz biotite nink white and black		
13456	oranite	06/05/1998	1149774	7	102/84 N	140/01/116		wh + arey mostly white feldspar w/ ~ 30% biotite	Kspar, infilling veins		
13457	oranite	06/05/1998	1149774	7	90/82 S	90/82 N	122/56 N	biotite elongated 3:1 elongation	black & arey large irregular ped stringers 2-12cm thickness, infilling joints		
13458	granite	06/05/1998	1140774	7	90/64 5	00/02 11		60-70% biotite patchy Gossan rusting	grav bik white 0.5-1% overbotite		
13459	granite	06/05/1998	1149774	7	30/04 0			nink white & blk kenar bio gtz	med-coarse grained-5-10 mm		
13537	granice - foliated	06/02/1998	1140774	7	008/88 5			mod fol'n neg stringers @ EW	imed of with granodionite		
13538	granite onated	06/02/1998	1149774	7	285/68 N	194/90	042/65 F	aplitic to pedmatitic - var texture	lio bi natches, ksnar rich		
13539	granite	06/02/1998	1149774	7	200/00 (1	10-1100		linear ridge @ 218	v ht rich		
13540	arev ht granite - foliated	06/02/1998	1149774	7	106/68 S			v bt rich anelssic texture	mod to well foit		
13541	orev bt grapite - foliated	06/02/1998	1149774	7	090/40 S		l	patchy sait and peoper weather	well folt		
13542	nrev bt granite - foliated	06/02/1998	1149774	7	080/73 S			ridge trending @ FW	ly bt rich		
13543	grey bt granite - foliated	06/02/1998	1149774	7	280/82 N			nood fol'n	blue-grey pennered weathering		
13544	grey bt granite - foliated	06/02/1008	1140774	7	286/94 N			looor to mod fol'n bt natches	likenar rich node/strinners		
10044	area or areanice - ionated	00/02/1990	11-01/4	1 1	200/04 14		I	lhoor to mode total in hardings	Lisher reit horasarinikers		

÷

ŝ

.....

}		1998	SEPA	RATIC	ON LAK	E PROJ	ECT, L	.ITHOGEOCHEMICAL SAMP	LE DESCRIPTIONS
Sample #	Rock Type	Date Sampled	Claim #	Rock #	Foliation	Joint 1	Joint 2	Structure (Other)	Description
13545	pegmatitic granite	06/02/1998	1149774	8	1		1	no fol'n, no jointing, linear ridge	kspar rich, massive, homogeneous
13546	grey bt granite - foliated	06/02/1998	1149774	7	070/78 S	1	1	v bt rich in patches ~0.5cm - 1cm	buff grey-pink with peppered bt
13547	pegmatitic granite	06/02/1998	1149774	8	1			massive, no fol'n, no joints	salmon pink weathered color
13548	grey bt granite - foliated	06/02/1998	1149774	7	086/72 S	084/78 S	184/88 W	mod joints, peg stringers on fol	grey-pink peppered appearance, dk grey fresh, bt rich
13549	granite	06/02/1998	1149774	7	1			wk fol'n, massive, poor o/c	buff-pinkk weathered, mottled pnk, wht, blk fresh
13550	pillow basalt	06/02/1998	1149774	1	286/88 N	NS/vert	229/vert	strong fol'n, wk joints, deformed	dk grey color, f-m gr, bt rich
13551	pillow basalt	06/02/1998	1149774	1	EW/70 S	164/90	ļ	intense deform, wk gossan	thin carb bands on fol'n
13552	pillow basalt	06/02/1998	1149774	1	258/72 S	030/vert	170/vert	strong fol'n, mod joints	same as EX 13552
13553	pegmatitic granite	06/05/1998	1149774	8	114/86 S	1		coarse grained, joints not present	salmonpink fresh, buff pink weathered, kspar,qtz, bt,smokey qtz
13554	pegmatitic granite	06/05/1998	1149774	8				poor to no foln, no jointing	coarser, but same o/c as above, mod bt-rich, ksp rich, steep ridge
13555	pegmatitic granite	06/05/1998	1149774	8	1	1		no fol/joints	v. coarse, 0.5-10cm, very Ige ksp xtis, less bt than prev.
13556	pillow basalt	06/05/1998	1149774	1	072/86 S	176/76 W		ct w/ peg. granite @ 072/69 S	unit thin(~10m) only, can see peg granite to both N & S
13557	pillow basait	06/05/1998	1149774	1	108/82 S	158/86 W	204/73 W	good fol'n, homogeneous	fg, med-dk grey, qtz,bt,mafics etc
13558	pillow basalt	06/05/1998	1149774	1	087/79 S	1 -		1cm thick peg veins strike 094deg	similar to Ex 13557
13559	basalt	07/01/1998	1178678	1	275°/71° N		i i	occ. Qtz veins	fg, sheet like
13560	basalt	07/01/1998	1178678	1	280/56 N	•		low to mod foin	bk to grey, wk ox.
13561	pegmatitic granite	07/01/1998	1178678	8		178/80 W			ksp, bt, qtz, some garnet
13562	pegmatitic granite	07/01/1998	1178678	8	1	170/78 SW	202/82 W		Ksp and qtz
13563	pegmatitic granite	07/01/1998	1178678	8		221/80 W			Ksp and qtz
13564	granite	07/01/1998	1178678	7	1	1			pk to wh,perthitic
13565	granite	07/01/1998	1178678	7	1	033/vert	130/76 S	(m-cg, ksp and qtz
13566	granite	07/01/1998	1178678	7			ļ		peg zones
13567	granite	07/01/1998	1178678	7					cg kspar
13568	granite	07/01/1998	1178678	7		202/76 W	297/85 N		cg kspar
13569	granite	07/01/1998	1178678	7	1	}			cg kspar, large musc books
13570	granite	07/02/1998	1178678	7		228/85 SW		ct with MV @ 089°/vert	ksp and sodic plag, garnets
13571	granite	07/02/1998	1178678	7	1	156/vert	52/81 SE		m to cg, ksp,qtz, musc, garnets
13572	basalt	07/02/1998	1178678	1				fold-limbs @ 303/67 NW,086/?,290/82SW	biotite rich
13573	pegmatitic granite	07/02/1998	1178678	8	}	346/76 NE	61/88 SE	ct with MV @ 311°	ksp,qtz,gneissic texture
13574	granite	07/02/1998	1178678	7	296*	016/83 \$	141/63 N	ct @ 300/64 SE	m to cg, ksp,qtz, musc, garnets
13575	granite	07/02/1998	1178678	7				ľ	m to cg, ksp,qtz, musc, garnets
13576	basalt	07/02/1998	1178678	1		132/vert	032/78 SE		dk grey to green, wk ox'd
13577	basalt	07/02/1998	1178678	1	106°	106/vert	32/78 SE	wk fol'n	dk gry to bk green
13578	basalt	07/02/1998	1178678	1	297/75 NE	290/78 NE	}		mod ox'd, on small peninsula

Appendix E:

1998 Assay Results Bondar Clegg

ger van de State State

Geochemical Lab Report

TANTALUM MINING CORPORATION OF CANADA LTD. MR. PETER VANSTONE P.O. BOX 2000 LAC DU BONNET, MANITOBA ROE 1AO

+

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

+

ITS Intertek Testing Services Bondar Clegg

Geochemical Lab Report

REPORT	r: \	/98-0	1729.0 (COMPL	ETE)		REFERENCE :						
CLIENT PROJEC	ו : ז ז:	ANTA SEPE	LUM MINING COR RATION LAKE	PORATION OF	CANADA LTD.	SUBMITTED BY: C.GALESCHUK/R.KELLY DATE RECEIVED: 21-SEP-98 DATE PRINTED: 14-OCT-98						
DATE PPROVED	ORDER		ELEMENT		NUMBER OF ANALYSES	LOWER DETECTION L	IMIT EXTRACTIO	N	METHOD			
981013 981013	1 2	Li CS	Lithium CESIUM		33 33	1 PPM 1 PPM	HF-HNO3-HCL	04-HCL	ATOMIC ABSORP NEUTRON ACTIV	TION ATION		
981013	3	RB	RUBIDIUM		33	10 PPM			NEUTRON ACTIV	ATION		
S	SAMF	LE T	YPES	NUMBER	SIZE FRA	CTIONS	NUMBER	SAMPLE	PREPARATIONS	NUMBER		
F	2F	OCK		33	2 - 150		33	CRUSH	SPLIT & PULV.	33		
R	REPC	ORT C	OPIES TO: MR.	PETER VANST	ONE	*****	INVC	ICE TO: MR	. PETER VANSTO	NE		
			This report	must not be ecific to t nly to the	e reproduced ex hose samples i samples as rec	cept in full dentified un	. The data pres der "Sample Num sed on a dry ba	ented in t ber" and i	his s			
			otherwise in	dicated	****	****	****	*****	*****			

TS	Bond	ar Cl	egg	F	Report			
CLIENT: TANTA REPORT: V98-0	LUM MINING CO 1729.0 (COMP	DRPORATIC PLETE)	ON OF CANA	NDA LTD. DATE RECEIVED: 21-SEP-98	PROJECT: SEPERATION LAKE DATE PRINTED: 14-OCT-98	PAGE 1 OF 3		
SAMPLE JUMBER	ELEMENT UNITS	Li PPM	CS PPM	RB PPM				
	· · · · · · · · · · · · · · · · · · ·							
₹2 EX-11875		11	<1	<10				
R2 EX-11876		34	<1	<10		······		
R2 EX-11877		22	<1	<10				
R2 EX-11878		35	1	<10				
R2 EX-11879		66	12	320				
R2 EX-11880		57	13	430				
R2 EX-11881		13	1	<10				
R2 EX-11882		79	2	<10				
R2 EX-11883		39	1	<10				
R2 EX-11884		36	<1	<10				
R2 EX-11885		40	5	310				
R2 EX-11886		27	5	240				
R2 EX-11887		27	10	580				
R2 EX-11888		20	<1	<10				
R2 EX-11889		15	<1	<10				
R2 EX-11890		8	<1	<10				
R2 EX-11891		15	<1	<10				
R2 EX-11892		25	1	<10				
				4.0				

••••

....

Geochemical

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

ITS Intertek Testing Services Bondar Clegg

......

....

Geochemical Lab Report

CLIENT: TANT	ALUM MINING	CORPORATIO	ON OF CAN	ADA LTD.		PROJECT: SEPERATION LAKE				
REPORT: V98-	01729.0 (COM	(PLETE)		DATE	RECEIVED: 21-SEP-98	DATE PRINTED: 14-OCT-98 PAGE 2 OF 3				
STANDARD	ELEMENT	Li	CS	RB			•••••			
NAME	UNITS	PPM	PPM	PPM						
STD GEOCHEM	STD 6	-	1	26		······		······		
Number of An	alyses	-	1	1						
Mean Value		-	1.1	26.0						
Standard Dev	iation	-	-	-						
Accepted Val	ue	24	-	-						
CANMET STREAL	M-SED	17	-	-						
Number of An	alyses	1	-	-						
Mean Value		17.0	-	-						
Standard Dev	iation	-	-	-						
Accepted Val	ue	-	-	-						
ANALYTICAL B	LANK	<1	-	-						
Number of An	alyses	1	-	-						
Mean Value	•	0.5	-	-						
Standard Dev	iation	-	-	-						
Accepted Val	ue	<1	<1	<1	·					
	••••••	· · · · · · · · · · · · · · · · · · ·		••••••			•••••••••••••••••••••••••••••••••••••••			

.
ITS	Inte	ertek lar Cle	ces	Geochemical Lab Report		
CLIENT: TANTA REPORT: V98-0	LUM MINING C	ORPORATIO	IN OF CAN	ADA LTD. DATE RECEIVED: 21-SEP	PROJECT: SEPERATION	LAKE T-98 PAGE 3 OF 3
SAMPLE	ELEMENT	Li	CS	RB		
NUMBER	UNITS	PPM	PPM	РРМ		
EX-11880		57	13	430		
Prep Duplicat	e	58	11	410		
EX-11887		27	10	580		
		25				

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

•

Geochemical Lab Report

+

TANTALUM MINING CORPORATION OF CANADA LTD. MR. PETER VANSTONE P.O. BOX 2000 LAC DU BONNET, MANITOBA ROE 1A0

U

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

ITTS Intertek Testing Services Bondar Clegg

...

Geochemical Lab Report

REPOR	T: V9	98-0155	51.0 (COMPLE	TE >			REFERENCE: P.O. #98179					
CLIEN PROJE	Τ: ΤΑ CT: 9	ANTALUN SEPERAT	MINING CORP	ORATION OF (CANADA LTD.	DATE RECEIVED:	24-AUG-98	SUBMITTED	9 BY: C.GALESCHUK/R.KELLY PRINTED: 22-SEP-98			
DATE APPROVED	ORDE	ER	ELEMENT		NUMBER OF ANALYSES	LOWER DETECTION LIMI	T EXTRACTIO	N	METHOD			
980921 980921	1 2	Li CS	Lithium CESIUM		110 110	1 PPM 1 PPM	HF-HNO3-HCL	D4-HCL	ATOMIC ABSORPTION NEUTRON ACTIVATION			
980921	3	RB	RUBIDIUM		110	10 PPM			NEUTRON ACTIVATION			
	SAMPL	E TYPE	S	NUMBER	SIZE FR/	ACTIONS	NUMBER	SAMPLE	PREPARATIONS NUMBER	;		
•••••••••••••••••••••••••••••••••••••••	R RC	DCK		110	2 - 15()	110	CRUSH	SPLIT & PULV. 110			
	REPORT COPIES TO: MR. PETER VANSTONE MR. CUREY GALESCHUK ************************************											
		ז 3 **	report is spe applicable on otherwise ind	cific to the salid terms of	ose samples as rec	identified under ceived expressed	"Sample Nurni on a dry ba:	ber" and i sis unless	S 5 *****			
••••••••••••••••												
		*										
								•••••				

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

Intertek Testing Services Bondar Clegg ITS

.....

Geochemical Lab Report

CLIENT: TANTALUM MINING CORPORATION OF (REPORT: V98-01551.0 (COMPLETE)		N OF CANA	DA LTD. DATE RECEIV	ED: 24-AUG-98	PROJECT: SEPERATION LAKE DATE PRINTED: 22-SEP-98 PAG			E 1 OF 4	
SAMPLE NUMBER	ELEMENT UNITS	Li PPM	CS PPM	RB PPM	SAMPLE NUMBER	ELEMENT UNITS	Li PPM	CS PPM	RB PPM
									·····
	•••••••••••••••••••••••••••••••••••••••								
•••••••••••••••••••••••••••••••••••••••	•••••		••••••	••••••		······			
R2 EX-13435		20	4	300					
R2 EX-13436		74	10	190					
R2 EX-13437		59	7	120					
R2 EX-13438		42	6	110					
R2 EX-13439		37	5	76					
R2 EX-13440		33	7	310					
R2 EX-13441		34	5	160					
R2 EX-13442		110	12	180					
R2 EX-13443		46	5	420					
82 FX-13444		23	3	260			••••••••••		
R2 EX-13445		76	6	320					
R2 EX-13446		46	2	360					
R2 EX-13447		37	4	270					
R2 EX-13448		14	6	300					
P2 FY-13440	•••••••	17		260	· · · · · · · · · · · · · · · · · · ·				
R2 EX-13450		8	<1	<10					
R2 EX-13451		38	5	81					
R2 EX-13452		41	4	100	R2 EX-13537	,	87	7	200
R2 EX-13453		42	4	180	R2 EX-13538	3	49	5	280
02 FV-17/5/		0		350	D2 EV-13530	>	5/.	14	Q ()
RZ EX-13434		7 18	10	400	R2 EX-1355	, 1	52	27	110
R2 EX-13455		43	4	78	R2 EX-13541	, 	53	9	100
R2 EX-13457		37	7	110	R2 EX-13542	2	69	7	130
R2 EX-13458		50	14	85	R2 EX-13543	5	48	8	70
DO EV-17/50		21	7	3 // N	D) EV-425//		٨٤	4	110
RC EN-13479		16	3	340	RC EA-13344	• 5	40	2	250
					RZ EA- (3343 82 EY-13544	, ,	84	د ۲	170
					R2 FX-13547	7	16	6	110
						,	,0		110

Bondar-Clegg & Company Ltd.

130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada

Tel: (604) 985-0681, Fax: (604) 985-1071

ITTS Intertek Testing Services Bondar Clegg

.....

.

.....

.....

Geochemical Lab Report

CLIENT: TANTALUM MINING CORPORATION OF CANADA LTD.						PROJECT: SEPERATION LAKE				
REPORT: V98-0	REPORT: V98-U1551.0 (COMPLETE)		DATE RECEIV	/ED: 24-AUG-98	UAIE PRINIEU: 22-SEP-98 PAGE 2 OF 4					
SAMPLE	ELEMENT	Li	CS	RB	SAMPLE	ELEMENT	Li	CS	RB	
NUMBER	UNITS	PPM	PPM	PPM	NUMBER	UNITS	PPM	PPM	PPM	
R2 EX-13549		40	2	340						
R2 EX-13550		23	<1	<10						
R2 EX-13551		20	<1	<10						
R2 EX-13552		16	<1	<10						
R2 EX-13553		40	5	450						
R2 EX-13554		38	2	170						
R2 EX-13555		30	3	450						
R2 EX-13556		21	<1	<10						
R2 EX-13557		16	1	<10						
R2 EX-13558		11	<1	<10						
R2 EX-13559		15	<1	<10						
R2 EX-13560		20	<1	<10						
R2 EX-13561		70	7	180						
R2 EX-13562		12	4	620						
R2 EX-13563		7	2	230						
R2 EX-13564	••••••••••••••••••••••••••••••••••••	41	4	490				••••••		
R2 EX-13565		34	7	420						
R2 EX-13566		25	4	410						
R2 EX-13567		28	6	800						
R2 EX-13568		17	4	420						
R2 EX-13569	•••••	61	7	210						
R2 EX-13570		44	3	72						
R2 EX-13571		87	5	360						
R2 EX-13572		221	142	670						
R2 EX-13573		23	4	530						
R2 EX-13574		12	3	19						
R2 EX-13575		31	. 5	540						
R2 EX-13576		71	<1	<10						
R2 EX-13577		36	<1	<10						
R2 EX-13578		35	<1	<10						

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

.

ITS Intertek Testing Services Bondar Clegg

•

Geochemical Lab Report

CLIENT: TANI REPORT: V98-	CLIENT: TANTALUM MINING CORPORATION REPORT: V98-01551.0 (COMPLETE)			ADA LTD. DATE	RECEIVED: 24-AUG-98	PROJECT: SEPERATION LAKE DATE PRINTED: 22-SEP-98 PAGE 3 OF 4				
STANDARD NAME	ELEMENT UNITS	Li PPM	CS PPM	RB PPM	STANDARD NAME	ELEMENT UNITS	Lî PPM	CS PPM	R8 PPM	
STD GEOCHEN	6 A 079	26	~1	50	CAUNCY CTDI	AN-CER	14			••••••
STO GEOCHEM		20	1	J2 4		AM-SEU	10	-	-	
NUMBER OF AF	latyses	25.0	0.0	52.0	NUMBER OF A	inatyses	1	-	-	
Mean value		27.0	0.5	52.0	Mean Value	• . •	16.2	-	-	
Standard Dev	lation	-	-	-	Standard De	eviation	-	-	-	
Accepted Val	ue	24	-	-	Accepted Va	ilue	-	-	- 	
ANALYTICAL E	LANK	1	-	-					••••••••	
ANALYTICAL 8	BLANK	1	-	-						
ANALYTICAL B	ILANK	1	-	-						
ANALYTICAL B	BLANK	1	-	-						
Number of Ar	alyses	4	-	-						
	······································						••••••		•••••••••••••••••••••••••••••••••••••••	
Mean Value		1.0	-	-						
Standard Dev	riation	0.00	-	-						
Accepted Val	ue	<1	<1	<1						
							•••••••••••••••••••••••••••••••••••••••			
BCC GEOCHEM	STD 5	-	2	25						
Number of An	alvses	-	1	1						
Mean Value	•	-	2.1	25.0						
Standard Dev	viation	-	-	-						
Accepted Val	ue	32	-	-						
BCC GEOCHEM	STD 4	12	-	-			•••••			••••••
Number of An	alyses	1	-	-						
Mean Value	•	11.8	-	-						
Standard Dev	viation	-	-	-						
Accepted Val	ue	10	-	-						
Neut.Actvtio	on Std	-	2	25						
Number of An	alyses	-	. 1	1						
Mean Value		-	1.9	25.0						
Standard Dev	viation	-	•	-						
Accepted Val	ue	-	-	-						
CANNET LAKE-	SFD 1		-							
Winher of In		1	-	-						
Non Volue	~, 7000	78	-	-						
Steadard Day	vietion		-	_						
Accepted Val	ue	-	•	-						
Neut.Actvtio	n Std	-	4	97						
Number of An	alyses	-	1	1						
Mean Value	-	-	3.5	97.0						
Standard Dev	viation	-	-	-						
Accepted Val	ue	-	-	-						
•										

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

a are was

Intertek Testing Services Bondar Clegg ITS

Geochemical Lab Report

REPORT: V98-01	1551.0 (COM	PLETE)		DATE RECEIVE	D: 24-AUG-98	DATE PRINTED	: 22-SEP-	98 PA	GE 4 OF
SAMPLE NUMBER	ELEMENT UNITS	Lî PPM	CS PPM	RB PPM	SAMPLE NUMBER	ELEMENT UNITS	Li PPM	CS PPM	RB PPM
EX-13443	•	46	5	420					
Duplicate		46							
EX-13452		41	4	100					
Prep Duplicate	2	40	5	64					
EX-13455		18	10	400					
Duplicate			9	410					
EX-13503		20	<1	<10		4			
Duplicate		21							
EX-13511		31	3	<10					
Prep Duplicate	•	32	3	<10					
EX-13521	••••••	23	2	<10					
Duplicate		24							
EX-13527		19	<1	<10					
Duplicate			<1	<10			•••••		••••••••••
EX-13543	•••••••	48	8	70			•••••		
Duplicate		48							
EX-13556		21	<1	<10					
Prep Duplicate	•	21	<1	<10					
Prep Duplicate	9		<1	<10					
EX-13559		15	<1	<10					
Duplicate		16							
Deen Dimlieete		21	<u></u> 1	<10					

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

. .

Appendix F:

Analytical Techniques

•

t

Please find below our analytical techniques for Neutron Activation Analysis and Atomic Absorption.

NEUTRON ACTIVATION ANALYSIS

Procedure: A sample of material is exposed to (irradiated in) a flux of neutrons, usually by inserting it into the core of a nuclear reactor. Most of the elements in the sample become radioactive and begin to emit radiation in the form of penetrating gamma-rays whose energies (or wavelengths) are characteristic of particular elements. The sample is removed from the neutron flux and placed close to a gamma-ray detector, which is commonly a germanium crystal held at liquid nitrogen temperature. The gamma-rays radiate continuously and the interaction of these with the detector produces discrete voltage pulses which are proportional in height to the incident gamma-ray energies. Our specially developed multichannel analyzers sort out the voltage pulses from the detector according to size and digitally constructs a spectrum of gamma-ray energies versus intensities. By comparing spectral peak positions and areas with library standards, the elements constituting the sample are qualitatively and quantitatively identified. The concentration of the elements are then computed and the data reports prepared.

ATOMIC ABSORPTION SPECTROSCOPY

Following the dissolution of the sample with aqua regia. AAS is an instrumental method of analysis in which a sample that has been put into an aqueous solution is aspirated into the flame of the instrument for measurement of the concentration of the element(s) of interest. A light source emits light at the wave length of the element to be measured in a beam that passes through the flame. The atoms of the element in the flame absorb the light in proportion to the concentration of the element in the sample solution. This absorption is compared to those measured when a series of standard solutions has been aspirated in order to estimate the concentration of the element in the sample solution.

Should you need additional information, please contact me at (604) 985-0681.

Sincerely,

Rick McCaffrey Kanager, Geochem Department

CONSIGNOUS OF INCOMPLINSPECTION & HISTING (1997)

Bondar Clegg, & Company 4.04, 130 Penderion Avenue, North Vancouver, Review, Company,

for a special country

Appendix G:

Pegmatite Sketches

DRAVEN'S PEGMATITE SKETCH MAP SEPARATION LAKE PROJECT (1998)

NW Turtleback Pegmatitic Granites, Separation Lake Project

4

о/в

Appendix H:

Statement of Qualifications

Statement of Qualification:

I, Carey R. Galeschuk, reside at the following address:

Box 427 16 Aberdeen Street Pinawa, Manitoba R0E 1L0

Telephone: (204) 753-2022

I hereby state that I am the person responsible for the preparation of this report and the supervision of the work performed as mentioned. I am currently employed by the Tanatalum Mining Corporation of Canada Limited as a Project Geologist, and have been since January 30th, 1996.

Following is my employer's address:

Tanatalum Mining Corporation of Canada LimitedPO Box 2000Lac du Bonnet, ManitobaR0E 1A0Telephone: (204) 884-2400 extension 230

I am a 1988 graduate of the University of Saskatchewan in Saskatoon, Saskatchewan with a Bachelor of Science (Advanced) degree in Geological Sciences. I have practiced my profession as a geologist since my graduation for numerous companies involved in the exploration of industrial, base and precious metals in Canada.

I am a registered Professional Geoscientist in the provinces of Saskatchewan and Manitoba. As well, I am a Fellow member with the Geological Association of Canada and hold memberships in the Association of Geoscientists of Ontario, Association of Exploration Geochemists, Manitoba Prospectors and Developers Association and the CIM (Winnipeg Chapter and National member). My Ontario Prospector's License number is H13984.

alexhuk

C.R. Galeschuk, B.Sc., P.Geo. Project Geologist March 21st, 2000

DISCLAIMER:

This report was prepared for the purposes of reporting work performed for assessment in accordance with the mining regulations as set forth by the Province of Ontario. All interpretations are based on my best judgement from the available information at the time of preparation. Any use or reliance on this information by a third party is that party's responsibility. I accept no responsibility or liability for damages, if any, that may result from any actions or decisions undertaken by a third party as a result of information contained within this report.

Declaration of Assessment Work Performed on Mining Land

Transaction Number (office use)
110010.00037
Assessment Files Research Imaging

•

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

of subsection 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, the assessment work and correspond with the mining land holder. Questions about of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury,

		نشير به	., 1	•	
ns:	- For work performed on Crown Lands before recording a claim, use form 0240.	-	1. S	4	
	- Please type or print in ink.				

Recorded holder(s) (Attach a list if necessary)

,ie	Client Number
Antalum Mining Corporation of Canada Limited	# 199962
Address	Telephone Number
P.O. Box 2000	(204) 884-2400
	Fax Number
Lac du Bonnet, Manitoba R0E 1A0	(204) 884-2211
Name	Client Number
Gossan Resources Limited	# 13832 9
Address	Telephone Number
105 52 Donald Street	(204) 943-1990
	Fax Number
Winnipeg, Manitoba R3C 1L6	(204) 942-3434

2. Type of work performed: Check (\checkmark) and report on only ONE of the following groups for this declaration.

Geotechnical: prospecting, s assays and work under section	urveys, on 18 (regs)	Physical trenching	: drilling strip g and associ	ping, Rehabilitation ated assays
Work Type				Office Use
LITHOGEOCHEMISTRY, GEOLO	Commodity			
AND STRUCTURAL ANALYSIS.	D MAPS	Total \$ Value of 37,568 vc		
Dates Work From	То			NTS Reference
Performed Day 13 Month 06	Year 1998 Day 29	Month 08	Year 1998	
Global Positioning System Data (if available)	Township/Area Treelined/Pa	iterson/Sto	op/Snook	Mining Division Kinthia
M or G-Plan Number G-2652, G-2634, G-2523, G2644				Resident Geologist District Kenkla

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

- provide proper notice to surface rights holders before starting work;

- complete and attach a Statement of Costs, form 0212;

- provide a map showing contiguous mining lands that are linked for assigning work;

- include two copies of your technical report.

Person or companies who prepared the technical report (Attach a list if necessary)								
Name		Telephone Number						
CAREY GALESCHUK, PROJE	ECT GEOLOGIST, TANATALUM MIN	(204) 753-2022 (H	OME) (204) 884-2400 (WORK)					
Address			Fax Number					
(HOME) PO BOX 427, PINAWA, I	MB. R0E 1L0		(204) 884-2211 (WOI	RK)				
(WORK) PO BOX 2000, LAC DU	BONNET, MB, ROE 1A0							
Name			Telephone Number					
	DEARLY	PROVINCIAL	RECORDING	RECORDED				
Address	HECEIVED	OFFICE . C	Fax Number					
		<u> </u>	IVEDL					
Name			Telephone Number	AFR US 2000				
	APR - 6 2000	APR_0	6 2000					
Address			Fax Number					
······································	GEOSCIENCE ASSESSMENT	<u>[A.M.</u>	330 PM					
	OFFICE	7 8 9 10 11 12	1 2 3 4 5 6					

4. Certification by Recorded Holder or Agent

I, <u>CAREY</u> GALESCHUK, , do hereby certify that I have personal knowledge of the facts set forth in (Print Name)

this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder or Agent _ CFMales hut		Date HPRIL 03/2000
Agent's Address(HOME) PO BOX 427, PINAWA, MB. ROE 1L0	Telephone Number	Fax Number
(WORK) PO BOX 2000, LAC DU BONNET, MB, R0E 1A0	(204) 753-2022 (HOME)	(204) 884-2211 (WORK)
	(204) 884-2400 (WORK)	

0241 (03/97)

1348

- 1

5.	Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining
land	I where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form

				Ker	rud top	4
Mining work w mining column indicat	Claim Number, Or if as done on other eligible Jand, show in this the location number ted on the claim map	Number of Claim Units. For other mining land, iist hectares.	Value of work performed on this claim or other mining land	Value of work applied to this claim,	Value of work assigned to other mining chams.	Bank. Value of work to be distributed at a future date
eg	TB 7827	16 ha	\$26,825	NA	\$24,000	\$2.825
eg	1234567	12	0	\$24,000	0	0
eg	1234566	2	\$ \$,892	\$ 4,000	0	\$4,562
11	- 1178866	2	\$ 386	\$ 386	0	
2	. 1149772	1	\$ 193	\$ 193		+
3	+ 1178967	2	\$ 386	\$ 386	0	
4	1178575	2	\$ 386	\$ 386	0	
5	• 1178574	4	\$ 772	\$ 772	0	0
6	- 1178787	3	\$ 579	\$ 579	0	0
7	1178730	3	\$ 579	\$ 579		
8	1178295	1	\$ 193	\$ 193	0	
9	1178296	16	\$ 4989	S 4989	0	
10	• 1178690	1	\$ 193	\$ 193	0	
11	· 1178598	2	\$ 386	\$ 385	0	
12	• 1178689	8	\$ 3786	\$ 3786	0	
13	• 1178678	13	\$ 2508	\$ 2508	0	
14	• 1162991	8	\$ 3445	\$ 3445	0	t
15	1178297	6	\$ 1158	\$ 1158	0	
16	- 1162990	4	\$ 772	\$ 772	0	0
17	· 1149773	2	\$ 386	\$ 386	0	<u> </u>
18	1149776	3	\$ 579	\$ 579	0	
19	1149775	1	\$ 193	\$ 193		0
20	1162989	6	\$ 1156	\$ 1158	0	0
21	1178437	12	\$ 2315	\$ 2315	0	<u> </u>
22	• 1149774	6	\$ 6428	\$ 4652	0	\$ 1776
23	1220538	3	\$ 579	\$ 579	0	0
24	1220539	3	\$ 579	\$ 579	0	0
25	1220540	3	\$ 579	\$ 579	0	0
26	1220541	4	134 S 172	CAS \$ \$772	0	0
27	1220542	3 04/	\$ 579	-1 Non \$ 579	0	0
28	1166604	1	\$ 193	\$ 193	0	0
29	1220596	2	\$ 2517	\$ 1600	0	\$ 917
	Column Totals	125		CHATE		\$ 2602

I, CAREY RUS GALESCHUK , do hereby certify that the above work credits are eligible under subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim

where	лe	WOLK	was	cone.

Stansants of Recorded Holder or Agent Authorized in Writing	Date APRIL	3/2000		-
6. Instruction for cutting back credits that are not a	approved.			
Some of the credits claimed in this declaration may be cu	It back Please check	(~) in the boxes below to s	how how you wish to	s,

3 prioritize the deletion of credits:

Dr. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated,

2. Credits are to be cut back starting with the claims listed last, working backwards; or

□ 3. Credits are to be cut practice unity over all cutims listed in this declaration; or

4. Credits are to be cu	t back as phonizzed on the attached appo	ndix or as follows (d	RECEIVED
	APR C 8 2000		APR - 6 2000
Note: If you have not indicated how you	a sendite are to be deleted, and the will be	Lut back from the De	

followed by option number 2 if necessary	OFFICE
For Office Use Only	

ecoived Stamp	Deemed Approved Date	Data Notification Sent	
	Date Approved	Total Value of Credit Approved	
14 - 1 ⁻ 10 ⁻ 11	Approved for Recording by Minir	ng Recorder (Signature)	

APR 13 '00 16:46

PAGE.05 12046842211

HER 13 to 100-2 followed by option number 2 if necessary.

For Office Use Only			
Received Stamp	Deemed Approved Date	Date Notification Sent	
	Date Approved	Total Value of Credit Approved	
0241 (03/97)	Approved for Recording by Minin	ning Recorder (Signature)	

HER 13 YOU 14:30 FR GELACIENCE RESEARCHT TREAT 83681 TO 912048542211 P.84/84

Ontario m Development Rerueld Copy Statement of Costs for Assessment Credit

Transaction Number (office use) W.0010.00037

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining tand holder. Ouestions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines. 3rd Floor, 933 Ramsey Lake Road. Sudbury, Ontano, P3E 685.

Work Type Depending on the p hours/day worked, i gnd fine, number of			s of work of work, list the es of drilling, kil oples, atc.	number of prieties of	c	Cost Per Unit of work	Total Cost
Field Praparation	ration 1 Day \$ 209			\$ 209			
Field Work (Labor)		9	Days Days		1	\$ 210 \$ 135	\$ 1890 \$ 1080
		16	Days		+	\$ 113	\$ 1378
	ļ	13	Days		ļ	\$ 106	<u>\$ 1378</u>
Data Entry and Field Drafting		4	Days Days			\$ 210 \$ 113	\$ 840 \$ 457
		2	Days		1	\$ 106	\$ 212
Report Writing/Drafting/Data Entry		13	Days			\$ 222	\$ 2886
Structural Consultant Work		IN	VOICE	·	<u> </u>	\$ 23170.24	\$ 23170.24
Associated Costs (e.g. supplie	s, mobilization	n and	demobilizat	ion).			
86 Assays (Rock Lithogeochemistry)						\$ 22.50	<u>\$ 1935</u>
Photocopy charges for the report						\$ 319.07	\$ 319.07
Shipping \$1						\$ 125	\$ 125
Transpo	rtation Costs			A contract of the second s			
90 kilometres for 5 days = 450 kilometre	5		APR	8 235	0.30 per	km	\$ 136
Food and	Lodging Cos	s					
Food						\$ 300	\$ 300
Lodging (Accommodations)	HEC	CE	IVED			\$ 825	\$ 825
	AP	'R - 1	6 2000	Total V	alue of As	ssessment Work	\$ 3756 St.
Calculations of Filing Discounts:	GEOSCIEI	NCE A	SSESSMEN	Ţ			
 Work filed within two years of perfor If work is filed after two years and up Value of Assessment Work. If this si 	mance is claim p to five years a ituation applies	ned at after p i to you	100% of the enformance, ur claims, us	above Tota it can only : e the calcul	I Value of be claime ation beto	Assessment Work, d at 50% of the Tota w:	ıt
TOTAL VALUE OF ASSESSMENT WO	RK			x 0 50 =		Total \$ value of wo	orked claimed.
Note:						· · · · · · · · · · · ·	

 Work older than 5 years is not eligible for credit.
 A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification. If verification and/or correction/clarification. part of the assessment work submitted.

Certification verifying costs:

1, CAREY RUS GALESCHUK _, do hereby certify, that the amounts shown are as accurate as may reasonably (preservation of the costs were incurred while conducting assessment work on the lands indicated on the accompanying

Declaration of Work form as <u>PROJECT GEDLOGIST - TONTALUM MINING</u> I am authorized to make this certification. (recorded holder, activit, of State Company position with signing authority) CORPORATION OF COMPAN

(212 (03-57)

Date yarhuk

APR 13 '00 16:46

12046842211

PAGE.07

A GIORINA VEINYNY CUBID.

CAREY RUS GALESCHUK, do hereby certify, that the amounts shown are as accurate as may reasonably (please print full name) ١, be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying

I am authorized to make this certification. Declaration of Work form as <u>PROJECT GEOLOGIST - TANTALOM MINING</u> (recorded holder, agent, or state company position with signing authority) CORPORATION OF CANADA

Signature Muleyhuk Date April 3

0212 (03/97)

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

August 30, 2000

Carey R. Galeschuk TANTALUM MINING CORPORATION OF CANADA LIMITED P.O. BOX 2000 LAC DU BONNET, MANITOBA R0E-1A0

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Dear Sir or Madam:

Submission Number: 2.20238

Status
W0010.00037 Approval After Notice

Subject: Transaction Number(s):

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact JIM MCAULEY by e-mail at james.mcauley@ndm.gov.on.ca or by telephone at (705) 670-5880.

Yours sincerely,

teven B. Beneteriu

ORIGINAL SIGNED BY Steve B. Beneteau Acting Supervisor, Geoscience Assessment Office Mining Lands Section

Correspondence ID: 15187 Copy for: Assessment Library

Work Report Assessment Results

Submission Number: 2.20200							
Date Correspondence Sent: August 30, 2000 Assessor: JIM MCAULEY							
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date			
W0010.00037	1178866	TREELINED LAKE, PATERSON LAKE, STOP LAKE, SNOOK LAKE	Approval After Notice	August 14, 2000			

Section:

12 Geological GEOL

. .. .

2 20238

The 45 days outlined in the Notice dated June 30, 2000 have passed and no new information has been provided.

Assessment work credit has been approved as outlined on the attached Distribution of Assessment Work Credit sheet. Note that claim 1188296 as listed in the 45 Day Notice Distribution of Assessment Work Credit Sheet has been corrected to read claim 1178296 in this Distribution of Assessment Work Credit Sheet.

The assessment credit is being reduced by \$9383. The TOTAL VALUE of assessment credit that will be allowed, based on the information provided in this submission, is \$28,185. Note that an extra \$4 has been added to claim 1220596 to account for differences in the original statement of cost (due to rounding) as was noted when the original report was submitted.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

Correspondence to: Resident Geologist Kenora, ON

Assessment Files Library Sudbury, ON

Recorded Holder(s) and/or Agent(s):

Carey R. Galeschuk TANTALUM MINING CORPORATION OF CANADA LIMITED LAC DU BONNET, MANITOBA

GOSSAN RESOURCES LIMITED WINNIPEG, MANITOBA

Distribution of Assessment Work Credit

The following credit distribution reflects the value of assessment work performed on the mining land(s).

Date: August 30, 2000

Submission Number: 2.20238

Transaction Number: W0010.00037

Claim Number	<u>V</u> a	alue Of Work Performed
1178866		235.00
1149772		117.00
1178867		236.00
1178575		236.00
1178574		472.00
1178787		354.00
1178730		354.00
1178295		118.00
1178296		3,787.00
1178690		118.00
1178598		236.00
1178689		3,185.00
1178678		1,532.00
1162991		2,844.00
1178297		707.00
1162990		472.00
1149773		236.00
1149776		354.00
1149775		118.00
1162989		707.00
1178437		1,414.00
1149774		5,977.00
1220538		354.00
1220539		354.00
1220540		354.00
1220541		472.00
1220542		354.00
1166804		118.00
1220596		2,370.00
	Total: \$	28,185.00

. .

.

1

···· • · ·

www.i.i.i.i.i.je

.

GEND	LEGEND
	TOMET CARE
	or fourtroatt)
S.ETC	
PARCELS, ETC	
₩A¥	
and succession	
RIGHTS	
304088101104 St	
*	
. +	
IT CHUWA LAMUS	
SYMBOL	
NG RIGHTS	
SONLY 🖨	
ONLY	
T. T	
0C	
🕑 .	
Ō	
RCELS PATENTED PRICH TO MAY 6 DINAL PATENTEE BY THE PUBL	
070 CHAP 300 SET 43 SUBBLE 1	1
RENCES	
N FROM DISPOSITION	
RIGHTS ONLY	
RIGHTSONLY	
ND SURFACE RIGHTS	
Date Disposition File	
ONT MAY 10/99 M+S	
······································	UPDATES
AND LAND UNDER THE WATERS	
THE STURGEON RAPIDS AND THE STURGEON RIVER, BELOW	
OPMENT OF WATER POWER AT	
FER TO PLAN No 9 2-27, autor PLAN Na ROG-3359),	
5CEMBER 1923 EUG 24 43	
EN THE ENGLISH RIVER FROM THE	
I RAPIDS TO THE FOOT OFMAYNARD	
DUR S'AROVE THE HIGH WATER FORS 34179 69307	
KOIN NOVEMBER 1959	
4000 6000 4000	
M 13000	
	DATE PUT IN SERVICE
	10L 19 1996
	KENORA
	MINING DIVISION
AR NIZIMICI	
	THE INFORMATION THAT
TRY DIVISION	HAS BEEN COMPILED
A (PATRICIA PORTION)	AND ACCURACY IS NOT
	WISHING TO STAKE MIN-
Of Land Management	BULT WITH THE MINING
inensgament OS Branch	NORTHERN DEVELOP
-	DITIONAL INFORMATION
Namba-	LANOS SHOWN HEREON.
C DERI	
0-2001	

	LEGEND	
	OTHER ROADS	
	SURVEYED LINES:	
	TOWNSHIPS, BASE LINES, ETC. LDTS, MINING CLAIMS, PARCELS, E	TC
THAT MAP	UNSURVEYED LINES	
PILED IRCES	PARCEL BOUNDARY MINING CLAIMS ETC	
HOSE	RAILWAY AND RIGHT OF WAY	
CON	NON PERENNIAL STREAM	
LOP-	FLOODING OR FLOODING RIGHTS SUBDIVISION OR COMPOSITE FLAN	
ATION	RESERVATIONE	
ON.	ORIGINAL SHORELINE MARSH OR MUSKEG	
	MINES TRAVERSE MONUMENT	× .
	TOURIST CAMPS (OP ~ OUTPOST)	¥
	DISPOSIȚION OF CROI	NN LANDS
	TYPE OF DOCUMENT	EVMEN
	PATENT, SURFACE & MINING RIGHTS	
	" SURFACE RIGHTS ONLY	
	LEASE, SURFACE & MINING RIGHTS	· · · · · · · · · · · ·
	" SURFACE RIGHTS ONLY	
	LICENCE OF OCOUPATION	▼
	ONDER-IN-COUNCIL	
	SAND & GNAVEL	······································
	1013, VESTED IN ORIGINAL PATE LANCE ACT, REO 1870, CHAP 3	NTEE GY THE PUBLIC In, SEC. 83, SUBSEC 1.
	REFEREN	CES
		DISPOSITION
	S.R.O SURFACE RIGHTS OF	
	M.+ S MINING AND SURFA	CE RIGHTS
	Depription Only No. Data	Disposition Film
		
	RESERVE FLOODING RIGHT AND LAND J	NDER THE WATERS
	CARTROU FALLS, INCLUDING GOSHAWK (LAKE, BELOW CONTOUR I'L EVATION 1045	LAKE AND TOURIST
	1919, TO HE.P.C. OF ONTARIO FOR THE WATER POWER AT CARIBOU FALLS.	DEVELOPMENT OF
	ISTA MARCH 1958, (HEPC PLAN No SO WPLA No SO DATED 21+1 DECEMBER 19	0-33591 59 FILE: 14179
	RESERVE FLOODING RIGHTS WITHOUT C	
	SAND LAKE UP TO CONTOUR ELEVATIO	N 1042.0, 6.5 C DATUM
1	-OPMENT OF WATER POWER AT WHITEDO WINNIPEG RIVER.	IG FALLS ON THE
	FOR DETAIL OF CONTOUR, REFER TO PL BISI MARCH 1958, (H.E.P.) PLAN NO FP WRIA NO SUDATED 27th MARCH 1051	AN No L.28-44 DATED 3-1-3255)
	FILES: 1	2999 , 4922 , 69307 .
	RESERVE FLOODING RIGHTS ON FIDRO I LAKE TO A CONTOUR S'ABOVE THE HIL	BAY OF SEPARATION SH WAT ER MARK
	NESERVATION REQUESTED 30IN NOVEME	IER 1959 FILE: 34179
	SCALE: 1 INCH = 40 CHAINS	
	₹₹₹7 07 1/000 2000 4000	\$000 BECC
	0 200 1000	2080
		ια
	AREA	-
	SNOOK I A	
	CHOOK LA	r \ L
	M.N.R. ADMINISTRATIVE DISTR	ilC†
	KENORA	
	MINING DIVISION	1
	KENORA	
	LAND TITLES / REGISTRY DIVIS	HON
	KENORA	
	Ministry of Ministry	of
	Natural Northern	Development
	Ontario	5
	Bate Fillericher Alle	
		2614
	IM 67779	C044
3	11-2644	

		~
2		
		2
R	*	
, 	Shirts "	20
	2.20 MODIFIED AFTER CAREY GALESCHUK AND C TANTALUM MINING CORPORATION OF CANAL FERNANDO DE LA FUENTE CONSULTO	RES, S.L.
IN	SEPARATION LAKE PROJECT WESTERN ONTARIO -CANADA GEOLOGICAL MAP WITH FIELD WORK REFERENCES HORIZONTAL SCALE: 1 : 20,000 VERTICAL SCALE: 1 : 20,000	

Frist order lineament
 Second order lineament
 Third order lineament
 Fourth order lineament

FERNANDO DE LA FUENTE CONSULTORES, S.L. TANTALUM MINING CORPORATION OF CANADA SEPARATION LAKE PROJECT WESTERN ONTARIO -CANADA - PHOTOINTERPRETATION -RUGIEST 00986 RUGIEST 00986

SCALE : APPROX 1: 22.000

RELATIVE STRENGTHS	Li	Li + Rb	Li + Rb +
POSSIBLY ANOMALOUS	0	\bigcirc	\diamond
ANOMALOUS	•		$\mathbf{\bullet}$
HIGHLY ANOMALOUS			

 \mathbf{N} \bigcirc

ANCO I

TANTALUM MINING CORPORATION OF CANADA LIMITED

SEPARATION LAKE PROJECT

1998 East Claims - Geology and Structure Map

\$O

N

୍ଟି

 \bigcirc

	DRAWN BY CAREY GALESCHUK, PROJECT GEOLOGIST	NTS SHEETS Lennan Lake Sheet, 52L/8	GEOSCIEN	RE(
F	DATE DRAWN	MAP NUMBER		N	
	FEBRUARY 15th, 2000	Map 4 of 6	6 2000	IVE	
		2		J	_

AT NOO

TANTALUM MINING CORPORATION OF CANADA LIMITED

20 20 20

(°°, đ°)

00

310

SEPARATION LAKE PROJECT

1998 East Claims - Samples and Assay Results

CAREY GALESCHUK, PROJECT GEOLOGIST	52L/1, 52L/2, 52L/7, 52L/8	A
DATE DRAWN	MAP NUMBER	
FEBRUARY 15th, 2000	Map 5 of 6	2000

TANTALUM MINING CORPORATION OF CANADA LIMITED

() **(**)

